1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.inline.hpp"
  49 #include "oops/instanceKlass.hpp"
  50 #include "oops/objArrayOop.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/symbol.hpp"
  53 #include "oops/valueKlass.hpp"
  54 #include "oops/verifyOopClosure.hpp"
  55 #include "prims/jvm.h"
  56 #include "prims/jvm_misc.hpp"
  57 #include "prims/jvmtiExport.hpp"
  58 #include "prims/jvmtiThreadState.hpp"
  59 #include "prims/privilegedStack.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/atomic.hpp"
  62 #include "runtime/biasedLocking.hpp"
  63 #include "runtime/commandLineFlagConstraintList.hpp"
  64 #include "runtime/commandLineFlagWriteableList.hpp"
  65 #include "runtime/commandLineFlagRangeList.hpp"
  66 #include "runtime/deoptimization.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/globals.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/interfaceSupport.hpp"
  71 #include "runtime/java.hpp"
  72 #include "runtime/javaCalls.hpp"
  73 #include "runtime/jniPeriodicChecker.hpp"
  74 #include "runtime/timerTrace.hpp"
  75 #include "runtime/memprofiler.hpp"
  76 #include "runtime/mutexLocker.hpp"
  77 #include "runtime/objectMonitor.hpp"
  78 #include "runtime/orderAccess.inline.hpp"
  79 #include "runtime/osThread.hpp"
  80 #include "runtime/safepoint.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/statSampler.hpp"
  83 #include "runtime/stubRoutines.hpp"
  84 #include "runtime/sweeper.hpp"
  85 #include "runtime/task.hpp"
  86 #include "runtime/thread.inline.hpp"
  87 #include "runtime/threadCritical.hpp"
  88 #include "runtime/vframe.hpp"
  89 #include "runtime/vframeArray.hpp"
  90 #include "runtime/vframe_hp.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "runtime/vm_operations.hpp"
  93 #include "runtime/vm_version.hpp"
  94 #include "services/attachListener.hpp"
  95 #include "services/management.hpp"
  96 #include "services/memTracker.hpp"
  97 #include "services/threadService.hpp"
  98 #include "trace/traceMacros.hpp"
  99 #include "trace/tracing.hpp"
 100 #include "utilities/align.hpp"
 101 #include "utilities/defaultStream.hpp"
 102 #include "utilities/dtrace.hpp"
 103 #include "utilities/events.hpp"
 104 #include "utilities/macros.hpp"
 105 #include "utilities/preserveException.hpp"
 106 #include "utilities/vmError.hpp"
 107 #if INCLUDE_ALL_GCS
 108 #include "gc/cms/concurrentMarkSweepThread.hpp"
 109 #include "gc/g1/concurrentMarkThread.inline.hpp"
 110 #include "gc/parallel/pcTasks.hpp"
 111 #endif // INCLUDE_ALL_GCS
 112 #if INCLUDE_JVMCI
 113 #include "jvmci/jvmciCompiler.hpp"
 114 #include "jvmci/jvmciRuntime.hpp"
 115 #include "logging/logHandle.hpp"
 116 #endif
 117 #ifdef COMPILER1
 118 #include "c1/c1_Compiler.hpp"
 119 #endif
 120 #ifdef COMPILER2
 121 #include "opto/c2compiler.hpp"
 122 #include "opto/idealGraphPrinter.hpp"
 123 #endif
 124 #if INCLUDE_RTM_OPT
 125 #include "runtime/rtmLocking.hpp"
 126 #endif
 127 
 128 // Initialization after module runtime initialization
 129 void universe_post_module_init();  // must happen after call_initPhase2
 130 
 131 #ifdef DTRACE_ENABLED
 132 
 133 // Only bother with this argument setup if dtrace is available
 134 
 135   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 136   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 137 
 138   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 139     {                                                                      \
 140       ResourceMark rm(this);                                               \
 141       int len = 0;                                                         \
 142       const char* name = (javathread)->get_thread_name();                  \
 143       len = strlen(name);                                                  \
 144       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 145         (char *) name, len,                                                \
 146         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 147         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 148         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 149     }
 150 
 151 #else //  ndef DTRACE_ENABLED
 152 
 153   #define DTRACE_THREAD_PROBE(probe, javathread)
 154 
 155 #endif // ndef DTRACE_ENABLED
 156 
 157 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 158 // Current thread is maintained as a thread-local variable
 159 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 160 #endif
 161 // Class hierarchy
 162 // - Thread
 163 //   - VMThread
 164 //   - WatcherThread
 165 //   - ConcurrentMarkSweepThread
 166 //   - JavaThread
 167 //     - CompilerThread
 168 
 169 // ======= Thread ========
 170 // Support for forcing alignment of thread objects for biased locking
 171 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 172   if (UseBiasedLocking) {
 173     const int alignment = markOopDesc::biased_lock_alignment;
 174     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 175     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 176                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 177                                                          AllocFailStrategy::RETURN_NULL);
 178     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 179     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 180            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 181            "JavaThread alignment code overflowed allocated storage");
 182     if (aligned_addr != real_malloc_addr) {
 183       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 184                               p2i(real_malloc_addr),
 185                               p2i(aligned_addr));
 186     }
 187     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 188     return aligned_addr;
 189   } else {
 190     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 191                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 192   }
 193 }
 194 
 195 void Thread::operator delete(void* p) {
 196   if (UseBiasedLocking) {
 197     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 198     FreeHeap(real_malloc_addr);
 199   } else {
 200     FreeHeap(p);
 201   }
 202 }
 203 
 204 
 205 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 206 // JavaThread
 207 
 208 
 209 Thread::Thread() {
 210   // stack and get_thread
 211   set_stack_base(NULL);
 212   set_stack_size(0);
 213   set_self_raw_id(0);
 214   set_lgrp_id(-1);
 215   DEBUG_ONLY(clear_suspendible_thread();)
 216 
 217   // allocated data structures
 218   set_osthread(NULL);
 219   set_resource_area(new (mtThread)ResourceArea());
 220   DEBUG_ONLY(_current_resource_mark = NULL;)
 221   set_handle_area(new (mtThread) HandleArea(NULL));
 222   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 223   set_active_handles(NULL);
 224   set_free_handle_block(NULL);
 225   set_last_handle_mark(NULL);
 226 
 227   // This initial value ==> never claimed.
 228   _oops_do_parity = 0;
 229 
 230   // the handle mark links itself to last_handle_mark
 231   new HandleMark(this);
 232 
 233   // plain initialization
 234   debug_only(_owned_locks = NULL;)
 235   debug_only(_allow_allocation_count = 0;)
 236   NOT_PRODUCT(_allow_safepoint_count = 0;)
 237   NOT_PRODUCT(_skip_gcalot = false;)
 238   _jvmti_env_iteration_count = 0;
 239   set_allocated_bytes(0);
 240   _vm_operation_started_count = 0;
 241   _vm_operation_completed_count = 0;
 242   _current_pending_monitor = NULL;
 243   _current_pending_monitor_is_from_java = true;
 244   _current_waiting_monitor = NULL;
 245   _num_nested_signal = 0;
 246   omFreeList = NULL;
 247   omFreeCount = 0;
 248   omFreeProvision = 32;
 249   omInUseList = NULL;
 250   omInUseCount = 0;
 251 
 252 #ifdef ASSERT
 253   _visited_for_critical_count = false;
 254 #endif
 255 
 256   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 257                          Monitor::_safepoint_check_sometimes);
 258   _suspend_flags = 0;
 259 
 260   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 261   _hashStateX = os::random();
 262   _hashStateY = 842502087;
 263   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 264   _hashStateW = 273326509;
 265 
 266   _OnTrap   = 0;
 267   _schedctl = NULL;
 268   _Stalled  = 0;
 269   _TypeTag  = 0x2BAD;
 270 
 271   // Many of the following fields are effectively final - immutable
 272   // Note that nascent threads can't use the Native Monitor-Mutex
 273   // construct until the _MutexEvent is initialized ...
 274   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 275   // we might instead use a stack of ParkEvents that we could provision on-demand.
 276   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 277   // and ::Release()
 278   _ParkEvent   = ParkEvent::Allocate(this);
 279   _SleepEvent  = ParkEvent::Allocate(this);
 280   _MutexEvent  = ParkEvent::Allocate(this);
 281   _MuxEvent    = ParkEvent::Allocate(this);
 282 
 283   _buffered_values_dealiaser = NULL;
 284 
 285 #ifdef CHECK_UNHANDLED_OOPS
 286   if (CheckUnhandledOops) {
 287     _unhandled_oops = new UnhandledOops(this);
 288   }
 289 #endif // CHECK_UNHANDLED_OOPS
 290 #ifdef ASSERT
 291   if (UseBiasedLocking) {
 292     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 293     assert(this == _real_malloc_address ||
 294            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 295            "bug in forced alignment of thread objects");
 296   }
 297 #endif // ASSERT
 298 }
 299 
 300 void Thread::initialize_thread_current() {
 301 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 302   assert(_thr_current == NULL, "Thread::current already initialized");
 303   _thr_current = this;
 304 #endif
 305   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 306   ThreadLocalStorage::set_thread(this);
 307   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 308 }
 309 
 310 void Thread::clear_thread_current() {
 311   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 312 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 313   _thr_current = NULL;
 314 #endif
 315   ThreadLocalStorage::set_thread(NULL);
 316 }
 317 
 318 void Thread::record_stack_base_and_size() {
 319   set_stack_base(os::current_stack_base());
 320   set_stack_size(os::current_stack_size());
 321   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 322   // in initialize_thread(). Without the adjustment, stack size is
 323   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 324   // So far, only Solaris has real implementation of initialize_thread().
 325   //
 326   // set up any platform-specific state.
 327   os::initialize_thread(this);
 328 
 329   // Set stack limits after thread is initialized.
 330   if (is_Java_thread()) {
 331     ((JavaThread*) this)->set_stack_overflow_limit();
 332     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 333   }
 334 #if INCLUDE_NMT
 335   // record thread's native stack, stack grows downward
 336   MemTracker::record_thread_stack(stack_end(), stack_size());
 337 #endif // INCLUDE_NMT
 338   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 339     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 340     os::current_thread_id(), p2i(stack_base() - stack_size()),
 341     p2i(stack_base()), stack_size()/1024);
 342 }
 343 
 344 
 345 Thread::~Thread() {
 346   EVENT_THREAD_DESTRUCT(this);
 347 
 348   // stack_base can be NULL if the thread is never started or exited before
 349   // record_stack_base_and_size called. Although, we would like to ensure
 350   // that all started threads do call record_stack_base_and_size(), there is
 351   // not proper way to enforce that.
 352 #if INCLUDE_NMT
 353   if (_stack_base != NULL) {
 354     MemTracker::release_thread_stack(stack_end(), stack_size());
 355 #ifdef ASSERT
 356     set_stack_base(NULL);
 357 #endif
 358   }
 359 #endif // INCLUDE_NMT
 360 
 361   // deallocate data structures
 362   delete resource_area();
 363   // since the handle marks are using the handle area, we have to deallocated the root
 364   // handle mark before deallocating the thread's handle area,
 365   assert(last_handle_mark() != NULL, "check we have an element");
 366   delete last_handle_mark();
 367   assert(last_handle_mark() == NULL, "check we have reached the end");
 368 
 369   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 370   // We NULL out the fields for good hygiene.
 371   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 372   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 373   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 374   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 375 
 376   delete handle_area();
 377   delete metadata_handles();
 378 
 379   // SR_handler uses this as a termination indicator -
 380   // needs to happen before os::free_thread()
 381   delete _SR_lock;
 382   _SR_lock = NULL;
 383 
 384   // osthread() can be NULL, if creation of thread failed.
 385   if (osthread() != NULL) os::free_thread(osthread());
 386 
 387   // clear Thread::current if thread is deleting itself.
 388   // Needed to ensure JNI correctly detects non-attached threads.
 389   if (this == Thread::current()) {
 390     clear_thread_current();
 391   }
 392 
 393   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 394 }
 395 
 396 // NOTE: dummy function for assertion purpose.
 397 void Thread::run() {
 398   ShouldNotReachHere();
 399 }
 400 
 401 #ifdef ASSERT
 402 // Private method to check for dangling thread pointer
 403 void check_for_dangling_thread_pointer(Thread *thread) {
 404   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 405          "possibility of dangling Thread pointer");
 406 }
 407 #endif
 408 
 409 ThreadPriority Thread::get_priority(const Thread* const thread) {
 410   ThreadPriority priority;
 411   // Can return an error!
 412   (void)os::get_priority(thread, priority);
 413   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 414   return priority;
 415 }
 416 
 417 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 418   debug_only(check_for_dangling_thread_pointer(thread);)
 419   // Can return an error!
 420   (void)os::set_priority(thread, priority);
 421 }
 422 
 423 
 424 void Thread::start(Thread* thread) {
 425   // Start is different from resume in that its safety is guaranteed by context or
 426   // being called from a Java method synchronized on the Thread object.
 427   if (!DisableStartThread) {
 428     if (thread->is_Java_thread()) {
 429       // Initialize the thread state to RUNNABLE before starting this thread.
 430       // Can not set it after the thread started because we do not know the
 431       // exact thread state at that time. It could be in MONITOR_WAIT or
 432       // in SLEEPING or some other state.
 433       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 434                                           java_lang_Thread::RUNNABLE);
 435     }
 436     os::start_thread(thread);
 437   }
 438 }
 439 
 440 // Enqueue a VM_Operation to do the job for us - sometime later
 441 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 442   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 443   VMThread::execute(vm_stop);
 444 }
 445 
 446 
 447 // Check if an external suspend request has completed (or has been
 448 // cancelled). Returns true if the thread is externally suspended and
 449 // false otherwise.
 450 //
 451 // The bits parameter returns information about the code path through
 452 // the routine. Useful for debugging:
 453 //
 454 // set in is_ext_suspend_completed():
 455 // 0x00000001 - routine was entered
 456 // 0x00000010 - routine return false at end
 457 // 0x00000100 - thread exited (return false)
 458 // 0x00000200 - suspend request cancelled (return false)
 459 // 0x00000400 - thread suspended (return true)
 460 // 0x00001000 - thread is in a suspend equivalent state (return true)
 461 // 0x00002000 - thread is native and walkable (return true)
 462 // 0x00004000 - thread is native_trans and walkable (needed retry)
 463 //
 464 // set in wait_for_ext_suspend_completion():
 465 // 0x00010000 - routine was entered
 466 // 0x00020000 - suspend request cancelled before loop (return false)
 467 // 0x00040000 - thread suspended before loop (return true)
 468 // 0x00080000 - suspend request cancelled in loop (return false)
 469 // 0x00100000 - thread suspended in loop (return true)
 470 // 0x00200000 - suspend not completed during retry loop (return false)
 471 
 472 // Helper class for tracing suspend wait debug bits.
 473 //
 474 // 0x00000100 indicates that the target thread exited before it could
 475 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 476 // 0x00080000 each indicate a cancelled suspend request so they don't
 477 // count as wait failures either.
 478 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 479 
 480 class TraceSuspendDebugBits : public StackObj {
 481  private:
 482   JavaThread * jt;
 483   bool         is_wait;
 484   bool         called_by_wait;  // meaningful when !is_wait
 485   uint32_t *   bits;
 486 
 487  public:
 488   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 489                         uint32_t *_bits) {
 490     jt             = _jt;
 491     is_wait        = _is_wait;
 492     called_by_wait = _called_by_wait;
 493     bits           = _bits;
 494   }
 495 
 496   ~TraceSuspendDebugBits() {
 497     if (!is_wait) {
 498 #if 1
 499       // By default, don't trace bits for is_ext_suspend_completed() calls.
 500       // That trace is very chatty.
 501       return;
 502 #else
 503       if (!called_by_wait) {
 504         // If tracing for is_ext_suspend_completed() is enabled, then only
 505         // trace calls to it from wait_for_ext_suspend_completion()
 506         return;
 507       }
 508 #endif
 509     }
 510 
 511     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 512       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 513         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 514         ResourceMark rm;
 515 
 516         tty->print_cr(
 517                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 518                       jt->get_thread_name(), *bits);
 519 
 520         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 521       }
 522     }
 523   }
 524 };
 525 #undef DEBUG_FALSE_BITS
 526 
 527 
 528 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 529                                           uint32_t *bits) {
 530   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 531 
 532   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 533   bool do_trans_retry;           // flag to force the retry
 534 
 535   *bits |= 0x00000001;
 536 
 537   do {
 538     do_trans_retry = false;
 539 
 540     if (is_exiting()) {
 541       // Thread is in the process of exiting. This is always checked
 542       // first to reduce the risk of dereferencing a freed JavaThread.
 543       *bits |= 0x00000100;
 544       return false;
 545     }
 546 
 547     if (!is_external_suspend()) {
 548       // Suspend request is cancelled. This is always checked before
 549       // is_ext_suspended() to reduce the risk of a rogue resume
 550       // confusing the thread that made the suspend request.
 551       *bits |= 0x00000200;
 552       return false;
 553     }
 554 
 555     if (is_ext_suspended()) {
 556       // thread is suspended
 557       *bits |= 0x00000400;
 558       return true;
 559     }
 560 
 561     // Now that we no longer do hard suspends of threads running
 562     // native code, the target thread can be changing thread state
 563     // while we are in this routine:
 564     //
 565     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 566     //
 567     // We save a copy of the thread state as observed at this moment
 568     // and make our decision about suspend completeness based on the
 569     // copy. This closes the race where the thread state is seen as
 570     // _thread_in_native_trans in the if-thread_blocked check, but is
 571     // seen as _thread_blocked in if-thread_in_native_trans check.
 572     JavaThreadState save_state = thread_state();
 573 
 574     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 575       // If the thread's state is _thread_blocked and this blocking
 576       // condition is known to be equivalent to a suspend, then we can
 577       // consider the thread to be externally suspended. This means that
 578       // the code that sets _thread_blocked has been modified to do
 579       // self-suspension if the blocking condition releases. We also
 580       // used to check for CONDVAR_WAIT here, but that is now covered by
 581       // the _thread_blocked with self-suspension check.
 582       //
 583       // Return true since we wouldn't be here unless there was still an
 584       // external suspend request.
 585       *bits |= 0x00001000;
 586       return true;
 587     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 588       // Threads running native code will self-suspend on native==>VM/Java
 589       // transitions. If its stack is walkable (should always be the case
 590       // unless this function is called before the actual java_suspend()
 591       // call), then the wait is done.
 592       *bits |= 0x00002000;
 593       return true;
 594     } else if (!called_by_wait && !did_trans_retry &&
 595                save_state == _thread_in_native_trans &&
 596                frame_anchor()->walkable()) {
 597       // The thread is transitioning from thread_in_native to another
 598       // thread state. check_safepoint_and_suspend_for_native_trans()
 599       // will force the thread to self-suspend. If it hasn't gotten
 600       // there yet we may have caught the thread in-between the native
 601       // code check above and the self-suspend. Lucky us. If we were
 602       // called by wait_for_ext_suspend_completion(), then it
 603       // will be doing the retries so we don't have to.
 604       //
 605       // Since we use the saved thread state in the if-statement above,
 606       // there is a chance that the thread has already transitioned to
 607       // _thread_blocked by the time we get here. In that case, we will
 608       // make a single unnecessary pass through the logic below. This
 609       // doesn't hurt anything since we still do the trans retry.
 610 
 611       *bits |= 0x00004000;
 612 
 613       // Once the thread leaves thread_in_native_trans for another
 614       // thread state, we break out of this retry loop. We shouldn't
 615       // need this flag to prevent us from getting back here, but
 616       // sometimes paranoia is good.
 617       did_trans_retry = true;
 618 
 619       // We wait for the thread to transition to a more usable state.
 620       for (int i = 1; i <= SuspendRetryCount; i++) {
 621         // We used to do an "os::yield_all(i)" call here with the intention
 622         // that yielding would increase on each retry. However, the parameter
 623         // is ignored on Linux which means the yield didn't scale up. Waiting
 624         // on the SR_lock below provides a much more predictable scale up for
 625         // the delay. It also provides a simple/direct point to check for any
 626         // safepoint requests from the VMThread
 627 
 628         // temporarily drops SR_lock while doing wait with safepoint check
 629         // (if we're a JavaThread - the WatcherThread can also call this)
 630         // and increase delay with each retry
 631         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 632 
 633         // check the actual thread state instead of what we saved above
 634         if (thread_state() != _thread_in_native_trans) {
 635           // the thread has transitioned to another thread state so
 636           // try all the checks (except this one) one more time.
 637           do_trans_retry = true;
 638           break;
 639         }
 640       } // end retry loop
 641 
 642 
 643     }
 644   } while (do_trans_retry);
 645 
 646   *bits |= 0x00000010;
 647   return false;
 648 }
 649 
 650 // Wait for an external suspend request to complete (or be cancelled).
 651 // Returns true if the thread is externally suspended and false otherwise.
 652 //
 653 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 654                                                  uint32_t *bits) {
 655   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 656                              false /* !called_by_wait */, bits);
 657 
 658   // local flag copies to minimize SR_lock hold time
 659   bool is_suspended;
 660   bool pending;
 661   uint32_t reset_bits;
 662 
 663   // set a marker so is_ext_suspend_completed() knows we are the caller
 664   *bits |= 0x00010000;
 665 
 666   // We use reset_bits to reinitialize the bits value at the top of
 667   // each retry loop. This allows the caller to make use of any
 668   // unused bits for their own marking purposes.
 669   reset_bits = *bits;
 670 
 671   {
 672     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 673     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 674                                             delay, bits);
 675     pending = is_external_suspend();
 676   }
 677   // must release SR_lock to allow suspension to complete
 678 
 679   if (!pending) {
 680     // A cancelled suspend request is the only false return from
 681     // is_ext_suspend_completed() that keeps us from entering the
 682     // retry loop.
 683     *bits |= 0x00020000;
 684     return false;
 685   }
 686 
 687   if (is_suspended) {
 688     *bits |= 0x00040000;
 689     return true;
 690   }
 691 
 692   for (int i = 1; i <= retries; i++) {
 693     *bits = reset_bits;  // reinit to only track last retry
 694 
 695     // We used to do an "os::yield_all(i)" call here with the intention
 696     // that yielding would increase on each retry. However, the parameter
 697     // is ignored on Linux which means the yield didn't scale up. Waiting
 698     // on the SR_lock below provides a much more predictable scale up for
 699     // the delay. It also provides a simple/direct point to check for any
 700     // safepoint requests from the VMThread
 701 
 702     {
 703       MutexLocker ml(SR_lock());
 704       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 705       // can also call this)  and increase delay with each retry
 706       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 707 
 708       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 709                                               delay, bits);
 710 
 711       // It is possible for the external suspend request to be cancelled
 712       // (by a resume) before the actual suspend operation is completed.
 713       // Refresh our local copy to see if we still need to wait.
 714       pending = is_external_suspend();
 715     }
 716 
 717     if (!pending) {
 718       // A cancelled suspend request is the only false return from
 719       // is_ext_suspend_completed() that keeps us from staying in the
 720       // retry loop.
 721       *bits |= 0x00080000;
 722       return false;
 723     }
 724 
 725     if (is_suspended) {
 726       *bits |= 0x00100000;
 727       return true;
 728     }
 729   } // end retry loop
 730 
 731   // thread did not suspend after all our retries
 732   *bits |= 0x00200000;
 733   return false;
 734 }
 735 
 736 #ifndef PRODUCT
 737 void JavaThread::record_jump(address target, address instr, const char* file,
 738                              int line) {
 739 
 740   // This should not need to be atomic as the only way for simultaneous
 741   // updates is via interrupts. Even then this should be rare or non-existent
 742   // and we don't care that much anyway.
 743 
 744   int index = _jmp_ring_index;
 745   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 746   _jmp_ring[index]._target = (intptr_t) target;
 747   _jmp_ring[index]._instruction = (intptr_t) instr;
 748   _jmp_ring[index]._file = file;
 749   _jmp_ring[index]._line = line;
 750 }
 751 #endif // PRODUCT
 752 
 753 void Thread::interrupt(Thread* thread) {
 754   debug_only(check_for_dangling_thread_pointer(thread);)
 755   os::interrupt(thread);
 756 }
 757 
 758 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 759   debug_only(check_for_dangling_thread_pointer(thread);)
 760   // Note:  If clear_interrupted==false, this simply fetches and
 761   // returns the value of the field osthread()->interrupted().
 762   return os::is_interrupted(thread, clear_interrupted);
 763 }
 764 
 765 
 766 // GC Support
 767 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 768   jint thread_parity = _oops_do_parity;
 769   if (thread_parity != strong_roots_parity) {
 770     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 771     if (res == thread_parity) {
 772       return true;
 773     } else {
 774       guarantee(res == strong_roots_parity, "Or else what?");
 775       return false;
 776     }
 777   }
 778   return false;
 779 }
 780 
 781 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 782   active_handles()->oops_do(f);
 783   // Do oop for ThreadShadow
 784   f->do_oop((oop*)&_pending_exception);
 785   handle_area()->oops_do(f);
 786 
 787   if (MonitorInUseLists) {
 788     // When using thread local monitor lists, we scan them here,
 789     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 790     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 791   }
 792 }
 793 
 794 void Thread::metadata_handles_do(void f(Metadata*)) {
 795   // Only walk the Handles in Thread.
 796   if (metadata_handles() != NULL) {
 797     for (int i = 0; i< metadata_handles()->length(); i++) {
 798       f(metadata_handles()->at(i));
 799     }
 800   }
 801 }
 802 
 803 void Thread::print_on(outputStream* st) const {
 804   // get_priority assumes osthread initialized
 805   if (osthread() != NULL) {
 806     int os_prio;
 807     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 808       st->print("os_prio=%d ", os_prio);
 809     }
 810     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 811     ext().print_on(st);
 812     osthread()->print_on(st);
 813   }
 814   debug_only(if (WizardMode) print_owned_locks_on(st);)
 815 }
 816 
 817 // Thread::print_on_error() is called by fatal error handler. Don't use
 818 // any lock or allocate memory.
 819 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 820   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 821 
 822   if (is_VM_thread())                 { st->print("VMThread"); }
 823   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 824   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 825   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 826   else                                { st->print("Thread"); }
 827 
 828   if (is_Named_thread()) {
 829     st->print(" \"%s\"", name());
 830   }
 831 
 832   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 833             p2i(stack_end()), p2i(stack_base()));
 834 
 835   if (osthread()) {
 836     st->print(" [id=%d]", osthread()->thread_id());
 837   }
 838 }
 839 
 840 void Thread::print_value_on(outputStream* st) const {
 841   if (is_Named_thread()) {
 842     st->print(" \"%s\" ", name());
 843   }
 844   st->print(INTPTR_FORMAT, p2i(this));   // print address
 845 }
 846 
 847 void JavaThread::print_vt_buffer_stats_on(outputStream* st) const {
 848   st->print_cr("%s:", this->name());
 849   st->print_cr("\tChunks in use       : %d", vtchunk_in_use());
 850   st->print_cr("\tCached chunk        : %d", local_free_chunk() == NULL ? 0 : 1);
 851   st->print_cr("\tMax chunks          : %d", vtchunk_max());
 852   st->print_cr("\tReturned chunks     : %d", vtchunk_total_returned());
 853   st->print_cr("\tFailed chunk allocs : %d", vtchunk_total_failed());
 854   st->print_cr("\tMemory buffered     : " JLONG_FORMAT, vtchunk_total_memory_buffered());
 855   st->print_cr("");
 856 }
 857 
 858 #ifdef ASSERT
 859 void Thread::print_owned_locks_on(outputStream* st) const {
 860   Monitor *cur = _owned_locks;
 861   if (cur == NULL) {
 862     st->print(" (no locks) ");
 863   } else {
 864     st->print_cr(" Locks owned:");
 865     while (cur) {
 866       cur->print_on(st);
 867       cur = cur->next();
 868     }
 869   }
 870 }
 871 
 872 static int ref_use_count  = 0;
 873 
 874 bool Thread::owns_locks_but_compiled_lock() const {
 875   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 876     if (cur != Compile_lock) return true;
 877   }
 878   return false;
 879 }
 880 
 881 
 882 #endif
 883 
 884 #ifndef PRODUCT
 885 
 886 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 887 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 888 // no threads which allow_vm_block's are held
 889 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 890   // Check if current thread is allowed to block at a safepoint
 891   if (!(_allow_safepoint_count == 0)) {
 892     fatal("Possible safepoint reached by thread that does not allow it");
 893   }
 894   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 895     fatal("LEAF method calling lock?");
 896   }
 897 
 898 #ifdef ASSERT
 899   if (potential_vm_operation && is_Java_thread()
 900       && !Universe::is_bootstrapping()) {
 901     // Make sure we do not hold any locks that the VM thread also uses.
 902     // This could potentially lead to deadlocks
 903     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 904       // Threads_lock is special, since the safepoint synchronization will not start before this is
 905       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 906       // since it is used to transfer control between JavaThreads and the VMThread
 907       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 908       if ((cur->allow_vm_block() &&
 909            cur != Threads_lock &&
 910            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 911            cur != VMOperationRequest_lock &&
 912            cur != VMOperationQueue_lock) ||
 913            cur->rank() == Mutex::special) {
 914         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 915       }
 916     }
 917   }
 918 
 919   if (GCALotAtAllSafepoints) {
 920     // We could enter a safepoint here and thus have a gc
 921     InterfaceSupport::check_gc_alot();
 922   }
 923 #endif
 924 }
 925 #endif
 926 
 927 bool Thread::is_in_stack(address adr) const {
 928   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 929   address end = os::current_stack_pointer();
 930   // Allow non Java threads to call this without stack_base
 931   if (_stack_base == NULL) return true;
 932   if (stack_base() >= adr && adr >= end) return true;
 933 
 934   return false;
 935 }
 936 
 937 bool Thread::is_in_usable_stack(address adr) const {
 938   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 939   size_t usable_stack_size = _stack_size - stack_guard_size;
 940 
 941   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 942 }
 943 
 944 
 945 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 946 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 947 // used for compilation in the future. If that change is made, the need for these methods
 948 // should be revisited, and they should be removed if possible.
 949 
 950 bool Thread::is_lock_owned(address adr) const {
 951   return on_local_stack(adr);
 952 }
 953 
 954 bool Thread::set_as_starting_thread() {
 955   // NOTE: this must be called inside the main thread.
 956   return os::create_main_thread((JavaThread*)this);
 957 }
 958 
 959 static void initialize_class(Symbol* class_name, TRAPS) {
 960   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 961   InstanceKlass::cast(klass)->initialize(CHECK);
 962 }
 963 
 964 
 965 // Creates the initial ThreadGroup
 966 static Handle create_initial_thread_group(TRAPS) {
 967   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 968   InstanceKlass* ik = InstanceKlass::cast(k);
 969 
 970   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
 971   {
 972     JavaValue result(T_VOID);
 973     JavaCalls::call_special(&result,
 974                             system_instance,
 975                             ik,
 976                             vmSymbols::object_initializer_name(),
 977                             vmSymbols::void_method_signature(),
 978                             CHECK_NH);
 979   }
 980   Universe::set_system_thread_group(system_instance());
 981 
 982   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
 983   {
 984     JavaValue result(T_VOID);
 985     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 986     JavaCalls::call_special(&result,
 987                             main_instance,
 988                             ik,
 989                             vmSymbols::object_initializer_name(),
 990                             vmSymbols::threadgroup_string_void_signature(),
 991                             system_instance,
 992                             string,
 993                             CHECK_NH);
 994   }
 995   return main_instance;
 996 }
 997 
 998 // Creates the initial Thread
 999 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1000                                  TRAPS) {
1001   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1002   InstanceKlass* ik = InstanceKlass::cast(k);
1003   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1004 
1005   java_lang_Thread::set_thread(thread_oop(), thread);
1006   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1007   thread->set_threadObj(thread_oop());
1008 
1009   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1010 
1011   JavaValue result(T_VOID);
1012   JavaCalls::call_special(&result, thread_oop,
1013                           ik,
1014                           vmSymbols::object_initializer_name(),
1015                           vmSymbols::threadgroup_string_void_signature(),
1016                           thread_group,
1017                           string,
1018                           CHECK_NULL);
1019   return thread_oop();
1020 }
1021 
1022 char java_runtime_name[128] = "";
1023 char java_runtime_version[128] = "";
1024 
1025 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1026 static const char* get_java_runtime_name(TRAPS) {
1027   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1028                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1029   fieldDescriptor fd;
1030   bool found = k != NULL &&
1031                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1032                                                         vmSymbols::string_signature(), &fd);
1033   if (found) {
1034     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1035     if (name_oop == NULL) {
1036       return NULL;
1037     }
1038     const char* name = java_lang_String::as_utf8_string(name_oop,
1039                                                         java_runtime_name,
1040                                                         sizeof(java_runtime_name));
1041     return name;
1042   } else {
1043     return NULL;
1044   }
1045 }
1046 
1047 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1048 static const char* get_java_runtime_version(TRAPS) {
1049   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1050                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1051   fieldDescriptor fd;
1052   bool found = k != NULL &&
1053                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1054                                                         vmSymbols::string_signature(), &fd);
1055   if (found) {
1056     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1057     if (name_oop == NULL) {
1058       return NULL;
1059     }
1060     const char* name = java_lang_String::as_utf8_string(name_oop,
1061                                                         java_runtime_version,
1062                                                         sizeof(java_runtime_version));
1063     return name;
1064   } else {
1065     return NULL;
1066   }
1067 }
1068 
1069 // General purpose hook into Java code, run once when the VM is initialized.
1070 // The Java library method itself may be changed independently from the VM.
1071 static void call_postVMInitHook(TRAPS) {
1072   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1073   if (klass != NULL) {
1074     JavaValue result(T_VOID);
1075     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1076                            vmSymbols::void_method_signature(),
1077                            CHECK);
1078   }
1079 }
1080 
1081 static void reset_vm_info_property(TRAPS) {
1082   // the vm info string
1083   ResourceMark rm(THREAD);
1084   const char *vm_info = VM_Version::vm_info_string();
1085 
1086   // java.lang.System class
1087   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1088 
1089   // setProperty arguments
1090   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1091   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1092 
1093   // return value
1094   JavaValue r(T_OBJECT);
1095 
1096   // public static String setProperty(String key, String value);
1097   JavaCalls::call_static(&r,
1098                          klass,
1099                          vmSymbols::setProperty_name(),
1100                          vmSymbols::string_string_string_signature(),
1101                          key_str,
1102                          value_str,
1103                          CHECK);
1104 }
1105 
1106 
1107 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1108                                     bool daemon, TRAPS) {
1109   assert(thread_group.not_null(), "thread group should be specified");
1110   assert(threadObj() == NULL, "should only create Java thread object once");
1111 
1112   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1113   InstanceKlass* ik = InstanceKlass::cast(k);
1114   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1115 
1116   java_lang_Thread::set_thread(thread_oop(), this);
1117   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1118   set_threadObj(thread_oop());
1119 
1120   JavaValue result(T_VOID);
1121   if (thread_name != NULL) {
1122     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1123     // Thread gets assigned specified name and null target
1124     JavaCalls::call_special(&result,
1125                             thread_oop,
1126                             ik,
1127                             vmSymbols::object_initializer_name(),
1128                             vmSymbols::threadgroup_string_void_signature(),
1129                             thread_group, // Argument 1
1130                             name,         // Argument 2
1131                             THREAD);
1132   } else {
1133     // Thread gets assigned name "Thread-nnn" and null target
1134     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1135     JavaCalls::call_special(&result,
1136                             thread_oop,
1137                             ik,
1138                             vmSymbols::object_initializer_name(),
1139                             vmSymbols::threadgroup_runnable_void_signature(),
1140                             thread_group, // Argument 1
1141                             Handle(),     // Argument 2
1142                             THREAD);
1143   }
1144 
1145 
1146   if (daemon) {
1147     java_lang_Thread::set_daemon(thread_oop());
1148   }
1149 
1150   if (HAS_PENDING_EXCEPTION) {
1151     return;
1152   }
1153 
1154   Klass* group =  SystemDictionary::ThreadGroup_klass();
1155   Handle threadObj(THREAD, this->threadObj());
1156 
1157   JavaCalls::call_special(&result,
1158                           thread_group,
1159                           group,
1160                           vmSymbols::add_method_name(),
1161                           vmSymbols::thread_void_signature(),
1162                           threadObj,          // Arg 1
1163                           THREAD);
1164 }
1165 
1166 // NamedThread --  non-JavaThread subclasses with multiple
1167 // uniquely named instances should derive from this.
1168 NamedThread::NamedThread() : Thread() {
1169   _name = NULL;
1170   _processed_thread = NULL;
1171   _gc_id = GCId::undefined();
1172 }
1173 
1174 NamedThread::~NamedThread() {
1175   if (_name != NULL) {
1176     FREE_C_HEAP_ARRAY(char, _name);
1177     _name = NULL;
1178   }
1179 }
1180 
1181 void NamedThread::set_name(const char* format, ...) {
1182   guarantee(_name == NULL, "Only get to set name once.");
1183   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1184   guarantee(_name != NULL, "alloc failure");
1185   va_list ap;
1186   va_start(ap, format);
1187   jio_vsnprintf(_name, max_name_len, format, ap);
1188   va_end(ap);
1189 }
1190 
1191 void NamedThread::initialize_named_thread() {
1192   set_native_thread_name(name());
1193 }
1194 
1195 void NamedThread::print_on(outputStream* st) const {
1196   st->print("\"%s\" ", name());
1197   Thread::print_on(st);
1198   st->cr();
1199 }
1200 
1201 
1202 // ======= WatcherThread ========
1203 
1204 // The watcher thread exists to simulate timer interrupts.  It should
1205 // be replaced by an abstraction over whatever native support for
1206 // timer interrupts exists on the platform.
1207 
1208 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1209 bool WatcherThread::_startable = false;
1210 volatile bool  WatcherThread::_should_terminate = false;
1211 
1212 WatcherThread::WatcherThread() : Thread() {
1213   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1214   if (os::create_thread(this, os::watcher_thread)) {
1215     _watcher_thread = this;
1216 
1217     // Set the watcher thread to the highest OS priority which should not be
1218     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1219     // is created. The only normal thread using this priority is the reference
1220     // handler thread, which runs for very short intervals only.
1221     // If the VMThread's priority is not lower than the WatcherThread profiling
1222     // will be inaccurate.
1223     os::set_priority(this, MaxPriority);
1224     if (!DisableStartThread) {
1225       os::start_thread(this);
1226     }
1227   }
1228 }
1229 
1230 int WatcherThread::sleep() const {
1231   // The WatcherThread does not participate in the safepoint protocol
1232   // for the PeriodicTask_lock because it is not a JavaThread.
1233   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1234 
1235   if (_should_terminate) {
1236     // check for termination before we do any housekeeping or wait
1237     return 0;  // we did not sleep.
1238   }
1239 
1240   // remaining will be zero if there are no tasks,
1241   // causing the WatcherThread to sleep until a task is
1242   // enrolled
1243   int remaining = PeriodicTask::time_to_wait();
1244   int time_slept = 0;
1245 
1246   // we expect this to timeout - we only ever get unparked when
1247   // we should terminate or when a new task has been enrolled
1248   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1249 
1250   jlong time_before_loop = os::javaTimeNanos();
1251 
1252   while (true) {
1253     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1254                                             remaining);
1255     jlong now = os::javaTimeNanos();
1256 
1257     if (remaining == 0) {
1258       // if we didn't have any tasks we could have waited for a long time
1259       // consider the time_slept zero and reset time_before_loop
1260       time_slept = 0;
1261       time_before_loop = now;
1262     } else {
1263       // need to recalculate since we might have new tasks in _tasks
1264       time_slept = (int) ((now - time_before_loop) / 1000000);
1265     }
1266 
1267     // Change to task list or spurious wakeup of some kind
1268     if (timedout || _should_terminate) {
1269       break;
1270     }
1271 
1272     remaining = PeriodicTask::time_to_wait();
1273     if (remaining == 0) {
1274       // Last task was just disenrolled so loop around and wait until
1275       // another task gets enrolled
1276       continue;
1277     }
1278 
1279     remaining -= time_slept;
1280     if (remaining <= 0) {
1281       break;
1282     }
1283   }
1284 
1285   return time_slept;
1286 }
1287 
1288 void WatcherThread::run() {
1289   assert(this == watcher_thread(), "just checking");
1290 
1291   this->record_stack_base_and_size();
1292   this->set_native_thread_name(this->name());
1293   this->set_active_handles(JNIHandleBlock::allocate_block());
1294   while (true) {
1295     assert(watcher_thread() == Thread::current(), "thread consistency check");
1296     assert(watcher_thread() == this, "thread consistency check");
1297 
1298     // Calculate how long it'll be until the next PeriodicTask work
1299     // should be done, and sleep that amount of time.
1300     int time_waited = sleep();
1301 
1302     if (VMError::is_error_reported()) {
1303       // A fatal error has happened, the error handler(VMError::report_and_die)
1304       // should abort JVM after creating an error log file. However in some
1305       // rare cases, the error handler itself might deadlock. Here periodically
1306       // check for error reporting timeouts, and if it happens, just proceed to
1307       // abort the VM.
1308 
1309       // This code is in WatcherThread because WatcherThread wakes up
1310       // periodically so the fatal error handler doesn't need to do anything;
1311       // also because the WatcherThread is less likely to crash than other
1312       // threads.
1313 
1314       for (;;) {
1315         // Note: we use naked sleep in this loop because we want to avoid using
1316         // any kind of VM infrastructure which may be broken at this point.
1317         if (VMError::check_timeout()) {
1318           // We hit error reporting timeout. Error reporting was interrupted and
1319           // will be wrapping things up now (closing files etc). Give it some more
1320           // time, then quit the VM.
1321           os::naked_short_sleep(200);
1322           // Print a message to stderr.
1323           fdStream err(defaultStream::output_fd());
1324           err.print_raw_cr("# [ timer expired, abort... ]");
1325           // skip atexit/vm_exit/vm_abort hooks
1326           os::die();
1327         }
1328 
1329         // Wait a second, then recheck for timeout.
1330         os::naked_short_sleep(999);
1331       }
1332     }
1333 
1334     if (_should_terminate) {
1335       // check for termination before posting the next tick
1336       break;
1337     }
1338 
1339     PeriodicTask::real_time_tick(time_waited);
1340   }
1341 
1342   // Signal that it is terminated
1343   {
1344     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1345     _watcher_thread = NULL;
1346     Terminator_lock->notify();
1347   }
1348 }
1349 
1350 void WatcherThread::start() {
1351   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1352 
1353   if (watcher_thread() == NULL && _startable) {
1354     _should_terminate = false;
1355     // Create the single instance of WatcherThread
1356     new WatcherThread();
1357   }
1358 }
1359 
1360 void WatcherThread::make_startable() {
1361   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1362   _startable = true;
1363 }
1364 
1365 void WatcherThread::stop() {
1366   {
1367     // Follow normal safepoint aware lock enter protocol since the
1368     // WatcherThread is stopped by another JavaThread.
1369     MutexLocker ml(PeriodicTask_lock);
1370     _should_terminate = true;
1371 
1372     WatcherThread* watcher = watcher_thread();
1373     if (watcher != NULL) {
1374       // unpark the WatcherThread so it can see that it should terminate
1375       watcher->unpark();
1376     }
1377   }
1378 
1379   MutexLocker mu(Terminator_lock);
1380 
1381   while (watcher_thread() != NULL) {
1382     // This wait should make safepoint checks, wait without a timeout,
1383     // and wait as a suspend-equivalent condition.
1384     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1385                           Mutex::_as_suspend_equivalent_flag);
1386   }
1387 }
1388 
1389 void WatcherThread::unpark() {
1390   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1391   PeriodicTask_lock->notify();
1392 }
1393 
1394 void WatcherThread::print_on(outputStream* st) const {
1395   st->print("\"%s\" ", name());
1396   Thread::print_on(st);
1397   st->cr();
1398 }
1399 
1400 // ======= JavaThread ========
1401 
1402 #if INCLUDE_JVMCI
1403 
1404 jlong* JavaThread::_jvmci_old_thread_counters;
1405 
1406 bool jvmci_counters_include(JavaThread* thread) {
1407   oop threadObj = thread->threadObj();
1408   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1409 }
1410 
1411 void JavaThread::collect_counters(typeArrayOop array) {
1412   if (JVMCICounterSize > 0) {
1413     MutexLocker tl(Threads_lock);
1414     for (int i = 0; i < array->length(); i++) {
1415       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1416     }
1417     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1418       if (jvmci_counters_include(tp)) {
1419         for (int i = 0; i < array->length(); i++) {
1420           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1421         }
1422       }
1423     }
1424   }
1425 }
1426 
1427 #endif // INCLUDE_JVMCI
1428 
1429 // A JavaThread is a normal Java thread
1430 
1431 void JavaThread::initialize() {
1432   // Initialize fields
1433 
1434   set_saved_exception_pc(NULL);
1435   set_threadObj(NULL);
1436   _anchor.clear();
1437   set_entry_point(NULL);
1438   set_jni_functions(jni_functions());
1439   set_callee_target(NULL);
1440   set_vm_result(NULL);
1441   set_vm_result_2(NULL);
1442   set_return_buffered_value(NULL);
1443   set_vframe_array_head(NULL);
1444   set_vframe_array_last(NULL);
1445   set_deferred_locals(NULL);
1446   set_deopt_mark(NULL);
1447   set_deopt_compiled_method(NULL);
1448   clear_must_deopt_id();
1449   set_monitor_chunks(NULL);
1450   set_next(NULL);
1451   set_thread_state(_thread_new);
1452   _terminated = _not_terminated;
1453   _privileged_stack_top = NULL;
1454   _array_for_gc = NULL;
1455   _suspend_equivalent = false;
1456   _in_deopt_handler = 0;
1457   _doing_unsafe_access = false;
1458   _stack_guard_state = stack_guard_unused;
1459 #if INCLUDE_JVMCI
1460   _pending_monitorenter = false;
1461   _pending_deoptimization = -1;
1462   _pending_failed_speculation = NULL;
1463   _pending_transfer_to_interpreter = false;
1464   _adjusting_comp_level = false;
1465   _jvmci._alternate_call_target = NULL;
1466   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1467   if (JVMCICounterSize > 0) {
1468     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1469     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1470   } else {
1471     _jvmci_counters = NULL;
1472   }
1473 #endif // INCLUDE_JVMCI
1474   _reserved_stack_activation = NULL;  // stack base not known yet
1475   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1476   _exception_pc  = 0;
1477   _exception_handler_pc = 0;
1478   _is_method_handle_return = 0;
1479   _jvmti_thread_state= NULL;
1480   _should_post_on_exceptions_flag = JNI_FALSE;
1481   _jvmti_get_loaded_classes_closure = NULL;
1482   _interp_only_mode    = 0;
1483   _special_runtime_exit_condition = _no_async_condition;
1484   _pending_async_exception = NULL;
1485   _thread_stat = NULL;
1486   _thread_stat = new ThreadStatistics();
1487   _blocked_on_compilation = false;
1488   _jni_active_critical = 0;
1489   _pending_jni_exception_check_fn = NULL;
1490   _do_not_unlock_if_synchronized = false;
1491   _cached_monitor_info = NULL;
1492   _parker = Parker::Allocate(this);
1493 
1494 #ifndef PRODUCT
1495   _jmp_ring_index = 0;
1496   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1497     record_jump(NULL, NULL, NULL, 0);
1498   }
1499 #endif // PRODUCT
1500 
1501   // Setup safepoint state info for this thread
1502   ThreadSafepointState::create(this);
1503 
1504   debug_only(_java_call_counter = 0);
1505 
1506   // JVMTI PopFrame support
1507   _popframe_condition = popframe_inactive;
1508   _popframe_preserved_args = NULL;
1509   _popframe_preserved_args_size = 0;
1510   _frames_to_pop_failed_realloc = 0;
1511 
1512   // Buffered value types support
1513   _vt_alloc_ptr = NULL;
1514   _vt_alloc_limit = NULL;
1515   _local_free_chunk = NULL;
1516   _current_vtbuffer_mark = VTBuffer::mark_A;
1517   // Buffered value types instrumentation support
1518   _vtchunk_in_use = 0;
1519   _vtchunk_max = 0;
1520   _vtchunk_total_returned = 0;
1521   _vtchunk_total_failed = 0;
1522   _vtchunk_total_memory_buffered = 0;
1523 
1524   pd_initialize();
1525 }
1526 
1527 #if INCLUDE_ALL_GCS
1528 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1529 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1530 #endif // INCLUDE_ALL_GCS
1531 
1532 JavaThread::JavaThread(bool is_attaching_via_jni) :
1533                        Thread()
1534 #if INCLUDE_ALL_GCS
1535                        , _satb_mark_queue(&_satb_mark_queue_set),
1536                        _dirty_card_queue(&_dirty_card_queue_set)
1537 #endif // INCLUDE_ALL_GCS
1538 {
1539   initialize();
1540   if (is_attaching_via_jni) {
1541     _jni_attach_state = _attaching_via_jni;
1542   } else {
1543     _jni_attach_state = _not_attaching_via_jni;
1544   }
1545   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1546 }
1547 
1548 bool JavaThread::reguard_stack(address cur_sp) {
1549   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1550       && _stack_guard_state != stack_guard_reserved_disabled) {
1551     return true; // Stack already guarded or guard pages not needed.
1552   }
1553 
1554   if (register_stack_overflow()) {
1555     // For those architectures which have separate register and
1556     // memory stacks, we must check the register stack to see if
1557     // it has overflowed.
1558     return false;
1559   }
1560 
1561   // Java code never executes within the yellow zone: the latter is only
1562   // there to provoke an exception during stack banging.  If java code
1563   // is executing there, either StackShadowPages should be larger, or
1564   // some exception code in c1, c2 or the interpreter isn't unwinding
1565   // when it should.
1566   guarantee(cur_sp > stack_reserved_zone_base(),
1567             "not enough space to reguard - increase StackShadowPages");
1568   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1569     enable_stack_yellow_reserved_zone();
1570     if (reserved_stack_activation() != stack_base()) {
1571       set_reserved_stack_activation(stack_base());
1572     }
1573   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1574     set_reserved_stack_activation(stack_base());
1575     enable_stack_reserved_zone();
1576   }
1577   return true;
1578 }
1579 
1580 bool JavaThread::reguard_stack(void) {
1581   return reguard_stack(os::current_stack_pointer());
1582 }
1583 
1584 
1585 void JavaThread::block_if_vm_exited() {
1586   if (_terminated == _vm_exited) {
1587     // _vm_exited is set at safepoint, and Threads_lock is never released
1588     // we will block here forever
1589     Threads_lock->lock_without_safepoint_check();
1590     ShouldNotReachHere();
1591   }
1592 }
1593 
1594 
1595 // Remove this ifdef when C1 is ported to the compiler interface.
1596 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1597 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1598 
1599 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1600                        Thread()
1601 #if INCLUDE_ALL_GCS
1602                        , _satb_mark_queue(&_satb_mark_queue_set),
1603                        _dirty_card_queue(&_dirty_card_queue_set)
1604 #endif // INCLUDE_ALL_GCS
1605 {
1606   initialize();
1607   _jni_attach_state = _not_attaching_via_jni;
1608   set_entry_point(entry_point);
1609   // Create the native thread itself.
1610   // %note runtime_23
1611   os::ThreadType thr_type = os::java_thread;
1612   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1613                                                      os::java_thread;
1614   os::create_thread(this, thr_type, stack_sz);
1615   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1616   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1617   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1618   // the exception consists of creating the exception object & initializing it, initialization
1619   // will leave the VM via a JavaCall and then all locks must be unlocked).
1620   //
1621   // The thread is still suspended when we reach here. Thread must be explicit started
1622   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1623   // by calling Threads:add. The reason why this is not done here, is because the thread
1624   // object must be fully initialized (take a look at JVM_Start)
1625 }
1626 
1627 JavaThread::~JavaThread() {
1628 
1629   // JSR166 -- return the parker to the free list
1630   Parker::Release(_parker);
1631   _parker = NULL;
1632 
1633   // Free any remaining  previous UnrollBlock
1634   vframeArray* old_array = vframe_array_last();
1635 
1636   if (old_array != NULL) {
1637     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1638     old_array->set_unroll_block(NULL);
1639     delete old_info;
1640     delete old_array;
1641   }
1642 
1643   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1644   if (deferred != NULL) {
1645     // This can only happen if thread is destroyed before deoptimization occurs.
1646     assert(deferred->length() != 0, "empty array!");
1647     do {
1648       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1649       deferred->remove_at(0);
1650       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1651       delete dlv;
1652     } while (deferred->length() != 0);
1653     delete deferred;
1654   }
1655 
1656   // All Java related clean up happens in exit
1657   ThreadSafepointState::destroy(this);
1658   if (_thread_stat != NULL) delete _thread_stat;
1659 
1660   if (_vt_alloc_ptr != NULL) {
1661     VTBufferChunk* chunk = VTBufferChunk::chunk(_vt_alloc_ptr);
1662     while (chunk != NULL) {
1663       VTBufferChunk* temp = chunk->prev();
1664       VTBuffer::recycle_chunk(this, chunk);
1665       chunk = temp;
1666     }
1667     _vt_alloc_ptr = NULL;
1668     _vt_alloc_limit = NULL;
1669   }
1670 
1671 #if INCLUDE_JVMCI
1672   if (JVMCICounterSize > 0) {
1673     if (jvmci_counters_include(this)) {
1674       for (int i = 0; i < JVMCICounterSize; i++) {
1675         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1676       }
1677     }
1678     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1679   }
1680 #endif // INCLUDE_JVMCI
1681 }
1682 
1683 
1684 // The first routine called by a new Java thread
1685 void JavaThread::run() {
1686   // initialize thread-local alloc buffer related fields
1687   this->initialize_tlab();
1688 
1689   // used to test validity of stack trace backs
1690   this->record_base_of_stack_pointer();
1691 
1692   // Record real stack base and size.
1693   this->record_stack_base_and_size();
1694 
1695   this->create_stack_guard_pages();
1696 
1697   this->cache_global_variables();
1698 
1699   // Thread is now sufficient initialized to be handled by the safepoint code as being
1700   // in the VM. Change thread state from _thread_new to _thread_in_vm
1701   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1702 
1703   assert(JavaThread::current() == this, "sanity check");
1704   assert(!Thread::current()->owns_locks(), "sanity check");
1705 
1706   DTRACE_THREAD_PROBE(start, this);
1707 
1708   // This operation might block. We call that after all safepoint checks for a new thread has
1709   // been completed.
1710   this->set_active_handles(JNIHandleBlock::allocate_block());
1711 
1712   if (JvmtiExport::should_post_thread_life()) {
1713     JvmtiExport::post_thread_start(this);
1714   }
1715 
1716   EventThreadStart event;
1717   if (event.should_commit()) {
1718     event.set_thread(THREAD_TRACE_ID(this));
1719     event.commit();
1720   }
1721 
1722   // We call another function to do the rest so we are sure that the stack addresses used
1723   // from there will be lower than the stack base just computed
1724   thread_main_inner();
1725 
1726   // Note, thread is no longer valid at this point!
1727 }
1728 
1729 
1730 void JavaThread::thread_main_inner() {
1731   assert(JavaThread::current() == this, "sanity check");
1732   assert(this->threadObj() != NULL, "just checking");
1733 
1734   // Execute thread entry point unless this thread has a pending exception
1735   // or has been stopped before starting.
1736   // Note: Due to JVM_StopThread we can have pending exceptions already!
1737   if (!this->has_pending_exception() &&
1738       !java_lang_Thread::is_stillborn(this->threadObj())) {
1739     {
1740       ResourceMark rm(this);
1741       this->set_native_thread_name(this->get_thread_name());
1742     }
1743     HandleMark hm(this);
1744     this->entry_point()(this, this);
1745   }
1746 
1747   DTRACE_THREAD_PROBE(stop, this);
1748 
1749   this->exit(false);
1750   delete this;
1751 }
1752 
1753 
1754 static void ensure_join(JavaThread* thread) {
1755   // We do not need to grap the Threads_lock, since we are operating on ourself.
1756   Handle threadObj(thread, thread->threadObj());
1757   assert(threadObj.not_null(), "java thread object must exist");
1758   ObjectLocker lock(threadObj, thread);
1759   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1760   thread->clear_pending_exception();
1761   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1762   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1763   // Clear the native thread instance - this makes isAlive return false and allows the join()
1764   // to complete once we've done the notify_all below
1765   java_lang_Thread::set_thread(threadObj(), NULL);
1766   lock.notify_all(thread);
1767   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1768   thread->clear_pending_exception();
1769 }
1770 
1771 
1772 // For any new cleanup additions, please check to see if they need to be applied to
1773 // cleanup_failed_attach_current_thread as well.
1774 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1775   assert(this == JavaThread::current(), "thread consistency check");
1776 
1777   HandleMark hm(this);
1778   Handle uncaught_exception(this, this->pending_exception());
1779   this->clear_pending_exception();
1780   Handle threadObj(this, this->threadObj());
1781   assert(threadObj.not_null(), "Java thread object should be created");
1782 
1783   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1784   {
1785     EXCEPTION_MARK;
1786 
1787     CLEAR_PENDING_EXCEPTION;
1788   }
1789   if (!destroy_vm) {
1790     if (uncaught_exception.not_null()) {
1791       EXCEPTION_MARK;
1792       // Call method Thread.dispatchUncaughtException().
1793       Klass* thread_klass = SystemDictionary::Thread_klass();
1794       JavaValue result(T_VOID);
1795       JavaCalls::call_virtual(&result,
1796                               threadObj, thread_klass,
1797                               vmSymbols::dispatchUncaughtException_name(),
1798                               vmSymbols::throwable_void_signature(),
1799                               uncaught_exception,
1800                               THREAD);
1801       if (HAS_PENDING_EXCEPTION) {
1802         ResourceMark rm(this);
1803         jio_fprintf(defaultStream::error_stream(),
1804                     "\nException: %s thrown from the UncaughtExceptionHandler"
1805                     " in thread \"%s\"\n",
1806                     pending_exception()->klass()->external_name(),
1807                     get_thread_name());
1808         CLEAR_PENDING_EXCEPTION;
1809       }
1810     }
1811 
1812     // Called before the java thread exit since we want to read info
1813     // from java_lang_Thread object
1814     EventThreadEnd event;
1815     if (event.should_commit()) {
1816       event.set_thread(THREAD_TRACE_ID(this));
1817       event.commit();
1818     }
1819 
1820     // Call after last event on thread
1821     EVENT_THREAD_EXIT(this);
1822 
1823     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1824     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1825     // is deprecated anyhow.
1826     if (!is_Compiler_thread()) {
1827       int count = 3;
1828       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1829         EXCEPTION_MARK;
1830         JavaValue result(T_VOID);
1831         Klass* thread_klass = SystemDictionary::Thread_klass();
1832         JavaCalls::call_virtual(&result,
1833                                 threadObj, thread_klass,
1834                                 vmSymbols::exit_method_name(),
1835                                 vmSymbols::void_method_signature(),
1836                                 THREAD);
1837         CLEAR_PENDING_EXCEPTION;
1838       }
1839     }
1840     // notify JVMTI
1841     if (JvmtiExport::should_post_thread_life()) {
1842       JvmtiExport::post_thread_end(this);
1843     }
1844 
1845     // We have notified the agents that we are exiting, before we go on,
1846     // we must check for a pending external suspend request and honor it
1847     // in order to not surprise the thread that made the suspend request.
1848     while (true) {
1849       {
1850         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1851         if (!is_external_suspend()) {
1852           set_terminated(_thread_exiting);
1853           ThreadService::current_thread_exiting(this);
1854           break;
1855         }
1856         // Implied else:
1857         // Things get a little tricky here. We have a pending external
1858         // suspend request, but we are holding the SR_lock so we
1859         // can't just self-suspend. So we temporarily drop the lock
1860         // and then self-suspend.
1861       }
1862 
1863       ThreadBlockInVM tbivm(this);
1864       java_suspend_self();
1865 
1866       // We're done with this suspend request, but we have to loop around
1867       // and check again. Eventually we will get SR_lock without a pending
1868       // external suspend request and will be able to mark ourselves as
1869       // exiting.
1870     }
1871     // no more external suspends are allowed at this point
1872   } else {
1873     // before_exit() has already posted JVMTI THREAD_END events
1874   }
1875 
1876   // Notify waiters on thread object. This has to be done after exit() is called
1877   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1878   // group should have the destroyed bit set before waiters are notified).
1879   ensure_join(this);
1880   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1881 
1882   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1883   // held by this thread must be released. The spec does not distinguish
1884   // between JNI-acquired and regular Java monitors. We can only see
1885   // regular Java monitors here if monitor enter-exit matching is broken.
1886   //
1887   // Optionally release any monitors for regular JavaThread exits. This
1888   // is provided as a work around for any bugs in monitor enter-exit
1889   // matching. This can be expensive so it is not enabled by default.
1890   //
1891   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1892   // ObjectSynchronizer::release_monitors_owned_by_thread().
1893   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1894     // Sanity check even though JNI DetachCurrentThread() would have
1895     // returned JNI_ERR if there was a Java frame. JavaThread exit
1896     // should be done executing Java code by the time we get here.
1897     assert(!this->has_last_Java_frame(),
1898            "should not have a Java frame when detaching or exiting");
1899     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1900     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1901   }
1902 
1903   // These things needs to be done while we are still a Java Thread. Make sure that thread
1904   // is in a consistent state, in case GC happens
1905   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1906 
1907   if (active_handles() != NULL) {
1908     JNIHandleBlock* block = active_handles();
1909     set_active_handles(NULL);
1910     JNIHandleBlock::release_block(block);
1911   }
1912 
1913   if (free_handle_block() != NULL) {
1914     JNIHandleBlock* block = free_handle_block();
1915     set_free_handle_block(NULL);
1916     JNIHandleBlock::release_block(block);
1917   }
1918 
1919   // These have to be removed while this is still a valid thread.
1920   remove_stack_guard_pages();
1921 
1922   if (UseTLAB) {
1923     tlab().make_parsable(true);  // retire TLAB
1924   }
1925 
1926   if (JvmtiEnv::environments_might_exist()) {
1927     JvmtiExport::cleanup_thread(this);
1928   }
1929 
1930   // We must flush any deferred card marks before removing a thread from
1931   // the list of active threads.
1932   Universe::heap()->flush_deferred_store_barrier(this);
1933   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1934 
1935 #if INCLUDE_ALL_GCS
1936   // We must flush the G1-related buffers before removing a thread
1937   // from the list of active threads. We must do this after any deferred
1938   // card marks have been flushed (above) so that any entries that are
1939   // added to the thread's dirty card queue as a result are not lost.
1940   if (UseG1GC) {
1941     flush_barrier_queues();
1942   }
1943 #endif // INCLUDE_ALL_GCS
1944 
1945   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1946     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1947     os::current_thread_id());
1948 
1949   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1950   Threads::remove(this);
1951 }
1952 
1953 #if INCLUDE_ALL_GCS
1954 // Flush G1-related queues.
1955 void JavaThread::flush_barrier_queues() {
1956   satb_mark_queue().flush();
1957   dirty_card_queue().flush();
1958 }
1959 
1960 void JavaThread::initialize_queues() {
1961   assert(!SafepointSynchronize::is_at_safepoint(),
1962          "we should not be at a safepoint");
1963 
1964   SATBMarkQueue& satb_queue = satb_mark_queue();
1965   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1966   // The SATB queue should have been constructed with its active
1967   // field set to false.
1968   assert(!satb_queue.is_active(), "SATB queue should not be active");
1969   assert(satb_queue.is_empty(), "SATB queue should be empty");
1970   // If we are creating the thread during a marking cycle, we should
1971   // set the active field of the SATB queue to true.
1972   if (satb_queue_set.is_active()) {
1973     satb_queue.set_active(true);
1974   }
1975 
1976   DirtyCardQueue& dirty_queue = dirty_card_queue();
1977   // The dirty card queue should have been constructed with its
1978   // active field set to true.
1979   assert(dirty_queue.is_active(), "dirty card queue should be active");
1980 }
1981 #endif // INCLUDE_ALL_GCS
1982 
1983 void JavaThread::cleanup_failed_attach_current_thread() {
1984   if (active_handles() != NULL) {
1985     JNIHandleBlock* block = active_handles();
1986     set_active_handles(NULL);
1987     JNIHandleBlock::release_block(block);
1988   }
1989 
1990   if (free_handle_block() != NULL) {
1991     JNIHandleBlock* block = free_handle_block();
1992     set_free_handle_block(NULL);
1993     JNIHandleBlock::release_block(block);
1994   }
1995 
1996   // These have to be removed while this is still a valid thread.
1997   remove_stack_guard_pages();
1998 
1999   if (UseTLAB) {
2000     tlab().make_parsable(true);  // retire TLAB, if any
2001   }
2002 
2003 #if INCLUDE_ALL_GCS
2004   if (UseG1GC) {
2005     flush_barrier_queues();
2006   }
2007 #endif // INCLUDE_ALL_GCS
2008 
2009   Threads::remove(this);
2010   delete this;
2011 }
2012 
2013 
2014 
2015 
2016 JavaThread* JavaThread::active() {
2017   Thread* thread = Thread::current();
2018   if (thread->is_Java_thread()) {
2019     return (JavaThread*) thread;
2020   } else {
2021     assert(thread->is_VM_thread(), "this must be a vm thread");
2022     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2023     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2024     assert(ret->is_Java_thread(), "must be a Java thread");
2025     return ret;
2026   }
2027 }
2028 
2029 bool JavaThread::is_lock_owned(address adr) const {
2030   if (Thread::is_lock_owned(adr)) return true;
2031 
2032   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2033     if (chunk->contains(adr)) return true;
2034   }
2035 
2036   return false;
2037 }
2038 
2039 
2040 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2041   chunk->set_next(monitor_chunks());
2042   set_monitor_chunks(chunk);
2043 }
2044 
2045 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2046   guarantee(monitor_chunks() != NULL, "must be non empty");
2047   if (monitor_chunks() == chunk) {
2048     set_monitor_chunks(chunk->next());
2049   } else {
2050     MonitorChunk* prev = monitor_chunks();
2051     while (prev->next() != chunk) prev = prev->next();
2052     prev->set_next(chunk->next());
2053   }
2054 }
2055 
2056 // JVM support.
2057 
2058 // Note: this function shouldn't block if it's called in
2059 // _thread_in_native_trans state (such as from
2060 // check_special_condition_for_native_trans()).
2061 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2062 
2063   if (has_last_Java_frame() && has_async_condition()) {
2064     // If we are at a polling page safepoint (not a poll return)
2065     // then we must defer async exception because live registers
2066     // will be clobbered by the exception path. Poll return is
2067     // ok because the call we a returning from already collides
2068     // with exception handling registers and so there is no issue.
2069     // (The exception handling path kills call result registers but
2070     //  this is ok since the exception kills the result anyway).
2071 
2072     if (is_at_poll_safepoint()) {
2073       // if the code we are returning to has deoptimized we must defer
2074       // the exception otherwise live registers get clobbered on the
2075       // exception path before deoptimization is able to retrieve them.
2076       //
2077       RegisterMap map(this, false);
2078       frame caller_fr = last_frame().sender(&map);
2079       assert(caller_fr.is_compiled_frame(), "what?");
2080       if (caller_fr.is_deoptimized_frame()) {
2081         log_info(exceptions)("deferred async exception at compiled safepoint");
2082         return;
2083       }
2084     }
2085   }
2086 
2087   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2088   if (condition == _no_async_condition) {
2089     // Conditions have changed since has_special_runtime_exit_condition()
2090     // was called:
2091     // - if we were here only because of an external suspend request,
2092     //   then that was taken care of above (or cancelled) so we are done
2093     // - if we were here because of another async request, then it has
2094     //   been cleared between the has_special_runtime_exit_condition()
2095     //   and now so again we are done
2096     return;
2097   }
2098 
2099   // Check for pending async. exception
2100   if (_pending_async_exception != NULL) {
2101     // Only overwrite an already pending exception, if it is not a threadDeath.
2102     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2103 
2104       // We cannot call Exceptions::_throw(...) here because we cannot block
2105       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2106 
2107       LogTarget(Info, exceptions) lt;
2108       if (lt.is_enabled()) {
2109         ResourceMark rm;
2110         LogStream ls(lt);
2111         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2112           if (has_last_Java_frame()) {
2113             frame f = last_frame();
2114            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2115           }
2116         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2117       }
2118       _pending_async_exception = NULL;
2119       clear_has_async_exception();
2120     }
2121   }
2122 
2123   if (check_unsafe_error &&
2124       condition == _async_unsafe_access_error && !has_pending_exception()) {
2125     condition = _no_async_condition;  // done
2126     switch (thread_state()) {
2127     case _thread_in_vm: {
2128       JavaThread* THREAD = this;
2129       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2130     }
2131     case _thread_in_native: {
2132       ThreadInVMfromNative tiv(this);
2133       JavaThread* THREAD = this;
2134       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2135     }
2136     case _thread_in_Java: {
2137       ThreadInVMfromJava tiv(this);
2138       JavaThread* THREAD = this;
2139       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2140     }
2141     default:
2142       ShouldNotReachHere();
2143     }
2144   }
2145 
2146   assert(condition == _no_async_condition || has_pending_exception() ||
2147          (!check_unsafe_error && condition == _async_unsafe_access_error),
2148          "must have handled the async condition, if no exception");
2149 }
2150 
2151 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2152   //
2153   // Check for pending external suspend. Internal suspend requests do
2154   // not use handle_special_runtime_exit_condition().
2155   // If JNIEnv proxies are allowed, don't self-suspend if the target
2156   // thread is not the current thread. In older versions of jdbx, jdbx
2157   // threads could call into the VM with another thread's JNIEnv so we
2158   // can be here operating on behalf of a suspended thread (4432884).
2159   bool do_self_suspend = is_external_suspend_with_lock();
2160   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2161     //
2162     // Because thread is external suspended the safepoint code will count
2163     // thread as at a safepoint. This can be odd because we can be here
2164     // as _thread_in_Java which would normally transition to _thread_blocked
2165     // at a safepoint. We would like to mark the thread as _thread_blocked
2166     // before calling java_suspend_self like all other callers of it but
2167     // we must then observe proper safepoint protocol. (We can't leave
2168     // _thread_blocked with a safepoint in progress). However we can be
2169     // here as _thread_in_native_trans so we can't use a normal transition
2170     // constructor/destructor pair because they assert on that type of
2171     // transition. We could do something like:
2172     //
2173     // JavaThreadState state = thread_state();
2174     // set_thread_state(_thread_in_vm);
2175     // {
2176     //   ThreadBlockInVM tbivm(this);
2177     //   java_suspend_self()
2178     // }
2179     // set_thread_state(_thread_in_vm_trans);
2180     // if (safepoint) block;
2181     // set_thread_state(state);
2182     //
2183     // but that is pretty messy. Instead we just go with the way the
2184     // code has worked before and note that this is the only path to
2185     // java_suspend_self that doesn't put the thread in _thread_blocked
2186     // mode.
2187 
2188     frame_anchor()->make_walkable(this);
2189     java_suspend_self();
2190 
2191     // We might be here for reasons in addition to the self-suspend request
2192     // so check for other async requests.
2193   }
2194 
2195   if (check_asyncs) {
2196     check_and_handle_async_exceptions();
2197   }
2198 #if INCLUDE_TRACE
2199   if (is_trace_suspend()) {
2200     TRACE_SUSPEND_THREAD(this);
2201   }
2202 #endif
2203 }
2204 
2205 void JavaThread::send_thread_stop(oop java_throwable)  {
2206   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2207   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2208   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2209 
2210   // Do not throw asynchronous exceptions against the compiler thread
2211   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2212   if (!can_call_java()) return;
2213 
2214   {
2215     // Actually throw the Throwable against the target Thread - however
2216     // only if there is no thread death exception installed already.
2217     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2218       // If the topmost frame is a runtime stub, then we are calling into
2219       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2220       // must deoptimize the caller before continuing, as the compiled  exception handler table
2221       // may not be valid
2222       if (has_last_Java_frame()) {
2223         frame f = last_frame();
2224         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2225           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2226           RegisterMap reg_map(this, UseBiasedLocking);
2227           frame compiled_frame = f.sender(&reg_map);
2228           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2229             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2230           }
2231         }
2232       }
2233 
2234       // Set async. pending exception in thread.
2235       set_pending_async_exception(java_throwable);
2236 
2237       if (log_is_enabled(Info, exceptions)) {
2238          ResourceMark rm;
2239         log_info(exceptions)("Pending Async. exception installed of type: %s",
2240                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2241       }
2242       // for AbortVMOnException flag
2243       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2244     }
2245   }
2246 
2247 
2248   // Interrupt thread so it will wake up from a potential wait()
2249   Thread::interrupt(this);
2250 }
2251 
2252 // External suspension mechanism.
2253 //
2254 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2255 // to any VM_locks and it is at a transition
2256 // Self-suspension will happen on the transition out of the vm.
2257 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2258 //
2259 // Guarantees on return:
2260 //   + Target thread will not execute any new bytecode (that's why we need to
2261 //     force a safepoint)
2262 //   + Target thread will not enter any new monitors
2263 //
2264 void JavaThread::java_suspend() {
2265   { MutexLocker mu(Threads_lock);
2266     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2267       return;
2268     }
2269   }
2270 
2271   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2272     if (!is_external_suspend()) {
2273       // a racing resume has cancelled us; bail out now
2274       return;
2275     }
2276 
2277     // suspend is done
2278     uint32_t debug_bits = 0;
2279     // Warning: is_ext_suspend_completed() may temporarily drop the
2280     // SR_lock to allow the thread to reach a stable thread state if
2281     // it is currently in a transient thread state.
2282     if (is_ext_suspend_completed(false /* !called_by_wait */,
2283                                  SuspendRetryDelay, &debug_bits)) {
2284       return;
2285     }
2286   }
2287 
2288   VM_ThreadSuspend vm_suspend;
2289   VMThread::execute(&vm_suspend);
2290 }
2291 
2292 // Part II of external suspension.
2293 // A JavaThread self suspends when it detects a pending external suspend
2294 // request. This is usually on transitions. It is also done in places
2295 // where continuing to the next transition would surprise the caller,
2296 // e.g., monitor entry.
2297 //
2298 // Returns the number of times that the thread self-suspended.
2299 //
2300 // Note: DO NOT call java_suspend_self() when you just want to block current
2301 //       thread. java_suspend_self() is the second stage of cooperative
2302 //       suspension for external suspend requests and should only be used
2303 //       to complete an external suspend request.
2304 //
2305 int JavaThread::java_suspend_self() {
2306   int ret = 0;
2307 
2308   // we are in the process of exiting so don't suspend
2309   if (is_exiting()) {
2310     clear_external_suspend();
2311     return ret;
2312   }
2313 
2314   assert(_anchor.walkable() ||
2315          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2316          "must have walkable stack");
2317 
2318   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2319 
2320   assert(!this->is_ext_suspended(),
2321          "a thread trying to self-suspend should not already be suspended");
2322 
2323   if (this->is_suspend_equivalent()) {
2324     // If we are self-suspending as a result of the lifting of a
2325     // suspend equivalent condition, then the suspend_equivalent
2326     // flag is not cleared until we set the ext_suspended flag so
2327     // that wait_for_ext_suspend_completion() returns consistent
2328     // results.
2329     this->clear_suspend_equivalent();
2330   }
2331 
2332   // A racing resume may have cancelled us before we grabbed SR_lock
2333   // above. Or another external suspend request could be waiting for us
2334   // by the time we return from SR_lock()->wait(). The thread
2335   // that requested the suspension may already be trying to walk our
2336   // stack and if we return now, we can change the stack out from under
2337   // it. This would be a "bad thing (TM)" and cause the stack walker
2338   // to crash. We stay self-suspended until there are no more pending
2339   // external suspend requests.
2340   while (is_external_suspend()) {
2341     ret++;
2342     this->set_ext_suspended();
2343 
2344     // _ext_suspended flag is cleared by java_resume()
2345     while (is_ext_suspended()) {
2346       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2347     }
2348   }
2349 
2350   return ret;
2351 }
2352 
2353 #ifdef ASSERT
2354 // verify the JavaThread has not yet been published in the Threads::list, and
2355 // hence doesn't need protection from concurrent access at this stage
2356 void JavaThread::verify_not_published() {
2357   if (!Threads_lock->owned_by_self()) {
2358     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2359     assert(!Threads::includes(this),
2360            "java thread shouldn't have been published yet!");
2361   } else {
2362     assert(!Threads::includes(this),
2363            "java thread shouldn't have been published yet!");
2364   }
2365 }
2366 #endif
2367 
2368 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2369 // progress or when _suspend_flags is non-zero.
2370 // Current thread needs to self-suspend if there is a suspend request and/or
2371 // block if a safepoint is in progress.
2372 // Async exception ISN'T checked.
2373 // Note only the ThreadInVMfromNative transition can call this function
2374 // directly and when thread state is _thread_in_native_trans
2375 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2376   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2377 
2378   JavaThread *curJT = JavaThread::current();
2379   bool do_self_suspend = thread->is_external_suspend();
2380 
2381   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2382 
2383   // If JNIEnv proxies are allowed, don't self-suspend if the target
2384   // thread is not the current thread. In older versions of jdbx, jdbx
2385   // threads could call into the VM with another thread's JNIEnv so we
2386   // can be here operating on behalf of a suspended thread (4432884).
2387   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2388     JavaThreadState state = thread->thread_state();
2389 
2390     // We mark this thread_blocked state as a suspend-equivalent so
2391     // that a caller to is_ext_suspend_completed() won't be confused.
2392     // The suspend-equivalent state is cleared by java_suspend_self().
2393     thread->set_suspend_equivalent();
2394 
2395     // If the safepoint code sees the _thread_in_native_trans state, it will
2396     // wait until the thread changes to other thread state. There is no
2397     // guarantee on how soon we can obtain the SR_lock and complete the
2398     // self-suspend request. It would be a bad idea to let safepoint wait for
2399     // too long. Temporarily change the state to _thread_blocked to
2400     // let the VM thread know that this thread is ready for GC. The problem
2401     // of changing thread state is that safepoint could happen just after
2402     // java_suspend_self() returns after being resumed, and VM thread will
2403     // see the _thread_blocked state. We must check for safepoint
2404     // after restoring the state and make sure we won't leave while a safepoint
2405     // is in progress.
2406     thread->set_thread_state(_thread_blocked);
2407     thread->java_suspend_self();
2408     thread->set_thread_state(state);
2409 
2410     InterfaceSupport::serialize_thread_state_with_handler(thread);
2411   }
2412 
2413   if (SafepointSynchronize::do_call_back()) {
2414     // If we are safepointing, then block the caller which may not be
2415     // the same as the target thread (see above).
2416     SafepointSynchronize::block(curJT);
2417   }
2418 
2419   if (thread->is_deopt_suspend()) {
2420     thread->clear_deopt_suspend();
2421     RegisterMap map(thread, false);
2422     frame f = thread->last_frame();
2423     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2424       f = f.sender(&map);
2425     }
2426     if (f.id() == thread->must_deopt_id()) {
2427       thread->clear_must_deopt_id();
2428       f.deoptimize(thread);
2429     } else {
2430       fatal("missed deoptimization!");
2431     }
2432   }
2433 #if INCLUDE_TRACE
2434   if (thread->is_trace_suspend()) {
2435     TRACE_SUSPEND_THREAD(thread);
2436   }
2437 #endif
2438 }
2439 
2440 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2441 // progress or when _suspend_flags is non-zero.
2442 // Current thread needs to self-suspend if there is a suspend request and/or
2443 // block if a safepoint is in progress.
2444 // Also check for pending async exception (not including unsafe access error).
2445 // Note only the native==>VM/Java barriers can call this function and when
2446 // thread state is _thread_in_native_trans.
2447 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2448   check_safepoint_and_suspend_for_native_trans(thread);
2449 
2450   if (thread->has_async_exception()) {
2451     // We are in _thread_in_native_trans state, don't handle unsafe
2452     // access error since that may block.
2453     thread->check_and_handle_async_exceptions(false);
2454   }
2455 }
2456 
2457 // This is a variant of the normal
2458 // check_special_condition_for_native_trans with slightly different
2459 // semantics for use by critical native wrappers.  It does all the
2460 // normal checks but also performs the transition back into
2461 // thread_in_Java state.  This is required so that critical natives
2462 // can potentially block and perform a GC if they are the last thread
2463 // exiting the GCLocker.
2464 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2465   check_special_condition_for_native_trans(thread);
2466 
2467   // Finish the transition
2468   thread->set_thread_state(_thread_in_Java);
2469 
2470   if (thread->do_critical_native_unlock()) {
2471     ThreadInVMfromJavaNoAsyncException tiv(thread);
2472     GCLocker::unlock_critical(thread);
2473     thread->clear_critical_native_unlock();
2474   }
2475 }
2476 
2477 // We need to guarantee the Threads_lock here, since resumes are not
2478 // allowed during safepoint synchronization
2479 // Can only resume from an external suspension
2480 void JavaThread::java_resume() {
2481   assert_locked_or_safepoint(Threads_lock);
2482 
2483   // Sanity check: thread is gone, has started exiting or the thread
2484   // was not externally suspended.
2485   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2486     return;
2487   }
2488 
2489   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2490 
2491   clear_external_suspend();
2492 
2493   if (is_ext_suspended()) {
2494     clear_ext_suspended();
2495     SR_lock()->notify_all();
2496   }
2497 }
2498 
2499 size_t JavaThread::_stack_red_zone_size = 0;
2500 size_t JavaThread::_stack_yellow_zone_size = 0;
2501 size_t JavaThread::_stack_reserved_zone_size = 0;
2502 size_t JavaThread::_stack_shadow_zone_size = 0;
2503 
2504 void JavaThread::create_stack_guard_pages() {
2505   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2506   address low_addr = stack_end();
2507   size_t len = stack_guard_zone_size();
2508 
2509   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2510   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2511 
2512   int must_commit = os::must_commit_stack_guard_pages();
2513   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2514 
2515   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2516     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2517     return;
2518   }
2519 
2520   if (os::guard_memory((char *) low_addr, len)) {
2521     _stack_guard_state = stack_guard_enabled;
2522   } else {
2523     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2524       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2525     if (os::uncommit_memory((char *) low_addr, len)) {
2526       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2527     }
2528     return;
2529   }
2530 
2531   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2532     PTR_FORMAT "-" PTR_FORMAT ".",
2533     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2534 }
2535 
2536 void JavaThread::remove_stack_guard_pages() {
2537   assert(Thread::current() == this, "from different thread");
2538   if (_stack_guard_state == stack_guard_unused) return;
2539   address low_addr = stack_end();
2540   size_t len = stack_guard_zone_size();
2541 
2542   if (os::must_commit_stack_guard_pages()) {
2543     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2544       _stack_guard_state = stack_guard_unused;
2545     } else {
2546       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2547         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2548       return;
2549     }
2550   } else {
2551     if (_stack_guard_state == stack_guard_unused) return;
2552     if (os::unguard_memory((char *) low_addr, len)) {
2553       _stack_guard_state = stack_guard_unused;
2554     } else {
2555       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2556         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2557       return;
2558     }
2559   }
2560 
2561   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2562     PTR_FORMAT "-" PTR_FORMAT ".",
2563     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2564 }
2565 
2566 void JavaThread::enable_stack_reserved_zone() {
2567   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2568   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2569 
2570   // The base notation is from the stack's point of view, growing downward.
2571   // We need to adjust it to work correctly with guard_memory()
2572   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2573 
2574   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2575   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2576 
2577   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2578     _stack_guard_state = stack_guard_enabled;
2579   } else {
2580     warning("Attempt to guard stack reserved zone failed.");
2581   }
2582   enable_register_stack_guard();
2583 }
2584 
2585 void JavaThread::disable_stack_reserved_zone() {
2586   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2587   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2588 
2589   // Simply return if called for a thread that does not use guard pages.
2590   if (_stack_guard_state == stack_guard_unused) return;
2591 
2592   // The base notation is from the stack's point of view, growing downward.
2593   // We need to adjust it to work correctly with guard_memory()
2594   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2595 
2596   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2597     _stack_guard_state = stack_guard_reserved_disabled;
2598   } else {
2599     warning("Attempt to unguard stack reserved zone failed.");
2600   }
2601   disable_register_stack_guard();
2602 }
2603 
2604 void JavaThread::enable_stack_yellow_reserved_zone() {
2605   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2606   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2607 
2608   // The base notation is from the stacks point of view, growing downward.
2609   // We need to adjust it to work correctly with guard_memory()
2610   address base = stack_red_zone_base();
2611 
2612   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2613   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2614 
2615   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2616     _stack_guard_state = stack_guard_enabled;
2617   } else {
2618     warning("Attempt to guard stack yellow zone failed.");
2619   }
2620   enable_register_stack_guard();
2621 }
2622 
2623 void JavaThread::disable_stack_yellow_reserved_zone() {
2624   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2625   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2626 
2627   // Simply return if called for a thread that does not use guard pages.
2628   if (_stack_guard_state == stack_guard_unused) return;
2629 
2630   // The base notation is from the stacks point of view, growing downward.
2631   // We need to adjust it to work correctly with guard_memory()
2632   address base = stack_red_zone_base();
2633 
2634   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2635     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2636   } else {
2637     warning("Attempt to unguard stack yellow zone failed.");
2638   }
2639   disable_register_stack_guard();
2640 }
2641 
2642 void JavaThread::enable_stack_red_zone() {
2643   // The base notation is from the stacks point of view, growing downward.
2644   // We need to adjust it to work correctly with guard_memory()
2645   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2646   address base = stack_red_zone_base() - stack_red_zone_size();
2647 
2648   guarantee(base < stack_base(), "Error calculating stack red zone");
2649   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2650 
2651   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2652     warning("Attempt to guard stack red zone failed.");
2653   }
2654 }
2655 
2656 void JavaThread::disable_stack_red_zone() {
2657   // The base notation is from the stacks point of view, growing downward.
2658   // We need to adjust it to work correctly with guard_memory()
2659   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2660   address base = stack_red_zone_base() - stack_red_zone_size();
2661   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2662     warning("Attempt to unguard stack red zone failed.");
2663   }
2664 }
2665 
2666 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2667   // ignore is there is no stack
2668   if (!has_last_Java_frame()) return;
2669   // Because this method is used to verify oops, it must support
2670   // oops in buffered values
2671   BufferedValuesDealiaser dealiaser(this);
2672 
2673   // traverse the stack frames. Starts from top frame.
2674   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2675     frame* fr = fst.current();
2676     f(fr, fst.register_map());
2677   }
2678 }
2679 
2680 
2681 #ifndef PRODUCT
2682 // Deoptimization
2683 // Function for testing deoptimization
2684 void JavaThread::deoptimize() {
2685   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2686   StackFrameStream fst(this, UseBiasedLocking);
2687   bool deopt = false;           // Dump stack only if a deopt actually happens.
2688   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2689   // Iterate over all frames in the thread and deoptimize
2690   for (; !fst.is_done(); fst.next()) {
2691     if (fst.current()->can_be_deoptimized()) {
2692 
2693       if (only_at) {
2694         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2695         // consists of comma or carriage return separated numbers so
2696         // search for the current bci in that string.
2697         address pc = fst.current()->pc();
2698         nmethod* nm =  (nmethod*) fst.current()->cb();
2699         ScopeDesc* sd = nm->scope_desc_at(pc);
2700         char buffer[8];
2701         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2702         size_t len = strlen(buffer);
2703         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2704         while (found != NULL) {
2705           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2706               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2707             // Check that the bci found is bracketed by terminators.
2708             break;
2709           }
2710           found = strstr(found + 1, buffer);
2711         }
2712         if (!found) {
2713           continue;
2714         }
2715       }
2716 
2717       if (DebugDeoptimization && !deopt) {
2718         deopt = true; // One-time only print before deopt
2719         tty->print_cr("[BEFORE Deoptimization]");
2720         trace_frames();
2721         trace_stack();
2722       }
2723       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2724     }
2725   }
2726 
2727   if (DebugDeoptimization && deopt) {
2728     tty->print_cr("[AFTER Deoptimization]");
2729     trace_frames();
2730   }
2731 }
2732 
2733 
2734 // Make zombies
2735 void JavaThread::make_zombies() {
2736   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2737     if (fst.current()->can_be_deoptimized()) {
2738       // it is a Java nmethod
2739       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2740       nm->make_not_entrant();
2741     }
2742   }
2743 }
2744 #endif // PRODUCT
2745 
2746 
2747 void JavaThread::deoptimized_wrt_marked_nmethods() {
2748   if (!has_last_Java_frame()) return;
2749   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2750   StackFrameStream fst(this, UseBiasedLocking);
2751   for (; !fst.is_done(); fst.next()) {
2752     if (fst.current()->should_be_deoptimized()) {
2753       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2754     }
2755   }
2756 }
2757 
2758 
2759 // If the caller is a NamedThread, then remember, in the current scope,
2760 // the given JavaThread in its _processed_thread field.
2761 class RememberProcessedThread: public StackObj {
2762   NamedThread* _cur_thr;
2763  public:
2764   RememberProcessedThread(JavaThread* jthr) {
2765     Thread* thread = Thread::current();
2766     if (thread->is_Named_thread()) {
2767       _cur_thr = (NamedThread *)thread;
2768       _cur_thr->set_processed_thread(jthr);
2769     } else {
2770       _cur_thr = NULL;
2771     }
2772   }
2773 
2774   ~RememberProcessedThread() {
2775     if (_cur_thr) {
2776       _cur_thr->set_processed_thread(NULL);
2777     }
2778   }
2779 };
2780 
2781 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2782   // Verify that the deferred card marks have been flushed.
2783   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2784 
2785   BufferedValuesDealiaser dealiaser(this);
2786 
2787   // Traverse the GCHandles
2788   Thread::oops_do(f, cf);
2789 
2790   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2791 
2792   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2793          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2794 
2795   if (has_last_Java_frame()) {
2796     // Record JavaThread to GC thread
2797     RememberProcessedThread rpt(this);
2798 
2799     // Traverse the privileged stack
2800     if (_privileged_stack_top != NULL) {
2801       _privileged_stack_top->oops_do(f);
2802     }
2803 
2804     // traverse the registered growable array
2805     if (_array_for_gc != NULL) {
2806       for (int index = 0; index < _array_for_gc->length(); index++) {
2807         if (!VTBuffer::is_in_vt_buffer(_array_for_gc->at(index))) {
2808          f->do_oop(_array_for_gc->adr_at(index));
2809         } else {
2810           oop value = _array_for_gc->at(index);
2811           assert(value->is_value(), "Sanity check");
2812           dealiaser.oops_do(f, value);
2813         }
2814       }
2815     }
2816 
2817     // Traverse the monitor chunks
2818     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2819       chunk->oops_do(f);
2820     }
2821 
2822     // Traverse the execution stack
2823     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2824       fst.current()->oops_do(f, cf, fst.register_map());
2825     }
2826   }
2827 
2828   // callee_target is never live across a gc point so NULL it here should
2829   // it still contain a methdOop.
2830 
2831   set_callee_target(NULL);
2832 
2833   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2834   // If we have deferred set_locals there might be oops waiting to be
2835   // written
2836   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2837   if (list != NULL) {
2838     for (int i = 0; i < list->length(); i++) {
2839       list->at(i)->oops_do(f);
2840     }
2841   }
2842 
2843   // Traverse instance variables at the end since the GC may be moving things
2844   // around using this function
2845   f->do_oop((oop*) &_threadObj);
2846   if (!VTBuffer::is_in_vt_buffer(_vm_result)) {
2847     f->do_oop((oop*) &_vm_result);
2848   } else {
2849     assert(_vm_result->is_value(), "Must be a value");
2850     dealiaser.oops_do(f, _vm_result);
2851   }
2852   f->do_oop((oop*) &_exception_oop);
2853   f->do_oop((oop*) &_pending_async_exception);
2854 
2855   if (jvmti_thread_state() != NULL) {
2856     jvmti_thread_state()->oops_do(f);
2857   }
2858 }
2859 
2860 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2861   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2862          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2863 
2864   if (has_last_Java_frame()) {
2865     // Traverse the execution stack
2866     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2867       fst.current()->nmethods_do(cf);
2868     }
2869   }
2870 }
2871 
2872 void JavaThread::metadata_do(void f(Metadata*)) {
2873   if (has_last_Java_frame()) {
2874     // Traverse the execution stack to call f() on the methods in the stack
2875     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2876       fst.current()->metadata_do(f);
2877     }
2878   } else if (is_Compiler_thread()) {
2879     // need to walk ciMetadata in current compile tasks to keep alive.
2880     CompilerThread* ct = (CompilerThread*)this;
2881     if (ct->env() != NULL) {
2882       ct->env()->metadata_do(f);
2883     }
2884     if (ct->task() != NULL) {
2885       ct->task()->metadata_do(f);
2886     }
2887   }
2888 }
2889 
2890 // Printing
2891 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2892   switch (_thread_state) {
2893   case _thread_uninitialized:     return "_thread_uninitialized";
2894   case _thread_new:               return "_thread_new";
2895   case _thread_new_trans:         return "_thread_new_trans";
2896   case _thread_in_native:         return "_thread_in_native";
2897   case _thread_in_native_trans:   return "_thread_in_native_trans";
2898   case _thread_in_vm:             return "_thread_in_vm";
2899   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2900   case _thread_in_Java:           return "_thread_in_Java";
2901   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2902   case _thread_blocked:           return "_thread_blocked";
2903   case _thread_blocked_trans:     return "_thread_blocked_trans";
2904   default:                        return "unknown thread state";
2905   }
2906 }
2907 
2908 #ifndef PRODUCT
2909 void JavaThread::print_thread_state_on(outputStream *st) const {
2910   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2911 };
2912 void JavaThread::print_thread_state() const {
2913   print_thread_state_on(tty);
2914 }
2915 #endif // PRODUCT
2916 
2917 // Called by Threads::print() for VM_PrintThreads operation
2918 void JavaThread::print_on(outputStream *st) const {
2919   st->print_raw("\"");
2920   st->print_raw(get_thread_name());
2921   st->print_raw("\" ");
2922   oop thread_oop = threadObj();
2923   if (thread_oop != NULL) {
2924     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2925     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2926     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2927   }
2928   Thread::print_on(st);
2929   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2930   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2931   if (thread_oop != NULL) {
2932     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2933   }
2934 #ifndef PRODUCT
2935   print_thread_state_on(st);
2936   _safepoint_state->print_on(st);
2937 #endif // PRODUCT
2938   if (is_Compiler_thread()) {
2939     CompilerThread* ct = (CompilerThread*)this;
2940     if (ct->task() != NULL) {
2941       st->print("   Compiling: ");
2942       ct->task()->print(st, NULL, true, false);
2943     } else {
2944       st->print("   No compile task");
2945     }
2946     st->cr();
2947   }
2948 }
2949 
2950 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2951   st->print("%s", get_thread_name_string(buf, buflen));
2952 }
2953 
2954 // Called by fatal error handler. The difference between this and
2955 // JavaThread::print() is that we can't grab lock or allocate memory.
2956 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2957   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2958   oop thread_obj = threadObj();
2959   if (thread_obj != NULL) {
2960     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2961   }
2962   st->print(" [");
2963   st->print("%s", _get_thread_state_name(_thread_state));
2964   if (osthread()) {
2965     st->print(", id=%d", osthread()->thread_id());
2966   }
2967   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2968             p2i(stack_end()), p2i(stack_base()));
2969   st->print("]");
2970   return;
2971 }
2972 
2973 // Verification
2974 
2975 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2976 
2977 void JavaThread::verify() {
2978   // Verify oops in the thread.
2979   oops_do(&VerifyOopClosure::verify_oop, NULL);
2980 
2981   // Verify the stack frames.
2982   frames_do(frame_verify);
2983 }
2984 
2985 // CR 6300358 (sub-CR 2137150)
2986 // Most callers of this method assume that it can't return NULL but a
2987 // thread may not have a name whilst it is in the process of attaching to
2988 // the VM - see CR 6412693, and there are places where a JavaThread can be
2989 // seen prior to having it's threadObj set (eg JNI attaching threads and
2990 // if vm exit occurs during initialization). These cases can all be accounted
2991 // for such that this method never returns NULL.
2992 const char* JavaThread::get_thread_name() const {
2993 #ifdef ASSERT
2994   // early safepoints can hit while current thread does not yet have TLS
2995   if (!SafepointSynchronize::is_at_safepoint()) {
2996     Thread *cur = Thread::current();
2997     if (!(cur->is_Java_thread() && cur == this)) {
2998       // Current JavaThreads are allowed to get their own name without
2999       // the Threads_lock.
3000       assert_locked_or_safepoint(Threads_lock);
3001     }
3002   }
3003 #endif // ASSERT
3004   return get_thread_name_string();
3005 }
3006 
3007 // Returns a non-NULL representation of this thread's name, or a suitable
3008 // descriptive string if there is no set name
3009 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3010   const char* name_str;
3011   oop thread_obj = threadObj();
3012   if (thread_obj != NULL) {
3013     oop name = java_lang_Thread::name(thread_obj);
3014     if (name != NULL) {
3015       if (buf == NULL) {
3016         name_str = java_lang_String::as_utf8_string(name);
3017       } else {
3018         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3019       }
3020     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3021       name_str = "<no-name - thread is attaching>";
3022     } else {
3023       name_str = Thread::name();
3024     }
3025   } else {
3026     name_str = Thread::name();
3027   }
3028   assert(name_str != NULL, "unexpected NULL thread name");
3029   return name_str;
3030 }
3031 
3032 
3033 const char* JavaThread::get_threadgroup_name() const {
3034   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3035   oop thread_obj = threadObj();
3036   if (thread_obj != NULL) {
3037     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3038     if (thread_group != NULL) {
3039       // ThreadGroup.name can be null
3040       return java_lang_ThreadGroup::name(thread_group);
3041     }
3042   }
3043   return NULL;
3044 }
3045 
3046 const char* JavaThread::get_parent_name() const {
3047   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3048   oop thread_obj = threadObj();
3049   if (thread_obj != NULL) {
3050     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3051     if (thread_group != NULL) {
3052       oop parent = java_lang_ThreadGroup::parent(thread_group);
3053       if (parent != NULL) {
3054         // ThreadGroup.name can be null
3055         return java_lang_ThreadGroup::name(parent);
3056       }
3057     }
3058   }
3059   return NULL;
3060 }
3061 
3062 ThreadPriority JavaThread::java_priority() const {
3063   oop thr_oop = threadObj();
3064   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3065   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3066   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3067   return priority;
3068 }
3069 
3070 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3071 
3072   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3073   // Link Java Thread object <-> C++ Thread
3074 
3075   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3076   // and put it into a new Handle.  The Handle "thread_oop" can then
3077   // be used to pass the C++ thread object to other methods.
3078 
3079   // Set the Java level thread object (jthread) field of the
3080   // new thread (a JavaThread *) to C++ thread object using the
3081   // "thread_oop" handle.
3082 
3083   // Set the thread field (a JavaThread *) of the
3084   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3085 
3086   Handle thread_oop(Thread::current(),
3087                     JNIHandles::resolve_non_null(jni_thread));
3088   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3089          "must be initialized");
3090   set_threadObj(thread_oop());
3091   java_lang_Thread::set_thread(thread_oop(), this);
3092 
3093   if (prio == NoPriority) {
3094     prio = java_lang_Thread::priority(thread_oop());
3095     assert(prio != NoPriority, "A valid priority should be present");
3096   }
3097 
3098   // Push the Java priority down to the native thread; needs Threads_lock
3099   Thread::set_priority(this, prio);
3100 
3101   prepare_ext();
3102 
3103   // Add the new thread to the Threads list and set it in motion.
3104   // We must have threads lock in order to call Threads::add.
3105   // It is crucial that we do not block before the thread is
3106   // added to the Threads list for if a GC happens, then the java_thread oop
3107   // will not be visited by GC.
3108   Threads::add(this);
3109 }
3110 
3111 oop JavaThread::current_park_blocker() {
3112   // Support for JSR-166 locks
3113   oop thread_oop = threadObj();
3114   if (thread_oop != NULL &&
3115       JDK_Version::current().supports_thread_park_blocker()) {
3116     return java_lang_Thread::park_blocker(thread_oop);
3117   }
3118   return NULL;
3119 }
3120 
3121 
3122 void JavaThread::print_stack_on(outputStream* st) {
3123   if (!has_last_Java_frame()) return;
3124   ResourceMark rm;
3125   HandleMark   hm;
3126 
3127   RegisterMap reg_map(this);
3128   vframe* start_vf = last_java_vframe(&reg_map);
3129   int count = 0;
3130   for (vframe* f = start_vf; f; f = f->sender()) {
3131     if (f->is_java_frame()) {
3132       javaVFrame* jvf = javaVFrame::cast(f);
3133       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3134 
3135       // Print out lock information
3136       if (JavaMonitorsInStackTrace) {
3137         jvf->print_lock_info_on(st, count);
3138       }
3139     } else {
3140       // Ignore non-Java frames
3141     }
3142 
3143     // Bail-out case for too deep stacks
3144     count++;
3145     if (MaxJavaStackTraceDepth == count) return;
3146   }
3147 }
3148 
3149 
3150 // JVMTI PopFrame support
3151 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3152   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3153   if (in_bytes(size_in_bytes) != 0) {
3154     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3155     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3156     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3157   }
3158 }
3159 
3160 void* JavaThread::popframe_preserved_args() {
3161   return _popframe_preserved_args;
3162 }
3163 
3164 ByteSize JavaThread::popframe_preserved_args_size() {
3165   return in_ByteSize(_popframe_preserved_args_size);
3166 }
3167 
3168 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3169   int sz = in_bytes(popframe_preserved_args_size());
3170   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3171   return in_WordSize(sz / wordSize);
3172 }
3173 
3174 void JavaThread::popframe_free_preserved_args() {
3175   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3176   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3177   _popframe_preserved_args = NULL;
3178   _popframe_preserved_args_size = 0;
3179 }
3180 
3181 #ifndef PRODUCT
3182 
3183 void JavaThread::trace_frames() {
3184   tty->print_cr("[Describe stack]");
3185   int frame_no = 1;
3186   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3187     tty->print("  %d. ", frame_no++);
3188     fst.current()->print_value_on(tty, this);
3189     tty->cr();
3190   }
3191 }
3192 
3193 class PrintAndVerifyOopClosure: public OopClosure {
3194  protected:
3195   template <class T> inline void do_oop_work(T* p) {
3196     oop obj = oopDesc::load_decode_heap_oop(p);
3197     if (obj == NULL) return;
3198     tty->print(INTPTR_FORMAT ": ", p2i(p));
3199     if (oopDesc::is_oop_or_null(obj)) {
3200       if (obj->is_objArray()) {
3201         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3202       } else {
3203         obj->print();
3204       }
3205     } else {
3206       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3207     }
3208     tty->cr();
3209   }
3210  public:
3211   virtual void do_oop(oop* p) { do_oop_work(p); }
3212   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3213 };
3214 
3215 
3216 static void oops_print(frame* f, const RegisterMap *map) {
3217   PrintAndVerifyOopClosure print;
3218   f->print_value();
3219   f->oops_do(&print, NULL, (RegisterMap*)map);
3220 }
3221 
3222 // Print our all the locations that contain oops and whether they are
3223 // valid or not.  This useful when trying to find the oldest frame
3224 // where an oop has gone bad since the frame walk is from youngest to
3225 // oldest.
3226 void JavaThread::trace_oops() {
3227   tty->print_cr("[Trace oops]");
3228   frames_do(oops_print);
3229 }
3230 
3231 
3232 #ifdef ASSERT
3233 // Print or validate the layout of stack frames
3234 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3235   ResourceMark rm;
3236   PRESERVE_EXCEPTION_MARK;
3237   FrameValues values;
3238   int frame_no = 0;
3239   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3240     fst.current()->describe(values, ++frame_no);
3241     if (depth == frame_no) break;
3242   }
3243   if (validate_only) {
3244     values.validate();
3245   } else {
3246     tty->print_cr("[Describe stack layout]");
3247     values.print(this);
3248   }
3249 }
3250 #endif
3251 
3252 void JavaThread::trace_stack_from(vframe* start_vf) {
3253   ResourceMark rm;
3254   int vframe_no = 1;
3255   for (vframe* f = start_vf; f; f = f->sender()) {
3256     if (f->is_java_frame()) {
3257       javaVFrame::cast(f)->print_activation(vframe_no++);
3258     } else {
3259       f->print();
3260     }
3261     if (vframe_no > StackPrintLimit) {
3262       tty->print_cr("...<more frames>...");
3263       return;
3264     }
3265   }
3266 }
3267 
3268 
3269 void JavaThread::trace_stack() {
3270   if (!has_last_Java_frame()) return;
3271   ResourceMark rm;
3272   HandleMark   hm;
3273   RegisterMap reg_map(this);
3274   trace_stack_from(last_java_vframe(&reg_map));
3275 }
3276 
3277 
3278 #endif // PRODUCT
3279 
3280 
3281 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3282   assert(reg_map != NULL, "a map must be given");
3283   frame f = last_frame();
3284   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3285     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3286   }
3287   return NULL;
3288 }
3289 
3290 
3291 Klass* JavaThread::security_get_caller_class(int depth) {
3292   vframeStream vfst(this);
3293   vfst.security_get_caller_frame(depth);
3294   if (!vfst.at_end()) {
3295     return vfst.method()->method_holder();
3296   }
3297   return NULL;
3298 }
3299 
3300 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3301   assert(thread->is_Compiler_thread(), "must be compiler thread");
3302   CompileBroker::compiler_thread_loop();
3303 }
3304 
3305 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3306   NMethodSweeper::sweeper_loop();
3307 }
3308 
3309 // Create a CompilerThread
3310 CompilerThread::CompilerThread(CompileQueue* queue,
3311                                CompilerCounters* counters)
3312                                : JavaThread(&compiler_thread_entry) {
3313   _env   = NULL;
3314   _log   = NULL;
3315   _task  = NULL;
3316   _queue = queue;
3317   _counters = counters;
3318   _buffer_blob = NULL;
3319   _compiler = NULL;
3320 
3321 #ifndef PRODUCT
3322   _ideal_graph_printer = NULL;
3323 #endif
3324 }
3325 
3326 bool CompilerThread::can_call_java() const {
3327   return _compiler != NULL && _compiler->is_jvmci();
3328 }
3329 
3330 // Create sweeper thread
3331 CodeCacheSweeperThread::CodeCacheSweeperThread()
3332 : JavaThread(&sweeper_thread_entry) {
3333   _scanned_compiled_method = NULL;
3334 }
3335 
3336 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3337   JavaThread::oops_do(f, cf);
3338   if (_scanned_compiled_method != NULL && cf != NULL) {
3339     // Safepoints can occur when the sweeper is scanning an nmethod so
3340     // process it here to make sure it isn't unloaded in the middle of
3341     // a scan.
3342     cf->do_code_blob(_scanned_compiled_method);
3343   }
3344 }
3345 
3346 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3347   JavaThread::nmethods_do(cf);
3348   if (_scanned_compiled_method != NULL && cf != NULL) {
3349     // Safepoints can occur when the sweeper is scanning an nmethod so
3350     // process it here to make sure it isn't unloaded in the middle of
3351     // a scan.
3352     cf->do_code_blob(_scanned_compiled_method);
3353   }
3354 }
3355 
3356 
3357 // ======= Threads ========
3358 
3359 // The Threads class links together all active threads, and provides
3360 // operations over all threads.  It is protected by its own Mutex
3361 // lock, which is also used in other contexts to protect thread
3362 // operations from having the thread being operated on from exiting
3363 // and going away unexpectedly (e.g., safepoint synchronization)
3364 
3365 JavaThread* Threads::_thread_list = NULL;
3366 int         Threads::_number_of_threads = 0;
3367 int         Threads::_number_of_non_daemon_threads = 0;
3368 int         Threads::_return_code = 0;
3369 int         Threads::_thread_claim_parity = 0;
3370 size_t      JavaThread::_stack_size_at_create = 0;
3371 #ifdef ASSERT
3372 bool        Threads::_vm_complete = false;
3373 #endif
3374 
3375 // All JavaThreads
3376 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3377 
3378 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3379 void Threads::threads_do(ThreadClosure* tc) {
3380   assert_locked_or_safepoint(Threads_lock);
3381   // ALL_JAVA_THREADS iterates through all JavaThreads
3382   ALL_JAVA_THREADS(p) {
3383     tc->do_thread(p);
3384   }
3385   // Someday we could have a table or list of all non-JavaThreads.
3386   // For now, just manually iterate through them.
3387   tc->do_thread(VMThread::vm_thread());
3388   Universe::heap()->gc_threads_do(tc);
3389   WatcherThread *wt = WatcherThread::watcher_thread();
3390   // Strictly speaking, the following NULL check isn't sufficient to make sure
3391   // the data for WatcherThread is still valid upon being examined. However,
3392   // considering that WatchThread terminates when the VM is on the way to
3393   // exit at safepoint, the chance of the above is extremely small. The right
3394   // way to prevent termination of WatcherThread would be to acquire
3395   // Terminator_lock, but we can't do that without violating the lock rank
3396   // checking in some cases.
3397   if (wt != NULL) {
3398     tc->do_thread(wt);
3399   }
3400 
3401   // If CompilerThreads ever become non-JavaThreads, add them here
3402 }
3403 
3404 void Threads::parallel_java_threads_do(ThreadClosure* tc) {
3405   int cp = Threads::thread_claim_parity();
3406   ALL_JAVA_THREADS(p) {
3407     if (p->claim_oops_do(true, cp)) {
3408       tc->do_thread(p);
3409     }
3410   }
3411   // Thread claiming protocol requires us to claim the same interesting
3412   // threads on all paths. Notably, Threads::possibly_parallel_threads_do
3413   // claims all Java threads *and* the VMThread. To avoid breaking the
3414   // claiming protocol, we have to claim VMThread on this path too, even
3415   // if we do not apply the closure to the VMThread.
3416   VMThread* vmt = VMThread::vm_thread();
3417   (void)vmt->claim_oops_do(true, cp);
3418 }
3419 
3420 // The system initialization in the library has three phases.
3421 //
3422 // Phase 1: java.lang.System class initialization
3423 //     java.lang.System is a primordial class loaded and initialized
3424 //     by the VM early during startup.  java.lang.System.<clinit>
3425 //     only does registerNatives and keeps the rest of the class
3426 //     initialization work later until thread initialization completes.
3427 //
3428 //     System.initPhase1 initializes the system properties, the static
3429 //     fields in, out, and err. Set up java signal handlers, OS-specific
3430 //     system settings, and thread group of the main thread.
3431 static void call_initPhase1(TRAPS) {
3432   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3433   JavaValue result(T_VOID);
3434   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3435                                          vmSymbols::void_method_signature(), CHECK);
3436 }
3437 
3438 // Phase 2. Module system initialization
3439 //     This will initialize the module system.  Only java.base classes
3440 //     can be loaded until phase 2 completes.
3441 //
3442 //     Call System.initPhase2 after the compiler initialization and jsr292
3443 //     classes get initialized because module initialization runs a lot of java
3444 //     code, that for performance reasons, should be compiled.  Also, this will
3445 //     enable the startup code to use lambda and other language features in this
3446 //     phase and onward.
3447 //
3448 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3449 static void call_initPhase2(TRAPS) {
3450   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3451 
3452   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3453 
3454   JavaValue result(T_INT);
3455   JavaCallArguments args;
3456   args.push_int(DisplayVMOutputToStderr);
3457   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3458   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3459                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3460   if (result.get_jint() != JNI_OK) {
3461     vm_exit_during_initialization(); // no message or exception
3462   }
3463 
3464   universe_post_module_init();
3465 }
3466 
3467 // Phase 3. final setup - set security manager, system class loader and TCCL
3468 //
3469 //     This will instantiate and set the security manager, set the system class
3470 //     loader as well as the thread context class loader.  The security manager
3471 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3472 //     other modules or the application's classpath.
3473 static void call_initPhase3(TRAPS) {
3474   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3475   JavaValue result(T_VOID);
3476   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3477                                          vmSymbols::void_method_signature(), CHECK);
3478 }
3479 
3480 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3481   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3482 
3483   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3484     create_vm_init_libraries();
3485   }
3486 
3487   initialize_class(vmSymbols::java_lang_String(), CHECK);
3488 
3489   // Inject CompactStrings value after the static initializers for String ran.
3490   java_lang_String::set_compact_strings(CompactStrings);
3491 
3492   // Initialize java_lang.System (needed before creating the thread)
3493   initialize_class(vmSymbols::java_lang_System(), CHECK);
3494   // The VM creates & returns objects of this class. Make sure it's initialized.
3495   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3496   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3497   Handle thread_group = create_initial_thread_group(CHECK);
3498   Universe::set_main_thread_group(thread_group());
3499   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3500   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3501   main_thread->set_threadObj(thread_object);
3502   // Set thread status to running since main thread has
3503   // been started and running.
3504   java_lang_Thread::set_thread_status(thread_object,
3505                                       java_lang_Thread::RUNNABLE);
3506 
3507   // The VM creates objects of this class.
3508   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3509 
3510   // The VM preresolves methods to these classes. Make sure that they get initialized
3511   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3512   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3513 
3514   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3515   call_initPhase1(CHECK);
3516 
3517   // get the Java runtime name after java.lang.System is initialized
3518   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3519   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3520 
3521   // an instance of OutOfMemory exception has been allocated earlier
3522   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3523   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3524   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3525   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3526   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3527   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3528   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3529   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3530 }
3531 
3532 void Threads::initialize_jsr292_core_classes(TRAPS) {
3533   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3534 
3535   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3536   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3537   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3538   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3539 }
3540 
3541 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3542   extern void JDK_Version_init();
3543 
3544   // Preinitialize version info.
3545   VM_Version::early_initialize();
3546 
3547   // Check version
3548   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3549 
3550   // Initialize library-based TLS
3551   ThreadLocalStorage::init();
3552 
3553   // Initialize the output stream module
3554   ostream_init();
3555 
3556   // Process java launcher properties.
3557   Arguments::process_sun_java_launcher_properties(args);
3558 
3559   // Initialize the os module
3560   os::init();
3561 
3562   // Record VM creation timing statistics
3563   TraceVmCreationTime create_vm_timer;
3564   create_vm_timer.start();
3565 
3566   // Initialize system properties.
3567   Arguments::init_system_properties();
3568 
3569   // So that JDK version can be used as a discriminator when parsing arguments
3570   JDK_Version_init();
3571 
3572   // Update/Initialize System properties after JDK version number is known
3573   Arguments::init_version_specific_system_properties();
3574 
3575   // Make sure to initialize log configuration *before* parsing arguments
3576   LogConfiguration::initialize(create_vm_timer.begin_time());
3577 
3578   // Parse arguments
3579   jint parse_result = Arguments::parse(args);
3580   if (parse_result != JNI_OK) return parse_result;
3581 
3582   os::init_before_ergo();
3583 
3584   jint ergo_result = Arguments::apply_ergo();
3585   if (ergo_result != JNI_OK) return ergo_result;
3586 
3587   // Final check of all ranges after ergonomics which may change values.
3588   if (!CommandLineFlagRangeList::check_ranges()) {
3589     return JNI_EINVAL;
3590   }
3591 
3592   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3593   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3594   if (!constraint_result) {
3595     return JNI_EINVAL;
3596   }
3597 
3598   CommandLineFlagWriteableList::mark_startup();
3599 
3600   if (PauseAtStartup) {
3601     os::pause();
3602   }
3603 
3604   HOTSPOT_VM_INIT_BEGIN();
3605 
3606   // Timing (must come after argument parsing)
3607   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3608 
3609   // Initialize the os module after parsing the args
3610   jint os_init_2_result = os::init_2();
3611   if (os_init_2_result != JNI_OK) return os_init_2_result;
3612 
3613   jint adjust_after_os_result = Arguments::adjust_after_os();
3614   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3615 
3616   // Initialize output stream logging
3617   ostream_init_log();
3618 
3619   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3620   // Must be before create_vm_init_agents()
3621   if (Arguments::init_libraries_at_startup()) {
3622     convert_vm_init_libraries_to_agents();
3623   }
3624 
3625   // Launch -agentlib/-agentpath and converted -Xrun agents
3626   if (Arguments::init_agents_at_startup()) {
3627     create_vm_init_agents();
3628   }
3629 
3630   // Initialize Threads state
3631   _thread_list = NULL;
3632   _number_of_threads = 0;
3633   _number_of_non_daemon_threads = 0;
3634 
3635   // Initialize global data structures and create system classes in heap
3636   vm_init_globals();
3637 
3638 #if INCLUDE_JVMCI
3639   if (JVMCICounterSize > 0) {
3640     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3641     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3642   } else {
3643     JavaThread::_jvmci_old_thread_counters = NULL;
3644   }
3645 #endif // INCLUDE_JVMCI
3646 
3647   // Attach the main thread to this os thread
3648   JavaThread* main_thread = new JavaThread();
3649   main_thread->set_thread_state(_thread_in_vm);
3650   main_thread->initialize_thread_current();
3651   // must do this before set_active_handles
3652   main_thread->record_stack_base_and_size();
3653   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3654 
3655   if (!main_thread->set_as_starting_thread()) {
3656     vm_shutdown_during_initialization(
3657                                       "Failed necessary internal allocation. Out of swap space");
3658     delete main_thread;
3659     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3660     return JNI_ENOMEM;
3661   }
3662 
3663   // Enable guard page *after* os::create_main_thread(), otherwise it would
3664   // crash Linux VM, see notes in os_linux.cpp.
3665   main_thread->create_stack_guard_pages();
3666 
3667   // Initialize Java-Level synchronization subsystem
3668   ObjectMonitor::Initialize();
3669 
3670   // Initialize global modules
3671   jint status = init_globals();
3672   if (status != JNI_OK) {
3673     delete main_thread;
3674     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3675     return status;
3676   }
3677 
3678   if (TRACE_INITIALIZE() != JNI_OK) {
3679     vm_exit_during_initialization("Failed to initialize tracing backend");
3680   }
3681 
3682   // Should be done after the heap is fully created
3683   main_thread->cache_global_variables();
3684 
3685   HandleMark hm;
3686 
3687   { MutexLocker mu(Threads_lock);
3688     Threads::add(main_thread);
3689   }
3690 
3691   // Any JVMTI raw monitors entered in onload will transition into
3692   // real raw monitor. VM is setup enough here for raw monitor enter.
3693   JvmtiExport::transition_pending_onload_raw_monitors();
3694 
3695   // Create the VMThread
3696   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3697 
3698   VMThread::create();
3699     Thread* vmthread = VMThread::vm_thread();
3700 
3701     if (!os::create_thread(vmthread, os::vm_thread)) {
3702       vm_exit_during_initialization("Cannot create VM thread. "
3703                                     "Out of system resources.");
3704     }
3705 
3706     // Wait for the VM thread to become ready, and VMThread::run to initialize
3707     // Monitors can have spurious returns, must always check another state flag
3708     {
3709       MutexLocker ml(Notify_lock);
3710       os::start_thread(vmthread);
3711       while (vmthread->active_handles() == NULL) {
3712         Notify_lock->wait();
3713       }
3714     }
3715   }
3716 
3717   assert(Universe::is_fully_initialized(), "not initialized");
3718   if (VerifyDuringStartup) {
3719     // Make sure we're starting with a clean slate.
3720     VM_Verify verify_op;
3721     VMThread::execute(&verify_op);
3722   }
3723 
3724   Thread* THREAD = Thread::current();
3725 
3726   // Always call even when there are not JVMTI environments yet, since environments
3727   // may be attached late and JVMTI must track phases of VM execution
3728   JvmtiExport::enter_early_start_phase();
3729 
3730   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3731   JvmtiExport::post_early_vm_start();
3732 
3733   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3734 
3735   // We need this for ClassDataSharing - the initial vm.info property is set
3736   // with the default value of CDS "sharing" which may be reset through
3737   // command line options.
3738   reset_vm_info_property(CHECK_JNI_ERR);
3739 
3740   quicken_jni_functions();
3741 
3742   // No more stub generation allowed after that point.
3743   StubCodeDesc::freeze();
3744 
3745   // Set flag that basic initialization has completed. Used by exceptions and various
3746   // debug stuff, that does not work until all basic classes have been initialized.
3747   set_init_completed();
3748 
3749   LogConfiguration::post_initialize();
3750   Metaspace::post_initialize();
3751 
3752   HOTSPOT_VM_INIT_END();
3753 
3754   // record VM initialization completion time
3755 #if INCLUDE_MANAGEMENT
3756   Management::record_vm_init_completed();
3757 #endif // INCLUDE_MANAGEMENT
3758 
3759   // Signal Dispatcher needs to be started before VMInit event is posted
3760   os::signal_init(CHECK_JNI_ERR);
3761 
3762   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3763   if (!DisableAttachMechanism) {
3764     AttachListener::vm_start();
3765     if (StartAttachListener || AttachListener::init_at_startup()) {
3766       AttachListener::init();
3767     }
3768   }
3769 
3770   // Launch -Xrun agents
3771   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3772   // back-end can launch with -Xdebug -Xrunjdwp.
3773   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3774     create_vm_init_libraries();
3775   }
3776 
3777   if (CleanChunkPoolAsync) {
3778     Chunk::start_chunk_pool_cleaner_task();
3779   }
3780 
3781   // initialize compiler(s)
3782 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3783   CompileBroker::compilation_init(CHECK_JNI_ERR);
3784 #endif
3785 
3786   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3787   // It is done after compilers are initialized, because otherwise compilations of
3788   // signature polymorphic MH intrinsics can be missed
3789   // (see SystemDictionary::find_method_handle_intrinsic).
3790   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3791 
3792   // This will initialize the module system.  Only java.base classes can be
3793   // loaded until phase 2 completes
3794   call_initPhase2(CHECK_JNI_ERR);
3795 
3796   // Always call even when there are not JVMTI environments yet, since environments
3797   // may be attached late and JVMTI must track phases of VM execution
3798   JvmtiExport::enter_start_phase();
3799 
3800   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3801   JvmtiExport::post_vm_start();
3802 
3803   // Final system initialization including security manager and system class loader
3804   call_initPhase3(CHECK_JNI_ERR);
3805 
3806   // cache the system class loader
3807   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3808 
3809 #if INCLUDE_JVMCI
3810   if (EnableJVMCI) {
3811     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3812     // The JVMCI Java initialization code will read this flag and
3813     // do the printing if it's set.
3814     bool init = JVMCIPrintProperties;
3815 
3816     if (!init) {
3817       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3818       // compilations via JVMCI will not actually block until JVMCI is initialized.
3819       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3820     }
3821 
3822     if (init) {
3823       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3824     }
3825   }
3826 #endif
3827 
3828   // Always call even when there are not JVMTI environments yet, since environments
3829   // may be attached late and JVMTI must track phases of VM execution
3830   JvmtiExport::enter_live_phase();
3831 
3832   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3833   JvmtiExport::post_vm_initialized();
3834 
3835   if (TRACE_START() != JNI_OK) {
3836     vm_exit_during_initialization("Failed to start tracing backend.");
3837   }
3838 
3839 #if INCLUDE_MANAGEMENT
3840   Management::initialize(THREAD);
3841 
3842   if (HAS_PENDING_EXCEPTION) {
3843     // management agent fails to start possibly due to
3844     // configuration problem and is responsible for printing
3845     // stack trace if appropriate. Simply exit VM.
3846     vm_exit(1);
3847   }
3848 #endif // INCLUDE_MANAGEMENT
3849 
3850   if (MemProfiling)                   MemProfiler::engage();
3851   StatSampler::engage();
3852   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3853 
3854   BiasedLocking::init();
3855 
3856 #if INCLUDE_RTM_OPT
3857   RTMLockingCounters::init();
3858 #endif
3859 
3860   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3861     call_postVMInitHook(THREAD);
3862     // The Java side of PostVMInitHook.run must deal with all
3863     // exceptions and provide means of diagnosis.
3864     if (HAS_PENDING_EXCEPTION) {
3865       CLEAR_PENDING_EXCEPTION;
3866     }
3867   }
3868 
3869   {
3870     MutexLocker ml(PeriodicTask_lock);
3871     // Make sure the WatcherThread can be started by WatcherThread::start()
3872     // or by dynamic enrollment.
3873     WatcherThread::make_startable();
3874     // Start up the WatcherThread if there are any periodic tasks
3875     // NOTE:  All PeriodicTasks should be registered by now. If they
3876     //   aren't, late joiners might appear to start slowly (we might
3877     //   take a while to process their first tick).
3878     if (PeriodicTask::num_tasks() > 0) {
3879       WatcherThread::start();
3880     }
3881   }
3882 
3883   create_vm_timer.end();
3884 #ifdef ASSERT
3885   _vm_complete = true;
3886 #endif
3887 
3888   if (DumpSharedSpaces) {
3889     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3890     ShouldNotReachHere();
3891   }
3892 
3893   return JNI_OK;
3894 }
3895 
3896 // type for the Agent_OnLoad and JVM_OnLoad entry points
3897 extern "C" {
3898   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3899 }
3900 // Find a command line agent library and return its entry point for
3901 //         -agentlib:  -agentpath:   -Xrun
3902 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3903 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3904                                     const char *on_load_symbols[],
3905                                     size_t num_symbol_entries) {
3906   OnLoadEntry_t on_load_entry = NULL;
3907   void *library = NULL;
3908 
3909   if (!agent->valid()) {
3910     char buffer[JVM_MAXPATHLEN];
3911     char ebuf[1024] = "";
3912     const char *name = agent->name();
3913     const char *msg = "Could not find agent library ";
3914 
3915     // First check to see if agent is statically linked into executable
3916     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3917       library = agent->os_lib();
3918     } else if (agent->is_absolute_path()) {
3919       library = os::dll_load(name, ebuf, sizeof ebuf);
3920       if (library == NULL) {
3921         const char *sub_msg = " in absolute path, with error: ";
3922         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3923         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3924         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3925         // If we can't find the agent, exit.
3926         vm_exit_during_initialization(buf, NULL);
3927         FREE_C_HEAP_ARRAY(char, buf);
3928       }
3929     } else {
3930       // Try to load the agent from the standard dll directory
3931       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3932                              name)) {
3933         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3934       }
3935       if (library == NULL) { // Try the library path directory.
3936         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
3937           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3938         }
3939         if (library == NULL) {
3940           const char *sub_msg = " on the library path, with error: ";
3941           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3942           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3943           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3944           // If we can't find the agent, exit.
3945           vm_exit_during_initialization(buf, NULL);
3946           FREE_C_HEAP_ARRAY(char, buf);
3947         }
3948       }
3949     }
3950     agent->set_os_lib(library);
3951     agent->set_valid();
3952   }
3953 
3954   // Find the OnLoad function.
3955   on_load_entry =
3956     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3957                                                           false,
3958                                                           on_load_symbols,
3959                                                           num_symbol_entries));
3960   return on_load_entry;
3961 }
3962 
3963 // Find the JVM_OnLoad entry point
3964 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3965   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3966   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3967 }
3968 
3969 // Find the Agent_OnLoad entry point
3970 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3971   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3972   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3973 }
3974 
3975 // For backwards compatibility with -Xrun
3976 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3977 // treated like -agentpath:
3978 // Must be called before agent libraries are created
3979 void Threads::convert_vm_init_libraries_to_agents() {
3980   AgentLibrary* agent;
3981   AgentLibrary* next;
3982 
3983   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3984     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3985     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3986 
3987     // If there is an JVM_OnLoad function it will get called later,
3988     // otherwise see if there is an Agent_OnLoad
3989     if (on_load_entry == NULL) {
3990       on_load_entry = lookup_agent_on_load(agent);
3991       if (on_load_entry != NULL) {
3992         // switch it to the agent list -- so that Agent_OnLoad will be called,
3993         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3994         Arguments::convert_library_to_agent(agent);
3995       } else {
3996         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3997       }
3998     }
3999   }
4000 }
4001 
4002 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4003 // Invokes Agent_OnLoad
4004 // Called very early -- before JavaThreads exist
4005 void Threads::create_vm_init_agents() {
4006   extern struct JavaVM_ main_vm;
4007   AgentLibrary* agent;
4008 
4009   JvmtiExport::enter_onload_phase();
4010 
4011   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4012     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4013 
4014     if (on_load_entry != NULL) {
4015       // Invoke the Agent_OnLoad function
4016       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4017       if (err != JNI_OK) {
4018         vm_exit_during_initialization("agent library failed to init", agent->name());
4019       }
4020     } else {
4021       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4022     }
4023   }
4024   JvmtiExport::enter_primordial_phase();
4025 }
4026 
4027 extern "C" {
4028   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4029 }
4030 
4031 void Threads::shutdown_vm_agents() {
4032   // Send any Agent_OnUnload notifications
4033   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4034   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4035   extern struct JavaVM_ main_vm;
4036   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4037 
4038     // Find the Agent_OnUnload function.
4039     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4040                                                    os::find_agent_function(agent,
4041                                                    false,
4042                                                    on_unload_symbols,
4043                                                    num_symbol_entries));
4044 
4045     // Invoke the Agent_OnUnload function
4046     if (unload_entry != NULL) {
4047       JavaThread* thread = JavaThread::current();
4048       ThreadToNativeFromVM ttn(thread);
4049       HandleMark hm(thread);
4050       (*unload_entry)(&main_vm);
4051     }
4052   }
4053 }
4054 
4055 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4056 // Invokes JVM_OnLoad
4057 void Threads::create_vm_init_libraries() {
4058   extern struct JavaVM_ main_vm;
4059   AgentLibrary* agent;
4060 
4061   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4062     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4063 
4064     if (on_load_entry != NULL) {
4065       // Invoke the JVM_OnLoad function
4066       JavaThread* thread = JavaThread::current();
4067       ThreadToNativeFromVM ttn(thread);
4068       HandleMark hm(thread);
4069       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4070       if (err != JNI_OK) {
4071         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4072       }
4073     } else {
4074       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4075     }
4076   }
4077 }
4078 
4079 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4080   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4081 
4082   JavaThread* java_thread = NULL;
4083   // Sequential search for now.  Need to do better optimization later.
4084   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4085     oop tobj = thread->threadObj();
4086     if (!thread->is_exiting() &&
4087         tobj != NULL &&
4088         java_tid == java_lang_Thread::thread_id(tobj)) {
4089       java_thread = thread;
4090       break;
4091     }
4092   }
4093   return java_thread;
4094 }
4095 
4096 
4097 // Last thread running calls java.lang.Shutdown.shutdown()
4098 void JavaThread::invoke_shutdown_hooks() {
4099   HandleMark hm(this);
4100 
4101   // We could get here with a pending exception, if so clear it now.
4102   if (this->has_pending_exception()) {
4103     this->clear_pending_exception();
4104   }
4105 
4106   EXCEPTION_MARK;
4107   Klass* shutdown_klass =
4108     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4109                                       THREAD);
4110   if (shutdown_klass != NULL) {
4111     // SystemDictionary::resolve_or_null will return null if there was
4112     // an exception.  If we cannot load the Shutdown class, just don't
4113     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4114     // and finalizers (if runFinalizersOnExit is set) won't be run.
4115     // Note that if a shutdown hook was registered or runFinalizersOnExit
4116     // was called, the Shutdown class would have already been loaded
4117     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4118     JavaValue result(T_VOID);
4119     JavaCalls::call_static(&result,
4120                            shutdown_klass,
4121                            vmSymbols::shutdown_method_name(),
4122                            vmSymbols::void_method_signature(),
4123                            THREAD);
4124   }
4125   CLEAR_PENDING_EXCEPTION;
4126 }
4127 
4128 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4129 // the program falls off the end of main(). Another VM exit path is through
4130 // vm_exit() when the program calls System.exit() to return a value or when
4131 // there is a serious error in VM. The two shutdown paths are not exactly
4132 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4133 // and VM_Exit op at VM level.
4134 //
4135 // Shutdown sequence:
4136 //   + Shutdown native memory tracking if it is on
4137 //   + Wait until we are the last non-daemon thread to execute
4138 //     <-- every thing is still working at this moment -->
4139 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4140 //        shutdown hooks, run finalizers if finalization-on-exit
4141 //   + Call before_exit(), prepare for VM exit
4142 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4143 //        currently the only user of this mechanism is File.deleteOnExit())
4144 //      > stop StatSampler, watcher thread, CMS threads,
4145 //        post thread end and vm death events to JVMTI,
4146 //        stop signal thread
4147 //   + Call JavaThread::exit(), it will:
4148 //      > release JNI handle blocks, remove stack guard pages
4149 //      > remove this thread from Threads list
4150 //     <-- no more Java code from this thread after this point -->
4151 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4152 //     the compiler threads at safepoint
4153 //     <-- do not use anything that could get blocked by Safepoint -->
4154 //   + Disable tracing at JNI/JVM barriers
4155 //   + Set _vm_exited flag for threads that are still running native code
4156 //   + Delete this thread
4157 //   + Call exit_globals()
4158 //      > deletes tty
4159 //      > deletes PerfMemory resources
4160 //   + Return to caller
4161 
4162 bool Threads::destroy_vm() {
4163   JavaThread* thread = JavaThread::current();
4164 
4165 #ifdef ASSERT
4166   _vm_complete = false;
4167 #endif
4168   // Wait until we are the last non-daemon thread to execute
4169   { MutexLocker nu(Threads_lock);
4170     while (Threads::number_of_non_daemon_threads() > 1)
4171       // This wait should make safepoint checks, wait without a timeout,
4172       // and wait as a suspend-equivalent condition.
4173       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4174                          Mutex::_as_suspend_equivalent_flag);
4175   }
4176 
4177   // Hang forever on exit if we are reporting an error.
4178   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4179     os::infinite_sleep();
4180   }
4181   os::wait_for_keypress_at_exit();
4182 
4183   // run Java level shutdown hooks
4184   thread->invoke_shutdown_hooks();
4185 
4186   before_exit(thread);
4187 
4188   thread->exit(true);
4189 
4190   // Stop VM thread.
4191   {
4192     // 4945125 The vm thread comes to a safepoint during exit.
4193     // GC vm_operations can get caught at the safepoint, and the
4194     // heap is unparseable if they are caught. Grab the Heap_lock
4195     // to prevent this. The GC vm_operations will not be able to
4196     // queue until after the vm thread is dead. After this point,
4197     // we'll never emerge out of the safepoint before the VM exits.
4198 
4199     MutexLocker ml(Heap_lock);
4200 
4201     VMThread::wait_for_vm_thread_exit();
4202     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4203     VMThread::destroy();
4204   }
4205 
4206   // clean up ideal graph printers
4207 #if defined(COMPILER2) && !defined(PRODUCT)
4208   IdealGraphPrinter::clean_up();
4209 #endif
4210 
4211   // Now, all Java threads are gone except daemon threads. Daemon threads
4212   // running Java code or in VM are stopped by the Safepoint. However,
4213   // daemon threads executing native code are still running.  But they
4214   // will be stopped at native=>Java/VM barriers. Note that we can't
4215   // simply kill or suspend them, as it is inherently deadlock-prone.
4216 
4217   VM_Exit::set_vm_exited();
4218 
4219   notify_vm_shutdown();
4220 
4221   delete thread;
4222 
4223 #if INCLUDE_JVMCI
4224   if (JVMCICounterSize > 0) {
4225     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4226   }
4227 #endif
4228 
4229   // exit_globals() will delete tty
4230   exit_globals();
4231 
4232   LogConfiguration::finalize();
4233 
4234   return true;
4235 }
4236 
4237 
4238 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4239   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4240   return is_supported_jni_version(version);
4241 }
4242 
4243 
4244 jboolean Threads::is_supported_jni_version(jint version) {
4245   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4246   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4247   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4248   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4249   if (version == JNI_VERSION_9) return JNI_TRUE;
4250   return JNI_FALSE;
4251 }
4252 
4253 
4254 void Threads::add(JavaThread* p, bool force_daemon) {
4255   // The threads lock must be owned at this point
4256   assert_locked_or_safepoint(Threads_lock);
4257 
4258   // See the comment for this method in thread.hpp for its purpose and
4259   // why it is called here.
4260   p->initialize_queues();
4261   p->set_next(_thread_list);
4262   _thread_list = p;
4263   _number_of_threads++;
4264   oop threadObj = p->threadObj();
4265   bool daemon = true;
4266   // Bootstrapping problem: threadObj can be null for initial
4267   // JavaThread (or for threads attached via JNI)
4268   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4269     _number_of_non_daemon_threads++;
4270     daemon = false;
4271   }
4272 
4273   ThreadService::add_thread(p, daemon);
4274 
4275   // Possible GC point.
4276   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4277 }
4278 
4279 void Threads::remove(JavaThread* p) {
4280 
4281   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4282   ObjectSynchronizer::omFlush(p);
4283 
4284   // Extra scope needed for Thread_lock, so we can check
4285   // that we do not remove thread without safepoint code notice
4286   { MutexLocker ml(Threads_lock);
4287 
4288     assert(includes(p), "p must be present");
4289 
4290     JavaThread* current = _thread_list;
4291     JavaThread* prev    = NULL;
4292 
4293     while (current != p) {
4294       prev    = current;
4295       current = current->next();
4296     }
4297 
4298     if (prev) {
4299       prev->set_next(current->next());
4300     } else {
4301       _thread_list = p->next();
4302     }
4303     _number_of_threads--;
4304     oop threadObj = p->threadObj();
4305     bool daemon = true;
4306     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4307       _number_of_non_daemon_threads--;
4308       daemon = false;
4309 
4310       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4311       // on destroy_vm will wake up.
4312       if (number_of_non_daemon_threads() == 1) {
4313         Threads_lock->notify_all();
4314       }
4315     }
4316     ThreadService::remove_thread(p, daemon);
4317 
4318     // Make sure that safepoint code disregard this thread. This is needed since
4319     // the thread might mess around with locks after this point. This can cause it
4320     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4321     // of this thread since it is removed from the queue.
4322     p->set_terminated_value();
4323   } // unlock Threads_lock
4324 
4325   // Since Events::log uses a lock, we grab it outside the Threads_lock
4326   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4327 }
4328 
4329 // Threads_lock must be held when this is called (or must be called during a safepoint)
4330 bool Threads::includes(JavaThread* p) {
4331   assert(Threads_lock->is_locked(), "sanity check");
4332   ALL_JAVA_THREADS(q) {
4333     if (q == p) {
4334       return true;
4335     }
4336   }
4337   return false;
4338 }
4339 
4340 // Operations on the Threads list for GC.  These are not explicitly locked,
4341 // but the garbage collector must provide a safe context for them to run.
4342 // In particular, these things should never be called when the Threads_lock
4343 // is held by some other thread. (Note: the Safepoint abstraction also
4344 // uses the Threads_lock to guarantee this property. It also makes sure that
4345 // all threads gets blocked when exiting or starting).
4346 
4347 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4348   ALL_JAVA_THREADS(p) {
4349     p->oops_do(f, cf);
4350   }
4351   VMThread::vm_thread()->oops_do(f, cf);
4352 }
4353 
4354 void Threads::change_thread_claim_parity() {
4355   // Set the new claim parity.
4356   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4357          "Not in range.");
4358   _thread_claim_parity++;
4359   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4360   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4361          "Not in range.");
4362 }
4363 
4364 #ifdef ASSERT
4365 void Threads::assert_all_threads_claimed() {
4366   ALL_JAVA_THREADS(p) {
4367     const int thread_parity = p->oops_do_parity();
4368     assert((thread_parity == _thread_claim_parity),
4369            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4370   }
4371   VMThread* vmt = VMThread::vm_thread();
4372   const int thread_parity = vmt->oops_do_parity();
4373   assert((thread_parity == _thread_claim_parity),
4374          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4375 }
4376 #endif // ASSERT
4377 
4378 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4379   int cp = Threads::thread_claim_parity();
4380   ALL_JAVA_THREADS(p) {
4381     if (p->claim_oops_do(is_par, cp)) {
4382       p->oops_do(f, cf);
4383     }
4384   }
4385   VMThread* vmt = VMThread::vm_thread();
4386   if (vmt->claim_oops_do(is_par, cp)) {
4387     vmt->oops_do(f, cf);
4388   }
4389 }
4390 
4391 #if INCLUDE_ALL_GCS
4392 // Used by ParallelScavenge
4393 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4394   ALL_JAVA_THREADS(p) {
4395     q->enqueue(new ThreadRootsTask(p));
4396   }
4397   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4398 }
4399 
4400 // Used by Parallel Old
4401 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4402   ALL_JAVA_THREADS(p) {
4403     q->enqueue(new ThreadRootsMarkingTask(p));
4404   }
4405   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4406 }
4407 #endif // INCLUDE_ALL_GCS
4408 
4409 void Threads::nmethods_do(CodeBlobClosure* cf) {
4410   ALL_JAVA_THREADS(p) {
4411     // This is used by the code cache sweeper to mark nmethods that are active
4412     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4413     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4414     if(!p->is_Code_cache_sweeper_thread()) {
4415       p->nmethods_do(cf);
4416     }
4417   }
4418 }
4419 
4420 void Threads::metadata_do(void f(Metadata*)) {
4421   ALL_JAVA_THREADS(p) {
4422     p->metadata_do(f);
4423   }
4424 }
4425 
4426 class ThreadHandlesClosure : public ThreadClosure {
4427   void (*_f)(Metadata*);
4428  public:
4429   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4430   virtual void do_thread(Thread* thread) {
4431     thread->metadata_handles_do(_f);
4432   }
4433 };
4434 
4435 void Threads::metadata_handles_do(void f(Metadata*)) {
4436   // Only walk the Handles in Thread.
4437   ThreadHandlesClosure handles_closure(f);
4438   threads_do(&handles_closure);
4439 }
4440 
4441 void Threads::deoptimized_wrt_marked_nmethods() {
4442   ALL_JAVA_THREADS(p) {
4443     p->deoptimized_wrt_marked_nmethods();
4444   }
4445 }
4446 
4447 
4448 // Get count Java threads that are waiting to enter the specified monitor.
4449 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4450                                                          address monitor,
4451                                                          bool doLock) {
4452   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4453          "must grab Threads_lock or be at safepoint");
4454   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4455 
4456   int i = 0;
4457   {
4458     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4459     ALL_JAVA_THREADS(p) {
4460       if (!p->can_call_java()) continue;
4461 
4462       address pending = (address)p->current_pending_monitor();
4463       if (pending == monitor) {             // found a match
4464         if (i < count) result->append(p);   // save the first count matches
4465         i++;
4466       }
4467     }
4468   }
4469   return result;
4470 }
4471 
4472 
4473 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4474                                                       bool doLock) {
4475   assert(doLock ||
4476          Threads_lock->owned_by_self() ||
4477          SafepointSynchronize::is_at_safepoint(),
4478          "must grab Threads_lock or be at safepoint");
4479 
4480   // NULL owner means not locked so we can skip the search
4481   if (owner == NULL) return NULL;
4482 
4483   {
4484     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4485     ALL_JAVA_THREADS(p) {
4486       // first, see if owner is the address of a Java thread
4487       if (owner == (address)p) return p;
4488     }
4489   }
4490   // Cannot assert on lack of success here since this function may be
4491   // used by code that is trying to report useful problem information
4492   // like deadlock detection.
4493   if (UseHeavyMonitors) return NULL;
4494 
4495   // If we didn't find a matching Java thread and we didn't force use of
4496   // heavyweight monitors, then the owner is the stack address of the
4497   // Lock Word in the owning Java thread's stack.
4498   //
4499   JavaThread* the_owner = NULL;
4500   {
4501     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4502     ALL_JAVA_THREADS(q) {
4503       if (q->is_lock_owned(owner)) {
4504         the_owner = q;
4505         break;
4506       }
4507     }
4508   }
4509   // cannot assert on lack of success here; see above comment
4510   return the_owner;
4511 }
4512 
4513 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4514 void Threads::print_on(outputStream* st, bool print_stacks,
4515                        bool internal_format, bool print_concurrent_locks) {
4516   char buf[32];
4517   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4518 
4519   st->print_cr("Full thread dump %s (%s %s):",
4520                Abstract_VM_Version::vm_name(),
4521                Abstract_VM_Version::vm_release(),
4522                Abstract_VM_Version::vm_info_string());
4523   st->cr();
4524 
4525 #if INCLUDE_SERVICES
4526   // Dump concurrent locks
4527   ConcurrentLocksDump concurrent_locks;
4528   if (print_concurrent_locks) {
4529     concurrent_locks.dump_at_safepoint();
4530   }
4531 #endif // INCLUDE_SERVICES
4532 
4533   ALL_JAVA_THREADS(p) {
4534     ResourceMark rm;
4535     p->print_on(st);
4536     if (print_stacks) {
4537       if (internal_format) {
4538         p->trace_stack();
4539       } else {
4540         p->print_stack_on(st);
4541       }
4542     }
4543     st->cr();
4544 #if INCLUDE_SERVICES
4545     if (print_concurrent_locks) {
4546       concurrent_locks.print_locks_on(p, st);
4547     }
4548 #endif // INCLUDE_SERVICES
4549   }
4550 
4551   VMThread::vm_thread()->print_on(st);
4552   st->cr();
4553   Universe::heap()->print_gc_threads_on(st);
4554   WatcherThread* wt = WatcherThread::watcher_thread();
4555   if (wt != NULL) {
4556     wt->print_on(st);
4557     st->cr();
4558   }
4559   st->flush();
4560 }
4561 
4562 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4563                              int buflen, bool* found_current) {
4564   if (this_thread != NULL) {
4565     bool is_current = (current == this_thread);
4566     *found_current = *found_current || is_current;
4567     st->print("%s", is_current ? "=>" : "  ");
4568 
4569     st->print(PTR_FORMAT, p2i(this_thread));
4570     st->print(" ");
4571     this_thread->print_on_error(st, buf, buflen);
4572     st->cr();
4573   }
4574 }
4575 
4576 class PrintOnErrorClosure : public ThreadClosure {
4577   outputStream* _st;
4578   Thread* _current;
4579   char* _buf;
4580   int _buflen;
4581   bool* _found_current;
4582  public:
4583   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4584                       int buflen, bool* found_current) :
4585    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4586 
4587   virtual void do_thread(Thread* thread) {
4588     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4589   }
4590 };
4591 
4592 // Threads::print_on_error() is called by fatal error handler. It's possible
4593 // that VM is not at safepoint and/or current thread is inside signal handler.
4594 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4595 // memory (even in resource area), it might deadlock the error handler.
4596 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4597                              int buflen) {
4598   bool found_current = false;
4599   st->print_cr("Java Threads: ( => current thread )");
4600   ALL_JAVA_THREADS(thread) {
4601     print_on_error(thread, st, current, buf, buflen, &found_current);
4602   }
4603   st->cr();
4604 
4605   st->print_cr("Other Threads:");
4606   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4607   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4608 
4609   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4610   Universe::heap()->gc_threads_do(&print_closure);
4611 
4612   if (!found_current) {
4613     st->cr();
4614     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4615     current->print_on_error(st, buf, buflen);
4616     st->cr();
4617   }
4618   st->cr();
4619   st->print_cr("Threads with active compile tasks:");
4620   print_threads_compiling(st, buf, buflen);
4621 }
4622 
4623 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4624   ALL_JAVA_THREADS(thread) {
4625     if (thread->is_Compiler_thread()) {
4626       CompilerThread* ct = (CompilerThread*) thread;
4627       if (ct->task() != NULL) {
4628         thread->print_name_on_error(st, buf, buflen);
4629         ct->task()->print(st, NULL, true, true);
4630       }
4631     }
4632   }
4633 }
4634 
4635 
4636 // Internal SpinLock and Mutex
4637 // Based on ParkEvent
4638 
4639 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4640 //
4641 // We employ SpinLocks _only for low-contention, fixed-length
4642 // short-duration critical sections where we're concerned
4643 // about native mutex_t or HotSpot Mutex:: latency.
4644 // The mux construct provides a spin-then-block mutual exclusion
4645 // mechanism.
4646 //
4647 // Testing has shown that contention on the ListLock guarding gFreeList
4648 // is common.  If we implement ListLock as a simple SpinLock it's common
4649 // for the JVM to devolve to yielding with little progress.  This is true
4650 // despite the fact that the critical sections protected by ListLock are
4651 // extremely short.
4652 //
4653 // TODO-FIXME: ListLock should be of type SpinLock.
4654 // We should make this a 1st-class type, integrated into the lock
4655 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4656 // should have sufficient padding to avoid false-sharing and excessive
4657 // cache-coherency traffic.
4658 
4659 
4660 typedef volatile int SpinLockT;
4661 
4662 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4663   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4664     return;   // normal fast-path return
4665   }
4666 
4667   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4668   TEVENT(SpinAcquire - ctx);
4669   int ctr = 0;
4670   int Yields = 0;
4671   for (;;) {
4672     while (*adr != 0) {
4673       ++ctr;
4674       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4675         if (Yields > 5) {
4676           os::naked_short_sleep(1);
4677         } else {
4678           os::naked_yield();
4679           ++Yields;
4680         }
4681       } else {
4682         SpinPause();
4683       }
4684     }
4685     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4686   }
4687 }
4688 
4689 void Thread::SpinRelease(volatile int * adr) {
4690   assert(*adr != 0, "invariant");
4691   OrderAccess::fence();      // guarantee at least release consistency.
4692   // Roach-motel semantics.
4693   // It's safe if subsequent LDs and STs float "up" into the critical section,
4694   // but prior LDs and STs within the critical section can't be allowed
4695   // to reorder or float past the ST that releases the lock.
4696   // Loads and stores in the critical section - which appear in program
4697   // order before the store that releases the lock - must also appear
4698   // before the store that releases the lock in memory visibility order.
4699   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4700   // the ST of 0 into the lock-word which releases the lock, so fence
4701   // more than covers this on all platforms.
4702   *adr = 0;
4703 }
4704 
4705 // muxAcquire and muxRelease:
4706 //
4707 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4708 //    The LSB of the word is set IFF the lock is held.
4709 //    The remainder of the word points to the head of a singly-linked list
4710 //    of threads blocked on the lock.
4711 //
4712 // *  The current implementation of muxAcquire-muxRelease uses its own
4713 //    dedicated Thread._MuxEvent instance.  If we're interested in
4714 //    minimizing the peak number of extant ParkEvent instances then
4715 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4716 //    as certain invariants were satisfied.  Specifically, care would need
4717 //    to be taken with regards to consuming unpark() "permits".
4718 //    A safe rule of thumb is that a thread would never call muxAcquire()
4719 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4720 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4721 //    consume an unpark() permit intended for monitorenter, for instance.
4722 //    One way around this would be to widen the restricted-range semaphore
4723 //    implemented in park().  Another alternative would be to provide
4724 //    multiple instances of the PlatformEvent() for each thread.  One
4725 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4726 //
4727 // *  Usage:
4728 //    -- Only as leaf locks
4729 //    -- for short-term locking only as muxAcquire does not perform
4730 //       thread state transitions.
4731 //
4732 // Alternatives:
4733 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4734 //    but with parking or spin-then-park instead of pure spinning.
4735 // *  Use Taura-Oyama-Yonenzawa locks.
4736 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4737 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4738 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4739 //    acquiring threads use timers (ParkTimed) to detect and recover from
4740 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4741 //    boundaries by using placement-new.
4742 // *  Augment MCS with advisory back-link fields maintained with CAS().
4743 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4744 //    The validity of the backlinks must be ratified before we trust the value.
4745 //    If the backlinks are invalid the exiting thread must back-track through the
4746 //    the forward links, which are always trustworthy.
4747 // *  Add a successor indication.  The LockWord is currently encoded as
4748 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4749 //    to provide the usual futile-wakeup optimization.
4750 //    See RTStt for details.
4751 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4752 //
4753 
4754 
4755 typedef volatile intptr_t MutexT;      // Mux Lock-word
4756 enum MuxBits { LOCKBIT = 1 };
4757 
4758 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4759   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4760   if (w == 0) return;
4761   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4762     return;
4763   }
4764 
4765   TEVENT(muxAcquire - Contention);
4766   ParkEvent * const Self = Thread::current()->_MuxEvent;
4767   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4768   for (;;) {
4769     int its = (os::is_MP() ? 100 : 0) + 1;
4770 
4771     // Optional spin phase: spin-then-park strategy
4772     while (--its >= 0) {
4773       w = *Lock;
4774       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4775         return;
4776       }
4777     }
4778 
4779     Self->reset();
4780     Self->OnList = intptr_t(Lock);
4781     // The following fence() isn't _strictly necessary as the subsequent
4782     // CAS() both serializes execution and ratifies the fetched *Lock value.
4783     OrderAccess::fence();
4784     for (;;) {
4785       w = *Lock;
4786       if ((w & LOCKBIT) == 0) {
4787         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4788           Self->OnList = 0;   // hygiene - allows stronger asserts
4789           return;
4790         }
4791         continue;      // Interference -- *Lock changed -- Just retry
4792       }
4793       assert(w & LOCKBIT, "invariant");
4794       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4795       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4796     }
4797 
4798     while (Self->OnList != 0) {
4799       Self->park();
4800     }
4801   }
4802 }
4803 
4804 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4805   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4806   if (w == 0) return;
4807   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4808     return;
4809   }
4810 
4811   TEVENT(muxAcquire - Contention);
4812   ParkEvent * ReleaseAfter = NULL;
4813   if (ev == NULL) {
4814     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4815   }
4816   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4817   for (;;) {
4818     guarantee(ev->OnList == 0, "invariant");
4819     int its = (os::is_MP() ? 100 : 0) + 1;
4820 
4821     // Optional spin phase: spin-then-park strategy
4822     while (--its >= 0) {
4823       w = *Lock;
4824       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4825         if (ReleaseAfter != NULL) {
4826           ParkEvent::Release(ReleaseAfter);
4827         }
4828         return;
4829       }
4830     }
4831 
4832     ev->reset();
4833     ev->OnList = intptr_t(Lock);
4834     // The following fence() isn't _strictly necessary as the subsequent
4835     // CAS() both serializes execution and ratifies the fetched *Lock value.
4836     OrderAccess::fence();
4837     for (;;) {
4838       w = *Lock;
4839       if ((w & LOCKBIT) == 0) {
4840         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4841           ev->OnList = 0;
4842           // We call ::Release while holding the outer lock, thus
4843           // artificially lengthening the critical section.
4844           // Consider deferring the ::Release() until the subsequent unlock(),
4845           // after we've dropped the outer lock.
4846           if (ReleaseAfter != NULL) {
4847             ParkEvent::Release(ReleaseAfter);
4848           }
4849           return;
4850         }
4851         continue;      // Interference -- *Lock changed -- Just retry
4852       }
4853       assert(w & LOCKBIT, "invariant");
4854       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4855       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4856     }
4857 
4858     while (ev->OnList != 0) {
4859       ev->park();
4860     }
4861   }
4862 }
4863 
4864 // Release() must extract a successor from the list and then wake that thread.
4865 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4866 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4867 // Release() would :
4868 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4869 // (B) Extract a successor from the private list "in-hand"
4870 // (C) attempt to CAS() the residual back into *Lock over null.
4871 //     If there were any newly arrived threads and the CAS() would fail.
4872 //     In that case Release() would detach the RATs, re-merge the list in-hand
4873 //     with the RATs and repeat as needed.  Alternately, Release() might
4874 //     detach and extract a successor, but then pass the residual list to the wakee.
4875 //     The wakee would be responsible for reattaching and remerging before it
4876 //     competed for the lock.
4877 //
4878 // Both "pop" and DMR are immune from ABA corruption -- there can be
4879 // multiple concurrent pushers, but only one popper or detacher.
4880 // This implementation pops from the head of the list.  This is unfair,
4881 // but tends to provide excellent throughput as hot threads remain hot.
4882 // (We wake recently run threads first).
4883 //
4884 // All paths through muxRelease() will execute a CAS.
4885 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4886 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4887 // executed within the critical section are complete and globally visible before the
4888 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4889 void Thread::muxRelease(volatile intptr_t * Lock)  {
4890   for (;;) {
4891     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4892     assert(w & LOCKBIT, "invariant");
4893     if (w == LOCKBIT) return;
4894     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4895     assert(List != NULL, "invariant");
4896     assert(List->OnList == intptr_t(Lock), "invariant");
4897     ParkEvent * const nxt = List->ListNext;
4898     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4899 
4900     // The following CAS() releases the lock and pops the head element.
4901     // The CAS() also ratifies the previously fetched lock-word value.
4902     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4903       continue;
4904     }
4905     List->OnList = 0;
4906     OrderAccess::fence();
4907     List->unpark();
4908     return;
4909   }
4910 }
4911 
4912 
4913 void Threads::verify() {
4914   ALL_JAVA_THREADS(p) {
4915     p->verify();
4916   }
4917   VMThread* thread = VMThread::vm_thread();
4918   if (thread != NULL) thread->verify();
4919 }
4920 
4921 void Threads::print_vt_buffer_stats_on(outputStream* st) {
4922   ALL_JAVA_THREADS(p) {
4923     p->print_vt_buffer_stats_on(st);
4924   }
4925 }