1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jfr/support/jfrThreadId.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/metaspaceShared.hpp"
  51 #include "memory/oopFactory.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/access.inline.hpp"
  55 #include "oops/instanceKlass.hpp"
  56 #include "oops/objArrayOop.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/symbol.hpp"
  59 #include "oops/typeArrayOop.inline.hpp"
  60 #include "oops/valueKlass.hpp"
  61 #include "oops/verifyOopClosure.hpp"
  62 #include "prims/jvm_misc.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "prims/jvmtiThreadState.hpp"
  65 #include "prims/privilegedStack.hpp"
  66 #include "runtime/arguments.hpp"
  67 #include "runtime/atomic.hpp"
  68 #include "runtime/biasedLocking.hpp"
  69 #include "runtime/fieldDescriptor.inline.hpp"
  70 #include "runtime/flags/jvmFlagConstraintList.hpp"
  71 #include "runtime/flags/jvmFlagRangeList.hpp"
  72 #include "runtime/flags/jvmFlagWriteableList.hpp"
  73 #include "runtime/deoptimization.hpp"
  74 #include "runtime/frame.inline.hpp"
  75 #include "runtime/handshake.hpp"
  76 #include "runtime/init.hpp"
  77 #include "runtime/interfaceSupport.inline.hpp"
  78 #include "runtime/java.hpp"
  79 #include "runtime/javaCalls.hpp"
  80 #include "runtime/jniHandles.inline.hpp"
  81 #include "runtime/jniPeriodicChecker.hpp"
  82 #include "runtime/memprofiler.hpp"
  83 #include "runtime/mutexLocker.hpp"
  84 #include "runtime/objectMonitor.hpp"
  85 #include "runtime/orderAccess.hpp"
  86 #include "runtime/osThread.hpp"
  87 #include "runtime/prefetch.inline.hpp"
  88 #include "runtime/safepoint.hpp"
  89 #include "runtime/safepointMechanism.inline.hpp"
  90 #include "runtime/safepointVerifiers.hpp"
  91 #include "runtime/sharedRuntime.hpp"
  92 #include "runtime/statSampler.hpp"
  93 #include "runtime/stubRoutines.hpp"
  94 #include "runtime/sweeper.hpp"
  95 #include "runtime/task.hpp"
  96 #include "runtime/thread.inline.hpp"
  97 #include "runtime/threadCritical.hpp"
  98 #include "runtime/threadSMR.inline.hpp"
  99 #include "runtime/threadStatisticalInfo.hpp"
 100 #include "runtime/timer.hpp"
 101 #include "runtime/timerTrace.hpp"
 102 #include "runtime/vframe.inline.hpp"
 103 #include "runtime/vframeArray.hpp"
 104 #include "runtime/vframe_hp.hpp"
 105 #include "runtime/vmThread.hpp"
 106 #include "runtime/vm_operations.hpp"
 107 #include "runtime/vm_version.hpp"
 108 #include "services/attachListener.hpp"
 109 #include "services/management.hpp"
 110 #include "services/memTracker.hpp"
 111 #include "services/threadService.hpp"
 112 #include "utilities/align.hpp"
 113 #include "utilities/copy.hpp"
 114 #include "utilities/defaultStream.hpp"
 115 #include "utilities/dtrace.hpp"
 116 #include "utilities/events.hpp"
 117 #include "utilities/macros.hpp"
 118 #include "utilities/preserveException.hpp"
 119 #include "utilities/singleWriterSynchronizer.hpp"
 120 #include "utilities/vmError.hpp"
 121 #if INCLUDE_JVMCI
 122 #include "jvmci/jvmciCompiler.hpp"
 123 #include "jvmci/jvmciRuntime.hpp"
 124 #include "logging/logHandle.hpp"
 125 #endif
 126 #ifdef COMPILER1
 127 #include "c1/c1_Compiler.hpp"
 128 #endif
 129 #ifdef COMPILER2
 130 #include "opto/c2compiler.hpp"
 131 #include "opto/idealGraphPrinter.hpp"
 132 #endif
 133 #if INCLUDE_RTM_OPT
 134 #include "runtime/rtmLocking.hpp"
 135 #endif
 136 #if INCLUDE_JFR
 137 #include "jfr/jfr.hpp"
 138 #endif
 139 
 140 // Initialization after module runtime initialization
 141 void universe_post_module_init();  // must happen after call_initPhase2
 142 
 143 #ifdef DTRACE_ENABLED
 144 
 145 // Only bother with this argument setup if dtrace is available
 146 
 147   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 148   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 149 
 150   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 151     {                                                                      \
 152       ResourceMark rm(this);                                               \
 153       int len = 0;                                                         \
 154       const char* name = (javathread)->get_thread_name();                  \
 155       len = strlen(name);                                                  \
 156       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 157         (char *) name, len,                                                \
 158         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 159         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 160         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 161     }
 162 
 163 #else //  ndef DTRACE_ENABLED
 164 
 165   #define DTRACE_THREAD_PROBE(probe, javathread)
 166 
 167 #endif // ndef DTRACE_ENABLED
 168 
 169 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 170 // Current thread is maintained as a thread-local variable
 171 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 172 #endif
 173 
 174 // ======= Thread ========
 175 // Support for forcing alignment of thread objects for biased locking
 176 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 177   if (UseBiasedLocking) {
 178     const int alignment = markOopDesc::biased_lock_alignment;
 179     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 180     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 181                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 182                                                          AllocFailStrategy::RETURN_NULL);
 183     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 184     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 185            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 186            "JavaThread alignment code overflowed allocated storage");
 187     if (aligned_addr != real_malloc_addr) {
 188       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 189                               p2i(real_malloc_addr),
 190                               p2i(aligned_addr));
 191     }
 192     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 193     return aligned_addr;
 194   } else {
 195     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 196                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 197   }
 198 }
 199 
 200 void Thread::operator delete(void* p) {
 201   if (UseBiasedLocking) {
 202     FreeHeap(((Thread*) p)->_real_malloc_address);
 203   } else {
 204     FreeHeap(p);
 205   }
 206 }
 207 
 208 void JavaThread::smr_delete() {
 209   if (_on_thread_list) {
 210     ThreadsSMRSupport::smr_delete(this);
 211   } else {
 212     delete this;
 213   }
 214 }
 215 
 216 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 217 // JavaThread
 218 
 219 
 220 Thread::Thread() {
 221   // stack and get_thread
 222   set_stack_base(NULL);
 223   set_stack_size(0);
 224   set_self_raw_id(0);
 225   set_lgrp_id(-1);
 226   DEBUG_ONLY(clear_suspendible_thread();)
 227 
 228   // allocated data structures
 229   set_osthread(NULL);
 230   set_resource_area(new (mtThread)ResourceArea());
 231   DEBUG_ONLY(_current_resource_mark = NULL;)
 232   set_handle_area(new (mtThread) HandleArea(NULL));
 233   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 234   set_active_handles(NULL);
 235   set_free_handle_block(NULL);
 236   set_last_handle_mark(NULL);
 237 
 238   // This initial value ==> never claimed.
 239   _oops_do_parity = 0;
 240   _threads_hazard_ptr = NULL;
 241   _threads_list_ptr = NULL;
 242   _nested_threads_hazard_ptr_cnt = 0;
 243   _rcu_counter = 0;
 244 
 245   // the handle mark links itself to last_handle_mark
 246   new HandleMark(this);
 247 
 248   // plain initialization
 249   debug_only(_owned_locks = NULL;)
 250   debug_only(_allow_allocation_count = 0;)
 251   NOT_PRODUCT(_allow_safepoint_count = 0;)
 252   NOT_PRODUCT(_skip_gcalot = false;)
 253   _jvmti_env_iteration_count = 0;
 254   set_allocated_bytes(0);
 255   _vm_operation_started_count = 0;
 256   _vm_operation_completed_count = 0;
 257   _current_pending_monitor = NULL;
 258   _current_pending_monitor_is_from_java = true;
 259   _current_waiting_monitor = NULL;
 260   _num_nested_signal = 0;
 261   omFreeList = NULL;
 262   omFreeCount = 0;
 263   omFreeProvision = 32;
 264   omInUseList = NULL;
 265   omInUseCount = 0;
 266 
 267 #ifdef ASSERT
 268   _visited_for_critical_count = false;
 269 #endif
 270 
 271   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 272                          Monitor::_safepoint_check_sometimes);
 273   _suspend_flags = 0;
 274 
 275   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 276   _hashStateX = os::random();
 277   _hashStateY = 842502087;
 278   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 279   _hashStateW = 273326509;
 280 
 281   _OnTrap   = 0;
 282   _Stalled  = 0;
 283   _TypeTag  = 0x2BAD;
 284 
 285   // Many of the following fields are effectively final - immutable
 286   // Note that nascent threads can't use the Native Monitor-Mutex
 287   // construct until the _MutexEvent is initialized ...
 288   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 289   // we might instead use a stack of ParkEvents that we could provision on-demand.
 290   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 291   // and ::Release()
 292   _ParkEvent   = ParkEvent::Allocate(this);
 293   _SleepEvent  = ParkEvent::Allocate(this);
 294   _MutexEvent  = ParkEvent::Allocate(this);
 295   _MuxEvent    = ParkEvent::Allocate(this);
 296 
 297 #ifdef CHECK_UNHANDLED_OOPS
 298   if (CheckUnhandledOops) {
 299     _unhandled_oops = new UnhandledOops(this);
 300   }
 301 #endif // CHECK_UNHANDLED_OOPS
 302 #ifdef ASSERT
 303   if (UseBiasedLocking) {
 304     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 305     assert(this == _real_malloc_address ||
 306            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 307            "bug in forced alignment of thread objects");
 308   }
 309 #endif // ASSERT
 310 
 311   // Notify the barrier set that a thread is being created. Note that some
 312   // threads are created before a barrier set is available. The call to
 313   // BarrierSet::on_thread_create() for these threads is therefore deferred
 314   // to BarrierSet::set_barrier_set().
 315   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 316   if (barrier_set != NULL) {
 317     barrier_set->on_thread_create(this);
 318   } else {
 319     DEBUG_ONLY(Threads::inc_threads_before_barrier_set();)
 320   }
 321 }
 322 
 323 void Thread::initialize_thread_current() {
 324 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 325   assert(_thr_current == NULL, "Thread::current already initialized");
 326   _thr_current = this;
 327 #endif
 328   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 329   ThreadLocalStorage::set_thread(this);
 330   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 331 }
 332 
 333 void Thread::clear_thread_current() {
 334   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 335 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 336   _thr_current = NULL;
 337 #endif
 338   ThreadLocalStorage::set_thread(NULL);
 339 }
 340 
 341 void Thread::record_stack_base_and_size() {
 342   set_stack_base(os::current_stack_base());
 343   set_stack_size(os::current_stack_size());
 344   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 345   // in initialize_thread(). Without the adjustment, stack size is
 346   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 347   // So far, only Solaris has real implementation of initialize_thread().
 348   //
 349   // set up any platform-specific state.
 350   os::initialize_thread(this);
 351 
 352   // Set stack limits after thread is initialized.
 353   if (is_Java_thread()) {
 354     ((JavaThread*) this)->set_stack_overflow_limit();
 355     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 356   }
 357 #if INCLUDE_NMT
 358   // record thread's native stack, stack grows downward
 359   MemTracker::record_thread_stack(stack_end(), stack_size());
 360 #endif // INCLUDE_NMT
 361   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 362     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 363     os::current_thread_id(), p2i(stack_base() - stack_size()),
 364     p2i(stack_base()), stack_size()/1024);
 365 }
 366 
 367 
 368 Thread::~Thread() {
 369   JFR_ONLY(Jfr::on_thread_destruct(this);)
 370 
 371   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 372   // set might not be available if we encountered errors during bootstrapping.
 373   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 374   if (barrier_set != NULL) {
 375     barrier_set->on_thread_destroy(this);
 376   }
 377 
 378 
 379   // stack_base can be NULL if the thread is never started or exited before
 380   // record_stack_base_and_size called. Although, we would like to ensure
 381   // that all started threads do call record_stack_base_and_size(), there is
 382   // not proper way to enforce that.
 383 #if INCLUDE_NMT
 384   if (_stack_base != NULL) {
 385     MemTracker::release_thread_stack(stack_end(), stack_size());
 386 #ifdef ASSERT
 387     set_stack_base(NULL);
 388 #endif
 389   }
 390 #endif // INCLUDE_NMT
 391 
 392   // deallocate data structures
 393   delete resource_area();
 394   // since the handle marks are using the handle area, we have to deallocated the root
 395   // handle mark before deallocating the thread's handle area,
 396   assert(last_handle_mark() != NULL, "check we have an element");
 397   delete last_handle_mark();
 398   assert(last_handle_mark() == NULL, "check we have reached the end");
 399 
 400   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 401   // We NULL out the fields for good hygiene.
 402   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 403   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 404   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 405   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 406 
 407   delete handle_area();
 408   delete metadata_handles();
 409 
 410   // SR_handler uses this as a termination indicator -
 411   // needs to happen before os::free_thread()
 412   delete _SR_lock;
 413   _SR_lock = NULL;
 414 
 415   // osthread() can be NULL, if creation of thread failed.
 416   if (osthread() != NULL) os::free_thread(osthread());
 417 
 418   // clear Thread::current if thread is deleting itself.
 419   // Needed to ensure JNI correctly detects non-attached threads.
 420   if (this == Thread::current()) {
 421     clear_thread_current();
 422   }
 423 
 424   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 425 }
 426 
 427 // NOTE: dummy function for assertion purpose.
 428 void Thread::run() {
 429   ShouldNotReachHere();
 430 }
 431 
 432 #ifdef ASSERT
 433 // A JavaThread is considered "dangling" if it is not the current
 434 // thread, has been added the Threads list, the system is not at a
 435 // safepoint and the Thread is not "protected".
 436 //
 437 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 438   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 439          !((JavaThread *) thread)->on_thread_list() ||
 440          SafepointSynchronize::is_at_safepoint() ||
 441          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 442          "possibility of dangling Thread pointer");
 443 }
 444 #endif
 445 
 446 ThreadPriority Thread::get_priority(const Thread* const thread) {
 447   ThreadPriority priority;
 448   // Can return an error!
 449   (void)os::get_priority(thread, priority);
 450   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 451   return priority;
 452 }
 453 
 454 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 455   debug_only(check_for_dangling_thread_pointer(thread);)
 456   // Can return an error!
 457   (void)os::set_priority(thread, priority);
 458 }
 459 
 460 
 461 void Thread::start(Thread* thread) {
 462   // Start is different from resume in that its safety is guaranteed by context or
 463   // being called from a Java method synchronized on the Thread object.
 464   if (!DisableStartThread) {
 465     if (thread->is_Java_thread()) {
 466       // Initialize the thread state to RUNNABLE before starting this thread.
 467       // Can not set it after the thread started because we do not know the
 468       // exact thread state at that time. It could be in MONITOR_WAIT or
 469       // in SLEEPING or some other state.
 470       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 471                                           java_lang_Thread::RUNNABLE);
 472     }
 473     os::start_thread(thread);
 474   }
 475 }
 476 
 477 // Enqueue a VM_Operation to do the job for us - sometime later
 478 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 479   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 480   VMThread::execute(vm_stop);
 481 }
 482 
 483 
 484 // Check if an external suspend request has completed (or has been
 485 // cancelled). Returns true if the thread is externally suspended and
 486 // false otherwise.
 487 //
 488 // The bits parameter returns information about the code path through
 489 // the routine. Useful for debugging:
 490 //
 491 // set in is_ext_suspend_completed():
 492 // 0x00000001 - routine was entered
 493 // 0x00000010 - routine return false at end
 494 // 0x00000100 - thread exited (return false)
 495 // 0x00000200 - suspend request cancelled (return false)
 496 // 0x00000400 - thread suspended (return true)
 497 // 0x00001000 - thread is in a suspend equivalent state (return true)
 498 // 0x00002000 - thread is native and walkable (return true)
 499 // 0x00004000 - thread is native_trans and walkable (needed retry)
 500 //
 501 // set in wait_for_ext_suspend_completion():
 502 // 0x00010000 - routine was entered
 503 // 0x00020000 - suspend request cancelled before loop (return false)
 504 // 0x00040000 - thread suspended before loop (return true)
 505 // 0x00080000 - suspend request cancelled in loop (return false)
 506 // 0x00100000 - thread suspended in loop (return true)
 507 // 0x00200000 - suspend not completed during retry loop (return false)
 508 
 509 // Helper class for tracing suspend wait debug bits.
 510 //
 511 // 0x00000100 indicates that the target thread exited before it could
 512 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 513 // 0x00080000 each indicate a cancelled suspend request so they don't
 514 // count as wait failures either.
 515 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 516 
 517 class TraceSuspendDebugBits : public StackObj {
 518  private:
 519   JavaThread * jt;
 520   bool         is_wait;
 521   bool         called_by_wait;  // meaningful when !is_wait
 522   uint32_t *   bits;
 523 
 524  public:
 525   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 526                         uint32_t *_bits) {
 527     jt             = _jt;
 528     is_wait        = _is_wait;
 529     called_by_wait = _called_by_wait;
 530     bits           = _bits;
 531   }
 532 
 533   ~TraceSuspendDebugBits() {
 534     if (!is_wait) {
 535 #if 1
 536       // By default, don't trace bits for is_ext_suspend_completed() calls.
 537       // That trace is very chatty.
 538       return;
 539 #else
 540       if (!called_by_wait) {
 541         // If tracing for is_ext_suspend_completed() is enabled, then only
 542         // trace calls to it from wait_for_ext_suspend_completion()
 543         return;
 544       }
 545 #endif
 546     }
 547 
 548     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 549       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 550         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 551         ResourceMark rm;
 552 
 553         tty->print_cr(
 554                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 555                       jt->get_thread_name(), *bits);
 556 
 557         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 558       }
 559     }
 560   }
 561 };
 562 #undef DEBUG_FALSE_BITS
 563 
 564 
 565 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 566                                           uint32_t *bits) {
 567   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 568 
 569   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 570   bool do_trans_retry;           // flag to force the retry
 571 
 572   *bits |= 0x00000001;
 573 
 574   do {
 575     do_trans_retry = false;
 576 
 577     if (is_exiting()) {
 578       // Thread is in the process of exiting. This is always checked
 579       // first to reduce the risk of dereferencing a freed JavaThread.
 580       *bits |= 0x00000100;
 581       return false;
 582     }
 583 
 584     if (!is_external_suspend()) {
 585       // Suspend request is cancelled. This is always checked before
 586       // is_ext_suspended() to reduce the risk of a rogue resume
 587       // confusing the thread that made the suspend request.
 588       *bits |= 0x00000200;
 589       return false;
 590     }
 591 
 592     if (is_ext_suspended()) {
 593       // thread is suspended
 594       *bits |= 0x00000400;
 595       return true;
 596     }
 597 
 598     // Now that we no longer do hard suspends of threads running
 599     // native code, the target thread can be changing thread state
 600     // while we are in this routine:
 601     //
 602     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 603     //
 604     // We save a copy of the thread state as observed at this moment
 605     // and make our decision about suspend completeness based on the
 606     // copy. This closes the race where the thread state is seen as
 607     // _thread_in_native_trans in the if-thread_blocked check, but is
 608     // seen as _thread_blocked in if-thread_in_native_trans check.
 609     JavaThreadState save_state = thread_state();
 610 
 611     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 612       // If the thread's state is _thread_blocked and this blocking
 613       // condition is known to be equivalent to a suspend, then we can
 614       // consider the thread to be externally suspended. This means that
 615       // the code that sets _thread_blocked has been modified to do
 616       // self-suspension if the blocking condition releases. We also
 617       // used to check for CONDVAR_WAIT here, but that is now covered by
 618       // the _thread_blocked with self-suspension check.
 619       //
 620       // Return true since we wouldn't be here unless there was still an
 621       // external suspend request.
 622       *bits |= 0x00001000;
 623       return true;
 624     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 625       // Threads running native code will self-suspend on native==>VM/Java
 626       // transitions. If its stack is walkable (should always be the case
 627       // unless this function is called before the actual java_suspend()
 628       // call), then the wait is done.
 629       *bits |= 0x00002000;
 630       return true;
 631     } else if (!called_by_wait && !did_trans_retry &&
 632                save_state == _thread_in_native_trans &&
 633                frame_anchor()->walkable()) {
 634       // The thread is transitioning from thread_in_native to another
 635       // thread state. check_safepoint_and_suspend_for_native_trans()
 636       // will force the thread to self-suspend. If it hasn't gotten
 637       // there yet we may have caught the thread in-between the native
 638       // code check above and the self-suspend. Lucky us. If we were
 639       // called by wait_for_ext_suspend_completion(), then it
 640       // will be doing the retries so we don't have to.
 641       //
 642       // Since we use the saved thread state in the if-statement above,
 643       // there is a chance that the thread has already transitioned to
 644       // _thread_blocked by the time we get here. In that case, we will
 645       // make a single unnecessary pass through the logic below. This
 646       // doesn't hurt anything since we still do the trans retry.
 647 
 648       *bits |= 0x00004000;
 649 
 650       // Once the thread leaves thread_in_native_trans for another
 651       // thread state, we break out of this retry loop. We shouldn't
 652       // need this flag to prevent us from getting back here, but
 653       // sometimes paranoia is good.
 654       did_trans_retry = true;
 655 
 656       // We wait for the thread to transition to a more usable state.
 657       for (int i = 1; i <= SuspendRetryCount; i++) {
 658         // We used to do an "os::yield_all(i)" call here with the intention
 659         // that yielding would increase on each retry. However, the parameter
 660         // is ignored on Linux which means the yield didn't scale up. Waiting
 661         // on the SR_lock below provides a much more predictable scale up for
 662         // the delay. It also provides a simple/direct point to check for any
 663         // safepoint requests from the VMThread
 664 
 665         // temporarily drops SR_lock while doing wait with safepoint check
 666         // (if we're a JavaThread - the WatcherThread can also call this)
 667         // and increase delay with each retry
 668         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 669 
 670         // check the actual thread state instead of what we saved above
 671         if (thread_state() != _thread_in_native_trans) {
 672           // the thread has transitioned to another thread state so
 673           // try all the checks (except this one) one more time.
 674           do_trans_retry = true;
 675           break;
 676         }
 677       } // end retry loop
 678 
 679 
 680     }
 681   } while (do_trans_retry);
 682 
 683   *bits |= 0x00000010;
 684   return false;
 685 }
 686 
 687 // Wait for an external suspend request to complete (or be cancelled).
 688 // Returns true if the thread is externally suspended and false otherwise.
 689 //
 690 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 691                                                  uint32_t *bits) {
 692   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 693                              false /* !called_by_wait */, bits);
 694 
 695   // local flag copies to minimize SR_lock hold time
 696   bool is_suspended;
 697   bool pending;
 698   uint32_t reset_bits;
 699 
 700   // set a marker so is_ext_suspend_completed() knows we are the caller
 701   *bits |= 0x00010000;
 702 
 703   // We use reset_bits to reinitialize the bits value at the top of
 704   // each retry loop. This allows the caller to make use of any
 705   // unused bits for their own marking purposes.
 706   reset_bits = *bits;
 707 
 708   {
 709     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 710     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 711                                             delay, bits);
 712     pending = is_external_suspend();
 713   }
 714   // must release SR_lock to allow suspension to complete
 715 
 716   if (!pending) {
 717     // A cancelled suspend request is the only false return from
 718     // is_ext_suspend_completed() that keeps us from entering the
 719     // retry loop.
 720     *bits |= 0x00020000;
 721     return false;
 722   }
 723 
 724   if (is_suspended) {
 725     *bits |= 0x00040000;
 726     return true;
 727   }
 728 
 729   for (int i = 1; i <= retries; i++) {
 730     *bits = reset_bits;  // reinit to only track last retry
 731 
 732     // We used to do an "os::yield_all(i)" call here with the intention
 733     // that yielding would increase on each retry. However, the parameter
 734     // is ignored on Linux which means the yield didn't scale up. Waiting
 735     // on the SR_lock below provides a much more predictable scale up for
 736     // the delay. It also provides a simple/direct point to check for any
 737     // safepoint requests from the VMThread
 738 
 739     {
 740       MutexLocker ml(SR_lock());
 741       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 742       // can also call this)  and increase delay with each retry
 743       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 744 
 745       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 746                                               delay, bits);
 747 
 748       // It is possible for the external suspend request to be cancelled
 749       // (by a resume) before the actual suspend operation is completed.
 750       // Refresh our local copy to see if we still need to wait.
 751       pending = is_external_suspend();
 752     }
 753 
 754     if (!pending) {
 755       // A cancelled suspend request is the only false return from
 756       // is_ext_suspend_completed() that keeps us from staying in the
 757       // retry loop.
 758       *bits |= 0x00080000;
 759       return false;
 760     }
 761 
 762     if (is_suspended) {
 763       *bits |= 0x00100000;
 764       return true;
 765     }
 766   } // end retry loop
 767 
 768   // thread did not suspend after all our retries
 769   *bits |= 0x00200000;
 770   return false;
 771 }
 772 
 773 // Called from API entry points which perform stack walking. If the
 774 // associated JavaThread is the current thread, then wait_for_suspend
 775 // is not used. Otherwise, it determines if we should wait for the
 776 // "other" thread to complete external suspension. (NOTE: in future
 777 // releases the suspension mechanism should be reimplemented so this
 778 // is not necessary.)
 779 //
 780 bool
 781 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 782   if (this != JavaThread::current()) {
 783     // "other" threads require special handling.
 784     if (wait_for_suspend) {
 785       // We are allowed to wait for the external suspend to complete
 786       // so give the other thread a chance to get suspended.
 787       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 788                                            SuspendRetryDelay, bits)) {
 789         // Didn't make it so let the caller know.
 790         return false;
 791       }
 792     }
 793     // We aren't allowed to wait for the external suspend to complete
 794     // so if the other thread isn't externally suspended we need to
 795     // let the caller know.
 796     else if (!is_ext_suspend_completed_with_lock(bits)) {
 797       return false;
 798     }
 799   }
 800 
 801   return true;
 802 }
 803 
 804 #ifndef PRODUCT
 805 void JavaThread::record_jump(address target, address instr, const char* file,
 806                              int line) {
 807 
 808   // This should not need to be atomic as the only way for simultaneous
 809   // updates is via interrupts. Even then this should be rare or non-existent
 810   // and we don't care that much anyway.
 811 
 812   int index = _jmp_ring_index;
 813   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 814   _jmp_ring[index]._target = (intptr_t) target;
 815   _jmp_ring[index]._instruction = (intptr_t) instr;
 816   _jmp_ring[index]._file = file;
 817   _jmp_ring[index]._line = line;
 818 }
 819 #endif // PRODUCT
 820 
 821 void Thread::interrupt(Thread* thread) {
 822   debug_only(check_for_dangling_thread_pointer(thread);)
 823   os::interrupt(thread);
 824 }
 825 
 826 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 827   debug_only(check_for_dangling_thread_pointer(thread);)
 828   // Note:  If clear_interrupted==false, this simply fetches and
 829   // returns the value of the field osthread()->interrupted().
 830   return os::is_interrupted(thread, clear_interrupted);
 831 }
 832 
 833 
 834 // GC Support
 835 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 836   int thread_parity = _oops_do_parity;
 837   if (thread_parity != strong_roots_parity) {
 838     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 839     if (res == thread_parity) {
 840       return true;
 841     } else {
 842       guarantee(res == strong_roots_parity, "Or else what?");
 843       return false;
 844     }
 845   }
 846   return false;
 847 }
 848 
 849 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 850   active_handles()->oops_do(f);
 851   // Do oop for ThreadShadow
 852   f->do_oop((oop*)&_pending_exception);
 853   handle_area()->oops_do(f);
 854 
 855   if (MonitorInUseLists) {
 856     // When using thread local monitor lists, we scan them here,
 857     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 858     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 859   }
 860 }
 861 
 862 void Thread::metadata_handles_do(void f(Metadata*)) {
 863   // Only walk the Handles in Thread.
 864   if (metadata_handles() != NULL) {
 865     for (int i = 0; i< metadata_handles()->length(); i++) {
 866       f(metadata_handles()->at(i));
 867     }
 868   }
 869 }
 870 
 871 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 872   // get_priority assumes osthread initialized
 873   if (osthread() != NULL) {
 874     int os_prio;
 875     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 876       st->print("os_prio=%d ", os_prio);
 877     }
 878 
 879     st->print("cpu=%.2fms ",
 880               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 881               );
 882     st->print("elapsed=%.2fs ",
 883               _statistical_info.getElapsedTime() / 1000.0
 884               );
 885     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 886       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 887       st->print("allocated=" SIZE_FORMAT "%s ",
 888                 byte_size_in_proper_unit(allocated_bytes),
 889                 proper_unit_for_byte_size(allocated_bytes)
 890                 );
 891       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 892     }
 893 
 894     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 895     osthread()->print_on(st);
 896   }
 897   ThreadsSMRSupport::print_info_on(this, st);
 898   st->print(" ");
 899   debug_only(if (WizardMode) print_owned_locks_on(st);)
 900 }
 901 
 902 // Thread::print_on_error() is called by fatal error handler. Don't use
 903 // any lock or allocate memory.
 904 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 905   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 906 
 907   if (is_VM_thread())                 { st->print("VMThread"); }
 908   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 909   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 910   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 911   else                                { st->print("Thread"); }
 912 
 913   if (is_Named_thread()) {
 914     st->print(" \"%s\"", name());
 915   }
 916 
 917   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 918             p2i(stack_end()), p2i(stack_base()));
 919 
 920   if (osthread()) {
 921     st->print(" [id=%d]", osthread()->thread_id());
 922   }
 923 
 924   ThreadsSMRSupport::print_info_on(this, st);
 925 }
 926 
 927 void Thread::print_value_on(outputStream* st) const {
 928   if (is_Named_thread()) {
 929     st->print(" \"%s\" ", name());
 930   }
 931   st->print(INTPTR_FORMAT, p2i(this));   // print address
 932 }
 933 
 934 #ifdef ASSERT
 935 void Thread::print_owned_locks_on(outputStream* st) const {
 936   Monitor *cur = _owned_locks;
 937   if (cur == NULL) {
 938     st->print(" (no locks) ");
 939   } else {
 940     st->print_cr(" Locks owned:");
 941     while (cur) {
 942       cur->print_on(st);
 943       cur = cur->next();
 944     }
 945   }
 946 }
 947 
 948 static int ref_use_count  = 0;
 949 
 950 bool Thread::owns_locks_but_compiled_lock() const {
 951   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 952     if (cur != Compile_lock) return true;
 953   }
 954   return false;
 955 }
 956 
 957 
 958 #endif
 959 
 960 #ifndef PRODUCT
 961 
 962 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
 963 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
 964 // no locks which allow_vm_block's are held
 965 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 966   // Check if current thread is allowed to block at a safepoint
 967   if (!(_allow_safepoint_count == 0)) {
 968     fatal("Possible safepoint reached by thread that does not allow it");
 969   }
 970   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 971     fatal("LEAF method calling lock?");
 972   }
 973 
 974 #ifdef ASSERT
 975   if (potential_vm_operation && is_Java_thread()
 976       && !Universe::is_bootstrapping()) {
 977     // Make sure we do not hold any locks that the VM thread also uses.
 978     // This could potentially lead to deadlocks
 979     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 980       // Threads_lock is special, since the safepoint synchronization will not start before this is
 981       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 982       // since it is used to transfer control between JavaThreads and the VMThread
 983       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 984       if ((cur->allow_vm_block() &&
 985            cur != Threads_lock &&
 986            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 987            cur != VMOperationRequest_lock &&
 988            cur != VMOperationQueue_lock) ||
 989            cur->rank() == Mutex::special) {
 990         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 991       }
 992     }
 993   }
 994 
 995   if (GCALotAtAllSafepoints) {
 996     // We could enter a safepoint here and thus have a gc
 997     InterfaceSupport::check_gc_alot();
 998   }
 999 #endif
1000 }
1001 #endif
1002 
1003 bool Thread::is_in_stack(address adr) const {
1004   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1005   address end = os::current_stack_pointer();
1006   // Allow non Java threads to call this without stack_base
1007   if (_stack_base == NULL) return true;
1008   if (stack_base() >= adr && adr >= end) return true;
1009 
1010   return false;
1011 }
1012 
1013 bool Thread::is_in_usable_stack(address adr) const {
1014   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1015   size_t usable_stack_size = _stack_size - stack_guard_size;
1016 
1017   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1018 }
1019 
1020 
1021 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1022 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1023 // used for compilation in the future. If that change is made, the need for these methods
1024 // should be revisited, and they should be removed if possible.
1025 
1026 bool Thread::is_lock_owned(address adr) const {
1027   return on_local_stack(adr);
1028 }
1029 
1030 bool Thread::set_as_starting_thread() {
1031   // NOTE: this must be called inside the main thread.
1032   return os::create_main_thread((JavaThread*)this);
1033 }
1034 
1035 static void initialize_class(Symbol* class_name, TRAPS) {
1036   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1037   InstanceKlass::cast(klass)->initialize(CHECK);
1038 }
1039 
1040 
1041 // Creates the initial ThreadGroup
1042 static Handle create_initial_thread_group(TRAPS) {
1043   Handle system_instance = JavaCalls::construct_new_instance(
1044                             SystemDictionary::ThreadGroup_klass(),
1045                             vmSymbols::void_method_signature(),
1046                             CHECK_NH);
1047   Universe::set_system_thread_group(system_instance());
1048 
1049   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1050   Handle main_instance = JavaCalls::construct_new_instance(
1051                             SystemDictionary::ThreadGroup_klass(),
1052                             vmSymbols::threadgroup_string_void_signature(),
1053                             system_instance,
1054                             string,
1055                             CHECK_NH);
1056   return main_instance;
1057 }
1058 
1059 // Creates the initial Thread
1060 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1061                                  TRAPS) {
1062   InstanceKlass* ik = SystemDictionary::Thread_klass();
1063   assert(ik->is_initialized(), "must be");
1064   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1065 
1066   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1067   // constructor calls Thread.current(), which must be set here for the
1068   // initial thread.
1069   java_lang_Thread::set_thread(thread_oop(), thread);
1070   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1071   thread->set_threadObj(thread_oop());
1072 
1073   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1074 
1075   JavaValue result(T_VOID);
1076   JavaCalls::call_special(&result, thread_oop,
1077                           ik,
1078                           vmSymbols::object_initializer_name(),
1079                           vmSymbols::threadgroup_string_void_signature(),
1080                           thread_group,
1081                           string,
1082                           CHECK_NULL);
1083   return thread_oop();
1084 }
1085 
1086 char java_runtime_name[128] = "";
1087 char java_runtime_version[128] = "";
1088 
1089 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1090 static const char* get_java_runtime_name(TRAPS) {
1091   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1092                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1093   fieldDescriptor fd;
1094   bool found = k != NULL &&
1095                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1096                                                         vmSymbols::string_signature(), &fd);
1097   if (found) {
1098     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1099     if (name_oop == NULL) {
1100       return NULL;
1101     }
1102     const char* name = java_lang_String::as_utf8_string(name_oop,
1103                                                         java_runtime_name,
1104                                                         sizeof(java_runtime_name));
1105     return name;
1106   } else {
1107     return NULL;
1108   }
1109 }
1110 
1111 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1112 static const char* get_java_runtime_version(TRAPS) {
1113   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1114                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1115   fieldDescriptor fd;
1116   bool found = k != NULL &&
1117                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1118                                                         vmSymbols::string_signature(), &fd);
1119   if (found) {
1120     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1121     if (name_oop == NULL) {
1122       return NULL;
1123     }
1124     const char* name = java_lang_String::as_utf8_string(name_oop,
1125                                                         java_runtime_version,
1126                                                         sizeof(java_runtime_version));
1127     return name;
1128   } else {
1129     return NULL;
1130   }
1131 }
1132 
1133 // General purpose hook into Java code, run once when the VM is initialized.
1134 // The Java library method itself may be changed independently from the VM.
1135 static void call_postVMInitHook(TRAPS) {
1136   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1137   if (klass != NULL) {
1138     JavaValue result(T_VOID);
1139     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1140                            vmSymbols::void_method_signature(),
1141                            CHECK);
1142   }
1143 }
1144 
1145 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1146                                     bool daemon, TRAPS) {
1147   assert(thread_group.not_null(), "thread group should be specified");
1148   assert(threadObj() == NULL, "should only create Java thread object once");
1149 
1150   InstanceKlass* ik = SystemDictionary::Thread_klass();
1151   assert(ik->is_initialized(), "must be");
1152   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1153 
1154   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1155   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1156   // constructor calls Thread.current(), which must be set here.
1157   java_lang_Thread::set_thread(thread_oop(), this);
1158   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1159   set_threadObj(thread_oop());
1160 
1161   JavaValue result(T_VOID);
1162   if (thread_name != NULL) {
1163     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1164     // Thread gets assigned specified name and null target
1165     JavaCalls::call_special(&result,
1166                             thread_oop,
1167                             ik,
1168                             vmSymbols::object_initializer_name(),
1169                             vmSymbols::threadgroup_string_void_signature(),
1170                             thread_group,
1171                             name,
1172                             THREAD);
1173   } else {
1174     // Thread gets assigned name "Thread-nnn" and null target
1175     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1176     JavaCalls::call_special(&result,
1177                             thread_oop,
1178                             ik,
1179                             vmSymbols::object_initializer_name(),
1180                             vmSymbols::threadgroup_runnable_void_signature(),
1181                             thread_group,
1182                             Handle(),
1183                             THREAD);
1184   }
1185 
1186 
1187   if (daemon) {
1188     java_lang_Thread::set_daemon(thread_oop());
1189   }
1190 
1191   if (HAS_PENDING_EXCEPTION) {
1192     return;
1193   }
1194 
1195   Klass* group =  SystemDictionary::ThreadGroup_klass();
1196   Handle threadObj(THREAD, this->threadObj());
1197 
1198   JavaCalls::call_special(&result,
1199                           thread_group,
1200                           group,
1201                           vmSymbols::add_method_name(),
1202                           vmSymbols::thread_void_signature(),
1203                           threadObj,          // Arg 1
1204                           THREAD);
1205 }
1206 
1207 // List of all NonJavaThreads and safe iteration over that list.
1208 
1209 class NonJavaThread::List {
1210 public:
1211   NonJavaThread* volatile _head;
1212   SingleWriterSynchronizer _protect;
1213 
1214   List() : _head(NULL), _protect() {}
1215 };
1216 
1217 NonJavaThread::List NonJavaThread::_the_list;
1218 
1219 NonJavaThread::Iterator::Iterator() :
1220   _protect_enter(_the_list._protect.enter()),
1221   _current(OrderAccess::load_acquire(&_the_list._head))
1222 {}
1223 
1224 NonJavaThread::Iterator::~Iterator() {
1225   _the_list._protect.exit(_protect_enter);
1226 }
1227 
1228 void NonJavaThread::Iterator::step() {
1229   assert(!end(), "precondition");
1230   _current = OrderAccess::load_acquire(&_current->_next);
1231 }
1232 
1233 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1234   // Add this thread to _the_list.
1235   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1236   _next = _the_list._head;
1237   OrderAccess::release_store(&_the_list._head, this);
1238 }
1239 
1240 NonJavaThread::~NonJavaThread() {
1241   // Remove this thread from _the_list.
1242   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1243   NonJavaThread* volatile* p = &_the_list._head;
1244   for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1245     if (t == this) {
1246       *p = this->_next;
1247       // Wait for any in-progress iterators.
1248       _the_list._protect.synchronize();
1249       break;
1250     }
1251   }
1252 }
1253 
1254 // NamedThread --  non-JavaThread subclasses with multiple
1255 // uniquely named instances should derive from this.
1256 NamedThread::NamedThread() :
1257   NonJavaThread(),
1258   _name(NULL),
1259   _processed_thread(NULL),
1260   _gc_id(GCId::undefined())
1261 {}
1262 
1263 NamedThread::~NamedThread() {
1264   if (_name != NULL) {
1265     FREE_C_HEAP_ARRAY(char, _name);
1266     _name = NULL;
1267   }
1268 }
1269 
1270 void NamedThread::set_name(const char* format, ...) {
1271   guarantee(_name == NULL, "Only get to set name once.");
1272   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1273   guarantee(_name != NULL, "alloc failure");
1274   va_list ap;
1275   va_start(ap, format);
1276   jio_vsnprintf(_name, max_name_len, format, ap);
1277   va_end(ap);
1278 }
1279 
1280 void NamedThread::initialize_named_thread() {
1281   set_native_thread_name(name());
1282 }
1283 
1284 void NamedThread::print_on(outputStream* st) const {
1285   st->print("\"%s\" ", name());
1286   Thread::print_on(st);
1287   st->cr();
1288 }
1289 
1290 
1291 // ======= WatcherThread ========
1292 
1293 // The watcher thread exists to simulate timer interrupts.  It should
1294 // be replaced by an abstraction over whatever native support for
1295 // timer interrupts exists on the platform.
1296 
1297 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1298 bool WatcherThread::_startable = false;
1299 volatile bool  WatcherThread::_should_terminate = false;
1300 
1301 WatcherThread::WatcherThread() : NonJavaThread() {
1302   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1303   if (os::create_thread(this, os::watcher_thread)) {
1304     _watcher_thread = this;
1305 
1306     // Set the watcher thread to the highest OS priority which should not be
1307     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1308     // is created. The only normal thread using this priority is the reference
1309     // handler thread, which runs for very short intervals only.
1310     // If the VMThread's priority is not lower than the WatcherThread profiling
1311     // will be inaccurate.
1312     os::set_priority(this, MaxPriority);
1313     if (!DisableStartThread) {
1314       os::start_thread(this);
1315     }
1316   }
1317 }
1318 
1319 int WatcherThread::sleep() const {
1320   // The WatcherThread does not participate in the safepoint protocol
1321   // for the PeriodicTask_lock because it is not a JavaThread.
1322   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1323 
1324   if (_should_terminate) {
1325     // check for termination before we do any housekeeping or wait
1326     return 0;  // we did not sleep.
1327   }
1328 
1329   // remaining will be zero if there are no tasks,
1330   // causing the WatcherThread to sleep until a task is
1331   // enrolled
1332   int remaining = PeriodicTask::time_to_wait();
1333   int time_slept = 0;
1334 
1335   // we expect this to timeout - we only ever get unparked when
1336   // we should terminate or when a new task has been enrolled
1337   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1338 
1339   jlong time_before_loop = os::javaTimeNanos();
1340 
1341   while (true) {
1342     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1343                                             remaining);
1344     jlong now = os::javaTimeNanos();
1345 
1346     if (remaining == 0) {
1347       // if we didn't have any tasks we could have waited for a long time
1348       // consider the time_slept zero and reset time_before_loop
1349       time_slept = 0;
1350       time_before_loop = now;
1351     } else {
1352       // need to recalculate since we might have new tasks in _tasks
1353       time_slept = (int) ((now - time_before_loop) / 1000000);
1354     }
1355 
1356     // Change to task list or spurious wakeup of some kind
1357     if (timedout || _should_terminate) {
1358       break;
1359     }
1360 
1361     remaining = PeriodicTask::time_to_wait();
1362     if (remaining == 0) {
1363       // Last task was just disenrolled so loop around and wait until
1364       // another task gets enrolled
1365       continue;
1366     }
1367 
1368     remaining -= time_slept;
1369     if (remaining <= 0) {
1370       break;
1371     }
1372   }
1373 
1374   return time_slept;
1375 }
1376 
1377 void WatcherThread::run() {
1378   assert(this == watcher_thread(), "just checking");
1379 
1380   this->record_stack_base_and_size();
1381   this->set_native_thread_name(this->name());
1382   this->set_active_handles(JNIHandleBlock::allocate_block());
1383   while (true) {
1384     assert(watcher_thread() == Thread::current(), "thread consistency check");
1385     assert(watcher_thread() == this, "thread consistency check");
1386 
1387     // Calculate how long it'll be until the next PeriodicTask work
1388     // should be done, and sleep that amount of time.
1389     int time_waited = sleep();
1390 
1391     if (VMError::is_error_reported()) {
1392       // A fatal error has happened, the error handler(VMError::report_and_die)
1393       // should abort JVM after creating an error log file. However in some
1394       // rare cases, the error handler itself might deadlock. Here periodically
1395       // check for error reporting timeouts, and if it happens, just proceed to
1396       // abort the VM.
1397 
1398       // This code is in WatcherThread because WatcherThread wakes up
1399       // periodically so the fatal error handler doesn't need to do anything;
1400       // also because the WatcherThread is less likely to crash than other
1401       // threads.
1402 
1403       for (;;) {
1404         // Note: we use naked sleep in this loop because we want to avoid using
1405         // any kind of VM infrastructure which may be broken at this point.
1406         if (VMError::check_timeout()) {
1407           // We hit error reporting timeout. Error reporting was interrupted and
1408           // will be wrapping things up now (closing files etc). Give it some more
1409           // time, then quit the VM.
1410           os::naked_short_sleep(200);
1411           // Print a message to stderr.
1412           fdStream err(defaultStream::output_fd());
1413           err.print_raw_cr("# [ timer expired, abort... ]");
1414           // skip atexit/vm_exit/vm_abort hooks
1415           os::die();
1416         }
1417 
1418         // Wait a second, then recheck for timeout.
1419         os::naked_short_sleep(999);
1420       }
1421     }
1422 
1423     if (_should_terminate) {
1424       // check for termination before posting the next tick
1425       break;
1426     }
1427 
1428     PeriodicTask::real_time_tick(time_waited);
1429   }
1430 
1431   // Signal that it is terminated
1432   {
1433     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1434     _watcher_thread = NULL;
1435     Terminator_lock->notify();
1436   }
1437 }
1438 
1439 void WatcherThread::start() {
1440   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1441 
1442   if (watcher_thread() == NULL && _startable) {
1443     _should_terminate = false;
1444     // Create the single instance of WatcherThread
1445     new WatcherThread();
1446   }
1447 }
1448 
1449 void WatcherThread::make_startable() {
1450   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1451   _startable = true;
1452 }
1453 
1454 void WatcherThread::stop() {
1455   {
1456     // Follow normal safepoint aware lock enter protocol since the
1457     // WatcherThread is stopped by another JavaThread.
1458     MutexLocker ml(PeriodicTask_lock);
1459     _should_terminate = true;
1460 
1461     WatcherThread* watcher = watcher_thread();
1462     if (watcher != NULL) {
1463       // unpark the WatcherThread so it can see that it should terminate
1464       watcher->unpark();
1465     }
1466   }
1467 
1468   MutexLocker mu(Terminator_lock);
1469 
1470   while (watcher_thread() != NULL) {
1471     // This wait should make safepoint checks, wait without a timeout,
1472     // and wait as a suspend-equivalent condition.
1473     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1474                           Mutex::_as_suspend_equivalent_flag);
1475   }
1476 }
1477 
1478 void WatcherThread::unpark() {
1479   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1480   PeriodicTask_lock->notify();
1481 }
1482 
1483 void WatcherThread::print_on(outputStream* st) const {
1484   st->print("\"%s\" ", name());
1485   Thread::print_on(st);
1486   st->cr();
1487 }
1488 
1489 // ======= JavaThread ========
1490 
1491 #if INCLUDE_JVMCI
1492 
1493 jlong* JavaThread::_jvmci_old_thread_counters;
1494 
1495 bool jvmci_counters_include(JavaThread* thread) {
1496   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1497 }
1498 
1499 void JavaThread::collect_counters(typeArrayOop array) {
1500   if (JVMCICounterSize > 0) {
1501     JavaThreadIteratorWithHandle jtiwh;
1502     for (int i = 0; i < array->length(); i++) {
1503       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1504     }
1505     for (; JavaThread *tp = jtiwh.next(); ) {
1506       if (jvmci_counters_include(tp)) {
1507         for (int i = 0; i < array->length(); i++) {
1508           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1509         }
1510       }
1511     }
1512   }
1513 }
1514 
1515 #endif // INCLUDE_JVMCI
1516 
1517 // A JavaThread is a normal Java thread
1518 
1519 void JavaThread::initialize() {
1520   // Initialize fields
1521 
1522   set_saved_exception_pc(NULL);
1523   set_threadObj(NULL);
1524   _anchor.clear();
1525   set_entry_point(NULL);
1526   set_jni_functions(jni_functions());
1527   set_callee_target(NULL);
1528   set_vm_result(NULL);
1529   set_vm_result_2(NULL);
1530   set_return_buffered_value(NULL);
1531   set_vframe_array_head(NULL);
1532   set_vframe_array_last(NULL);
1533   set_deferred_locals(NULL);
1534   set_deopt_mark(NULL);
1535   set_deopt_compiled_method(NULL);
1536   clear_must_deopt_id();
1537   set_monitor_chunks(NULL);
1538   set_next(NULL);
1539   _on_thread_list = false;
1540   set_thread_state(_thread_new);
1541   _terminated = _not_terminated;
1542   _privileged_stack_top = NULL;
1543   _array_for_gc = NULL;
1544   _suspend_equivalent = false;
1545   _in_deopt_handler = 0;
1546   _doing_unsafe_access = false;
1547   _stack_guard_state = stack_guard_unused;
1548 #if INCLUDE_JVMCI
1549   _pending_monitorenter = false;
1550   _pending_deoptimization = -1;
1551   _pending_failed_speculation = 0;
1552   _pending_transfer_to_interpreter = false;
1553   _adjusting_comp_level = false;
1554   _jvmci._alternate_call_target = NULL;
1555   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1556   if (JVMCICounterSize > 0) {
1557     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1558     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1559   } else {
1560     _jvmci_counters = NULL;
1561   }
1562 #endif // INCLUDE_JVMCI
1563   _reserved_stack_activation = NULL;  // stack base not known yet
1564   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1565   _exception_pc  = 0;
1566   _exception_handler_pc = 0;
1567   _is_method_handle_return = 0;
1568   _jvmti_thread_state= NULL;
1569   _should_post_on_exceptions_flag = JNI_FALSE;
1570   _interp_only_mode    = 0;
1571   _special_runtime_exit_condition = _no_async_condition;
1572   _pending_async_exception = NULL;
1573   _thread_stat = NULL;
1574   _thread_stat = new ThreadStatistics();
1575   _blocked_on_compilation = false;
1576   _jni_active_critical = 0;
1577   _pending_jni_exception_check_fn = NULL;
1578   _do_not_unlock_if_synchronized = false;
1579   _cached_monitor_info = NULL;
1580   _parker = Parker::Allocate(this);
1581 
1582 #ifndef PRODUCT
1583   _jmp_ring_index = 0;
1584   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1585     record_jump(NULL, NULL, NULL, 0);
1586   }
1587 #endif // PRODUCT
1588 
1589   // Setup safepoint state info for this thread
1590   ThreadSafepointState::create(this);
1591 
1592   debug_only(_java_call_counter = 0);
1593 
1594   // JVMTI PopFrame support
1595   _popframe_condition = popframe_inactive;
1596   _popframe_preserved_args = NULL;
1597   _popframe_preserved_args_size = 0;
1598   _frames_to_pop_failed_realloc = 0;
1599 
1600   if (SafepointMechanism::uses_thread_local_poll()) {
1601     SafepointMechanism::initialize_header(this);
1602   }
1603 
1604   pd_initialize();
1605 }
1606 
1607 JavaThread::JavaThread(bool is_attaching_via_jni) :
1608                        Thread() {
1609   initialize();
1610   if (is_attaching_via_jni) {
1611     _jni_attach_state = _attaching_via_jni;
1612   } else {
1613     _jni_attach_state = _not_attaching_via_jni;
1614   }
1615   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1616 }
1617 
1618 bool JavaThread::reguard_stack(address cur_sp) {
1619   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1620       && _stack_guard_state != stack_guard_reserved_disabled) {
1621     return true; // Stack already guarded or guard pages not needed.
1622   }
1623 
1624   if (register_stack_overflow()) {
1625     // For those architectures which have separate register and
1626     // memory stacks, we must check the register stack to see if
1627     // it has overflowed.
1628     return false;
1629   }
1630 
1631   // Java code never executes within the yellow zone: the latter is only
1632   // there to provoke an exception during stack banging.  If java code
1633   // is executing there, either StackShadowPages should be larger, or
1634   // some exception code in c1, c2 or the interpreter isn't unwinding
1635   // when it should.
1636   guarantee(cur_sp > stack_reserved_zone_base(),
1637             "not enough space to reguard - increase StackShadowPages");
1638   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1639     enable_stack_yellow_reserved_zone();
1640     if (reserved_stack_activation() != stack_base()) {
1641       set_reserved_stack_activation(stack_base());
1642     }
1643   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1644     set_reserved_stack_activation(stack_base());
1645     enable_stack_reserved_zone();
1646   }
1647   return true;
1648 }
1649 
1650 bool JavaThread::reguard_stack(void) {
1651   return reguard_stack(os::current_stack_pointer());
1652 }
1653 
1654 
1655 void JavaThread::block_if_vm_exited() {
1656   if (_terminated == _vm_exited) {
1657     // _vm_exited is set at safepoint, and Threads_lock is never released
1658     // we will block here forever
1659     Threads_lock->lock_without_safepoint_check();
1660     ShouldNotReachHere();
1661   }
1662 }
1663 
1664 
1665 // Remove this ifdef when C1 is ported to the compiler interface.
1666 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1667 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1668 
1669 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1670                        Thread() {
1671   initialize();
1672   _jni_attach_state = _not_attaching_via_jni;
1673   set_entry_point(entry_point);
1674   // Create the native thread itself.
1675   // %note runtime_23
1676   os::ThreadType thr_type = os::java_thread;
1677   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1678                                                      os::java_thread;
1679   os::create_thread(this, thr_type, stack_sz);
1680   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1681   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1682   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1683   // the exception consists of creating the exception object & initializing it, initialization
1684   // will leave the VM via a JavaCall and then all locks must be unlocked).
1685   //
1686   // The thread is still suspended when we reach here. Thread must be explicit started
1687   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1688   // by calling Threads:add. The reason why this is not done here, is because the thread
1689   // object must be fully initialized (take a look at JVM_Start)
1690 }
1691 
1692 JavaThread::~JavaThread() {
1693 
1694   // JSR166 -- return the parker to the free list
1695   Parker::Release(_parker);
1696   _parker = NULL;
1697 
1698   // Free any remaining  previous UnrollBlock
1699   vframeArray* old_array = vframe_array_last();
1700 
1701   if (old_array != NULL) {
1702     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1703     old_array->set_unroll_block(NULL);
1704     delete old_info;
1705     delete old_array;
1706   }
1707 
1708   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1709   if (deferred != NULL) {
1710     // This can only happen if thread is destroyed before deoptimization occurs.
1711     assert(deferred->length() != 0, "empty array!");
1712     do {
1713       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1714       deferred->remove_at(0);
1715       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1716       delete dlv;
1717     } while (deferred->length() != 0);
1718     delete deferred;
1719   }
1720 
1721   // All Java related clean up happens in exit
1722   ThreadSafepointState::destroy(this);
1723   if (_thread_stat != NULL) delete _thread_stat;
1724 
1725 #if INCLUDE_JVMCI
1726   if (JVMCICounterSize > 0) {
1727     if (jvmci_counters_include(this)) {
1728       for (int i = 0; i < JVMCICounterSize; i++) {
1729         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1730       }
1731     }
1732     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1733   }
1734 #endif // INCLUDE_JVMCI
1735 }
1736 
1737 
1738 // The first routine called by a new Java thread
1739 void JavaThread::run() {
1740   // initialize thread-local alloc buffer related fields
1741   this->initialize_tlab();
1742 
1743   // used to test validity of stack trace backs
1744   this->record_base_of_stack_pointer();
1745 
1746   // Record real stack base and size.
1747   this->record_stack_base_and_size();
1748 
1749   this->create_stack_guard_pages();
1750 
1751   this->cache_global_variables();
1752 
1753   // Thread is now sufficient initialized to be handled by the safepoint code as being
1754   // in the VM. Change thread state from _thread_new to _thread_in_vm
1755   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1756 
1757   assert(JavaThread::current() == this, "sanity check");
1758   assert(!Thread::current()->owns_locks(), "sanity check");
1759 
1760   DTRACE_THREAD_PROBE(start, this);
1761 
1762   // This operation might block. We call that after all safepoint checks for a new thread has
1763   // been completed.
1764   this->set_active_handles(JNIHandleBlock::allocate_block());
1765 
1766   if (JvmtiExport::should_post_thread_life()) {
1767     JvmtiExport::post_thread_start(this);
1768   }
1769 
1770   EventThreadStart event;
1771   if (event.should_commit()) {
1772     event.set_thread(JFR_THREAD_ID(this));
1773     event.commit();
1774   }
1775 
1776   // We call another function to do the rest so we are sure that the stack addresses used
1777   // from there will be lower than the stack base just computed
1778   thread_main_inner();
1779 
1780   // Note, thread is no longer valid at this point!
1781 }
1782 
1783 
1784 void JavaThread::thread_main_inner() {
1785   assert(JavaThread::current() == this, "sanity check");
1786   assert(this->threadObj() != NULL, "just checking");
1787 
1788   // Execute thread entry point unless this thread has a pending exception
1789   // or has been stopped before starting.
1790   // Note: Due to JVM_StopThread we can have pending exceptions already!
1791   if (!this->has_pending_exception() &&
1792       !java_lang_Thread::is_stillborn(this->threadObj())) {
1793     {
1794       ResourceMark rm(this);
1795       this->set_native_thread_name(this->get_thread_name());
1796     }
1797     HandleMark hm(this);
1798     this->entry_point()(this, this);
1799   }
1800 
1801   DTRACE_THREAD_PROBE(stop, this);
1802 
1803   this->exit(false);
1804   this->smr_delete();
1805 }
1806 
1807 
1808 static void ensure_join(JavaThread* thread) {
1809   // We do not need to grab the Threads_lock, since we are operating on ourself.
1810   Handle threadObj(thread, thread->threadObj());
1811   assert(threadObj.not_null(), "java thread object must exist");
1812   ObjectLocker lock(threadObj, thread);
1813   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1814   thread->clear_pending_exception();
1815   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1816   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1817   // Clear the native thread instance - this makes isAlive return false and allows the join()
1818   // to complete once we've done the notify_all below
1819   java_lang_Thread::set_thread(threadObj(), NULL);
1820   lock.notify_all(thread);
1821   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1822   thread->clear_pending_exception();
1823 }
1824 
1825 
1826 // For any new cleanup additions, please check to see if they need to be applied to
1827 // cleanup_failed_attach_current_thread as well.
1828 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1829   assert(this == JavaThread::current(), "thread consistency check");
1830 
1831   elapsedTimer _timer_exit_phase1;
1832   elapsedTimer _timer_exit_phase2;
1833   elapsedTimer _timer_exit_phase3;
1834   elapsedTimer _timer_exit_phase4;
1835 
1836   if (log_is_enabled(Debug, os, thread, timer)) {
1837     _timer_exit_phase1.start();
1838   }
1839 
1840   HandleMark hm(this);
1841   Handle uncaught_exception(this, this->pending_exception());
1842   this->clear_pending_exception();
1843   Handle threadObj(this, this->threadObj());
1844   assert(threadObj.not_null(), "Java thread object should be created");
1845 
1846   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1847   {
1848     EXCEPTION_MARK;
1849 
1850     CLEAR_PENDING_EXCEPTION;
1851   }
1852   if (!destroy_vm) {
1853     if (uncaught_exception.not_null()) {
1854       EXCEPTION_MARK;
1855       // Call method Thread.dispatchUncaughtException().
1856       Klass* thread_klass = SystemDictionary::Thread_klass();
1857       JavaValue result(T_VOID);
1858       JavaCalls::call_virtual(&result,
1859                               threadObj, thread_klass,
1860                               vmSymbols::dispatchUncaughtException_name(),
1861                               vmSymbols::throwable_void_signature(),
1862                               uncaught_exception,
1863                               THREAD);
1864       if (HAS_PENDING_EXCEPTION) {
1865         ResourceMark rm(this);
1866         jio_fprintf(defaultStream::error_stream(),
1867                     "\nException: %s thrown from the UncaughtExceptionHandler"
1868                     " in thread \"%s\"\n",
1869                     pending_exception()->klass()->external_name(),
1870                     get_thread_name());
1871         CLEAR_PENDING_EXCEPTION;
1872       }
1873     }
1874 
1875     // Called before the java thread exit since we want to read info
1876     // from java_lang_Thread object
1877     EventThreadEnd event;
1878     if (event.should_commit()) {
1879       event.set_thread(JFR_THREAD_ID(this));
1880       event.commit();
1881     }
1882 
1883     // Call after last event on thread
1884     JFR_ONLY(Jfr::on_thread_exit(this);)
1885 
1886     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1887     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1888     // is deprecated anyhow.
1889     if (!is_Compiler_thread()) {
1890       int count = 3;
1891       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1892         EXCEPTION_MARK;
1893         JavaValue result(T_VOID);
1894         Klass* thread_klass = SystemDictionary::Thread_klass();
1895         JavaCalls::call_virtual(&result,
1896                                 threadObj, thread_klass,
1897                                 vmSymbols::exit_method_name(),
1898                                 vmSymbols::void_method_signature(),
1899                                 THREAD);
1900         CLEAR_PENDING_EXCEPTION;
1901       }
1902     }
1903     // notify JVMTI
1904     if (JvmtiExport::should_post_thread_life()) {
1905       JvmtiExport::post_thread_end(this);
1906     }
1907 
1908     // We have notified the agents that we are exiting, before we go on,
1909     // we must check for a pending external suspend request and honor it
1910     // in order to not surprise the thread that made the suspend request.
1911     while (true) {
1912       {
1913         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1914         if (!is_external_suspend()) {
1915           set_terminated(_thread_exiting);
1916           ThreadService::current_thread_exiting(this);
1917           break;
1918         }
1919         // Implied else:
1920         // Things get a little tricky here. We have a pending external
1921         // suspend request, but we are holding the SR_lock so we
1922         // can't just self-suspend. So we temporarily drop the lock
1923         // and then self-suspend.
1924       }
1925 
1926       ThreadBlockInVM tbivm(this);
1927       java_suspend_self();
1928 
1929       // We're done with this suspend request, but we have to loop around
1930       // and check again. Eventually we will get SR_lock without a pending
1931       // external suspend request and will be able to mark ourselves as
1932       // exiting.
1933     }
1934     // no more external suspends are allowed at this point
1935   } else {
1936     // before_exit() has already posted JVMTI THREAD_END events
1937   }
1938 
1939   if (log_is_enabled(Debug, os, thread, timer)) {
1940     _timer_exit_phase1.stop();
1941     _timer_exit_phase2.start();
1942   }
1943   // Notify waiters on thread object. This has to be done after exit() is called
1944   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1945   // group should have the destroyed bit set before waiters are notified).
1946   ensure_join(this);
1947   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1948 
1949   if (log_is_enabled(Debug, os, thread, timer)) {
1950     _timer_exit_phase2.stop();
1951     _timer_exit_phase3.start();
1952   }
1953   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1954   // held by this thread must be released. The spec does not distinguish
1955   // between JNI-acquired and regular Java monitors. We can only see
1956   // regular Java monitors here if monitor enter-exit matching is broken.
1957   //
1958   // Optionally release any monitors for regular JavaThread exits. This
1959   // is provided as a work around for any bugs in monitor enter-exit
1960   // matching. This can be expensive so it is not enabled by default.
1961   //
1962   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1963   // ObjectSynchronizer::release_monitors_owned_by_thread().
1964   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1965     // Sanity check even though JNI DetachCurrentThread() would have
1966     // returned JNI_ERR if there was a Java frame. JavaThread exit
1967     // should be done executing Java code by the time we get here.
1968     assert(!this->has_last_Java_frame(),
1969            "should not have a Java frame when detaching or exiting");
1970     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1971     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1972   }
1973 
1974   // These things needs to be done while we are still a Java Thread. Make sure that thread
1975   // is in a consistent state, in case GC happens
1976   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1977 
1978   if (active_handles() != NULL) {
1979     JNIHandleBlock* block = active_handles();
1980     set_active_handles(NULL);
1981     JNIHandleBlock::release_block(block);
1982   }
1983 
1984   if (free_handle_block() != NULL) {
1985     JNIHandleBlock* block = free_handle_block();
1986     set_free_handle_block(NULL);
1987     JNIHandleBlock::release_block(block);
1988   }
1989 
1990   // These have to be removed while this is still a valid thread.
1991   remove_stack_guard_pages();
1992 
1993   if (UseTLAB) {
1994     tlab().make_parsable(true);  // retire TLAB
1995   }
1996 
1997   if (JvmtiEnv::environments_might_exist()) {
1998     JvmtiExport::cleanup_thread(this);
1999   }
2000 
2001   // We must flush any deferred card marks and other various GC barrier
2002   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2003   // before removing a thread from the list of active threads.
2004   BarrierSet::barrier_set()->on_thread_detach(this);
2005 
2006   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2007     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2008     os::current_thread_id());
2009 
2010   if (log_is_enabled(Debug, os, thread, timer)) {
2011     _timer_exit_phase3.stop();
2012     _timer_exit_phase4.start();
2013   }
2014   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2015   Threads::remove(this);
2016 
2017   if (log_is_enabled(Debug, os, thread, timer)) {
2018     _timer_exit_phase4.stop();
2019     ResourceMark rm(this);
2020     log_debug(os, thread, timer)("name='%s'"
2021                                  ", exit-phase1=" JLONG_FORMAT
2022                                  ", exit-phase2=" JLONG_FORMAT
2023                                  ", exit-phase3=" JLONG_FORMAT
2024                                  ", exit-phase4=" JLONG_FORMAT,
2025                                  get_thread_name(),
2026                                  _timer_exit_phase1.milliseconds(),
2027                                  _timer_exit_phase2.milliseconds(),
2028                                  _timer_exit_phase3.milliseconds(),
2029                                  _timer_exit_phase4.milliseconds());
2030   }
2031 }
2032 
2033 void JavaThread::cleanup_failed_attach_current_thread() {
2034   if (active_handles() != NULL) {
2035     JNIHandleBlock* block = active_handles();
2036     set_active_handles(NULL);
2037     JNIHandleBlock::release_block(block);
2038   }
2039 
2040   if (free_handle_block() != NULL) {
2041     JNIHandleBlock* block = free_handle_block();
2042     set_free_handle_block(NULL);
2043     JNIHandleBlock::release_block(block);
2044   }
2045 
2046   // These have to be removed while this is still a valid thread.
2047   remove_stack_guard_pages();
2048 
2049   if (UseTLAB) {
2050     tlab().make_parsable(true);  // retire TLAB, if any
2051   }
2052 
2053   BarrierSet::barrier_set()->on_thread_detach(this);
2054 
2055   Threads::remove(this);
2056   this->smr_delete();
2057 }
2058 
2059 JavaThread* JavaThread::active() {
2060   Thread* thread = Thread::current();
2061   if (thread->is_Java_thread()) {
2062     return (JavaThread*) thread;
2063   } else {
2064     assert(thread->is_VM_thread(), "this must be a vm thread");
2065     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2066     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2067     assert(ret->is_Java_thread(), "must be a Java thread");
2068     return ret;
2069   }
2070 }
2071 
2072 bool JavaThread::is_lock_owned(address adr) const {
2073   if (Thread::is_lock_owned(adr)) return true;
2074 
2075   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2076     if (chunk->contains(adr)) return true;
2077   }
2078 
2079   return false;
2080 }
2081 
2082 
2083 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2084   chunk->set_next(monitor_chunks());
2085   set_monitor_chunks(chunk);
2086 }
2087 
2088 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2089   guarantee(monitor_chunks() != NULL, "must be non empty");
2090   if (monitor_chunks() == chunk) {
2091     set_monitor_chunks(chunk->next());
2092   } else {
2093     MonitorChunk* prev = monitor_chunks();
2094     while (prev->next() != chunk) prev = prev->next();
2095     prev->set_next(chunk->next());
2096   }
2097 }
2098 
2099 // JVM support.
2100 
2101 // Note: this function shouldn't block if it's called in
2102 // _thread_in_native_trans state (such as from
2103 // check_special_condition_for_native_trans()).
2104 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2105 
2106   if (has_last_Java_frame() && has_async_condition()) {
2107     // If we are at a polling page safepoint (not a poll return)
2108     // then we must defer async exception because live registers
2109     // will be clobbered by the exception path. Poll return is
2110     // ok because the call we a returning from already collides
2111     // with exception handling registers and so there is no issue.
2112     // (The exception handling path kills call result registers but
2113     //  this is ok since the exception kills the result anyway).
2114 
2115     if (is_at_poll_safepoint()) {
2116       // if the code we are returning to has deoptimized we must defer
2117       // the exception otherwise live registers get clobbered on the
2118       // exception path before deoptimization is able to retrieve them.
2119       //
2120       RegisterMap map(this, false);
2121       frame caller_fr = last_frame().sender(&map);
2122       assert(caller_fr.is_compiled_frame(), "what?");
2123       if (caller_fr.is_deoptimized_frame()) {
2124         log_info(exceptions)("deferred async exception at compiled safepoint");
2125         return;
2126       }
2127     }
2128   }
2129 
2130   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2131   if (condition == _no_async_condition) {
2132     // Conditions have changed since has_special_runtime_exit_condition()
2133     // was called:
2134     // - if we were here only because of an external suspend request,
2135     //   then that was taken care of above (or cancelled) so we are done
2136     // - if we were here because of another async request, then it has
2137     //   been cleared between the has_special_runtime_exit_condition()
2138     //   and now so again we are done
2139     return;
2140   }
2141 
2142   // Check for pending async. exception
2143   if (_pending_async_exception != NULL) {
2144     // Only overwrite an already pending exception, if it is not a threadDeath.
2145     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2146 
2147       // We cannot call Exceptions::_throw(...) here because we cannot block
2148       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2149 
2150       LogTarget(Info, exceptions) lt;
2151       if (lt.is_enabled()) {
2152         ResourceMark rm;
2153         LogStream ls(lt);
2154         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2155           if (has_last_Java_frame()) {
2156             frame f = last_frame();
2157            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2158           }
2159         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2160       }
2161       _pending_async_exception = NULL;
2162       clear_has_async_exception();
2163     }
2164   }
2165 
2166   if (check_unsafe_error &&
2167       condition == _async_unsafe_access_error && !has_pending_exception()) {
2168     condition = _no_async_condition;  // done
2169     switch (thread_state()) {
2170     case _thread_in_vm: {
2171       JavaThread* THREAD = this;
2172       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2173     }
2174     case _thread_in_native: {
2175       ThreadInVMfromNative tiv(this);
2176       JavaThread* THREAD = this;
2177       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2178     }
2179     case _thread_in_Java: {
2180       ThreadInVMfromJava tiv(this);
2181       JavaThread* THREAD = this;
2182       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2183     }
2184     default:
2185       ShouldNotReachHere();
2186     }
2187   }
2188 
2189   assert(condition == _no_async_condition || has_pending_exception() ||
2190          (!check_unsafe_error && condition == _async_unsafe_access_error),
2191          "must have handled the async condition, if no exception");
2192 }
2193 
2194 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2195   //
2196   // Check for pending external suspend. Internal suspend requests do
2197   // not use handle_special_runtime_exit_condition().
2198   // If JNIEnv proxies are allowed, don't self-suspend if the target
2199   // thread is not the current thread. In older versions of jdbx, jdbx
2200   // threads could call into the VM with another thread's JNIEnv so we
2201   // can be here operating on behalf of a suspended thread (4432884).
2202   bool do_self_suspend = is_external_suspend_with_lock();
2203   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2204     //
2205     // Because thread is external suspended the safepoint code will count
2206     // thread as at a safepoint. This can be odd because we can be here
2207     // as _thread_in_Java which would normally transition to _thread_blocked
2208     // at a safepoint. We would like to mark the thread as _thread_blocked
2209     // before calling java_suspend_self like all other callers of it but
2210     // we must then observe proper safepoint protocol. (We can't leave
2211     // _thread_blocked with a safepoint in progress). However we can be
2212     // here as _thread_in_native_trans so we can't use a normal transition
2213     // constructor/destructor pair because they assert on that type of
2214     // transition. We could do something like:
2215     //
2216     // JavaThreadState state = thread_state();
2217     // set_thread_state(_thread_in_vm);
2218     // {
2219     //   ThreadBlockInVM tbivm(this);
2220     //   java_suspend_self()
2221     // }
2222     // set_thread_state(_thread_in_vm_trans);
2223     // if (safepoint) block;
2224     // set_thread_state(state);
2225     //
2226     // but that is pretty messy. Instead we just go with the way the
2227     // code has worked before and note that this is the only path to
2228     // java_suspend_self that doesn't put the thread in _thread_blocked
2229     // mode.
2230 
2231     frame_anchor()->make_walkable(this);
2232     java_suspend_self();
2233 
2234     // We might be here for reasons in addition to the self-suspend request
2235     // so check for other async requests.
2236   }
2237 
2238   if (check_asyncs) {
2239     check_and_handle_async_exceptions();
2240   }
2241 
2242   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2243 }
2244 
2245 void JavaThread::send_thread_stop(oop java_throwable)  {
2246   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2247   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2248   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2249 
2250   // Do not throw asynchronous exceptions against the compiler thread
2251   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2252   if (!can_call_java()) return;
2253 
2254   {
2255     // Actually throw the Throwable against the target Thread - however
2256     // only if there is no thread death exception installed already.
2257     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2258       // If the topmost frame is a runtime stub, then we are calling into
2259       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2260       // must deoptimize the caller before continuing, as the compiled  exception handler table
2261       // may not be valid
2262       if (has_last_Java_frame()) {
2263         frame f = last_frame();
2264         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2265           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2266           RegisterMap reg_map(this, UseBiasedLocking);
2267           frame compiled_frame = f.sender(&reg_map);
2268           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2269             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2270           }
2271         }
2272       }
2273 
2274       // Set async. pending exception in thread.
2275       set_pending_async_exception(java_throwable);
2276 
2277       if (log_is_enabled(Info, exceptions)) {
2278          ResourceMark rm;
2279         log_info(exceptions)("Pending Async. exception installed of type: %s",
2280                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2281       }
2282       // for AbortVMOnException flag
2283       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2284     }
2285   }
2286 
2287 
2288   // Interrupt thread so it will wake up from a potential wait()
2289   Thread::interrupt(this);
2290 }
2291 
2292 // External suspension mechanism.
2293 //
2294 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2295 // to any VM_locks and it is at a transition
2296 // Self-suspension will happen on the transition out of the vm.
2297 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2298 //
2299 // Guarantees on return:
2300 //   + Target thread will not execute any new bytecode (that's why we need to
2301 //     force a safepoint)
2302 //   + Target thread will not enter any new monitors
2303 //
2304 void JavaThread::java_suspend() {
2305   ThreadsListHandle tlh;
2306   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2307     return;
2308   }
2309 
2310   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2311     if (!is_external_suspend()) {
2312       // a racing resume has cancelled us; bail out now
2313       return;
2314     }
2315 
2316     // suspend is done
2317     uint32_t debug_bits = 0;
2318     // Warning: is_ext_suspend_completed() may temporarily drop the
2319     // SR_lock to allow the thread to reach a stable thread state if
2320     // it is currently in a transient thread state.
2321     if (is_ext_suspend_completed(false /* !called_by_wait */,
2322                                  SuspendRetryDelay, &debug_bits)) {
2323       return;
2324     }
2325   }
2326 
2327   VM_ThreadSuspend vm_suspend;
2328   VMThread::execute(&vm_suspend);
2329 }
2330 
2331 // Part II of external suspension.
2332 // A JavaThread self suspends when it detects a pending external suspend
2333 // request. This is usually on transitions. It is also done in places
2334 // where continuing to the next transition would surprise the caller,
2335 // e.g., monitor entry.
2336 //
2337 // Returns the number of times that the thread self-suspended.
2338 //
2339 // Note: DO NOT call java_suspend_self() when you just want to block current
2340 //       thread. java_suspend_self() is the second stage of cooperative
2341 //       suspension for external suspend requests and should only be used
2342 //       to complete an external suspend request.
2343 //
2344 int JavaThread::java_suspend_self() {
2345   int ret = 0;
2346 
2347   // we are in the process of exiting so don't suspend
2348   if (is_exiting()) {
2349     clear_external_suspend();
2350     return ret;
2351   }
2352 
2353   assert(_anchor.walkable() ||
2354          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2355          "must have walkable stack");
2356 
2357   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2358 
2359   assert(!this->is_ext_suspended(),
2360          "a thread trying to self-suspend should not already be suspended");
2361 
2362   if (this->is_suspend_equivalent()) {
2363     // If we are self-suspending as a result of the lifting of a
2364     // suspend equivalent condition, then the suspend_equivalent
2365     // flag is not cleared until we set the ext_suspended flag so
2366     // that wait_for_ext_suspend_completion() returns consistent
2367     // results.
2368     this->clear_suspend_equivalent();
2369   }
2370 
2371   // A racing resume may have cancelled us before we grabbed SR_lock
2372   // above. Or another external suspend request could be waiting for us
2373   // by the time we return from SR_lock()->wait(). The thread
2374   // that requested the suspension may already be trying to walk our
2375   // stack and if we return now, we can change the stack out from under
2376   // it. This would be a "bad thing (TM)" and cause the stack walker
2377   // to crash. We stay self-suspended until there are no more pending
2378   // external suspend requests.
2379   while (is_external_suspend()) {
2380     ret++;
2381     this->set_ext_suspended();
2382 
2383     // _ext_suspended flag is cleared by java_resume()
2384     while (is_ext_suspended()) {
2385       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2386     }
2387   }
2388 
2389   return ret;
2390 }
2391 
2392 #ifdef ASSERT
2393 // Verify the JavaThread has not yet been published in the Threads::list, and
2394 // hence doesn't need protection from concurrent access at this stage.
2395 void JavaThread::verify_not_published() {
2396   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2397   // since an unpublished JavaThread doesn't participate in the
2398   // Thread-SMR protocol for keeping a ThreadsList alive.
2399   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2400 }
2401 #endif
2402 
2403 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2404 // progress or when _suspend_flags is non-zero.
2405 // Current thread needs to self-suspend if there is a suspend request and/or
2406 // block if a safepoint is in progress.
2407 // Async exception ISN'T checked.
2408 // Note only the ThreadInVMfromNative transition can call this function
2409 // directly and when thread state is _thread_in_native_trans
2410 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2411   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2412 
2413   JavaThread *curJT = JavaThread::current();
2414   bool do_self_suspend = thread->is_external_suspend();
2415 
2416   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2417 
2418   // If JNIEnv proxies are allowed, don't self-suspend if the target
2419   // thread is not the current thread. In older versions of jdbx, jdbx
2420   // threads could call into the VM with another thread's JNIEnv so we
2421   // can be here operating on behalf of a suspended thread (4432884).
2422   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2423     JavaThreadState state = thread->thread_state();
2424 
2425     // We mark this thread_blocked state as a suspend-equivalent so
2426     // that a caller to is_ext_suspend_completed() won't be confused.
2427     // The suspend-equivalent state is cleared by java_suspend_self().
2428     thread->set_suspend_equivalent();
2429 
2430     // If the safepoint code sees the _thread_in_native_trans state, it will
2431     // wait until the thread changes to other thread state. There is no
2432     // guarantee on how soon we can obtain the SR_lock and complete the
2433     // self-suspend request. It would be a bad idea to let safepoint wait for
2434     // too long. Temporarily change the state to _thread_blocked to
2435     // let the VM thread know that this thread is ready for GC. The problem
2436     // of changing thread state is that safepoint could happen just after
2437     // java_suspend_self() returns after being resumed, and VM thread will
2438     // see the _thread_blocked state. We must check for safepoint
2439     // after restoring the state and make sure we won't leave while a safepoint
2440     // is in progress.
2441     thread->set_thread_state(_thread_blocked);
2442     thread->java_suspend_self();
2443     thread->set_thread_state(state);
2444 
2445     InterfaceSupport::serialize_thread_state_with_handler(thread);
2446   }
2447 
2448   SafepointMechanism::block_if_requested(curJT);
2449 
2450   if (thread->is_deopt_suspend()) {
2451     thread->clear_deopt_suspend();
2452     RegisterMap map(thread, false);
2453     frame f = thread->last_frame();
2454     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2455       f = f.sender(&map);
2456     }
2457     if (f.id() == thread->must_deopt_id()) {
2458       thread->clear_must_deopt_id();
2459       f.deoptimize(thread);
2460     } else {
2461       fatal("missed deoptimization!");
2462     }
2463   }
2464 
2465   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2466 }
2467 
2468 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2469 // progress or when _suspend_flags is non-zero.
2470 // Current thread needs to self-suspend if there is a suspend request and/or
2471 // block if a safepoint is in progress.
2472 // Also check for pending async exception (not including unsafe access error).
2473 // Note only the native==>VM/Java barriers can call this function and when
2474 // thread state is _thread_in_native_trans.
2475 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2476   check_safepoint_and_suspend_for_native_trans(thread);
2477 
2478   if (thread->has_async_exception()) {
2479     // We are in _thread_in_native_trans state, don't handle unsafe
2480     // access error since that may block.
2481     thread->check_and_handle_async_exceptions(false);
2482   }
2483 }
2484 
2485 // This is a variant of the normal
2486 // check_special_condition_for_native_trans with slightly different
2487 // semantics for use by critical native wrappers.  It does all the
2488 // normal checks but also performs the transition back into
2489 // thread_in_Java state.  This is required so that critical natives
2490 // can potentially block and perform a GC if they are the last thread
2491 // exiting the GCLocker.
2492 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2493   check_special_condition_for_native_trans(thread);
2494 
2495   // Finish the transition
2496   thread->set_thread_state(_thread_in_Java);
2497 
2498   if (thread->do_critical_native_unlock()) {
2499     ThreadInVMfromJavaNoAsyncException tiv(thread);
2500     GCLocker::unlock_critical(thread);
2501     thread->clear_critical_native_unlock();
2502   }
2503 }
2504 
2505 // We need to guarantee the Threads_lock here, since resumes are not
2506 // allowed during safepoint synchronization
2507 // Can only resume from an external suspension
2508 void JavaThread::java_resume() {
2509   assert_locked_or_safepoint(Threads_lock);
2510 
2511   // Sanity check: thread is gone, has started exiting or the thread
2512   // was not externally suspended.
2513   ThreadsListHandle tlh;
2514   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2515     return;
2516   }
2517 
2518   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2519 
2520   clear_external_suspend();
2521 
2522   if (is_ext_suspended()) {
2523     clear_ext_suspended();
2524     SR_lock()->notify_all();
2525   }
2526 }
2527 
2528 size_t JavaThread::_stack_red_zone_size = 0;
2529 size_t JavaThread::_stack_yellow_zone_size = 0;
2530 size_t JavaThread::_stack_reserved_zone_size = 0;
2531 size_t JavaThread::_stack_shadow_zone_size = 0;
2532 
2533 void JavaThread::create_stack_guard_pages() {
2534   if (!os::uses_stack_guard_pages() ||
2535       _stack_guard_state != stack_guard_unused ||
2536       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2537       log_info(os, thread)("Stack guard page creation for thread "
2538                            UINTX_FORMAT " disabled", os::current_thread_id());
2539     return;
2540   }
2541   address low_addr = stack_end();
2542   size_t len = stack_guard_zone_size();
2543 
2544   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2545   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2546 
2547   int must_commit = os::must_commit_stack_guard_pages();
2548   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2549 
2550   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2551     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2552     return;
2553   }
2554 
2555   if (os::guard_memory((char *) low_addr, len)) {
2556     _stack_guard_state = stack_guard_enabled;
2557   } else {
2558     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2559       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2560     if (os::uncommit_memory((char *) low_addr, len)) {
2561       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2562     }
2563     return;
2564   }
2565 
2566   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2567     PTR_FORMAT "-" PTR_FORMAT ".",
2568     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2569 }
2570 
2571 void JavaThread::remove_stack_guard_pages() {
2572   assert(Thread::current() == this, "from different thread");
2573   if (_stack_guard_state == stack_guard_unused) return;
2574   address low_addr = stack_end();
2575   size_t len = stack_guard_zone_size();
2576 
2577   if (os::must_commit_stack_guard_pages()) {
2578     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2579       _stack_guard_state = stack_guard_unused;
2580     } else {
2581       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2582         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2583       return;
2584     }
2585   } else {
2586     if (_stack_guard_state == stack_guard_unused) return;
2587     if (os::unguard_memory((char *) low_addr, len)) {
2588       _stack_guard_state = stack_guard_unused;
2589     } else {
2590       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2591         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2592       return;
2593     }
2594   }
2595 
2596   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2597     PTR_FORMAT "-" PTR_FORMAT ".",
2598     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2599 }
2600 
2601 void JavaThread::enable_stack_reserved_zone() {
2602   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2603   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2604 
2605   // The base notation is from the stack's point of view, growing downward.
2606   // We need to adjust it to work correctly with guard_memory()
2607   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2608 
2609   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2610   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2611 
2612   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2613     _stack_guard_state = stack_guard_enabled;
2614   } else {
2615     warning("Attempt to guard stack reserved zone failed.");
2616   }
2617   enable_register_stack_guard();
2618 }
2619 
2620 void JavaThread::disable_stack_reserved_zone() {
2621   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2622   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2623 
2624   // Simply return if called for a thread that does not use guard pages.
2625   if (_stack_guard_state == stack_guard_unused) return;
2626 
2627   // The base notation is from the stack's point of view, growing downward.
2628   // We need to adjust it to work correctly with guard_memory()
2629   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2630 
2631   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2632     _stack_guard_state = stack_guard_reserved_disabled;
2633   } else {
2634     warning("Attempt to unguard stack reserved zone failed.");
2635   }
2636   disable_register_stack_guard();
2637 }
2638 
2639 void JavaThread::enable_stack_yellow_reserved_zone() {
2640   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2641   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2642 
2643   // The base notation is from the stacks point of view, growing downward.
2644   // We need to adjust it to work correctly with guard_memory()
2645   address base = stack_red_zone_base();
2646 
2647   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2648   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2649 
2650   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2651     _stack_guard_state = stack_guard_enabled;
2652   } else {
2653     warning("Attempt to guard stack yellow zone failed.");
2654   }
2655   enable_register_stack_guard();
2656 }
2657 
2658 void JavaThread::disable_stack_yellow_reserved_zone() {
2659   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2660   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2661 
2662   // Simply return if called for a thread that does not use guard pages.
2663   if (_stack_guard_state == stack_guard_unused) return;
2664 
2665   // The base notation is from the stacks point of view, growing downward.
2666   // We need to adjust it to work correctly with guard_memory()
2667   address base = stack_red_zone_base();
2668 
2669   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2670     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2671   } else {
2672     warning("Attempt to unguard stack yellow zone failed.");
2673   }
2674   disable_register_stack_guard();
2675 }
2676 
2677 void JavaThread::enable_stack_red_zone() {
2678   // The base notation is from the stacks point of view, growing downward.
2679   // We need to adjust it to work correctly with guard_memory()
2680   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2681   address base = stack_red_zone_base() - stack_red_zone_size();
2682 
2683   guarantee(base < stack_base(), "Error calculating stack red zone");
2684   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2685 
2686   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2687     warning("Attempt to guard stack red zone failed.");
2688   }
2689 }
2690 
2691 void JavaThread::disable_stack_red_zone() {
2692   // The base notation is from the stacks point of view, growing downward.
2693   // We need to adjust it to work correctly with guard_memory()
2694   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2695   address base = stack_red_zone_base() - stack_red_zone_size();
2696   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2697     warning("Attempt to unguard stack red zone failed.");
2698   }
2699 }
2700 
2701 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2702   // ignore is there is no stack
2703   if (!has_last_Java_frame()) return;
2704   // Because this method is used to verify oops, it must support
2705   // oops in buffered values
2706 
2707   // traverse the stack frames. Starts from top frame.
2708   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2709     frame* fr = fst.current();
2710     f(fr, fst.register_map());
2711   }
2712 }
2713 
2714 
2715 #ifndef PRODUCT
2716 // Deoptimization
2717 // Function for testing deoptimization
2718 void JavaThread::deoptimize() {
2719   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2720   StackFrameStream fst(this, UseBiasedLocking);
2721   bool deopt = false;           // Dump stack only if a deopt actually happens.
2722   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2723   // Iterate over all frames in the thread and deoptimize
2724   for (; !fst.is_done(); fst.next()) {
2725     if (fst.current()->can_be_deoptimized()) {
2726 
2727       if (only_at) {
2728         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2729         // consists of comma or carriage return separated numbers so
2730         // search for the current bci in that string.
2731         address pc = fst.current()->pc();
2732         nmethod* nm =  (nmethod*) fst.current()->cb();
2733         ScopeDesc* sd = nm->scope_desc_at(pc);
2734         char buffer[8];
2735         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2736         size_t len = strlen(buffer);
2737         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2738         while (found != NULL) {
2739           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2740               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2741             // Check that the bci found is bracketed by terminators.
2742             break;
2743           }
2744           found = strstr(found + 1, buffer);
2745         }
2746         if (!found) {
2747           continue;
2748         }
2749       }
2750 
2751       if (DebugDeoptimization && !deopt) {
2752         deopt = true; // One-time only print before deopt
2753         tty->print_cr("[BEFORE Deoptimization]");
2754         trace_frames();
2755         trace_stack();
2756       }
2757       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2758     }
2759   }
2760 
2761   if (DebugDeoptimization && deopt) {
2762     tty->print_cr("[AFTER Deoptimization]");
2763     trace_frames();
2764   }
2765 }
2766 
2767 
2768 // Make zombies
2769 void JavaThread::make_zombies() {
2770   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2771     if (fst.current()->can_be_deoptimized()) {
2772       // it is a Java nmethod
2773       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2774       nm->make_not_entrant();
2775     }
2776   }
2777 }
2778 #endif // PRODUCT
2779 
2780 
2781 void JavaThread::deoptimized_wrt_marked_nmethods() {
2782   if (!has_last_Java_frame()) return;
2783   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2784   StackFrameStream fst(this, UseBiasedLocking);
2785   for (; !fst.is_done(); fst.next()) {
2786     if (fst.current()->should_be_deoptimized()) {
2787       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2788     }
2789   }
2790 }
2791 
2792 
2793 // If the caller is a NamedThread, then remember, in the current scope,
2794 // the given JavaThread in its _processed_thread field.
2795 class RememberProcessedThread: public StackObj {
2796   NamedThread* _cur_thr;
2797  public:
2798   RememberProcessedThread(JavaThread* jthr) {
2799     Thread* thread = Thread::current();
2800     if (thread->is_Named_thread()) {
2801       _cur_thr = (NamedThread *)thread;
2802       _cur_thr->set_processed_thread(jthr);
2803     } else {
2804       _cur_thr = NULL;
2805     }
2806   }
2807 
2808   ~RememberProcessedThread() {
2809     if (_cur_thr) {
2810       _cur_thr->set_processed_thread(NULL);
2811     }
2812   }
2813 };
2814 
2815 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2816   // Verify that the deferred card marks have been flushed.
2817   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2818 
2819   // Traverse the GCHandles
2820   Thread::oops_do(f, cf);
2821 
2822   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2823          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2824 
2825   if (has_last_Java_frame()) {
2826     // Record JavaThread to GC thread
2827     RememberProcessedThread rpt(this);
2828 
2829     // Traverse the privileged stack
2830     if (_privileged_stack_top != NULL) {
2831       _privileged_stack_top->oops_do(f);
2832     }
2833 
2834     // traverse the registered growable array
2835     if (_array_for_gc != NULL) {
2836       for (int index = 0; index < _array_for_gc->length(); index++) {
2837         f->do_oop(_array_for_gc->adr_at(index));
2838       }
2839     }
2840 
2841     // Traverse the monitor chunks
2842     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2843       chunk->oops_do(f);
2844     }
2845 
2846     // Traverse the execution stack
2847     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2848       fst.current()->oops_do(f, cf, fst.register_map());
2849     }
2850   }
2851 
2852   // callee_target is never live across a gc point so NULL it here should
2853   // it still contain a methdOop.
2854 
2855   set_callee_target(NULL);
2856 
2857   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2858   // If we have deferred set_locals there might be oops waiting to be
2859   // written
2860   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2861   if (list != NULL) {
2862     for (int i = 0; i < list->length(); i++) {
2863       list->at(i)->oops_do(f);
2864     }
2865   }
2866 
2867   // Traverse instance variables at the end since the GC may be moving things
2868   // around using this function
2869   f->do_oop((oop*) &_threadObj);
2870   f->do_oop((oop*) &_vm_result);
2871   f->do_oop((oop*) &_exception_oop);
2872   f->do_oop((oop*) &_pending_async_exception);
2873 
2874   if (jvmti_thread_state() != NULL) {
2875     jvmti_thread_state()->oops_do(f);
2876   }
2877 }
2878 
2879 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2880   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2881          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2882 
2883   if (has_last_Java_frame()) {
2884     // Traverse the execution stack
2885     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2886       fst.current()->nmethods_do(cf);
2887     }
2888   }
2889 }
2890 
2891 void JavaThread::metadata_do(void f(Metadata*)) {
2892   if (has_last_Java_frame()) {
2893     // Traverse the execution stack to call f() on the methods in the stack
2894     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2895       fst.current()->metadata_do(f);
2896     }
2897   } else if (is_Compiler_thread()) {
2898     // need to walk ciMetadata in current compile tasks to keep alive.
2899     CompilerThread* ct = (CompilerThread*)this;
2900     if (ct->env() != NULL) {
2901       ct->env()->metadata_do(f);
2902     }
2903     CompileTask* task = ct->task();
2904     if (task != NULL) {
2905       task->metadata_do(f);
2906     }
2907   }
2908 }
2909 
2910 // Printing
2911 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2912   switch (_thread_state) {
2913   case _thread_uninitialized:     return "_thread_uninitialized";
2914   case _thread_new:               return "_thread_new";
2915   case _thread_new_trans:         return "_thread_new_trans";
2916   case _thread_in_native:         return "_thread_in_native";
2917   case _thread_in_native_trans:   return "_thread_in_native_trans";
2918   case _thread_in_vm:             return "_thread_in_vm";
2919   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2920   case _thread_in_Java:           return "_thread_in_Java";
2921   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2922   case _thread_blocked:           return "_thread_blocked";
2923   case _thread_blocked_trans:     return "_thread_blocked_trans";
2924   default:                        return "unknown thread state";
2925   }
2926 }
2927 
2928 #ifndef PRODUCT
2929 void JavaThread::print_thread_state_on(outputStream *st) const {
2930   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2931 };
2932 void JavaThread::print_thread_state() const {
2933   print_thread_state_on(tty);
2934 }
2935 #endif // PRODUCT
2936 
2937 // Called by Threads::print() for VM_PrintThreads operation
2938 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
2939   st->print_raw("\"");
2940   st->print_raw(get_thread_name());
2941   st->print_raw("\" ");
2942   oop thread_oop = threadObj();
2943   if (thread_oop != NULL) {
2944     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2945     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2946     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2947   }
2948   Thread::print_on(st, print_extended_info);
2949   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2950   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2951   if (thread_oop != NULL) {
2952     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2953   }
2954 #ifndef PRODUCT
2955   print_thread_state_on(st);
2956   _safepoint_state->print_on(st);
2957 #endif // PRODUCT
2958   if (is_Compiler_thread()) {
2959     CompileTask *task = ((CompilerThread*)this)->task();
2960     if (task != NULL) {
2961       st->print("   Compiling: ");
2962       task->print(st, NULL, true, false);
2963     } else {
2964       st->print("   No compile task");
2965     }
2966     st->cr();
2967   }
2968 }
2969 
2970 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2971   st->print("%s", get_thread_name_string(buf, buflen));
2972 }
2973 
2974 // Called by fatal error handler. The difference between this and
2975 // JavaThread::print() is that we can't grab lock or allocate memory.
2976 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2977   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2978   oop thread_obj = threadObj();
2979   if (thread_obj != NULL) {
2980     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2981   }
2982   st->print(" [");
2983   st->print("%s", _get_thread_state_name(_thread_state));
2984   if (osthread()) {
2985     st->print(", id=%d", osthread()->thread_id());
2986   }
2987   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2988             p2i(stack_end()), p2i(stack_base()));
2989   st->print("]");
2990 
2991   ThreadsSMRSupport::print_info_on(this, st);
2992   return;
2993 }
2994 
2995 // Verification
2996 
2997 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2998 
2999 void JavaThread::verify() {
3000   // Verify oops in the thread.
3001   oops_do(&VerifyOopClosure::verify_oop, NULL);
3002 
3003   // Verify the stack frames.
3004   frames_do(frame_verify);
3005 }
3006 
3007 // CR 6300358 (sub-CR 2137150)
3008 // Most callers of this method assume that it can't return NULL but a
3009 // thread may not have a name whilst it is in the process of attaching to
3010 // the VM - see CR 6412693, and there are places where a JavaThread can be
3011 // seen prior to having it's threadObj set (eg JNI attaching threads and
3012 // if vm exit occurs during initialization). These cases can all be accounted
3013 // for such that this method never returns NULL.
3014 const char* JavaThread::get_thread_name() const {
3015 #ifdef ASSERT
3016   // early safepoints can hit while current thread does not yet have TLS
3017   if (!SafepointSynchronize::is_at_safepoint()) {
3018     Thread *cur = Thread::current();
3019     if (!(cur->is_Java_thread() && cur == this)) {
3020       // Current JavaThreads are allowed to get their own name without
3021       // the Threads_lock.
3022       assert_locked_or_safepoint(Threads_lock);
3023     }
3024   }
3025 #endif // ASSERT
3026   return get_thread_name_string();
3027 }
3028 
3029 // Returns a non-NULL representation of this thread's name, or a suitable
3030 // descriptive string if there is no set name
3031 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3032   const char* name_str;
3033   oop thread_obj = threadObj();
3034   if (thread_obj != NULL) {
3035     oop name = java_lang_Thread::name(thread_obj);
3036     if (name != NULL) {
3037       if (buf == NULL) {
3038         name_str = java_lang_String::as_utf8_string(name);
3039       } else {
3040         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3041       }
3042     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3043       name_str = "<no-name - thread is attaching>";
3044     } else {
3045       name_str = Thread::name();
3046     }
3047   } else {
3048     name_str = Thread::name();
3049   }
3050   assert(name_str != NULL, "unexpected NULL thread name");
3051   return name_str;
3052 }
3053 
3054 
3055 const char* JavaThread::get_threadgroup_name() const {
3056   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3057   oop thread_obj = threadObj();
3058   if (thread_obj != NULL) {
3059     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3060     if (thread_group != NULL) {
3061       // ThreadGroup.name can be null
3062       return java_lang_ThreadGroup::name(thread_group);
3063     }
3064   }
3065   return NULL;
3066 }
3067 
3068 const char* JavaThread::get_parent_name() const {
3069   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3070   oop thread_obj = threadObj();
3071   if (thread_obj != NULL) {
3072     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3073     if (thread_group != NULL) {
3074       oop parent = java_lang_ThreadGroup::parent(thread_group);
3075       if (parent != NULL) {
3076         // ThreadGroup.name can be null
3077         return java_lang_ThreadGroup::name(parent);
3078       }
3079     }
3080   }
3081   return NULL;
3082 }
3083 
3084 ThreadPriority JavaThread::java_priority() const {
3085   oop thr_oop = threadObj();
3086   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3087   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3088   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3089   return priority;
3090 }
3091 
3092 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3093 
3094   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3095   // Link Java Thread object <-> C++ Thread
3096 
3097   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3098   // and put it into a new Handle.  The Handle "thread_oop" can then
3099   // be used to pass the C++ thread object to other methods.
3100 
3101   // Set the Java level thread object (jthread) field of the
3102   // new thread (a JavaThread *) to C++ thread object using the
3103   // "thread_oop" handle.
3104 
3105   // Set the thread field (a JavaThread *) of the
3106   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3107 
3108   Handle thread_oop(Thread::current(),
3109                     JNIHandles::resolve_non_null(jni_thread));
3110   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3111          "must be initialized");
3112   set_threadObj(thread_oop());
3113   java_lang_Thread::set_thread(thread_oop(), this);
3114 
3115   if (prio == NoPriority) {
3116     prio = java_lang_Thread::priority(thread_oop());
3117     assert(prio != NoPriority, "A valid priority should be present");
3118   }
3119 
3120   // Push the Java priority down to the native thread; needs Threads_lock
3121   Thread::set_priority(this, prio);
3122 
3123   // Add the new thread to the Threads list and set it in motion.
3124   // We must have threads lock in order to call Threads::add.
3125   // It is crucial that we do not block before the thread is
3126   // added to the Threads list for if a GC happens, then the java_thread oop
3127   // will not be visited by GC.
3128   Threads::add(this);
3129 }
3130 
3131 oop JavaThread::current_park_blocker() {
3132   // Support for JSR-166 locks
3133   oop thread_oop = threadObj();
3134   if (thread_oop != NULL &&
3135       JDK_Version::current().supports_thread_park_blocker()) {
3136     return java_lang_Thread::park_blocker(thread_oop);
3137   }
3138   return NULL;
3139 }
3140 
3141 
3142 void JavaThread::print_stack_on(outputStream* st) {
3143   if (!has_last_Java_frame()) return;
3144   ResourceMark rm;
3145   HandleMark   hm;
3146 
3147   RegisterMap reg_map(this);
3148   vframe* start_vf = last_java_vframe(&reg_map);
3149   int count = 0;
3150   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3151     if (f->is_java_frame()) {
3152       javaVFrame* jvf = javaVFrame::cast(f);
3153       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3154 
3155       // Print out lock information
3156       if (JavaMonitorsInStackTrace) {
3157         jvf->print_lock_info_on(st, count);
3158       }
3159     } else {
3160       // Ignore non-Java frames
3161     }
3162 
3163     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3164     count++;
3165     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3166   }
3167 }
3168 
3169 
3170 // JVMTI PopFrame support
3171 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3172   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3173   if (in_bytes(size_in_bytes) != 0) {
3174     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3175     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3176     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3177   }
3178 }
3179 
3180 void* JavaThread::popframe_preserved_args() {
3181   return _popframe_preserved_args;
3182 }
3183 
3184 ByteSize JavaThread::popframe_preserved_args_size() {
3185   return in_ByteSize(_popframe_preserved_args_size);
3186 }
3187 
3188 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3189   int sz = in_bytes(popframe_preserved_args_size());
3190   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3191   return in_WordSize(sz / wordSize);
3192 }
3193 
3194 void JavaThread::popframe_free_preserved_args() {
3195   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3196   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3197   _popframe_preserved_args = NULL;
3198   _popframe_preserved_args_size = 0;
3199 }
3200 
3201 #ifndef PRODUCT
3202 
3203 void JavaThread::trace_frames() {
3204   tty->print_cr("[Describe stack]");
3205   int frame_no = 1;
3206   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3207     tty->print("  %d. ", frame_no++);
3208     fst.current()->print_value_on(tty, this);
3209     tty->cr();
3210   }
3211 }
3212 
3213 class PrintAndVerifyOopClosure: public OopClosure {
3214  protected:
3215   template <class T> inline void do_oop_work(T* p) {
3216     oop obj = RawAccess<>::oop_load(p);
3217     if (obj == NULL) return;
3218     tty->print(INTPTR_FORMAT ": ", p2i(p));
3219     if (oopDesc::is_oop_or_null(obj)) {
3220       if (obj->is_objArray()) {
3221         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3222       } else {
3223         obj->print();
3224       }
3225     } else {
3226       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3227     }
3228     tty->cr();
3229   }
3230  public:
3231   virtual void do_oop(oop* p) { do_oop_work(p); }
3232   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3233 };
3234 
3235 
3236 static void oops_print(frame* f, const RegisterMap *map) {
3237   PrintAndVerifyOopClosure print;
3238   f->print_value();
3239   f->oops_do(&print, NULL, (RegisterMap*)map);
3240 }
3241 
3242 // Print our all the locations that contain oops and whether they are
3243 // valid or not.  This useful when trying to find the oldest frame
3244 // where an oop has gone bad since the frame walk is from youngest to
3245 // oldest.
3246 void JavaThread::trace_oops() {
3247   tty->print_cr("[Trace oops]");
3248   frames_do(oops_print);
3249 }
3250 
3251 
3252 #ifdef ASSERT
3253 // Print or validate the layout of stack frames
3254 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3255   ResourceMark rm;
3256   PRESERVE_EXCEPTION_MARK;
3257   FrameValues values;
3258   int frame_no = 0;
3259   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3260     fst.current()->describe(values, ++frame_no);
3261     if (depth == frame_no) break;
3262   }
3263   if (validate_only) {
3264     values.validate();
3265   } else {
3266     tty->print_cr("[Describe stack layout]");
3267     values.print(this);
3268   }
3269 }
3270 #endif
3271 
3272 void JavaThread::trace_stack_from(vframe* start_vf) {
3273   ResourceMark rm;
3274   int vframe_no = 1;
3275   for (vframe* f = start_vf; f; f = f->sender()) {
3276     if (f->is_java_frame()) {
3277       javaVFrame::cast(f)->print_activation(vframe_no++);
3278     } else {
3279       f->print();
3280     }
3281     if (vframe_no > StackPrintLimit) {
3282       tty->print_cr("...<more frames>...");
3283       return;
3284     }
3285   }
3286 }
3287 
3288 
3289 void JavaThread::trace_stack() {
3290   if (!has_last_Java_frame()) return;
3291   ResourceMark rm;
3292   HandleMark   hm;
3293   RegisterMap reg_map(this);
3294   trace_stack_from(last_java_vframe(&reg_map));
3295 }
3296 
3297 
3298 #endif // PRODUCT
3299 
3300 
3301 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3302   assert(reg_map != NULL, "a map must be given");
3303   frame f = last_frame();
3304   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3305     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3306   }
3307   return NULL;
3308 }
3309 
3310 
3311 Klass* JavaThread::security_get_caller_class(int depth) {
3312   vframeStream vfst(this);
3313   vfst.security_get_caller_frame(depth);
3314   if (!vfst.at_end()) {
3315     return vfst.method()->method_holder();
3316   }
3317   return NULL;
3318 }
3319 
3320 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3321   assert(thread->is_Compiler_thread(), "must be compiler thread");
3322   CompileBroker::compiler_thread_loop();
3323 }
3324 
3325 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3326   NMethodSweeper::sweeper_loop();
3327 }
3328 
3329 // Create a CompilerThread
3330 CompilerThread::CompilerThread(CompileQueue* queue,
3331                                CompilerCounters* counters)
3332                                : JavaThread(&compiler_thread_entry) {
3333   _env   = NULL;
3334   _log   = NULL;
3335   _task  = NULL;
3336   _queue = queue;
3337   _counters = counters;
3338   _buffer_blob = NULL;
3339   _compiler = NULL;
3340 
3341   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3342   resource_area()->bias_to(mtCompiler);
3343 
3344 #ifndef PRODUCT
3345   _ideal_graph_printer = NULL;
3346 #endif
3347 }
3348 
3349 CompilerThread::~CompilerThread() {
3350   // Delete objects which were allocated on heap.
3351   delete _counters;
3352 }
3353 
3354 bool CompilerThread::can_call_java() const {
3355   return _compiler != NULL && _compiler->is_jvmci();
3356 }
3357 
3358 // Create sweeper thread
3359 CodeCacheSweeperThread::CodeCacheSweeperThread()
3360 : JavaThread(&sweeper_thread_entry) {
3361   _scanned_compiled_method = NULL;
3362 }
3363 
3364 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3365   JavaThread::oops_do(f, cf);
3366   if (_scanned_compiled_method != NULL && cf != NULL) {
3367     // Safepoints can occur when the sweeper is scanning an nmethod so
3368     // process it here to make sure it isn't unloaded in the middle of
3369     // a scan.
3370     cf->do_code_blob(_scanned_compiled_method);
3371   }
3372 }
3373 
3374 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3375   JavaThread::nmethods_do(cf);
3376   if (_scanned_compiled_method != NULL && cf != NULL) {
3377     // Safepoints can occur when the sweeper is scanning an nmethod so
3378     // process it here to make sure it isn't unloaded in the middle of
3379     // a scan.
3380     cf->do_code_blob(_scanned_compiled_method);
3381   }
3382 }
3383 
3384 
3385 // ======= Threads ========
3386 
3387 // The Threads class links together all active threads, and provides
3388 // operations over all threads. It is protected by the Threads_lock,
3389 // which is also used in other global contexts like safepointing.
3390 // ThreadsListHandles are used to safely perform operations on one
3391 // or more threads without the risk of the thread exiting during the
3392 // operation.
3393 //
3394 // Note: The Threads_lock is currently more widely used than we
3395 // would like. We are actively migrating Threads_lock uses to other
3396 // mechanisms in order to reduce Threads_lock contention.
3397 
3398 JavaThread* Threads::_thread_list = NULL;
3399 int         Threads::_number_of_threads = 0;
3400 int         Threads::_number_of_non_daemon_threads = 0;
3401 int         Threads::_return_code = 0;
3402 int         Threads::_thread_claim_parity = 0;
3403 size_t      JavaThread::_stack_size_at_create = 0;
3404 
3405 #ifdef ASSERT
3406 bool        Threads::_vm_complete = false;
3407 size_t      Threads::_threads_before_barrier_set = 0;
3408 #endif
3409 
3410 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3411   Prefetch::read((void*)addr, prefetch_interval);
3412   return *addr;
3413 }
3414 
3415 // Possibly the ugliest for loop the world has seen. C++ does not allow
3416 // multiple types in the declaration section of the for loop. In this case
3417 // we are only dealing with pointers and hence can cast them. It looks ugly
3418 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3419 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3420     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3421              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3422              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3423              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3424              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3425          MACRO_current_p != MACRO_end;                                                                                    \
3426          MACRO_current_p++,                                                                                               \
3427              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3428 
3429 // All JavaThreads
3430 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3431 
3432 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3433 void Threads::non_java_threads_do(ThreadClosure* tc) {
3434   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3435   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3436     tc->do_thread(njti.current());
3437   }
3438 }
3439 
3440 // All JavaThreads
3441 void Threads::java_threads_do(ThreadClosure* tc) {
3442   assert_locked_or_safepoint(Threads_lock);
3443   // ALL_JAVA_THREADS iterates through all JavaThreads.
3444   ALL_JAVA_THREADS(p) {
3445     tc->do_thread(p);
3446   }
3447 }
3448 
3449 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3450   assert_locked_or_safepoint(Threads_lock);
3451   java_threads_do(tc);
3452   tc->do_thread(VMThread::vm_thread());
3453 }
3454 
3455 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3456 void Threads::threads_do(ThreadClosure* tc) {
3457   assert_locked_or_safepoint(Threads_lock);
3458   java_threads_do(tc);
3459   non_java_threads_do(tc);
3460 }
3461 
3462 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3463   int cp = Threads::thread_claim_parity();
3464   ALL_JAVA_THREADS(p) {
3465     if (p->claim_oops_do(is_par, cp)) {
3466       tc->do_thread(p);
3467     }
3468   }
3469   VMThread* vmt = VMThread::vm_thread();
3470   if (vmt->claim_oops_do(is_par, cp)) {
3471     tc->do_thread(vmt);
3472   }
3473 }
3474 
3475 // The system initialization in the library has three phases.
3476 //
3477 // Phase 1: java.lang.System class initialization
3478 //     java.lang.System is a primordial class loaded and initialized
3479 //     by the VM early during startup.  java.lang.System.<clinit>
3480 //     only does registerNatives and keeps the rest of the class
3481 //     initialization work later until thread initialization completes.
3482 //
3483 //     System.initPhase1 initializes the system properties, the static
3484 //     fields in, out, and err. Set up java signal handlers, OS-specific
3485 //     system settings, and thread group of the main thread.
3486 static void call_initPhase1(TRAPS) {
3487   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3488   JavaValue result(T_VOID);
3489   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3490                                          vmSymbols::void_method_signature(), CHECK);
3491 }
3492 
3493 // Phase 2. Module system initialization
3494 //     This will initialize the module system.  Only java.base classes
3495 //     can be loaded until phase 2 completes.
3496 //
3497 //     Call System.initPhase2 after the compiler initialization and jsr292
3498 //     classes get initialized because module initialization runs a lot of java
3499 //     code, that for performance reasons, should be compiled.  Also, this will
3500 //     enable the startup code to use lambda and other language features in this
3501 //     phase and onward.
3502 //
3503 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3504 static void call_initPhase2(TRAPS) {
3505   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3506 
3507   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3508 
3509   JavaValue result(T_INT);
3510   JavaCallArguments args;
3511   args.push_int(DisplayVMOutputToStderr);
3512   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3513   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3514                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3515   if (result.get_jint() != JNI_OK) {
3516     vm_exit_during_initialization(); // no message or exception
3517   }
3518 
3519   universe_post_module_init();
3520 }
3521 
3522 // Phase 3. final setup - set security manager, system class loader and TCCL
3523 //
3524 //     This will instantiate and set the security manager, set the system class
3525 //     loader as well as the thread context class loader.  The security manager
3526 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3527 //     other modules or the application's classpath.
3528 static void call_initPhase3(TRAPS) {
3529   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3530   JavaValue result(T_VOID);
3531   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3532                                          vmSymbols::void_method_signature(), CHECK);
3533 }
3534 
3535 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3536   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3537 
3538   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3539     create_vm_init_libraries();
3540   }
3541 
3542   initialize_class(vmSymbols::java_lang_String(), CHECK);
3543 
3544   // Inject CompactStrings value after the static initializers for String ran.
3545   java_lang_String::set_compact_strings(CompactStrings);
3546 
3547   // Initialize java_lang.System (needed before creating the thread)
3548   initialize_class(vmSymbols::java_lang_System(), CHECK);
3549   // The VM creates & returns objects of this class. Make sure it's initialized.
3550   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3551   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3552   Handle thread_group = create_initial_thread_group(CHECK);
3553   Universe::set_main_thread_group(thread_group());
3554   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3555   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3556   main_thread->set_threadObj(thread_object);
3557   // Set thread status to running since main thread has
3558   // been started and running.
3559   java_lang_Thread::set_thread_status(thread_object,
3560                                       java_lang_Thread::RUNNABLE);
3561 
3562   // The VM creates objects of this class.
3563   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3564 
3565   // The VM preresolves methods to these classes. Make sure that they get initialized
3566   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3567   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3568 
3569   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3570   call_initPhase1(CHECK);
3571 
3572   // get the Java runtime name after java.lang.System is initialized
3573   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3574   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3575 
3576   // an instance of OutOfMemory exception has been allocated earlier
3577   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3578   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3579   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3580   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3581   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3582   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3583   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3584   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3585 }
3586 
3587 void Threads::initialize_jsr292_core_classes(TRAPS) {
3588   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3589 
3590   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3591   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3592   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3593   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3594 }
3595 
3596 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3597   extern void JDK_Version_init();
3598 
3599   // Preinitialize version info.
3600   VM_Version::early_initialize();
3601 
3602   // Check version
3603   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3604 
3605   // Initialize library-based TLS
3606   ThreadLocalStorage::init();
3607 
3608   // Initialize the output stream module
3609   ostream_init();
3610 
3611   // Process java launcher properties.
3612   Arguments::process_sun_java_launcher_properties(args);
3613 
3614   // Initialize the os module
3615   os::init();
3616 
3617   // Record VM creation timing statistics
3618   TraceVmCreationTime create_vm_timer;
3619   create_vm_timer.start();
3620 
3621   // Initialize system properties.
3622   Arguments::init_system_properties();
3623 
3624   // So that JDK version can be used as a discriminator when parsing arguments
3625   JDK_Version_init();
3626 
3627   // Update/Initialize System properties after JDK version number is known
3628   Arguments::init_version_specific_system_properties();
3629 
3630   // Make sure to initialize log configuration *before* parsing arguments
3631   LogConfiguration::initialize(create_vm_timer.begin_time());
3632 
3633   // Parse arguments
3634   // Note: this internally calls os::init_container_support()
3635   jint parse_result = Arguments::parse(args);
3636   if (parse_result != JNI_OK) return parse_result;
3637 
3638   os::init_before_ergo();
3639 
3640   jint ergo_result = Arguments::apply_ergo();
3641   if (ergo_result != JNI_OK) return ergo_result;
3642 
3643   // Final check of all ranges after ergonomics which may change values.
3644   if (!JVMFlagRangeList::check_ranges()) {
3645     return JNI_EINVAL;
3646   }
3647 
3648   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3649   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3650   if (!constraint_result) {
3651     return JNI_EINVAL;
3652   }
3653 
3654   JVMFlagWriteableList::mark_startup();
3655 
3656   if (PauseAtStartup) {
3657     os::pause();
3658   }
3659 
3660   HOTSPOT_VM_INIT_BEGIN();
3661 
3662   // Timing (must come after argument parsing)
3663   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3664 
3665 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3666   // Initialize assert poison page mechanism.
3667   if (ShowRegistersOnAssert) {
3668     initialize_assert_poison();
3669   }
3670 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3671 
3672   // Initialize the os module after parsing the args
3673   jint os_init_2_result = os::init_2();
3674   if (os_init_2_result != JNI_OK) return os_init_2_result;
3675 
3676   SafepointMechanism::initialize();
3677 
3678   jint adjust_after_os_result = Arguments::adjust_after_os();
3679   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3680 
3681   // Initialize output stream logging
3682   ostream_init_log();
3683 
3684   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3685   // Must be before create_vm_init_agents()
3686   if (Arguments::init_libraries_at_startup()) {
3687     convert_vm_init_libraries_to_agents();
3688   }
3689 
3690   // Launch -agentlib/-agentpath and converted -Xrun agents
3691   if (Arguments::init_agents_at_startup()) {
3692     create_vm_init_agents();
3693   }
3694 
3695   // Initialize Threads state
3696   _thread_list = NULL;
3697   _number_of_threads = 0;
3698   _number_of_non_daemon_threads = 0;
3699 
3700   // Initialize global data structures and create system classes in heap
3701   vm_init_globals();
3702 
3703 #if INCLUDE_JVMCI
3704   if (JVMCICounterSize > 0) {
3705     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3706     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3707   } else {
3708     JavaThread::_jvmci_old_thread_counters = NULL;
3709   }
3710 #endif // INCLUDE_JVMCI
3711 
3712   // Attach the main thread to this os thread
3713   JavaThread* main_thread = new JavaThread();
3714   main_thread->set_thread_state(_thread_in_vm);
3715   main_thread->initialize_thread_current();
3716   // must do this before set_active_handles
3717   main_thread->record_stack_base_and_size();
3718   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3719 
3720   if (!main_thread->set_as_starting_thread()) {
3721     vm_shutdown_during_initialization(
3722                                       "Failed necessary internal allocation. Out of swap space");
3723     main_thread->smr_delete();
3724     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3725     return JNI_ENOMEM;
3726   }
3727 
3728   // Enable guard page *after* os::create_main_thread(), otherwise it would
3729   // crash Linux VM, see notes in os_linux.cpp.
3730   main_thread->create_stack_guard_pages();
3731 
3732   // Initialize Java-Level synchronization subsystem
3733   ObjectMonitor::Initialize();
3734 
3735   // Initialize global modules
3736   jint status = init_globals();
3737   if (status != JNI_OK) {
3738     main_thread->smr_delete();
3739     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3740     return status;
3741   }
3742 
3743   JFR_ONLY(Jfr::on_vm_init();)
3744 
3745   // Should be done after the heap is fully created
3746   main_thread->cache_global_variables();
3747 
3748   HandleMark hm;
3749 
3750   { MutexLocker mu(Threads_lock);
3751     Threads::add(main_thread);
3752   }
3753 
3754   // Any JVMTI raw monitors entered in onload will transition into
3755   // real raw monitor. VM is setup enough here for raw monitor enter.
3756   JvmtiExport::transition_pending_onload_raw_monitors();
3757 
3758   // Create the VMThread
3759   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3760 
3761   VMThread::create();
3762     Thread* vmthread = VMThread::vm_thread();
3763 
3764     if (!os::create_thread(vmthread, os::vm_thread)) {
3765       vm_exit_during_initialization("Cannot create VM thread. "
3766                                     "Out of system resources.");
3767     }
3768 
3769     // Wait for the VM thread to become ready, and VMThread::run to initialize
3770     // Monitors can have spurious returns, must always check another state flag
3771     {
3772       MutexLocker ml(Notify_lock);
3773       os::start_thread(vmthread);
3774       while (vmthread->active_handles() == NULL) {
3775         Notify_lock->wait();
3776       }
3777     }
3778   }
3779 
3780   assert(Universe::is_fully_initialized(), "not initialized");
3781   if (VerifyDuringStartup) {
3782     // Make sure we're starting with a clean slate.
3783     VM_Verify verify_op;
3784     VMThread::execute(&verify_op);
3785   }
3786 
3787   // We need this to update the java.vm.info property in case any flags used
3788   // to initially define it have been changed. This is needed for both CDS and
3789   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3790   // is initially computed. See Abstract_VM_Version::vm_info_string().
3791   // This update must happen before we initialize the java classes, but
3792   // after any initialization logic that might modify the flags.
3793   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3794 
3795   Thread* THREAD = Thread::current();
3796 
3797   // Always call even when there are not JVMTI environments yet, since environments
3798   // may be attached late and JVMTI must track phases of VM execution
3799   JvmtiExport::enter_early_start_phase();
3800 
3801   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3802   JvmtiExport::post_early_vm_start();
3803 
3804   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3805 
3806   quicken_jni_functions();
3807 
3808   // No more stub generation allowed after that point.
3809   StubCodeDesc::freeze();
3810 
3811   // Set flag that basic initialization has completed. Used by exceptions and various
3812   // debug stuff, that does not work until all basic classes have been initialized.
3813   set_init_completed();
3814 
3815   LogConfiguration::post_initialize();
3816   Metaspace::post_initialize();
3817 
3818   HOTSPOT_VM_INIT_END();
3819 
3820   // record VM initialization completion time
3821 #if INCLUDE_MANAGEMENT
3822   Management::record_vm_init_completed();
3823 #endif // INCLUDE_MANAGEMENT
3824 
3825   // Signal Dispatcher needs to be started before VMInit event is posted
3826   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3827 
3828   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3829   if (!DisableAttachMechanism) {
3830     AttachListener::vm_start();
3831     if (StartAttachListener || AttachListener::init_at_startup()) {
3832       AttachListener::init();
3833     }
3834   }
3835 
3836   // Launch -Xrun agents
3837   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3838   // back-end can launch with -Xdebug -Xrunjdwp.
3839   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3840     create_vm_init_libraries();
3841   }
3842 
3843   if (CleanChunkPoolAsync) {
3844     Chunk::start_chunk_pool_cleaner_task();
3845   }
3846 
3847   // initialize compiler(s)
3848 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3849 #if INCLUDE_JVMCI
3850   bool force_JVMCI_intialization = false;
3851   if (EnableJVMCI) {
3852     // Initialize JVMCI eagerly when it is explicitly requested.
3853     // Or when JVMCIPrintProperties is enabled.
3854     // The JVMCI Java initialization code will read this flag and
3855     // do the printing if it's set.
3856     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3857 
3858     if (!force_JVMCI_intialization) {
3859       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3860       // compilations via JVMCI will not actually block until JVMCI is initialized.
3861       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3862     }
3863   }
3864 #endif
3865   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3866   // Postpone completion of compiler initialization to after JVMCI
3867   // is initialized to avoid timeouts of blocking compilations.
3868   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3869     CompileBroker::compilation_init_phase2();
3870   }
3871 #endif
3872 
3873   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3874   // It is done after compilers are initialized, because otherwise compilations of
3875   // signature polymorphic MH intrinsics can be missed
3876   // (see SystemDictionary::find_method_handle_intrinsic).
3877   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3878 
3879   // This will initialize the module system.  Only java.base classes can be
3880   // loaded until phase 2 completes
3881   call_initPhase2(CHECK_JNI_ERR);
3882 
3883   // Always call even when there are not JVMTI environments yet, since environments
3884   // may be attached late and JVMTI must track phases of VM execution
3885   JvmtiExport::enter_start_phase();
3886 
3887   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3888   JvmtiExport::post_vm_start();
3889 
3890   // Final system initialization including security manager and system class loader
3891   call_initPhase3(CHECK_JNI_ERR);
3892 
3893   // cache the system and platform class loaders
3894   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3895 
3896 #if INCLUDE_CDS
3897   if (DumpSharedSpaces) {
3898     // capture the module path info from the ModuleEntryTable
3899     ClassLoader::initialize_module_path(THREAD);
3900   }
3901 #endif
3902 
3903 #if INCLUDE_JVMCI
3904   if (force_JVMCI_intialization) {
3905     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3906     CompileBroker::compilation_init_phase2();
3907   }
3908 #endif
3909 
3910   // Always call even when there are not JVMTI environments yet, since environments
3911   // may be attached late and JVMTI must track phases of VM execution
3912   JvmtiExport::enter_live_phase();
3913 
3914   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3915   JvmtiExport::post_vm_initialized();
3916 
3917   JFR_ONLY(Jfr::on_vm_start();)
3918 
3919 #if INCLUDE_MANAGEMENT
3920   Management::initialize(THREAD);
3921 
3922   if (HAS_PENDING_EXCEPTION) {
3923     // management agent fails to start possibly due to
3924     // configuration problem and is responsible for printing
3925     // stack trace if appropriate. Simply exit VM.
3926     vm_exit(1);
3927   }
3928 #endif // INCLUDE_MANAGEMENT
3929 
3930   if (MemProfiling)                   MemProfiler::engage();
3931   StatSampler::engage();
3932   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3933 
3934   BiasedLocking::init();
3935 
3936 #if INCLUDE_RTM_OPT
3937   RTMLockingCounters::init();
3938 #endif
3939 
3940   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3941     call_postVMInitHook(THREAD);
3942     // The Java side of PostVMInitHook.run must deal with all
3943     // exceptions and provide means of diagnosis.
3944     if (HAS_PENDING_EXCEPTION) {
3945       CLEAR_PENDING_EXCEPTION;
3946     }
3947   }
3948 
3949   {
3950     MutexLocker ml(PeriodicTask_lock);
3951     // Make sure the WatcherThread can be started by WatcherThread::start()
3952     // or by dynamic enrollment.
3953     WatcherThread::make_startable();
3954     // Start up the WatcherThread if there are any periodic tasks
3955     // NOTE:  All PeriodicTasks should be registered by now. If they
3956     //   aren't, late joiners might appear to start slowly (we might
3957     //   take a while to process their first tick).
3958     if (PeriodicTask::num_tasks() > 0) {
3959       WatcherThread::start();
3960     }
3961   }
3962 
3963   create_vm_timer.end();
3964 #ifdef ASSERT
3965   _vm_complete = true;
3966 #endif
3967 
3968   if (DumpSharedSpaces) {
3969     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3970     ShouldNotReachHere();
3971   }
3972 
3973   return JNI_OK;
3974 }
3975 
3976 // type for the Agent_OnLoad and JVM_OnLoad entry points
3977 extern "C" {
3978   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3979 }
3980 // Find a command line agent library and return its entry point for
3981 //         -agentlib:  -agentpath:   -Xrun
3982 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3983 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3984                                     const char *on_load_symbols[],
3985                                     size_t num_symbol_entries) {
3986   OnLoadEntry_t on_load_entry = NULL;
3987   void *library = NULL;
3988 
3989   if (!agent->valid()) {
3990     char buffer[JVM_MAXPATHLEN];
3991     char ebuf[1024] = "";
3992     const char *name = agent->name();
3993     const char *msg = "Could not find agent library ";
3994 
3995     // First check to see if agent is statically linked into executable
3996     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3997       library = agent->os_lib();
3998     } else if (agent->is_absolute_path()) {
3999       library = os::dll_load(name, ebuf, sizeof ebuf);
4000       if (library == NULL) {
4001         const char *sub_msg = " in absolute path, with error: ";
4002         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4003         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4004         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4005         // If we can't find the agent, exit.
4006         vm_exit_during_initialization(buf, NULL);
4007         FREE_C_HEAP_ARRAY(char, buf);
4008       }
4009     } else {
4010       // Try to load the agent from the standard dll directory
4011       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4012                              name)) {
4013         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4014       }
4015       if (library == NULL) { // Try the library path directory.
4016         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4017           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4018         }
4019         if (library == NULL) {
4020           const char *sub_msg = " on the library path, with error: ";
4021           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4022 
4023           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4024                        strlen(ebuf) + strlen(sub_msg2) + 1;
4025           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4026           if (!agent->is_instrument_lib()) {
4027             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4028           } else {
4029             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4030           }
4031           // If we can't find the agent, exit.
4032           vm_exit_during_initialization(buf, NULL);
4033           FREE_C_HEAP_ARRAY(char, buf);
4034         }
4035       }
4036     }
4037     agent->set_os_lib(library);
4038     agent->set_valid();
4039   }
4040 
4041   // Find the OnLoad function.
4042   on_load_entry =
4043     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4044                                                           false,
4045                                                           on_load_symbols,
4046                                                           num_symbol_entries));
4047   return on_load_entry;
4048 }
4049 
4050 // Find the JVM_OnLoad entry point
4051 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4052   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4053   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4054 }
4055 
4056 // Find the Agent_OnLoad entry point
4057 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4058   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4059   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4060 }
4061 
4062 // For backwards compatibility with -Xrun
4063 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4064 // treated like -agentpath:
4065 // Must be called before agent libraries are created
4066 void Threads::convert_vm_init_libraries_to_agents() {
4067   AgentLibrary* agent;
4068   AgentLibrary* next;
4069 
4070   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4071     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4072     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4073 
4074     // If there is an JVM_OnLoad function it will get called later,
4075     // otherwise see if there is an Agent_OnLoad
4076     if (on_load_entry == NULL) {
4077       on_load_entry = lookup_agent_on_load(agent);
4078       if (on_load_entry != NULL) {
4079         // switch it to the agent list -- so that Agent_OnLoad will be called,
4080         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4081         Arguments::convert_library_to_agent(agent);
4082       } else {
4083         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4084       }
4085     }
4086   }
4087 }
4088 
4089 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4090 // Invokes Agent_OnLoad
4091 // Called very early -- before JavaThreads exist
4092 void Threads::create_vm_init_agents() {
4093   extern struct JavaVM_ main_vm;
4094   AgentLibrary* agent;
4095 
4096   JvmtiExport::enter_onload_phase();
4097 
4098   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4099     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4100 
4101     if (on_load_entry != NULL) {
4102       // Invoke the Agent_OnLoad function
4103       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4104       if (err != JNI_OK) {
4105         vm_exit_during_initialization("agent library failed to init", agent->name());
4106       }
4107     } else {
4108       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4109     }
4110   }
4111   JvmtiExport::enter_primordial_phase();
4112 }
4113 
4114 extern "C" {
4115   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4116 }
4117 
4118 void Threads::shutdown_vm_agents() {
4119   // Send any Agent_OnUnload notifications
4120   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4121   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4122   extern struct JavaVM_ main_vm;
4123   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4124 
4125     // Find the Agent_OnUnload function.
4126     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4127                                                    os::find_agent_function(agent,
4128                                                    false,
4129                                                    on_unload_symbols,
4130                                                    num_symbol_entries));
4131 
4132     // Invoke the Agent_OnUnload function
4133     if (unload_entry != NULL) {
4134       JavaThread* thread = JavaThread::current();
4135       ThreadToNativeFromVM ttn(thread);
4136       HandleMark hm(thread);
4137       (*unload_entry)(&main_vm);
4138     }
4139   }
4140 }
4141 
4142 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4143 // Invokes JVM_OnLoad
4144 void Threads::create_vm_init_libraries() {
4145   extern struct JavaVM_ main_vm;
4146   AgentLibrary* agent;
4147 
4148   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4149     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4150 
4151     if (on_load_entry != NULL) {
4152       // Invoke the JVM_OnLoad function
4153       JavaThread* thread = JavaThread::current();
4154       ThreadToNativeFromVM ttn(thread);
4155       HandleMark hm(thread);
4156       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4157       if (err != JNI_OK) {
4158         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4159       }
4160     } else {
4161       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4162     }
4163   }
4164 }
4165 
4166 
4167 // Last thread running calls java.lang.Shutdown.shutdown()
4168 void JavaThread::invoke_shutdown_hooks() {
4169   HandleMark hm(this);
4170 
4171   // We could get here with a pending exception, if so clear it now.
4172   if (this->has_pending_exception()) {
4173     this->clear_pending_exception();
4174   }
4175 
4176   EXCEPTION_MARK;
4177   Klass* shutdown_klass =
4178     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4179                                       THREAD);
4180   if (shutdown_klass != NULL) {
4181     // SystemDictionary::resolve_or_null will return null if there was
4182     // an exception.  If we cannot load the Shutdown class, just don't
4183     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4184     // won't be run.  Note that if a shutdown hook was registered,
4185     // the Shutdown class would have already been loaded
4186     // (Runtime.addShutdownHook will load it).
4187     JavaValue result(T_VOID);
4188     JavaCalls::call_static(&result,
4189                            shutdown_klass,
4190                            vmSymbols::shutdown_method_name(),
4191                            vmSymbols::void_method_signature(),
4192                            THREAD);
4193   }
4194   CLEAR_PENDING_EXCEPTION;
4195 }
4196 
4197 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4198 // the program falls off the end of main(). Another VM exit path is through
4199 // vm_exit() when the program calls System.exit() to return a value or when
4200 // there is a serious error in VM. The two shutdown paths are not exactly
4201 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4202 // and VM_Exit op at VM level.
4203 //
4204 // Shutdown sequence:
4205 //   + Shutdown native memory tracking if it is on
4206 //   + Wait until we are the last non-daemon thread to execute
4207 //     <-- every thing is still working at this moment -->
4208 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4209 //        shutdown hooks
4210 //   + Call before_exit(), prepare for VM exit
4211 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4212 //        currently the only user of this mechanism is File.deleteOnExit())
4213 //      > stop StatSampler, watcher thread, CMS threads,
4214 //        post thread end and vm death events to JVMTI,
4215 //        stop signal thread
4216 //   + Call JavaThread::exit(), it will:
4217 //      > release JNI handle blocks, remove stack guard pages
4218 //      > remove this thread from Threads list
4219 //     <-- no more Java code from this thread after this point -->
4220 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4221 //     the compiler threads at safepoint
4222 //     <-- do not use anything that could get blocked by Safepoint -->
4223 //   + Disable tracing at JNI/JVM barriers
4224 //   + Set _vm_exited flag for threads that are still running native code
4225 //   + Delete this thread
4226 //   + Call exit_globals()
4227 //      > deletes tty
4228 //      > deletes PerfMemory resources
4229 //   + Return to caller
4230 
4231 bool Threads::destroy_vm() {
4232   JavaThread* thread = JavaThread::current();
4233 
4234 #ifdef ASSERT
4235   _vm_complete = false;
4236 #endif
4237   // Wait until we are the last non-daemon thread to execute
4238   { MutexLocker nu(Threads_lock);
4239     while (Threads::number_of_non_daemon_threads() > 1)
4240       // This wait should make safepoint checks, wait without a timeout,
4241       // and wait as a suspend-equivalent condition.
4242       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4243                          Mutex::_as_suspend_equivalent_flag);
4244   }
4245 
4246   EventShutdown e;
4247   if (e.should_commit()) {
4248     e.set_reason("No remaining non-daemon Java threads");
4249     e.commit();
4250   }
4251 
4252   // Hang forever on exit if we are reporting an error.
4253   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4254     os::infinite_sleep();
4255   }
4256   os::wait_for_keypress_at_exit();
4257 
4258   // run Java level shutdown hooks
4259   thread->invoke_shutdown_hooks();
4260 
4261   before_exit(thread);
4262 
4263   thread->exit(true);
4264   // thread will never call smr_delete, instead of implicit cancel
4265   // in wait_for_vm_thread_exit we do it explicit.
4266   thread->cancel_handshake();
4267 
4268   // Stop VM thread.
4269   {
4270     // 4945125 The vm thread comes to a safepoint during exit.
4271     // GC vm_operations can get caught at the safepoint, and the
4272     // heap is unparseable if they are caught. Grab the Heap_lock
4273     // to prevent this. The GC vm_operations will not be able to
4274     // queue until after the vm thread is dead. After this point,
4275     // we'll never emerge out of the safepoint before the VM exits.
4276 
4277     MutexLocker ml(Heap_lock);
4278 
4279     VMThread::wait_for_vm_thread_exit();
4280     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4281     VMThread::destroy();
4282   }
4283 
4284   // Now, all Java threads are gone except daemon threads. Daemon threads
4285   // running Java code or in VM are stopped by the Safepoint. However,
4286   // daemon threads executing native code are still running.  But they
4287   // will be stopped at native=>Java/VM barriers. Note that we can't
4288   // simply kill or suspend them, as it is inherently deadlock-prone.
4289 
4290   VM_Exit::set_vm_exited();
4291 
4292   // Clean up ideal graph printers after the VMThread has started
4293   // the final safepoint which will block all the Compiler threads.
4294   // Note that this Thread has already logically exited so the
4295   // clean_up() function's use of a JavaThreadIteratorWithHandle
4296   // would be a problem except set_vm_exited() has remembered the
4297   // shutdown thread which is granted a policy exception.
4298 #if defined(COMPILER2) && !defined(PRODUCT)
4299   IdealGraphPrinter::clean_up();
4300 #endif
4301 
4302   notify_vm_shutdown();
4303 
4304   // We are after VM_Exit::set_vm_exited() so we can't call
4305   // thread->smr_delete() or we will block on the Threads_lock.
4306   // Deleting the shutdown thread here is safe because another
4307   // JavaThread cannot have an active ThreadsListHandle for
4308   // this JavaThread.
4309   delete thread;
4310 
4311 #if INCLUDE_JVMCI
4312   if (JVMCICounterSize > 0) {
4313     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4314   }
4315 #endif
4316 
4317   // exit_globals() will delete tty
4318   exit_globals();
4319 
4320   LogConfiguration::finalize();
4321 
4322   return true;
4323 }
4324 
4325 
4326 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4327   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4328   return is_supported_jni_version(version);
4329 }
4330 
4331 
4332 jboolean Threads::is_supported_jni_version(jint version) {
4333   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4334   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4335   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4336   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4337   if (version == JNI_VERSION_9) return JNI_TRUE;
4338   if (version == JNI_VERSION_10) return JNI_TRUE;
4339   return JNI_FALSE;
4340 }
4341 
4342 
4343 void Threads::add(JavaThread* p, bool force_daemon) {
4344   // The threads lock must be owned at this point
4345   assert_locked_or_safepoint(Threads_lock);
4346 
4347   BarrierSet::barrier_set()->on_thread_attach(p);
4348 
4349   p->set_next(_thread_list);
4350   _thread_list = p;
4351 
4352   // Once a JavaThread is added to the Threads list, smr_delete() has
4353   // to be used to delete it. Otherwise we can just delete it directly.
4354   p->set_on_thread_list();
4355 
4356   _number_of_threads++;
4357   oop threadObj = p->threadObj();
4358   bool daemon = true;
4359   // Bootstrapping problem: threadObj can be null for initial
4360   // JavaThread (or for threads attached via JNI)
4361   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4362     _number_of_non_daemon_threads++;
4363     daemon = false;
4364   }
4365 
4366   ThreadService::add_thread(p, daemon);
4367 
4368   // Maintain fast thread list
4369   ThreadsSMRSupport::add_thread(p);
4370 
4371   // Possible GC point.
4372   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4373 }
4374 
4375 void Threads::remove(JavaThread* p) {
4376 
4377   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4378   ObjectSynchronizer::omFlush(p);
4379 
4380   // Extra scope needed for Thread_lock, so we can check
4381   // that we do not remove thread without safepoint code notice
4382   { MutexLocker ml(Threads_lock);
4383 
4384     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4385 
4386     // Maintain fast thread list
4387     ThreadsSMRSupport::remove_thread(p);
4388 
4389     JavaThread* current = _thread_list;
4390     JavaThread* prev    = NULL;
4391 
4392     while (current != p) {
4393       prev    = current;
4394       current = current->next();
4395     }
4396 
4397     if (prev) {
4398       prev->set_next(current->next());
4399     } else {
4400       _thread_list = p->next();
4401     }
4402 
4403     _number_of_threads--;
4404     oop threadObj = p->threadObj();
4405     bool daemon = true;
4406     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4407       _number_of_non_daemon_threads--;
4408       daemon = false;
4409 
4410       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4411       // on destroy_vm will wake up.
4412       if (number_of_non_daemon_threads() == 1) {
4413         Threads_lock->notify_all();
4414       }
4415     }
4416     ThreadService::remove_thread(p, daemon);
4417 
4418     // Make sure that safepoint code disregard this thread. This is needed since
4419     // the thread might mess around with locks after this point. This can cause it
4420     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4421     // of this thread since it is removed from the queue.
4422     p->set_terminated_value();
4423   } // unlock Threads_lock
4424 
4425   // Since Events::log uses a lock, we grab it outside the Threads_lock
4426   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4427 }
4428 
4429 // Operations on the Threads list for GC.  These are not explicitly locked,
4430 // but the garbage collector must provide a safe context for them to run.
4431 // In particular, these things should never be called when the Threads_lock
4432 // is held by some other thread. (Note: the Safepoint abstraction also
4433 // uses the Threads_lock to guarantee this property. It also makes sure that
4434 // all threads gets blocked when exiting or starting).
4435 
4436 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4437   ALL_JAVA_THREADS(p) {
4438     p->oops_do(f, cf);
4439   }
4440   VMThread::vm_thread()->oops_do(f, cf);
4441 }
4442 
4443 void Threads::change_thread_claim_parity() {
4444   // Set the new claim parity.
4445   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4446          "Not in range.");
4447   _thread_claim_parity++;
4448   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4449   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4450          "Not in range.");
4451 }
4452 
4453 #ifdef ASSERT
4454 void Threads::assert_all_threads_claimed() {
4455   ALL_JAVA_THREADS(p) {
4456     const int thread_parity = p->oops_do_parity();
4457     assert((thread_parity == _thread_claim_parity),
4458            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4459   }
4460   VMThread* vmt = VMThread::vm_thread();
4461   const int thread_parity = vmt->oops_do_parity();
4462   assert((thread_parity == _thread_claim_parity),
4463          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4464 }
4465 #endif // ASSERT
4466 
4467 class ParallelOopsDoThreadClosure : public ThreadClosure {
4468 private:
4469   OopClosure* _f;
4470   CodeBlobClosure* _cf;
4471 public:
4472   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4473   void do_thread(Thread* t) {
4474     t->oops_do(_f, _cf);
4475   }
4476 };
4477 
4478 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4479   ParallelOopsDoThreadClosure tc(f, cf);
4480   possibly_parallel_threads_do(is_par, &tc);
4481 }
4482 
4483 void Threads::nmethods_do(CodeBlobClosure* cf) {
4484   ALL_JAVA_THREADS(p) {
4485     // This is used by the code cache sweeper to mark nmethods that are active
4486     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4487     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4488     if(!p->is_Code_cache_sweeper_thread()) {
4489       p->nmethods_do(cf);
4490     }
4491   }
4492 }
4493 
4494 void Threads::metadata_do(void f(Metadata*)) {
4495   ALL_JAVA_THREADS(p) {
4496     p->metadata_do(f);
4497   }
4498 }
4499 
4500 class ThreadHandlesClosure : public ThreadClosure {
4501   void (*_f)(Metadata*);
4502  public:
4503   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4504   virtual void do_thread(Thread* thread) {
4505     thread->metadata_handles_do(_f);
4506   }
4507 };
4508 
4509 void Threads::metadata_handles_do(void f(Metadata*)) {
4510   // Only walk the Handles in Thread.
4511   ThreadHandlesClosure handles_closure(f);
4512   threads_do(&handles_closure);
4513 }
4514 
4515 void Threads::deoptimized_wrt_marked_nmethods() {
4516   ALL_JAVA_THREADS(p) {
4517     p->deoptimized_wrt_marked_nmethods();
4518   }
4519 }
4520 
4521 
4522 // Get count Java threads that are waiting to enter the specified monitor.
4523 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4524                                                          int count,
4525                                                          address monitor) {
4526   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4527 
4528   int i = 0;
4529   DO_JAVA_THREADS(t_list, p) {
4530     if (!p->can_call_java()) continue;
4531 
4532     address pending = (address)p->current_pending_monitor();
4533     if (pending == monitor) {             // found a match
4534       if (i < count) result->append(p);   // save the first count matches
4535       i++;
4536     }
4537   }
4538 
4539   return result;
4540 }
4541 
4542 
4543 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4544                                                       address owner) {
4545   // NULL owner means not locked so we can skip the search
4546   if (owner == NULL) return NULL;
4547 
4548   DO_JAVA_THREADS(t_list, p) {
4549     // first, see if owner is the address of a Java thread
4550     if (owner == (address)p) return p;
4551   }
4552 
4553   // Cannot assert on lack of success here since this function may be
4554   // used by code that is trying to report useful problem information
4555   // like deadlock detection.
4556   if (UseHeavyMonitors) return NULL;
4557 
4558   // If we didn't find a matching Java thread and we didn't force use of
4559   // heavyweight monitors, then the owner is the stack address of the
4560   // Lock Word in the owning Java thread's stack.
4561   //
4562   JavaThread* the_owner = NULL;
4563   DO_JAVA_THREADS(t_list, q) {
4564     if (q->is_lock_owned(owner)) {
4565       the_owner = q;
4566       break;
4567     }
4568   }
4569 
4570   // cannot assert on lack of success here; see above comment
4571   return the_owner;
4572 }
4573 
4574 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4575 void Threads::print_on(outputStream* st, bool print_stacks,
4576                        bool internal_format, bool print_concurrent_locks,
4577                        bool print_extended_info) {
4578   char buf[32];
4579   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4580 
4581   st->print_cr("Full thread dump %s (%s %s):",
4582                Abstract_VM_Version::vm_name(),
4583                Abstract_VM_Version::vm_release(),
4584                Abstract_VM_Version::vm_info_string());
4585   st->cr();
4586 
4587 #if INCLUDE_SERVICES
4588   // Dump concurrent locks
4589   ConcurrentLocksDump concurrent_locks;
4590   if (print_concurrent_locks) {
4591     concurrent_locks.dump_at_safepoint();
4592   }
4593 #endif // INCLUDE_SERVICES
4594 
4595   ThreadsSMRSupport::print_info_on(st);
4596   st->cr();
4597 
4598   ALL_JAVA_THREADS(p) {
4599     ResourceMark rm;
4600     p->print_on(st, print_extended_info);
4601     if (print_stacks) {
4602       if (internal_format) {
4603         p->trace_stack();
4604       } else {
4605         p->print_stack_on(st);
4606       }
4607     }
4608     st->cr();
4609 #if INCLUDE_SERVICES
4610     if (print_concurrent_locks) {
4611       concurrent_locks.print_locks_on(p, st);
4612     }
4613 #endif // INCLUDE_SERVICES
4614   }
4615 
4616   VMThread::vm_thread()->print_on(st);
4617   st->cr();
4618   Universe::heap()->print_gc_threads_on(st);
4619   WatcherThread* wt = WatcherThread::watcher_thread();
4620   if (wt != NULL) {
4621     wt->print_on(st);
4622     st->cr();
4623   }
4624 
4625   st->flush();
4626 }
4627 
4628 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4629                              int buflen, bool* found_current) {
4630   if (this_thread != NULL) {
4631     bool is_current = (current == this_thread);
4632     *found_current = *found_current || is_current;
4633     st->print("%s", is_current ? "=>" : "  ");
4634 
4635     st->print(PTR_FORMAT, p2i(this_thread));
4636     st->print(" ");
4637     this_thread->print_on_error(st, buf, buflen);
4638     st->cr();
4639   }
4640 }
4641 
4642 class PrintOnErrorClosure : public ThreadClosure {
4643   outputStream* _st;
4644   Thread* _current;
4645   char* _buf;
4646   int _buflen;
4647   bool* _found_current;
4648  public:
4649   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4650                       int buflen, bool* found_current) :
4651    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4652 
4653   virtual void do_thread(Thread* thread) {
4654     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4655   }
4656 };
4657 
4658 // Threads::print_on_error() is called by fatal error handler. It's possible
4659 // that VM is not at safepoint and/or current thread is inside signal handler.
4660 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4661 // memory (even in resource area), it might deadlock the error handler.
4662 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4663                              int buflen) {
4664   ThreadsSMRSupport::print_info_on(st);
4665   st->cr();
4666 
4667   bool found_current = false;
4668   st->print_cr("Java Threads: ( => current thread )");
4669   ALL_JAVA_THREADS(thread) {
4670     print_on_error(thread, st, current, buf, buflen, &found_current);
4671   }
4672   st->cr();
4673 
4674   st->print_cr("Other Threads:");
4675   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4676   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4677 
4678   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4679   Universe::heap()->gc_threads_do(&print_closure);
4680 
4681   if (!found_current) {
4682     st->cr();
4683     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4684     current->print_on_error(st, buf, buflen);
4685     st->cr();
4686   }
4687   st->cr();
4688 
4689   st->print_cr("Threads with active compile tasks:");
4690   print_threads_compiling(st, buf, buflen);
4691 }
4692 
4693 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4694   ALL_JAVA_THREADS(thread) {
4695     if (thread->is_Compiler_thread()) {
4696       CompilerThread* ct = (CompilerThread*) thread;
4697 
4698       // Keep task in local variable for NULL check.
4699       // ct->_task might be set to NULL by concurring compiler thread
4700       // because it completed the compilation. The task is never freed,
4701       // though, just returned to a free list.
4702       CompileTask* task = ct->task();
4703       if (task != NULL) {
4704         thread->print_name_on_error(st, buf, buflen);
4705         task->print(st, NULL, true, true);
4706       }
4707     }
4708   }
4709 }
4710 
4711 
4712 // Internal SpinLock and Mutex
4713 // Based on ParkEvent
4714 
4715 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4716 //
4717 // We employ SpinLocks _only for low-contention, fixed-length
4718 // short-duration critical sections where we're concerned
4719 // about native mutex_t or HotSpot Mutex:: latency.
4720 // The mux construct provides a spin-then-block mutual exclusion
4721 // mechanism.
4722 //
4723 // Testing has shown that contention on the ListLock guarding gFreeList
4724 // is common.  If we implement ListLock as a simple SpinLock it's common
4725 // for the JVM to devolve to yielding with little progress.  This is true
4726 // despite the fact that the critical sections protected by ListLock are
4727 // extremely short.
4728 //
4729 // TODO-FIXME: ListLock should be of type SpinLock.
4730 // We should make this a 1st-class type, integrated into the lock
4731 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4732 // should have sufficient padding to avoid false-sharing and excessive
4733 // cache-coherency traffic.
4734 
4735 
4736 typedef volatile int SpinLockT;
4737 
4738 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4739   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4740     return;   // normal fast-path return
4741   }
4742 
4743   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4744   TEVENT(SpinAcquire - ctx);
4745   int ctr = 0;
4746   int Yields = 0;
4747   for (;;) {
4748     while (*adr != 0) {
4749       ++ctr;
4750       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4751         if (Yields > 5) {
4752           os::naked_short_sleep(1);
4753         } else {
4754           os::naked_yield();
4755           ++Yields;
4756         }
4757       } else {
4758         SpinPause();
4759       }
4760     }
4761     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4762   }
4763 }
4764 
4765 void Thread::SpinRelease(volatile int * adr) {
4766   assert(*adr != 0, "invariant");
4767   OrderAccess::fence();      // guarantee at least release consistency.
4768   // Roach-motel semantics.
4769   // It's safe if subsequent LDs and STs float "up" into the critical section,
4770   // but prior LDs and STs within the critical section can't be allowed
4771   // to reorder or float past the ST that releases the lock.
4772   // Loads and stores in the critical section - which appear in program
4773   // order before the store that releases the lock - must also appear
4774   // before the store that releases the lock in memory visibility order.
4775   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4776   // the ST of 0 into the lock-word which releases the lock, so fence
4777   // more than covers this on all platforms.
4778   *adr = 0;
4779 }
4780 
4781 // muxAcquire and muxRelease:
4782 //
4783 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4784 //    The LSB of the word is set IFF the lock is held.
4785 //    The remainder of the word points to the head of a singly-linked list
4786 //    of threads blocked on the lock.
4787 //
4788 // *  The current implementation of muxAcquire-muxRelease uses its own
4789 //    dedicated Thread._MuxEvent instance.  If we're interested in
4790 //    minimizing the peak number of extant ParkEvent instances then
4791 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4792 //    as certain invariants were satisfied.  Specifically, care would need
4793 //    to be taken with regards to consuming unpark() "permits".
4794 //    A safe rule of thumb is that a thread would never call muxAcquire()
4795 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4796 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4797 //    consume an unpark() permit intended for monitorenter, for instance.
4798 //    One way around this would be to widen the restricted-range semaphore
4799 //    implemented in park().  Another alternative would be to provide
4800 //    multiple instances of the PlatformEvent() for each thread.  One
4801 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4802 //
4803 // *  Usage:
4804 //    -- Only as leaf locks
4805 //    -- for short-term locking only as muxAcquire does not perform
4806 //       thread state transitions.
4807 //
4808 // Alternatives:
4809 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4810 //    but with parking or spin-then-park instead of pure spinning.
4811 // *  Use Taura-Oyama-Yonenzawa locks.
4812 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4813 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4814 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4815 //    acquiring threads use timers (ParkTimed) to detect and recover from
4816 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4817 //    boundaries by using placement-new.
4818 // *  Augment MCS with advisory back-link fields maintained with CAS().
4819 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4820 //    The validity of the backlinks must be ratified before we trust the value.
4821 //    If the backlinks are invalid the exiting thread must back-track through the
4822 //    the forward links, which are always trustworthy.
4823 // *  Add a successor indication.  The LockWord is currently encoded as
4824 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4825 //    to provide the usual futile-wakeup optimization.
4826 //    See RTStt for details.
4827 //
4828 
4829 
4830 const intptr_t LOCKBIT = 1;
4831 
4832 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4833   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4834   if (w == 0) return;
4835   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4836     return;
4837   }
4838 
4839   TEVENT(muxAcquire - Contention);
4840   ParkEvent * const Self = Thread::current()->_MuxEvent;
4841   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4842   for (;;) {
4843     int its = (os::is_MP() ? 100 : 0) + 1;
4844 
4845     // Optional spin phase: spin-then-park strategy
4846     while (--its >= 0) {
4847       w = *Lock;
4848       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4849         return;
4850       }
4851     }
4852 
4853     Self->reset();
4854     Self->OnList = intptr_t(Lock);
4855     // The following fence() isn't _strictly necessary as the subsequent
4856     // CAS() both serializes execution and ratifies the fetched *Lock value.
4857     OrderAccess::fence();
4858     for (;;) {
4859       w = *Lock;
4860       if ((w & LOCKBIT) == 0) {
4861         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4862           Self->OnList = 0;   // hygiene - allows stronger asserts
4863           return;
4864         }
4865         continue;      // Interference -- *Lock changed -- Just retry
4866       }
4867       assert(w & LOCKBIT, "invariant");
4868       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4869       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4870     }
4871 
4872     while (Self->OnList != 0) {
4873       Self->park();
4874     }
4875   }
4876 }
4877 
4878 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4879   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4880   if (w == 0) return;
4881   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4882     return;
4883   }
4884 
4885   TEVENT(muxAcquire - Contention);
4886   ParkEvent * ReleaseAfter = NULL;
4887   if (ev == NULL) {
4888     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4889   }
4890   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4891   for (;;) {
4892     guarantee(ev->OnList == 0, "invariant");
4893     int its = (os::is_MP() ? 100 : 0) + 1;
4894 
4895     // Optional spin phase: spin-then-park strategy
4896     while (--its >= 0) {
4897       w = *Lock;
4898       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4899         if (ReleaseAfter != NULL) {
4900           ParkEvent::Release(ReleaseAfter);
4901         }
4902         return;
4903       }
4904     }
4905 
4906     ev->reset();
4907     ev->OnList = intptr_t(Lock);
4908     // The following fence() isn't _strictly necessary as the subsequent
4909     // CAS() both serializes execution and ratifies the fetched *Lock value.
4910     OrderAccess::fence();
4911     for (;;) {
4912       w = *Lock;
4913       if ((w & LOCKBIT) == 0) {
4914         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4915           ev->OnList = 0;
4916           // We call ::Release while holding the outer lock, thus
4917           // artificially lengthening the critical section.
4918           // Consider deferring the ::Release() until the subsequent unlock(),
4919           // after we've dropped the outer lock.
4920           if (ReleaseAfter != NULL) {
4921             ParkEvent::Release(ReleaseAfter);
4922           }
4923           return;
4924         }
4925         continue;      // Interference -- *Lock changed -- Just retry
4926       }
4927       assert(w & LOCKBIT, "invariant");
4928       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4929       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4930     }
4931 
4932     while (ev->OnList != 0) {
4933       ev->park();
4934     }
4935   }
4936 }
4937 
4938 // Release() must extract a successor from the list and then wake that thread.
4939 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4940 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4941 // Release() would :
4942 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4943 // (B) Extract a successor from the private list "in-hand"
4944 // (C) attempt to CAS() the residual back into *Lock over null.
4945 //     If there were any newly arrived threads and the CAS() would fail.
4946 //     In that case Release() would detach the RATs, re-merge the list in-hand
4947 //     with the RATs and repeat as needed.  Alternately, Release() might
4948 //     detach and extract a successor, but then pass the residual list to the wakee.
4949 //     The wakee would be responsible for reattaching and remerging before it
4950 //     competed for the lock.
4951 //
4952 // Both "pop" and DMR are immune from ABA corruption -- there can be
4953 // multiple concurrent pushers, but only one popper or detacher.
4954 // This implementation pops from the head of the list.  This is unfair,
4955 // but tends to provide excellent throughput as hot threads remain hot.
4956 // (We wake recently run threads first).
4957 //
4958 // All paths through muxRelease() will execute a CAS.
4959 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4960 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4961 // executed within the critical section are complete and globally visible before the
4962 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4963 void Thread::muxRelease(volatile intptr_t * Lock)  {
4964   for (;;) {
4965     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
4966     assert(w & LOCKBIT, "invariant");
4967     if (w == LOCKBIT) return;
4968     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4969     assert(List != NULL, "invariant");
4970     assert(List->OnList == intptr_t(Lock), "invariant");
4971     ParkEvent * const nxt = List->ListNext;
4972     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4973 
4974     // The following CAS() releases the lock and pops the head element.
4975     // The CAS() also ratifies the previously fetched lock-word value.
4976     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
4977       continue;
4978     }
4979     List->OnList = 0;
4980     OrderAccess::fence();
4981     List->unpark();
4982     return;
4983   }
4984 }
4985 
4986 
4987 void Threads::verify() {
4988   ALL_JAVA_THREADS(p) {
4989     p->verify();
4990   }
4991   VMThread* thread = VMThread::vm_thread();
4992   if (thread != NULL) thread->verify();
4993 }