1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interp_masm.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateInterpreterGenerator.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/valueKlass.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/deoptimization.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/synchronizer.hpp"
  46 #include "runtime/timer.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "utilities/debug.hpp"
  49 #include "utilities/macros.hpp"
  50 
  51 #define __ _masm->
  52 
  53 // Size of interpreter code.  Increase if too small.  Interpreter will
  54 // fail with a guarantee ("not enough space for interpreter generation");
  55 // if too small.
  56 // Run with +PrintInterpreter to get the VM to print out the size.
  57 // Max size with JVMTI
  58 #ifdef AMD64
  59 int TemplateInterpreter::InterpreterCodeSize = JVMCI_ONLY(280) NOT_JVMCI(268) * 1024;
  60 #else
  61 int TemplateInterpreter::InterpreterCodeSize = 224 * 1024;
  62 #endif // AMD64
  63 
  64 // Global Register Names
  65 static const Register rbcp     = LP64_ONLY(r13) NOT_LP64(rsi);
  66 static const Register rlocals  = LP64_ONLY(r14) NOT_LP64(rdi);
  67 
  68 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  69 const int bcp_offset    = frame::interpreter_frame_bcp_offset    * wordSize;
  70 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
  71 
  72 
  73 //-----------------------------------------------------------------------------
  74 
  75 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
  76   address entry = __ pc();
  77 
  78 #ifdef ASSERT
  79   {
  80     Label L;
  81     __ lea(rax, Address(rbp,
  82                         frame::interpreter_frame_monitor_block_top_offset *
  83                         wordSize));
  84     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
  85                          // grows negative)
  86     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
  87     __ stop ("interpreter frame not set up");
  88     __ bind(L);
  89   }
  90 #endif // ASSERT
  91   // Restore bcp under the assumption that the current frame is still
  92   // interpreted
  93   __ restore_bcp();
  94 
  95   // expression stack must be empty before entering the VM if an
  96   // exception happened
  97   __ empty_expression_stack();
  98   // throw exception
  99   __ call_VM(noreg,
 100              CAST_FROM_FN_PTR(address,
 101                               InterpreterRuntime::throw_StackOverflowError));
 102   return entry;
 103 }
 104 
 105 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
 106         const char* name) {
 107   address entry = __ pc();
 108   // expression stack must be empty before entering the VM if an
 109   // exception happened
 110   __ empty_expression_stack();
 111   // setup parameters
 112   // ??? convention: expect aberrant index in register ebx
 113   Register rarg = NOT_LP64(rax) LP64_ONLY(c_rarg1);
 114   __ lea(rarg, ExternalAddress((address)name));
 115   __ call_VM(noreg,
 116              CAST_FROM_FN_PTR(address,
 117                               InterpreterRuntime::
 118                               throw_ArrayIndexOutOfBoundsException),
 119              rarg, rbx);
 120   return entry;
 121 }
 122 
 123 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 124   address entry = __ pc();
 125 
 126   // object is at TOS
 127   Register rarg = NOT_LP64(rax) LP64_ONLY(c_rarg1);
 128   __ pop(rarg);
 129 
 130   // expression stack must be empty before entering the VM if an
 131   // exception happened
 132   __ empty_expression_stack();
 133 
 134   __ call_VM(noreg,
 135              CAST_FROM_FN_PTR(address,
 136                               InterpreterRuntime::
 137                               throw_ClassCastException),
 138              rarg);
 139   return entry;
 140 }
 141 
 142 address TemplateInterpreterGenerator::generate_exception_handler_common(
 143         const char* name, const char* message, bool pass_oop) {
 144   assert(!pass_oop || message == NULL, "either oop or message but not both");
 145   address entry = __ pc();
 146 
 147   Register rarg = NOT_LP64(rax) LP64_ONLY(c_rarg1);
 148   Register rarg2 = NOT_LP64(rbx) LP64_ONLY(c_rarg2);
 149 
 150   if (pass_oop) {
 151     // object is at TOS
 152     __ pop(rarg2);
 153   }
 154   // expression stack must be empty before entering the VM if an
 155   // exception happened
 156   __ empty_expression_stack();
 157   // setup parameters
 158   __ lea(rarg, ExternalAddress((address)name));
 159   if (pass_oop) {
 160     __ call_VM(rax, CAST_FROM_FN_PTR(address,
 161                                      InterpreterRuntime::
 162                                      create_klass_exception),
 163                rarg, rarg2);
 164   } else {
 165     __ lea(rarg2, ExternalAddress((address)message));
 166     __ call_VM(rax,
 167                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 168                rarg, rarg2);
 169   }
 170   // throw exception
 171   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 172   return entry;
 173 }
 174 
 175 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 176   address entry = __ pc();
 177 
 178 #ifndef _LP64
 179 #ifdef COMPILER2
 180   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
 181   if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) {
 182     for (int i = 1; i < 8; i++) {
 183         __ ffree(i);
 184     }
 185   } else if (UseSSE < 2) {
 186     __ empty_FPU_stack();
 187   }
 188 #endif // COMPILER2
 189   if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) {
 190     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
 191   } else {
 192     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
 193   }
 194 
 195   if (state == ftos) {
 196     __ MacroAssembler::verify_FPU(UseSSE >= 1 ? 0 : 1, "generate_return_entry_for in interpreter");
 197   } else if (state == dtos) {
 198     __ MacroAssembler::verify_FPU(UseSSE >= 2 ? 0 : 1, "generate_return_entry_for in interpreter");
 199   }
 200 #endif // _LP64
 201 
 202   // Restore stack bottom in case i2c adjusted stack
 203   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
 204   // and NULL it as marker that esp is now tos until next java call
 205   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 206 
 207   if (state == qtos && ValueTypeReturnedAsFields) {
 208 #ifndef _LP64
 209     __ super_call_VM_leaf(StubRoutines::store_value_type_fields_to_buf());
 210 #else
 211     // A value type is being returned. If fields are in registers we
 212     // need to allocate a value type instance and initialize it with
 213     // the value of the fields.
 214     Label skip, slow_case;
 215     // We only need a new buffered value if a new one is not returned
 216     __ testptr(rax, 1);
 217     __ jcc(Assembler::zero, skip);
 218 
 219     // Try to allocate a new buffered value (from the heap)
 220     if (UseTLAB) {
 221       __ mov(rbx, rax);
 222       __ andptr(rbx, -2);
 223 
 224       __ movl(r14, Address(rbx, Klass::layout_helper_offset()));
 225 
 226       __ movptr(r13, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
 227       __ lea(r14, Address(r13, r14, Address::times_1));
 228       __ cmpptr(r14, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
 229       __ jcc(Assembler::above, slow_case);
 230       __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), r14);
 231 
 232       if (UseBiasedLocking) {
 233         __ movptr(rax, Address(rbx, Klass::prototype_header_offset()));
 234         __ movptr(Address(r13, oopDesc::mark_offset_in_bytes ()), rax);
 235       } else {
 236         __ movptr(Address(r13, oopDesc::mark_offset_in_bytes ()),
 237                   (intptr_t)markOopDesc::prototype());
 238       }
 239       __ xorl(rax, rax); // use zero reg to clear memory (shorter code)
 240       __ store_klass_gap(r13, rax);  // zero klass gap for compressed oops
 241       __ mov(rax, rbx);
 242       __ store_klass(r13, rbx);  // klass
 243 
 244       // We have our new buffered value, initialize its fields with a
 245       // value class specific handler
 246       __ movptr(rbx, Address(rax, ValueKlass::pack_handler_offset()));
 247       __ mov(rax, r13);
 248       __ call(rbx);
 249       __ jmp(skip);
 250     }
 251 
 252     __ bind(slow_case);
 253     // We failed to allocate a new value, fall back to a runtime
 254     // call. Some oop field may be live in some registers but we can't
 255     // tell. That runtime call will take care of preserving them
 256     // across a GC if there's one.
 257     __ super_call_VM_leaf(StubRoutines::store_value_type_fields_to_buf());
 258     __ bind(skip);
 259 
 260     if (ReturnValuesInThreadLocalBuffer) {
 261       // vt_alloc_ptr adjustment
 262       Label no_adjustment;
 263       __ cmpptr(rax, Address(r15_thread, in_bytes(JavaThread::vt_alloc_ptr_offset())));
 264       __ jcc(Assembler::notEqual, no_adjustment);
 265       __ load_klass(rbx, rax);
 266       __ movl(r13, Address(rbx, Klass::layout_helper_offset()));
 267       __ lea(r14, Address(rax, r13, Address::times_1));
 268       __ movptr(Address(r15_thread, in_bytes(JavaThread::vt_alloc_ptr_offset())), r14);
 269       __ bind(no_adjustment);
 270     }
 271 
 272 #endif
 273   }
 274 
 275   __ restore_bcp();
 276   __ restore_locals();
 277 
 278   if (state == atos) {
 279     Register mdp = rbx;
 280     Register tmp = rcx;
 281     __ profile_return_type(mdp, rax, tmp);
 282   }
 283 
 284   const Register cache = rbx;
 285   const Register index = rcx;
 286   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
 287 
 288   const Register flags = cache;
 289   __ movl(flags, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 290   __ andl(flags, ConstantPoolCacheEntry::parameter_size_mask);
 291   __ lea(rsp, Address(rsp, flags, Interpreter::stackElementScale()));
 292 
 293    const Register java_thread = NOT_LP64(rcx) LP64_ONLY(r15_thread);
 294    if (JvmtiExport::can_pop_frame()) {
 295      NOT_LP64(__ get_thread(java_thread));
 296      __ check_and_handle_popframe(java_thread);
 297    }
 298    if (JvmtiExport::can_force_early_return()) {
 299      NOT_LP64(__ get_thread(java_thread));
 300      __ check_and_handle_earlyret(java_thread);
 301    }
 302 
 303   __ dispatch_next(state, step);
 304 
 305   return entry;
 306 }
 307 
 308 
 309 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) {
 310   address entry = __ pc();
 311 
 312 #ifndef _LP64
 313   if (state == ftos) {
 314     __ MacroAssembler::verify_FPU(UseSSE >= 1 ? 0 : 1, "generate_deopt_entry_for in interpreter");
 315   } else if (state == dtos) {
 316     __ MacroAssembler::verify_FPU(UseSSE >= 2 ? 0 : 1, "generate_deopt_entry_for in interpreter");
 317   }
 318 #endif // _LP64
 319 
 320   // NULL last_sp until next java call
 321   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 322   __ restore_bcp();
 323   __ restore_locals();
 324   const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread);
 325   NOT_LP64(__ get_thread(thread));
 326 #if INCLUDE_JVMCI
 327   // Check if we need to take lock at entry of synchronized method.  This can
 328   // only occur on method entry so emit it only for vtos with step 0.
 329   if ((EnableJVMCI || UseAOT) && state == vtos && step == 0) {
 330     Label L;
 331     __ cmpb(Address(thread, JavaThread::pending_monitorenter_offset()), 0);
 332     __ jcc(Assembler::zero, L);
 333     // Clear flag.
 334     __ movb(Address(thread, JavaThread::pending_monitorenter_offset()), 0);
 335     // Satisfy calling convention for lock_method().
 336     __ get_method(rbx);
 337     // Take lock.
 338     lock_method();
 339     __ bind(L);
 340   } else {
 341 #ifdef ASSERT
 342     if (EnableJVMCI) {
 343       Label L;
 344       __ cmpb(Address(r15_thread, JavaThread::pending_monitorenter_offset()), 0);
 345       __ jccb(Assembler::zero, L);
 346       __ stop("unexpected pending monitor in deopt entry");
 347       __ bind(L);
 348     }
 349 #endif
 350   }
 351 #endif
 352   // handle exceptions
 353   {
 354     Label L;
 355     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
 356     __ jcc(Assembler::zero, L);
 357     __ call_VM(noreg,
 358                CAST_FROM_FN_PTR(address,
 359                                 InterpreterRuntime::throw_pending_exception));
 360     __ should_not_reach_here();
 361     __ bind(L);
 362   }
 363   if (continuation == NULL) {
 364     __ dispatch_next(state, step);
 365   } else {
 366     __ jump_to_entry(continuation);
 367   }
 368   return entry;
 369 }
 370 
 371 address TemplateInterpreterGenerator::generate_result_handler_for(
 372         BasicType type) {
 373   address entry = __ pc();
 374   switch (type) {
 375   case T_BOOLEAN: __ c2bool(rax);            break;
 376 #ifndef _LP64
 377   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
 378 #else
 379   case T_CHAR   : __ movzwl(rax, rax);       break;
 380 #endif // _LP64
 381   case T_BYTE   : __ sign_extend_byte(rax);  break;
 382   case T_SHORT  : __ sign_extend_short(rax); break;
 383   case T_INT    : /* nothing to do */        break;
 384   case T_LONG   : /* nothing to do */        break;
 385   case T_VOID   : /* nothing to do */        break;
 386 #ifndef _LP64
 387   case T_DOUBLE :
 388   case T_FLOAT  :
 389     { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 390       __ pop(t);                            // remove return address first
 391       // Must return a result for interpreter or compiler. In SSE
 392       // mode, results are returned in xmm0 and the FPU stack must
 393       // be empty.
 394       if (type == T_FLOAT && UseSSE >= 1) {
 395         // Load ST0
 396         __ fld_d(Address(rsp, 0));
 397         // Store as float and empty fpu stack
 398         __ fstp_s(Address(rsp, 0));
 399         // and reload
 400         __ movflt(xmm0, Address(rsp, 0));
 401       } else if (type == T_DOUBLE && UseSSE >= 2 ) {
 402         __ movdbl(xmm0, Address(rsp, 0));
 403       } else {
 404         // restore ST0
 405         __ fld_d(Address(rsp, 0));
 406       }
 407       // and pop the temp
 408       __ addptr(rsp, 2 * wordSize);
 409       __ push(t);                           // restore return address
 410     }
 411     break;
 412 #else
 413   case T_FLOAT  : /* nothing to do */        break;
 414   case T_DOUBLE : /* nothing to do */        break;
 415 #endif // _LP64
 416 
 417   case T_VALUETYPE: // fall through (value types are handled with oops)
 418   case T_OBJECT :
 419     // retrieve result from frame
 420     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
 421     // and verify it
 422     __ verify_oop(rax);
 423     break;
 424   default       : ShouldNotReachHere();
 425   }
 426   __ ret(0);                                   // return from result handler
 427   return entry;
 428 }
 429 
 430 address TemplateInterpreterGenerator::generate_safept_entry_for(
 431         TosState state,
 432         address runtime_entry) {
 433   address entry = __ pc();
 434   __ push(state);
 435   __ call_VM(noreg, runtime_entry);
 436   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 437   return entry;
 438 }
 439 
 440 
 441 
 442 // Helpers for commoning out cases in the various type of method entries.
 443 //
 444 
 445 
 446 // increment invocation count & check for overflow
 447 //
 448 // Note: checking for negative value instead of overflow
 449 //       so we have a 'sticky' overflow test
 450 //
 451 // rbx: method
 452 // rcx: invocation counter
 453 //
 454 void TemplateInterpreterGenerator::generate_counter_incr(
 455         Label* overflow,
 456         Label* profile_method,
 457         Label* profile_method_continue) {
 458   Label done;
 459   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 460   if (TieredCompilation) {
 461     int increment = InvocationCounter::count_increment;
 462     Label no_mdo;
 463     if (ProfileInterpreter) {
 464       // Are we profiling?
 465       __ movptr(rax, Address(rbx, Method::method_data_offset()));
 466       __ testptr(rax, rax);
 467       __ jccb(Assembler::zero, no_mdo);
 468       // Increment counter in the MDO
 469       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
 470                                                 in_bytes(InvocationCounter::counter_offset()));
 471       const Address mask(rax, in_bytes(MethodData::invoke_mask_offset()));
 472       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
 473       __ jmp(done);
 474     }
 475     __ bind(no_mdo);
 476     // Increment counter in MethodCounters
 477     const Address invocation_counter(rax,
 478                   MethodCounters::invocation_counter_offset() +
 479                   InvocationCounter::counter_offset());
 480     __ get_method_counters(rbx, rax, done);
 481     const Address mask(rax, in_bytes(MethodCounters::invoke_mask_offset()));
 482     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx,
 483                                false, Assembler::zero, overflow);
 484     __ bind(done);
 485   } else { // not TieredCompilation
 486     const Address backedge_counter(rax,
 487                   MethodCounters::backedge_counter_offset() +
 488                   InvocationCounter::counter_offset());
 489     const Address invocation_counter(rax,
 490                   MethodCounters::invocation_counter_offset() +
 491                   InvocationCounter::counter_offset());
 492 
 493     __ get_method_counters(rbx, rax, done);
 494 
 495     if (ProfileInterpreter) {
 496       __ incrementl(Address(rax,
 497               MethodCounters::interpreter_invocation_counter_offset()));
 498     }
 499     // Update standard invocation counters
 500     __ movl(rcx, invocation_counter);
 501     __ incrementl(rcx, InvocationCounter::count_increment);
 502     __ movl(invocation_counter, rcx); // save invocation count
 503 
 504     __ movl(rax, backedge_counter);   // load backedge counter
 505     __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
 506 
 507     __ addl(rcx, rax);                // add both counters
 508 
 509     // profile_method is non-null only for interpreted method so
 510     // profile_method != NULL == !native_call
 511 
 512     if (ProfileInterpreter && profile_method != NULL) {
 513       // Test to see if we should create a method data oop
 514       __ movptr(rax, Address(rbx, Method::method_counters_offset()));
 515       __ cmp32(rcx, Address(rax, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
 516       __ jcc(Assembler::less, *profile_method_continue);
 517 
 518       // if no method data exists, go to profile_method
 519       __ test_method_data_pointer(rax, *profile_method);
 520     }
 521 
 522     __ movptr(rax, Address(rbx, Method::method_counters_offset()));
 523     __ cmp32(rcx, Address(rax, in_bytes(MethodCounters::interpreter_invocation_limit_offset())));
 524     __ jcc(Assembler::aboveEqual, *overflow);
 525     __ bind(done);
 526   }
 527 }
 528 
 529 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 530 
 531   // Asm interpreter on entry
 532   // r14/rdi - locals
 533   // r13/rsi - bcp
 534   // rbx - method
 535   // rdx - cpool --- DOES NOT APPEAR TO BE TRUE
 536   // rbp - interpreter frame
 537 
 538   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 539   // Everything as it was on entry
 540   // rdx is not restored. Doesn't appear to really be set.
 541 
 542   // InterpreterRuntime::frequency_counter_overflow takes two
 543   // arguments, the first (thread) is passed by call_VM, the second
 544   // indicates if the counter overflow occurs at a backwards branch
 545   // (NULL bcp).  We pass zero for it.  The call returns the address
 546   // of the verified entry point for the method or NULL if the
 547   // compilation did not complete (either went background or bailed
 548   // out).
 549   Register rarg = NOT_LP64(rax) LP64_ONLY(c_rarg1);
 550   __ movl(rarg, 0);
 551   __ call_VM(noreg,
 552              CAST_FROM_FN_PTR(address,
 553                               InterpreterRuntime::frequency_counter_overflow),
 554              rarg);
 555 
 556   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
 557   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
 558   // and jump to the interpreted entry.
 559   __ jmp(do_continue, relocInfo::none);
 560 }
 561 
 562 // See if we've got enough room on the stack for locals plus overhead below
 563 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 564 // without going through the signal handler, i.e., reserved and yellow zones
 565 // will not be made usable. The shadow zone must suffice to handle the
 566 // overflow.
 567 // The expression stack grows down incrementally, so the normal guard
 568 // page mechanism will work for that.
 569 //
 570 // NOTE: Since the additional locals are also always pushed (wasn't
 571 // obvious in generate_fixed_frame) so the guard should work for them
 572 // too.
 573 //
 574 // Args:
 575 //      rdx: number of additional locals this frame needs (what we must check)
 576 //      rbx: Method*
 577 //
 578 // Kills:
 579 //      rax
 580 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
 581 
 582   // monitor entry size: see picture of stack in frame_x86.hpp
 583   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 584 
 585   // total overhead size: entry_size + (saved rbp through expr stack
 586   // bottom).  be sure to change this if you add/subtract anything
 587   // to/from the overhead area
 588   const int overhead_size =
 589     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 590 
 591   const int page_size = os::vm_page_size();
 592 
 593   Label after_frame_check;
 594 
 595   // see if the frame is greater than one page in size. If so,
 596   // then we need to verify there is enough stack space remaining
 597   // for the additional locals.
 598   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
 599   __ jcc(Assembler::belowEqual, after_frame_check);
 600 
 601   // compute rsp as if this were going to be the last frame on
 602   // the stack before the red zone
 603 
 604   Label after_frame_check_pop;
 605   const Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 606 #ifndef _LP64
 607   __ push(thread);
 608   __ get_thread(thread);
 609 #endif
 610 
 611   const Address stack_limit(thread, JavaThread::stack_overflow_limit_offset());
 612 
 613   // locals + overhead, in bytes
 614   __ mov(rax, rdx);
 615   __ shlptr(rax, Interpreter::logStackElementSize); // Convert parameter count to bytes.
 616   __ addptr(rax, overhead_size);
 617 
 618 #ifdef ASSERT
 619   Label limit_okay;
 620   // Verify that thread stack overflow limit is non-zero.
 621   __ cmpptr(stack_limit, (int32_t)NULL_WORD);
 622   __ jcc(Assembler::notEqual, limit_okay);
 623   __ stop("stack overflow limit is zero");
 624   __ bind(limit_okay);
 625 #endif
 626 
 627   // Add locals/frame size to stack limit.
 628   __ addptr(rax, stack_limit);
 629 
 630   // Check against the current stack bottom.
 631   __ cmpptr(rsp, rax);
 632 
 633   __ jcc(Assembler::above, after_frame_check_pop);
 634   NOT_LP64(__ pop(rsi));  // get saved bcp
 635 
 636   // Restore sender's sp as SP. This is necessary if the sender's
 637   // frame is an extended compiled frame (see gen_c2i_adapter())
 638   // and safer anyway in case of JSR292 adaptations.
 639 
 640   __ pop(rax); // return address must be moved if SP is changed
 641   __ mov(rsp, rbcp);
 642   __ push(rax);
 643 
 644   // Note: the restored frame is not necessarily interpreted.
 645   // Use the shared runtime version of the StackOverflowError.
 646   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 647   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
 648   // all done with frame size check
 649   __ bind(after_frame_check_pop);
 650   NOT_LP64(__ pop(rsi));
 651 
 652   // all done with frame size check
 653   __ bind(after_frame_check);
 654 }
 655 
 656 // Allocate monitor and lock method (asm interpreter)
 657 //
 658 // Args:
 659 //      rbx: Method*
 660 //      r14/rdi: locals
 661 //
 662 // Kills:
 663 //      rax
 664 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 665 //      rscratch1, rscratch2 (scratch regs)
 666 void TemplateInterpreterGenerator::lock_method() {
 667   // synchronize method
 668   const Address access_flags(rbx, Method::access_flags_offset());
 669   const Address monitor_block_top(
 670         rbp,
 671         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 672   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 673 
 674 #ifdef ASSERT
 675   {
 676     Label L;
 677     __ movl(rax, access_flags);
 678     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 679     __ jcc(Assembler::notZero, L);
 680     __ stop("method doesn't need synchronization");
 681     __ bind(L);
 682   }
 683 #endif // ASSERT
 684 
 685   // get synchronization object
 686   {
 687     Label done;
 688     __ movl(rax, access_flags);
 689     __ testl(rax, JVM_ACC_STATIC);
 690     // get receiver (assume this is frequent case)
 691     __ movptr(rax, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
 692     __ jcc(Assembler::zero, done);
 693     __ load_mirror(rax, rbx);
 694 
 695 #ifdef ASSERT
 696     {
 697       Label L;
 698       __ testptr(rax, rax);
 699       __ jcc(Assembler::notZero, L);
 700       __ stop("synchronization object is NULL");
 701       __ bind(L);
 702     }
 703 #endif // ASSERT
 704 
 705     __ bind(done);
 706   }
 707 
 708   // add space for monitor & lock
 709   __ subptr(rsp, entry_size); // add space for a monitor entry
 710   __ movptr(monitor_block_top, rsp);  // set new monitor block top
 711   // store object
 712   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
 713   const Register lockreg = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
 714   __ movptr(lockreg, rsp); // object address
 715   __ lock_object(lockreg);
 716 }
 717 
 718 // Generate a fixed interpreter frame. This is identical setup for
 719 // interpreted methods and for native methods hence the shared code.
 720 //
 721 // Args:
 722 //      rax: return address
 723 //      rbx: Method*
 724 //      r14/rdi: pointer to locals
 725 //      r13/rsi: sender sp
 726 //      rdx: cp cache
 727 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 728   // initialize fixed part of activation frame
 729   __ push(rax);        // save return address
 730   __ enter();          // save old & set new rbp
 731   __ push(rbcp);        // set sender sp
 732   __ push((int)NULL_WORD); // leave last_sp as null
 733   __ movptr(rbcp, Address(rbx, Method::const_offset()));      // get ConstMethod*
 734   __ lea(rbcp, Address(rbcp, ConstMethod::codes_offset())); // get codebase
 735   __ push(rbx);        // save Method*
 736   // Get mirror and store it in the frame as GC root for this Method*
 737   __ load_mirror(rdx, rbx);
 738   __ push(rdx);
 739   if (ProfileInterpreter) {
 740     Label method_data_continue;
 741     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
 742     __ testptr(rdx, rdx);
 743     __ jcc(Assembler::zero, method_data_continue);
 744     __ addptr(rdx, in_bytes(MethodData::data_offset()));
 745     __ bind(method_data_continue);
 746     __ push(rdx);      // set the mdp (method data pointer)
 747   } else {
 748     __ push(0);
 749   }
 750 
 751   __ movptr(rdx, Address(rbx, Method::const_offset()));
 752   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
 753   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
 754   __ push(rdx); // set constant pool cache
 755   const Register thread1 = NOT_LP64(rdx) LP64_ONLY(r15_thread);
 756   NOT_LP64(__ get_thread(thread1));
 757   __ movptr(rdx, Address(thread1, JavaThread::vt_alloc_ptr_offset()));
 758   __ push(rdx); // value type allocation pointer when activation is created
 759   __ push(rlocals); // set locals pointer
 760   if (native_call) {
 761     __ push(0); // no bcp
 762   } else {
 763     __ push(rbcp); // set bcp
 764   }
 765   __ push(0); // reserve word for pointer to expression stack bottom
 766   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
 767 }
 768 
 769 // End of helpers
 770 
 771 // Method entry for java.lang.ref.Reference.get.
 772 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 773 #if INCLUDE_ALL_GCS
 774   // Code: _aload_0, _getfield, _areturn
 775   // parameter size = 1
 776   //
 777   // The code that gets generated by this routine is split into 2 parts:
 778   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 779   //    2. The slow path - which is an expansion of the regular method entry.
 780   //
 781   // Notes:-
 782   // * In the G1 code we do not check whether we need to block for
 783   //   a safepoint. If G1 is enabled then we must execute the specialized
 784   //   code for Reference.get (except when the Reference object is null)
 785   //   so that we can log the value in the referent field with an SATB
 786   //   update buffer.
 787   //   If the code for the getfield template is modified so that the
 788   //   G1 pre-barrier code is executed when the current method is
 789   //   Reference.get() then going through the normal method entry
 790   //   will be fine.
 791   // * The G1 code can, however, check the receiver object (the instance
 792   //   of java.lang.Reference) and jump to the slow path if null. If the
 793   //   Reference object is null then we obviously cannot fetch the referent
 794   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 795   //   regular method entry code to generate the NPE.
 796   //
 797   // rbx: Method*
 798 
 799   // r13: senderSP must preserve for slow path, set SP to it on fast path
 800 
 801   address entry = __ pc();
 802 
 803   const int referent_offset = java_lang_ref_Reference::referent_offset;
 804   guarantee(referent_offset > 0, "referent offset not initialized");
 805 
 806   if (UseG1GC) {
 807     Label slow_path;
 808     // rbx: method
 809 
 810     // Check if local 0 != NULL
 811     // If the receiver is null then it is OK to jump to the slow path.
 812     __ movptr(rax, Address(rsp, wordSize));
 813 
 814     __ testptr(rax, rax);
 815     __ jcc(Assembler::zero, slow_path);
 816 
 817     // rax: local 0
 818     // rbx: method (but can be used as scratch now)
 819     // rdx: scratch
 820     // rdi: scratch
 821 
 822     // Preserve the sender sp in case the pre-barrier
 823     // calls the runtime
 824     NOT_LP64(__ push(rsi));
 825 
 826     // Generate the G1 pre-barrier code to log the value of
 827     // the referent field in an SATB buffer.
 828 
 829     // Load the value of the referent field.
 830     const Address field_address(rax, referent_offset);
 831     __ load_heap_oop(rax, field_address);
 832 
 833     const Register sender_sp = NOT_LP64(rsi) LP64_ONLY(r13);
 834     const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread);
 835     NOT_LP64(__ get_thread(thread));
 836 
 837     // Generate the G1 pre-barrier code to log the value of
 838     // the referent field in an SATB buffer.
 839     __ g1_write_barrier_pre(noreg /* obj */,
 840                             rax /* pre_val */,
 841                             thread /* thread */,
 842                             rbx /* tmp */,
 843                             true /* tosca_live */,
 844                             true /* expand_call */);
 845 
 846     // _areturn
 847     NOT_LP64(__ pop(rsi));      // get sender sp
 848     __ pop(rdi);                // get return address
 849     __ mov(rsp, sender_sp);     // set sp to sender sp
 850     __ jmp(rdi);
 851     __ ret(0);
 852 
 853     // generate a vanilla interpreter entry as the slow path
 854     __ bind(slow_path);
 855     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 856     return entry;
 857   }
 858 #endif // INCLUDE_ALL_GCS
 859 
 860   // If G1 is not enabled then attempt to go through the accessor entry point
 861   // Reference.get is an accessor
 862   return NULL;
 863 }
 864 
 865 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
 866   // Quick & dirty stack overflow checking: bang the stack & handle trap.
 867   // Note that we do the banging after the frame is setup, since the exception
 868   // handling code expects to find a valid interpreter frame on the stack.
 869   // Doing the banging earlier fails if the caller frame is not an interpreter
 870   // frame.
 871   // (Also, the exception throwing code expects to unlock any synchronized
 872   // method receiever, so do the banging after locking the receiver.)
 873 
 874   // Bang each page in the shadow zone. We can't assume it's been done for
 875   // an interpreter frame with greater than a page of locals, so each page
 876   // needs to be checked.  Only true for non-native.
 877   if (UseStackBanging) {
 878     const int page_size = os::vm_page_size();
 879     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
 880     const int start_page = native_call ? n_shadow_pages : 1;
 881     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
 882       __ bang_stack_with_offset(pages*page_size);
 883     }
 884   }
 885 }
 886 
 887 // Interpreter stub for calling a native method. (asm interpreter)
 888 // This sets up a somewhat different looking stack for calling the
 889 // native method than the typical interpreter frame setup.
 890 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
 891   // determine code generation flags
 892   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
 893 
 894   // rbx: Method*
 895   // rbcp: sender sp
 896 
 897   address entry_point = __ pc();
 898 
 899   const Address constMethod       (rbx, Method::const_offset());
 900   const Address access_flags      (rbx, Method::access_flags_offset());
 901   const Address size_of_parameters(rcx, ConstMethod::
 902                                         size_of_parameters_offset());
 903 
 904 
 905   // get parameter size (always needed)
 906   __ movptr(rcx, constMethod);
 907   __ load_unsigned_short(rcx, size_of_parameters);
 908 
 909   // native calls don't need the stack size check since they have no
 910   // expression stack and the arguments are already on the stack and
 911   // we only add a handful of words to the stack
 912 
 913   // rbx: Method*
 914   // rcx: size of parameters
 915   // rbcp: sender sp
 916   __ pop(rax);                                       // get return address
 917 
 918   // for natives the size of locals is zero
 919 
 920   // compute beginning of parameters
 921   __ lea(rlocals, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
 922 
 923   // add 2 zero-initialized slots for native calls
 924   // initialize result_handler slot
 925   __ push((int) NULL_WORD);
 926   // slot for oop temp
 927   // (static native method holder mirror/jni oop result)
 928   __ push((int) NULL_WORD);
 929 
 930   // initialize fixed part of activation frame
 931   generate_fixed_frame(true);
 932 
 933   // make sure method is native & not abstract
 934 #ifdef ASSERT
 935   __ movl(rax, access_flags);
 936   {
 937     Label L;
 938     __ testl(rax, JVM_ACC_NATIVE);
 939     __ jcc(Assembler::notZero, L);
 940     __ stop("tried to execute non-native method as native");
 941     __ bind(L);
 942   }
 943   {
 944     Label L;
 945     __ testl(rax, JVM_ACC_ABSTRACT);
 946     __ jcc(Assembler::zero, L);
 947     __ stop("tried to execute abstract method in interpreter");
 948     __ bind(L);
 949   }
 950 #endif
 951 
 952   // Since at this point in the method invocation the exception handler
 953   // would try to exit the monitor of synchronized methods which hasn't
 954   // been entered yet, we set the thread local variable
 955   // _do_not_unlock_if_synchronized to true. The remove_activation will
 956   // check this flag.
 957 
 958   const Register thread1 = NOT_LP64(rax) LP64_ONLY(r15_thread);
 959   NOT_LP64(__ get_thread(thread1));
 960   const Address do_not_unlock_if_synchronized(thread1,
 961         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 962   __ movbool(do_not_unlock_if_synchronized, true);
 963 
 964   // increment invocation count & check for overflow
 965   Label invocation_counter_overflow;
 966   if (inc_counter) {
 967     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 968   }
 969 
 970   Label continue_after_compile;
 971   __ bind(continue_after_compile);
 972 
 973   bang_stack_shadow_pages(true);
 974 
 975   // reset the _do_not_unlock_if_synchronized flag
 976   NOT_LP64(__ get_thread(thread1));
 977   __ movbool(do_not_unlock_if_synchronized, false);
 978 
 979   // check for synchronized methods
 980   // Must happen AFTER invocation_counter check and stack overflow check,
 981   // so method is not locked if overflows.
 982   if (synchronized) {
 983     lock_method();
 984   } else {
 985     // no synchronization necessary
 986 #ifdef ASSERT
 987     {
 988       Label L;
 989       __ movl(rax, access_flags);
 990       __ testl(rax, JVM_ACC_SYNCHRONIZED);
 991       __ jcc(Assembler::zero, L);
 992       __ stop("method needs synchronization");
 993       __ bind(L);
 994     }
 995 #endif
 996   }
 997 
 998   // start execution
 999 #ifdef ASSERT
1000   {
1001     Label L;
1002     const Address monitor_block_top(rbp,
1003                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1004     __ movptr(rax, monitor_block_top);
1005     __ cmpptr(rax, rsp);
1006     __ jcc(Assembler::equal, L);
1007     __ stop("broken stack frame setup in interpreter");
1008     __ bind(L);
1009   }
1010 #endif
1011 
1012   // jvmti support
1013   __ notify_method_entry();
1014 
1015   // work registers
1016   const Register method = rbx;
1017   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
1018   const Register t      = NOT_LP64(rcx) LP64_ONLY(r11);
1019 
1020   // allocate space for parameters
1021   __ get_method(method);
1022   __ movptr(t, Address(method, Method::const_offset()));
1023   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1024 
1025 #ifndef _LP64
1026   __ shlptr(t, Interpreter::logStackElementSize); // Convert parameter count to bytes.
1027   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
1028   __ subptr(rsp, t);
1029   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
1030 #else
1031   __ shll(t, Interpreter::logStackElementSize);
1032 
1033   __ subptr(rsp, t);
1034   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1035   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
1036 #endif // _LP64
1037 
1038   // get signature handler
1039   {
1040     Label L;
1041     __ movptr(t, Address(method, Method::signature_handler_offset()));
1042     __ testptr(t, t);
1043     __ jcc(Assembler::notZero, L);
1044     __ call_VM(noreg,
1045                CAST_FROM_FN_PTR(address,
1046                                 InterpreterRuntime::prepare_native_call),
1047                method);
1048     __ get_method(method);
1049     __ movptr(t, Address(method, Method::signature_handler_offset()));
1050     __ bind(L);
1051   }
1052 
1053   // call signature handler
1054   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
1055          "adjust this code");
1056   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
1057          "adjust this code");
1058   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == NOT_LP64(t) LP64_ONLY(rscratch1),
1059          "adjust this code");
1060 
1061   // The generated handlers do not touch RBX (the method oop).
1062   // However, large signatures cannot be cached and are generated
1063   // each time here.  The slow-path generator can do a GC on return,
1064   // so we must reload it after the call.
1065   __ call(t);
1066   __ get_method(method);        // slow path can do a GC, reload RBX
1067 
1068 
1069   // result handler is in rax
1070   // set result handler
1071   __ movptr(Address(rbp,
1072                     (frame::interpreter_frame_result_handler_offset) * wordSize),
1073             rax);
1074 
1075   // pass mirror handle if static call
1076   {
1077     Label L;
1078     __ movl(t, Address(method, Method::access_flags_offset()));
1079     __ testl(t, JVM_ACC_STATIC);
1080     __ jcc(Assembler::zero, L);
1081     // get mirror
1082     __ load_mirror(t, method);
1083     // copy mirror into activation frame
1084     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
1085             t);
1086     // pass handle to mirror
1087 #ifndef _LP64
1088     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
1089     __ movptr(Address(rsp, wordSize), t);
1090 #else
1091     __ lea(c_rarg1,
1092            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
1093 #endif // _LP64
1094     __ bind(L);
1095   }
1096 
1097   // get native function entry point
1098   {
1099     Label L;
1100     __ movptr(rax, Address(method, Method::native_function_offset()));
1101     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1102     __ cmpptr(rax, unsatisfied.addr());
1103     __ jcc(Assembler::notEqual, L);
1104     __ call_VM(noreg,
1105                CAST_FROM_FN_PTR(address,
1106                                 InterpreterRuntime::prepare_native_call),
1107                method);
1108     __ get_method(method);
1109     __ movptr(rax, Address(method, Method::native_function_offset()));
1110     __ bind(L);
1111   }
1112 
1113   // pass JNIEnv
1114 #ifndef _LP64
1115    __ get_thread(thread);
1116    __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
1117    __ movptr(Address(rsp, 0), t);
1118 
1119    // set_last_Java_frame_before_call
1120    // It is enough that the pc()
1121    // points into the right code segment. It does not have to be the correct return pc.
1122    __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1123 #else
1124    __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
1125 
1126    // It is enough that the pc() points into the right code
1127    // segment. It does not have to be the correct return pc.
1128    __ set_last_Java_frame(rsp, rbp, (address) __ pc());
1129 #endif // _LP64
1130 
1131   // change thread state
1132 #ifdef ASSERT
1133   {
1134     Label L;
1135     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
1136     __ cmpl(t, _thread_in_Java);
1137     __ jcc(Assembler::equal, L);
1138     __ stop("Wrong thread state in native stub");
1139     __ bind(L);
1140   }
1141 #endif
1142 
1143   // Change state to native
1144 
1145   __ movl(Address(thread, JavaThread::thread_state_offset()),
1146           _thread_in_native);
1147 
1148   // Call the native method.
1149   __ call(rax);
1150   // 32: result potentially in rdx:rax or ST0
1151   // 64: result potentially in rax or xmm0
1152 
1153   // Verify or restore cpu control state after JNI call
1154   __ restore_cpu_control_state_after_jni();
1155 
1156   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1157   // in order to extract the result of a method call. If the order of these
1158   // pushes change or anything else is added to the stack then the code in
1159   // interpreter_frame_result must also change.
1160 
1161 #ifndef _LP64
1162   // save potential result in ST(0) & rdx:rax
1163   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
1164   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
1165   // It is safe to do this push because state is _thread_in_native and return address will be found
1166   // via _last_native_pc and not via _last_jave_sp
1167 
1168   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
1169   // If the order changes or anything else is added to the stack the code in
1170   // interpreter_frame_result will have to be changed.
1171 
1172   { Label L;
1173     Label push_double;
1174     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1175     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1176     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
1177               float_handler.addr());
1178     __ jcc(Assembler::equal, push_double);
1179     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
1180               double_handler.addr());
1181     __ jcc(Assembler::notEqual, L);
1182     __ bind(push_double);
1183     __ push_d(); // FP values are returned using the FPU, so push FPU contents (even if UseSSE > 0).
1184     __ bind(L);
1185   }
1186 #else
1187   __ push(dtos);
1188 #endif // _LP64
1189 
1190   __ push(ltos);
1191 
1192   // change thread state
1193   NOT_LP64(__ get_thread(thread));
1194   __ movl(Address(thread, JavaThread::thread_state_offset()),
1195           _thread_in_native_trans);
1196 
1197   if (os::is_MP()) {
1198     if (UseMembar) {
1199       // Force this write out before the read below
1200       __ membar(Assembler::Membar_mask_bits(
1201            Assembler::LoadLoad | Assembler::LoadStore |
1202            Assembler::StoreLoad | Assembler::StoreStore));
1203     } else {
1204       // Write serialization page so VM thread can do a pseudo remote membar.
1205       // We use the current thread pointer to calculate a thread specific
1206       // offset to write to within the page. This minimizes bus traffic
1207       // due to cache line collision.
1208       __ serialize_memory(thread, rcx);
1209     }
1210   }
1211 
1212 #ifndef _LP64
1213   if (AlwaysRestoreFPU) {
1214     //  Make sure the control word is correct.
1215     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1216   }
1217 #endif // _LP64
1218 
1219   // check for safepoint operation in progress and/or pending suspend requests
1220   {
1221     Label Continue;
1222     Label slow_path;
1223 
1224 #ifndef _LP64
1225     __ safepoint_poll(slow_path);
1226 #else
1227     __ safepoint_poll(slow_path, r15_thread, rscratch1);
1228 #endif
1229 
1230     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1231     __ jcc(Assembler::equal, Continue);
1232     __ bind(slow_path);
1233 
1234     // Don't use call_VM as it will see a possible pending exception
1235     // and forward it and never return here preventing us from
1236     // clearing _last_native_pc down below.  Also can't use
1237     // call_VM_leaf either as it will check to see if r13 & r14 are
1238     // preserved and correspond to the bcp/locals pointers. So we do a
1239     // runtime call by hand.
1240     //
1241 #ifndef _LP64
1242     __ push(thread);
1243     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1244                                             JavaThread::check_special_condition_for_native_trans)));
1245     __ increment(rsp, wordSize);
1246     __ get_thread(thread);
1247 #else
1248     __ mov(c_rarg0, r15_thread);
1249     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1250     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1251     __ andptr(rsp, -16); // align stack as required by ABI
1252     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1253     __ mov(rsp, r12); // restore sp
1254     __ reinit_heapbase();
1255 #endif // _LP64
1256     __ bind(Continue);
1257   }
1258 
1259   // change thread state
1260   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1261 
1262   // reset_last_Java_frame
1263   __ reset_last_Java_frame(thread, true);
1264 
1265   if (CheckJNICalls) {
1266     // clear_pending_jni_exception_check
1267     __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
1268   }
1269 
1270   // reset handle block
1271   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
1272   __ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1273 
1274   // If result is an oop unbox and store it in frame where gc will see it
1275   // and result handler will pick it up
1276 
1277   {
1278     Label no_oop, not_weak, store_result;
1279     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1280     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
1281     __ jcc(Assembler::notEqual, no_oop);
1282     // retrieve result
1283     __ pop(ltos);
1284     // Unbox oop result, e.g. JNIHandles::resolve value.
1285     __ resolve_jobject(rax /* value */,
1286                        thread /* thread */,
1287                        t /* tmp */);
1288     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
1289     // keep stack depth as expected by pushing oop which will eventually be discarded
1290     __ push(ltos);
1291     __ bind(no_oop);
1292   }
1293 
1294 
1295   {
1296     Label no_reguard;
1297     __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()),
1298             JavaThread::stack_guard_yellow_reserved_disabled);
1299     __ jcc(Assembler::notEqual, no_reguard);
1300 
1301     __ pusha(); // XXX only save smashed registers
1302 #ifndef _LP64
1303     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1304     __ popa();
1305 #else
1306     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1307     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1308     __ andptr(rsp, -16); // align stack as required by ABI
1309     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1310     __ mov(rsp, r12); // restore sp
1311     __ popa(); // XXX only restore smashed registers
1312     __ reinit_heapbase();
1313 #endif // _LP64
1314 
1315     __ bind(no_reguard);
1316   }
1317 
1318 
1319   // The method register is junk from after the thread_in_native transition
1320   // until here.  Also can't call_VM until the bcp has been
1321   // restored.  Need bcp for throwing exception below so get it now.
1322   __ get_method(method);
1323 
1324   // restore to have legal interpreter frame, i.e., bci == 0 <=> code_base()
1325   __ movptr(rbcp, Address(method, Method::const_offset()));   // get ConstMethod*
1326   __ lea(rbcp, Address(rbcp, ConstMethod::codes_offset()));    // get codebase
1327 
1328   // handle exceptions (exception handling will handle unlocking!)
1329   {
1330     Label L;
1331     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
1332     __ jcc(Assembler::zero, L);
1333     // Note: At some point we may want to unify this with the code
1334     // used in call_VM_base(); i.e., we should use the
1335     // StubRoutines::forward_exception code. For now this doesn't work
1336     // here because the rsp is not correctly set at this point.
1337     __ MacroAssembler::call_VM(noreg,
1338                                CAST_FROM_FN_PTR(address,
1339                                InterpreterRuntime::throw_pending_exception));
1340     __ should_not_reach_here();
1341     __ bind(L);
1342   }
1343 
1344   // do unlocking if necessary
1345   {
1346     Label L;
1347     __ movl(t, Address(method, Method::access_flags_offset()));
1348     __ testl(t, JVM_ACC_SYNCHRONIZED);
1349     __ jcc(Assembler::zero, L);
1350     // the code below should be shared with interpreter macro
1351     // assembler implementation
1352     {
1353       Label unlock;
1354       // BasicObjectLock will be first in list, since this is a
1355       // synchronized method. However, need to check that the object
1356       // has not been unlocked by an explicit monitorexit bytecode.
1357       const Address monitor(rbp,
1358                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1359                                        wordSize - (int)sizeof(BasicObjectLock)));
1360 
1361       const Register regmon = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
1362 
1363       // monitor expect in c_rarg1 for slow unlock path
1364       __ lea(regmon, monitor); // address of first monitor
1365 
1366       __ movptr(t, Address(regmon, BasicObjectLock::obj_offset_in_bytes()));
1367       __ testptr(t, t);
1368       __ jcc(Assembler::notZero, unlock);
1369 
1370       // Entry already unlocked, need to throw exception
1371       __ MacroAssembler::call_VM(noreg,
1372                                  CAST_FROM_FN_PTR(address,
1373                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1374       __ should_not_reach_here();
1375 
1376       __ bind(unlock);
1377       __ unlock_object(regmon);
1378     }
1379     __ bind(L);
1380   }
1381 
1382   // jvmti support
1383   // Note: This must happen _after_ handling/throwing any exceptions since
1384   //       the exception handler code notifies the runtime of method exits
1385   //       too. If this happens before, method entry/exit notifications are
1386   //       not properly paired (was bug - gri 11/22/99).
1387   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1388 
1389   // restore potential result in edx:eax, call result handler to
1390   // restore potential result in ST0 & handle result
1391 
1392   __ pop(ltos);
1393   LP64_ONLY( __ pop(dtos));
1394 
1395   __ movptr(t, Address(rbp,
1396                        (frame::interpreter_frame_result_handler_offset) * wordSize));
1397   __ call(t);
1398 
1399   // remove activation
1400   __ movptr(t, Address(rbp,
1401                        frame::interpreter_frame_sender_sp_offset *
1402                        wordSize)); // get sender sp
1403   __ leave();                                // remove frame anchor
1404   __ pop(rdi);                               // get return address
1405   __ mov(rsp, t);                            // set sp to sender sp
1406   __ jmp(rdi);
1407 
1408   if (inc_counter) {
1409     // Handle overflow of counter and compile method
1410     __ bind(invocation_counter_overflow);
1411     generate_counter_overflow(continue_after_compile);
1412   }
1413 
1414   return entry_point;
1415 }
1416 
1417 // Abstract method entry
1418 // Attempt to execute abstract method. Throw exception
1419 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
1420 
1421   address entry_point = __ pc();
1422 
1423   // abstract method entry
1424 
1425   //  pop return address, reset last_sp to NULL
1426   __ empty_expression_stack();
1427   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
1428   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
1429 
1430   // throw exception
1431   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
1432   // the call_VM checks for exception, so we should never return here.
1433   __ should_not_reach_here();
1434 
1435   return entry_point;
1436 }
1437 
1438 //
1439 // Generic interpreted method entry to (asm) interpreter
1440 //
1441 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1442   // determine code generation flags
1443   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1444 
1445   // ebx: Method*
1446   // rbcp: sender sp
1447   address entry_point = __ pc();
1448 
1449   const Address constMethod(rbx, Method::const_offset());
1450   const Address access_flags(rbx, Method::access_flags_offset());
1451   const Address size_of_parameters(rdx,
1452                                    ConstMethod::size_of_parameters_offset());
1453   const Address size_of_locals(rdx, ConstMethod::size_of_locals_offset());
1454 
1455 
1456   // get parameter size (always needed)
1457   __ movptr(rdx, constMethod);
1458   __ load_unsigned_short(rcx, size_of_parameters);
1459 
1460   // rbx: Method*
1461   // rcx: size of parameters
1462   // rbcp: sender_sp (could differ from sp+wordSize if we were called via c2i )
1463 
1464   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
1465   __ subl(rdx, rcx); // rdx = no. of additional locals
1466 
1467   // YYY
1468 //   __ incrementl(rdx);
1469 //   __ andl(rdx, -2);
1470 
1471   // see if we've got enough room on the stack for locals plus overhead.
1472   generate_stack_overflow_check();
1473 
1474   // get return address
1475   __ pop(rax);
1476 
1477   // compute beginning of parameters
1478   __ lea(rlocals, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
1479 
1480   // rdx - # of additional locals
1481   // allocate space for locals
1482   // explicitly initialize locals
1483   {
1484     Label exit, loop;
1485     __ testl(rdx, rdx);
1486     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
1487     __ bind(loop);
1488     __ push((int) NULL_WORD); // initialize local variables
1489     __ decrementl(rdx); // until everything initialized
1490     __ jcc(Assembler::greater, loop);
1491     __ bind(exit);
1492   }
1493 
1494   // initialize fixed part of activation frame
1495   generate_fixed_frame(false);
1496 
1497   // make sure method is not native & not abstract
1498 #ifdef ASSERT
1499   __ movl(rax, access_flags);
1500   {
1501     Label L;
1502     __ testl(rax, JVM_ACC_NATIVE);
1503     __ jcc(Assembler::zero, L);
1504     __ stop("tried to execute native method as non-native");
1505     __ bind(L);
1506   }
1507   {
1508     Label L;
1509     __ testl(rax, JVM_ACC_ABSTRACT);
1510     __ jcc(Assembler::zero, L);
1511     __ stop("tried to execute abstract method in interpreter");
1512     __ bind(L);
1513   }
1514 #endif
1515 
1516   // Since at this point in the method invocation the exception
1517   // handler would try to exit the monitor of synchronized methods
1518   // which hasn't been entered yet, we set the thread local variable
1519   // _do_not_unlock_if_synchronized to true. The remove_activation
1520   // will check this flag.
1521 
1522   const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1523   NOT_LP64(__ get_thread(thread));
1524   const Address do_not_unlock_if_synchronized(thread,
1525         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1526   __ movbool(do_not_unlock_if_synchronized, true);
1527 
1528   __ profile_parameters_type(rax, rcx, rdx);
1529   // increment invocation count & check for overflow
1530   Label invocation_counter_overflow;
1531   Label profile_method;
1532   Label profile_method_continue;
1533   if (inc_counter) {
1534     generate_counter_incr(&invocation_counter_overflow,
1535                           &profile_method,
1536                           &profile_method_continue);
1537     if (ProfileInterpreter) {
1538       __ bind(profile_method_continue);
1539     }
1540   }
1541 
1542   Label continue_after_compile;
1543   __ bind(continue_after_compile);
1544 
1545   // check for synchronized interpreted methods
1546   bang_stack_shadow_pages(false);
1547 
1548   // reset the _do_not_unlock_if_synchronized flag
1549   NOT_LP64(__ get_thread(thread));
1550   __ movbool(do_not_unlock_if_synchronized, false);
1551 
1552   // check for synchronized methods
1553   // Must happen AFTER invocation_counter check and stack overflow check,
1554   // so method is not locked if overflows.
1555   if (synchronized) {
1556     // Allocate monitor and lock method
1557     lock_method();
1558   } else {
1559     // no synchronization necessary
1560 #ifdef ASSERT
1561     {
1562       Label L;
1563       __ movl(rax, access_flags);
1564       __ testl(rax, JVM_ACC_SYNCHRONIZED);
1565       __ jcc(Assembler::zero, L);
1566       __ stop("method needs synchronization");
1567       __ bind(L);
1568     }
1569 #endif
1570   }
1571 
1572   // start execution
1573 #ifdef ASSERT
1574   {
1575     Label L;
1576      const Address monitor_block_top (rbp,
1577                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1578     __ movptr(rax, monitor_block_top);
1579     __ cmpptr(rax, rsp);
1580     __ jcc(Assembler::equal, L);
1581     __ stop("broken stack frame setup in interpreter");
1582     __ bind(L);
1583   }
1584 #endif
1585 
1586   // jvmti support
1587   __ notify_method_entry();
1588 
1589   __ dispatch_next(vtos);
1590 
1591   // invocation counter overflow
1592   if (inc_counter) {
1593     if (ProfileInterpreter) {
1594       // We have decided to profile this method in the interpreter
1595       __ bind(profile_method);
1596       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1597       __ set_method_data_pointer_for_bcp();
1598       __ get_method(rbx);
1599       __ jmp(profile_method_continue);
1600     }
1601     // Handle overflow of counter and compile method
1602     __ bind(invocation_counter_overflow);
1603     generate_counter_overflow(continue_after_compile);
1604   }
1605 
1606   return entry_point;
1607 }
1608 
1609 //-----------------------------------------------------------------------------
1610 // Exceptions
1611 
1612 void TemplateInterpreterGenerator::generate_throw_exception() {
1613   // Entry point in previous activation (i.e., if the caller was
1614   // interpreted)
1615   Interpreter::_rethrow_exception_entry = __ pc();
1616   // Restore sp to interpreter_frame_last_sp even though we are going
1617   // to empty the expression stack for the exception processing.
1618   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
1619   // rax: exception
1620   // rdx: return address/pc that threw exception
1621   __ restore_bcp();    // r13/rsi points to call/send
1622   __ restore_locals();
1623   LP64_ONLY(__ reinit_heapbase());  // restore r12 as heapbase.
1624   // Entry point for exceptions thrown within interpreter code
1625   Interpreter::_throw_exception_entry = __ pc();
1626   // expression stack is undefined here
1627   // rax: exception
1628   // r13/rsi: exception bcp
1629   __ verify_oop(rax);
1630   Register rarg = NOT_LP64(rax) LP64_ONLY(c_rarg1);
1631   LP64_ONLY(__ mov(c_rarg1, rax));
1632 
1633   // expression stack must be empty before entering the VM in case of
1634   // an exception
1635   __ empty_expression_stack();
1636   // find exception handler address and preserve exception oop
1637   __ call_VM(rdx,
1638              CAST_FROM_FN_PTR(address,
1639                           InterpreterRuntime::exception_handler_for_exception),
1640              rarg);
1641   // rax: exception handler entry point
1642   // rdx: preserved exception oop
1643   // r13/rsi: bcp for exception handler
1644   __ push_ptr(rdx); // push exception which is now the only value on the stack
1645   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
1646 
1647   // If the exception is not handled in the current frame the frame is
1648   // removed and the exception is rethrown (i.e. exception
1649   // continuation is _rethrow_exception).
1650   //
1651   // Note: At this point the bci is still the bxi for the instruction
1652   // which caused the exception and the expression stack is
1653   // empty. Thus, for any VM calls at this point, GC will find a legal
1654   // oop map (with empty expression stack).
1655 
1656   // In current activation
1657   // tos: exception
1658   // esi: exception bcp
1659 
1660   //
1661   // JVMTI PopFrame support
1662   //
1663 
1664   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1665   __ empty_expression_stack();
1666   // Set the popframe_processing bit in pending_popframe_condition
1667   // indicating that we are currently handling popframe, so that
1668   // call_VMs that may happen later do not trigger new popframe
1669   // handling cycles.
1670   const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread);
1671   NOT_LP64(__ get_thread(thread));
1672   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
1673   __ orl(rdx, JavaThread::popframe_processing_bit);
1674   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
1675 
1676   {
1677     // Check to see whether we are returning to a deoptimized frame.
1678     // (The PopFrame call ensures that the caller of the popped frame is
1679     // either interpreted or compiled and deoptimizes it if compiled.)
1680     // In this case, we can't call dispatch_next() after the frame is
1681     // popped, but instead must save the incoming arguments and restore
1682     // them after deoptimization has occurred.
1683     //
1684     // Note that we don't compare the return PC against the
1685     // deoptimization blob's unpack entry because of the presence of
1686     // adapter frames in C2.
1687     Label caller_not_deoptimized;
1688     Register rarg = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
1689     __ movptr(rarg, Address(rbp, frame::return_addr_offset * wordSize));
1690     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1691                                InterpreterRuntime::interpreter_contains), rarg);
1692     __ testl(rax, rax);
1693     __ jcc(Assembler::notZero, caller_not_deoptimized);
1694 
1695     // Compute size of arguments for saving when returning to
1696     // deoptimized caller
1697     __ get_method(rax);
1698     __ movptr(rax, Address(rax, Method::const_offset()));
1699     __ load_unsigned_short(rax, Address(rax, in_bytes(ConstMethod::
1700                                                 size_of_parameters_offset())));
1701     __ shll(rax, Interpreter::logStackElementSize);
1702     __ restore_locals();
1703     __ subptr(rlocals, rax);
1704     __ addptr(rlocals, wordSize);
1705     // Save these arguments
1706     NOT_LP64(__ get_thread(thread));
1707     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1708                                            Deoptimization::
1709                                            popframe_preserve_args),
1710                           thread, rax, rlocals);
1711 
1712     __ remove_activation(vtos, rdx,
1713                          /* throw_monitor_exception */ false,
1714                          /* install_monitor_exception */ false,
1715                          /* notify_jvmdi */ false);
1716 
1717     // Inform deoptimization that it is responsible for restoring
1718     // these arguments
1719     NOT_LP64(__ get_thread(thread));
1720     __ movl(Address(thread, JavaThread::popframe_condition_offset()),
1721             JavaThread::popframe_force_deopt_reexecution_bit);
1722 
1723     // Continue in deoptimization handler
1724     __ jmp(rdx);
1725 
1726     __ bind(caller_not_deoptimized);
1727   }
1728 
1729   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
1730                        /* throw_monitor_exception */ false,
1731                        /* install_monitor_exception */ false,
1732                        /* notify_jvmdi */ false);
1733 
1734   // Finish with popframe handling
1735   // A previous I2C followed by a deoptimization might have moved the
1736   // outgoing arguments further up the stack. PopFrame expects the
1737   // mutations to those outgoing arguments to be preserved and other
1738   // constraints basically require this frame to look exactly as
1739   // though it had previously invoked an interpreted activation with
1740   // no space between the top of the expression stack (current
1741   // last_sp) and the top of stack. Rather than force deopt to
1742   // maintain this kind of invariant all the time we call a small
1743   // fixup routine to move the mutated arguments onto the top of our
1744   // expression stack if necessary.
1745 #ifndef _LP64
1746   __ mov(rax, rsp);
1747   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1748   __ get_thread(thread);
1749   // PC must point into interpreter here
1750   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1751   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
1752   __ get_thread(thread);
1753 #else
1754   __ mov(c_rarg1, rsp);
1755   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1756   // PC must point into interpreter here
1757   __ set_last_Java_frame(noreg, rbp, __ pc());
1758   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
1759 #endif
1760   __ reset_last_Java_frame(thread, true);
1761 
1762   // Restore the last_sp and null it out
1763   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1764   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
1765 
1766   __ restore_bcp();
1767   __ restore_locals();
1768   // The method data pointer was incremented already during
1769   // call profiling. We have to restore the mdp for the current bcp.
1770   if (ProfileInterpreter) {
1771     __ set_method_data_pointer_for_bcp();
1772   }
1773 
1774   // Clear the popframe condition flag
1775   NOT_LP64(__ get_thread(thread));
1776   __ movl(Address(thread, JavaThread::popframe_condition_offset()),
1777           JavaThread::popframe_inactive);
1778 
1779 #if INCLUDE_JVMTI
1780   {
1781     Label L_done;
1782     const Register local0 = rlocals;
1783 
1784     __ cmpb(Address(rbcp, 0), Bytecodes::_invokestatic);
1785     __ jcc(Assembler::notEqual, L_done);
1786 
1787     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1788     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1789 
1790     __ get_method(rdx);
1791     __ movptr(rax, Address(local0, 0));
1792     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), rax, rdx, rbcp);
1793 
1794     __ testptr(rax, rax);
1795     __ jcc(Assembler::zero, L_done);
1796 
1797     __ movptr(Address(rbx, 0), rax);
1798     __ bind(L_done);
1799   }
1800 #endif // INCLUDE_JVMTI
1801 
1802   __ dispatch_next(vtos);
1803   // end of PopFrame support
1804 
1805   Interpreter::_remove_activation_entry = __ pc();
1806 
1807   // preserve exception over this code sequence
1808   __ pop_ptr(rax);
1809   NOT_LP64(__ get_thread(thread));
1810   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
1811   // remove the activation (without doing throws on illegalMonitorExceptions)
1812   __ remove_activation(vtos, rdx, false, true, false);
1813   // restore exception
1814   NOT_LP64(__ get_thread(thread));
1815   __ get_vm_result(rax, thread);
1816 
1817   // In between activations - previous activation type unknown yet
1818   // compute continuation point - the continuation point expects the
1819   // following registers set up:
1820   //
1821   // rax: exception
1822   // rdx: return address/pc that threw exception
1823   // rsp: expression stack of caller
1824   // rbp: ebp of caller
1825   __ push(rax);                                  // save exception
1826   __ push(rdx);                                  // save return address
1827   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1828                           SharedRuntime::exception_handler_for_return_address),
1829                         thread, rdx);
1830   __ mov(rbx, rax);                              // save exception handler
1831   __ pop(rdx);                                   // restore return address
1832   __ pop(rax);                                   // restore exception
1833   // Note that an "issuing PC" is actually the next PC after the call
1834   __ jmp(rbx);                                   // jump to exception
1835                                                  // handler of caller
1836 }
1837 
1838 
1839 //
1840 // JVMTI ForceEarlyReturn support
1841 //
1842 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1843   address entry = __ pc();
1844 
1845   __ restore_bcp();
1846   __ restore_locals();
1847   __ empty_expression_stack();
1848   __ load_earlyret_value(state);  // 32 bits returns value in rdx, so don't reuse
1849 
1850   const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread);
1851   NOT_LP64(__ get_thread(thread));
1852   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
1853   Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
1854 
1855   // Clear the earlyret state
1856   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
1857 
1858   __ remove_activation(state, rsi,
1859                        false, /* throw_monitor_exception */
1860                        false, /* install_monitor_exception */
1861                        true); /* notify_jvmdi */
1862   __ jmp(rsi);
1863 
1864   return entry;
1865 } // end of ForceEarlyReturn support
1866 
1867 
1868 //-----------------------------------------------------------------------------
1869 // Helper for vtos entry point generation
1870 
1871 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
1872                                                          address& bep,
1873                                                          address& cep,
1874                                                          address& sep,
1875                                                          address& aep,
1876                                                          address& iep,
1877                                                          address& lep,
1878                                                          address& fep,
1879                                                          address& dep,
1880                                                          address& qep,
1881                                                          address& vep) {
1882   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1883   Label L;
1884   aep = __ pc();  __ push_ptr();   __ jmp(L);
1885   qep = __ pc();  __ push_ptr();   __ jmp(L);
1886 #ifndef _LP64
1887   fep = __ pc(); __ push(ftos); __ jmp(L);
1888   dep = __ pc(); __ push(dtos); __ jmp(L);
1889 #else
1890   fep = __ pc();  __ push_f(xmm0); __ jmp(L);
1891   dep = __ pc();  __ push_d(xmm0); __ jmp(L);
1892 #endif // _LP64
1893   lep = __ pc();  __ push_l();     __ jmp(L);
1894   bep = cep = sep =
1895   iep = __ pc();  __ push_i();
1896   vep = __ pc();
1897   __ bind(L);
1898   generate_and_dispatch(t);
1899 }
1900 
1901 //-----------------------------------------------------------------------------
1902 
1903 // Non-product code
1904 #ifndef PRODUCT
1905 
1906 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1907   address entry = __ pc();
1908 
1909 #ifndef _LP64
1910   // prepare expression stack
1911   __ pop(rcx);          // pop return address so expression stack is 'pure'
1912   __ push(state);       // save tosca
1913 
1914   // pass tosca registers as arguments & call tracer
1915   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), rcx, rax, rdx);
1916   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
1917   __ pop(state);        // restore tosca
1918 
1919   // return
1920   __ jmp(rcx);
1921 #else
1922   __ push(state);
1923   __ push(c_rarg0);
1924   __ push(c_rarg1);
1925   __ push(c_rarg2);
1926   __ push(c_rarg3);
1927   __ mov(c_rarg2, rax);  // Pass itos
1928 #ifdef _WIN64
1929   __ movflt(xmm3, xmm0); // Pass ftos
1930 #endif
1931   __ call_VM(noreg,
1932              CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
1933              c_rarg1, c_rarg2, c_rarg3);
1934   __ pop(c_rarg3);
1935   __ pop(c_rarg2);
1936   __ pop(c_rarg1);
1937   __ pop(c_rarg0);
1938   __ pop(state);
1939   __ ret(0);                                   // return from result handler
1940 #endif // _LP64
1941 
1942   return entry;
1943 }
1944 
1945 void TemplateInterpreterGenerator::count_bytecode() {
1946   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
1947 }
1948 
1949 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1950   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
1951 }
1952 
1953 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1954   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
1955   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
1956   __ orl(rbx,
1957          ((int) t->bytecode()) <<
1958          BytecodePairHistogram::log2_number_of_codes);
1959   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
1960   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
1961   __ incrementl(Address(rscratch1, rbx, Address::times_4));
1962 }
1963 
1964 
1965 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1966   // Call a little run-time stub to avoid blow-up for each bytecode.
1967   // The run-time runtime saves the right registers, depending on
1968   // the tosca in-state for the given template.
1969 
1970   assert(Interpreter::trace_code(t->tos_in()) != NULL,
1971          "entry must have been generated");
1972 #ifndef _LP64
1973   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
1974 #else
1975   __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1976   __ andptr(rsp, -16); // align stack as required by ABI
1977   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
1978   __ mov(rsp, r12); // restore sp
1979   __ reinit_heapbase();
1980 #endif // _LP64
1981 }
1982 
1983 
1984 void TemplateInterpreterGenerator::stop_interpreter_at() {
1985   Label L;
1986   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
1987            StopInterpreterAt);
1988   __ jcc(Assembler::notEqual, L);
1989   __ int3();
1990   __ bind(L);
1991 }
1992 #endif // !PRODUCT