1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "logging/log.hpp"
  30 #include "memory/vtBuffer.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/markOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "oops/valueKlass.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/basicLock.hpp"
  39 #include "runtime/biasedLocking.hpp"
  40 #include "runtime/safepointMechanism.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/thread.inline.hpp"
  43 
  44 // Implementation of InterpreterMacroAssembler
  45 
  46 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  47   assert(entry, "Entry must have been generated by now");
  48   jump(RuntimeAddress(entry));
  49 }
  50 
  51 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
  52   Label update, next, none;
  53 
  54   verify_oop(obj);
  55 
  56   testptr(obj, obj);
  57   jccb(Assembler::notZero, update);
  58   orptr(mdo_addr, TypeEntries::null_seen);
  59   jmpb(next);
  60 
  61   bind(update);
  62   load_klass(obj, obj);
  63 
  64   xorptr(obj, mdo_addr);
  65   testptr(obj, TypeEntries::type_klass_mask);
  66   jccb(Assembler::zero, next); // klass seen before, nothing to
  67                                // do. The unknown bit may have been
  68                                // set already but no need to check.
  69 
  70   testptr(obj, TypeEntries::type_unknown);
  71   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  72 
  73   cmpptr(mdo_addr, 0);
  74   jccb(Assembler::equal, none);
  75   cmpptr(mdo_addr, TypeEntries::null_seen);
  76   jccb(Assembler::equal, none);
  77   // There is a chance that the checks above (re-reading profiling
  78   // data from memory) fail if another thread has just set the
  79   // profiling to this obj's klass
  80   xorptr(obj, mdo_addr);
  81   testptr(obj, TypeEntries::type_klass_mask);
  82   jccb(Assembler::zero, next);
  83 
  84   // different than before. Cannot keep accurate profile.
  85   orptr(mdo_addr, TypeEntries::type_unknown);
  86   jmpb(next);
  87 
  88   bind(none);
  89   // first time here. Set profile type.
  90   movptr(mdo_addr, obj);
  91 
  92   bind(next);
  93 }
  94 
  95 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
  96   if (!ProfileInterpreter) {
  97     return;
  98   }
  99 
 100   if (MethodData::profile_arguments() || MethodData::profile_return()) {
 101     Label profile_continue;
 102 
 103     test_method_data_pointer(mdp, profile_continue);
 104 
 105     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
 106 
 107     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
 108     jcc(Assembler::notEqual, profile_continue);
 109 
 110     if (MethodData::profile_arguments()) {
 111       Label done;
 112       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
 113       addptr(mdp, off_to_args);
 114 
 115       for (int i = 0; i < TypeProfileArgsLimit; i++) {
 116         if (i > 0 || MethodData::profile_return()) {
 117           // If return value type is profiled we may have no argument to profile
 118           movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 119           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
 120           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
 121           jcc(Assembler::less, done);
 122         }
 123         movptr(tmp, Address(callee, Method::const_offset()));
 124         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
 125         // stack offset o (zero based) from the start of the argument
 126         // list, for n arguments translates into offset n - o - 1 from
 127         // the end of the argument list
 128         subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
 129         subl(tmp, 1);
 130         Address arg_addr = argument_address(tmp);
 131         movptr(tmp, arg_addr);
 132 
 133         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
 134         profile_obj_type(tmp, mdo_arg_addr);
 135 
 136         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
 137         addptr(mdp, to_add);
 138         off_to_args += to_add;
 139       }
 140 
 141       if (MethodData::profile_return()) {
 142         movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 143         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
 144       }
 145 
 146       bind(done);
 147 
 148       if (MethodData::profile_return()) {
 149         // We're right after the type profile for the last
 150         // argument. tmp is the number of cells left in the
 151         // CallTypeData/VirtualCallTypeData to reach its end. Non null
 152         // if there's a return to profile.
 153         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
 154         shll(tmp, exact_log2(DataLayout::cell_size));
 155         addptr(mdp, tmp);
 156       }
 157       movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
 158     } else {
 159       assert(MethodData::profile_return(), "either profile call args or call ret");
 160       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
 161     }
 162 
 163     // mdp points right after the end of the
 164     // CallTypeData/VirtualCallTypeData, right after the cells for the
 165     // return value type if there's one
 166 
 167     bind(profile_continue);
 168   }
 169 }
 170 
 171 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
 172   assert_different_registers(mdp, ret, tmp, _bcp_register);
 173   if (ProfileInterpreter && MethodData::profile_return()) {
 174     Label profile_continue, done;
 175 
 176     test_method_data_pointer(mdp, profile_continue);
 177 
 178     if (MethodData::profile_return_jsr292_only()) {
 179       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
 180 
 181       // If we don't profile all invoke bytecodes we must make sure
 182       // it's a bytecode we indeed profile. We can't go back to the
 183       // begining of the ProfileData we intend to update to check its
 184       // type because we're right after it and we don't known its
 185       // length
 186       Label do_profile;
 187       cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
 188       jcc(Assembler::equal, do_profile);
 189       cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
 190       jcc(Assembler::equal, do_profile);
 191       get_method(tmp);
 192       cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm);
 193       jcc(Assembler::notEqual, profile_continue);
 194 
 195       bind(do_profile);
 196     }
 197 
 198     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
 199     mov(tmp, ret);
 200     profile_obj_type(tmp, mdo_ret_addr);
 201 
 202     bind(profile_continue);
 203   }
 204 }
 205 
 206 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
 207   if (ProfileInterpreter && MethodData::profile_parameters()) {
 208     Label profile_continue, done;
 209 
 210     test_method_data_pointer(mdp, profile_continue);
 211 
 212     // Load the offset of the area within the MDO used for
 213     // parameters. If it's negative we're not profiling any parameters
 214     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
 215     testl(tmp1, tmp1);
 216     jcc(Assembler::negative, profile_continue);
 217 
 218     // Compute a pointer to the area for parameters from the offset
 219     // and move the pointer to the slot for the last
 220     // parameters. Collect profiling from last parameter down.
 221     // mdo start + parameters offset + array length - 1
 222     addptr(mdp, tmp1);
 223     movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
 224     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 225 
 226     Label loop;
 227     bind(loop);
 228 
 229     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
 230     int type_base = in_bytes(ParametersTypeData::type_offset(0));
 231     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
 232     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
 233     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
 234 
 235     // load offset on the stack from the slot for this parameter
 236     movptr(tmp2, arg_off);
 237     negptr(tmp2);
 238     // read the parameter from the local area
 239     movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
 240 
 241     // profile the parameter
 242     profile_obj_type(tmp2, arg_type);
 243 
 244     // go to next parameter
 245     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 246     jcc(Assembler::positive, loop);
 247 
 248     bind(profile_continue);
 249   }
 250 }
 251 
 252 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
 253                                                   int number_of_arguments) {
 254   // interpreter specific
 255   //
 256   // Note: No need to save/restore bcp & locals registers
 257   //       since these are callee saved registers and no blocking/
 258   //       GC can happen in leaf calls.
 259   // Further Note: DO NOT save/restore bcp/locals. If a caller has
 260   // already saved them so that it can use rsi/rdi as temporaries
 261   // then a save/restore here will DESTROY the copy the caller
 262   // saved! There used to be a save_bcp() that only happened in
 263   // the ASSERT path (no restore_bcp). Which caused bizarre failures
 264   // when jvm built with ASSERTs.
 265 #ifdef ASSERT
 266   {
 267     Label L;
 268     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 269     jcc(Assembler::equal, L);
 270     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 271          " last_sp != NULL");
 272     bind(L);
 273   }
 274 #endif
 275   // super call
 276   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 277   // interpreter specific
 278   // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
 279   // but since they may not have been saved (and we don't want to
 280   // save them here (see note above) the assert is invalid.
 281 }
 282 
 283 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
 284                                              Register java_thread,
 285                                              Register last_java_sp,
 286                                              address  entry_point,
 287                                              int      number_of_arguments,
 288                                              bool     check_exceptions) {
 289   // interpreter specific
 290   //
 291   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 292   //       really make a difference for these runtime calls, since they are
 293   //       slow anyway. Btw., bcp must be saved/restored since it may change
 294   //       due to GC.
 295   NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
 296   save_bcp();
 297 #ifdef ASSERT
 298   {
 299     Label L;
 300     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 301     jcc(Assembler::equal, L);
 302     stop("InterpreterMacroAssembler::call_VM_base:"
 303          " last_sp != NULL");
 304     bind(L);
 305   }
 306 #endif /* ASSERT */
 307   // super call
 308   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
 309                                entry_point, number_of_arguments,
 310                                check_exceptions);
 311   // interpreter specific
 312   restore_bcp();
 313   restore_locals();
 314 }
 315 
 316 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 317   if (JvmtiExport::can_pop_frame()) {
 318     Label L;
 319     // Initiate popframe handling only if it is not already being
 320     // processed.  If the flag has the popframe_processing bit set, it
 321     // means that this code is called *during* popframe handling - we
 322     // don't want to reenter.
 323     // This method is only called just after the call into the vm in
 324     // call_VM_base, so the arg registers are available.
 325     Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
 326                         LP64_ONLY(c_rarg0);
 327     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 328     testl(pop_cond, JavaThread::popframe_pending_bit);
 329     jcc(Assembler::zero, L);
 330     testl(pop_cond, JavaThread::popframe_processing_bit);
 331     jcc(Assembler::notZero, L);
 332     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 333     // address of the same-named entrypoint in the generated interpreter code.
 334     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 335     jmp(rax);
 336     bind(L);
 337     NOT_LP64(get_thread(java_thread);)
 338   }
 339 }
 340 
 341 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 342   Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 343   NOT_LP64(get_thread(thread);)
 344   movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
 345   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 346   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 347   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 348 #ifdef _LP64
 349   switch (state) {
 350     case qtos: // fall through
 351     case atos: movptr(rax, oop_addr);
 352                movptr(oop_addr, (int32_t)NULL_WORD);
 353                verify_oop(rax, state);              break;
 354     case ltos: movptr(rax, val_addr);                 break;
 355     case btos:                                   // fall through
 356     case ztos:                                   // fall through
 357     case ctos:                                   // fall through
 358     case stos:                                   // fall through
 359     case itos: movl(rax, val_addr);                 break;
 360     case ftos: load_float(val_addr);                break;
 361     case dtos: load_double(val_addr);               break;
 362     case vtos: /* nothing to do */                  break;
 363     default  : ShouldNotReachHere();
 364   }
 365   // Clean up tos value in the thread object
 366   movl(tos_addr,  (int) ilgl);
 367   movl(val_addr,  (int32_t) NULL_WORD);
 368 #else
 369   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 370                              + in_ByteSize(wordSize));
 371   switch (state) {
 372     case qtos: // fall through
 373     case atos: movptr(rax, oop_addr);
 374                movptr(oop_addr, NULL_WORD);
 375                verify_oop(rax, state);                break;
 376     case ltos:
 377                movl(rdx, val_addr1);               // fall through
 378     case btos:                                     // fall through
 379     case ztos:                                     // fall through
 380     case ctos:                                     // fall through
 381     case stos:                                     // fall through
 382     case itos: movl(rax, val_addr);                   break;
 383     case ftos: load_float(val_addr);                  break;
 384     case dtos: load_double(val_addr);                 break;
 385     case vtos: /* nothing to do */                    break;
 386     default  : ShouldNotReachHere();
 387   }
 388 #endif // _LP64
 389   // Clean up tos value in the thread object
 390   movl(tos_addr,  (int32_t) ilgl);
 391   movptr(val_addr,  NULL_WORD);
 392   NOT_LP64(movptr(val_addr1, NULL_WORD);)
 393 }
 394 
 395 
 396 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 397   if (JvmtiExport::can_force_early_return()) {
 398     Label L;
 399     Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
 400     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
 401 
 402     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 403     testptr(tmp, tmp);
 404     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 405 
 406     // Initiate earlyret handling only if it is not already being processed.
 407     // If the flag has the earlyret_processing bit set, it means that this code
 408     // is called *during* earlyret handling - we don't want to reenter.
 409     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 410     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 411     jcc(Assembler::notEqual, L);
 412 
 413     // Call Interpreter::remove_activation_early_entry() to get the address of the
 414     // same-named entrypoint in the generated interpreter code.
 415     NOT_LP64(get_thread(java_thread);)
 416     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 417 #ifdef _LP64
 418     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 419     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
 420 #else
 421     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 422     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 423 #endif // _LP64
 424     jmp(rax);
 425     bind(L);
 426     NOT_LP64(get_thread(java_thread);)
 427   }
 428 }
 429 
 430 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 431   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 432   load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
 433   bswapl(reg);
 434   shrl(reg, 16);
 435 }
 436 
 437 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 438                                                        int bcp_offset,
 439                                                        size_t index_size) {
 440   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 441   if (index_size == sizeof(u2)) {
 442     load_unsigned_short(index, Address(_bcp_register, bcp_offset));
 443   } else if (index_size == sizeof(u4)) {
 444     movl(index, Address(_bcp_register, bcp_offset));
 445     // Check if the secondary index definition is still ~x, otherwise
 446     // we have to change the following assembler code to calculate the
 447     // plain index.
 448     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 449     notl(index);  // convert to plain index
 450   } else if (index_size == sizeof(u1)) {
 451     load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
 452   } else {
 453     ShouldNotReachHere();
 454   }
 455 }
 456 
 457 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 458                                                            Register index,
 459                                                            int bcp_offset,
 460                                                            size_t index_size) {
 461   assert_different_registers(cache, index);
 462   get_cache_index_at_bcp(index, bcp_offset, index_size);
 463   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 464   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 465   // convert from field index to ConstantPoolCacheEntry index
 466   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
 467   shll(index, 2);
 468 }
 469 
 470 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 471                                                                         Register index,
 472                                                                         Register bytecode,
 473                                                                         int byte_no,
 474                                                                         int bcp_offset,
 475                                                                         size_t index_size) {
 476   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 477   // We use a 32-bit load here since the layout of 64-bit words on
 478   // little-endian machines allow us that.
 479   movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 480   const int shift_count = (1 + byte_no) * BitsPerByte;
 481   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 482          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 483          "correct shift count");
 484   shrl(bytecode, shift_count);
 485   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 486   andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
 487 }
 488 
 489 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 490                                                                Register tmp,
 491                                                                int bcp_offset,
 492                                                                size_t index_size) {
 493   assert(cache != tmp, "must use different register");
 494   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 495   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 496   // convert from field index to ConstantPoolCacheEntry index
 497   // and from word offset to byte offset
 498   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 499   shll(tmp, 2 + LogBytesPerWord);
 500   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 501   // skip past the header
 502   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
 503   addptr(cache, tmp);  // construct pointer to cache entry
 504 }
 505 
 506 // Load object from cpool->resolved_references(index)
 507 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 508                                            Register result, Register index) {
 509   assert_different_registers(result, index);
 510   // convert from field index to resolved_references() index and from
 511   // word index to byte offset. Since this is a java object, it can be compressed
 512   Register tmp = index;  // reuse
 513   shll(tmp, LogBytesPerHeapOop);
 514 
 515   get_constant_pool(result);
 516   // load pointer for resolved_references[] objArray
 517   movptr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
 518   movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
 519   resolve_oop_handle(result);
 520   // Add in the index
 521   addptr(result, tmp);
 522   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 523 }
 524 
 525 // load cpool->resolved_klass_at(index)
 526 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register cpool,
 527                                            Register index, Register klass) {
 528   movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
 529   Register resolved_klasses = cpool;
 530   movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes()));
 531   movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
 532 }
 533 
 534 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 535 // subtype of super_klass.
 536 //
 537 // Args:
 538 //      rax: superklass
 539 //      Rsub_klass: subklass
 540 //
 541 // Kills:
 542 //      rcx, rdi
 543 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 544                                                   Label& ok_is_subtype) {
 545   assert(Rsub_klass != rax, "rax holds superklass");
 546   LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
 547   LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
 548   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 549   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 550 
 551   // Profile the not-null value's klass.
 552   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 553 
 554   // Do the check.
 555   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 556 
 557   // Profile the failure of the check.
 558   profile_typecheck_failed(rcx); // blows rcx
 559 }
 560 
 561 
 562 #ifndef _LP64
 563 void InterpreterMacroAssembler::f2ieee() {
 564   if (IEEEPrecision) {
 565     fstp_s(Address(rsp, 0));
 566     fld_s(Address(rsp, 0));
 567   }
 568 }
 569 
 570 
 571 void InterpreterMacroAssembler::d2ieee() {
 572   if (IEEEPrecision) {
 573     fstp_d(Address(rsp, 0));
 574     fld_d(Address(rsp, 0));
 575   }
 576 }
 577 #endif // _LP64
 578 
 579 // Java Expression Stack
 580 
 581 void InterpreterMacroAssembler::pop_ptr(Register r) {
 582   pop(r);
 583 }
 584 
 585 void InterpreterMacroAssembler::push_ptr(Register r) {
 586   push(r);
 587 }
 588 
 589 void InterpreterMacroAssembler::push_i(Register r) {
 590   push(r);
 591 }
 592 
 593 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 594   subptr(rsp, wordSize);
 595   movflt(Address(rsp, 0), r);
 596 }
 597 
 598 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 599   movflt(r, Address(rsp, 0));
 600   addptr(rsp, wordSize);
 601 }
 602 
 603 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 604   subptr(rsp, 2 * wordSize);
 605   movdbl(Address(rsp, 0), r);
 606 }
 607 
 608 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 609   movdbl(r, Address(rsp, 0));
 610   addptr(rsp, 2 * Interpreter::stackElementSize);
 611 }
 612 
 613 #ifdef _LP64
 614 void InterpreterMacroAssembler::pop_i(Register r) {
 615   // XXX can't use pop currently, upper half non clean
 616   movl(r, Address(rsp, 0));
 617   addptr(rsp, wordSize);
 618 }
 619 
 620 void InterpreterMacroAssembler::pop_l(Register r) {
 621   movq(r, Address(rsp, 0));
 622   addptr(rsp, 2 * Interpreter::stackElementSize);
 623 }
 624 
 625 void InterpreterMacroAssembler::push_l(Register r) {
 626   subptr(rsp, 2 * wordSize);
 627   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r         );
 628   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
 629 }
 630 
 631 void InterpreterMacroAssembler::pop(TosState state) {
 632   switch (state) {
 633   case ptos: // Fall through
 634   case qtos: // Fall through
 635   case atos: pop_ptr();                 break;
 636   case btos:
 637   case ztos:
 638   case ctos:
 639   case stos:
 640   case itos: pop_i();                   break;
 641   case ltos: pop_l();                   break;
 642   case ftos: pop_f(xmm0);               break;
 643   case dtos: pop_d(xmm0);               break;
 644   case vtos: /* nothing to do */        break;
 645   default:   ShouldNotReachHere();
 646   }
 647   verify_oop(rax, state);
 648 }
 649 
 650 void InterpreterMacroAssembler::push(TosState state) {
 651   verify_oop(rax, state);
 652   switch (state) {
 653   case qtos: // Fall through
 654   case atos: push_ptr();                break;
 655   case btos:
 656   case ztos:
 657   case ctos:
 658   case stos:
 659   case itos: push_i();                  break;
 660   case ltos: push_l();                  break;
 661   case ftos: push_f(xmm0);              break;
 662   case dtos: push_d(xmm0);              break;
 663   case vtos: /* nothing to do */        break;
 664   default  : ShouldNotReachHere();
 665   }
 666 }
 667 #else
 668 void InterpreterMacroAssembler::pop_i(Register r) {
 669   pop(r);
 670 }
 671 
 672 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 673   pop(lo);
 674   pop(hi);
 675 }
 676 
 677 void InterpreterMacroAssembler::pop_f() {
 678   fld_s(Address(rsp, 0));
 679   addptr(rsp, 1 * wordSize);
 680 }
 681 
 682 void InterpreterMacroAssembler::pop_d() {
 683   fld_d(Address(rsp, 0));
 684   addptr(rsp, 2 * wordSize);
 685 }
 686 
 687 
 688 void InterpreterMacroAssembler::pop(TosState state) {
 689   switch (state) {
 690     case qtos:                                               // fall through
 691     case atos: pop_ptr(rax);                                 break;
 692     case btos:                                               // fall through
 693     case ztos:                                               // fall through
 694     case ctos:                                               // fall through
 695     case stos:                                               // fall through
 696     case itos: pop_i(rax);                                   break;
 697     case ltos: pop_l(rax, rdx);                              break;
 698     case ftos:
 699       if (UseSSE >= 1) {
 700         pop_f(xmm0);
 701       } else {
 702         pop_f();
 703       }
 704       break;
 705     case dtos:
 706       if (UseSSE >= 2) {
 707         pop_d(xmm0);
 708       } else {
 709         pop_d();
 710       }
 711       break;
 712     case vtos: /* nothing to do */                           break;
 713     default  : ShouldNotReachHere();
 714   }
 715   verify_oop(rax, state);
 716 }
 717 
 718 
 719 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 720   push(hi);
 721   push(lo);
 722 }
 723 
 724 void InterpreterMacroAssembler::push_f() {
 725   // Do not schedule for no AGI! Never write beyond rsp!
 726   subptr(rsp, 1 * wordSize);
 727   fstp_s(Address(rsp, 0));
 728 }
 729 
 730 void InterpreterMacroAssembler::push_d() {
 731   // Do not schedule for no AGI! Never write beyond rsp!
 732   subptr(rsp, 2 * wordSize);
 733   fstp_d(Address(rsp, 0));
 734 }
 735 
 736 
 737 void InterpreterMacroAssembler::push(TosState state) {
 738   verify_oop(rax, state);
 739   switch (state) {
 740     case qtos:                                               // fall through
 741     case atos: push_ptr(rax); break;
 742     case btos:                                               // fall through
 743     case ztos:                                               // fall through
 744     case ctos:                                               // fall through
 745     case stos:                                               // fall through
 746     case itos: push_i(rax);                                    break;
 747     case ltos: push_l(rax, rdx);                               break;
 748     case ftos:
 749       if (UseSSE >= 1) {
 750         push_f(xmm0);
 751       } else {
 752         push_f();
 753       }
 754       break;
 755     case dtos:
 756       if (UseSSE >= 2) {
 757         push_d(xmm0);
 758       } else {
 759         push_d();
 760       }
 761       break;
 762     case vtos: /* nothing to do */                             break;
 763     default  : ShouldNotReachHere();
 764   }
 765 }
 766 #endif // _LP64
 767 
 768 
 769 // Helpers for swap and dup
 770 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 771   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 772 }
 773 
 774 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 775   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 776 }
 777 
 778 
 779 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 780   // set sender sp
 781   lea(_bcp_register, Address(rsp, wordSize));
 782   // record last_sp
 783   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
 784 }
 785 
 786 
 787 // Jump to from_interpreted entry of a call unless single stepping is possible
 788 // in this thread in which case we must call the i2i entry
 789 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 790   prepare_to_jump_from_interpreted();
 791 
 792   if (JvmtiExport::can_post_interpreter_events()) {
 793     Label run_compiled_code;
 794     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 795     // compiled code in threads for which the event is enabled.  Check here for
 796     // interp_only_mode if these events CAN be enabled.
 797     // interp_only is an int, on little endian it is sufficient to test the byte only
 798     // Is a cmpl faster?
 799     LP64_ONLY(temp = r15_thread;)
 800     NOT_LP64(get_thread(temp);)
 801     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 802     jccb(Assembler::zero, run_compiled_code);
 803     jmp(Address(method, Method::interpreter_entry_offset()));
 804     bind(run_compiled_code);
 805   }
 806 
 807   jmp(Address(method, Method::from_interpreted_offset()));
 808 }
 809 
 810 // The following two routines provide a hook so that an implementation
 811 // can schedule the dispatch in two parts.  x86 does not do this.
 812 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 813   // Nothing x86 specific to be done here
 814 }
 815 
 816 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 817   dispatch_next(state, step);
 818 }
 819 
 820 void InterpreterMacroAssembler::dispatch_base(TosState state,
 821                                               address* table,
 822                                               bool verifyoop,
 823                                               bool generate_poll) {
 824   verify_FPU(1, state);
 825   if (VerifyActivationFrameSize) {
 826     Label L;
 827     mov(rcx, rbp);
 828     subptr(rcx, rsp);
 829     int32_t min_frame_size =
 830       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 831       wordSize;
 832     cmpptr(rcx, (int32_t)min_frame_size);
 833     jcc(Assembler::greaterEqual, L);
 834     stop("broken stack frame");
 835     bind(L);
 836   }
 837   if (verifyoop) {
 838     verify_oop(rax, state);
 839   }
 840 #ifdef _LP64
 841 
 842   Label no_safepoint, dispatch;
 843   address* const safepoint_table = Interpreter::safept_table(state);
 844   if (SafepointMechanism::uses_thread_local_poll() && table != safepoint_table && generate_poll) {
 845     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 846 
 847     testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
 848 
 849     jccb(Assembler::zero, no_safepoint);
 850     lea(rscratch1, ExternalAddress((address)safepoint_table));
 851     jmpb(dispatch);
 852   }
 853 
 854   bind(no_safepoint);
 855   lea(rscratch1, ExternalAddress((address)table));
 856   bind(dispatch);
 857   jmp(Address(rscratch1, rbx, Address::times_8));
 858 
 859 #else
 860   Address index(noreg, rbx, Address::times_ptr);
 861   ExternalAddress tbl((address)table);
 862   ArrayAddress dispatch(tbl, index);
 863   jump(dispatch);
 864 #endif // _LP64
 865 }
 866 
 867 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 868   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 869 }
 870 
 871 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 872   dispatch_base(state, Interpreter::normal_table(state));
 873 }
 874 
 875 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 876   dispatch_base(state, Interpreter::normal_table(state), false);
 877 }
 878 
 879 
 880 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 881   // load next bytecode (load before advancing _bcp_register to prevent AGI)
 882   load_unsigned_byte(rbx, Address(_bcp_register, step));
 883   // advance _bcp_register
 884   increment(_bcp_register, step);
 885   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 886 }
 887 
 888 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 889   // load current bytecode
 890   load_unsigned_byte(rbx, Address(_bcp_register, 0));
 891   dispatch_base(state, table);
 892 }
 893 
 894 void InterpreterMacroAssembler::narrow(Register result) {
 895 
 896   // Get method->_constMethod->_result_type
 897   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 898   movptr(rcx, Address(rcx, Method::const_offset()));
 899   load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
 900 
 901   Label done, notBool, notByte, notChar;
 902 
 903   // common case first
 904   cmpl(rcx, T_INT);
 905   jcc(Assembler::equal, done);
 906 
 907   // mask integer result to narrower return type.
 908   cmpl(rcx, T_BOOLEAN);
 909   jcc(Assembler::notEqual, notBool);
 910   andl(result, 0x1);
 911   jmp(done);
 912 
 913   bind(notBool);
 914   cmpl(rcx, T_BYTE);
 915   jcc(Assembler::notEqual, notByte);
 916   LP64_ONLY(movsbl(result, result);)
 917   NOT_LP64(shll(result, 24);)      // truncate upper 24 bits
 918   NOT_LP64(sarl(result, 24);)      // and sign-extend byte
 919   jmp(done);
 920 
 921   bind(notByte);
 922   cmpl(rcx, T_CHAR);
 923   jcc(Assembler::notEqual, notChar);
 924   LP64_ONLY(movzwl(result, result);)
 925   NOT_LP64(andl(result, 0xFFFF);)  // truncate upper 16 bits
 926   jmp(done);
 927 
 928   bind(notChar);
 929   // cmpl(rcx, T_SHORT);  // all that's left
 930   // jcc(Assembler::notEqual, done);
 931   LP64_ONLY(movswl(result, result);)
 932   NOT_LP64(shll(result, 16);)      // truncate upper 16 bits
 933   NOT_LP64(sarl(result, 16);)      // and sign-extend short
 934 
 935   // Nothing to do for T_INT
 936   bind(done);
 937 }
 938 
 939 // remove activation
 940 //
 941 // Unlock the receiver if this is a synchronized method.
 942 // Unlock any Java monitors from syncronized blocks.
 943 // Remove the activation from the stack.
 944 //
 945 // If there are locked Java monitors
 946 //    If throw_monitor_exception
 947 //       throws IllegalMonitorStateException
 948 //    Else if install_monitor_exception
 949 //       installs IllegalMonitorStateException
 950 //    Else
 951 //       no error processing
 952 void InterpreterMacroAssembler::remove_activation(
 953         TosState state,
 954         Register ret_addr,
 955         bool throw_monitor_exception,
 956         bool install_monitor_exception,
 957         bool notify_jvmdi,
 958         bool load_values) {
 959   // Note: Registers rdx xmm0 may be in use for the
 960   // result check if synchronized method
 961   Label unlocked, unlock, no_unlock;
 962 
 963   const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 964   const Register robj    = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
 965   const Register rmon    = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
 966                               // monitor pointers need different register
 967                               // because rdx may have the result in it
 968   NOT_LP64(get_thread(rcx);)
 969 
 970   // get the value of _do_not_unlock_if_synchronized into rdx
 971   const Address do_not_unlock_if_synchronized(rthread,
 972     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 973   movbool(rbx, do_not_unlock_if_synchronized);
 974   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 975 
 976  // get method access flags
 977   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 978   movl(rcx, Address(rcx, Method::access_flags_offset()));
 979   testl(rcx, JVM_ACC_SYNCHRONIZED);
 980   jcc(Assembler::zero, unlocked);
 981 
 982   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 983   // is set.
 984   testbool(rbx);
 985   jcc(Assembler::notZero, no_unlock);
 986 
 987   // unlock monitor
 988   push(state); // save result
 989 
 990   // BasicObjectLock will be first in list, since this is a
 991   // synchronized method. However, need to check that the object has
 992   // not been unlocked by an explicit monitorexit bytecode.
 993   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 994                         wordSize - (int) sizeof(BasicObjectLock));
 995   // We use c_rarg1/rdx so that if we go slow path it will be the correct
 996   // register for unlock_object to pass to VM directly
 997   lea(robj, monitor); // address of first monitor
 998 
 999   movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes()));
1000   testptr(rax, rax);
1001   jcc(Assembler::notZero, unlock);
1002 
1003   pop(state);
1004   if (throw_monitor_exception) {
1005     // Entry already unlocked, need to throw exception
1006     NOT_LP64(empty_FPU_stack();)  // remove possible return value from FPU-stack, otherwise stack could overflow
1007     call_VM(noreg, CAST_FROM_FN_PTR(address,
1008                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1009     should_not_reach_here();
1010   } else {
1011     // Monitor already unlocked during a stack unroll. If requested,
1012     // install an illegal_monitor_state_exception.  Continue with
1013     // stack unrolling.
1014     if (install_monitor_exception) {
1015       NOT_LP64(empty_FPU_stack();)
1016       call_VM(noreg, CAST_FROM_FN_PTR(address,
1017                      InterpreterRuntime::new_illegal_monitor_state_exception));
1018     }
1019     jmp(unlocked);
1020   }
1021 
1022   bind(unlock);
1023   unlock_object(robj);
1024   pop(state);
1025 
1026   // Check that for block-structured locking (i.e., that all locked
1027   // objects has been unlocked)
1028   bind(unlocked);
1029 
1030   // rax, rdx: Might contain return value
1031 
1032   // Check that all monitors are unlocked
1033   {
1034     Label loop, exception, entry, restart;
1035     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1036     const Address monitor_block_top(
1037         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1038     const Address monitor_block_bot(
1039         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1040 
1041     bind(restart);
1042     // We use c_rarg1 so that if we go slow path it will be the correct
1043     // register for unlock_object to pass to VM directly
1044     movptr(rmon, monitor_block_top); // points to current entry, starting
1045                                   // with top-most entry
1046     lea(rbx, monitor_block_bot);  // points to word before bottom of
1047                                   // monitor block
1048     jmp(entry);
1049 
1050     // Entry already locked, need to throw exception
1051     bind(exception);
1052 
1053     if (throw_monitor_exception) {
1054       // Throw exception
1055       NOT_LP64(empty_FPU_stack();)
1056       MacroAssembler::call_VM(noreg,
1057                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
1058                                    throw_illegal_monitor_state_exception));
1059       should_not_reach_here();
1060     } else {
1061       // Stack unrolling. Unlock object and install illegal_monitor_exception.
1062       // Unlock does not block, so don't have to worry about the frame.
1063       // We don't have to preserve c_rarg1 since we are going to throw an exception.
1064 
1065       push(state);
1066       mov(robj, rmon);   // nop if robj and rmon are the same
1067       unlock_object(robj);
1068       pop(state);
1069 
1070       if (install_monitor_exception) {
1071         NOT_LP64(empty_FPU_stack();)
1072         call_VM(noreg, CAST_FROM_FN_PTR(address,
1073                                         InterpreterRuntime::
1074                                         new_illegal_monitor_state_exception));
1075       }
1076 
1077       jmp(restart);
1078     }
1079 
1080     bind(loop);
1081     // check if current entry is used
1082     cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
1083     jcc(Assembler::notEqual, exception);
1084 
1085     addptr(rmon, entry_size); // otherwise advance to next entry
1086     bind(entry);
1087     cmpptr(rmon, rbx); // check if bottom reached
1088     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1089   }
1090 
1091   bind(no_unlock);
1092 
1093   // jvmti support
1094   if (notify_jvmdi) {
1095     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
1096   } else {
1097     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1098   }
1099 
1100   if (StackReservedPages > 0) {
1101     movptr(rbx,
1102                Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1103     // testing if reserved zone needs to be re-enabled
1104     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1105     Label no_reserved_zone_enabling;
1106 
1107     NOT_LP64(get_thread(rthread);)
1108 
1109     cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_enabled);
1110     jcc(Assembler::equal, no_reserved_zone_enabling);
1111 
1112     cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1113     jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1114 
1115     call_VM_leaf(
1116       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1117     call_VM(noreg, CAST_FROM_FN_PTR(address,
1118                    InterpreterRuntime::throw_delayed_StackOverflowError));
1119     should_not_reach_here();
1120 
1121     bind(no_reserved_zone_enabling);
1122   }
1123 
1124   // Code below is taking care of recycling TLVB memory, no safepoint should
1125   // occur between this point and the end of the remove_activation() method
1126   const Register thread1 = NOT_LP64(rcx) LP64_ONLY(r15_thread);
1127   const uintptr_t chunk_mask = VTBufferChunk::chunk_mask();
1128 
1129   Label TLVB_cleanup_done;
1130   if (state == qtos) {
1131     Label no_buffered_value_returned;
1132     if (ReturnValuesInThreadLocalBuffer) {
1133       NOT_LP64(get_thread(thread1));
1134       cmpptr(Address(thread1, JavaThread::return_buffered_value_offset()), (intptr_t)NULL_WORD);
1135       jcc(Assembler::equal, no_buffered_value_returned);
1136       movptr(rbx, Address(rbp, frame::interpreter_frame_vt_alloc_ptr_offset * wordSize));
1137       call_VM_leaf(CAST_FROM_FN_PTR(address,
1138           InterpreterRuntime::relocate_return_value), rax, rbx);
1139       NOT_LP64(get_thread(thread1));
1140       get_vm_result(rax, thread1);
1141       jmp(TLVB_cleanup_done); // clean up has been performed during relocation
1142       bind(no_buffered_value_returned);
1143     }
1144   }
1145   movptr(rbx, Address(rbp, frame::interpreter_frame_vt_alloc_ptr_offset * wordSize));
1146   NOT_LP64(get_thread(thread1));
1147   movptr(rcx, Address(thread1, JavaThread::vt_alloc_ptr_offset()));
1148   cmpptr(rbx, rcx);
1149   jcc(Assembler::equal, TLVB_cleanup_done);
1150   push(state);
1151   movptr(rbx, Address(rbp, frame::interpreter_frame_vt_alloc_ptr_offset * wordSize));
1152   call_VM_leaf(CAST_FROM_FN_PTR(address,
1153       InterpreterRuntime::recycle_vtbuffer), rbx);
1154   pop(state);
1155   bind(TLVB_cleanup_done);
1156 
1157   // remove activation
1158   // get sender sp
1159   movptr(rbx,
1160          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1161 
1162   if (load_values) {
1163     // We are returning a value type, load its fields into registers
1164 #ifndef _LP64
1165     super_call_VM_leaf(StubRoutines::load_value_type_fields_in_regs());
1166 #else
1167     load_klass(rdi, rax);
1168     movptr(rdi, Address(rdi, ValueKlass::unpack_handler_offset()));
1169 
1170     Label skip;
1171     testptr(rdi, rdi);
1172     jcc(Assembler::equal, skip);
1173 
1174     // Load fields from a buffered value with a value class specific
1175     // handler
1176     call(rdi);
1177 
1178     bind(skip);
1179 #endif
1180     // call above kills the value in rbx. Reload it.
1181     movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1182   }
1183   leave();                           // remove frame anchor
1184   pop(ret_addr);                     // get return address
1185   mov(rsp, rbx);                     // set sp to sender sp
1186 }
1187 
1188 void InterpreterMacroAssembler::get_method_counters(Register method,
1189                                                     Register mcs, Label& skip) {
1190   Label has_counters;
1191   movptr(mcs, Address(method, Method::method_counters_offset()));
1192   testptr(mcs, mcs);
1193   jcc(Assembler::notZero, has_counters);
1194   call_VM(noreg, CAST_FROM_FN_PTR(address,
1195           InterpreterRuntime::build_method_counters), method);
1196   movptr(mcs, Address(method,Method::method_counters_offset()));
1197   testptr(mcs, mcs);
1198   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1199   bind(has_counters);
1200 }
1201 
1202 
1203 // Lock object
1204 //
1205 // Args:
1206 //      rdx, c_rarg1: BasicObjectLock to be used for locking
1207 //
1208 // Kills:
1209 //      rax, rbx
1210 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1211   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1212          "The argument is only for looks. It must be c_rarg1");
1213 
1214   if (UseHeavyMonitors) {
1215     call_VM(noreg,
1216             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1217             lock_reg);
1218   } else {
1219     Label done;
1220 
1221     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1222     const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a
1223                                   // problematic case where tmp_reg = no_reg.
1224     const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1225 
1226     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1227     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1228     const int mark_offset = lock_offset +
1229                             BasicLock::displaced_header_offset_in_bytes();
1230 
1231     Label slow_case;
1232 
1233     // Load object pointer into obj_reg
1234     movptr(obj_reg, Address(lock_reg, obj_offset));
1235 
1236     if (UseBiasedLocking) {
1237       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, false, done, &slow_case);
1238     }
1239 
1240     // Load immediate 1 into swap_reg %rax
1241     movl(swap_reg, (int32_t)1);
1242 
1243     // Load (object->mark() | 1) into swap_reg %rax
1244     orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1245 
1246     // Save (object->mark() | 1) into BasicLock's displaced header
1247     movptr(Address(lock_reg, mark_offset), swap_reg);
1248 
1249     assert(lock_offset == 0,
1250            "displaced header must be first word in BasicObjectLock");
1251 
1252     if (os::is_MP()) lock();
1253     cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1254     if (PrintBiasedLockingStatistics) {
1255       cond_inc32(Assembler::zero,
1256                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1257     }
1258     jcc(Assembler::zero, done);
1259 
1260     const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1261 
1262     // Test if the oopMark is an obvious stack pointer, i.e.,
1263     //  1) (mark & zero_bits) == 0, and
1264     //  2) rsp <= mark < mark + os::pagesize()
1265     //
1266     // These 3 tests can be done by evaluating the following
1267     // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1268     // assuming both stack pointer and pagesize have their
1269     // least significant bits clear.
1270     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1271     subptr(swap_reg, rsp);
1272     andptr(swap_reg, zero_bits - os::vm_page_size());
1273 
1274     // Save the test result, for recursive case, the result is zero
1275     movptr(Address(lock_reg, mark_offset), swap_reg);
1276 
1277     if (PrintBiasedLockingStatistics) {
1278       cond_inc32(Assembler::zero,
1279                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1280     }
1281     jcc(Assembler::zero, done);
1282 
1283     bind(slow_case);
1284 
1285     // Call the runtime routine for slow case
1286     call_VM(noreg,
1287             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1288             lock_reg);
1289 
1290     bind(done);
1291   }
1292 }
1293 
1294 
1295 // Unlocks an object. Used in monitorexit bytecode and
1296 // remove_activation.  Throws an IllegalMonitorException if object is
1297 // not locked by current thread.
1298 //
1299 // Args:
1300 //      rdx, c_rarg1: BasicObjectLock for lock
1301 //
1302 // Kills:
1303 //      rax
1304 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1305 //      rscratch1 (scratch reg)
1306 // rax, rbx, rcx, rdx
1307 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1308   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1309          "The argument is only for looks. It must be c_rarg1");
1310 
1311   if (UseHeavyMonitors) {
1312     call_VM(noreg,
1313             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1314             lock_reg);
1315   } else {
1316     Label done;
1317 
1318     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1319     const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx);  // Will contain the old oopMark
1320     const Register obj_reg    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);  // Will contain the oop
1321 
1322     save_bcp(); // Save in case of exception
1323 
1324     // Convert from BasicObjectLock structure to object and BasicLock
1325     // structure Store the BasicLock address into %rax
1326     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
1327 
1328     // Load oop into obj_reg(%c_rarg3)
1329     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
1330 
1331     // Free entry
1332     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
1333 
1334     if (UseBiasedLocking) {
1335       biased_locking_exit(obj_reg, header_reg, done);
1336     }
1337 
1338     // Load the old header from BasicLock structure
1339     movptr(header_reg, Address(swap_reg,
1340                                BasicLock::displaced_header_offset_in_bytes()));
1341 
1342     // Test for recursion
1343     testptr(header_reg, header_reg);
1344 
1345     // zero for recursive case
1346     jcc(Assembler::zero, done);
1347 
1348     // Atomic swap back the old header
1349     if (os::is_MP()) lock();
1350     cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1351 
1352     // zero for simple unlock of a stack-lock case
1353     jcc(Assembler::zero, done);
1354 
1355     // Call the runtime routine for slow case.
1356     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
1357          obj_reg); // restore obj
1358     call_VM(noreg,
1359             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1360             lock_reg);
1361 
1362     bind(done);
1363 
1364     restore_bcp();
1365   }
1366 }
1367 
1368 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1369                                                          Label& zero_continue) {
1370   assert(ProfileInterpreter, "must be profiling interpreter");
1371   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1372   testptr(mdp, mdp);
1373   jcc(Assembler::zero, zero_continue);
1374 }
1375 
1376 
1377 // Set the method data pointer for the current bcp.
1378 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1379   assert(ProfileInterpreter, "must be profiling interpreter");
1380   Label set_mdp;
1381   push(rax);
1382   push(rbx);
1383 
1384   get_method(rbx);
1385   // Test MDO to avoid the call if it is NULL.
1386   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1387   testptr(rax, rax);
1388   jcc(Assembler::zero, set_mdp);
1389   // rbx: method
1390   // _bcp_register: bcp
1391   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1392   // rax: mdi
1393   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1394   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1395   addptr(rbx, in_bytes(MethodData::data_offset()));
1396   addptr(rax, rbx);
1397   bind(set_mdp);
1398   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1399   pop(rbx);
1400   pop(rax);
1401 }
1402 
1403 void InterpreterMacroAssembler::verify_method_data_pointer() {
1404   assert(ProfileInterpreter, "must be profiling interpreter");
1405 #ifdef ASSERT
1406   Label verify_continue;
1407   push(rax);
1408   push(rbx);
1409   Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1410   Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1411   push(arg3_reg);
1412   push(arg2_reg);
1413   test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1414   get_method(rbx);
1415 
1416   // If the mdp is valid, it will point to a DataLayout header which is
1417   // consistent with the bcp.  The converse is highly probable also.
1418   load_unsigned_short(arg2_reg,
1419                       Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1420   addptr(arg2_reg, Address(rbx, Method::const_offset()));
1421   lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1422   cmpptr(arg2_reg, _bcp_register);
1423   jcc(Assembler::equal, verify_continue);
1424   // rbx: method
1425   // _bcp_register: bcp
1426   // c_rarg3: mdp
1427   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1428                rbx, _bcp_register, arg3_reg);
1429   bind(verify_continue);
1430   pop(arg2_reg);
1431   pop(arg3_reg);
1432   pop(rbx);
1433   pop(rax);
1434 #endif // ASSERT
1435 }
1436 
1437 
1438 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1439                                                 int constant,
1440                                                 Register value) {
1441   assert(ProfileInterpreter, "must be profiling interpreter");
1442   Address data(mdp_in, constant);
1443   movptr(data, value);
1444 }
1445 
1446 
1447 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1448                                                       int constant,
1449                                                       bool decrement) {
1450   // Counter address
1451   Address data(mdp_in, constant);
1452 
1453   increment_mdp_data_at(data, decrement);
1454 }
1455 
1456 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1457                                                       bool decrement) {
1458   assert(ProfileInterpreter, "must be profiling interpreter");
1459   // %%% this does 64bit counters at best it is wasting space
1460   // at worst it is a rare bug when counters overflow
1461 
1462   if (decrement) {
1463     // Decrement the register.  Set condition codes.
1464     addptr(data, (int32_t) -DataLayout::counter_increment);
1465     // If the decrement causes the counter to overflow, stay negative
1466     Label L;
1467     jcc(Assembler::negative, L);
1468     addptr(data, (int32_t) DataLayout::counter_increment);
1469     bind(L);
1470   } else {
1471     assert(DataLayout::counter_increment == 1,
1472            "flow-free idiom only works with 1");
1473     // Increment the register.  Set carry flag.
1474     addptr(data, DataLayout::counter_increment);
1475     // If the increment causes the counter to overflow, pull back by 1.
1476     sbbptr(data, (int32_t)0);
1477   }
1478 }
1479 
1480 
1481 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1482                                                       Register reg,
1483                                                       int constant,
1484                                                       bool decrement) {
1485   Address data(mdp_in, reg, Address::times_1, constant);
1486 
1487   increment_mdp_data_at(data, decrement);
1488 }
1489 
1490 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1491                                                 int flag_byte_constant) {
1492   assert(ProfileInterpreter, "must be profiling interpreter");
1493   int header_offset = in_bytes(DataLayout::header_offset());
1494   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
1495   // Set the flag
1496   orl(Address(mdp_in, header_offset), header_bits);
1497 }
1498 
1499 
1500 
1501 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1502                                                  int offset,
1503                                                  Register value,
1504                                                  Register test_value_out,
1505                                                  Label& not_equal_continue) {
1506   assert(ProfileInterpreter, "must be profiling interpreter");
1507   if (test_value_out == noreg) {
1508     cmpptr(value, Address(mdp_in, offset));
1509   } else {
1510     // Put the test value into a register, so caller can use it:
1511     movptr(test_value_out, Address(mdp_in, offset));
1512     cmpptr(test_value_out, value);
1513   }
1514   jcc(Assembler::notEqual, not_equal_continue);
1515 }
1516 
1517 
1518 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1519                                                      int offset_of_disp) {
1520   assert(ProfileInterpreter, "must be profiling interpreter");
1521   Address disp_address(mdp_in, offset_of_disp);
1522   addptr(mdp_in, disp_address);
1523   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1524 }
1525 
1526 
1527 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1528                                                      Register reg,
1529                                                      int offset_of_disp) {
1530   assert(ProfileInterpreter, "must be profiling interpreter");
1531   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1532   addptr(mdp_in, disp_address);
1533   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1534 }
1535 
1536 
1537 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1538                                                        int constant) {
1539   assert(ProfileInterpreter, "must be profiling interpreter");
1540   addptr(mdp_in, constant);
1541   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1542 }
1543 
1544 
1545 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1546   assert(ProfileInterpreter, "must be profiling interpreter");
1547   push(return_bci); // save/restore across call_VM
1548   call_VM(noreg,
1549           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1550           return_bci);
1551   pop(return_bci);
1552 }
1553 
1554 
1555 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1556                                                      Register bumped_count) {
1557   if (ProfileInterpreter) {
1558     Label profile_continue;
1559 
1560     // If no method data exists, go to profile_continue.
1561     // Otherwise, assign to mdp
1562     test_method_data_pointer(mdp, profile_continue);
1563 
1564     // We are taking a branch.  Increment the taken count.
1565     // We inline increment_mdp_data_at to return bumped_count in a register
1566     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1567     Address data(mdp, in_bytes(JumpData::taken_offset()));
1568     movptr(bumped_count, data);
1569     assert(DataLayout::counter_increment == 1,
1570             "flow-free idiom only works with 1");
1571     addptr(bumped_count, DataLayout::counter_increment);
1572     sbbptr(bumped_count, 0);
1573     movptr(data, bumped_count); // Store back out
1574 
1575     // The method data pointer needs to be updated to reflect the new target.
1576     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1577     bind(profile_continue);
1578   }
1579 }
1580 
1581 
1582 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1583   if (ProfileInterpreter) {
1584     Label profile_continue;
1585 
1586     // If no method data exists, go to profile_continue.
1587     test_method_data_pointer(mdp, profile_continue);
1588 
1589     // We are taking a branch.  Increment the not taken count.
1590     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1591 
1592     // The method data pointer needs to be updated to correspond to
1593     // the next bytecode
1594     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1595     bind(profile_continue);
1596   }
1597 }
1598 
1599 void InterpreterMacroAssembler::profile_call(Register mdp) {
1600   if (ProfileInterpreter) {
1601     Label profile_continue;
1602 
1603     // If no method data exists, go to profile_continue.
1604     test_method_data_pointer(mdp, profile_continue);
1605 
1606     // We are making a call.  Increment the count.
1607     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1608 
1609     // The method data pointer needs to be updated to reflect the new target.
1610     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1611     bind(profile_continue);
1612   }
1613 }
1614 
1615 
1616 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1617   if (ProfileInterpreter) {
1618     Label profile_continue;
1619 
1620     // If no method data exists, go to profile_continue.
1621     test_method_data_pointer(mdp, profile_continue);
1622 
1623     // We are making a call.  Increment the count.
1624     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1625 
1626     // The method data pointer needs to be updated to reflect the new target.
1627     update_mdp_by_constant(mdp,
1628                            in_bytes(VirtualCallData::
1629                                     virtual_call_data_size()));
1630     bind(profile_continue);
1631   }
1632 }
1633 
1634 
1635 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1636                                                      Register mdp,
1637                                                      Register reg2,
1638                                                      bool receiver_can_be_null) {
1639   if (ProfileInterpreter) {
1640     Label profile_continue;
1641 
1642     // If no method data exists, go to profile_continue.
1643     test_method_data_pointer(mdp, profile_continue);
1644 
1645     Label skip_receiver_profile;
1646     if (receiver_can_be_null) {
1647       Label not_null;
1648       testptr(receiver, receiver);
1649       jccb(Assembler::notZero, not_null);
1650       // We are making a call.  Increment the count for null receiver.
1651       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1652       jmp(skip_receiver_profile);
1653       bind(not_null);
1654     }
1655 
1656     // Record the receiver type.
1657     record_klass_in_profile(receiver, mdp, reg2, true);
1658     bind(skip_receiver_profile);
1659 
1660     // The method data pointer needs to be updated to reflect the new target.
1661 #if INCLUDE_JVMCI
1662     if (MethodProfileWidth == 0) {
1663       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1664     }
1665 #else // INCLUDE_JVMCI
1666     update_mdp_by_constant(mdp,
1667                            in_bytes(VirtualCallData::
1668                                     virtual_call_data_size()));
1669 #endif // INCLUDE_JVMCI
1670     bind(profile_continue);
1671   }
1672 }
1673 
1674 #if INCLUDE_JVMCI
1675 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1676   assert_different_registers(method, mdp, reg2);
1677   if (ProfileInterpreter && MethodProfileWidth > 0) {
1678     Label profile_continue;
1679 
1680     // If no method data exists, go to profile_continue.
1681     test_method_data_pointer(mdp, profile_continue);
1682 
1683     Label done;
1684     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1685       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1686     bind(done);
1687 
1688     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1689     bind(profile_continue);
1690   }
1691 }
1692 #endif // INCLUDE_JVMCI
1693 
1694 // This routine creates a state machine for updating the multi-row
1695 // type profile at a virtual call site (or other type-sensitive bytecode).
1696 // The machine visits each row (of receiver/count) until the receiver type
1697 // is found, or until it runs out of rows.  At the same time, it remembers
1698 // the location of the first empty row.  (An empty row records null for its
1699 // receiver, and can be allocated for a newly-observed receiver type.)
1700 // Because there are two degrees of freedom in the state, a simple linear
1701 // search will not work; it must be a decision tree.  Hence this helper
1702 // function is recursive, to generate the required tree structured code.
1703 // It's the interpreter, so we are trading off code space for speed.
1704 // See below for example code.
1705 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1706                                         Register receiver, Register mdp,
1707                                         Register reg2, int start_row,
1708                                         Label& done, bool is_virtual_call) {
1709   if (TypeProfileWidth == 0) {
1710     if (is_virtual_call) {
1711       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1712     }
1713 #if INCLUDE_JVMCI
1714     else if (EnableJVMCI) {
1715       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1716     }
1717 #endif // INCLUDE_JVMCI
1718   } else {
1719     int non_profiled_offset = -1;
1720     if (is_virtual_call) {
1721       non_profiled_offset = in_bytes(CounterData::count_offset());
1722     }
1723 #if INCLUDE_JVMCI
1724     else if (EnableJVMCI) {
1725       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1726     }
1727 #endif // INCLUDE_JVMCI
1728 
1729     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1730         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1731   }
1732 }
1733 
1734 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1735                                         Register reg2, int start_row, Label& done, int total_rows,
1736                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1737                                         int non_profiled_offset) {
1738   int last_row = total_rows - 1;
1739   assert(start_row <= last_row, "must be work left to do");
1740   // Test this row for both the item and for null.
1741   // Take any of three different outcomes:
1742   //   1. found item => increment count and goto done
1743   //   2. found null => keep looking for case 1, maybe allocate this cell
1744   //   3. found something else => keep looking for cases 1 and 2
1745   // Case 3 is handled by a recursive call.
1746   for (int row = start_row; row <= last_row; row++) {
1747     Label next_test;
1748     bool test_for_null_also = (row == start_row);
1749 
1750     // See if the item is item[n].
1751     int item_offset = in_bytes(item_offset_fn(row));
1752     test_mdp_data_at(mdp, item_offset, item,
1753                      (test_for_null_also ? reg2 : noreg),
1754                      next_test);
1755     // (Reg2 now contains the item from the CallData.)
1756 
1757     // The item is item[n].  Increment count[n].
1758     int count_offset = in_bytes(item_count_offset_fn(row));
1759     increment_mdp_data_at(mdp, count_offset);
1760     jmp(done);
1761     bind(next_test);
1762 
1763     if (test_for_null_also) {
1764       Label found_null;
1765       // Failed the equality check on item[n]...  Test for null.
1766       testptr(reg2, reg2);
1767       if (start_row == last_row) {
1768         // The only thing left to do is handle the null case.
1769         if (non_profiled_offset >= 0) {
1770           jccb(Assembler::zero, found_null);
1771           // Item did not match any saved item and there is no empty row for it.
1772           // Increment total counter to indicate polymorphic case.
1773           increment_mdp_data_at(mdp, non_profiled_offset);
1774           jmp(done);
1775           bind(found_null);
1776         } else {
1777           jcc(Assembler::notZero, done);
1778         }
1779         break;
1780       }
1781       // Since null is rare, make it be the branch-taken case.
1782       jcc(Assembler::zero, found_null);
1783 
1784       // Put all the "Case 3" tests here.
1785       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1786         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1787 
1788       // Found a null.  Keep searching for a matching item,
1789       // but remember that this is an empty (unused) slot.
1790       bind(found_null);
1791     }
1792   }
1793 
1794   // In the fall-through case, we found no matching item, but we
1795   // observed the item[start_row] is NULL.
1796 
1797   // Fill in the item field and increment the count.
1798   int item_offset = in_bytes(item_offset_fn(start_row));
1799   set_mdp_data_at(mdp, item_offset, item);
1800   int count_offset = in_bytes(item_count_offset_fn(start_row));
1801   movl(reg2, DataLayout::counter_increment);
1802   set_mdp_data_at(mdp, count_offset, reg2);
1803   if (start_row > 0) {
1804     jmp(done);
1805   }
1806 }
1807 
1808 // Example state machine code for three profile rows:
1809 //   // main copy of decision tree, rooted at row[1]
1810 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1811 //   if (row[0].rec != NULL) {
1812 //     // inner copy of decision tree, rooted at row[1]
1813 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1814 //     if (row[1].rec != NULL) {
1815 //       // degenerate decision tree, rooted at row[2]
1816 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1817 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1818 //       row[2].init(rec); goto done;
1819 //     } else {
1820 //       // remember row[1] is empty
1821 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1822 //       row[1].init(rec); goto done;
1823 //     }
1824 //   } else {
1825 //     // remember row[0] is empty
1826 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1827 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1828 //     row[0].init(rec); goto done;
1829 //   }
1830 //   done:
1831 
1832 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1833                                                         Register mdp, Register reg2,
1834                                                         bool is_virtual_call) {
1835   assert(ProfileInterpreter, "must be profiling");
1836   Label done;
1837 
1838   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1839 
1840   bind (done);
1841 }
1842 
1843 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1844                                             Register mdp) {
1845   if (ProfileInterpreter) {
1846     Label profile_continue;
1847     uint row;
1848 
1849     // If no method data exists, go to profile_continue.
1850     test_method_data_pointer(mdp, profile_continue);
1851 
1852     // Update the total ret count.
1853     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1854 
1855     for (row = 0; row < RetData::row_limit(); row++) {
1856       Label next_test;
1857 
1858       // See if return_bci is equal to bci[n]:
1859       test_mdp_data_at(mdp,
1860                        in_bytes(RetData::bci_offset(row)),
1861                        return_bci, noreg,
1862                        next_test);
1863 
1864       // return_bci is equal to bci[n].  Increment the count.
1865       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1866 
1867       // The method data pointer needs to be updated to reflect the new target.
1868       update_mdp_by_offset(mdp,
1869                            in_bytes(RetData::bci_displacement_offset(row)));
1870       jmp(profile_continue);
1871       bind(next_test);
1872     }
1873 
1874     update_mdp_for_ret(return_bci);
1875 
1876     bind(profile_continue);
1877   }
1878 }
1879 
1880 
1881 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1882   if (ProfileInterpreter) {
1883     Label profile_continue;
1884 
1885     // If no method data exists, go to profile_continue.
1886     test_method_data_pointer(mdp, profile_continue);
1887 
1888     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1889 
1890     // The method data pointer needs to be updated.
1891     int mdp_delta = in_bytes(BitData::bit_data_size());
1892     if (TypeProfileCasts) {
1893       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1894     }
1895     update_mdp_by_constant(mdp, mdp_delta);
1896 
1897     bind(profile_continue);
1898   }
1899 }
1900 
1901 
1902 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1903   if (ProfileInterpreter && TypeProfileCasts) {
1904     Label profile_continue;
1905 
1906     // If no method data exists, go to profile_continue.
1907     test_method_data_pointer(mdp, profile_continue);
1908 
1909     int count_offset = in_bytes(CounterData::count_offset());
1910     // Back up the address, since we have already bumped the mdp.
1911     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1912 
1913     // *Decrement* the counter.  We expect to see zero or small negatives.
1914     increment_mdp_data_at(mdp, count_offset, true);
1915 
1916     bind (profile_continue);
1917   }
1918 }
1919 
1920 
1921 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1922   if (ProfileInterpreter) {
1923     Label profile_continue;
1924 
1925     // If no method data exists, go to profile_continue.
1926     test_method_data_pointer(mdp, profile_continue);
1927 
1928     // The method data pointer needs to be updated.
1929     int mdp_delta = in_bytes(BitData::bit_data_size());
1930     if (TypeProfileCasts) {
1931       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1932 
1933       // Record the object type.
1934       record_klass_in_profile(klass, mdp, reg2, false);
1935       NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1936       NOT_LP64(restore_locals();)         // Restore EDI
1937     }
1938     update_mdp_by_constant(mdp, mdp_delta);
1939 
1940     bind(profile_continue);
1941   }
1942 }
1943 
1944 
1945 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1946   if (ProfileInterpreter) {
1947     Label profile_continue;
1948 
1949     // If no method data exists, go to profile_continue.
1950     test_method_data_pointer(mdp, profile_continue);
1951 
1952     // Update the default case count
1953     increment_mdp_data_at(mdp,
1954                           in_bytes(MultiBranchData::default_count_offset()));
1955 
1956     // The method data pointer needs to be updated.
1957     update_mdp_by_offset(mdp,
1958                          in_bytes(MultiBranchData::
1959                                   default_displacement_offset()));
1960 
1961     bind(profile_continue);
1962   }
1963 }
1964 
1965 
1966 void InterpreterMacroAssembler::profile_switch_case(Register index,
1967                                                     Register mdp,
1968                                                     Register reg2) {
1969   if (ProfileInterpreter) {
1970     Label profile_continue;
1971 
1972     // If no method data exists, go to profile_continue.
1973     test_method_data_pointer(mdp, profile_continue);
1974 
1975     // Build the base (index * per_case_size_in_bytes()) +
1976     // case_array_offset_in_bytes()
1977     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1978     imulptr(index, reg2); // XXX l ?
1979     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1980 
1981     // Update the case count
1982     increment_mdp_data_at(mdp,
1983                           index,
1984                           in_bytes(MultiBranchData::relative_count_offset()));
1985 
1986     // The method data pointer needs to be updated.
1987     update_mdp_by_offset(mdp,
1988                          index,
1989                          in_bytes(MultiBranchData::
1990                                   relative_displacement_offset()));
1991 
1992     bind(profile_continue);
1993   }
1994 }
1995 
1996 
1997 
1998 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1999   if (state == atos) {
2000     MacroAssembler::verify_oop(reg);
2001   }
2002 }
2003 
2004 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2005 #ifndef _LP64
2006   if ((state == ftos && UseSSE < 1) ||
2007       (state == dtos && UseSSE < 2)) {
2008     MacroAssembler::verify_FPU(stack_depth);
2009   }
2010 #endif
2011 }
2012 
2013 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2014 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2015                                                         int increment, Address mask,
2016                                                         Register scratch, bool preloaded,
2017                                                         Condition cond, Label* where) {
2018   if (!preloaded) {
2019     movl(scratch, counter_addr);
2020   }
2021   incrementl(scratch, increment);
2022   movl(counter_addr, scratch);
2023   andl(scratch, mask);
2024   jcc(cond, *where);
2025 }
2026 
2027 void InterpreterMacroAssembler::notify_method_entry() {
2028   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2029   // track stack depth.  If it is possible to enter interp_only_mode we add
2030   // the code to check if the event should be sent.
2031   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2032   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2033   if (JvmtiExport::can_post_interpreter_events()) {
2034     Label L;
2035     NOT_LP64(get_thread(rthread);)
2036     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2037     testl(rdx, rdx);
2038     jcc(Assembler::zero, L);
2039     call_VM(noreg, CAST_FROM_FN_PTR(address,
2040                                     InterpreterRuntime::post_method_entry));
2041     bind(L);
2042   }
2043 
2044   {
2045     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2046     NOT_LP64(get_thread(rthread);)
2047     get_method(rarg);
2048     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2049                  rthread, rarg);
2050   }
2051 
2052   // RedefineClasses() tracing support for obsolete method entry
2053   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2054     NOT_LP64(get_thread(rthread);)
2055     get_method(rarg);
2056     call_VM_leaf(
2057       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2058       rthread, rarg);
2059   }
2060 }
2061 
2062 
2063 void InterpreterMacroAssembler::notify_method_exit(
2064     TosState state, NotifyMethodExitMode mode) {
2065   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2066   // track stack depth.  If it is possible to enter interp_only_mode we add
2067   // the code to check if the event should be sent.
2068   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2069   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2070   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2071     Label L;
2072     // Note: frame::interpreter_frame_result has a dependency on how the
2073     // method result is saved across the call to post_method_exit. If this
2074     // is changed then the interpreter_frame_result implementation will
2075     // need to be updated too.
2076 
2077     // template interpreter will leave the result on the top of the stack.
2078     push(state);
2079     NOT_LP64(get_thread(rthread);)
2080     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2081     testl(rdx, rdx);
2082     jcc(Assembler::zero, L);
2083     call_VM(noreg,
2084             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2085     bind(L);
2086     pop(state);
2087   }
2088 
2089   {
2090     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2091     push(state);
2092     NOT_LP64(get_thread(rthread);)
2093     get_method(rarg);
2094     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2095                  rthread, rarg);
2096     pop(state);
2097   }
2098 }