1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "os_share_solaris.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/javaCalls.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // put OS-includes here
  57 # include <sys/types.h>
  58 # include <sys/mman.h>
  59 # include <pthread.h>
  60 # include <signal.h>
  61 # include <setjmp.h>
  62 # include <errno.h>
  63 # include <dlfcn.h>
  64 # include <stdio.h>
  65 # include <unistd.h>
  66 # include <sys/resource.h>
  67 # include <thread.h>
  68 # include <sys/stat.h>
  69 # include <sys/time.h>
  70 # include <sys/filio.h>
  71 # include <sys/utsname.h>
  72 # include <sys/systeminfo.h>
  73 # include <sys/socket.h>
  74 # include <sys/trap.h>
  75 # include <sys/lwp.h>
  76 # include <poll.h>
  77 # include <sys/lwp.h>
  78 # include <procfs.h>     //  see comment in <sys/procfs.h>
  79 
  80 #ifndef AMD64
  81 // QQQ seems useless at this point
  82 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
  83 #endif // AMD64
  84 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
  85 
  86 
  87 #define MAX_PATH (2 * K)
  88 
  89 // Minimum stack sizes for the VM.  It's easier to document a constant value
  90 // but it's different for x86 and sparc because the page sizes are different.
  91 #ifdef AMD64
  92 size_t os::Posix::_compiler_thread_min_stack_allowed = 394 * K;
  93 size_t os::Posix::_java_thread_min_stack_allowed = 224 * K;
  94 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 224 * K;
  95 #define REG_SP REG_RSP
  96 #define REG_PC REG_RIP
  97 #define REG_FP REG_RBP
  98 #else
  99 size_t os::Posix::_compiler_thread_min_stack_allowed = 64 * K;
 100 size_t os::Posix::_java_thread_min_stack_allowed = 64 * K;
 101 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
 102 #define REG_SP UESP
 103 #define REG_PC EIP
 104 #define REG_FP EBP
 105 // 4900493 counter to prevent runaway LDTR refresh attempt
 106 
 107 static volatile int ldtr_refresh = 0;
 108 // the libthread instruction that faults because of the stale LDTR
 109 
 110 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
 111                        };
 112 #endif // AMD64
 113 
 114 char* os::non_memory_address_word() {
 115   // Must never look like an address returned by reserve_memory,
 116   // even in its subfields (as defined by the CPU immediate fields,
 117   // if the CPU splits constants across multiple instructions).
 118   return (char*) -1;
 119 }
 120 
 121 //
 122 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
 123 // There are issues with libthread giving out uc_links for different threads
 124 // on the same uc_link chain and bad or circular links.
 125 //
 126 bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) {
 127   if (valid >= suspect ||
 128       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
 129       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
 130       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
 131     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
 132     return false;
 133   }
 134 
 135   if (thread->is_Java_thread()) {
 136     if (!valid_stack_address(thread, (address)suspect)) {
 137       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
 138       return false;
 139     }
 140     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
 141       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
 142       return false;
 143     }
 144   }
 145   return true;
 146 }
 147 
 148 // We will only follow one level of uc_link since there are libthread
 149 // issues with ucontext linking and it is better to be safe and just
 150 // let caller retry later.
 151 const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
 152   const ucontext_t *uc) {
 153 
 154   const ucontext_t *retuc = NULL;
 155 
 156   if (uc != NULL) {
 157     if (uc->uc_link == NULL) {
 158       // cannot validate without uc_link so accept current ucontext
 159       retuc = uc;
 160     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 161       // first ucontext is valid so try the next one
 162       uc = uc->uc_link;
 163       if (uc->uc_link == NULL) {
 164         // cannot validate without uc_link so accept current ucontext
 165         retuc = uc;
 166       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 167         // the ucontext one level down is also valid so return it
 168         retuc = uc;
 169       }
 170     }
 171   }
 172   return retuc;
 173 }
 174 
 175 // Assumes ucontext is valid
 176 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) {
 177   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
 178 }
 179 
 180 void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
 181   uc->uc_mcontext.gregs [REG_PC]  = (greg_t) pc;
 182 }
 183 
 184 // Assumes ucontext is valid
 185 intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) {
 186   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 187 }
 188 
 189 // Assumes ucontext is valid
 190 intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) {
 191   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 192 }
 193 
 194 address os::Solaris::ucontext_get_pc(const ucontext_t *uc) {
 195   return (address) uc->uc_mcontext.gregs[REG_PC];
 196 }
 197 
 198 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 199 // is currently interrupted by SIGPROF.
 200 //
 201 // The difference between this and os::fetch_frame_from_context() is that
 202 // here we try to skip nested signal frames.
 203 // This method is also used for stack overflow signal handling.
 204 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
 205   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 206 
 207   assert(thread != NULL, "just checking");
 208   assert(ret_sp != NULL, "just checking");
 209   assert(ret_fp != NULL, "just checking");
 210 
 211   const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
 212   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
 213 }
 214 
 215 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 216                     intptr_t** ret_sp, intptr_t** ret_fp) {
 217 
 218   ExtendedPC  epc;
 219   const ucontext_t *uc = (const ucontext_t*)ucVoid;
 220 
 221   if (uc != NULL) {
 222     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 223     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
 224     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
 225   } else {
 226     // construct empty ExtendedPC for return value checking
 227     epc = ExtendedPC(NULL);
 228     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 229     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 230   }
 231 
 232   return epc;
 233 }
 234 
 235 frame os::fetch_frame_from_context(const void* ucVoid) {
 236   intptr_t* sp;
 237   intptr_t* fp;
 238   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 239   return frame(sp, fp, epc.pc());
 240 }
 241 
 242 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
 243   intptr_t* sp;
 244   intptr_t* fp;
 245   ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
 246   return frame(sp, fp, epc.pc());
 247 }
 248 
 249 bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 250  address pc = (address) os::Solaris::ucontext_get_pc(uc);
 251   if (Interpreter::contains(pc)) {
 252     // interpreter performs stack banging after the fixed frame header has
 253     // been generated while the compilers perform it before. To maintain
 254     // semantic consistency between interpreted and compiled frames, the
 255     // method returns the Java sender of the current frame.
 256     *fr = os::fetch_frame_from_ucontext(thread, uc);
 257     if (!fr->is_first_java_frame()) {
 258       // get_frame_at_stack_banging_point() is only called when we
 259       // have well defined stacks so java_sender() calls do not need
 260       // to assert safe_for_sender() first.
 261       *fr = fr->java_sender();
 262     }
 263   } else {
 264     // more complex code with compiled code
 265     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 266     CodeBlob* cb = CodeCache::find_blob(pc);
 267     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 268       // Not sure where the pc points to, fallback to default
 269       // stack overflow handling
 270       return false;
 271     } else {
 272       // in compiled code, the stack banging is performed just after the return pc
 273       // has been pushed on the stack
 274       intptr_t* fp = os::Solaris::ucontext_get_fp(uc);
 275       intptr_t* sp = os::Solaris::ucontext_get_sp(uc);
 276       *fr = frame(sp + 1, fp, (address)*sp);
 277       if (!fr->is_java_frame()) {
 278         // get_frame_at_stack_banging_point() is only called when we
 279         // have well defined stacks so java_sender() calls do not need
 280         // to assert safe_for_sender() first.
 281         *fr = fr->java_sender();
 282       }
 283     }
 284   }
 285   assert(fr->is_java_frame(), "Safety check");
 286   return true;
 287 }
 288 
 289 frame os::get_sender_for_C_frame(frame* fr) {
 290   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 291 }
 292 
 293 extern "C" intptr_t *_get_current_sp();  // in .il file
 294 
 295 address os::current_stack_pointer() {
 296   return (address)_get_current_sp();
 297 }
 298 
 299 extern "C" intptr_t *_get_current_fp();  // in .il file
 300 
 301 frame os::current_frame() {
 302   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
 303   // fp is for os::current_frame. We want the fp for our caller.
 304   frame myframe((intptr_t*)os::current_stack_pointer(),
 305                 (intptr_t*)fp,
 306                 CAST_FROM_FN_PTR(address, os::current_frame));
 307   frame caller_frame = os::get_sender_for_C_frame(&myframe);
 308 
 309   if (os::is_first_C_frame(&caller_frame)) {
 310     // stack is not walkable
 311     frame ret; // This will be a null useless frame
 312     return ret;
 313   } else {
 314     // return frame for our caller's caller
 315     return os::get_sender_for_C_frame(&caller_frame);
 316   }
 317 }
 318 
 319 #ifndef AMD64
 320 
 321 // Detecting SSE support by OS
 322 // From solaris_i486.s
 323 extern "C" bool sse_check();
 324 extern "C" bool sse_unavailable();
 325 
 326 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
 327 static int sse_status = SSE_UNKNOWN;
 328 
 329 
 330 static void  check_for_sse_support() {
 331   if (!VM_Version::supports_sse()) {
 332     sse_status = SSE_NOT_SUPPORTED;
 333     return;
 334   }
 335   // looking for _sse_hw in libc.so, if it does not exist or
 336   // the value (int) is 0, OS has no support for SSE
 337   int *sse_hwp;
 338   void *h;
 339 
 340   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
 341     //open failed, presume no support for SSE
 342     sse_status = SSE_NOT_SUPPORTED;
 343     return;
 344   }
 345   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
 346     sse_status = SSE_NOT_SUPPORTED;
 347   } else if (*sse_hwp == 0) {
 348     sse_status = SSE_NOT_SUPPORTED;
 349   }
 350   dlclose(h);
 351 
 352   if (sse_status == SSE_UNKNOWN) {
 353     bool (*try_sse)() = (bool (*)())sse_check;
 354     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
 355   }
 356 
 357 }
 358 
 359 #endif // AMD64
 360 
 361 bool os::supports_sse() {
 362 #ifdef AMD64
 363   return true;
 364 #else
 365   if (sse_status == SSE_UNKNOWN)
 366     check_for_sse_support();
 367   return sse_status == SSE_SUPPORTED;
 368 #endif // AMD64
 369 }
 370 
 371 bool os::is_allocatable(size_t bytes) {
 372 #ifdef AMD64
 373   return true;
 374 #else
 375 
 376   if (bytes < 2 * G) {
 377     return true;
 378   }
 379 
 380   char* addr = reserve_memory(bytes, NULL);
 381 
 382   if (addr != NULL) {
 383     release_memory(addr, bytes);
 384   }
 385 
 386   return addr != NULL;
 387 #endif // AMD64
 388 
 389 }
 390 
 391 extern "C" JNIEXPORT int
 392 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
 393                           int abort_if_unrecognized) {
 394   ucontext_t* uc = (ucontext_t*) ucVoid;
 395 
 396 #ifndef AMD64
 397   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
 398     // the SSE instruction faulted. supports_sse() need return false.
 399     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
 400     return true;
 401   }
 402 #endif // !AMD64
 403 
 404   Thread* t = Thread::current_or_null_safe();
 405 
 406   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 407   // (no destructors can be run)
 408   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 409 
 410   SignalHandlerMark shm(t);
 411 
 412   if(sig == SIGPIPE || sig == SIGXFSZ) {
 413     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 414       return true;
 415     } else {
 416       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
 417       return true;
 418     }
 419   }
 420 
 421   JavaThread* thread = NULL;
 422   VMThread* vmthread = NULL;
 423 
 424   if (os::Solaris::signal_handlers_are_installed) {
 425     if (t != NULL ){
 426       if(t->is_Java_thread()) {
 427         thread = (JavaThread*)t;
 428       }
 429       else if(t->is_VM_thread()){
 430         vmthread = (VMThread *)t;
 431       }
 432     }
 433   }
 434 
 435   if (sig == os::Solaris::SIGasync()) {
 436     if(thread || vmthread){
 437       OSThread::SR_handler(t, uc);
 438       return true;
 439     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 440       return true;
 441     } else {
 442       // If os::Solaris::SIGasync not chained, and this is a non-vm and
 443       // non-java thread
 444       return true;
 445     }
 446   }
 447 
 448   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 449     // can't decode this kind of signal
 450     info = NULL;
 451   } else {
 452     assert(sig == info->si_signo, "bad siginfo");
 453   }
 454 
 455   // decide if this trap can be handled by a stub
 456   address stub = NULL;
 457 
 458   address pc          = NULL;
 459 
 460   //%note os_trap_1
 461   if (info != NULL && uc != NULL && thread != NULL) {
 462     // factor me: getPCfromContext
 463     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 464 
 465     if (StubRoutines::is_safefetch_fault(pc)) {
 466       os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 467       return true;
 468     }
 469 
 470     // Handle ALL stack overflow variations here
 471     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
 472       address addr = (address) info->si_addr;
 473       if (thread->in_stack_yellow_reserved_zone(addr)) {
 474         if (thread->thread_state() == _thread_in_Java) {
 475           if (thread->in_stack_reserved_zone(addr)) {
 476             frame fr;
 477             if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 478               assert(fr.is_java_frame(), "Must be Java frame");
 479               frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 480               if (activation.sp() != NULL) {
 481                 thread->disable_stack_reserved_zone();
 482                 if (activation.is_interpreted_frame()) {
 483                   thread->set_reserved_stack_activation((address)(
 484                     activation.fp() + frame::interpreter_frame_initial_sp_offset));
 485                 } else {
 486                   thread->set_reserved_stack_activation((address)activation.unextended_sp());
 487                 }
 488                 return true;
 489               }
 490             }
 491           }
 492           // Throw a stack overflow exception.  Guard pages will be reenabled
 493           // while unwinding the stack.
 494           thread->disable_stack_yellow_reserved_zone();
 495           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 496         } else {
 497           // Thread was in the vm or native code.  Return and try to finish.
 498           thread->disable_stack_yellow_reserved_zone();
 499           return true;
 500         }
 501       } else if (thread->in_stack_red_zone(addr)) {
 502         // Fatal red zone violation.  Disable the guard pages and fall through
 503         // to handle_unexpected_exception way down below.
 504         thread->disable_stack_red_zone();
 505         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 506       }
 507     }
 508 
 509     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 510       // Verify that OS save/restore AVX registers.
 511       stub = VM_Version::cpuinfo_cont_addr();
 512     }
 513 
 514     if (thread->thread_state() == _thread_in_vm) {
 515       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
 516         address next_pc = Assembler::locate_next_instruction(pc);
 517         stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 518       }
 519     }
 520 
 521     if (thread->thread_state() == _thread_in_Java) {
 522       // Support Safepoint Polling
 523       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 524         stub = SharedRuntime::get_poll_stub(pc);
 525       }
 526       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
 527         // BugId 4454115: A read from a MappedByteBuffer can fault
 528         // here if the underlying file has been truncated.
 529         // Do not crash the VM in such a case.
 530         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 531         if (cb != NULL) {
 532           CompiledMethod* nm = cb->as_compiled_method_or_null();
 533           if (nm != NULL && nm->has_unsafe_access()) {
 534             address next_pc = Assembler::locate_next_instruction(pc);
 535             stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 536           }
 537         }
 538       }
 539       else
 540       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
 541         // integer divide by zero
 542         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 543       }
 544 #ifndef AMD64
 545       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
 546         // floating-point divide by zero
 547         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 548       }
 549       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
 550         // The encoding of D2I in i486.ad can cause an exception prior
 551         // to the fist instruction if there was an invalid operation
 552         // pending. We want to dismiss that exception. From the win_32
 553         // side it also seems that if it really was the fist causing
 554         // the exception that we do the d2i by hand with different
 555         // rounding. Seems kind of weird. QQQ TODO
 556         // Note that we take the exception at the NEXT floating point instruction.
 557         if (pc[0] == 0xDB) {
 558             assert(pc[0] == 0xDB, "not a FIST opcode");
 559             assert(pc[1] == 0x14, "not a FIST opcode");
 560             assert(pc[2] == 0x24, "not a FIST opcode");
 561             return true;
 562         } else {
 563             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
 564             assert(pc[-2] == 0x14, "not an flt invalid opcode");
 565             assert(pc[-1] == 0x24, "not an flt invalid opcode");
 566         }
 567       }
 568       else if (sig == SIGFPE ) {
 569         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
 570       }
 571 #endif // !AMD64
 572 
 573         // QQQ It doesn't seem that we need to do this on x86 because we should be able
 574         // to return properly from the handler without this extra stuff on the back side.
 575 
 576       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 577         // Determination of interpreter/vtable stub/compiled code null exception
 578         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 579       }
 580     }
 581 
 582     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 583     // and the heap gets shrunk before the field access.
 584     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 585       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 586       if (addr != (address)-1) {
 587         stub = addr;
 588       }
 589     }
 590 
 591     // Check to see if we caught the safepoint code in the
 592     // process of write protecting the memory serialization page.
 593     // It write enables the page immediately after protecting it
 594     // so we can just return to retry the write.
 595     if ((sig == SIGSEGV) &&
 596         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
 597       // Block current thread until the memory serialize page permission restored.
 598       os::block_on_serialize_page_trap();
 599       return true;
 600     }
 601   }
 602 
 603   // Execution protection violation
 604   //
 605   // Preventative code for future versions of Solaris which may
 606   // enable execution protection when running the 32-bit VM on AMD64.
 607   //
 608   // This should be kept as the last step in the triage.  We don't
 609   // have a dedicated trap number for a no-execute fault, so be
 610   // conservative and allow other handlers the first shot.
 611   //
 612   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 613   // this si_code is so generic that it is almost meaningless; and
 614   // the si_code for this condition may change in the future.
 615   // Furthermore, a false-positive should be harmless.
 616   if (UnguardOnExecutionViolation > 0 &&
 617       (sig == SIGSEGV || sig == SIGBUS) &&
 618       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
 619     int page_size = os::vm_page_size();
 620     address addr = (address) info->si_addr;
 621     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
 622     // Make sure the pc and the faulting address are sane.
 623     //
 624     // If an instruction spans a page boundary, and the page containing
 625     // the beginning of the instruction is executable but the following
 626     // page is not, the pc and the faulting address might be slightly
 627     // different - we still want to unguard the 2nd page in this case.
 628     //
 629     // 15 bytes seems to be a (very) safe value for max instruction size.
 630     bool pc_is_near_addr =
 631       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 632     bool instr_spans_page_boundary =
 633       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 634                        (intptr_t) page_size) > 0);
 635 
 636     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 637       static volatile address last_addr =
 638         (address) os::non_memory_address_word();
 639 
 640       // In conservative mode, don't unguard unless the address is in the VM
 641       if (addr != last_addr &&
 642           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 643 
 644         // Make memory rwx and retry
 645         address page_start =
 646           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 647         bool res = os::protect_memory((char*) page_start, page_size,
 648                                       os::MEM_PROT_RWX);
 649 
 650         log_debug(os)("Execution protection violation "
 651                       "at " INTPTR_FORMAT
 652                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
 653                       p2i(page_start), (res ? "success" : "failed"), errno);
 654         stub = pc;
 655 
 656         // Set last_addr so if we fault again at the same address, we don't end
 657         // up in an endless loop.
 658         //
 659         // There are two potential complications here.  Two threads trapping at
 660         // the same address at the same time could cause one of the threads to
 661         // think it already unguarded, and abort the VM.  Likely very rare.
 662         //
 663         // The other race involves two threads alternately trapping at
 664         // different addresses and failing to unguard the page, resulting in
 665         // an endless loop.  This condition is probably even more unlikely than
 666         // the first.
 667         //
 668         // Although both cases could be avoided by using locks or thread local
 669         // last_addr, these solutions are unnecessary complication: this
 670         // handler is a best-effort safety net, not a complete solution.  It is
 671         // disabled by default and should only be used as a workaround in case
 672         // we missed any no-execute-unsafe VM code.
 673 
 674         last_addr = addr;
 675       }
 676     }
 677   }
 678 
 679   if (stub != NULL) {
 680     // save all thread context in case we need to restore it
 681 
 682     if (thread != NULL) thread->set_saved_exception_pc(pc);
 683     // 12/02/99: On Sparc it appears that the full context is also saved
 684     // but as yet, no one looks at or restores that saved context
 685     os::Solaris::ucontext_set_pc(uc, stub);
 686     return true;
 687   }
 688 
 689   // signal-chaining
 690   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 691     return true;
 692   }
 693 
 694 #ifndef AMD64
 695   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
 696   // Handle an undefined selector caused by an attempt to assign
 697   // fs in libthread getipriptr(). With the current libthread design every 512
 698   // thread creations the LDT for a private thread data structure is extended
 699   // and thre is a hazard that and another thread attempting a thread creation
 700   // will use a stale LDTR that doesn't reflect the structure's growth,
 701   // causing a GP fault.
 702   // Enforce the probable limit of passes through here to guard against an
 703   // infinite loop if some other move to fs caused the GP fault. Note that
 704   // this loop counter is ultimately a heuristic as it is possible for
 705   // more than one thread to generate this fault at a time in an MP system.
 706   // In the case of the loop count being exceeded or if the poll fails
 707   // just fall through to a fatal error.
 708   // If there is some other source of T_GPFLT traps and the text at EIP is
 709   // unreadable this code will loop infinitely until the stack is exausted.
 710   // The key to diagnosis in this case is to look for the bottom signal handler
 711   // frame.
 712 
 713   if(! IgnoreLibthreadGPFault) {
 714     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
 715       const unsigned char *p =
 716                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
 717 
 718       // Expected instruction?
 719 
 720       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
 721 
 722         Atomic::inc(&ldtr_refresh);
 723 
 724         // Infinite loop?
 725 
 726         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
 727 
 728           // No, force scheduling to get a fresh view of the LDTR
 729 
 730           if(poll(NULL, 0, 10) == 0) {
 731 
 732             // Retry the move
 733 
 734             return false;
 735           }
 736         }
 737       }
 738     }
 739   }
 740 #endif // !AMD64
 741 
 742   if (!abort_if_unrecognized) {
 743     // caller wants another chance, so give it to him
 744     return false;
 745   }
 746 
 747   if (!os::Solaris::libjsig_is_loaded) {
 748     struct sigaction oldAct;
 749     sigaction(sig, (struct sigaction *)0, &oldAct);
 750     if (oldAct.sa_sigaction != signalHandler) {
 751       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
 752                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
 753       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
 754     }
 755   }
 756 
 757   if (pc == NULL && uc != NULL) {
 758     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 759   }
 760 
 761   // unmask current signal
 762   sigset_t newset;
 763   sigemptyset(&newset);
 764   sigaddset(&newset, sig);
 765   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 766 
 767   // Determine which sort of error to throw.  Out of swap may signal
 768   // on the thread stack, which could get a mapping error when touched.
 769   address addr = (address) info->si_addr;
 770   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
 771     vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
 772   }
 773 
 774   VMError::report_and_die(t, sig, pc, info, ucVoid);
 775 
 776   ShouldNotReachHere();
 777   return false;
 778 }
 779 
 780 void os::print_context(outputStream *st, const void *context) {
 781   if (context == NULL) return;
 782 
 783   const ucontext_t *uc = (const ucontext_t*)context;
 784   st->print_cr("Registers:");
 785 #ifdef AMD64
 786   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 787   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 788   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 789   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 790   st->cr();
 791   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 792   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 793   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 794   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 795   st->cr();
 796   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 797   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 798   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 799   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 800   st->cr();
 801   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 802   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 803   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 804   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 805   st->cr();
 806   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 807   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
 808 #else
 809   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
 810   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
 811   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
 812   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
 813   st->cr();
 814   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
 815   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
 816   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
 817   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
 818   st->cr();
 819   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
 820   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
 821 #endif // AMD64
 822   st->cr();
 823   st->cr();
 824 
 825   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
 826   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 827   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 828   st->cr();
 829 
 830   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 831   // point to garbage if entry point in an nmethod is corrupted. Leave
 832   // this at the end, and hope for the best.
 833   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 834   address pc = epc.pc();
 835   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 836   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 837 }
 838 
 839 void os::print_register_info(outputStream *st, const void *context) {
 840   if (context == NULL) return;
 841 
 842   const ucontext_t *uc = (const ucontext_t*)context;
 843 
 844   st->print_cr("Register to memory mapping:");
 845   st->cr();
 846 
 847   // this is horrendously verbose but the layout of the registers in the
 848   // context does not match how we defined our abstract Register set, so
 849   // we can't just iterate through the gregs area
 850 
 851   // this is only for the "general purpose" registers
 852 
 853 #ifdef AMD64
 854   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 855   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 856   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 857   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 858   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 859   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 860   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 861   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 862   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 863   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 864   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 865   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 866   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 867   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 868   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 869   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 870 #else
 871   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
 872   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
 873   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
 874   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
 875   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
 876   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
 877   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
 878   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
 879 #endif
 880 
 881   st->cr();
 882 }
 883 
 884 
 885 #ifdef AMD64
 886 void os::Solaris::init_thread_fpu_state(void) {
 887   // Nothing to do
 888 }
 889 #else
 890 // From solaris_i486.s
 891 extern "C" void fixcw();
 892 
 893 void os::Solaris::init_thread_fpu_state(void) {
 894   // Set fpu to 53 bit precision. This happens too early to use a stub.
 895   fixcw();
 896 }
 897 
 898 // These routines are the initial value of atomic_xchg_entry(),
 899 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
 900 // until initialization is complete.
 901 // TODO - replace with .il implementation when compiler supports it.
 902 
 903 typedef jint  xchg_func_t        (jint,  volatile jint*);
 904 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
 905 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
 906 typedef jint  add_func_t         (jint,  volatile jint*);
 907 
 908 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
 909   // try to use the stub:
 910   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
 911 
 912   if (func != NULL) {
 913     os::atomic_xchg_func = func;
 914     return (*func)(exchange_value, dest);
 915   }
 916   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 917 
 918   jint old_value = *dest;
 919   *dest = exchange_value;
 920   return old_value;
 921 }
 922 
 923 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
 924   // try to use the stub:
 925   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
 926 
 927   if (func != NULL) {
 928     os::atomic_cmpxchg_func = func;
 929     return (*func)(exchange_value, dest, compare_value);
 930   }
 931   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 932 
 933   jint old_value = *dest;
 934   if (old_value == compare_value)
 935     *dest = exchange_value;
 936   return old_value;
 937 }
 938 
 939 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
 940   // try to use the stub:
 941   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
 942 
 943   if (func != NULL) {
 944     os::atomic_cmpxchg_long_func = func;
 945     return (*func)(exchange_value, dest, compare_value);
 946   }
 947   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 948 
 949   jlong old_value = *dest;
 950   if (old_value == compare_value)
 951     *dest = exchange_value;
 952   return old_value;
 953 }
 954 
 955 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
 956   // try to use the stub:
 957   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
 958 
 959   if (func != NULL) {
 960     os::atomic_add_func = func;
 961     return (*func)(add_value, dest);
 962   }
 963   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 964 
 965   return (*dest) += add_value;
 966 }
 967 
 968 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
 969 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
 970 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
 971 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
 972 
 973 extern "C" void _solaris_raw_setup_fpu(address ptr);
 974 void os::setup_fpu() {
 975   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 976   _solaris_raw_setup_fpu(fpu_cntrl);
 977 }
 978 #endif // AMD64
 979 
 980 #ifndef PRODUCT
 981 void os::verify_stack_alignment() {
 982 #ifdef AMD64
 983   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 984 #endif
 985 }
 986 #endif
 987 
 988 int os::extra_bang_size_in_bytes() {
 989   // JDK-8050147 requires the full cache line bang for x86.
 990   return VM_Version::L1_line_size();
 991 }