1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/disassembler.hpp"
  32 #include "gc/shared/collectedHeap.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/interpreterRuntime.hpp"
  35 #include "interpreter/linkResolver.hpp"
  36 #include "interpreter/templateTable.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "memory/vtBuffer.hpp"
  42 #include "oops/constantPool.hpp"
  43 #include "oops/instanceKlass.hpp"
  44 #include "oops/methodData.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/objArrayOop.inline.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/symbol.hpp"
  49 #include "oops/valueKlass.hpp"
  50 #include "oops/valueArrayKlass.hpp"
  51 #include "oops/valueArrayOop.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "prims/nativeLookup.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/biasedLocking.hpp"
  56 #include "runtime/compilationPolicy.hpp"
  57 #include "runtime/deoptimization.hpp"
  58 #include "runtime/fieldDescriptor.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/icache.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/jfieldIDWorkaround.hpp"
  64 #include "runtime/osThread.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/synchronizer.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "utilities/align.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/globalDefinitions.hpp"
  72 #ifdef COMPILER2
  73 #include "opto/runtime.hpp"
  74 #endif
  75 
  76 class UnlockFlagSaver {
  77   private:
  78     JavaThread* _thread;
  79     bool _do_not_unlock;
  80   public:
  81     UnlockFlagSaver(JavaThread* t) {
  82       _thread = t;
  83       _do_not_unlock = t->do_not_unlock_if_synchronized();
  84       t->set_do_not_unlock_if_synchronized(false);
  85     }
  86     ~UnlockFlagSaver() {
  87       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
  88     }
  89 };
  90 
  91 //------------------------------------------------------------------------------------------------------------------------
  92 // State accessors
  93 
  94 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
  95   last_frame(thread).interpreter_frame_set_bcp(bcp);
  96   if (ProfileInterpreter) {
  97     // ProfileTraps uses MDOs independently of ProfileInterpreter.
  98     // That is why we must check both ProfileInterpreter and mdo != NULL.
  99     MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data();
 100     if (mdo != NULL) {
 101       NEEDS_CLEANUP;
 102       last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
 103     }
 104   }
 105 }
 106 
 107 //------------------------------------------------------------------------------------------------------------------------
 108 // Constants
 109 
 110 
 111 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
 112   // access constant pool
 113   ConstantPool* pool = method(thread)->constants();
 114   int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
 115   constantTag tag = pool->tag_at(index);
 116 
 117   assert ((tag.is_unresolved_klass() || tag.is_klass() ||
 118            tag.is_unresolved_value_type() || tag.is_value_type()),
 119           "wrong ldc call");
 120   Klass* klass = pool->klass_at(index, CHECK);
 121     oop java_class = klass->java_mirror();
 122     thread->set_vm_result(java_class);
 123 IRT_END
 124 
 125 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
 126   assert(bytecode == Bytecodes::_fast_aldc ||
 127          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 128   ResourceMark rm(thread);
 129   methodHandle m (thread, method(thread));
 130   Bytecode_loadconstant ldc(m, bci(thread));
 131   oop result = ldc.resolve_constant(CHECK);
 132 #ifdef ASSERT
 133   {
 134     // The bytecode wrappers aren't GC-safe so construct a new one
 135     Bytecode_loadconstant ldc2(m, bci(thread));
 136     oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index());
 137     assert(result == coop, "expected result for assembly code");
 138   }
 139 #endif
 140   thread->set_vm_result(result);
 141 }
 142 IRT_END
 143 
 144 
 145 //------------------------------------------------------------------------------------------------------------------------
 146 // Allocation
 147 
 148 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
 149   Klass* k = pool->klass_at(index, CHECK);
 150   InstanceKlass* klass = InstanceKlass::cast(k);
 151 
 152   // Make sure we are not instantiating an abstract klass
 153   klass->check_valid_for_instantiation(true, CHECK);
 154 
 155   // Make sure klass is initialized
 156   klass->initialize(CHECK);
 157 
 158   // At this point the class may not be fully initialized
 159   // because of recursive initialization. If it is fully
 160   // initialized & has_finalized is not set, we rewrite
 161   // it into its fast version (Note: no locking is needed
 162   // here since this is an atomic byte write and can be
 163   // done more than once).
 164   //
 165   // Note: In case of classes with has_finalized we don't
 166   //       rewrite since that saves us an extra check in
 167   //       the fast version which then would call the
 168   //       slow version anyway (and do a call back into
 169   //       Java).
 170   //       If we have a breakpoint, then we don't rewrite
 171   //       because the _breakpoint bytecode would be lost.
 172   oop obj = klass->allocate_instance(CHECK);
 173   thread->set_vm_result(obj);
 174 IRT_END
 175 
 176 void copy_primitive_argument(intptr_t* addr, Handle instance, int offset, BasicType type) {
 177   switch (type) {
 178   case T_BOOLEAN:
 179     instance()->bool_field_put(offset, (jboolean)*((int*)addr));
 180     break;
 181   case T_CHAR:
 182     instance()->char_field_put(offset, (jchar) *((int*)addr));
 183     break;
 184   case T_FLOAT:
 185     instance()->float_field_put(offset, (jfloat)*((float*)addr));
 186     break;
 187   case T_DOUBLE:
 188     instance()->double_field_put(offset, (jdouble)*((double*)addr));
 189     break;
 190   case T_BYTE:
 191     instance()->byte_field_put(offset, (jbyte)*((int*)addr));
 192     break;
 193   case T_SHORT:
 194     instance()->short_field_put(offset, (jshort)*((int*)addr));
 195     break;
 196   case T_INT:
 197     instance()->int_field_put(offset, (jint)*((int*)addr));
 198     break;
 199   case T_LONG:
 200     instance()->long_field_put(offset, (jlong)*((long long*)addr));
 201     break;
 202   case T_OBJECT:
 203   case T_ARRAY:
 204   case T_VALUETYPE:
 205     fatal("Should not be handled with this method");
 206     break;
 207   default:
 208     fatal("Unsupported BasicType");
 209   }
 210 }
 211 
 212 IRT_ENTRY(void, InterpreterRuntime::vdefault(JavaThread* thread, ConstantPool* pool, int index))
 213   // Getting the ValueKlass
 214   Klass* k = pool->klass_at(index, CHECK);
 215   assert(k->is_value(), "vdefault argument must be the value type class");
 216   ValueKlass* vklass = ValueKlass::cast(k);
 217 
 218   vklass->initialize(THREAD);
 219 
 220   // Creating value
 221   bool in_heap;
 222   instanceOop value = vklass->allocate_buffered_or_heap_instance(&in_heap, CHECK);
 223   Handle value_h = Handle(THREAD, value);
 224 
 225   thread->set_vm_result(value_h());
 226 IRT_END
 227 
 228 IRT_ENTRY(int, InterpreterRuntime::vwithfield(JavaThread* thread, ConstantPoolCache* cp_cache))
 229   // Getting the ValueKlass
 230   int index = ConstantPool::decode_cpcache_index(get_index_u2_cpcache(thread, Bytecodes::_vwithfield));
 231   ConstantPoolCacheEntry* cp_entry = cp_cache->entry_at(index);
 232   assert(cp_entry->is_resolved(Bytecodes::_vwithfield), "Should have been resolved");
 233   Klass* klass = cp_entry->f1_as_klass();
 234   assert(klass->is_value(), "vwithfield only applies to value types");
 235   ValueKlass* vklass = ValueKlass::cast(klass);
 236 
 237   // Getting Field information
 238   int offset = cp_entry->f2_as_index();
 239   int field_index = cp_entry->field_index();
 240   int field_offset = cp_entry->f2_as_offset();
 241   Symbol* field_signature = vklass->field_signature(field_index);
 242   ResourceMark rm(THREAD);
 243   const char* signature = (const char *) field_signature->as_utf8();
 244   BasicType field_type = char2type(signature[0]);
 245 
 246   // Getting old value
 247   frame f = last_frame(thread);
 248   jint tos_idx = f.interpreter_frame_expression_stack_size() - 1;
 249   int vt_offset = type2size[field_type];
 250   oop old_value = *(oop*)f.interpreter_frame_expression_stack_at(tos_idx - vt_offset);
 251   assert(old_value != NULL && oopDesc::is_oop(old_value) && old_value->is_value(),"Verifying receiver");
 252   Handle old_value_h(THREAD, old_value);
 253 
 254   // Creating new value by copying the one passed in argument
 255   bool in_heap;
 256   instanceOop new_value = vklass->allocate_buffered_or_heap_instance(&in_heap,
 257       CHECK_((type2size[field_type]) * AbstractInterpreter::stackElementSize));
 258   Handle new_value_h = Handle(THREAD, new_value);
 259   int first_offset = vklass->first_field_offset();
 260   vklass->value_store(vklass->data_for_oop(old_value_h()),
 261       vklass->data_for_oop(new_value_h()), in_heap, false);
 262 
 263   // Updating the field specified in arguments
 264   if (field_type == T_OBJECT || field_type == T_ARRAY) {
 265     oop aoop = *(oop*)f.interpreter_frame_expression_stack_at(tos_idx);
 266     assert(aoop == NULL || (oopDesc::is_oop(aoop) && (!aoop->is_value())),"argument must be a reference type");
 267     new_value_h()->obj_field_put(field_offset, aoop);
 268   } else if (field_type == T_VALUETYPE) {
 269     if (cp_entry->is_flatten()) {
 270       Klass* field_k = vklass->get_value_field_klass(field_index);
 271       ValueKlass* field_vk = ValueKlass::cast(field_k);
 272       oop vt_oop = *(oop*)f.interpreter_frame_expression_stack_at(tos_idx);
 273       assert(vt_oop != NULL && oopDesc::is_oop(vt_oop) && vt_oop->is_value(),"argument must be a value type");
 274       assert(field_vk == vt_oop->klass(), "Must match");
 275       field_vk->value_store(field_vk->data_for_oop(vt_oop),
 276           ((char*)(oopDesc*)new_value_h()) + field_offset, true, false);
 277     } else {
 278       oop voop = *(oop*)f.interpreter_frame_expression_stack_at(tos_idx);
 279       assert(voop != NULL || (oopDesc::is_oop(voop) && (voop->is_value())),"argument must be a value type");
 280       new_value_h()->obj_field_put(field_offset, voop);
 281     }
 282   } else {
 283     intptr_t* addr = f.interpreter_frame_expression_stack_at(tos_idx);
 284     copy_primitive_argument(addr, new_value_h, field_offset, field_type);
 285   }
 286 
 287   // returning result
 288   thread->set_vm_result(new_value_h());
 289   return (type2size[field_type] + type2size[T_VALUETYPE]) * AbstractInterpreter::stackElementSize;
 290 IRT_END
 291 
 292 IRT_ENTRY(void, InterpreterRuntime::vbox(JavaThread* thread, ConstantPool* pool, int index, oopDesc* value))
 293   assert(EnableMVT, "vbox is supported only when the MVT programming model is enabled");
 294   if (value == NULL) {
 295     THROW(vmSymbols::java_lang_NullPointerException());
 296   }
 297 
 298   // Since the verifier is probably disabled, a few extra type check
 299   Klass* target_klass = pool->klass_at(index, CHECK);
 300   if (target_klass->is_value()) {
 301     THROW_MSG(vmSymbols::java_lang_ClassCastException(), "vbox target is value type");
 302   }
 303   Klass* klass = value->klass();
 304   if (!klass->is_value()) {
 305     THROW_MSG(vmSymbols::java_lang_ClassCastException(), "vbox not from value type");
 306   }
 307   ValueKlass* vtklass = ValueKlass::cast(klass);
 308   if (vtklass->get_vcc_klass() != target_klass) {
 309     THROW_MSG(vmSymbols::java_lang_ClassCastException(), "vbox target is not derive value type box");
 310   }
 311   oop box = vtklass->box(Handle(THREAD, value),
 312                          InstanceKlass::cast(target_klass),
 313                          CHECK);
 314   thread->set_vm_result(box);
 315 IRT_END
 316 
 317 IRT_ENTRY(void, InterpreterRuntime::vunbox(JavaThread* thread, ConstantPool* pool, int index, oopDesc* obj))
 318 assert(EnableMVT, "vunbox is supported only when the MVT programming model is enabled");
 319   if (obj == NULL) {
 320     THROW(vmSymbols::java_lang_NullPointerException());
 321   }
 322   Klass* target_klass = pool->klass_at(index, CHECK);
 323   if (!target_klass->is_value()) {
 324     THROW_MSG(vmSymbols::java_lang_ClassCastException(), "vunbox target is not value type");
 325   }
 326   Klass* klass = obj->klass();
 327   if ((!klass->is_instance_klass()) || klass->is_value()) {
 328     THROW_MSG(vmSymbols::java_lang_ClassCastException(), "vunbox source is not an instance");
 329   }
 330     if (klass != InstanceKlass::cast(target_klass)->get_vcc_klass()) {
 331     THROW_MSG(vmSymbols::java_lang_ClassCastException(), "vunbox target is not derive value type");
 332   }
 333   oop value = ValueKlass::cast(target_klass)->unbox(Handle(THREAD, obj),
 334                                                 InstanceKlass::cast(target_klass),
 335                                                 CHECK);
 336   thread->set_vm_result(value);
 337 IRT_END
 338 
 339 IRT_ENTRY(void, InterpreterRuntime::qgetfield(JavaThread* thread, oopDesc* obj, int index, Klass* field_holder))
 340   Handle value_h(THREAD, obj);
 341   InstanceKlass* klass = InstanceKlass::cast(field_holder);
 342 
 343   Klass* field_k = klass->get_value_field_klass(index);
 344   ValueKlass* field_vklass = ValueKlass::cast(field_k);
 345   field_vklass->initialize(THREAD);
 346 
 347   instanceOop res;
 348   bool in_heap;
 349   if (klass->is_field_flatten(index)) {
 350     // allocate instance
 351     res = field_vklass->allocate_buffered_or_heap_instance(&in_heap, CHECK);
 352     instanceHandle res_h(THREAD, res);
 353     // copy value
 354     field_vklass->value_store(((char*)(oopDesc*)value_h()) + klass->field_offset(index),
 355                               field_vklass->data_for_oop(res), in_heap, false);
 356     thread->set_vm_result(res_h());
 357   } else {
 358     oop res = value_h()->obj_field_acquire(klass->field_offset(index));
 359     if (res == NULL) {
 360       res = field_vklass->allocate_buffered_or_heap_instance(&in_heap, CHECK);
 361     }
 362     thread->set_vm_result(res);
 363   }
 364 IRT_END
 365 
 366 IRT_ENTRY(void, InterpreterRuntime::initialize_static_value_field(JavaThread* thread, oopDesc* mirror, int index))
 367   instanceHandle mirror_h(THREAD, (instanceOop)mirror);
 368   InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(mirror));
 369   int offset = klass->field_offset(index);
 370   assert(mirror->obj_field(offset) == NULL,"Field must not be initialized twice");
 371 
 372   Klass* field_k = klass->get_value_field_klass(index);
 373   ValueKlass* field_vklass = ValueKlass::cast(field_k);
 374   // allocate instance, because it is going to be assigned to a static field
 375   // it must not be a buffered value
 376   instanceOop res = field_vklass->allocate_instance(CHECK);
 377   instanceHandle res_h(THREAD, res);
 378   mirror_h()->obj_field_put(offset, res_h());
 379   thread->set_vm_result(res_h());
 380 IRT_END
 381 
 382 IRT_ENTRY(void, InterpreterRuntime::qputfield(JavaThread* thread, oopDesc* obj, oopDesc* value, ConstantPoolCache* cp_cache))
 383   Handle value_h(THREAD, value);
 384   Handle obj_h(THREAD, obj);
 385   assert(!obj_h()->klass()->is_value(), "obj must be an object");
 386   assert(value_h()->klass()->is_value(), "value must be an value type");
 387 
 388   int idx = ConstantPool::decode_cpcache_index(get_index_u2_cpcache(thread, Bytecodes::_putfield));
 389   ConstantPoolCacheEntry* cp_entry = cp_cache->entry_at(idx);
 390 
 391   int index = cp_entry->field_index();
 392   bool flatten = cp_entry->is_flatten();
 393 
 394   InstanceKlass* klass = InstanceKlass::cast(cp_entry->f1_as_klass());
 395   Klass* field_k = klass->get_value_field_klass(index);
 396   ValueKlass* field_vklass = ValueKlass::cast(value->klass());
 397   assert(field_k == field_vklass, "Field descriptor and argument must match");
 398   if (flatten) {
 399     // copy value
 400     field_vklass->value_store(field_vklass->data_for_oop(value_h()),
 401                               ((char*)(oopDesc*)obj_h()) + klass->field_offset(index), true, false);
 402   } else {
 403     if (Universe::heap()->is_in_reserved(value_h())) {
 404       obj_h()->obj_field_put(klass->field_offset(index), value_h());
 405     } else {
 406       // allocate heap instance
 407       instanceOop val = field_vklass->allocate_instance(CHECK);
 408       instanceHandle res_h(THREAD, val);
 409       // copy value
 410       field_vklass->value_store(field_vklass->data_for_oop(value_h()),
 411                                 field_vklass->data_for_oop(res_h()), true, false);
 412 
 413 
 414       obj_h()->obj_field_put(klass->field_offset(index), res_h());
 415     }
 416   }
 417 IRT_END
 418 
 419 IRT_ENTRY(void, InterpreterRuntime::qputstatic(JavaThread* thread, oopDesc* value, int offset, oopDesc* mirror))
 420   instanceHandle value_h(THREAD, (instanceOop)value);
 421   assert(value_h()->is_value(), "qputstatic only deals with value arguments");
 422   if (Universe::heap()->is_in_reserved(value_h())) {
 423       mirror->obj_field_put(offset, value_h());
 424   } else {
 425     // The argument is a buffered value, a copy must be created in the Java heap
 426     // because a static field cannot point to a thread-local buffered value
 427     ValueKlass* field_vklass = ValueKlass::cast(value_h()->klass());
 428     Handle mirror_h(THREAD, mirror);
 429     // allocate heap instance
 430     instanceOop res = field_vklass->allocate_instance(CHECK);
 431     assert(Universe::heap()->is_in_reserved(res), "Must be in the Java heap");
 432     instanceHandle res_h(THREAD, res);
 433     // copy value
 434     field_vklass->value_store(field_vklass->data_for_oop(value_h()),
 435                               field_vklass->data_for_oop(res), true, false);
 436     // writing static field
 437     mirror_h->obj_field_put(offset, res_h());
 438     assert(mirror_h->obj_field(offset) != NULL,"Sanity check");
 439   }
 440 IRT_END
 441 
 442 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
 443   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 444   thread->set_vm_result(obj);
 445 IRT_END
 446 
 447 
 448 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
 449   Klass*    klass = pool->klass_at(index, CHECK);
 450   if (klass->is_value()) { // Logically creates elements, ensure klass init
 451     klass->initialize(CHECK);
 452   }
 453   arrayOop obj = oopFactory::new_array(klass, size, CHECK);
 454   thread->set_vm_result(obj);
 455 IRT_END
 456 
 457 IRT_ENTRY(void, InterpreterRuntime::value_array_load(JavaThread* thread, arrayOopDesc* array, int index))
 458   Klass* klass = array->klass();
 459   assert(klass->is_valueArray_klass() || klass->is_objArray_klass(), "expected value or object array oop");
 460 
 461   if (klass->is_objArray_klass()) {
 462     thread->set_vm_result(((objArrayOop) array)->obj_at(index));
 463   }
 464   else {
 465     ValueArrayKlass* vaklass = ValueArrayKlass::cast(klass);
 466     ValueKlass* vklass = vaklass->element_klass();
 467     arrayHandle ah(THREAD, array);
 468     bool in_heap;
 469     instanceOop value_holder = vklass->allocate_buffered_or_heap_instance(&in_heap, CHECK);
 470     void* src = ((valueArrayOop)ah())->value_at_addr(index, vaklass->layout_helper());
 471     vklass->value_store(src, vklass->data_for_oop(value_holder),
 472                           vaklass->element_byte_size(), in_heap, false);
 473     thread->set_vm_result(value_holder);
 474   }
 475 IRT_END
 476 
 477 IRT_ENTRY(void, InterpreterRuntime::value_array_store(JavaThread* thread, arrayOopDesc* array, int index, void* val))
 478   Klass* klass = array->klass();
 479   assert(klass->is_valueArray_klass() || klass->is_objArray_klass(), "expected value or object array oop");
 480 
 481   if (ArrayKlass::cast(klass)->element_klass() != ((oop)val)->klass()) {
 482     THROW(vmSymbols::java_lang_ArrayStoreException());
 483   }
 484   if (klass->is_objArray_klass()) {
 485     if(!Universe::heap()->is_in_reserved(val)) {
 486       // A Java heap allocated copy must be made because an array cannot
 487       // reference a thread-local buffered value
 488       Handle val_h(THREAD, (oop)val);
 489       ObjArrayKlass* aklass = ObjArrayKlass::cast(klass);
 490       Klass* eklass = aklass->element_klass();
 491       assert(eklass->is_value(), "Sanity check");
 492       assert(eklass == ((oop)val)->klass(), "Sanity check");
 493       ValueKlass* vklass = ValueKlass::cast(eklass);
 494       // allocate heap instance
 495       instanceOop res = vklass->allocate_instance(CHECK);
 496       Handle res_h(THREAD, res);
 497       // copy value
 498       vklass->value_store(((char*)(oopDesc*)val_h()) + vklass->first_field_offset(),
 499                             ((char*)(oopDesc*)res_h()) + vklass->first_field_offset(),true, false);
 500       val = res_h();
 501     }
 502     ((objArrayOop) array)->obj_at_put(index, (oop)val);
 503   } else {
 504     valueArrayOop varray = (valueArrayOop)array;
 505     ValueArrayKlass* vaklass = ValueArrayKlass::cast(klass);
 506     ValueKlass* vklass = vaklass->element_klass();
 507     const int lh = vaklass->layout_helper();
 508     vklass->value_store(vklass->data_for_oop((oop)val), varray->value_at_addr(index, lh),
 509                         vaklass->element_byte_size(), true, false);
 510   }
 511 IRT_END
 512 
 513 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
 514   // We may want to pass in more arguments - could make this slightly faster
 515   ConstantPool* constants = method(thread)->constants();
 516   int          i = get_index_u2(thread, Bytecodes::_multianewarray);
 517   Klass* klass = constants->klass_at(i, CHECK);
 518   int   nof_dims = number_of_dimensions(thread);
 519   assert(klass->is_klass(), "not a class");
 520   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 521 
 522   if (klass->is_value()) { // Logically creates elements, ensure klass init
 523     klass->initialize(CHECK);
 524   }
 525 
 526   // We must create an array of jints to pass to multi_allocate.
 527   ResourceMark rm(thread);
 528   const int small_dims = 10;
 529   jint dim_array[small_dims];
 530   jint *dims = &dim_array[0];
 531   if (nof_dims > small_dims) {
 532     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 533   }
 534   for (int index = 0; index < nof_dims; index++) {
 535     // offset from first_size_address is addressed as local[index]
 536     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 537     dims[index] = first_size_address[n];
 538   }
 539   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 540   thread->set_vm_result(obj);
 541 IRT_END
 542 
 543 IRT_ENTRY(void, InterpreterRuntime::recycle_vtbuffer(JavaThread* thread))
 544   VTBuffer::recycle_vtbuffer(thread, last_frame(thread));
 545 IRT_END
 546 
 547 IRT_ENTRY(void, InterpreterRuntime::recycle_buffered_values(JavaThread* thread))
 548   frame f = thread->last_frame();
 549   assert(f.is_interpreted_frame(), "recycling can only be triggered from interpreted frames");
 550   VTBuffer::recycle_vt_in_frame(thread, &f);
 551 IRT_END
 552 
 553 IRT_ENTRY(void, InterpreterRuntime::fix_frame_vt_alloc_ptr(JavaThread* thread))
 554   frame f = thread->last_frame();
 555   VTBuffer::fix_frame_vt_alloc_ptr(f, VTBufferChunk::chunk(thread->vt_alloc_ptr()));
 556 IRT_END
 557 
 558 IRT_ENTRY(void, InterpreterRuntime::return_value(JavaThread* thread, oopDesc* obj))
 559   if (Universe::heap()->is_in_reserved(obj)) {
 560     thread->set_vm_result(obj);
 561     return;
 562   }
 563   assert(obj->klass()->is_value(), "Sanity check");
 564   ValueKlass* vk = ValueKlass::cast(obj->klass());
 565   RegisterMap reg_map(thread, false);
 566   frame current_frame = last_frame(thread);
 567   frame caller_frame = current_frame.sender(&reg_map);
 568   if (!caller_frame.is_interpreted_frame()) {
 569     // caller is not an interpreted frame, creating a new value in Java heap
 570     Handle obj_h(THREAD, obj);
 571     instanceOop res = vk->allocate_instance(CHECK);
 572     Handle res_h(THREAD, res);
 573     // copy value
 574     vk->value_store(vk->data_for_oop(obj_h()),
 575                     vk->data_for_oop(res_h()), true, false);
 576     thread->set_vm_result(res_h());
 577     return;
 578   } else {
 579     oop dest = VTBuffer::relocate_return_value(thread, current_frame, obj);
 580     thread->set_vm_result(dest);
 581   }
 582 IRT_END
 583 
 584 IRT_ENTRY(void, InterpreterRuntime::check_areturn(JavaThread* thread, oopDesc* obj))
 585   if (obj != NULL) {
 586     Klass* k = obj->klass();
 587     if (k->is_value()) {
 588       ResourceMark rm(thread);
 589       tty->print_cr("areturn used on a value from %s", k->name()->as_C_string());
 590     }
 591     assert(!k->is_value(), "areturn should never be used on values");
 592   }
 593   thread->set_vm_result(obj);
 594 IRT_END
 595 
 596 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 597   assert(oopDesc::is_oop(obj), "must be a valid oop");
 598   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 599   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 600 IRT_END
 601 
 602 
 603 // Quicken instance-of and check-cast bytecodes
 604 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
 605   // Force resolving; quicken the bytecode
 606   int which = get_index_u2(thread, Bytecodes::_checkcast);
 607   ConstantPool* cpool = method(thread)->constants();
 608   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 609   // program we might have seen an unquick'd bytecode in the interpreter but have another
 610   // thread quicken the bytecode before we get here.
 611   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 612   Klass* klass = cpool->klass_at(which, CHECK);
 613   thread->set_vm_result_2(klass);
 614 IRT_END
 615 
 616 
 617 //------------------------------------------------------------------------------------------------------------------------
 618 // Exceptions
 619 
 620 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
 621                                          const methodHandle& trap_method, int trap_bci, TRAPS) {
 622   if (trap_method.not_null()) {
 623     MethodData* trap_mdo = trap_method->method_data();
 624     if (trap_mdo == NULL) {
 625       Method::build_interpreter_method_data(trap_method, THREAD);
 626       if (HAS_PENDING_EXCEPTION) {
 627         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
 628                "we expect only an OOM error here");
 629         CLEAR_PENDING_EXCEPTION;
 630       }
 631       trap_mdo = trap_method->method_data();
 632       // and fall through...
 633     }
 634     if (trap_mdo != NULL) {
 635       // Update per-method count of trap events.  The interpreter
 636       // is updating the MDO to simulate the effect of compiler traps.
 637       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 638     }
 639   }
 640 }
 641 
 642 // Assume the compiler is (or will be) interested in this event.
 643 // If necessary, create an MDO to hold the information, and record it.
 644 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
 645   assert(ProfileTraps, "call me only if profiling");
 646   methodHandle trap_method(thread, method(thread));
 647   int trap_bci = trap_method->bci_from(bcp(thread));
 648   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 649 }
 650 
 651 #ifdef CC_INTERP
 652 // As legacy note_trap, but we have more arguments.
 653 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
 654   methodHandle trap_method(method);
 655   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 656 IRT_END
 657 
 658 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
 659 // for each exception.
 660 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 661   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
 662 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
 663   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
 664 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 665   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
 666 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 667   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
 668 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 669   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
 670 #endif // CC_INTERP
 671 
 672 
 673 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 674   // get klass
 675   InstanceKlass* klass = InstanceKlass::cast(k);
 676   assert(klass->is_initialized(),
 677          "this klass should have been initialized during VM initialization");
 678   // create instance - do not call constructor since we may have no
 679   // (java) stack space left (should assert constructor is empty)
 680   Handle exception;
 681   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 682   exception = Handle(THREAD, exception_oop);
 683   if (StackTraceInThrowable) {
 684     java_lang_Throwable::fill_in_stack_trace(exception);
 685   }
 686   return exception;
 687 }
 688 
 689 // Special handling for stack overflow: since we don't have any (java) stack
 690 // space left we use the pre-allocated & pre-initialized StackOverflowError
 691 // klass to create an stack overflow error instance.  We do not call its
 692 // constructor for the same reason (it is empty, anyway).
 693 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
 694   Handle exception = get_preinitialized_exception(
 695                                  SystemDictionary::StackOverflowError_klass(),
 696                                  CHECK);
 697   // Increment counter for hs_err file reporting
 698   Atomic::inc(&Exceptions::_stack_overflow_errors);
 699   THROW_HANDLE(exception);
 700 IRT_END
 701 
 702 IRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 703   Handle exception = get_preinitialized_exception(
 704                                  SystemDictionary::StackOverflowError_klass(),
 705                                  CHECK);
 706   java_lang_Throwable::set_message(exception(),
 707           Universe::delayed_stack_overflow_error_message());
 708   // Increment counter for hs_err file reporting
 709   Atomic::inc(&Exceptions::_stack_overflow_errors);
 710   THROW_HANDLE(exception);
 711 IRT_END
 712 
 713 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
 714   // lookup exception klass
 715   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 716   if (ProfileTraps) {
 717     if (s == vmSymbols::java_lang_ArithmeticException()) {
 718       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
 719     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 720       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
 721     }
 722   }
 723   // create exception
 724   Handle exception = Exceptions::new_exception(thread, s, message);
 725   thread->set_vm_result(exception());
 726 IRT_END
 727 
 728 
 729 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
 730   ResourceMark rm(thread);
 731   const char* klass_name = obj->klass()->external_name();
 732   // lookup exception klass
 733   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 734   if (ProfileTraps) {
 735     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 736   }
 737   // create exception, with klass name as detail message
 738   Handle exception = Exceptions::new_exception(thread, s, klass_name);
 739   thread->set_vm_result(exception());
 740 IRT_END
 741 
 742 
 743 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
 744   char message[jintAsStringSize];
 745   // lookup exception klass
 746   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 747   if (ProfileTraps) {
 748     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
 749   }
 750   // create exception
 751   sprintf(message, "%d", index);
 752   THROW_MSG(s, message);
 753 IRT_END
 754 
 755 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 756   JavaThread* thread, oopDesc* obj))
 757 
 758   ResourceMark rm(thread);
 759   char* message = SharedRuntime::generate_class_cast_message(
 760     thread, obj->klass());
 761 
 762   if (ProfileTraps) {
 763     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 764   }
 765 
 766   // create exception
 767   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 768 IRT_END
 769 
 770 // exception_handler_for_exception(...) returns the continuation address,
 771 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 772 // The exception oop is returned to make sure it is preserved over GC (it
 773 // is only on the stack if the exception was thrown explicitly via athrow).
 774 // During this operation, the expression stack contains the values for the
 775 // bci where the exception happened. If the exception was propagated back
 776 // from a call, the expression stack contains the values for the bci at the
 777 // invoke w/o arguments (i.e., as if one were inside the call).
 778 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
 779 
 780   Handle             h_exception(thread, exception);
 781   methodHandle       h_method   (thread, method(thread));
 782   constantPoolHandle h_constants(thread, h_method->constants());
 783   bool               should_repeat;
 784   int                handler_bci;
 785   int                current_bci = bci(thread);
 786 
 787   if (thread->frames_to_pop_failed_realloc() > 0) {
 788     // Allocation of scalar replaced object used in this frame
 789     // failed. Unconditionally pop the frame.
 790     thread->dec_frames_to_pop_failed_realloc();
 791     thread->set_vm_result(h_exception());
 792     // If the method is synchronized we already unlocked the monitor
 793     // during deoptimization so the interpreter needs to skip it when
 794     // the frame is popped.
 795     thread->set_do_not_unlock_if_synchronized(true);
 796 #ifdef CC_INTERP
 797     return (address) -1;
 798 #else
 799     return Interpreter::remove_activation_entry();
 800 #endif
 801   }
 802 
 803   // Need to do this check first since when _do_not_unlock_if_synchronized
 804   // is set, we don't want to trigger any classloading which may make calls
 805   // into java, or surprisingly find a matching exception handler for bci 0
 806   // since at this moment the method hasn't been "officially" entered yet.
 807   if (thread->do_not_unlock_if_synchronized()) {
 808     ResourceMark rm;
 809     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 810     thread->set_vm_result(exception);
 811 #ifdef CC_INTERP
 812     return (address) -1;
 813 #else
 814     return Interpreter::remove_activation_entry();
 815 #endif
 816   }
 817 
 818   do {
 819     should_repeat = false;
 820 
 821     // assertions
 822 #ifdef ASSERT
 823     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 824     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 825     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
 826       if (ExitVMOnVerifyError) vm_exit(-1);
 827       ShouldNotReachHere();
 828     }
 829 #endif
 830 
 831     // tracing
 832     if (log_is_enabled(Info, exceptions)) {
 833       ResourceMark rm(thread);
 834       stringStream tempst;
 835       tempst.print("interpreter method <%s>\n"
 836                    " at bci %d for thread " INTPTR_FORMAT,
 837                    h_method->print_value_string(), current_bci, p2i(thread));
 838       Exceptions::log_exception(h_exception, tempst);
 839     }
 840 // Don't go paging in something which won't be used.
 841 //     else if (extable->length() == 0) {
 842 //       // disabled for now - interpreter is not using shortcut yet
 843 //       // (shortcut is not to call runtime if we have no exception handlers)
 844 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 845 //     }
 846     // for AbortVMOnException flag
 847     Exceptions::debug_check_abort(h_exception);
 848 
 849     // exception handler lookup
 850     Klass* klass = h_exception->klass();
 851     handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD);
 852     if (HAS_PENDING_EXCEPTION) {
 853       // We threw an exception while trying to find the exception handler.
 854       // Transfer the new exception to the exception handle which will
 855       // be set into thread local storage, and do another lookup for an
 856       // exception handler for this exception, this time starting at the
 857       // BCI of the exception handler which caused the exception to be
 858       // thrown (bug 4307310).
 859       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 860       CLEAR_PENDING_EXCEPTION;
 861       if (handler_bci >= 0) {
 862         current_bci = handler_bci;
 863         should_repeat = true;
 864       }
 865     }
 866   } while (should_repeat == true);
 867 
 868 #if INCLUDE_JVMCI
 869   if (EnableJVMCI && h_method->method_data() != NULL) {
 870     ResourceMark rm(thread);
 871     ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL);
 872     if (pdata != NULL && pdata->is_BitData()) {
 873       BitData* bit_data = (BitData*) pdata;
 874       bit_data->set_exception_seen();
 875     }
 876   }
 877 #endif
 878 
 879   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 880   // time throw or a stack unwinding throw and accordingly notify the debugger
 881   if (JvmtiExport::can_post_on_exceptions()) {
 882     JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
 883   }
 884 
 885 #ifdef CC_INTERP
 886   address continuation = (address)(intptr_t) handler_bci;
 887 #else
 888   address continuation = NULL;
 889 #endif
 890   address handler_pc = NULL;
 891   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
 892     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 893     // handler in this method, or (b) after a stack overflow there is not yet
 894     // enough stack space available to reprotect the stack.
 895 #ifndef CC_INTERP
 896     continuation = Interpreter::remove_activation_entry();
 897 #endif
 898 #if COMPILER2_OR_JVMCI
 899     // Count this for compilation purposes
 900     h_method->interpreter_throwout_increment(THREAD);
 901 #endif
 902   } else {
 903     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 904     handler_pc = h_method->code_base() + handler_bci;
 905 #ifndef CC_INTERP
 906     set_bcp_and_mdp(handler_pc, thread);
 907     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 908 #endif
 909   }
 910   // notify debugger of an exception catch
 911   // (this is good for exceptions caught in native methods as well)
 912   if (JvmtiExport::can_post_on_exceptions()) {
 913     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 914   }
 915 
 916   thread->set_vm_result(h_exception());
 917   return continuation;
 918 IRT_END
 919 
 920 
 921 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
 922   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
 923   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 924 IRT_END
 925 
 926 
 927 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
 928   THROW(vmSymbols::java_lang_AbstractMethodError());
 929 IRT_END
 930 
 931 
 932 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 933   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 934 IRT_END
 935 
 936 
 937 //------------------------------------------------------------------------------------------------------------------------
 938 // Fields
 939 //
 940 
 941 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) {
 942   Thread* THREAD = thread;
 943   // resolve field
 944   fieldDescriptor info;
 945   constantPoolHandle pool(thread, method(thread)->constants());
 946   methodHandle m(thread, method(thread));
 947   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 948                     bytecode == Bytecodes::_putstatic || bytecode == Bytecodes::_vwithfield);
 949   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 950   bool is_value  = bytecode == Bytecodes::_vwithfield;
 951 
 952   {
 953     JvmtiHideSingleStepping jhss(thread);
 954     LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode),
 955                                        m, bytecode, CHECK);
 956   } // end JvmtiHideSingleStepping
 957 
 958   // check if link resolution caused cpCache to be updated
 959   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 960   if (cp_cache_entry->is_resolved(bytecode)) return;
 961 
 962   // compute auxiliary field attributes
 963   TosState state  = as_TosState(info.field_type());
 964 
 965   // Resolution of put instructions on final fields is delayed. That is required so that
 966   // exceptions are thrown at the correct place (when the instruction is actually invoked).
 967   // If we do not resolve an instruction in the current pass, leaving the put_code
 968   // set to zero will cause the next put instruction to the same field to reresolve.
 969 
 970   // Resolution of put instructions to final instance fields with invalid updates (i.e.,
 971   // to final instance fields with updates originating from a method different than <init>)
 972   // is inhibited. A putfield instruction targeting an instance final field must throw
 973   // an IllegalAccessError if the instruction is not in an instance
 974   // initializer method <init>. If resolution were not inhibited, a putfield
 975   // in an initializer method could be resolved in the initializer. Subsequent
 976   // putfield instructions to the same field would then use cached information.
 977   // As a result, those instructions would not pass through the VM. That is,
 978   // checks in resolve_field_access() would not be executed for those instructions
 979   // and the required IllegalAccessError would not be thrown.
 980   //
 981   // Also, we need to delay resolving getstatic and putstatic instructions until the
 982   // class is initialized.  This is required so that access to the static
 983   // field will call the initialization function every time until the class
 984   // is completely initialized ala. in 2.17.5 in JVM Specification.
 985   InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
 986   bool uninitialized_static = is_static && !klass->is_initialized();
 987   bool has_initialized_final_update = info.field_holder()->major_version() >= 53 &&
 988                                       info.has_initialized_final_update();
 989   assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
 990 
 991   Bytecodes::Code get_code = (Bytecodes::Code)0;
 992   Bytecodes::Code put_code = (Bytecodes::Code)0;
 993   if (!uninitialized_static) {
 994     if (is_static) {
 995       get_code = Bytecodes::_getstatic;
 996     } else {
 997       get_code = Bytecodes::_getfield;
 998     }
 999     if (is_put && is_value) {
1000         put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_vwithfield);
1001     } else if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
1002         put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
1003     }
1004   }
1005 
1006   cp_cache_entry->set_field(
1007     get_code,
1008     put_code,
1009     info.field_holder(),
1010     info.index(),
1011     info.offset(),
1012     state,
1013     info.access_flags().is_final(),
1014     info.access_flags().is_volatile(),
1015     info.is_flatten(),
1016     pool->pool_holder()
1017   );
1018 }
1019 
1020 
1021 //------------------------------------------------------------------------------------------------------------------------
1022 // Synchronization
1023 //
1024 // The interpreter's synchronization code is factored out so that it can
1025 // be shared by method invocation and synchronized blocks.
1026 //%note synchronization_3
1027 
1028 //%note monitor_1
1029 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
1030 #ifdef ASSERT
1031   thread->last_frame().interpreter_frame_verify_monitor(elem);
1032 #endif
1033   if (PrintBiasedLockingStatistics) {
1034     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1035   }
1036   Handle h_obj(thread, elem->obj());
1037   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
1038          "must be NULL or an object");
1039   if (UseBiasedLocking) {
1040     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1041     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
1042   } else {
1043     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
1044   }
1045   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
1046          "must be NULL or an object");
1047 #ifdef ASSERT
1048   thread->last_frame().interpreter_frame_verify_monitor(elem);
1049 #endif
1050 IRT_END
1051 
1052 
1053 //%note monitor_1
1054 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
1055 #ifdef ASSERT
1056   thread->last_frame().interpreter_frame_verify_monitor(elem);
1057 #endif
1058   Handle h_obj(thread, elem->obj());
1059   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
1060          "must be NULL or an object");
1061   if (elem == NULL || h_obj()->is_unlocked()) {
1062     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
1063   }
1064   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
1065   // Free entry. This must be done here, since a pending exception might be installed on
1066   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
1067   elem->set_obj(NULL);
1068 #ifdef ASSERT
1069   thread->last_frame().interpreter_frame_verify_monitor(elem);
1070 #endif
1071 IRT_END
1072 
1073 
1074 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
1075   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
1076 IRT_END
1077 
1078 
1079 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
1080   // Returns an illegal exception to install into the current thread. The
1081   // pending_exception flag is cleared so normal exception handling does not
1082   // trigger. Any current installed exception will be overwritten. This
1083   // method will be called during an exception unwind.
1084 
1085   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
1086   Handle exception(thread, thread->vm_result());
1087   assert(exception() != NULL, "vm result should be set");
1088   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
1089   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1090     exception = get_preinitialized_exception(
1091                        SystemDictionary::IllegalMonitorStateException_klass(),
1092                        CATCH);
1093   }
1094   thread->set_vm_result(exception());
1095 IRT_END
1096 
1097 
1098 //------------------------------------------------------------------------------------------------------------------------
1099 // Invokes
1100 
1101 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
1102   return method->orig_bytecode_at(method->bci_from(bcp));
1103 IRT_END
1104 
1105 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
1106   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
1107 IRT_END
1108 
1109 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
1110   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
1111 IRT_END
1112 
1113 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) {
1114   Thread* THREAD = thread;
1115   // extract receiver from the outgoing argument list if necessary
1116   Handle receiver(thread, NULL);
1117   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface ||
1118       bytecode == Bytecodes::_invokespecial) {
1119     ResourceMark rm(thread);
1120     methodHandle m (thread, method(thread));
1121     Bytecode_invoke call(m, bci(thread));
1122     Symbol* signature = call.signature();
1123     receiver = Handle(thread,
1124                   thread->last_frame().interpreter_callee_receiver(signature));
1125     assert(Universe::heap()->is_in_reserved_or_null(receiver())
1126            || VTBuffer::is_in_vt_buffer(receiver()),
1127            "sanity check");
1128     assert(receiver.is_null() ||
1129            !Universe::heap()->is_in_reserved(receiver->klass()),
1130            "sanity check");
1131   }
1132 
1133   // resolve method
1134   CallInfo info;
1135   constantPoolHandle pool(thread, method(thread)->constants());
1136 
1137   {
1138     JvmtiHideSingleStepping jhss(thread);
1139     LinkResolver::resolve_invoke(info, receiver, pool,
1140                                  get_index_u2_cpcache(thread, bytecode), bytecode,
1141                                  CHECK);
1142     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1143       int retry_count = 0;
1144       while (info.resolved_method()->is_old()) {
1145         // It is very unlikely that method is redefined more than 100 times
1146         // in the middle of resolve. If it is looping here more than 100 times
1147         // means then there could be a bug here.
1148         guarantee((retry_count++ < 100),
1149                   "Could not resolve to latest version of redefined method");
1150         // method is redefined in the middle of resolve so re-try.
1151         LinkResolver::resolve_invoke(info, receiver, pool,
1152                                      get_index_u2_cpcache(thread, bytecode), bytecode,
1153                                      CHECK);
1154       }
1155     }
1156   } // end JvmtiHideSingleStepping
1157 
1158   // check if link resolution caused cpCache to be updated
1159   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
1160   if (cp_cache_entry->is_resolved(bytecode)) return;
1161 
1162 #ifdef ASSERT
1163   if (bytecode == Bytecodes::_invokeinterface) {
1164     if (info.resolved_method()->method_holder() ==
1165                                             SystemDictionary::Object_klass()) {
1166       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
1167       // (see also CallInfo::set_interface for details)
1168       assert(info.call_kind() == CallInfo::vtable_call ||
1169              info.call_kind() == CallInfo::direct_call, "");
1170       methodHandle rm = info.resolved_method();
1171       assert(rm->is_final() || info.has_vtable_index(),
1172              "should have been set already");
1173     } else if (!info.resolved_method()->has_itable_index()) {
1174       // Resolved something like CharSequence.toString.  Use vtable not itable.
1175       assert(info.call_kind() != CallInfo::itable_call, "");
1176     } else {
1177       // Setup itable entry
1178       assert(info.call_kind() == CallInfo::itable_call, "");
1179       int index = info.resolved_method()->itable_index();
1180       assert(info.itable_index() == index, "");
1181     }
1182   } else if (bytecode == Bytecodes::_invokespecial) {
1183     assert(info.call_kind() == CallInfo::direct_call, "must be direct call");
1184   } else {
1185     assert(info.call_kind() == CallInfo::direct_call ||
1186            info.call_kind() == CallInfo::vtable_call, "");
1187   }
1188 #endif
1189   // Get sender or sender's host_klass, and only set cpCache entry to resolved if
1190   // it is not an interface.  The receiver for invokespecial calls within interface
1191   // methods must be checked for every call.
1192   InstanceKlass* sender = pool->pool_holder();
1193   sender = sender->is_anonymous() ? sender->host_klass() : sender;
1194 
1195   switch (info.call_kind()) {
1196   case CallInfo::direct_call:
1197     cp_cache_entry->set_direct_call(
1198       bytecode,
1199       info.resolved_method(),
1200       sender->is_interface());
1201     break;
1202   case CallInfo::vtable_call:
1203     cp_cache_entry->set_vtable_call(
1204       bytecode,
1205       info.resolved_method(),
1206       info.vtable_index());
1207     break;
1208   case CallInfo::itable_call:
1209     cp_cache_entry->set_itable_call(
1210       bytecode,
1211       info.resolved_method(),
1212       info.itable_index());
1213     break;
1214   default:  ShouldNotReachHere();
1215   }
1216 }
1217 
1218 
1219 // First time execution:  Resolve symbols, create a permanent MethodType object.
1220 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) {
1221   Thread* THREAD = thread;
1222   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
1223 
1224   // resolve method
1225   CallInfo info;
1226   constantPoolHandle pool(thread, method(thread)->constants());
1227   {
1228     JvmtiHideSingleStepping jhss(thread);
1229     LinkResolver::resolve_invoke(info, Handle(), pool,
1230                                  get_index_u2_cpcache(thread, bytecode), bytecode,
1231                                  CHECK);
1232   } // end JvmtiHideSingleStepping
1233 
1234   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
1235   cp_cache_entry->set_method_handle(pool, info);
1236 }
1237 
1238 // First time execution:  Resolve symbols, create a permanent CallSite object.
1239 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) {
1240   Thread* THREAD = thread;
1241   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
1242 
1243   //TO DO: consider passing BCI to Java.
1244   //  int caller_bci = method(thread)->bci_from(bcp(thread));
1245 
1246   // resolve method
1247   CallInfo info;
1248   constantPoolHandle pool(thread, method(thread)->constants());
1249   int index = get_index_u4(thread, bytecode);
1250   {
1251     JvmtiHideSingleStepping jhss(thread);
1252     LinkResolver::resolve_invoke(info, Handle(), pool,
1253                                  index, bytecode, CHECK);
1254   } // end JvmtiHideSingleStepping
1255 
1256   ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
1257   cp_cache_entry->set_dynamic_call(pool, info);
1258 }
1259 
1260 // This function is the interface to the assembly code. It returns the resolved
1261 // cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
1262 // This function will check for redefinition!
1263 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) {
1264   switch (bytecode) {
1265   case Bytecodes::_getstatic:
1266   case Bytecodes::_putstatic:
1267   case Bytecodes::_getfield:
1268   case Bytecodes::_putfield:
1269   case Bytecodes::_vwithfield:
1270     resolve_get_put(thread, bytecode);
1271     break;
1272   case Bytecodes::_invokevirtual:
1273   case Bytecodes::_invokespecial:
1274   case Bytecodes::_invokestatic:
1275   case Bytecodes::_invokeinterface:
1276     resolve_invoke(thread, bytecode);
1277     break;
1278   case Bytecodes::_invokehandle:
1279     resolve_invokehandle(thread);
1280     break;
1281   case Bytecodes::_invokedynamic:
1282     resolve_invokedynamic(thread);
1283     break;
1284   default:
1285     fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
1286     break;
1287   }
1288 }
1289 IRT_END
1290 
1291 //------------------------------------------------------------------------------------------------------------------------
1292 // Miscellaneous
1293 
1294 
1295 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
1296   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
1297   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
1298   if (branch_bcp != NULL && nm != NULL) {
1299     // This was a successful request for an OSR nmethod.  Because
1300     // frequency_counter_overflow_inner ends with a safepoint check,
1301     // nm could have been unloaded so look it up again.  It's unsafe
1302     // to examine nm directly since it might have been freed and used
1303     // for something else.
1304     frame fr = thread->last_frame();
1305     Method* method =  fr.interpreter_frame_method();
1306     int bci = method->bci_from(fr.interpreter_frame_bcp());
1307     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
1308   }
1309 #ifndef PRODUCT
1310   if (TraceOnStackReplacement) {
1311     if (nm != NULL) {
1312       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
1313       nm->print();
1314     }
1315   }
1316 #endif
1317   return nm;
1318 }
1319 
1320 IRT_ENTRY(nmethod*,
1321           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
1322   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
1323   // flag, in case this method triggers classloading which will call into Java.
1324   UnlockFlagSaver fs(thread);
1325 
1326   frame fr = thread->last_frame();
1327   assert(fr.is_interpreted_frame(), "must come from interpreter");
1328   methodHandle method(thread, fr.interpreter_frame_method());
1329   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
1330   const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
1331 
1332   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
1333   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
1334   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
1335 
1336   if (osr_nm != NULL) {
1337     // We may need to do on-stack replacement which requires that no
1338     // monitors in the activation are biased because their
1339     // BasicObjectLocks will need to migrate during OSR. Force
1340     // unbiasing of all monitors in the activation now (even though
1341     // the OSR nmethod might be invalidated) because we don't have a
1342     // safepoint opportunity later once the migration begins.
1343     if (UseBiasedLocking) {
1344       ResourceMark rm;
1345       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1346       for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
1347            kptr < fr.interpreter_frame_monitor_begin();
1348            kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
1349         if( kptr->obj() != NULL ) {
1350           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
1351         }
1352       }
1353       BiasedLocking::revoke(objects_to_revoke);
1354     }
1355   }
1356   return osr_nm;
1357 IRT_END
1358 
1359 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
1360   assert(ProfileInterpreter, "must be profiling interpreter");
1361   int bci = method->bci_from(cur_bcp);
1362   MethodData* mdo = method->method_data();
1363   if (mdo == NULL)  return 0;
1364   return mdo->bci_to_di(bci);
1365 IRT_END
1366 
1367 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
1368   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
1369   // flag, in case this method triggers classloading which will call into Java.
1370   UnlockFlagSaver fs(thread);
1371 
1372   assert(ProfileInterpreter, "must be profiling interpreter");
1373   frame fr = thread->last_frame();
1374   assert(fr.is_interpreted_frame(), "must come from interpreter");
1375   methodHandle method(thread, fr.interpreter_frame_method());
1376   Method::build_interpreter_method_data(method, THREAD);
1377   if (HAS_PENDING_EXCEPTION) {
1378     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1379     CLEAR_PENDING_EXCEPTION;
1380     // and fall through...
1381   }
1382 IRT_END
1383 
1384 
1385 #ifdef ASSERT
1386 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
1387   assert(ProfileInterpreter, "must be profiling interpreter");
1388 
1389   MethodData* mdo = method->method_data();
1390   assert(mdo != NULL, "must not be null");
1391 
1392   int bci = method->bci_from(bcp);
1393 
1394   address mdp2 = mdo->bci_to_dp(bci);
1395   if (mdp != mdp2) {
1396     ResourceMark rm;
1397     ResetNoHandleMark rnm; // In a LEAF entry.
1398     HandleMark hm;
1399     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
1400     int current_di = mdo->dp_to_di(mdp);
1401     int expected_di  = mdo->dp_to_di(mdp2);
1402     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
1403     int expected_approx_bci = mdo->data_at(expected_di)->bci();
1404     int approx_bci = -1;
1405     if (current_di >= 0) {
1406       approx_bci = mdo->data_at(current_di)->bci();
1407     }
1408     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
1409     mdo->print_on(tty);
1410     method->print_codes();
1411   }
1412   assert(mdp == mdp2, "wrong mdp");
1413 IRT_END
1414 #endif // ASSERT
1415 
1416 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
1417   assert(ProfileInterpreter, "must be profiling interpreter");
1418   ResourceMark rm(thread);
1419   HandleMark hm(thread);
1420   frame fr = thread->last_frame();
1421   assert(fr.is_interpreted_frame(), "must come from interpreter");
1422   MethodData* h_mdo = fr.interpreter_frame_method()->method_data();
1423 
1424   // Grab a lock to ensure atomic access to setting the return bci and
1425   // the displacement.  This can block and GC, invalidating all naked oops.
1426   MutexLocker ml(RetData_lock);
1427 
1428   // ProfileData is essentially a wrapper around a derived oop, so we
1429   // need to take the lock before making any ProfileData structures.
1430   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
1431   guarantee(data != NULL, "profile data must be valid");
1432   RetData* rdata = data->as_RetData();
1433   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1434   fr.interpreter_frame_set_mdp(new_mdp);
1435 IRT_END
1436 
1437 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
1438   MethodCounters* mcs = Method::build_method_counters(m, thread);
1439   if (HAS_PENDING_EXCEPTION) {
1440     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1441     CLEAR_PENDING_EXCEPTION;
1442   }
1443   return mcs;
1444 IRT_END
1445 
1446 
1447 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
1448   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
1449   // stack traversal automatically takes care of preserving arguments for invoke, so
1450   // this is no longer needed.
1451 
1452   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
1453   // if this is called during a safepoint
1454 
1455   if (JvmtiExport::should_post_single_step()) {
1456     // We are called during regular safepoints and when the VM is
1457     // single stepping. If any thread is marked for single stepping,
1458     // then we may have JVMTI work to do.
1459     JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
1460   }
1461 IRT_END
1462 
1463 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
1464 ConstantPoolCacheEntry *cp_entry))
1465 
1466   // check the access_flags for the field in the klass
1467 
1468   InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1469   int index = cp_entry->field_index();
1470   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1471 
1472   bool is_static = (obj == NULL);
1473   HandleMark hm(thread);
1474 
1475   Handle h_obj;
1476   if (!is_static) {
1477     // non-static field accessors have an object, but we need a handle
1478     h_obj = Handle(thread, obj);
1479   }
1480   InstanceKlass* cp_entry_f1 = InstanceKlass::cast(cp_entry->f1_as_klass());
1481   jfieldID fid = jfieldIDWorkaround::to_jfieldID(cp_entry_f1, cp_entry->f2_as_index(), is_static);
1482   JvmtiExport::post_field_access(thread, method(thread), bcp(thread), cp_entry_f1, h_obj, fid);
1483 IRT_END
1484 
1485 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1486   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1487 
1488   Klass* k = cp_entry->f1_as_klass();
1489 
1490   // check the access_flags for the field in the klass
1491   InstanceKlass* ik = InstanceKlass::cast(k);
1492   int index = cp_entry->field_index();
1493   // bail out if field modifications are not watched
1494   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1495 
1496   char sig_type = '\0';
1497 
1498   switch(cp_entry->flag_state()) {
1499     case btos: sig_type = 'B'; break;
1500     case ztos: sig_type = 'Z'; break;
1501     case ctos: sig_type = 'C'; break;
1502     case stos: sig_type = 'S'; break;
1503     case itos: sig_type = 'I'; break;
1504     case ftos: sig_type = 'F'; break;
1505     case atos: sig_type = 'L'; break;
1506     case ltos: sig_type = 'J'; break;
1507     case dtos: sig_type = 'D'; break;
1508     default:  ShouldNotReachHere(); return;
1509   }
1510   bool is_static = (obj == NULL);
1511 
1512   HandleMark hm(thread);
1513   jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, cp_entry->f2_as_index(), is_static);
1514   jvalue fvalue;
1515 #ifdef _LP64
1516   fvalue = *value;
1517 #else
1518   // Long/double values are stored unaligned and also noncontiguously with
1519   // tagged stacks.  We can't just do a simple assignment even in the non-
1520   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1521   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1522   // We assume that the two halves of longs/doubles are stored in interpreter
1523   // stack slots in platform-endian order.
1524   jlong_accessor u;
1525   jint* newval = (jint*)value;
1526   u.words[0] = newval[0];
1527   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1528   fvalue.j = u.long_value;
1529 #endif // _LP64
1530 
1531   Handle h_obj;
1532   if (!is_static) {
1533     // non-static field accessors have an object, but we need a handle
1534     h_obj = Handle(thread, obj);
1535   }
1536 
1537   JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), ik, h_obj,
1538                                            fid, sig_type, &fvalue);
1539 IRT_END
1540 
1541 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1542   JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1543 IRT_END
1544 
1545 
1546 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1547   JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1548 IRT_END
1549 
1550 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1551 {
1552   return (Interpreter::contains(pc) ? 1 : 0);
1553 }
1554 IRT_END
1555 
1556 
1557 // Implementation of SignatureHandlerLibrary
1558 
1559 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS
1560 // Dummy definition (else normalization method is defined in CPU
1561 // dependant code)
1562 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
1563   return fingerprint;
1564 }
1565 #endif
1566 
1567 address SignatureHandlerLibrary::set_handler_blob() {
1568   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1569   if (handler_blob == NULL) {
1570     return NULL;
1571   }
1572   address handler = handler_blob->code_begin();
1573   _handler_blob = handler_blob;
1574   _handler = handler;
1575   return handler;
1576 }
1577 
1578 void SignatureHandlerLibrary::initialize() {
1579   if (_fingerprints != NULL) {
1580     return;
1581   }
1582   if (set_handler_blob() == NULL) {
1583     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1584   }
1585 
1586   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1587                                       SignatureHandlerLibrary::buffer_size);
1588   _buffer = bb->code_begin();
1589 
1590   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
1591   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
1592 }
1593 
1594 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1595   address handler   = _handler;
1596   int     insts_size = buffer->pure_insts_size();
1597   if (handler + insts_size > _handler_blob->code_end()) {
1598     // get a new handler blob
1599     handler = set_handler_blob();
1600   }
1601   if (handler != NULL) {
1602     memcpy(handler, buffer->insts_begin(), insts_size);
1603     pd_set_handler(handler);
1604     ICache::invalidate_range(handler, insts_size);
1605     _handler = handler + insts_size;
1606   }
1607   return handler;
1608 }
1609 
1610 void SignatureHandlerLibrary::add(const methodHandle& method) {
1611   if (method->signature_handler() == NULL) {
1612     // use slow signature handler if we can't do better
1613     int handler_index = -1;
1614     // check if we can use customized (fast) signature handler
1615     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1616       // use customized signature handler
1617       MutexLocker mu(SignatureHandlerLibrary_lock);
1618       // make sure data structure is initialized
1619       initialize();
1620       // lookup method signature's fingerprint
1621       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1622       // allow CPU dependant code to optimize the fingerprints for the fast handler
1623       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1624       handler_index = _fingerprints->find(fingerprint);
1625       // create handler if necessary
1626       if (handler_index < 0) {
1627         ResourceMark rm;
1628         ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer;
1629         CodeBuffer buffer((address)(_buffer + align_offset),
1630                           SignatureHandlerLibrary::buffer_size - align_offset);
1631         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1632         // copy into code heap
1633         address handler = set_handler(&buffer);
1634         if (handler == NULL) {
1635           // use slow signature handler (without memorizing it in the fingerprints)
1636         } else {
1637           // debugging suppport
1638           if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1639             ttyLocker ttyl;
1640             tty->cr();
1641             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1642                           _handlers->length(),
1643                           (method->is_static() ? "static" : "receiver"),
1644                           method->name_and_sig_as_C_string(),
1645                           fingerprint,
1646                           buffer.insts_size());
1647             if (buffer.insts_size() > 0) {
1648               Disassembler::decode(handler, handler + buffer.insts_size());
1649             }
1650 #ifndef PRODUCT
1651             address rh_begin = Interpreter::result_handler(method()->result_type());
1652             if (CodeCache::contains(rh_begin)) {
1653               // else it might be special platform dependent values
1654               tty->print_cr(" --- associated result handler ---");
1655               address rh_end = rh_begin;
1656               while (*(int*)rh_end != 0) {
1657                 rh_end += sizeof(int);
1658               }
1659               Disassembler::decode(rh_begin, rh_end);
1660             } else {
1661               tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
1662             }
1663 #endif
1664           }
1665           // add handler to library
1666           _fingerprints->append(fingerprint);
1667           _handlers->append(handler);
1668           // set handler index
1669           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1670           handler_index = _fingerprints->length() - 1;
1671         }
1672       }
1673       // Set handler under SignatureHandlerLibrary_lock
1674       if (handler_index < 0) {
1675         // use generic signature handler
1676         method->set_signature_handler(Interpreter::slow_signature_handler());
1677       } else {
1678         // set handler
1679         method->set_signature_handler(_handlers->at(handler_index));
1680       }
1681     } else {
1682       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1683       // use generic signature handler
1684       method->set_signature_handler(Interpreter::slow_signature_handler());
1685     }
1686   }
1687 #ifdef ASSERT
1688   int handler_index = -1;
1689   int fingerprint_index = -2;
1690   {
1691     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1692     // in any way if accessed from multiple threads. To avoid races with another
1693     // thread which may change the arrays in the above, mutex protected block, we
1694     // have to protect this read access here with the same mutex as well!
1695     MutexLocker mu(SignatureHandlerLibrary_lock);
1696     if (_handlers != NULL) {
1697       handler_index = _handlers->find(method->signature_handler());
1698       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1699       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1700       fingerprint_index = _fingerprints->find(fingerprint);
1701     }
1702   }
1703   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1704          handler_index == fingerprint_index, "sanity check");
1705 #endif // ASSERT
1706 }
1707 
1708 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
1709   int handler_index = -1;
1710   // use customized signature handler
1711   MutexLocker mu(SignatureHandlerLibrary_lock);
1712   // make sure data structure is initialized
1713   initialize();
1714   fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1715   handler_index = _fingerprints->find(fingerprint);
1716   // create handler if necessary
1717   if (handler_index < 0) {
1718     if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1719       tty->cr();
1720       tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
1721                     _handlers->length(),
1722                     p2i(handler),
1723                     fingerprint);
1724     }
1725     _fingerprints->append(fingerprint);
1726     _handlers->append(handler);
1727   } else {
1728     if (PrintSignatureHandlers) {
1729       tty->cr();
1730       tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
1731                     _handlers->length(),
1732                     fingerprint,
1733                     p2i(_handlers->at(handler_index)),
1734                     p2i(handler));
1735     }
1736   }
1737 }
1738 
1739 
1740 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1741 address                  SignatureHandlerLibrary::_handler      = NULL;
1742 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1743 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1744 address                  SignatureHandlerLibrary::_buffer       = NULL;
1745 
1746 
1747 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
1748   methodHandle m(thread, method);
1749   assert(m->is_native(), "sanity check");
1750   // lookup native function entry point if it doesn't exist
1751   bool in_base_library;
1752   if (!m->has_native_function()) {
1753     NativeLookup::lookup(m, in_base_library, CHECK);
1754   }
1755   // make sure signature handler is installed
1756   SignatureHandlerLibrary::add(m);
1757   // The interpreter entry point checks the signature handler first,
1758   // before trying to fetch the native entry point and klass mirror.
1759   // We must set the signature handler last, so that multiple processors
1760   // preparing the same method will be sure to see non-null entry & mirror.
1761 IRT_END
1762 
1763 #if defined(IA32) || defined(AMD64) || defined(ARM)
1764 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1765   if (src_address == dest_address) {
1766     return;
1767   }
1768   ResetNoHandleMark rnm; // In a LEAF entry.
1769   HandleMark hm;
1770   ResourceMark rm;
1771   frame fr = thread->last_frame();
1772   assert(fr.is_interpreted_frame(), "");
1773   jint bci = fr.interpreter_frame_bci();
1774   methodHandle mh(thread, fr.interpreter_frame_method());
1775   Bytecode_invoke invoke(mh, bci);
1776   ArgumentSizeComputer asc(invoke.signature());
1777   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1778   Copy::conjoint_jbytes(src_address, dest_address,
1779                        size_of_arguments * Interpreter::stackElementSize);
1780 IRT_END
1781 #endif
1782 
1783 #if INCLUDE_JVMTI
1784 // This is a support of the JVMTI PopFrame interface.
1785 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1786 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1787 // The member_name argument is a saved reference (in local#0) to the member_name.
1788 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1789 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1790 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
1791                                                             Method* method, address bcp))
1792   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1793   if (code != Bytecodes::_invokestatic) {
1794     return;
1795   }
1796   ConstantPool* cpool = method->constants();
1797   int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1798   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1799   Symbol* mname = cpool->name_ref_at(cp_index);
1800 
1801   if (MethodHandles::has_member_arg(cname, mname)) {
1802     oop member_name_oop = (oop) member_name;
1803     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1804       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1805       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1806     }
1807     thread->set_vm_result(member_name_oop);
1808   } else {
1809     thread->set_vm_result(NULL);
1810   }
1811 IRT_END
1812 #endif // INCLUDE_JVMTI
1813 
1814 #ifndef PRODUCT
1815 // This must be a IRT_LEAF function because the interpreter must save registers on x86 to
1816 // call this, which changes rsp and makes the interpreter's expression stack not walkable.
1817 // The generated code still uses call_VM because that will set up the frame pointer for
1818 // bcp and method.
1819 IRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1820   const frame f = thread->last_frame();
1821   assert(f.is_interpreted_frame(), "must be an interpreted frame");
1822   methodHandle mh(thread, f.interpreter_frame_method());
1823   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
1824   return preserve_this_value;
1825 IRT_END
1826 #endif // !PRODUCT