1 /* 2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "interpreter/interp_masm.hpp" 30 #include "interpreter/templateTable.hpp" 31 #include "memory/universe.inline.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/objArrayKlass.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "prims/methodHandles.hpp" 36 #include "runtime/sharedRuntime.hpp" 37 #include "runtime/stubRoutines.hpp" 38 #include "runtime/synchronizer.hpp" 39 #include "utilities/macros.hpp" 40 41 #define __ _masm-> 42 43 // Global Register Names 44 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 45 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 46 47 // Platform-dependent initialization 48 void TemplateTable::pd_initialize() { 49 // No x86 specific initialization 50 } 51 52 // Address Computation: local variables 53 static inline Address iaddress(int n) { 54 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 55 } 56 57 static inline Address laddress(int n) { 58 return iaddress(n + 1); 59 } 60 61 #ifndef _LP64 62 static inline Address haddress(int n) { 63 return iaddress(n + 0); 64 } 65 #endif 66 67 static inline Address faddress(int n) { 68 return iaddress(n); 69 } 70 71 static inline Address daddress(int n) { 72 return laddress(n); 73 } 74 75 static inline Address aaddress(int n) { 76 return iaddress(n); 77 } 78 79 static inline Address iaddress(Register r) { 80 return Address(rlocals, r, Address::times_ptr); 81 } 82 83 static inline Address laddress(Register r) { 84 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 85 } 86 87 #ifndef _LP64 88 static inline Address haddress(Register r) { 89 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 90 } 91 #endif 92 93 static inline Address faddress(Register r) { 94 return iaddress(r); 95 } 96 97 static inline Address daddress(Register r) { 98 return laddress(r); 99 } 100 101 static inline Address aaddress(Register r) { 102 return iaddress(r); 103 } 104 105 106 // expression stack 107 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 108 // data beyond the rsp which is potentially unsafe in an MT environment; 109 // an interrupt may overwrite that data.) 110 static inline Address at_rsp () { 111 return Address(rsp, 0); 112 } 113 114 // At top of Java expression stack which may be different than esp(). It 115 // isn't for category 1 objects. 116 static inline Address at_tos () { 117 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 118 } 119 120 static inline Address at_tos_p1() { 121 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 122 } 123 124 static inline Address at_tos_p2() { 125 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 126 } 127 128 // Condition conversion 129 static Assembler::Condition j_not(TemplateTable::Condition cc) { 130 switch (cc) { 131 case TemplateTable::equal : return Assembler::notEqual; 132 case TemplateTable::not_equal : return Assembler::equal; 133 case TemplateTable::less : return Assembler::greaterEqual; 134 case TemplateTable::less_equal : return Assembler::greater; 135 case TemplateTable::greater : return Assembler::lessEqual; 136 case TemplateTable::greater_equal: return Assembler::less; 137 } 138 ShouldNotReachHere(); 139 return Assembler::zero; 140 } 141 142 143 144 // Miscelaneous helper routines 145 // Store an oop (or NULL) at the address described by obj. 146 // If val == noreg this means store a NULL 147 148 149 static void do_oop_store(InterpreterMacroAssembler* _masm, 150 Address obj, 151 Register val, 152 BarrierSet::Name barrier, 153 bool precise) { 154 assert(val == noreg || val == rax, "parameter is just for looks"); 155 switch (barrier) { 156 #if INCLUDE_ALL_GCS 157 case BarrierSet::G1SATBCTLogging: 158 { 159 // flatten object address if needed 160 // We do it regardless of precise because we need the registers 161 if (obj.index() == noreg && obj.disp() == 0) { 162 if (obj.base() != rdx) { 163 __ movptr(rdx, obj.base()); 164 } 165 } else { 166 __ lea(rdx, obj); 167 } 168 169 Register rtmp = LP64_ONLY(r8) NOT_LP64(rsi); 170 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 171 172 NOT_LP64(__ get_thread(rcx)); 173 NOT_LP64(__ save_bcp()); 174 175 __ g1_write_barrier_pre(rdx /* obj */, 176 rbx /* pre_val */, 177 rthread /* thread */, 178 rtmp /* tmp */, 179 val != noreg /* tosca_live */, 180 false /* expand_call */); 181 if (val == noreg) { 182 __ store_heap_oop_null(Address(rdx, 0)); 183 } else { 184 // G1 barrier needs uncompressed oop for region cross check. 185 Register new_val = val; 186 if (UseCompressedOops) { 187 new_val = rbx; 188 __ movptr(new_val, val); 189 } 190 __ store_heap_oop(Address(rdx, 0), val); 191 __ g1_write_barrier_post(rdx /* store_adr */, 192 new_val /* new_val */, 193 rthread /* thread */, 194 rtmp /* tmp */, 195 rbx /* tmp2 */); 196 } 197 NOT_LP64( __ restore_bcp()); 198 } 199 break; 200 #endif // INCLUDE_ALL_GCS 201 case BarrierSet::CardTableForRS: 202 case BarrierSet::CardTableExtension: 203 { 204 if (val == noreg) { 205 __ store_heap_oop_null(obj); 206 } else { 207 __ store_heap_oop(obj, val); 208 // flatten object address if needed 209 if (!precise || (obj.index() == noreg && obj.disp() == 0)) { 210 __ store_check(obj.base()); 211 } else { 212 __ lea(rdx, obj); 213 __ store_check(rdx); 214 } 215 } 216 } 217 break; 218 case BarrierSet::ModRef: 219 if (val == noreg) { 220 __ store_heap_oop_null(obj); 221 } else { 222 __ store_heap_oop(obj, val); 223 } 224 break; 225 default : 226 ShouldNotReachHere(); 227 228 } 229 } 230 231 Address TemplateTable::at_bcp(int offset) { 232 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 233 return Address(rbcp, offset); 234 } 235 236 237 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 238 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 239 int byte_no) { 240 if (!RewriteBytecodes) return; 241 Label L_patch_done; 242 243 switch (bc) { 244 case Bytecodes::_fast_qputfield: 245 __ jmp(L_patch_done); // don't patch yet 246 break; 247 case Bytecodes::_fast_aputfield: 248 case Bytecodes::_fast_bputfield: 249 case Bytecodes::_fast_zputfield: 250 case Bytecodes::_fast_cputfield: 251 case Bytecodes::_fast_dputfield: 252 case Bytecodes::_fast_fputfield: 253 case Bytecodes::_fast_iputfield: 254 case Bytecodes::_fast_lputfield: 255 case Bytecodes::_fast_sputfield: 256 { 257 // We skip bytecode quickening for putfield instructions when 258 // the put_code written to the constant pool cache is zero. 259 // This is required so that every execution of this instruction 260 // calls out to InterpreterRuntime::resolve_get_put to do 261 // additional, required work. 262 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 263 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 264 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 265 __ movl(bc_reg, bc); 266 __ cmpl(temp_reg, (int) 0); 267 __ jcc(Assembler::zero, L_patch_done); // don't patch 268 } 269 break; 270 default: 271 assert(byte_no == -1, "sanity"); 272 // the pair bytecodes have already done the load. 273 if (load_bc_into_bc_reg) { 274 __ movl(bc_reg, bc); 275 } 276 } 277 278 if (JvmtiExport::can_post_breakpoint()) { 279 Label L_fast_patch; 280 // if a breakpoint is present we can't rewrite the stream directly 281 __ movzbl(temp_reg, at_bcp(0)); 282 __ cmpl(temp_reg, Bytecodes::_breakpoint); 283 __ jcc(Assembler::notEqual, L_fast_patch); 284 __ get_method(temp_reg); 285 // Let breakpoint table handling rewrite to quicker bytecode 286 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 287 #ifndef ASSERT 288 __ jmpb(L_patch_done); 289 #else 290 __ jmp(L_patch_done); 291 #endif 292 __ bind(L_fast_patch); 293 } 294 295 #ifdef ASSERT 296 Label L_okay; 297 __ load_unsigned_byte(temp_reg, at_bcp(0)); 298 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 299 __ jcc(Assembler::equal, L_okay); 300 __ cmpl(temp_reg, bc_reg); 301 __ jcc(Assembler::equal, L_okay); 302 __ stop("patching the wrong bytecode"); 303 __ bind(L_okay); 304 #endif 305 306 // patch bytecode 307 __ movb(at_bcp(0), bc_reg); 308 __ bind(L_patch_done); 309 } 310 // Individual instructions 311 312 313 void TemplateTable::nop() { 314 transition(vtos, vtos); 315 // nothing to do 316 } 317 318 void TemplateTable::shouldnotreachhere() { 319 transition(vtos, vtos); 320 __ stop("shouldnotreachhere bytecode"); 321 } 322 323 void TemplateTable::aconst_null() { 324 transition(vtos, atos); 325 __ xorl(rax, rax); 326 } 327 328 void TemplateTable::iconst(int value) { 329 transition(vtos, itos); 330 if (value == 0) { 331 __ xorl(rax, rax); 332 } else { 333 __ movl(rax, value); 334 } 335 } 336 337 void TemplateTable::lconst(int value) { 338 transition(vtos, ltos); 339 if (value == 0) { 340 __ xorl(rax, rax); 341 } else { 342 __ movl(rax, value); 343 } 344 #ifndef _LP64 345 assert(value >= 0, "check this code"); 346 __ xorptr(rdx, rdx); 347 #endif 348 } 349 350 351 352 void TemplateTable::fconst(int value) { 353 transition(vtos, ftos); 354 if (UseSSE >= 1) { 355 static float one = 1.0f, two = 2.0f; 356 switch (value) { 357 case 0: 358 __ xorps(xmm0, xmm0); 359 break; 360 case 1: 361 __ movflt(xmm0, ExternalAddress((address) &one)); 362 break; 363 case 2: 364 __ movflt(xmm0, ExternalAddress((address) &two)); 365 break; 366 default: 367 ShouldNotReachHere(); 368 break; 369 } 370 } else { 371 #ifdef _LP64 372 ShouldNotReachHere(); 373 #else 374 if (value == 0) { __ fldz(); 375 } else if (value == 1) { __ fld1(); 376 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 377 } else { ShouldNotReachHere(); 378 } 379 #endif // _LP64 380 } 381 } 382 383 void TemplateTable::dconst(int value) { 384 transition(vtos, dtos); 385 if (UseSSE >= 2) { 386 static double one = 1.0; 387 switch (value) { 388 case 0: 389 __ xorpd(xmm0, xmm0); 390 break; 391 case 1: 392 __ movdbl(xmm0, ExternalAddress((address) &one)); 393 break; 394 default: 395 ShouldNotReachHere(); 396 break; 397 } 398 } else { 399 #ifdef _LP64 400 ShouldNotReachHere(); 401 #else 402 if (value == 0) { __ fldz(); 403 } else if (value == 1) { __ fld1(); 404 } else { ShouldNotReachHere(); 405 } 406 #endif 407 } 408 } 409 410 void TemplateTable::bipush() { 411 transition(vtos, itos); 412 __ load_signed_byte(rax, at_bcp(1)); 413 } 414 415 void TemplateTable::sipush() { 416 transition(vtos, itos); 417 __ load_unsigned_short(rax, at_bcp(1)); 418 __ bswapl(rax); 419 __ sarl(rax, 16); 420 } 421 422 void TemplateTable::ldc(bool wide) { 423 transition(vtos, vtos); 424 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 425 Label call_ldc, notFloat, notClass, Done; 426 427 if (wide) { 428 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 429 } else { 430 __ load_unsigned_byte(rbx, at_bcp(1)); 431 } 432 433 __ get_cpool_and_tags(rcx, rax); 434 const int base_offset = ConstantPool::header_size() * wordSize; 435 const int tags_offset = Array<u1>::base_offset_in_bytes(); 436 437 // get type 438 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 439 440 // unresolved class - get the resolved class 441 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 442 __ jccb(Assembler::equal, call_ldc); 443 444 // unresolved class in error state - call into runtime to throw the error 445 // from the first resolution attempt 446 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 447 __ jccb(Assembler::equal, call_ldc); 448 449 // resolved class - need to call vm to get java mirror of the class 450 __ cmpl(rdx, JVM_CONSTANT_Class); 451 __ jcc(Assembler::equal, call_ldc); 452 453 // unresolved value type - get the resolved class 454 __ cmpl(rdx, JVM_CONSTANT_UnresolvedValue); 455 __ jccb(Assembler::equal, call_ldc); 456 457 // unresolved value type in error state - call into runtime to throw the error 458 // from the first resolution attempt 459 __ cmpl(rdx, JVM_CONSTANT_UnresolvedValueInError); 460 __ jccb(Assembler::equal, call_ldc); 461 462 // resolved value type - need to call vm to get java mirror 463 __ cmpl(rdx, JVM_CONSTANT_Value); 464 __ jcc(Assembler::notEqual, notClass); 465 466 __ bind(call_ldc); 467 468 __ movl(rarg, wide); 469 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 470 471 __ push(atos); 472 __ jmp(Done); 473 474 __ bind(notClass); 475 __ cmpl(rdx, JVM_CONSTANT_Float); 476 __ jccb(Assembler::notEqual, notFloat); 477 478 // ftos 479 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 480 __ push(ftos); 481 __ jmp(Done); 482 483 __ bind(notFloat); 484 #ifdef ASSERT 485 { 486 Label L; 487 __ cmpl(rdx, JVM_CONSTANT_Integer); 488 __ jcc(Assembler::equal, L); 489 // String and Object are rewritten to fast_aldc 490 __ stop("unexpected tag type in ldc"); 491 __ bind(L); 492 } 493 #endif 494 // itos JVM_CONSTANT_Integer only 495 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 496 __ push(itos); 497 __ bind(Done); 498 } 499 500 // Fast path for caching oop constants. 501 void TemplateTable::fast_aldc(bool wide) { 502 transition(vtos, atos); 503 504 Register result = rax; 505 Register tmp = rdx; 506 int index_size = wide ? sizeof(u2) : sizeof(u1); 507 508 Label resolved; 509 510 // We are resolved if the resolved reference cache entry contains a 511 // non-null object (String, MethodType, etc.) 512 assert_different_registers(result, tmp); 513 __ get_cache_index_at_bcp(tmp, 1, index_size); 514 __ load_resolved_reference_at_index(result, tmp); 515 __ testl(result, result); 516 __ jcc(Assembler::notZero, resolved); 517 518 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 519 520 // first time invocation - must resolve first 521 __ movl(tmp, (int)bytecode()); 522 __ call_VM(result, entry, tmp); 523 524 __ bind(resolved); 525 526 if (VerifyOops) { 527 __ verify_oop(result); 528 } 529 } 530 531 void TemplateTable::ldc2_w() { 532 transition(vtos, vtos); 533 Label Long, Done; 534 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 535 536 __ get_cpool_and_tags(rcx, rax); 537 const int base_offset = ConstantPool::header_size() * wordSize; 538 const int tags_offset = Array<u1>::base_offset_in_bytes(); 539 540 // get type 541 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), 542 JVM_CONSTANT_Double); 543 __ jccb(Assembler::notEqual, Long); 544 545 // dtos 546 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 547 __ push(dtos); 548 549 __ jmpb(Done); 550 __ bind(Long); 551 552 // ltos 553 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 554 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 555 __ push(ltos); 556 557 __ bind(Done); 558 } 559 560 void TemplateTable::locals_index(Register reg, int offset) { 561 __ load_unsigned_byte(reg, at_bcp(offset)); 562 __ negptr(reg); 563 } 564 565 void TemplateTable::iload() { 566 iload_internal(); 567 } 568 569 void TemplateTable::nofast_iload() { 570 iload_internal(may_not_rewrite); 571 } 572 573 void TemplateTable::iload_internal(RewriteControl rc) { 574 transition(vtos, itos); 575 if (RewriteFrequentPairs && rc == may_rewrite) { 576 Label rewrite, done; 577 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 578 LP64_ONLY(assert(rbx != bc, "register damaged")); 579 580 // get next byte 581 __ load_unsigned_byte(rbx, 582 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 583 // if _iload, wait to rewrite to iload2. We only want to rewrite the 584 // last two iloads in a pair. Comparing against fast_iload means that 585 // the next bytecode is neither an iload or a caload, and therefore 586 // an iload pair. 587 __ cmpl(rbx, Bytecodes::_iload); 588 __ jcc(Assembler::equal, done); 589 590 __ cmpl(rbx, Bytecodes::_fast_iload); 591 __ movl(bc, Bytecodes::_fast_iload2); 592 593 __ jccb(Assembler::equal, rewrite); 594 595 // if _caload, rewrite to fast_icaload 596 __ cmpl(rbx, Bytecodes::_caload); 597 __ movl(bc, Bytecodes::_fast_icaload); 598 __ jccb(Assembler::equal, rewrite); 599 600 // rewrite so iload doesn't check again. 601 __ movl(bc, Bytecodes::_fast_iload); 602 603 // rewrite 604 // bc: fast bytecode 605 __ bind(rewrite); 606 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 607 __ bind(done); 608 } 609 610 // Get the local value into tos 611 locals_index(rbx); 612 __ movl(rax, iaddress(rbx)); 613 } 614 615 void TemplateTable::fast_iload2() { 616 transition(vtos, itos); 617 locals_index(rbx); 618 __ movl(rax, iaddress(rbx)); 619 __ push(itos); 620 locals_index(rbx, 3); 621 __ movl(rax, iaddress(rbx)); 622 } 623 624 void TemplateTable::fast_iload() { 625 transition(vtos, itos); 626 locals_index(rbx); 627 __ movl(rax, iaddress(rbx)); 628 } 629 630 void TemplateTable::lload() { 631 transition(vtos, ltos); 632 locals_index(rbx); 633 __ movptr(rax, laddress(rbx)); 634 NOT_LP64(__ movl(rdx, haddress(rbx))); 635 } 636 637 void TemplateTable::fload() { 638 transition(vtos, ftos); 639 locals_index(rbx); 640 __ load_float(faddress(rbx)); 641 } 642 643 void TemplateTable::dload() { 644 transition(vtos, dtos); 645 locals_index(rbx); 646 __ load_double(daddress(rbx)); 647 } 648 649 void TemplateTable::aload() { 650 transition(vtos, atos); 651 locals_index(rbx); 652 __ movptr(rax, aaddress(rbx)); 653 } 654 655 void TemplateTable::vload() { 656 transition(vtos, qtos); 657 locals_index(rbx); 658 __ movptr(rax, aaddress(rbx)); 659 } 660 661 void TemplateTable::locals_index_wide(Register reg) { 662 __ load_unsigned_short(reg, at_bcp(2)); 663 __ bswapl(reg); 664 __ shrl(reg, 16); 665 __ negptr(reg); 666 } 667 668 void TemplateTable::wide_iload() { 669 transition(vtos, itos); 670 locals_index_wide(rbx); 671 __ movl(rax, iaddress(rbx)); 672 } 673 674 void TemplateTable::wide_lload() { 675 transition(vtos, ltos); 676 locals_index_wide(rbx); 677 __ movptr(rax, laddress(rbx)); 678 NOT_LP64(__ movl(rdx, haddress(rbx))); 679 } 680 681 void TemplateTable::wide_fload() { 682 transition(vtos, ftos); 683 locals_index_wide(rbx); 684 __ load_float(faddress(rbx)); 685 } 686 687 void TemplateTable::wide_dload() { 688 transition(vtos, dtos); 689 locals_index_wide(rbx); 690 __ load_double(daddress(rbx)); 691 } 692 693 void TemplateTable::wide_aload() { 694 transition(vtos, atos); 695 locals_index_wide(rbx); 696 __ movptr(rax, aaddress(rbx)); 697 } 698 699 void TemplateTable::wide_vload() { 700 transition(vtos, qtos); 701 locals_index_wide(rbx); 702 __ movptr(rax, aaddress(rbx)); 703 } 704 705 void TemplateTable::index_check(Register array, Register index) { 706 // Pop ptr into array 707 __ pop_ptr(array); 708 index_check_without_pop(array, index); 709 } 710 711 void TemplateTable::index_check_without_pop(Register array, Register index) { 712 // destroys rbx 713 // check array 714 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 715 // sign extend index for use by indexed load 716 __ movl2ptr(index, index); 717 // check index 718 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 719 if (index != rbx) { 720 // ??? convention: move aberrant index into rbx for exception message 721 assert(rbx != array, "different registers"); 722 __ movl(rbx, index); 723 } 724 __ jump_cc(Assembler::aboveEqual, 725 ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 726 } 727 728 729 void TemplateTable::iaload() { 730 transition(itos, itos); 731 // rax: index 732 // rdx: array 733 index_check(rdx, rax); // kills rbx 734 __ movl(rax, Address(rdx, rax, 735 Address::times_4, 736 arrayOopDesc::base_offset_in_bytes(T_INT))); 737 } 738 739 void TemplateTable::laload() { 740 transition(itos, ltos); 741 // rax: index 742 // rdx: array 743 index_check(rdx, rax); // kills rbx 744 NOT_LP64(__ mov(rbx, rax)); 745 // rbx,: index 746 __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize)); 747 NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize))); 748 } 749 750 751 752 void TemplateTable::faload() { 753 transition(itos, ftos); 754 // rax: index 755 // rdx: array 756 index_check(rdx, rax); // kills rbx 757 __ load_float(Address(rdx, rax, 758 Address::times_4, 759 arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 760 } 761 762 void TemplateTable::daload() { 763 transition(itos, dtos); 764 // rax: index 765 // rdx: array 766 index_check(rdx, rax); // kills rbx 767 __ load_double(Address(rdx, rax, 768 Address::times_8, 769 arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 770 } 771 772 void TemplateTable::aaload() { 773 transition(itos, atos); 774 // rax: index 775 // rdx: array 776 index_check(rdx, rax); // kills rbx 777 __ load_heap_oop(rax, Address(rdx, rax, 778 UseCompressedOops ? Address::times_4 : Address::times_ptr, 779 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 780 } 781 782 void TemplateTable::vaload() { 783 transition(itos, qtos); 784 785 Register array = rcx; 786 Register index = rax; 787 788 index_check(array, index); // kills rbx, pops array 789 790 __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_load) , array, index); 791 } 792 793 void TemplateTable::baload() { 794 transition(itos, itos); 795 // rax: index 796 // rdx: array 797 index_check(rdx, rax); // kills rbx 798 __ load_signed_byte(rax, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE))); 799 } 800 801 void TemplateTable::caload() { 802 transition(itos, itos); 803 // rax: index 804 // rdx: array 805 index_check(rdx, rax); // kills rbx 806 __ load_unsigned_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 807 } 808 809 // iload followed by caload frequent pair 810 void TemplateTable::fast_icaload() { 811 transition(vtos, itos); 812 // load index out of locals 813 locals_index(rbx); 814 __ movl(rax, iaddress(rbx)); 815 816 // rax: index 817 // rdx: array 818 index_check(rdx, rax); // kills rbx 819 __ load_unsigned_short(rax, 820 Address(rdx, rax, 821 Address::times_2, 822 arrayOopDesc::base_offset_in_bytes(T_CHAR))); 823 } 824 825 826 void TemplateTable::saload() { 827 transition(itos, itos); 828 // rax: index 829 // rdx: array 830 index_check(rdx, rax); // kills rbx 831 __ load_signed_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT))); 832 } 833 834 void TemplateTable::iload(int n) { 835 transition(vtos, itos); 836 __ movl(rax, iaddress(n)); 837 } 838 839 void TemplateTable::lload(int n) { 840 transition(vtos, ltos); 841 __ movptr(rax, laddress(n)); 842 NOT_LP64(__ movptr(rdx, haddress(n))); 843 } 844 845 void TemplateTable::fload(int n) { 846 transition(vtos, ftos); 847 __ load_float(faddress(n)); 848 } 849 850 void TemplateTable::dload(int n) { 851 transition(vtos, dtos); 852 __ load_double(daddress(n)); 853 } 854 855 void TemplateTable::aload(int n) { 856 transition(vtos, atos); 857 __ movptr(rax, aaddress(n)); 858 } 859 860 void TemplateTable::aload_0() { 861 aload_0_internal(); 862 } 863 864 void TemplateTable::nofast_aload_0() { 865 aload_0_internal(may_not_rewrite); 866 } 867 868 void TemplateTable::aload_0_internal(RewriteControl rc) { 869 transition(vtos, atos); 870 // According to bytecode histograms, the pairs: 871 // 872 // _aload_0, _fast_igetfield 873 // _aload_0, _fast_agetfield 874 // _aload_0, _fast_fgetfield 875 // 876 // occur frequently. If RewriteFrequentPairs is set, the (slow) 877 // _aload_0 bytecode checks if the next bytecode is either 878 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 879 // rewrites the current bytecode into a pair bytecode; otherwise it 880 // rewrites the current bytecode into _fast_aload_0 that doesn't do 881 // the pair check anymore. 882 // 883 // Note: If the next bytecode is _getfield, the rewrite must be 884 // delayed, otherwise we may miss an opportunity for a pair. 885 // 886 // Also rewrite frequent pairs 887 // aload_0, aload_1 888 // aload_0, iload_1 889 // These bytecodes with a small amount of code are most profitable 890 // to rewrite 891 if (RewriteFrequentPairs && rc == may_rewrite) { 892 Label rewrite, done; 893 894 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 895 LP64_ONLY(assert(rbx != bc, "register damaged")); 896 897 // get next byte 898 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 899 900 // if _getfield then wait with rewrite 901 __ cmpl(rbx, Bytecodes::_getfield); 902 __ jcc(Assembler::equal, done); 903 904 // if _igetfield then rewrite to _fast_iaccess_0 905 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 906 __ cmpl(rbx, Bytecodes::_fast_igetfield); 907 __ movl(bc, Bytecodes::_fast_iaccess_0); 908 __ jccb(Assembler::equal, rewrite); 909 910 // if _agetfield then rewrite to _fast_aaccess_0 911 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 912 __ cmpl(rbx, Bytecodes::_fast_agetfield); 913 __ movl(bc, Bytecodes::_fast_aaccess_0); 914 __ jccb(Assembler::equal, rewrite); 915 916 // if _fgetfield then rewrite to _fast_faccess_0 917 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 918 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 919 __ movl(bc, Bytecodes::_fast_faccess_0); 920 __ jccb(Assembler::equal, rewrite); 921 922 // else rewrite to _fast_aload0 923 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 924 __ movl(bc, Bytecodes::_fast_aload_0); 925 926 // rewrite 927 // bc: fast bytecode 928 __ bind(rewrite); 929 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 930 931 __ bind(done); 932 } 933 934 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 935 aload(0); 936 } 937 938 void TemplateTable::istore() { 939 transition(itos, vtos); 940 locals_index(rbx); 941 __ movl(iaddress(rbx), rax); 942 } 943 944 945 void TemplateTable::lstore() { 946 transition(ltos, vtos); 947 locals_index(rbx); 948 __ movptr(laddress(rbx), rax); 949 NOT_LP64(__ movptr(haddress(rbx), rdx)); 950 } 951 952 void TemplateTable::fstore() { 953 transition(ftos, vtos); 954 locals_index(rbx); 955 __ store_float(faddress(rbx)); 956 } 957 958 void TemplateTable::dstore() { 959 transition(dtos, vtos); 960 locals_index(rbx); 961 __ store_double(daddress(rbx)); 962 } 963 964 void TemplateTable::astore() { 965 transition(vtos, vtos); 966 __ pop_ptr(rax); 967 locals_index(rbx); 968 __ movptr(aaddress(rbx), rax); 969 } 970 971 void TemplateTable::vstore() { 972 transition(vtos, vtos); 973 __ pop_ptr(rax); 974 locals_index(rbx); 975 __ movptr(aaddress(rbx), rax); 976 } 977 978 void TemplateTable::wide_istore() { 979 transition(vtos, vtos); 980 __ pop_i(); 981 locals_index_wide(rbx); 982 __ movl(iaddress(rbx), rax); 983 } 984 985 void TemplateTable::wide_lstore() { 986 transition(vtos, vtos); 987 NOT_LP64(__ pop_l(rax, rdx)); 988 LP64_ONLY(__ pop_l()); 989 locals_index_wide(rbx); 990 __ movptr(laddress(rbx), rax); 991 NOT_LP64(__ movl(haddress(rbx), rdx)); 992 } 993 994 void TemplateTable::wide_fstore() { 995 #ifdef _LP64 996 transition(vtos, vtos); 997 __ pop_f(xmm0); 998 locals_index_wide(rbx); 999 __ movflt(faddress(rbx), xmm0); 1000 #else 1001 wide_istore(); 1002 #endif 1003 } 1004 1005 void TemplateTable::wide_dstore() { 1006 #ifdef _LP64 1007 transition(vtos, vtos); 1008 __ pop_d(xmm0); 1009 locals_index_wide(rbx); 1010 __ movdbl(daddress(rbx), xmm0); 1011 #else 1012 wide_lstore(); 1013 #endif 1014 } 1015 1016 void TemplateTable::wide_astore() { 1017 transition(vtos, vtos); 1018 __ pop_ptr(rax); 1019 locals_index_wide(rbx); 1020 __ movptr(aaddress(rbx), rax); 1021 } 1022 1023 void TemplateTable::wide_vstore() { 1024 transition(vtos, vtos); 1025 __ pop_ptr(rax); 1026 locals_index_wide(rbx); 1027 __ movptr(aaddress(rbx), rax); 1028 } 1029 1030 void TemplateTable::iastore() { 1031 transition(itos, vtos); 1032 __ pop_i(rbx); 1033 // rax: value 1034 // rbx: index 1035 // rdx: array 1036 index_check(rdx, rbx); // prefer index in rbx 1037 __ movl(Address(rdx, rbx, 1038 Address::times_4, 1039 arrayOopDesc::base_offset_in_bytes(T_INT)), 1040 rax); 1041 } 1042 1043 void TemplateTable::lastore() { 1044 transition(ltos, vtos); 1045 __ pop_i(rbx); 1046 // rax,: low(value) 1047 // rcx: array 1048 // rdx: high(value) 1049 index_check(rcx, rbx); // prefer index in rbx, 1050 // rbx,: index 1051 __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax); 1052 NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx)); 1053 } 1054 1055 1056 void TemplateTable::fastore() { 1057 transition(ftos, vtos); 1058 __ pop_i(rbx); 1059 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1060 // rbx: index 1061 // rdx: array 1062 index_check(rdx, rbx); // prefer index in rbx 1063 __ store_float(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 1064 } 1065 1066 void TemplateTable::dastore() { 1067 transition(dtos, vtos); 1068 __ pop_i(rbx); 1069 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1070 // rbx: index 1071 // rdx: array 1072 index_check(rdx, rbx); // prefer index in rbx 1073 __ store_double(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 1074 } 1075 1076 void TemplateTable::aastore() { 1077 Label is_null, ok_is_subtype, done; 1078 transition(vtos, vtos); 1079 // stack: ..., array, index, value 1080 __ movptr(rax, at_tos()); // value 1081 __ movl(rcx, at_tos_p1()); // index 1082 __ movptr(rdx, at_tos_p2()); // array 1083 1084 Address element_address(rdx, rcx, 1085 UseCompressedOops? Address::times_4 : Address::times_ptr, 1086 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1087 1088 index_check_without_pop(rdx, rcx); // kills rbx 1089 __ testptr(rax, rax); 1090 __ jcc(Assembler::zero, is_null); 1091 1092 // Move subklass into rbx 1093 __ load_klass(rbx, rax); 1094 // Move superklass into rax 1095 __ load_klass(rax, rdx); 1096 __ movptr(rax, Address(rax, 1097 ObjArrayKlass::element_klass_offset())); 1098 // Compress array + index*oopSize + 12 into a single register. Frees rcx. 1099 __ lea(rdx, element_address); 1100 1101 // Generate subtype check. Blows rcx, rdi 1102 // Superklass in rax. Subklass in rbx. 1103 __ gen_subtype_check(rbx, ok_is_subtype); 1104 1105 // Come here on failure 1106 // object is at TOS 1107 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1108 1109 // Come here on success 1110 __ bind(ok_is_subtype); 1111 1112 // Get the value we will store 1113 __ movptr(rax, at_tos()); 1114 // Now store using the appropriate barrier 1115 do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true); 1116 __ jmp(done); 1117 1118 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] 1119 __ bind(is_null); 1120 __ profile_null_seen(rbx); 1121 1122 // Store a NULL 1123 do_oop_store(_masm, element_address, noreg, _bs->kind(), true); 1124 1125 // Pop stack arguments 1126 __ bind(done); 1127 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1128 } 1129 1130 void TemplateTable::vastore() { 1131 transition(vtos, vtos); 1132 1133 Register value = rcx; 1134 Register index = rbx; 1135 Register array = rax; 1136 1137 // stack: ..., array, index, value 1138 __ pop_ptr(value); 1139 __ pop_i(index); 1140 __ pop_ptr(array); 1141 1142 index_check_without_pop(array, index); 1143 1144 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::value_array_store), array, index, value); 1145 } 1146 1147 void TemplateTable::bastore() { 1148 transition(itos, vtos); 1149 __ pop_i(rbx); 1150 // rax: value 1151 // rbx: index 1152 // rdx: array 1153 index_check(rdx, rbx); // prefer index in rbx 1154 // Need to check whether array is boolean or byte 1155 // since both types share the bastore bytecode. 1156 __ load_klass(rcx, rdx); 1157 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1158 int diffbit = Klass::layout_helper_boolean_diffbit(); 1159 __ testl(rcx, diffbit); 1160 Label L_skip; 1161 __ jccb(Assembler::zero, L_skip); 1162 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1163 __ bind(L_skip); 1164 __ movb(Address(rdx, rbx, 1165 Address::times_1, 1166 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1167 rax); 1168 } 1169 1170 void TemplateTable::castore() { 1171 transition(itos, vtos); 1172 __ pop_i(rbx); 1173 // rax: value 1174 // rbx: index 1175 // rdx: array 1176 index_check(rdx, rbx); // prefer index in rbx 1177 __ movw(Address(rdx, rbx, 1178 Address::times_2, 1179 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1180 rax); 1181 } 1182 1183 1184 void TemplateTable::sastore() { 1185 castore(); 1186 } 1187 1188 void TemplateTable::istore(int n) { 1189 transition(itos, vtos); 1190 __ movl(iaddress(n), rax); 1191 } 1192 1193 void TemplateTable::lstore(int n) { 1194 transition(ltos, vtos); 1195 __ movptr(laddress(n), rax); 1196 NOT_LP64(__ movptr(haddress(n), rdx)); 1197 } 1198 1199 void TemplateTable::fstore(int n) { 1200 transition(ftos, vtos); 1201 __ store_float(faddress(n)); 1202 } 1203 1204 void TemplateTable::dstore(int n) { 1205 transition(dtos, vtos); 1206 __ store_double(daddress(n)); 1207 } 1208 1209 1210 void TemplateTable::astore(int n) { 1211 transition(vtos, vtos); 1212 __ pop_ptr(rax); 1213 __ movptr(aaddress(n), rax); 1214 } 1215 1216 void TemplateTable::pop() { 1217 transition(vtos, vtos); 1218 __ addptr(rsp, Interpreter::stackElementSize); 1219 } 1220 1221 void TemplateTable::pop2() { 1222 transition(vtos, vtos); 1223 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1224 } 1225 1226 1227 void TemplateTable::dup() { 1228 transition(vtos, vtos); 1229 __ load_ptr(0, rax); 1230 __ push_ptr(rax); 1231 // stack: ..., a, a 1232 } 1233 1234 void TemplateTable::dup_x1() { 1235 transition(vtos, vtos); 1236 // stack: ..., a, b 1237 __ load_ptr( 0, rax); // load b 1238 __ load_ptr( 1, rcx); // load a 1239 __ store_ptr(1, rax); // store b 1240 __ store_ptr(0, rcx); // store a 1241 __ push_ptr(rax); // push b 1242 // stack: ..., b, a, b 1243 } 1244 1245 void TemplateTable::dup_x2() { 1246 transition(vtos, vtos); 1247 // stack: ..., a, b, c 1248 __ load_ptr( 0, rax); // load c 1249 __ load_ptr( 2, rcx); // load a 1250 __ store_ptr(2, rax); // store c in a 1251 __ push_ptr(rax); // push c 1252 // stack: ..., c, b, c, c 1253 __ load_ptr( 2, rax); // load b 1254 __ store_ptr(2, rcx); // store a in b 1255 // stack: ..., c, a, c, c 1256 __ store_ptr(1, rax); // store b in c 1257 // stack: ..., c, a, b, c 1258 } 1259 1260 void TemplateTable::dup2() { 1261 transition(vtos, vtos); 1262 // stack: ..., a, b 1263 __ load_ptr(1, rax); // load a 1264 __ push_ptr(rax); // push a 1265 __ load_ptr(1, rax); // load b 1266 __ push_ptr(rax); // push b 1267 // stack: ..., a, b, a, b 1268 } 1269 1270 1271 void TemplateTable::dup2_x1() { 1272 transition(vtos, vtos); 1273 // stack: ..., a, b, c 1274 __ load_ptr( 0, rcx); // load c 1275 __ load_ptr( 1, rax); // load b 1276 __ push_ptr(rax); // push b 1277 __ push_ptr(rcx); // push c 1278 // stack: ..., a, b, c, b, c 1279 __ store_ptr(3, rcx); // store c in b 1280 // stack: ..., a, c, c, b, c 1281 __ load_ptr( 4, rcx); // load a 1282 __ store_ptr(2, rcx); // store a in 2nd c 1283 // stack: ..., a, c, a, b, c 1284 __ store_ptr(4, rax); // store b in a 1285 // stack: ..., b, c, a, b, c 1286 } 1287 1288 void TemplateTable::dup2_x2() { 1289 transition(vtos, vtos); 1290 // stack: ..., a, b, c, d 1291 __ load_ptr( 0, rcx); // load d 1292 __ load_ptr( 1, rax); // load c 1293 __ push_ptr(rax); // push c 1294 __ push_ptr(rcx); // push d 1295 // stack: ..., a, b, c, d, c, d 1296 __ load_ptr( 4, rax); // load b 1297 __ store_ptr(2, rax); // store b in d 1298 __ store_ptr(4, rcx); // store d in b 1299 // stack: ..., a, d, c, b, c, d 1300 __ load_ptr( 5, rcx); // load a 1301 __ load_ptr( 3, rax); // load c 1302 __ store_ptr(3, rcx); // store a in c 1303 __ store_ptr(5, rax); // store c in a 1304 // stack: ..., c, d, a, b, c, d 1305 } 1306 1307 void TemplateTable::swap() { 1308 transition(vtos, vtos); 1309 // stack: ..., a, b 1310 __ load_ptr( 1, rcx); // load a 1311 __ load_ptr( 0, rax); // load b 1312 __ store_ptr(0, rcx); // store a in b 1313 __ store_ptr(1, rax); // store b in a 1314 // stack: ..., b, a 1315 } 1316 1317 void TemplateTable::iop2(Operation op) { 1318 transition(itos, itos); 1319 switch (op) { 1320 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1321 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1322 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1323 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1324 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1325 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1326 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1327 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1328 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1329 default : ShouldNotReachHere(); 1330 } 1331 } 1332 1333 void TemplateTable::lop2(Operation op) { 1334 transition(ltos, ltos); 1335 #ifdef _LP64 1336 switch (op) { 1337 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1338 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1339 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1340 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1341 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1342 default : ShouldNotReachHere(); 1343 } 1344 #else 1345 __ pop_l(rbx, rcx); 1346 switch (op) { 1347 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1348 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1349 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1350 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1351 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1352 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1353 default : ShouldNotReachHere(); 1354 } 1355 #endif 1356 } 1357 1358 void TemplateTable::idiv() { 1359 transition(itos, itos); 1360 __ movl(rcx, rax); 1361 __ pop_i(rax); 1362 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1363 // they are not equal, one could do a normal division (no correction 1364 // needed), which may speed up this implementation for the common case. 1365 // (see also JVM spec., p.243 & p.271) 1366 __ corrected_idivl(rcx); 1367 } 1368 1369 void TemplateTable::irem() { 1370 transition(itos, itos); 1371 __ movl(rcx, rax); 1372 __ pop_i(rax); 1373 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1374 // they are not equal, one could do a normal division (no correction 1375 // needed), which may speed up this implementation for the common case. 1376 // (see also JVM spec., p.243 & p.271) 1377 __ corrected_idivl(rcx); 1378 __ movl(rax, rdx); 1379 } 1380 1381 void TemplateTable::lmul() { 1382 transition(ltos, ltos); 1383 #ifdef _LP64 1384 __ pop_l(rdx); 1385 __ imulq(rax, rdx); 1386 #else 1387 __ pop_l(rbx, rcx); 1388 __ push(rcx); __ push(rbx); 1389 __ push(rdx); __ push(rax); 1390 __ lmul(2 * wordSize, 0); 1391 __ addptr(rsp, 4 * wordSize); // take off temporaries 1392 #endif 1393 } 1394 1395 void TemplateTable::ldiv() { 1396 transition(ltos, ltos); 1397 #ifdef _LP64 1398 __ mov(rcx, rax); 1399 __ pop_l(rax); 1400 // generate explicit div0 check 1401 __ testq(rcx, rcx); 1402 __ jump_cc(Assembler::zero, 1403 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1404 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1405 // they are not equal, one could do a normal division (no correction 1406 // needed), which may speed up this implementation for the common case. 1407 // (see also JVM spec., p.243 & p.271) 1408 __ corrected_idivq(rcx); // kills rbx 1409 #else 1410 __ pop_l(rbx, rcx); 1411 __ push(rcx); __ push(rbx); 1412 __ push(rdx); __ push(rax); 1413 // check if y = 0 1414 __ orl(rax, rdx); 1415 __ jump_cc(Assembler::zero, 1416 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1417 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1418 __ addptr(rsp, 4 * wordSize); // take off temporaries 1419 #endif 1420 } 1421 1422 void TemplateTable::lrem() { 1423 transition(ltos, ltos); 1424 #ifdef _LP64 1425 __ mov(rcx, rax); 1426 __ pop_l(rax); 1427 __ testq(rcx, rcx); 1428 __ jump_cc(Assembler::zero, 1429 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1430 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1431 // they are not equal, one could do a normal division (no correction 1432 // needed), which may speed up this implementation for the common case. 1433 // (see also JVM spec., p.243 & p.271) 1434 __ corrected_idivq(rcx); // kills rbx 1435 __ mov(rax, rdx); 1436 #else 1437 __ pop_l(rbx, rcx); 1438 __ push(rcx); __ push(rbx); 1439 __ push(rdx); __ push(rax); 1440 // check if y = 0 1441 __ orl(rax, rdx); 1442 __ jump_cc(Assembler::zero, 1443 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1444 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1445 __ addptr(rsp, 4 * wordSize); 1446 #endif 1447 } 1448 1449 void TemplateTable::lshl() { 1450 transition(itos, ltos); 1451 __ movl(rcx, rax); // get shift count 1452 #ifdef _LP64 1453 __ pop_l(rax); // get shift value 1454 __ shlq(rax); 1455 #else 1456 __ pop_l(rax, rdx); // get shift value 1457 __ lshl(rdx, rax); 1458 #endif 1459 } 1460 1461 void TemplateTable::lshr() { 1462 #ifdef _LP64 1463 transition(itos, ltos); 1464 __ movl(rcx, rax); // get shift count 1465 __ pop_l(rax); // get shift value 1466 __ sarq(rax); 1467 #else 1468 transition(itos, ltos); 1469 __ mov(rcx, rax); // get shift count 1470 __ pop_l(rax, rdx); // get shift value 1471 __ lshr(rdx, rax, true); 1472 #endif 1473 } 1474 1475 void TemplateTable::lushr() { 1476 transition(itos, ltos); 1477 #ifdef _LP64 1478 __ movl(rcx, rax); // get shift count 1479 __ pop_l(rax); // get shift value 1480 __ shrq(rax); 1481 #else 1482 __ mov(rcx, rax); // get shift count 1483 __ pop_l(rax, rdx); // get shift value 1484 __ lshr(rdx, rax); 1485 #endif 1486 } 1487 1488 void TemplateTable::fop2(Operation op) { 1489 transition(ftos, ftos); 1490 1491 if (UseSSE >= 1) { 1492 switch (op) { 1493 case add: 1494 __ addss(xmm0, at_rsp()); 1495 __ addptr(rsp, Interpreter::stackElementSize); 1496 break; 1497 case sub: 1498 __ movflt(xmm1, xmm0); 1499 __ pop_f(xmm0); 1500 __ subss(xmm0, xmm1); 1501 break; 1502 case mul: 1503 __ mulss(xmm0, at_rsp()); 1504 __ addptr(rsp, Interpreter::stackElementSize); 1505 break; 1506 case div: 1507 __ movflt(xmm1, xmm0); 1508 __ pop_f(xmm0); 1509 __ divss(xmm0, xmm1); 1510 break; 1511 case rem: 1512 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1513 // modulo operation. The frem method calls the function 1514 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1515 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1516 // (signalling or quiet) is returned. 1517 // 1518 // On x86_32 platforms the FPU is used to perform the modulo operation. The 1519 // reason is that on 32-bit Windows the sign of modulo operations diverges from 1520 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). 1521 // The fprem instruction used on x86_32 is functionally equivalent to 1522 // SharedRuntime::frem in that it returns a NaN. 1523 #ifdef _LP64 1524 __ movflt(xmm1, xmm0); 1525 __ pop_f(xmm0); 1526 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1527 #else 1528 __ push_f(xmm0); 1529 __ pop_f(); 1530 __ fld_s(at_rsp()); 1531 __ fremr(rax); 1532 __ f2ieee(); 1533 __ pop(rax); // pop second operand off the stack 1534 __ push_f(); 1535 __ pop_f(xmm0); 1536 #endif 1537 break; 1538 default: 1539 ShouldNotReachHere(); 1540 break; 1541 } 1542 } else { 1543 #ifdef _LP64 1544 ShouldNotReachHere(); 1545 #else 1546 switch (op) { 1547 case add: __ fadd_s (at_rsp()); break; 1548 case sub: __ fsubr_s(at_rsp()); break; 1549 case mul: __ fmul_s (at_rsp()); break; 1550 case div: __ fdivr_s(at_rsp()); break; 1551 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1552 default : ShouldNotReachHere(); 1553 } 1554 __ f2ieee(); 1555 __ pop(rax); // pop second operand off the stack 1556 #endif // _LP64 1557 } 1558 } 1559 1560 void TemplateTable::dop2(Operation op) { 1561 transition(dtos, dtos); 1562 if (UseSSE >= 2) { 1563 switch (op) { 1564 case add: 1565 __ addsd(xmm0, at_rsp()); 1566 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1567 break; 1568 case sub: 1569 __ movdbl(xmm1, xmm0); 1570 __ pop_d(xmm0); 1571 __ subsd(xmm0, xmm1); 1572 break; 1573 case mul: 1574 __ mulsd(xmm0, at_rsp()); 1575 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1576 break; 1577 case div: 1578 __ movdbl(xmm1, xmm0); 1579 __ pop_d(xmm0); 1580 __ divsd(xmm0, xmm1); 1581 break; 1582 case rem: 1583 // Similar to fop2(), the modulo operation is performed using the 1584 // SharedRuntime::drem method (on x86_64 platforms) or using the 1585 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). 1586 #ifdef _LP64 1587 __ movdbl(xmm1, xmm0); 1588 __ pop_d(xmm0); 1589 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1590 #else 1591 __ push_d(xmm0); 1592 __ pop_d(); 1593 __ fld_d(at_rsp()); 1594 __ fremr(rax); 1595 __ d2ieee(); 1596 __ pop(rax); 1597 __ pop(rdx); 1598 __ push_d(); 1599 __ pop_d(xmm0); 1600 #endif 1601 break; 1602 default: 1603 ShouldNotReachHere(); 1604 break; 1605 } 1606 } else { 1607 #ifdef _LP64 1608 ShouldNotReachHere(); 1609 #else 1610 switch (op) { 1611 case add: __ fadd_d (at_rsp()); break; 1612 case sub: __ fsubr_d(at_rsp()); break; 1613 case mul: { 1614 Label L_strict; 1615 Label L_join; 1616 const Address access_flags (rcx, Method::access_flags_offset()); 1617 __ get_method(rcx); 1618 __ movl(rcx, access_flags); 1619 __ testl(rcx, JVM_ACC_STRICT); 1620 __ jccb(Assembler::notZero, L_strict); 1621 __ fmul_d (at_rsp()); 1622 __ jmpb(L_join); 1623 __ bind(L_strict); 1624 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1625 __ fmulp(); 1626 __ fmul_d (at_rsp()); 1627 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1628 __ fmulp(); 1629 __ bind(L_join); 1630 break; 1631 } 1632 case div: { 1633 Label L_strict; 1634 Label L_join; 1635 const Address access_flags (rcx, Method::access_flags_offset()); 1636 __ get_method(rcx); 1637 __ movl(rcx, access_flags); 1638 __ testl(rcx, JVM_ACC_STRICT); 1639 __ jccb(Assembler::notZero, L_strict); 1640 __ fdivr_d(at_rsp()); 1641 __ jmp(L_join); 1642 __ bind(L_strict); 1643 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1644 __ fmul_d (at_rsp()); 1645 __ fdivrp(); 1646 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1647 __ fmulp(); 1648 __ bind(L_join); 1649 break; 1650 } 1651 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1652 default : ShouldNotReachHere(); 1653 } 1654 __ d2ieee(); 1655 // Pop double precision number from rsp. 1656 __ pop(rax); 1657 __ pop(rdx); 1658 #endif 1659 } 1660 } 1661 1662 void TemplateTable::ineg() { 1663 transition(itos, itos); 1664 __ negl(rax); 1665 } 1666 1667 void TemplateTable::lneg() { 1668 transition(ltos, ltos); 1669 LP64_ONLY(__ negq(rax)); 1670 NOT_LP64(__ lneg(rdx, rax)); 1671 } 1672 1673 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1674 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1675 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1676 // of 128-bits operands for SSE instructions. 1677 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1678 // Store the value to a 128-bits operand. 1679 operand[0] = lo; 1680 operand[1] = hi; 1681 return operand; 1682 } 1683 1684 // Buffer for 128-bits masks used by SSE instructions. 1685 static jlong float_signflip_pool[2*2]; 1686 static jlong double_signflip_pool[2*2]; 1687 1688 void TemplateTable::fneg() { 1689 transition(ftos, ftos); 1690 if (UseSSE >= 1) { 1691 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1692 __ xorps(xmm0, ExternalAddress((address) float_signflip)); 1693 } else { 1694 LP64_ONLY(ShouldNotReachHere()); 1695 NOT_LP64(__ fchs()); 1696 } 1697 } 1698 1699 void TemplateTable::dneg() { 1700 transition(dtos, dtos); 1701 if (UseSSE >= 2) { 1702 static jlong *double_signflip = 1703 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1704 __ xorpd(xmm0, ExternalAddress((address) double_signflip)); 1705 } else { 1706 #ifdef _LP64 1707 ShouldNotReachHere(); 1708 #else 1709 __ fchs(); 1710 #endif 1711 } 1712 } 1713 1714 void TemplateTable::iinc() { 1715 transition(vtos, vtos); 1716 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1717 locals_index(rbx); 1718 __ addl(iaddress(rbx), rdx); 1719 } 1720 1721 void TemplateTable::wide_iinc() { 1722 transition(vtos, vtos); 1723 __ movl(rdx, at_bcp(4)); // get constant 1724 locals_index_wide(rbx); 1725 __ bswapl(rdx); // swap bytes & sign-extend constant 1726 __ sarl(rdx, 16); 1727 __ addl(iaddress(rbx), rdx); 1728 // Note: should probably use only one movl to get both 1729 // the index and the constant -> fix this 1730 } 1731 1732 void TemplateTable::convert() { 1733 #ifdef _LP64 1734 // Checking 1735 #ifdef ASSERT 1736 { 1737 TosState tos_in = ilgl; 1738 TosState tos_out = ilgl; 1739 switch (bytecode()) { 1740 case Bytecodes::_i2l: // fall through 1741 case Bytecodes::_i2f: // fall through 1742 case Bytecodes::_i2d: // fall through 1743 case Bytecodes::_i2b: // fall through 1744 case Bytecodes::_i2c: // fall through 1745 case Bytecodes::_i2s: tos_in = itos; break; 1746 case Bytecodes::_l2i: // fall through 1747 case Bytecodes::_l2f: // fall through 1748 case Bytecodes::_l2d: tos_in = ltos; break; 1749 case Bytecodes::_f2i: // fall through 1750 case Bytecodes::_f2l: // fall through 1751 case Bytecodes::_f2d: tos_in = ftos; break; 1752 case Bytecodes::_d2i: // fall through 1753 case Bytecodes::_d2l: // fall through 1754 case Bytecodes::_d2f: tos_in = dtos; break; 1755 default : ShouldNotReachHere(); 1756 } 1757 switch (bytecode()) { 1758 case Bytecodes::_l2i: // fall through 1759 case Bytecodes::_f2i: // fall through 1760 case Bytecodes::_d2i: // fall through 1761 case Bytecodes::_i2b: // fall through 1762 case Bytecodes::_i2c: // fall through 1763 case Bytecodes::_i2s: tos_out = itos; break; 1764 case Bytecodes::_i2l: // fall through 1765 case Bytecodes::_f2l: // fall through 1766 case Bytecodes::_d2l: tos_out = ltos; break; 1767 case Bytecodes::_i2f: // fall through 1768 case Bytecodes::_l2f: // fall through 1769 case Bytecodes::_d2f: tos_out = ftos; break; 1770 case Bytecodes::_i2d: // fall through 1771 case Bytecodes::_l2d: // fall through 1772 case Bytecodes::_f2d: tos_out = dtos; break; 1773 default : ShouldNotReachHere(); 1774 } 1775 transition(tos_in, tos_out); 1776 } 1777 #endif // ASSERT 1778 1779 static const int64_t is_nan = 0x8000000000000000L; 1780 1781 // Conversion 1782 switch (bytecode()) { 1783 case Bytecodes::_i2l: 1784 __ movslq(rax, rax); 1785 break; 1786 case Bytecodes::_i2f: 1787 __ cvtsi2ssl(xmm0, rax); 1788 break; 1789 case Bytecodes::_i2d: 1790 __ cvtsi2sdl(xmm0, rax); 1791 break; 1792 case Bytecodes::_i2b: 1793 __ movsbl(rax, rax); 1794 break; 1795 case Bytecodes::_i2c: 1796 __ movzwl(rax, rax); 1797 break; 1798 case Bytecodes::_i2s: 1799 __ movswl(rax, rax); 1800 break; 1801 case Bytecodes::_l2i: 1802 __ movl(rax, rax); 1803 break; 1804 case Bytecodes::_l2f: 1805 __ cvtsi2ssq(xmm0, rax); 1806 break; 1807 case Bytecodes::_l2d: 1808 __ cvtsi2sdq(xmm0, rax); 1809 break; 1810 case Bytecodes::_f2i: 1811 { 1812 Label L; 1813 __ cvttss2sil(rax, xmm0); 1814 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1815 __ jcc(Assembler::notEqual, L); 1816 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1817 __ bind(L); 1818 } 1819 break; 1820 case Bytecodes::_f2l: 1821 { 1822 Label L; 1823 __ cvttss2siq(rax, xmm0); 1824 // NaN or overflow/underflow? 1825 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1826 __ jcc(Assembler::notEqual, L); 1827 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1828 __ bind(L); 1829 } 1830 break; 1831 case Bytecodes::_f2d: 1832 __ cvtss2sd(xmm0, xmm0); 1833 break; 1834 case Bytecodes::_d2i: 1835 { 1836 Label L; 1837 __ cvttsd2sil(rax, xmm0); 1838 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1839 __ jcc(Assembler::notEqual, L); 1840 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1841 __ bind(L); 1842 } 1843 break; 1844 case Bytecodes::_d2l: 1845 { 1846 Label L; 1847 __ cvttsd2siq(rax, xmm0); 1848 // NaN or overflow/underflow? 1849 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1850 __ jcc(Assembler::notEqual, L); 1851 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1852 __ bind(L); 1853 } 1854 break; 1855 case Bytecodes::_d2f: 1856 __ cvtsd2ss(xmm0, xmm0); 1857 break; 1858 default: 1859 ShouldNotReachHere(); 1860 } 1861 #else 1862 // Checking 1863 #ifdef ASSERT 1864 { TosState tos_in = ilgl; 1865 TosState tos_out = ilgl; 1866 switch (bytecode()) { 1867 case Bytecodes::_i2l: // fall through 1868 case Bytecodes::_i2f: // fall through 1869 case Bytecodes::_i2d: // fall through 1870 case Bytecodes::_i2b: // fall through 1871 case Bytecodes::_i2c: // fall through 1872 case Bytecodes::_i2s: tos_in = itos; break; 1873 case Bytecodes::_l2i: // fall through 1874 case Bytecodes::_l2f: // fall through 1875 case Bytecodes::_l2d: tos_in = ltos; break; 1876 case Bytecodes::_f2i: // fall through 1877 case Bytecodes::_f2l: // fall through 1878 case Bytecodes::_f2d: tos_in = ftos; break; 1879 case Bytecodes::_d2i: // fall through 1880 case Bytecodes::_d2l: // fall through 1881 case Bytecodes::_d2f: tos_in = dtos; break; 1882 default : ShouldNotReachHere(); 1883 } 1884 switch (bytecode()) { 1885 case Bytecodes::_l2i: // fall through 1886 case Bytecodes::_f2i: // fall through 1887 case Bytecodes::_d2i: // fall through 1888 case Bytecodes::_i2b: // fall through 1889 case Bytecodes::_i2c: // fall through 1890 case Bytecodes::_i2s: tos_out = itos; break; 1891 case Bytecodes::_i2l: // fall through 1892 case Bytecodes::_f2l: // fall through 1893 case Bytecodes::_d2l: tos_out = ltos; break; 1894 case Bytecodes::_i2f: // fall through 1895 case Bytecodes::_l2f: // fall through 1896 case Bytecodes::_d2f: tos_out = ftos; break; 1897 case Bytecodes::_i2d: // fall through 1898 case Bytecodes::_l2d: // fall through 1899 case Bytecodes::_f2d: tos_out = dtos; break; 1900 default : ShouldNotReachHere(); 1901 } 1902 transition(tos_in, tos_out); 1903 } 1904 #endif // ASSERT 1905 1906 // Conversion 1907 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1908 switch (bytecode()) { 1909 case Bytecodes::_i2l: 1910 __ extend_sign(rdx, rax); 1911 break; 1912 case Bytecodes::_i2f: 1913 if (UseSSE >= 1) { 1914 __ cvtsi2ssl(xmm0, rax); 1915 } else { 1916 __ push(rax); // store int on tos 1917 __ fild_s(at_rsp()); // load int to ST0 1918 __ f2ieee(); // truncate to float size 1919 __ pop(rcx); // adjust rsp 1920 } 1921 break; 1922 case Bytecodes::_i2d: 1923 if (UseSSE >= 2) { 1924 __ cvtsi2sdl(xmm0, rax); 1925 } else { 1926 __ push(rax); // add one slot for d2ieee() 1927 __ push(rax); // store int on tos 1928 __ fild_s(at_rsp()); // load int to ST0 1929 __ d2ieee(); // truncate to double size 1930 __ pop(rcx); // adjust rsp 1931 __ pop(rcx); 1932 } 1933 break; 1934 case Bytecodes::_i2b: 1935 __ shll(rax, 24); // truncate upper 24 bits 1936 __ sarl(rax, 24); // and sign-extend byte 1937 LP64_ONLY(__ movsbl(rax, rax)); 1938 break; 1939 case Bytecodes::_i2c: 1940 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1941 LP64_ONLY(__ movzwl(rax, rax)); 1942 break; 1943 case Bytecodes::_i2s: 1944 __ shll(rax, 16); // truncate upper 16 bits 1945 __ sarl(rax, 16); // and sign-extend short 1946 LP64_ONLY(__ movswl(rax, rax)); 1947 break; 1948 case Bytecodes::_l2i: 1949 /* nothing to do */ 1950 break; 1951 case Bytecodes::_l2f: 1952 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert 1953 // 64-bit long values to floats. On 32-bit platforms it is not possible 1954 // to use that instruction with 64-bit operands, therefore the FPU is 1955 // used to perform the conversion. 1956 __ push(rdx); // store long on tos 1957 __ push(rax); 1958 __ fild_d(at_rsp()); // load long to ST0 1959 __ f2ieee(); // truncate to float size 1960 __ pop(rcx); // adjust rsp 1961 __ pop(rcx); 1962 if (UseSSE >= 1) { 1963 __ push_f(); 1964 __ pop_f(xmm0); 1965 } 1966 break; 1967 case Bytecodes::_l2d: 1968 // On 32-bit platforms the FPU is used for conversion because on 1969 // 32-bit platforms it is not not possible to use the cvtsi2sdq 1970 // instruction with 64-bit operands. 1971 __ push(rdx); // store long on tos 1972 __ push(rax); 1973 __ fild_d(at_rsp()); // load long to ST0 1974 __ d2ieee(); // truncate to double size 1975 __ pop(rcx); // adjust rsp 1976 __ pop(rcx); 1977 if (UseSSE >= 2) { 1978 __ push_d(); 1979 __ pop_d(xmm0); 1980 } 1981 break; 1982 case Bytecodes::_f2i: 1983 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs 1984 // as it returns 0 for any NaN. 1985 if (UseSSE >= 1) { 1986 __ push_f(xmm0); 1987 } else { 1988 __ push(rcx); // reserve space for argument 1989 __ fstp_s(at_rsp()); // pass float argument on stack 1990 } 1991 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1992 break; 1993 case Bytecodes::_f2l: 1994 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs 1995 // as it returns 0 for any NaN. 1996 if (UseSSE >= 1) { 1997 __ push_f(xmm0); 1998 } else { 1999 __ push(rcx); // reserve space for argument 2000 __ fstp_s(at_rsp()); // pass float argument on stack 2001 } 2002 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 2003 break; 2004 case Bytecodes::_f2d: 2005 if (UseSSE < 1) { 2006 /* nothing to do */ 2007 } else if (UseSSE == 1) { 2008 __ push_f(xmm0); 2009 __ pop_f(); 2010 } else { // UseSSE >= 2 2011 __ cvtss2sd(xmm0, xmm0); 2012 } 2013 break; 2014 case Bytecodes::_d2i: 2015 if (UseSSE >= 2) { 2016 __ push_d(xmm0); 2017 } else { 2018 __ push(rcx); // reserve space for argument 2019 __ push(rcx); 2020 __ fstp_d(at_rsp()); // pass double argument on stack 2021 } 2022 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 2023 break; 2024 case Bytecodes::_d2l: 2025 if (UseSSE >= 2) { 2026 __ push_d(xmm0); 2027 } else { 2028 __ push(rcx); // reserve space for argument 2029 __ push(rcx); 2030 __ fstp_d(at_rsp()); // pass double argument on stack 2031 } 2032 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 2033 break; 2034 case Bytecodes::_d2f: 2035 if (UseSSE <= 1) { 2036 __ push(rcx); // reserve space for f2ieee() 2037 __ f2ieee(); // truncate to float size 2038 __ pop(rcx); // adjust rsp 2039 if (UseSSE == 1) { 2040 // The cvtsd2ss instruction is not available if UseSSE==1, therefore 2041 // the conversion is performed using the FPU in this case. 2042 __ push_f(); 2043 __ pop_f(xmm0); 2044 } 2045 } else { // UseSSE >= 2 2046 __ cvtsd2ss(xmm0, xmm0); 2047 } 2048 break; 2049 default : 2050 ShouldNotReachHere(); 2051 } 2052 #endif 2053 } 2054 2055 void TemplateTable::lcmp() { 2056 transition(ltos, itos); 2057 #ifdef _LP64 2058 Label done; 2059 __ pop_l(rdx); 2060 __ cmpq(rdx, rax); 2061 __ movl(rax, -1); 2062 __ jccb(Assembler::less, done); 2063 __ setb(Assembler::notEqual, rax); 2064 __ movzbl(rax, rax); 2065 __ bind(done); 2066 #else 2067 2068 // y = rdx:rax 2069 __ pop_l(rbx, rcx); // get x = rcx:rbx 2070 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 2071 __ mov(rax, rcx); 2072 #endif 2073 } 2074 2075 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 2076 if ((is_float && UseSSE >= 1) || 2077 (!is_float && UseSSE >= 2)) { 2078 Label done; 2079 if (is_float) { 2080 // XXX get rid of pop here, use ... reg, mem32 2081 __ pop_f(xmm1); 2082 __ ucomiss(xmm1, xmm0); 2083 } else { 2084 // XXX get rid of pop here, use ... reg, mem64 2085 __ pop_d(xmm1); 2086 __ ucomisd(xmm1, xmm0); 2087 } 2088 if (unordered_result < 0) { 2089 __ movl(rax, -1); 2090 __ jccb(Assembler::parity, done); 2091 __ jccb(Assembler::below, done); 2092 __ setb(Assembler::notEqual, rdx); 2093 __ movzbl(rax, rdx); 2094 } else { 2095 __ movl(rax, 1); 2096 __ jccb(Assembler::parity, done); 2097 __ jccb(Assembler::above, done); 2098 __ movl(rax, 0); 2099 __ jccb(Assembler::equal, done); 2100 __ decrementl(rax); 2101 } 2102 __ bind(done); 2103 } else { 2104 #ifdef _LP64 2105 ShouldNotReachHere(); 2106 #else 2107 if (is_float) { 2108 __ fld_s(at_rsp()); 2109 } else { 2110 __ fld_d(at_rsp()); 2111 __ pop(rdx); 2112 } 2113 __ pop(rcx); 2114 __ fcmp2int(rax, unordered_result < 0); 2115 #endif // _LP64 2116 } 2117 } 2118 2119 void TemplateTable::branch(bool is_jsr, bool is_wide) { 2120 if (ValueTypesThreadLocalRecycling) { 2121 Label no_vt_recycling, no_fixing_required; 2122 const Register thread1 = NOT_LP64(rbx) LP64_ONLY(r15_thread); 2123 NOT_LP64(__ get_thread(thread1)); 2124 __ movptr(rbx, Address(thread1, in_bytes(JavaThread::vt_alloc_ptr_offset()))); 2125 __ testptr(rbx, rbx); 2126 __ jcc(Assembler::zero, no_vt_recycling); 2127 __ movptr(rcx, Address(rbp, frame::interpreter_frame_vt_alloc_ptr_offset * wordSize)); 2128 __ testptr(rcx, rcx); 2129 __ jcc(Assembler::notZero, no_fixing_required); 2130 // vt_alloc_ptr in JavaThread is non-null but frame vt_alloc_ptr is null 2131 // which means frame vt_alloc_ptr needs to be initialized 2132 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::fix_frame_vt_alloc_ptr)); 2133 __ movptr(rcx, Address(rbp, frame::interpreter_frame_vt_alloc_ptr_offset * wordSize)); 2134 __ bind(no_fixing_required); 2135 __ testptr(rcx, rbx); 2136 __ jcc(Assembler::equal, no_vt_recycling); 2137 __ andptr(rcx, VTBufferChunk::chunk_mask()); 2138 __ movl(rcx, Address(rcx, VTBufferChunk::index_offset())); 2139 __ andptr(rbx, VTBufferChunk::chunk_mask()); 2140 __ movl(rbx, Address(rbx, VTBufferChunk::index_offset())); 2141 __ subl(rbx, rcx); 2142 __ get_method(rcx); 2143 __ movl(rcx, Address(rcx, Method::max_vt_buffer_offset())); 2144 __ cmpl(rbx, rcx); 2145 __ jcc(Assembler::lessEqual, no_vt_recycling); 2146 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::recycle_buffered_values)); 2147 __ bind(no_vt_recycling); 2148 } 2149 2150 __ get_method(rcx); // rcx holds method 2151 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 2152 // holds bumped taken count 2153 2154 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 2155 InvocationCounter::counter_offset(); 2156 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 2157 InvocationCounter::counter_offset(); 2158 2159 // Load up edx with the branch displacement 2160 if (is_wide) { 2161 __ movl(rdx, at_bcp(1)); 2162 } else { 2163 __ load_signed_short(rdx, at_bcp(1)); 2164 } 2165 __ bswapl(rdx); 2166 2167 if (!is_wide) { 2168 __ sarl(rdx, 16); 2169 } 2170 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2171 2172 // Handle all the JSR stuff here, then exit. 2173 // It's much shorter and cleaner than intermingling with the non-JSR 2174 // normal-branch stuff occurring below. 2175 if (is_jsr) { 2176 // Pre-load the next target bytecode into rbx 2177 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 2178 2179 // compute return address as bci in rax 2180 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 2181 in_bytes(ConstMethod::codes_offset()))); 2182 __ subptr(rax, Address(rcx, Method::const_offset())); 2183 // Adjust the bcp in r13 by the displacement in rdx 2184 __ addptr(rbcp, rdx); 2185 // jsr returns atos that is not an oop 2186 __ push_i(rax); 2187 __ dispatch_only(vtos, true); 2188 return; 2189 } 2190 2191 // Normal (non-jsr) branch handling 2192 2193 // Adjust the bcp in r13 by the displacement in rdx 2194 __ addptr(rbcp, rdx); 2195 2196 assert(UseLoopCounter || !UseOnStackReplacement, 2197 "on-stack-replacement requires loop counters"); 2198 Label backedge_counter_overflow; 2199 Label profile_method; 2200 Label dispatch; 2201 if (UseLoopCounter) { 2202 // increment backedge counter for backward branches 2203 // rax: MDO 2204 // rbx: MDO bumped taken-count 2205 // rcx: method 2206 // rdx: target offset 2207 // r13: target bcp 2208 // r14: locals pointer 2209 __ testl(rdx, rdx); // check if forward or backward branch 2210 __ jcc(Assembler::positive, dispatch); // count only if backward branch 2211 2212 // check if MethodCounters exists 2213 Label has_counters; 2214 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2215 __ testptr(rax, rax); 2216 __ jcc(Assembler::notZero, has_counters); 2217 __ push(rdx); 2218 __ push(rcx); 2219 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 2220 rcx); 2221 __ pop(rcx); 2222 __ pop(rdx); 2223 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2224 __ testptr(rax, rax); 2225 __ jcc(Assembler::zero, dispatch); 2226 __ bind(has_counters); 2227 2228 if (TieredCompilation) { 2229 Label no_mdo; 2230 int increment = InvocationCounter::count_increment; 2231 if (ProfileInterpreter) { 2232 // Are we profiling? 2233 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 2234 __ testptr(rbx, rbx); 2235 __ jccb(Assembler::zero, no_mdo); 2236 // Increment the MDO backedge counter 2237 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 2238 in_bytes(InvocationCounter::counter_offset())); 2239 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 2240 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 2241 rax, false, Assembler::zero, &backedge_counter_overflow); 2242 __ jmp(dispatch); 2243 } 2244 __ bind(no_mdo); 2245 // Increment backedge counter in MethodCounters* 2246 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2247 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 2248 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 2249 rax, false, Assembler::zero, &backedge_counter_overflow); 2250 } else { // not TieredCompilation 2251 // increment counter 2252 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2253 __ movl(rax, Address(rcx, be_offset)); // load backedge counter 2254 __ incrementl(rax, InvocationCounter::count_increment); // increment counter 2255 __ movl(Address(rcx, be_offset), rax); // store counter 2256 2257 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter 2258 2259 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits 2260 __ addl(rax, Address(rcx, be_offset)); // add both counters 2261 2262 if (ProfileInterpreter) { 2263 // Test to see if we should create a method data oop 2264 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset()))); 2265 __ jcc(Assembler::less, dispatch); 2266 2267 // if no method data exists, go to profile method 2268 __ test_method_data_pointer(rax, profile_method); 2269 2270 if (UseOnStackReplacement) { 2271 // check for overflow against rbx which is the MDO taken count 2272 __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 2273 __ jcc(Assembler::below, dispatch); 2274 2275 // When ProfileInterpreter is on, the backedge_count comes 2276 // from the MethodData*, which value does not get reset on 2277 // the call to frequency_counter_overflow(). To avoid 2278 // excessive calls to the overflow routine while the method is 2279 // being compiled, add a second test to make sure the overflow 2280 // function is called only once every overflow_frequency. 2281 const int overflow_frequency = 1024; 2282 __ andl(rbx, overflow_frequency - 1); 2283 __ jcc(Assembler::zero, backedge_counter_overflow); 2284 2285 } 2286 } else { 2287 if (UseOnStackReplacement) { 2288 // check for overflow against rax, which is the sum of the 2289 // counters 2290 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 2291 __ jcc(Assembler::aboveEqual, backedge_counter_overflow); 2292 2293 } 2294 } 2295 } 2296 __ bind(dispatch); 2297 } 2298 2299 // Pre-load the next target bytecode into rbx 2300 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 2301 2302 // continue with the bytecode @ target 2303 // rax: return bci for jsr's, unused otherwise 2304 // rbx: target bytecode 2305 // r13: target bcp 2306 __ dispatch_only(vtos, true); 2307 2308 if (UseLoopCounter) { 2309 if (ProfileInterpreter) { 2310 // Out-of-line code to allocate method data oop. 2311 __ bind(profile_method); 2312 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 2313 __ set_method_data_pointer_for_bcp(); 2314 __ jmp(dispatch); 2315 } 2316 2317 if (UseOnStackReplacement) { 2318 // invocation counter overflow 2319 __ bind(backedge_counter_overflow); 2320 __ negptr(rdx); 2321 __ addptr(rdx, rbcp); // branch bcp 2322 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 2323 __ call_VM(noreg, 2324 CAST_FROM_FN_PTR(address, 2325 InterpreterRuntime::frequency_counter_overflow), 2326 rdx); 2327 2328 // rax: osr nmethod (osr ok) or NULL (osr not possible) 2329 // rdx: scratch 2330 // r14: locals pointer 2331 // r13: bcp 2332 __ testptr(rax, rax); // test result 2333 __ jcc(Assembler::zero, dispatch); // no osr if null 2334 // nmethod may have been invalidated (VM may block upon call_VM return) 2335 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 2336 __ jcc(Assembler::notEqual, dispatch); 2337 2338 // We have the address of an on stack replacement routine in rax. 2339 // In preparation of invoking it, first we must migrate the locals 2340 // and monitors from off the interpreter frame on the stack. 2341 // Ensure to save the osr nmethod over the migration call, 2342 // it will be preserved in rbx. 2343 __ mov(rbx, rax); 2344 2345 NOT_LP64(__ get_thread(rcx)); 2346 2347 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 2348 2349 // rax is OSR buffer, move it to expected parameter location 2350 LP64_ONLY(__ mov(j_rarg0, rax)); 2351 NOT_LP64(__ mov(rcx, rax)); 2352 // We use j_rarg definitions here so that registers don't conflict as parameter 2353 // registers change across platforms as we are in the midst of a calling 2354 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 2355 2356 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); 2357 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); 2358 2359 // pop the interpreter frame 2360 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 2361 __ leave(); // remove frame anchor 2362 __ pop(retaddr); // get return address 2363 __ mov(rsp, sender_sp); // set sp to sender sp 2364 // Ensure compiled code always sees stack at proper alignment 2365 __ andptr(rsp, -(StackAlignmentInBytes)); 2366 2367 // unlike x86 we need no specialized return from compiled code 2368 // to the interpreter or the call stub. 2369 2370 // push the return address 2371 __ push(retaddr); 2372 2373 // and begin the OSR nmethod 2374 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 2375 } 2376 } 2377 } 2378 2379 void TemplateTable::if_0cmp(Condition cc) { 2380 transition(itos, vtos); 2381 // assume branch is more often taken than not (loops use backward branches) 2382 Label not_taken; 2383 __ testl(rax, rax); 2384 __ jcc(j_not(cc), not_taken); 2385 branch(false, false); 2386 __ bind(not_taken); 2387 __ profile_not_taken_branch(rax); 2388 } 2389 2390 void TemplateTable::if_icmp(Condition cc) { 2391 transition(itos, vtos); 2392 // assume branch is more often taken than not (loops use backward branches) 2393 Label not_taken; 2394 __ pop_i(rdx); 2395 __ cmpl(rdx, rax); 2396 __ jcc(j_not(cc), not_taken); 2397 branch(false, false); 2398 __ bind(not_taken); 2399 __ profile_not_taken_branch(rax); 2400 } 2401 2402 void TemplateTable::if_nullcmp(Condition cc) { 2403 transition(atos, vtos); 2404 // assume branch is more often taken than not (loops use backward branches) 2405 Label not_taken; 2406 __ testptr(rax, rax); 2407 __ jcc(j_not(cc), not_taken); 2408 branch(false, false); 2409 __ bind(not_taken); 2410 __ profile_not_taken_branch(rax); 2411 } 2412 2413 void TemplateTable::if_acmp(Condition cc) { 2414 transition(atos, vtos); 2415 // assume branch is more often taken than not (loops use backward branches) 2416 Label not_taken; 2417 __ pop_ptr(rdx); 2418 __ cmpoop(rdx, rax); 2419 __ jcc(j_not(cc), not_taken); 2420 branch(false, false); 2421 __ bind(not_taken); 2422 __ profile_not_taken_branch(rax); 2423 } 2424 2425 void TemplateTable::ret() { 2426 transition(vtos, vtos); 2427 locals_index(rbx); 2428 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp 2429 NOT_LP64(__ movptr(rbx, iaddress(rbx))); 2430 __ profile_ret(rbx, rcx); 2431 __ get_method(rax); 2432 __ movptr(rbcp, Address(rax, Method::const_offset())); 2433 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2434 ConstMethod::codes_offset())); 2435 __ dispatch_next(vtos, 0, true); 2436 } 2437 2438 void TemplateTable::wide_ret() { 2439 transition(vtos, vtos); 2440 locals_index_wide(rbx); 2441 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2442 __ profile_ret(rbx, rcx); 2443 __ get_method(rax); 2444 __ movptr(rbcp, Address(rax, Method::const_offset())); 2445 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2446 __ dispatch_next(vtos, 0, true); 2447 } 2448 2449 void TemplateTable::tableswitch() { 2450 Label default_case, continue_execution; 2451 transition(itos, vtos); 2452 2453 // align r13/rsi 2454 __ lea(rbx, at_bcp(BytesPerInt)); 2455 __ andptr(rbx, -BytesPerInt); 2456 // load lo & hi 2457 __ movl(rcx, Address(rbx, BytesPerInt)); 2458 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2459 __ bswapl(rcx); 2460 __ bswapl(rdx); 2461 // check against lo & hi 2462 __ cmpl(rax, rcx); 2463 __ jcc(Assembler::less, default_case); 2464 __ cmpl(rax, rdx); 2465 __ jcc(Assembler::greater, default_case); 2466 // lookup dispatch offset 2467 __ subl(rax, rcx); 2468 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2469 __ profile_switch_case(rax, rbx, rcx); 2470 // continue execution 2471 __ bind(continue_execution); 2472 __ bswapl(rdx); 2473 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2474 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2475 __ addptr(rbcp, rdx); 2476 __ dispatch_only(vtos, true); 2477 // handle default 2478 __ bind(default_case); 2479 __ profile_switch_default(rax); 2480 __ movl(rdx, Address(rbx, 0)); 2481 __ jmp(continue_execution); 2482 } 2483 2484 void TemplateTable::lookupswitch() { 2485 transition(itos, itos); 2486 __ stop("lookupswitch bytecode should have been rewritten"); 2487 } 2488 2489 void TemplateTable::fast_linearswitch() { 2490 transition(itos, vtos); 2491 Label loop_entry, loop, found, continue_execution; 2492 // bswap rax so we can avoid bswapping the table entries 2493 __ bswapl(rax); 2494 // align r13 2495 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2496 // this instruction (change offsets 2497 // below) 2498 __ andptr(rbx, -BytesPerInt); 2499 // set counter 2500 __ movl(rcx, Address(rbx, BytesPerInt)); 2501 __ bswapl(rcx); 2502 __ jmpb(loop_entry); 2503 // table search 2504 __ bind(loop); 2505 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2506 __ jcc(Assembler::equal, found); 2507 __ bind(loop_entry); 2508 __ decrementl(rcx); 2509 __ jcc(Assembler::greaterEqual, loop); 2510 // default case 2511 __ profile_switch_default(rax); 2512 __ movl(rdx, Address(rbx, 0)); 2513 __ jmp(continue_execution); 2514 // entry found -> get offset 2515 __ bind(found); 2516 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2517 __ profile_switch_case(rcx, rax, rbx); 2518 // continue execution 2519 __ bind(continue_execution); 2520 __ bswapl(rdx); 2521 __ movl2ptr(rdx, rdx); 2522 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2523 __ addptr(rbcp, rdx); 2524 __ dispatch_only(vtos, true); 2525 } 2526 2527 void TemplateTable::fast_binaryswitch() { 2528 transition(itos, vtos); 2529 // Implementation using the following core algorithm: 2530 // 2531 // int binary_search(int key, LookupswitchPair* array, int n) { 2532 // // Binary search according to "Methodik des Programmierens" by 2533 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2534 // int i = 0; 2535 // int j = n; 2536 // while (i+1 < j) { 2537 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2538 // // with Q: for all i: 0 <= i < n: key < a[i] 2539 // // where a stands for the array and assuming that the (inexisting) 2540 // // element a[n] is infinitely big. 2541 // int h = (i + j) >> 1; 2542 // // i < h < j 2543 // if (key < array[h].fast_match()) { 2544 // j = h; 2545 // } else { 2546 // i = h; 2547 // } 2548 // } 2549 // // R: a[i] <= key < a[i+1] or Q 2550 // // (i.e., if key is within array, i is the correct index) 2551 // return i; 2552 // } 2553 2554 // Register allocation 2555 const Register key = rax; // already set (tosca) 2556 const Register array = rbx; 2557 const Register i = rcx; 2558 const Register j = rdx; 2559 const Register h = rdi; 2560 const Register temp = rsi; 2561 2562 // Find array start 2563 NOT_LP64(__ save_bcp()); 2564 2565 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2566 // get rid of this 2567 // instruction (change 2568 // offsets below) 2569 __ andptr(array, -BytesPerInt); 2570 2571 // Initialize i & j 2572 __ xorl(i, i); // i = 0; 2573 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2574 2575 // Convert j into native byteordering 2576 __ bswapl(j); 2577 2578 // And start 2579 Label entry; 2580 __ jmp(entry); 2581 2582 // binary search loop 2583 { 2584 Label loop; 2585 __ bind(loop); 2586 // int h = (i + j) >> 1; 2587 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2588 __ sarl(h, 1); // h = (i + j) >> 1; 2589 // if (key < array[h].fast_match()) { 2590 // j = h; 2591 // } else { 2592 // i = h; 2593 // } 2594 // Convert array[h].match to native byte-ordering before compare 2595 __ movl(temp, Address(array, h, Address::times_8)); 2596 __ bswapl(temp); 2597 __ cmpl(key, temp); 2598 // j = h if (key < array[h].fast_match()) 2599 __ cmov32(Assembler::less, j, h); 2600 // i = h if (key >= array[h].fast_match()) 2601 __ cmov32(Assembler::greaterEqual, i, h); 2602 // while (i+1 < j) 2603 __ bind(entry); 2604 __ leal(h, Address(i, 1)); // i+1 2605 __ cmpl(h, j); // i+1 < j 2606 __ jcc(Assembler::less, loop); 2607 } 2608 2609 // end of binary search, result index is i (must check again!) 2610 Label default_case; 2611 // Convert array[i].match to native byte-ordering before compare 2612 __ movl(temp, Address(array, i, Address::times_8)); 2613 __ bswapl(temp); 2614 __ cmpl(key, temp); 2615 __ jcc(Assembler::notEqual, default_case); 2616 2617 // entry found -> j = offset 2618 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2619 __ profile_switch_case(i, key, array); 2620 __ bswapl(j); 2621 LP64_ONLY(__ movslq(j, j)); 2622 2623 NOT_LP64(__ restore_bcp()); 2624 NOT_LP64(__ restore_locals()); // restore rdi 2625 2626 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2627 __ addptr(rbcp, j); 2628 __ dispatch_only(vtos, true); 2629 2630 // default case -> j = default offset 2631 __ bind(default_case); 2632 __ profile_switch_default(i); 2633 __ movl(j, Address(array, -2 * BytesPerInt)); 2634 __ bswapl(j); 2635 LP64_ONLY(__ movslq(j, j)); 2636 2637 NOT_LP64(__ restore_bcp()); 2638 NOT_LP64(__ restore_locals()); 2639 2640 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2641 __ addptr(rbcp, j); 2642 __ dispatch_only(vtos, true); 2643 } 2644 2645 void TemplateTable::_return(TosState state) { 2646 transition(state, state); 2647 2648 assert(_desc->calls_vm(), 2649 "inconsistent calls_vm information"); // call in remove_activation 2650 2651 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2652 assert(state == vtos, "only valid state"); 2653 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); 2654 __ movptr(robj, aaddress(0)); 2655 __ load_klass(rdi, robj); 2656 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2657 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2658 Label skip_register_finalizer; 2659 __ jcc(Assembler::zero, skip_register_finalizer); 2660 2661 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2662 2663 __ bind(skip_register_finalizer); 2664 } 2665 2666 #ifdef _LP64 2667 if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) { 2668 Label no_safepoint; 2669 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2670 __ testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit()); 2671 __ jcc(Assembler::zero, no_safepoint); 2672 __ push(state); 2673 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2674 InterpreterRuntime::at_safepoint)); 2675 __ pop(state); 2676 __ bind(no_safepoint); 2677 } 2678 #endif 2679 if (state == qtos) { 2680 #ifndef _LP64 2681 ShouldNotReachHere(); 2682 #else 2683 Label not_buffered; 2684 __ lea(r14, ExternalAddress(VTBuffer::_base)); 2685 __ cmpptr(rax, r14); 2686 __ jcc(Assembler::below, not_buffered); 2687 __ lea(r14, ExternalAddress(VTBuffer::_end)); 2688 __ cmpptr(rax, r14); 2689 __ jcc(Assembler::aboveEqual, not_buffered); 2690 if (ReturnValuesInThreadLocalBuffer) { 2691 __ movptr((Address(r15_thread, JavaThread::return_buffered_value_offset())), rax); 2692 } else { 2693 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::reallocate_value_in_heap), rax); 2694 __ get_vm_result(rax, r15_thread); 2695 } 2696 __ bind(not_buffered); 2697 #endif 2698 } 2699 2700 // Narrow result if state is itos but result type is smaller. 2701 // Need to narrow in the return bytecode rather than in generate_return_entry 2702 // since compiled code callers expect the result to already be narrowed. 2703 if (state == itos) { 2704 __ narrow(rax); 2705 } 2706 2707 #ifdef ASSERT 2708 if (EnableMVT || EnableValhalla) { 2709 if (state == atos) { 2710 const Register thread1 = NOT_LP64(rcx) LP64_ONLY(r15_thread); 2711 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::check_areturn), rax); 2712 NOT_LP64(__ get_thread(thread1)); 2713 __ get_vm_result(rax, thread1); 2714 } 2715 } 2716 #endif // ASSERT 2717 2718 __ remove_activation(state, rbcp, true, true, true, state == qtos && ValueTypeReturnedAsFields); 2719 2720 __ jmp(rbcp); 2721 } 2722 2723 // ---------------------------------------------------------------------------- 2724 // Volatile variables demand their effects be made known to all CPU's 2725 // in order. Store buffers on most chips allow reads & writes to 2726 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2727 // without some kind of memory barrier (i.e., it's not sufficient that 2728 // the interpreter does not reorder volatile references, the hardware 2729 // also must not reorder them). 2730 // 2731 // According to the new Java Memory Model (JMM): 2732 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2733 // writes act as aquire & release, so: 2734 // (2) A read cannot let unrelated NON-volatile memory refs that 2735 // happen after the read float up to before the read. It's OK for 2736 // non-volatile memory refs that happen before the volatile read to 2737 // float down below it. 2738 // (3) Similar a volatile write cannot let unrelated NON-volatile 2739 // memory refs that happen BEFORE the write float down to after the 2740 // write. It's OK for non-volatile memory refs that happen after the 2741 // volatile write to float up before it. 2742 // 2743 // We only put in barriers around volatile refs (they are expensive), 2744 // not _between_ memory refs (that would require us to track the 2745 // flavor of the previous memory refs). Requirements (2) and (3) 2746 // require some barriers before volatile stores and after volatile 2747 // loads. These nearly cover requirement (1) but miss the 2748 // volatile-store-volatile-load case. This final case is placed after 2749 // volatile-stores although it could just as well go before 2750 // volatile-loads. 2751 2752 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2753 // Helper function to insert a is-volatile test and memory barrier 2754 if(!os::is_MP()) return; // Not needed on single CPU 2755 __ membar(order_constraint); 2756 } 2757 2758 void TemplateTable::resolve_cache_and_index(int byte_no, 2759 Register Rcache, 2760 Register index, 2761 size_t index_size) { 2762 const Register temp = rbx; 2763 assert_different_registers(Rcache, index, temp); 2764 2765 Label resolved; 2766 2767 Bytecodes::Code code = bytecode(); 2768 switch (code) { 2769 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2770 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2771 default: break; 2772 } 2773 2774 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2775 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2776 __ cmpl(temp, code); // have we resolved this bytecode? 2777 __ jcc(Assembler::equal, resolved); 2778 2779 // resolve first time through 2780 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2781 __ movl(temp, code); 2782 __ call_VM(noreg, entry, temp); 2783 // Update registers with resolved info 2784 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2785 __ bind(resolved); 2786 } 2787 2788 // The cache and index registers must be set before call 2789 void TemplateTable::load_field_cp_cache_entry(Register obj, 2790 Register cache, 2791 Register index, 2792 Register off, 2793 Register flags, 2794 bool is_static = false) { 2795 assert_different_registers(cache, index, flags, off); 2796 2797 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2798 // Field offset 2799 __ movptr(off, Address(cache, index, Address::times_ptr, 2800 in_bytes(cp_base_offset + 2801 ConstantPoolCacheEntry::f2_offset()))); 2802 // Flags 2803 __ movl(flags, Address(cache, index, Address::times_ptr, 2804 in_bytes(cp_base_offset + 2805 ConstantPoolCacheEntry::flags_offset()))); 2806 2807 // klass overwrite register 2808 if (is_static) { 2809 __ movptr(obj, Address(cache, index, Address::times_ptr, 2810 in_bytes(cp_base_offset + 2811 ConstantPoolCacheEntry::f1_offset()))); 2812 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2813 __ movptr(obj, Address(obj, mirror_offset)); 2814 __ resolve_oop_handle(obj); 2815 } 2816 } 2817 2818 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2819 Register method, 2820 Register itable_index, 2821 Register flags, 2822 bool is_invokevirtual, 2823 bool is_invokevfinal, /*unused*/ 2824 bool is_invokedynamic) { 2825 // setup registers 2826 const Register cache = rcx; 2827 const Register index = rdx; 2828 assert_different_registers(method, flags); 2829 assert_different_registers(method, cache, index); 2830 assert_different_registers(itable_index, flags); 2831 assert_different_registers(itable_index, cache, index); 2832 // determine constant pool cache field offsets 2833 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2834 const int method_offset = in_bytes( 2835 ConstantPoolCache::base_offset() + 2836 ((byte_no == f2_byte) 2837 ? ConstantPoolCacheEntry::f2_offset() 2838 : ConstantPoolCacheEntry::f1_offset())); 2839 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2840 ConstantPoolCacheEntry::flags_offset()); 2841 // access constant pool cache fields 2842 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2843 ConstantPoolCacheEntry::f2_offset()); 2844 2845 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2846 resolve_cache_and_index(byte_no, cache, index, index_size); 2847 __ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); 2848 2849 if (itable_index != noreg) { 2850 // pick up itable or appendix index from f2 also: 2851 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2852 } 2853 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2854 } 2855 2856 // The registers cache and index expected to be set before call. 2857 // Correct values of the cache and index registers are preserved. 2858 void TemplateTable::jvmti_post_field_access(Register cache, 2859 Register index, 2860 bool is_static, 2861 bool has_tos) { 2862 if (JvmtiExport::can_post_field_access()) { 2863 // Check to see if a field access watch has been set before we take 2864 // the time to call into the VM. 2865 Label L1; 2866 assert_different_registers(cache, index, rax); 2867 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2868 __ testl(rax,rax); 2869 __ jcc(Assembler::zero, L1); 2870 2871 // cache entry pointer 2872 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 2873 __ shll(index, LogBytesPerWord); 2874 __ addptr(cache, index); 2875 if (is_static) { 2876 __ xorptr(rax, rax); // NULL object reference 2877 } else { 2878 __ pop(atos); // Get the object 2879 __ verify_oop(rax); 2880 __ push(atos); // Restore stack state 2881 } 2882 // rax,: object pointer or NULL 2883 // cache: cache entry pointer 2884 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2885 rax, cache); 2886 __ get_cache_and_index_at_bcp(cache, index, 1); 2887 __ bind(L1); 2888 } 2889 } 2890 2891 void TemplateTable::pop_and_check_object(Register r) { 2892 __ pop_ptr(r); 2893 __ null_check(r); // for field access must check obj. 2894 __ verify_oop(r); 2895 } 2896 2897 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2898 transition(vtos, vtos); 2899 2900 const Register cache = rcx; 2901 const Register index = rdx; 2902 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2903 const Register off = rbx; 2904 const Register flags = rax; 2905 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them 2906 const Register flags2 = rdx; 2907 2908 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2909 jvmti_post_field_access(cache, index, is_static, false); 2910 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2911 2912 const Address field(obj, off, Address::times_1, 0*wordSize); 2913 NOT_LP64(const Address hi(obj, off, Address::times_1, 1*wordSize)); 2914 2915 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notValueType, notDouble; 2916 2917 if (!is_static) { 2918 __ movptr(rcx, Address(cache, index, Address::times_ptr, 2919 in_bytes(ConstantPoolCache::base_offset() + 2920 ConstantPoolCacheEntry::f1_offset()))); 2921 } 2922 2923 __ movl(flags2, flags); 2924 2925 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2926 // Make sure we don't need to mask edx after the above shift 2927 assert(btos == 0, "change code, btos != 0"); 2928 2929 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2930 2931 __ jcc(Assembler::notZero, notByte); 2932 // btos 2933 if (!is_static) pop_and_check_object(obj); 2934 __ load_signed_byte(rax, field); 2935 __ push(btos); 2936 // Rewrite bytecode to be faster 2937 if (!is_static && rc == may_rewrite) { 2938 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2939 } 2940 __ jmp(Done); 2941 2942 __ bind(notByte); 2943 2944 __ cmpl(flags, qtos); 2945 __ jcc(Assembler::notEqual, notValueType); 2946 // qtos 2947 if (is_static) { 2948 Label initialized; 2949 // Issue below if the static field has not been initialized yet 2950 __ load_heap_oop(rax, field); 2951 __ testptr(rax, rax); 2952 __ jcc(Assembler::notZero, initialized); 2953 __ andl(flags2, ConstantPoolCacheEntry::field_index_mask); 2954 __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::uninitialized_static_value_field), 2955 obj, flags2); 2956 __ verify_oop(rax); 2957 __ bind(initialized); 2958 __ push(qtos); 2959 } else { 2960 __ andl(flags2, ConstantPoolCacheEntry::field_index_mask); 2961 pop_and_check_object(rbx); 2962 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::qgetfield), 2963 rbx, flags2, rcx); 2964 __ verify_oop(rax); 2965 __ push(qtos); 2966 // Bytecode rewrite? 2967 } 2968 __ jmp(Done); 2969 2970 __ bind(notValueType); 2971 2972 if (!is_static) pop_and_check_object(obj); 2973 2974 __ cmpl(flags, ztos); 2975 __ jcc(Assembler::notEqual, notBool); 2976 2977 // ztos (same code as btos) 2978 __ load_signed_byte(rax, field); 2979 __ push(ztos); 2980 // Rewrite bytecode to be faster 2981 if (!is_static && rc == may_rewrite) { 2982 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2983 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2984 } 2985 __ jmp(Done); 2986 2987 __ bind(notBool); 2988 __ cmpl(flags, atos); 2989 __ jcc(Assembler::notEqual, notObj); 2990 // atos 2991 __ load_heap_oop(rax, field); 2992 __ push(atos); 2993 if (!is_static && rc == may_rewrite) { 2994 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2995 } 2996 __ jmp(Done); 2997 2998 __ bind(notObj); 2999 __ cmpl(flags, itos); 3000 __ jcc(Assembler::notEqual, notInt); 3001 // itos 3002 __ movl(rax, field); 3003 __ push(itos); 3004 // Rewrite bytecode to be faster 3005 if (!is_static && rc == may_rewrite) { 3006 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 3007 } 3008 __ jmp(Done); 3009 3010 __ bind(notInt); 3011 __ cmpl(flags, ctos); 3012 __ jcc(Assembler::notEqual, notChar); 3013 // ctos 3014 __ load_unsigned_short(rax, field); 3015 __ push(ctos); 3016 // Rewrite bytecode to be faster 3017 if (!is_static && rc == may_rewrite) { 3018 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 3019 } 3020 __ jmp(Done); 3021 3022 __ bind(notChar); 3023 __ cmpl(flags, stos); 3024 __ jcc(Assembler::notEqual, notShort); 3025 // stos 3026 __ load_signed_short(rax, field); 3027 __ push(stos); 3028 // Rewrite bytecode to be faster 3029 if (!is_static && rc == may_rewrite) { 3030 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 3031 } 3032 __ jmp(Done); 3033 3034 __ bind(notShort); 3035 __ cmpl(flags, ltos); 3036 __ jcc(Assembler::notEqual, notLong); 3037 // ltos 3038 3039 #ifndef _LP64 3040 // Generate code as if volatile. There just aren't enough registers to 3041 // save that information and this code is faster than the test. 3042 __ fild_d(field); // Must load atomically 3043 __ subptr(rsp,2*wordSize); // Make space for store 3044 __ fistp_d(Address(rsp,0)); 3045 __ pop(rax); 3046 __ pop(rdx); 3047 #else 3048 __ movq(rax, field); 3049 #endif 3050 3051 __ push(ltos); 3052 // Rewrite bytecode to be faster 3053 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); 3054 __ jmp(Done); 3055 3056 __ bind(notLong); 3057 __ cmpl(flags, ftos); 3058 __ jcc(Assembler::notEqual, notFloat); 3059 // ftos 3060 3061 __ load_float(field); 3062 __ push(ftos); 3063 // Rewrite bytecode to be faster 3064 if (!is_static && rc == may_rewrite) { 3065 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 3066 } 3067 __ jmp(Done); 3068 3069 __ bind(notFloat); 3070 #ifdef ASSERT 3071 __ cmpl(flags, dtos); 3072 __ jcc(Assembler::notEqual, notDouble); 3073 #endif 3074 // dtos 3075 __ load_double(field); 3076 __ push(dtos); 3077 // Rewrite bytecode to be faster 3078 if (!is_static && rc == may_rewrite) { 3079 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 3080 } 3081 #ifdef ASSERT 3082 __ jmp(Done); 3083 3084 3085 __ bind(notDouble); 3086 __ stop("Bad state"); 3087 #endif 3088 3089 __ bind(Done); 3090 // [jk] not needed currently 3091 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 3092 // Assembler::LoadStore)); 3093 } 3094 3095 void TemplateTable::getfield(int byte_no) { 3096 getfield_or_static(byte_no, false); 3097 } 3098 3099 void TemplateTable::nofast_getfield(int byte_no) { 3100 getfield_or_static(byte_no, false, may_not_rewrite); 3101 } 3102 3103 void TemplateTable::getstatic(int byte_no) { 3104 getfield_or_static(byte_no, true); 3105 } 3106 3107 void TemplateTable::vwithfield() { 3108 transition(vtos, qtos); 3109 3110 Register cache = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 3111 Register index = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 3112 3113 resolve_cache_and_index(f2_byte, cache, index, sizeof(u2)); 3114 3115 call_VM(rbx, CAST_FROM_FN_PTR(address, InterpreterRuntime::vwithfield), cache); 3116 // new value type is returned in rbx 3117 // stack adjustement is returned in rax 3118 __ verify_oop(rbx); 3119 __ addptr(rsp, rax); 3120 __ movptr(rax, rbx); 3121 } 3122 3123 // The registers cache and index expected to be set before call. 3124 // The function may destroy various registers, just not the cache and index registers. 3125 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 3126 3127 const Register robj = LP64_ONLY(c_rarg2) NOT_LP64(rax); 3128 const Register RBX = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 3129 const Register RCX = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3130 const Register RDX = LP64_ONLY(rscratch1) NOT_LP64(rdx); 3131 3132 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 3133 3134 if (JvmtiExport::can_post_field_modification()) { 3135 // Check to see if a field modification watch has been set before 3136 // we take the time to call into the VM. 3137 Label L1; 3138 assert_different_registers(cache, index, rax); 3139 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3140 __ testl(rax, rax); 3141 __ jcc(Assembler::zero, L1); 3142 3143 __ get_cache_and_index_at_bcp(robj, RDX, 1); 3144 3145 3146 if (is_static) { 3147 // Life is simple. Null out the object pointer. 3148 __ xorl(RBX, RBX); 3149 3150 } else { 3151 // Life is harder. The stack holds the value on top, followed by 3152 // the object. We don't know the size of the value, though; it 3153 // could be one or two words depending on its type. As a result, 3154 // we must find the type to determine where the object is. 3155 #ifndef _LP64 3156 Label two_word, valsize_known; 3157 #endif 3158 __ movl(RCX, Address(robj, RDX, 3159 Address::times_ptr, 3160 in_bytes(cp_base_offset + 3161 ConstantPoolCacheEntry::flags_offset()))); 3162 NOT_LP64(__ mov(rbx, rsp)); 3163 __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift); 3164 3165 // Make sure we don't need to mask rcx after the above shift 3166 ConstantPoolCacheEntry::verify_tos_state_shift(); 3167 #ifdef _LP64 3168 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 3169 __ cmpl(c_rarg3, ltos); 3170 __ cmovptr(Assembler::equal, 3171 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 3172 __ cmpl(c_rarg3, dtos); 3173 __ cmovptr(Assembler::equal, 3174 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 3175 #else 3176 __ cmpl(rcx, ltos); 3177 __ jccb(Assembler::equal, two_word); 3178 __ cmpl(rcx, dtos); 3179 __ jccb(Assembler::equal, two_word); 3180 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 3181 __ jmpb(valsize_known); 3182 3183 __ bind(two_word); 3184 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 3185 3186 __ bind(valsize_known); 3187 // setup object pointer 3188 __ movptr(rbx, Address(rbx, 0)); 3189 #endif 3190 } 3191 // cache entry pointer 3192 __ addptr(robj, in_bytes(cp_base_offset)); 3193 __ shll(RDX, LogBytesPerWord); 3194 __ addptr(robj, RDX); 3195 // object (tos) 3196 __ mov(RCX, rsp); 3197 // c_rarg1: object pointer set up above (NULL if static) 3198 // c_rarg2: cache entry pointer 3199 // c_rarg3: jvalue object on the stack 3200 __ call_VM(noreg, 3201 CAST_FROM_FN_PTR(address, 3202 InterpreterRuntime::post_field_modification), 3203 RBX, robj, RCX); 3204 __ get_cache_and_index_at_bcp(cache, index, 1); 3205 __ bind(L1); 3206 } 3207 } 3208 3209 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 3210 transition(vtos, vtos); 3211 3212 const Register cache = rcx; 3213 const Register index = rdx; 3214 const Register obj = rcx; 3215 const Register off = rbx; 3216 const Register flags = rax; 3217 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3218 const Register flags2 = rdx; 3219 3220 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 3221 jvmti_post_field_mod(cache, index, is_static); 3222 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 3223 3224 // [jk] not needed currently 3225 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3226 // Assembler::StoreStore)); 3227 3228 Label notVolatile, Done; 3229 3230 __ movl(flags2, flags); 3231 3232 // field addresses 3233 const Address field(obj, off, Address::times_1, 0*wordSize); 3234 NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);) 3235 3236 Label notByte, notBool, notInt, notShort, notChar, 3237 notLong, notFloat, notObj, notValueType, notDouble; 3238 3239 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3240 3241 assert(btos == 0, "change code, btos != 0"); 3242 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 3243 __ jcc(Assembler::notZero, notByte); 3244 3245 // btos 3246 { 3247 __ pop(btos); 3248 if (!is_static) pop_and_check_object(obj); 3249 __ movb(field, rax); 3250 if (!is_static && rc == may_rewrite) { 3251 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 3252 } 3253 __ jmp(Done); 3254 } 3255 3256 __ bind(notByte); 3257 __ cmpl(flags, ztos); 3258 __ jcc(Assembler::notEqual, notBool); 3259 3260 // ztos 3261 { 3262 __ pop(ztos); 3263 if (!is_static) pop_and_check_object(obj); 3264 __ andl(rax, 0x1); 3265 __ movb(field, rax); 3266 if (!is_static && rc == may_rewrite) { 3267 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 3268 } 3269 __ jmp(Done); 3270 } 3271 3272 __ bind(notBool); 3273 __ cmpl(flags, atos); 3274 __ jcc(Assembler::notEqual, notObj); 3275 3276 // atos 3277 { 3278 __ pop(atos); 3279 if (!is_static) pop_and_check_object(obj); 3280 // Store into the field 3281 do_oop_store(_masm, field, rax, _bs->kind(), false); 3282 if (!is_static && rc == may_rewrite) { 3283 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3284 } 3285 __ jmp(Done); 3286 } 3287 3288 __ bind(notObj); 3289 __ cmpl(flags, qtos); 3290 __ jcc(Assembler::notEqual, notValueType); 3291 3292 // qtos 3293 { 3294 __ pop(qtos); // => rax == value 3295 if (!is_static) { 3296 // value types in non-static fields are embedded 3297 pop_and_check_object(rbx); 3298 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::qputfield), 3299 rbx, rax, rcx); 3300 __ jmp(notVolatile); // value types are never volatile 3301 } else { 3302 // Store into the static field 3303 // Value types in static fields are currently handled with indirection 3304 // but a copy to the Java heap might be required if the value is currently 3305 // stored in a thread local buffer 3306 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::qputstatic), rax, off, obj); 3307 } 3308 __ jmp(Done); 3309 } 3310 3311 __ bind(notValueType); 3312 __ cmpl(flags, itos); 3313 __ jcc(Assembler::notEqual, notInt); 3314 3315 // itos 3316 { 3317 __ pop(itos); 3318 if (!is_static) pop_and_check_object(obj); 3319 __ movl(field, rax); 3320 if (!is_static && rc == may_rewrite) { 3321 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3322 } 3323 __ jmp(Done); 3324 } 3325 3326 __ bind(notInt); 3327 __ cmpl(flags, ctos); 3328 __ jcc(Assembler::notEqual, notChar); 3329 3330 // ctos 3331 { 3332 __ pop(ctos); 3333 if (!is_static) pop_and_check_object(obj); 3334 __ movw(field, rax); 3335 if (!is_static && rc == may_rewrite) { 3336 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3337 } 3338 __ jmp(Done); 3339 } 3340 3341 __ bind(notChar); 3342 __ cmpl(flags, stos); 3343 __ jcc(Assembler::notEqual, notShort); 3344 3345 // stos 3346 { 3347 __ pop(stos); 3348 if (!is_static) pop_and_check_object(obj); 3349 __ movw(field, rax); 3350 if (!is_static && rc == may_rewrite) { 3351 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3352 } 3353 __ jmp(Done); 3354 } 3355 3356 __ bind(notShort); 3357 __ cmpl(flags, ltos); 3358 __ jcc(Assembler::notEqual, notLong); 3359 3360 // ltos 3361 #ifdef _LP64 3362 { 3363 __ pop(ltos); 3364 if (!is_static) pop_and_check_object(obj); 3365 __ movq(field, rax); 3366 if (!is_static && rc == may_rewrite) { 3367 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3368 } 3369 __ jmp(Done); 3370 } 3371 #else 3372 { 3373 Label notVolatileLong; 3374 __ testl(rdx, rdx); 3375 __ jcc(Assembler::zero, notVolatileLong); 3376 3377 __ pop(ltos); // overwrites rdx, do this after testing volatile. 3378 if (!is_static) pop_and_check_object(obj); 3379 3380 // Replace with real volatile test 3381 __ push(rdx); 3382 __ push(rax); // Must update atomically with FIST 3383 __ fild_d(Address(rsp,0)); // So load into FPU register 3384 __ fistp_d(field); // and put into memory atomically 3385 __ addptr(rsp, 2*wordSize); 3386 // volatile_barrier(); 3387 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3388 Assembler::StoreStore)); 3389 // Don't rewrite volatile version 3390 __ jmp(notVolatile); 3391 3392 __ bind(notVolatileLong); 3393 3394 __ pop(ltos); // overwrites rdx 3395 if (!is_static) pop_and_check_object(obj); 3396 __ movptr(hi, rdx); 3397 __ movptr(field, rax); 3398 // Don't rewrite to _fast_lputfield for potential volatile case. 3399 __ jmp(notVolatile); 3400 } 3401 #endif // _LP64 3402 3403 __ bind(notLong); 3404 __ cmpl(flags, ftos); 3405 __ jcc(Assembler::notEqual, notFloat); 3406 3407 // ftos 3408 { 3409 __ pop(ftos); 3410 if (!is_static) pop_and_check_object(obj); 3411 __ store_float(field); 3412 if (!is_static && rc == may_rewrite) { 3413 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3414 } 3415 __ jmp(Done); 3416 } 3417 3418 __ bind(notFloat); 3419 #ifdef ASSERT 3420 __ cmpl(flags, dtos); 3421 __ jcc(Assembler::notEqual, notDouble); 3422 #endif 3423 3424 // dtos 3425 { 3426 __ pop(dtos); 3427 if (!is_static) pop_and_check_object(obj); 3428 __ store_double(field); 3429 if (!is_static && rc == may_rewrite) { 3430 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3431 } 3432 } 3433 3434 #ifdef ASSERT 3435 __ jmp(Done); 3436 3437 __ bind(notDouble); 3438 __ stop("Bad state"); 3439 #endif 3440 3441 __ bind(Done); 3442 3443 __ shrl(flags2, ConstantPoolCacheEntry::is_volatile_shift); 3444 __ andl(flags2, 0x1); 3445 3446 // Check for volatile store 3447 __ testl(flags2, flags2); 3448 __ jcc(Assembler::zero, notVolatile); 3449 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3450 Assembler::StoreStore)); 3451 __ bind(notVolatile); 3452 } 3453 3454 void TemplateTable::putfield(int byte_no) { 3455 putfield_or_static(byte_no, false); 3456 } 3457 3458 void TemplateTable::nofast_putfield(int byte_no) { 3459 putfield_or_static(byte_no, false, may_not_rewrite); 3460 } 3461 3462 void TemplateTable::putstatic(int byte_no) { 3463 putfield_or_static(byte_no, true); 3464 } 3465 3466 void TemplateTable::jvmti_post_fast_field_mod() { 3467 3468 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3469 3470 if (JvmtiExport::can_post_field_modification()) { 3471 // Check to see if a field modification watch has been set before 3472 // we take the time to call into the VM. 3473 Label L2; 3474 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3475 __ testl(scratch, scratch); 3476 __ jcc(Assembler::zero, L2); 3477 __ pop_ptr(rbx); // copy the object pointer from tos 3478 __ verify_oop(rbx); 3479 __ push_ptr(rbx); // put the object pointer back on tos 3480 // Save tos values before call_VM() clobbers them. Since we have 3481 // to do it for every data type, we use the saved values as the 3482 // jvalue object. 3483 switch (bytecode()) { // load values into the jvalue object 3484 case Bytecodes::_fast_qputfield: //fall through 3485 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3486 case Bytecodes::_fast_bputfield: // fall through 3487 case Bytecodes::_fast_zputfield: // fall through 3488 case Bytecodes::_fast_sputfield: // fall through 3489 case Bytecodes::_fast_cputfield: // fall through 3490 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3491 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3492 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3493 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3494 3495 default: 3496 ShouldNotReachHere(); 3497 } 3498 __ mov(scratch, rsp); // points to jvalue on the stack 3499 // access constant pool cache entry 3500 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1)); 3501 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1)); 3502 __ verify_oop(rbx); 3503 // rbx: object pointer copied above 3504 // c_rarg2: cache entry pointer 3505 // c_rarg3: jvalue object on the stack 3506 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); 3507 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); 3508 3509 switch (bytecode()) { // restore tos values 3510 case Bytecodes::_fast_qputfield: // fall through 3511 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3512 case Bytecodes::_fast_bputfield: // fall through 3513 case Bytecodes::_fast_zputfield: // fall through 3514 case Bytecodes::_fast_sputfield: // fall through 3515 case Bytecodes::_fast_cputfield: // fall through 3516 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3517 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3518 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3519 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3520 default: break; 3521 } 3522 __ bind(L2); 3523 } 3524 } 3525 3526 void TemplateTable::fast_storefield(TosState state) { 3527 transition(state, vtos); 3528 3529 ByteSize base = ConstantPoolCache::base_offset(); 3530 3531 jvmti_post_fast_field_mod(); 3532 3533 // access constant pool cache 3534 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3535 3536 // test for volatile with rdx but rdx is tos register for lputfield. 3537 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, 3538 in_bytes(base + 3539 ConstantPoolCacheEntry::flags_offset()))); 3540 3541 // replace index with field offset from cache entry 3542 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3543 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 3544 3545 // [jk] not needed currently 3546 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3547 // Assembler::StoreStore)); 3548 3549 Label notVolatile; 3550 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3551 __ andl(rdx, 0x1); 3552 3553 // Get object from stack 3554 pop_and_check_object(rcx); 3555 3556 // field address 3557 const Address field(rcx, rbx, Address::times_1); 3558 3559 // access field 3560 switch (bytecode()) { 3561 case Bytecodes::_fast_qputfield: 3562 __ stop("should not be rewritten yet"); 3563 break; 3564 case Bytecodes::_fast_aputfield: 3565 do_oop_store(_masm, field, rax, _bs->kind(), false); 3566 break; 3567 case Bytecodes::_fast_lputfield: 3568 #ifdef _LP64 3569 __ movq(field, rax); 3570 #else 3571 __ stop("should not be rewritten"); 3572 #endif 3573 break; 3574 case Bytecodes::_fast_iputfield: 3575 __ movl(field, rax); 3576 break; 3577 case Bytecodes::_fast_zputfield: 3578 __ andl(rax, 0x1); // boolean is true if LSB is 1 3579 // fall through to bputfield 3580 case Bytecodes::_fast_bputfield: 3581 __ movb(field, rax); 3582 break; 3583 case Bytecodes::_fast_sputfield: 3584 // fall through 3585 case Bytecodes::_fast_cputfield: 3586 __ movw(field, rax); 3587 break; 3588 case Bytecodes::_fast_fputfield: 3589 __ store_float(field); 3590 break; 3591 case Bytecodes::_fast_dputfield: 3592 __ store_double(field); 3593 break; 3594 default: 3595 ShouldNotReachHere(); 3596 } 3597 3598 // Check for volatile store 3599 __ testl(rdx, rdx); 3600 __ jcc(Assembler::zero, notVolatile); 3601 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3602 Assembler::StoreStore)); 3603 __ bind(notVolatile); 3604 } 3605 3606 void TemplateTable::fast_accessfield(TosState state) { 3607 transition(atos, state); 3608 3609 // Do the JVMTI work here to avoid disturbing the register state below 3610 if (JvmtiExport::can_post_field_access()) { 3611 // Check to see if a field access watch has been set before we 3612 // take the time to call into the VM. 3613 Label L1; 3614 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3615 __ testl(rcx, rcx); 3616 __ jcc(Assembler::zero, L1); 3617 // access constant pool cache entry 3618 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1)); 3619 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1)); 3620 __ verify_oop(rax); 3621 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3622 LP64_ONLY(__ mov(c_rarg1, rax)); 3623 // c_rarg1: object pointer copied above 3624 // c_rarg2: cache entry pointer 3625 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); 3626 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); 3627 __ pop_ptr(rax); // restore object pointer 3628 __ bind(L1); 3629 } 3630 3631 // access constant pool cache 3632 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3633 // replace index with field offset from cache entry 3634 // [jk] not needed currently 3635 // if (os::is_MP()) { 3636 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 3637 // in_bytes(ConstantPoolCache::base_offset() + 3638 // ConstantPoolCacheEntry::flags_offset()))); 3639 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3640 // __ andl(rdx, 0x1); 3641 // } 3642 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3643 in_bytes(ConstantPoolCache::base_offset() + 3644 ConstantPoolCacheEntry::f2_offset()))); 3645 3646 // rax: object 3647 __ verify_oop(rax); 3648 __ null_check(rax); 3649 Address field(rax, rbx, Address::times_1); 3650 3651 // access field 3652 switch (bytecode()) { 3653 case Bytecodes::_fast_qgetfield: 3654 __ stop("should not be rewritten yet"); 3655 break; 3656 case Bytecodes::_fast_agetfield: 3657 __ load_heap_oop(rax, field); 3658 __ verify_oop(rax); 3659 break; 3660 case Bytecodes::_fast_lgetfield: 3661 #ifdef _LP64 3662 __ movq(rax, field); 3663 #else 3664 __ stop("should not be rewritten"); 3665 #endif 3666 break; 3667 case Bytecodes::_fast_igetfield: 3668 __ movl(rax, field); 3669 break; 3670 case Bytecodes::_fast_bgetfield: 3671 __ movsbl(rax, field); 3672 break; 3673 case Bytecodes::_fast_sgetfield: 3674 __ load_signed_short(rax, field); 3675 break; 3676 case Bytecodes::_fast_cgetfield: 3677 __ load_unsigned_short(rax, field); 3678 break; 3679 case Bytecodes::_fast_fgetfield: 3680 __ load_float(field); 3681 break; 3682 case Bytecodes::_fast_dgetfield: 3683 __ load_double(field); 3684 break; 3685 default: 3686 ShouldNotReachHere(); 3687 } 3688 // [jk] not needed currently 3689 // if (os::is_MP()) { 3690 // Label notVolatile; 3691 // __ testl(rdx, rdx); 3692 // __ jcc(Assembler::zero, notVolatile); 3693 // __ membar(Assembler::LoadLoad); 3694 // __ bind(notVolatile); 3695 //}; 3696 } 3697 3698 void TemplateTable::fast_xaccess(TosState state) { 3699 transition(vtos, state); 3700 3701 // get receiver 3702 __ movptr(rax, aaddress(0)); 3703 // access constant pool cache 3704 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 3705 __ movptr(rbx, 3706 Address(rcx, rdx, Address::times_ptr, 3707 in_bytes(ConstantPoolCache::base_offset() + 3708 ConstantPoolCacheEntry::f2_offset()))); 3709 // make sure exception is reported in correct bcp range (getfield is 3710 // next instruction) 3711 __ increment(rbcp); 3712 __ null_check(rax); 3713 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3714 switch (state) { 3715 case itos: 3716 __ movl(rax, field); 3717 break; 3718 case atos: 3719 __ load_heap_oop(rax, field); 3720 __ verify_oop(rax); 3721 break; 3722 case ftos: 3723 __ load_float(field); 3724 break; 3725 default: 3726 ShouldNotReachHere(); 3727 } 3728 3729 // [jk] not needed currently 3730 // if (os::is_MP()) { 3731 // Label notVolatile; 3732 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3733 // in_bytes(ConstantPoolCache::base_offset() + 3734 // ConstantPoolCacheEntry::flags_offset()))); 3735 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3736 // __ testl(rdx, 0x1); 3737 // __ jcc(Assembler::zero, notVolatile); 3738 // __ membar(Assembler::LoadLoad); 3739 // __ bind(notVolatile); 3740 // } 3741 3742 __ decrement(rbcp); 3743 } 3744 3745 //----------------------------------------------------------------------------- 3746 // Calls 3747 3748 void TemplateTable::count_calls(Register method, Register temp) { 3749 // implemented elsewhere 3750 ShouldNotReachHere(); 3751 } 3752 3753 void TemplateTable::prepare_invoke(int byte_no, 3754 Register method, // linked method (or i-klass) 3755 Register index, // itable index, MethodType, etc. 3756 Register recv, // if caller wants to see it 3757 Register flags // if caller wants to test it 3758 ) { 3759 // determine flags 3760 const Bytecodes::Code code = bytecode(); 3761 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3762 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3763 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3764 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3765 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3766 const bool load_receiver = (recv != noreg); 3767 const bool save_flags = (flags != noreg); 3768 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3769 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3770 assert(flags == noreg || flags == rdx, ""); 3771 assert(recv == noreg || recv == rcx, ""); 3772 3773 // setup registers & access constant pool cache 3774 if (recv == noreg) recv = rcx; 3775 if (flags == noreg) flags = rdx; 3776 assert_different_registers(method, index, recv, flags); 3777 3778 // save 'interpreter return address' 3779 __ save_bcp(); 3780 3781 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3782 3783 // maybe push appendix to arguments (just before return address) 3784 if (is_invokedynamic || is_invokehandle) { 3785 Label L_no_push; 3786 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 3787 __ jcc(Assembler::zero, L_no_push); 3788 // Push the appendix as a trailing parameter. 3789 // This must be done before we get the receiver, 3790 // since the parameter_size includes it. 3791 __ push(rbx); 3792 __ mov(rbx, index); 3793 assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); 3794 __ load_resolved_reference_at_index(index, rbx); 3795 __ pop(rbx); 3796 __ push(index); // push appendix (MethodType, CallSite, etc.) 3797 __ bind(L_no_push); 3798 } 3799 3800 // load receiver if needed (after appendix is pushed so parameter size is correct) 3801 // Note: no return address pushed yet 3802 if (load_receiver) { 3803 __ movl(recv, flags); 3804 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 3805 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3806 const int receiver_is_at_end = -1; // back off one slot to get receiver 3807 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3808 __ movptr(recv, recv_addr); 3809 __ verify_oop(recv); 3810 } 3811 3812 if (save_flags) { 3813 __ movl(rbcp, flags); 3814 } 3815 3816 // compute return type 3817 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3818 // Make sure we don't need to mask flags after the above shift 3819 ConstantPoolCacheEntry::verify_tos_state_shift(); 3820 // load return address 3821 { 3822 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3823 ExternalAddress table(table_addr); 3824 LP64_ONLY(__ lea(rscratch1, table)); 3825 LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr))); 3826 NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)))); 3827 } 3828 3829 // push return address 3830 __ push(flags); 3831 3832 // Restore flags value from the constant pool cache, and restore rsi 3833 // for later null checks. r13 is the bytecode pointer 3834 if (save_flags) { 3835 __ movl(flags, rbcp); 3836 __ restore_bcp(); 3837 } 3838 } 3839 3840 void TemplateTable::invokevirtual_helper(Register index, 3841 Register recv, 3842 Register flags) { 3843 // Uses temporary registers rax, rdx 3844 assert_different_registers(index, recv, rax, rdx); 3845 assert(index == rbx, ""); 3846 assert(recv == rcx, ""); 3847 3848 // Test for an invoke of a final method 3849 Label notFinal; 3850 __ movl(rax, flags); 3851 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3852 __ jcc(Assembler::zero, notFinal); 3853 3854 const Register method = index; // method must be rbx 3855 assert(method == rbx, 3856 "Method* must be rbx for interpreter calling convention"); 3857 3858 // do the call - the index is actually the method to call 3859 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3860 3861 // It's final, need a null check here! 3862 __ null_check(recv); 3863 3864 // profile this call 3865 __ profile_final_call(rax); 3866 __ profile_arguments_type(rax, method, rbcp, true); 3867 3868 __ jump_from_interpreted(method, rax); 3869 3870 __ bind(notFinal); 3871 3872 // get receiver klass 3873 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 3874 __ load_klass(rax, recv); 3875 3876 // profile this call 3877 __ profile_virtual_call(rax, rlocals, rdx); 3878 // get target Method* & entry point 3879 __ lookup_virtual_method(rax, index, method); 3880 __ profile_called_method(method, rdx, rbcp); 3881 3882 __ profile_arguments_type(rdx, method, rbcp, true); 3883 __ jump_from_interpreted(method, rdx); 3884 } 3885 3886 void TemplateTable::invokevirtual(int byte_no) { 3887 transition(vtos, vtos); 3888 assert(byte_no == f2_byte, "use this argument"); 3889 prepare_invoke(byte_no, 3890 rbx, // method or vtable index 3891 noreg, // unused itable index 3892 rcx, rdx); // recv, flags 3893 3894 // rbx: index 3895 // rcx: receiver 3896 // rdx: flags 3897 3898 invokevirtual_helper(rbx, rcx, rdx); 3899 } 3900 3901 void TemplateTable::invokespecial(int byte_no) { 3902 transition(vtos, vtos); 3903 assert(byte_no == f1_byte, "use this argument"); 3904 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3905 rcx); // get receiver also for null check 3906 __ verify_oop(rcx); 3907 __ null_check(rcx); 3908 // do the call 3909 __ profile_call(rax); 3910 __ profile_arguments_type(rax, rbx, rbcp, false); 3911 __ jump_from_interpreted(rbx, rax); 3912 } 3913 3914 void TemplateTable::invokestatic(int byte_no) { 3915 transition(vtos, vtos); 3916 assert(byte_no == f1_byte, "use this argument"); 3917 prepare_invoke(byte_no, rbx); // get f1 Method* 3918 // do the call 3919 __ profile_call(rax); 3920 __ profile_arguments_type(rax, rbx, rbcp, false); 3921 __ jump_from_interpreted(rbx, rax); 3922 } 3923 3924 3925 void TemplateTable::fast_invokevfinal(int byte_no) { 3926 transition(vtos, vtos); 3927 assert(byte_no == f2_byte, "use this argument"); 3928 __ stop("fast_invokevfinal not used on x86"); 3929 } 3930 3931 3932 void TemplateTable::invokeinterface(int byte_no) { 3933 transition(vtos, vtos); 3934 assert(byte_no == f1_byte, "use this argument"); 3935 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 itable index 3936 rcx, rdx); // recv, flags 3937 3938 // rax: interface klass (from f1) 3939 // rbx: itable index (from f2) 3940 // rcx: receiver 3941 // rdx: flags 3942 3943 // Special case of invokeinterface called for virtual method of 3944 // java.lang.Object. See cpCacheOop.cpp for details. 3945 // This code isn't produced by javac, but could be produced by 3946 // another compliant java compiler. 3947 Label notMethod; 3948 __ movl(rlocals, rdx); 3949 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3950 3951 __ jcc(Assembler::zero, notMethod); 3952 3953 invokevirtual_helper(rbx, rcx, rdx); 3954 __ bind(notMethod); 3955 3956 // Get receiver klass into rdx - also a null check 3957 __ restore_locals(); // restore r14 3958 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); 3959 __ load_klass(rdx, rcx); 3960 3961 // profile this call 3962 __ profile_virtual_call(rdx, rbcp, rlocals); 3963 3964 Label no_such_interface, no_such_method; 3965 3966 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3967 rdx, rax, rbx, 3968 // outputs: method, scan temp. reg 3969 rbx, rbcp, 3970 no_such_interface); 3971 3972 // rbx: Method* to call 3973 // rcx: receiver 3974 // Check for abstract method error 3975 // Note: This should be done more efficiently via a throw_abstract_method_error 3976 // interpreter entry point and a conditional jump to it in case of a null 3977 // method. 3978 __ testptr(rbx, rbx); 3979 __ jcc(Assembler::zero, no_such_method); 3980 3981 __ profile_called_method(rbx, rbcp, rdx); 3982 __ profile_arguments_type(rdx, rbx, rbcp, true); 3983 3984 // do the call 3985 // rcx: receiver 3986 // rbx,: Method* 3987 __ jump_from_interpreted(rbx, rdx); 3988 __ should_not_reach_here(); 3989 3990 // exception handling code follows... 3991 // note: must restore interpreter registers to canonical 3992 // state for exception handling to work correctly! 3993 3994 __ bind(no_such_method); 3995 // throw exception 3996 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3997 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3998 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3999 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 4000 // the call_VM checks for exception, so we should never return here. 4001 __ should_not_reach_here(); 4002 4003 __ bind(no_such_interface); 4004 // throw exception 4005 __ pop(rbx); // pop return address (pushed by prepare_invoke) 4006 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 4007 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 4008 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4009 InterpreterRuntime::throw_IncompatibleClassChangeError)); 4010 // the call_VM checks for exception, so we should never return here. 4011 __ should_not_reach_here(); 4012 } 4013 4014 void TemplateTable::invokehandle(int byte_no) { 4015 transition(vtos, vtos); 4016 assert(byte_no == f1_byte, "use this argument"); 4017 const Register rbx_method = rbx; 4018 const Register rax_mtype = rax; 4019 const Register rcx_recv = rcx; 4020 const Register rdx_flags = rdx; 4021 4022 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 4023 __ verify_method_ptr(rbx_method); 4024 __ verify_oop(rcx_recv); 4025 __ null_check(rcx_recv); 4026 4027 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 4028 // rbx: MH.invokeExact_MT method (from f2) 4029 4030 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 4031 4032 // FIXME: profile the LambdaForm also 4033 __ profile_final_call(rax); 4034 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 4035 4036 __ jump_from_interpreted(rbx_method, rdx); 4037 } 4038 4039 void TemplateTable::invokedynamic(int byte_no) { 4040 transition(vtos, vtos); 4041 assert(byte_no == f1_byte, "use this argument"); 4042 4043 const Register rbx_method = rbx; 4044 const Register rax_callsite = rax; 4045 4046 prepare_invoke(byte_no, rbx_method, rax_callsite); 4047 4048 // rax: CallSite object (from cpool->resolved_references[f1]) 4049 // rbx: MH.linkToCallSite method (from f2) 4050 4051 // Note: rax_callsite is already pushed by prepare_invoke 4052 4053 // %%% should make a type profile for any invokedynamic that takes a ref argument 4054 // profile this call 4055 __ profile_call(rbcp); 4056 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 4057 4058 __ verify_oop(rax_callsite); 4059 4060 __ jump_from_interpreted(rbx_method, rdx); 4061 } 4062 4063 //----------------------------------------------------------------------------- 4064 // Allocation 4065 4066 void TemplateTable::_new() { 4067 transition(vtos, atos); 4068 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 4069 Label slow_case; 4070 Label slow_case_no_pop; 4071 Label done; 4072 Label initialize_header; 4073 Label initialize_object; // including clearing the fields 4074 Label allocate_shared; 4075 4076 __ get_cpool_and_tags(rcx, rax); 4077 4078 // Make sure the class we're about to instantiate has been resolved. 4079 // This is done before loading InstanceKlass to be consistent with the order 4080 // how Constant Pool is updated (see ConstantPool::klass_at_put) 4081 const int tags_offset = Array<u1>::base_offset_in_bytes(); 4082 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 4083 __ jcc(Assembler::notEqual, slow_case_no_pop); 4084 4085 // get InstanceKlass 4086 __ load_resolved_klass_at_index(rcx, rdx, rcx); 4087 __ push(rcx); // save the contexts of klass for initializing the header 4088 4089 // make sure klass is initialized & doesn't have finalizer 4090 // make sure klass is fully initialized 4091 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4092 __ jcc(Assembler::notEqual, slow_case); 4093 4094 // get instance_size in InstanceKlass (scaled to a count of bytes) 4095 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 4096 // test to see if it has a finalizer or is malformed in some way 4097 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 4098 __ jcc(Assembler::notZero, slow_case); 4099 4100 // 4101 // Allocate the instance 4102 // 1) Try to allocate in the TLAB 4103 // 2) if fail and the object is large allocate in the shared Eden 4104 // 3) if the above fails (or is not applicable), go to a slow case 4105 // (creates a new TLAB, etc.) 4106 4107 const bool allow_shared_alloc = 4108 Universe::heap()->supports_inline_contig_alloc(); 4109 4110 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 4111 #ifndef _LP64 4112 if (UseTLAB || allow_shared_alloc) { 4113 __ get_thread(thread); 4114 } 4115 #endif // _LP64 4116 4117 if (UseTLAB) { 4118 __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset()))); 4119 __ lea(rbx, Address(rax, rdx, Address::times_1)); 4120 __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset()))); 4121 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case); 4122 __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx); 4123 if (ZeroTLAB) { 4124 // the fields have been already cleared 4125 __ jmp(initialize_header); 4126 } else { 4127 // initialize both the header and fields 4128 __ jmp(initialize_object); 4129 } 4130 } 4131 4132 // Allocation in the shared Eden, if allowed. 4133 // 4134 // rdx: instance size in bytes 4135 if (allow_shared_alloc) { 4136 __ bind(allocate_shared); 4137 4138 ExternalAddress heap_top((address)Universe::heap()->top_addr()); 4139 ExternalAddress heap_end((address)Universe::heap()->end_addr()); 4140 4141 Label retry; 4142 __ bind(retry); 4143 __ movptr(rax, heap_top); 4144 __ lea(rbx, Address(rax, rdx, Address::times_1)); 4145 __ cmpptr(rbx, heap_end); 4146 __ jcc(Assembler::above, slow_case); 4147 4148 // Compare rax, with the top addr, and if still equal, store the new 4149 // top addr in rbx, at the address of the top addr pointer. Sets ZF if was 4150 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs. 4151 // 4152 // rax,: object begin 4153 // rbx,: object end 4154 // rdx: instance size in bytes 4155 __ locked_cmpxchgptr(rbx, heap_top); 4156 4157 // if someone beat us on the allocation, try again, otherwise continue 4158 __ jcc(Assembler::notEqual, retry); 4159 4160 __ incr_allocated_bytes(thread, rdx, 0); 4161 } 4162 4163 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { 4164 // The object is initialized before the header. If the object size is 4165 // zero, go directly to the header initialization. 4166 __ bind(initialize_object); 4167 __ decrement(rdx, sizeof(oopDesc)); 4168 __ jcc(Assembler::zero, initialize_header); 4169 4170 // Initialize topmost object field, divide rdx by 8, check if odd and 4171 // test if zero. 4172 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 4173 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 4174 4175 // rdx must have been multiple of 8 4176 #ifdef ASSERT 4177 // make sure rdx was multiple of 8 4178 Label L; 4179 // Ignore partial flag stall after shrl() since it is debug VM 4180 __ jccb(Assembler::carryClear, L); 4181 __ stop("object size is not multiple of 2 - adjust this code"); 4182 __ bind(L); 4183 // rdx must be > 0, no extra check needed here 4184 #endif 4185 4186 // initialize remaining object fields: rdx was a multiple of 8 4187 { Label loop; 4188 __ bind(loop); 4189 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx); 4190 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx)); 4191 __ decrement(rdx); 4192 __ jcc(Assembler::notZero, loop); 4193 } 4194 4195 // initialize object header only. 4196 __ bind(initialize_header); 4197 if (UseBiasedLocking) { 4198 __ pop(rcx); // get saved klass back in the register. 4199 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 4200 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx); 4201 } else { 4202 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), 4203 (intptr_t)markOopDesc::prototype()); // header 4204 __ pop(rcx); // get saved klass back in the register. 4205 } 4206 #ifdef _LP64 4207 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 4208 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 4209 #endif 4210 __ store_klass(rax, rcx); // klass 4211 4212 { 4213 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0); 4214 // Trigger dtrace event for fastpath 4215 __ push(atos); 4216 __ call_VM_leaf( 4217 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 4218 __ pop(atos); 4219 } 4220 4221 __ jmp(done); 4222 } 4223 4224 // slow case 4225 __ bind(slow_case); 4226 __ pop(rcx); // restore stack pointer to what it was when we came in. 4227 __ bind(slow_case_no_pop); 4228 4229 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4230 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4231 4232 __ get_constant_pool(rarg1); 4233 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4234 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); 4235 __ verify_oop(rax); 4236 4237 // continue 4238 __ bind(done); 4239 } 4240 4241 void TemplateTable::vdefault() { 4242 transition(vtos, qtos); 4243 4244 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4245 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4246 4247 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4248 __ get_constant_pool(rarg1); 4249 4250 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::vdefault), 4251 rarg1, rarg2); 4252 __ verify_oop(rax); 4253 } 4254 4255 void TemplateTable::newarray() { 4256 transition(itos, atos); 4257 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4258 __ load_unsigned_byte(rarg1, at_bcp(1)); 4259 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 4260 rarg1, rax); 4261 } 4262 4263 void TemplateTable::anewarray() { 4264 transition(itos, atos); 4265 4266 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4267 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4268 4269 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4270 __ get_constant_pool(rarg1); 4271 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 4272 rarg1, rarg2, rax); 4273 } 4274 4275 void TemplateTable::arraylength() { 4276 transition(atos, itos); 4277 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 4278 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 4279 } 4280 4281 void TemplateTable::checkcast() { 4282 transition(atos, atos); 4283 Label done, is_null, ok_is_subtype, quicked, resolved; 4284 __ testptr(rax, rax); // object is in rax 4285 __ jcc(Assembler::zero, is_null); 4286 4287 // Get cpool & tags index 4288 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4289 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4290 // See if bytecode has already been quicked 4291 __ cmpb(Address(rdx, rbx, 4292 Address::times_1, 4293 Array<u1>::base_offset_in_bytes()), 4294 JVM_CONSTANT_Class); 4295 __ jcc(Assembler::equal, quicked); 4296 __ push(atos); // save receiver for result, and for GC 4297 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4298 4299 // vm_result_2 has metadata result 4300 #ifndef _LP64 4301 // borrow rdi from locals 4302 __ get_thread(rdi); 4303 __ get_vm_result_2(rax, rdi); 4304 __ restore_locals(); 4305 #else 4306 __ get_vm_result_2(rax, r15_thread); 4307 #endif 4308 4309 __ pop_ptr(rdx); // restore receiver 4310 __ jmpb(resolved); 4311 4312 // Get superklass in rax and subklass in rbx 4313 __ bind(quicked); 4314 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 4315 __ load_resolved_klass_at_index(rcx, rbx, rax); 4316 4317 __ bind(resolved); 4318 __ load_klass(rbx, rdx); 4319 4320 // Generate subtype check. Blows rcx, rdi. Object in rdx. 4321 // Superklass in rax. Subklass in rbx. 4322 __ gen_subtype_check(rbx, ok_is_subtype); 4323 4324 // Come here on failure 4325 __ push_ptr(rdx); 4326 // object is at TOS 4327 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 4328 4329 // Come here on success 4330 __ bind(ok_is_subtype); 4331 __ mov(rax, rdx); // Restore object in rdx 4332 4333 // Collect counts on whether this check-cast sees NULLs a lot or not. 4334 if (ProfileInterpreter) { 4335 __ jmp(done); 4336 __ bind(is_null); 4337 __ profile_null_seen(rcx); 4338 } else { 4339 __ bind(is_null); // same as 'done' 4340 } 4341 __ bind(done); 4342 } 4343 4344 void TemplateTable::instanceof() { 4345 transition(atos, itos); 4346 Label done, is_null, ok_is_subtype, quicked, resolved; 4347 __ testptr(rax, rax); 4348 __ jcc(Assembler::zero, is_null); 4349 4350 // Get cpool & tags index 4351 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4352 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4353 // See if bytecode has already been quicked 4354 __ cmpb(Address(rdx, rbx, 4355 Address::times_1, 4356 Array<u1>::base_offset_in_bytes()), 4357 JVM_CONSTANT_Class); 4358 __ jcc(Assembler::equal, quicked); 4359 4360 __ push(atos); // save receiver for result, and for GC 4361 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4362 // vm_result_2 has metadata result 4363 4364 #ifndef _LP64 4365 // borrow rdi from locals 4366 __ get_thread(rdi); 4367 __ get_vm_result_2(rax, rdi); 4368 __ restore_locals(); 4369 #else 4370 __ get_vm_result_2(rax, r15_thread); 4371 #endif 4372 4373 __ pop_ptr(rdx); // restore receiver 4374 __ verify_oop(rdx); 4375 __ load_klass(rdx, rdx); 4376 __ jmpb(resolved); 4377 4378 // Get superklass in rax and subklass in rdx 4379 __ bind(quicked); 4380 __ load_klass(rdx, rax); 4381 __ load_resolved_klass_at_index(rcx, rbx, rax); 4382 4383 __ bind(resolved); 4384 4385 // Generate subtype check. Blows rcx, rdi 4386 // Superklass in rax. Subklass in rdx. 4387 __ gen_subtype_check(rdx, ok_is_subtype); 4388 4389 // Come here on failure 4390 __ xorl(rax, rax); 4391 __ jmpb(done); 4392 // Come here on success 4393 __ bind(ok_is_subtype); 4394 __ movl(rax, 1); 4395 4396 // Collect counts on whether this test sees NULLs a lot or not. 4397 if (ProfileInterpreter) { 4398 __ jmp(done); 4399 __ bind(is_null); 4400 __ profile_null_seen(rcx); 4401 } else { 4402 __ bind(is_null); // same as 'done' 4403 } 4404 __ bind(done); 4405 // rax = 0: obj == NULL or obj is not an instanceof the specified klass 4406 // rax = 1: obj != NULL and obj is an instanceof the specified klass 4407 } 4408 4409 void TemplateTable::_vbox() { 4410 transition(qtos, atos); 4411 4412 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4413 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4414 4415 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4416 __ get_constant_pool(rarg1); 4417 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::vbox), 4418 rarg1, rarg2, rax); 4419 } 4420 4421 void TemplateTable::_vunbox() { 4422 transition(atos, qtos); 4423 4424 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4425 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4426 4427 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4428 __ get_constant_pool(rarg1); 4429 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::vunbox), 4430 rarg1, rarg2, rax); 4431 } 4432 4433 //---------------------------------------------------------------------------------------------------- 4434 // Breakpoints 4435 void TemplateTable::_breakpoint() { 4436 // Note: We get here even if we are single stepping.. 4437 // jbug insists on setting breakpoints at every bytecode 4438 // even if we are in single step mode. 4439 4440 transition(vtos, vtos); 4441 4442 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4443 4444 // get the unpatched byte code 4445 __ get_method(rarg); 4446 __ call_VM(noreg, 4447 CAST_FROM_FN_PTR(address, 4448 InterpreterRuntime::get_original_bytecode_at), 4449 rarg, rbcp); 4450 __ mov(rbx, rax); // why? 4451 4452 // post the breakpoint event 4453 __ get_method(rarg); 4454 __ call_VM(noreg, 4455 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4456 rarg, rbcp); 4457 4458 // complete the execution of original bytecode 4459 __ dispatch_only_normal(vtos); 4460 } 4461 4462 //----------------------------------------------------------------------------- 4463 // Exceptions 4464 4465 void TemplateTable::athrow() { 4466 transition(atos, vtos); 4467 __ null_check(rax); 4468 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 4469 } 4470 4471 //----------------------------------------------------------------------------- 4472 // Synchronization 4473 // 4474 // Note: monitorenter & exit are symmetric routines; which is reflected 4475 // in the assembly code structure as well 4476 // 4477 // Stack layout: 4478 // 4479 // [expressions ] <--- rsp = expression stack top 4480 // .. 4481 // [expressions ] 4482 // [monitor entry] <--- monitor block top = expression stack bot 4483 // .. 4484 // [monitor entry] 4485 // [frame data ] <--- monitor block bot 4486 // ... 4487 // [saved rbp ] <--- rbp 4488 void TemplateTable::monitorenter() { 4489 transition(atos, vtos); 4490 4491 // check for NULL object 4492 __ null_check(rax); 4493 4494 const Address monitor_block_top( 4495 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4496 const Address monitor_block_bot( 4497 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4498 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4499 4500 Label allocated; 4501 4502 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 4503 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4504 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4505 4506 // initialize entry pointer 4507 __ xorl(rmon, rmon); // points to free slot or NULL 4508 4509 // find a free slot in the monitor block (result in rmon) 4510 { 4511 Label entry, loop, exit; 4512 __ movptr(rtop, monitor_block_top); // points to current entry, 4513 // starting with top-most entry 4514 __ lea(rbot, monitor_block_bot); // points to word before bottom 4515 // of monitor block 4516 __ jmpb(entry); 4517 4518 __ bind(loop); 4519 // check if current entry is used 4520 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); 4521 // if not used then remember entry in rmon 4522 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4523 // check if current entry is for same object 4524 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4525 // if same object then stop searching 4526 __ jccb(Assembler::equal, exit); 4527 // otherwise advance to next entry 4528 __ addptr(rtop, entry_size); 4529 __ bind(entry); 4530 // check if bottom reached 4531 __ cmpptr(rtop, rbot); 4532 // if not at bottom then check this entry 4533 __ jcc(Assembler::notEqual, loop); 4534 __ bind(exit); 4535 } 4536 4537 __ testptr(rmon, rmon); // check if a slot has been found 4538 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4539 4540 // allocate one if there's no free slot 4541 { 4542 Label entry, loop; 4543 // 1. compute new pointers // rsp: old expression stack top 4544 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4545 __ subptr(rsp, entry_size); // move expression stack top 4546 __ subptr(rmon, entry_size); // move expression stack bottom 4547 __ mov(rtop, rsp); // set start value for copy loop 4548 __ movptr(monitor_block_bot, rmon); // set new monitor block bottom 4549 __ jmp(entry); 4550 // 2. move expression stack contents 4551 __ bind(loop); 4552 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4553 // word from old location 4554 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4555 __ addptr(rtop, wordSize); // advance to next word 4556 __ bind(entry); 4557 __ cmpptr(rtop, rmon); // check if bottom reached 4558 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4559 // copy next word 4560 } 4561 4562 // call run-time routine 4563 // rmon: points to monitor entry 4564 __ bind(allocated); 4565 4566 // Increment bcp to point to the next bytecode, so exception 4567 // handling for async. exceptions work correctly. 4568 // The object has already been poped from the stack, so the 4569 // expression stack looks correct. 4570 __ increment(rbcp); 4571 4572 // store object 4573 __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax); 4574 __ lock_object(rmon); 4575 4576 // check to make sure this monitor doesn't cause stack overflow after locking 4577 __ save_bcp(); // in case of exception 4578 __ generate_stack_overflow_check(0); 4579 4580 // The bcp has already been incremented. Just need to dispatch to 4581 // next instruction. 4582 __ dispatch_next(vtos); 4583 } 4584 4585 void TemplateTable::monitorexit() { 4586 transition(atos, vtos); 4587 4588 // check for NULL object 4589 __ null_check(rax); 4590 4591 const Address monitor_block_top( 4592 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4593 const Address monitor_block_bot( 4594 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4595 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4596 4597 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4598 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4599 4600 Label found; 4601 4602 // find matching slot 4603 { 4604 Label entry, loop; 4605 __ movptr(rtop, monitor_block_top); // points to current entry, 4606 // starting with top-most entry 4607 __ lea(rbot, monitor_block_bot); // points to word before bottom 4608 // of monitor block 4609 __ jmpb(entry); 4610 4611 __ bind(loop); 4612 // check if current entry is for same object 4613 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4614 // if same object then stop searching 4615 __ jcc(Assembler::equal, found); 4616 // otherwise advance to next entry 4617 __ addptr(rtop, entry_size); 4618 __ bind(entry); 4619 // check if bottom reached 4620 __ cmpptr(rtop, rbot); 4621 // if not at bottom then check this entry 4622 __ jcc(Assembler::notEqual, loop); 4623 } 4624 4625 // error handling. Unlocking was not block-structured 4626 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4627 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4628 __ should_not_reach_here(); 4629 4630 // call run-time routine 4631 __ bind(found); 4632 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4633 __ unlock_object(rtop); 4634 __ pop_ptr(rax); // discard object 4635 } 4636 4637 // Wide instructions 4638 void TemplateTable::wide() { 4639 transition(vtos, vtos); 4640 __ load_unsigned_byte(rbx, at_bcp(1)); 4641 ExternalAddress wtable((address)Interpreter::_wentry_point); 4642 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr))); 4643 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4644 } 4645 4646 // Multi arrays 4647 void TemplateTable::multianewarray() { 4648 transition(vtos, atos); 4649 4650 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4651 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4652 // last dim is on top of stack; we want address of first one: 4653 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4654 // the latter wordSize to point to the beginning of the array. 4655 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4656 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); 4657 __ load_unsigned_byte(rbx, at_bcp(3)); 4658 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4659 }