1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "logging/log.hpp"

  30 #include "oops/arrayOop.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/method.hpp"
  34 #include "oops/valueKlass.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/frame.inline.hpp"
  40 #include "runtime/safepointMechanism.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/thread.inline.hpp"
  43 
  44 // Implementation of InterpreterMacroAssembler
  45 
  46 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  47   assert(entry, "Entry must have been generated by now");
  48   jump(RuntimeAddress(entry));
  49 }
  50 
  51 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
  52   Label update, next, none;
  53 
  54   verify_oop(obj);
  55 
  56   testptr(obj, obj);
  57   jccb(Assembler::notZero, update);
  58   orptr(mdo_addr, TypeEntries::null_seen);
  59   jmpb(next);
  60 
  61   bind(update);
  62   load_klass(obj, obj);
  63 
  64   xorptr(obj, mdo_addr);
  65   testptr(obj, TypeEntries::type_klass_mask);
  66   jccb(Assembler::zero, next); // klass seen before, nothing to
  67                                // do. The unknown bit may have been
  68                                // set already but no need to check.
  69 
  70   testptr(obj, TypeEntries::type_unknown);
  71   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  72 
  73   cmpptr(mdo_addr, 0);
  74   jccb(Assembler::equal, none);
  75   cmpptr(mdo_addr, TypeEntries::null_seen);
  76   jccb(Assembler::equal, none);
  77   // There is a chance that the checks above (re-reading profiling
  78   // data from memory) fail if another thread has just set the
  79   // profiling to this obj's klass
  80   xorptr(obj, mdo_addr);
  81   testptr(obj, TypeEntries::type_klass_mask);
  82   jccb(Assembler::zero, next);
  83 
  84   // different than before. Cannot keep accurate profile.
  85   orptr(mdo_addr, TypeEntries::type_unknown);
  86   jmpb(next);
  87 
  88   bind(none);
  89   // first time here. Set profile type.
  90   movptr(mdo_addr, obj);
  91 
  92   bind(next);
  93 }
  94 
  95 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
  96   if (!ProfileInterpreter) {
  97     return;
  98   }
  99 
 100   if (MethodData::profile_arguments() || MethodData::profile_return()) {
 101     Label profile_continue;
 102 
 103     test_method_data_pointer(mdp, profile_continue);
 104 
 105     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
 106 
 107     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
 108     jcc(Assembler::notEqual, profile_continue);
 109 
 110     if (MethodData::profile_arguments()) {
 111       Label done;
 112       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
 113       addptr(mdp, off_to_args);
 114 
 115       for (int i = 0; i < TypeProfileArgsLimit; i++) {
 116         if (i > 0 || MethodData::profile_return()) {
 117           // If return value type is profiled we may have no argument to profile
 118           movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 119           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
 120           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
 121           jcc(Assembler::less, done);
 122         }
 123         movptr(tmp, Address(callee, Method::const_offset()));
 124         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
 125         // stack offset o (zero based) from the start of the argument
 126         // list, for n arguments translates into offset n - o - 1 from
 127         // the end of the argument list
 128         subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
 129         subl(tmp, 1);
 130         Address arg_addr = argument_address(tmp);
 131         movptr(tmp, arg_addr);
 132 
 133         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
 134         profile_obj_type(tmp, mdo_arg_addr);
 135 
 136         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
 137         addptr(mdp, to_add);
 138         off_to_args += to_add;
 139       }
 140 
 141       if (MethodData::profile_return()) {
 142         movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 143         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
 144       }
 145 
 146       bind(done);
 147 
 148       if (MethodData::profile_return()) {
 149         // We're right after the type profile for the last
 150         // argument. tmp is the number of cells left in the
 151         // CallTypeData/VirtualCallTypeData to reach its end. Non null
 152         // if there's a return to profile.
 153         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
 154         shll(tmp, exact_log2(DataLayout::cell_size));
 155         addptr(mdp, tmp);
 156       }
 157       movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
 158     } else {
 159       assert(MethodData::profile_return(), "either profile call args or call ret");
 160       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
 161     }
 162 
 163     // mdp points right after the end of the
 164     // CallTypeData/VirtualCallTypeData, right after the cells for the
 165     // return value type if there's one
 166 
 167     bind(profile_continue);
 168   }
 169 }
 170 
 171 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
 172   assert_different_registers(mdp, ret, tmp, _bcp_register);
 173   if (ProfileInterpreter && MethodData::profile_return()) {
 174     Label profile_continue, done;
 175 
 176     test_method_data_pointer(mdp, profile_continue);
 177 
 178     if (MethodData::profile_return_jsr292_only()) {
 179       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
 180 
 181       // If we don't profile all invoke bytecodes we must make sure
 182       // it's a bytecode we indeed profile. We can't go back to the
 183       // begining of the ProfileData we intend to update to check its
 184       // type because we're right after it and we don't known its
 185       // length
 186       Label do_profile;
 187       cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
 188       jcc(Assembler::equal, do_profile);
 189       cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
 190       jcc(Assembler::equal, do_profile);
 191       get_method(tmp);
 192       cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm);
 193       jcc(Assembler::notEqual, profile_continue);
 194 
 195       bind(do_profile);
 196     }
 197 
 198     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
 199     mov(tmp, ret);
 200     profile_obj_type(tmp, mdo_ret_addr);
 201 
 202     bind(profile_continue);
 203   }
 204 }
 205 
 206 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
 207   if (ProfileInterpreter && MethodData::profile_parameters()) {
 208     Label profile_continue, done;
 209 
 210     test_method_data_pointer(mdp, profile_continue);
 211 
 212     // Load the offset of the area within the MDO used for
 213     // parameters. If it's negative we're not profiling any parameters
 214     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
 215     testl(tmp1, tmp1);
 216     jcc(Assembler::negative, profile_continue);
 217 
 218     // Compute a pointer to the area for parameters from the offset
 219     // and move the pointer to the slot for the last
 220     // parameters. Collect profiling from last parameter down.
 221     // mdo start + parameters offset + array length - 1
 222     addptr(mdp, tmp1);
 223     movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
 224     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 225 
 226     Label loop;
 227     bind(loop);
 228 
 229     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
 230     int type_base = in_bytes(ParametersTypeData::type_offset(0));
 231     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
 232     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
 233     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
 234 
 235     // load offset on the stack from the slot for this parameter
 236     movptr(tmp2, arg_off);
 237     negptr(tmp2);
 238     // read the parameter from the local area
 239     movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
 240 
 241     // profile the parameter
 242     profile_obj_type(tmp2, arg_type);
 243 
 244     // go to next parameter
 245     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 246     jcc(Assembler::positive, loop);
 247 
 248     bind(profile_continue);
 249   }
 250 }
 251 
 252 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
 253                                                   int number_of_arguments) {
 254   // interpreter specific
 255   //
 256   // Note: No need to save/restore bcp & locals registers
 257   //       since these are callee saved registers and no blocking/
 258   //       GC can happen in leaf calls.
 259   // Further Note: DO NOT save/restore bcp/locals. If a caller has
 260   // already saved them so that it can use rsi/rdi as temporaries
 261   // then a save/restore here will DESTROY the copy the caller
 262   // saved! There used to be a save_bcp() that only happened in
 263   // the ASSERT path (no restore_bcp). Which caused bizarre failures
 264   // when jvm built with ASSERTs.
 265 #ifdef ASSERT
 266   {
 267     Label L;
 268     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 269     jcc(Assembler::equal, L);
 270     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 271          " last_sp != NULL");
 272     bind(L);
 273   }
 274 #endif
 275   // super call
 276   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 277   // interpreter specific
 278   // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
 279   // but since they may not have been saved (and we don't want to
 280   // save them here (see note above) the assert is invalid.
 281 }
 282 
 283 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
 284                                              Register java_thread,
 285                                              Register last_java_sp,
 286                                              address  entry_point,
 287                                              int      number_of_arguments,
 288                                              bool     check_exceptions) {
 289   // interpreter specific
 290   //
 291   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 292   //       really make a difference for these runtime calls, since they are
 293   //       slow anyway. Btw., bcp must be saved/restored since it may change
 294   //       due to GC.
 295   NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
 296   save_bcp();
 297 #ifdef ASSERT
 298   {
 299     Label L;
 300     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 301     jcc(Assembler::equal, L);
 302     stop("InterpreterMacroAssembler::call_VM_base:"
 303          " last_sp != NULL");
 304     bind(L);
 305   }
 306 #endif /* ASSERT */
 307   // super call
 308   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
 309                                entry_point, number_of_arguments,
 310                                check_exceptions);
 311   // interpreter specific
 312   restore_bcp();
 313   restore_locals();
 314 }
 315 
 316 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 317   if (JvmtiExport::can_pop_frame()) {
 318     Label L;
 319     // Initiate popframe handling only if it is not already being
 320     // processed.  If the flag has the popframe_processing bit set, it
 321     // means that this code is called *during* popframe handling - we
 322     // don't want to reenter.
 323     // This method is only called just after the call into the vm in
 324     // call_VM_base, so the arg registers are available.
 325     Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
 326                         LP64_ONLY(c_rarg0);
 327     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 328     testl(pop_cond, JavaThread::popframe_pending_bit);
 329     jcc(Assembler::zero, L);
 330     testl(pop_cond, JavaThread::popframe_processing_bit);
 331     jcc(Assembler::notZero, L);
 332     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 333     // address of the same-named entrypoint in the generated interpreter code.
 334     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 335     jmp(rax);
 336     bind(L);
 337     NOT_LP64(get_thread(java_thread);)
 338   }
 339 }
 340 
 341 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 342   Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 343   NOT_LP64(get_thread(thread);)
 344   movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
 345   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 346   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 347   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 348 #ifdef _LP64
 349   switch (state) {
 350     case atos: movptr(rax, oop_addr);
 351                movptr(oop_addr, (int32_t)NULL_WORD);
 352                verify_oop(rax, state);              break;
 353     case ltos: movptr(rax, val_addr);                 break;
 354     case btos:                                   // fall through
 355     case ztos:                                   // fall through
 356     case ctos:                                   // fall through
 357     case stos:                                   // fall through
 358     case itos: movl(rax, val_addr);                 break;
 359     case ftos: load_float(val_addr);                break;
 360     case dtos: load_double(val_addr);               break;
 361     case vtos: /* nothing to do */                  break;
 362     default  : ShouldNotReachHere();
 363   }
 364   // Clean up tos value in the thread object
 365   movl(tos_addr,  (int) ilgl);
 366   movl(val_addr,  (int32_t) NULL_WORD);
 367 #else
 368   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 369                              + in_ByteSize(wordSize));
 370   switch (state) {
 371     case atos: movptr(rax, oop_addr);
 372                movptr(oop_addr, NULL_WORD);
 373                verify_oop(rax, state);                break;
 374     case ltos:
 375                movl(rdx, val_addr1);               // fall through
 376     case btos:                                     // fall through
 377     case ztos:                                     // fall through
 378     case ctos:                                     // fall through
 379     case stos:                                     // fall through
 380     case itos: movl(rax, val_addr);                   break;
 381     case ftos: load_float(val_addr);                  break;
 382     case dtos: load_double(val_addr);                 break;
 383     case vtos: /* nothing to do */                    break;
 384     default  : ShouldNotReachHere();
 385   }
 386 #endif // _LP64
 387   // Clean up tos value in the thread object
 388   movl(tos_addr,  (int32_t) ilgl);
 389   movptr(val_addr,  NULL_WORD);
 390   NOT_LP64(movptr(val_addr1, NULL_WORD);)
 391 }
 392 
 393 
 394 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 395   if (JvmtiExport::can_force_early_return()) {
 396     Label L;
 397     Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
 398     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
 399 
 400     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 401     testptr(tmp, tmp);
 402     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 403 
 404     // Initiate earlyret handling only if it is not already being processed.
 405     // If the flag has the earlyret_processing bit set, it means that this code
 406     // is called *during* earlyret handling - we don't want to reenter.
 407     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 408     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 409     jcc(Assembler::notEqual, L);
 410 
 411     // Call Interpreter::remove_activation_early_entry() to get the address of the
 412     // same-named entrypoint in the generated interpreter code.
 413     NOT_LP64(get_thread(java_thread);)
 414     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 415 #ifdef _LP64
 416     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 417     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
 418 #else
 419     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 420     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 421 #endif // _LP64
 422     jmp(rax);
 423     bind(L);
 424     NOT_LP64(get_thread(java_thread);)
 425   }
 426 }
 427 
 428 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 429   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 430   load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
 431   bswapl(reg);
 432   shrl(reg, 16);
 433 }
 434 
 435 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 436                                                        int bcp_offset,
 437                                                        size_t index_size) {
 438   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 439   if (index_size == sizeof(u2)) {
 440     load_unsigned_short(index, Address(_bcp_register, bcp_offset));
 441   } else if (index_size == sizeof(u4)) {
 442     movl(index, Address(_bcp_register, bcp_offset));
 443     // Check if the secondary index definition is still ~x, otherwise
 444     // we have to change the following assembler code to calculate the
 445     // plain index.
 446     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 447     notl(index);  // convert to plain index
 448   } else if (index_size == sizeof(u1)) {
 449     load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
 450   } else {
 451     ShouldNotReachHere();
 452   }
 453 }
 454 
 455 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 456                                                            Register index,
 457                                                            int bcp_offset,
 458                                                            size_t index_size) {
 459   assert_different_registers(cache, index);
 460   get_cache_index_at_bcp(index, bcp_offset, index_size);
 461   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 462   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 463   // convert from field index to ConstantPoolCacheEntry index
 464   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
 465   shll(index, 2);
 466 }
 467 
 468 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 469                                                                         Register index,
 470                                                                         Register bytecode,
 471                                                                         int byte_no,
 472                                                                         int bcp_offset,
 473                                                                         size_t index_size) {
 474   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 475   // We use a 32-bit load here since the layout of 64-bit words on
 476   // little-endian machines allow us that.
 477   movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 478   const int shift_count = (1 + byte_no) * BitsPerByte;
 479   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 480          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 481          "correct shift count");
 482   shrl(bytecode, shift_count);
 483   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 484   andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
 485 }
 486 
 487 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 488                                                                Register tmp,
 489                                                                int bcp_offset,
 490                                                                size_t index_size) {
 491   assert(cache != tmp, "must use different register");
 492   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 493   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 494   // convert from field index to ConstantPoolCacheEntry index
 495   // and from word offset to byte offset
 496   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 497   shll(tmp, 2 + LogBytesPerWord);
 498   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 499   // skip past the header
 500   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
 501   addptr(cache, tmp);  // construct pointer to cache entry
 502 }
 503 
 504 // Load object from cpool->resolved_references(index)
 505 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 506                                            Register result, Register index, Register tmp) {
 507   assert_different_registers(result, index);
 508 
 509   get_constant_pool(result);
 510   // load pointer for resolved_references[] objArray
 511   movptr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
 512   movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
 513   resolve_oop_handle(result, tmp);
 514   load_heap_oop(result, Address(result, index,
 515                                 UseCompressedOops ? Address::times_4 : Address::times_ptr,
 516                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
 517 }
 518 
 519 // load cpool->resolved_klass_at(index)
 520 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register cpool,
 521                                            Register index, Register klass) {
 522   movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
 523   Register resolved_klasses = cpool;
 524   movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes()));
 525   movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
 526 }
 527 
 528 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 529 // subtype of super_klass.
 530 //
 531 // Args:
 532 //      rax: superklass
 533 //      Rsub_klass: subklass
 534 //
 535 // Kills:
 536 //      rcx, rdi
 537 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 538                                                   Label& ok_is_subtype) {
 539   assert(Rsub_klass != rax, "rax holds superklass");
 540   LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
 541   LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
 542   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 543   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 544 
 545   // Profile the not-null value's klass.
 546   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 547 
 548   // Do the check.
 549   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 550 
 551   // Profile the failure of the check.
 552   profile_typecheck_failed(rcx); // blows rcx
 553 }
 554 
 555 
 556 #ifndef _LP64
 557 void InterpreterMacroAssembler::f2ieee() {
 558   if (IEEEPrecision) {
 559     fstp_s(Address(rsp, 0));
 560     fld_s(Address(rsp, 0));
 561   }
 562 }
 563 
 564 
 565 void InterpreterMacroAssembler::d2ieee() {
 566   if (IEEEPrecision) {
 567     fstp_d(Address(rsp, 0));
 568     fld_d(Address(rsp, 0));
 569   }
 570 }
 571 #endif // _LP64
 572 
 573 // Java Expression Stack
 574 
 575 void InterpreterMacroAssembler::pop_ptr(Register r) {
 576   pop(r);
 577 }
 578 
 579 void InterpreterMacroAssembler::push_ptr(Register r) {
 580   push(r);
 581 }
 582 
 583 void InterpreterMacroAssembler::push_i(Register r) {
 584   push(r);
 585 }
 586 
 587 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 588   subptr(rsp, wordSize);
 589   movflt(Address(rsp, 0), r);
 590 }
 591 
 592 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 593   movflt(r, Address(rsp, 0));
 594   addptr(rsp, wordSize);
 595 }
 596 
 597 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 598   subptr(rsp, 2 * wordSize);
 599   movdbl(Address(rsp, 0), r);
 600 }
 601 
 602 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 603   movdbl(r, Address(rsp, 0));
 604   addptr(rsp, 2 * Interpreter::stackElementSize);
 605 }
 606 
 607 #ifdef _LP64
 608 void InterpreterMacroAssembler::pop_i(Register r) {
 609   // XXX can't use pop currently, upper half non clean
 610   movl(r, Address(rsp, 0));
 611   addptr(rsp, wordSize);
 612 }
 613 
 614 void InterpreterMacroAssembler::pop_l(Register r) {
 615   movq(r, Address(rsp, 0));
 616   addptr(rsp, 2 * Interpreter::stackElementSize);
 617 }
 618 
 619 void InterpreterMacroAssembler::push_l(Register r) {
 620   subptr(rsp, 2 * wordSize);
 621   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r         );
 622   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
 623 }
 624 
 625 void InterpreterMacroAssembler::pop(TosState state) {
 626   switch (state) {
 627   case atos: pop_ptr();                 break;
 628   case btos:
 629   case ztos:
 630   case ctos:
 631   case stos:
 632   case itos: pop_i();                   break;
 633   case ltos: pop_l();                   break;
 634   case ftos: pop_f(xmm0);               break;
 635   case dtos: pop_d(xmm0);               break;
 636   case vtos: /* nothing to do */        break;
 637   default:   ShouldNotReachHere();
 638   }
 639   verify_oop(rax, state);
 640 }
 641 
 642 void InterpreterMacroAssembler::push(TosState state) {
 643   verify_oop(rax, state);
 644   switch (state) {
 645   case atos: push_ptr();                break;
 646   case btos:
 647   case ztos:
 648   case ctos:
 649   case stos:
 650   case itos: push_i();                  break;
 651   case ltos: push_l();                  break;
 652   case ftos: push_f(xmm0);              break;
 653   case dtos: push_d(xmm0);              break;
 654   case vtos: /* nothing to do */        break;
 655   default  : ShouldNotReachHere();
 656   }
 657 }
 658 #else
 659 void InterpreterMacroAssembler::pop_i(Register r) {
 660   pop(r);
 661 }
 662 
 663 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 664   pop(lo);
 665   pop(hi);
 666 }
 667 
 668 void InterpreterMacroAssembler::pop_f() {
 669   fld_s(Address(rsp, 0));
 670   addptr(rsp, 1 * wordSize);
 671 }
 672 
 673 void InterpreterMacroAssembler::pop_d() {
 674   fld_d(Address(rsp, 0));
 675   addptr(rsp, 2 * wordSize);
 676 }
 677 
 678 
 679 void InterpreterMacroAssembler::pop(TosState state) {
 680   switch (state) {
 681     case atos: pop_ptr(rax);                                 break;
 682     case btos:                                               // fall through
 683     case ztos:                                               // fall through
 684     case ctos:                                               // fall through
 685     case stos:                                               // fall through
 686     case itos: pop_i(rax);                                   break;
 687     case ltos: pop_l(rax, rdx);                              break;
 688     case ftos:
 689       if (UseSSE >= 1) {
 690         pop_f(xmm0);
 691       } else {
 692         pop_f();
 693       }
 694       break;
 695     case dtos:
 696       if (UseSSE >= 2) {
 697         pop_d(xmm0);
 698       } else {
 699         pop_d();
 700       }
 701       break;
 702     case vtos: /* nothing to do */                           break;
 703     default  : ShouldNotReachHere();
 704   }
 705   verify_oop(rax, state);
 706 }
 707 
 708 
 709 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 710   push(hi);
 711   push(lo);
 712 }
 713 
 714 void InterpreterMacroAssembler::push_f() {
 715   // Do not schedule for no AGI! Never write beyond rsp!
 716   subptr(rsp, 1 * wordSize);
 717   fstp_s(Address(rsp, 0));
 718 }
 719 
 720 void InterpreterMacroAssembler::push_d() {
 721   // Do not schedule for no AGI! Never write beyond rsp!
 722   subptr(rsp, 2 * wordSize);
 723   fstp_d(Address(rsp, 0));
 724 }
 725 
 726 
 727 void InterpreterMacroAssembler::push(TosState state) {
 728   verify_oop(rax, state);
 729   switch (state) {
 730     case atos: push_ptr(rax); break;
 731     case btos:                                               // fall through
 732     case ztos:                                               // fall through
 733     case ctos:                                               // fall through
 734     case stos:                                               // fall through
 735     case itos: push_i(rax);                                    break;
 736     case ltos: push_l(rax, rdx);                               break;
 737     case ftos:
 738       if (UseSSE >= 1) {
 739         push_f(xmm0);
 740       } else {
 741         push_f();
 742       }
 743       break;
 744     case dtos:
 745       if (UseSSE >= 2) {
 746         push_d(xmm0);
 747       } else {
 748         push_d();
 749       }
 750       break;
 751     case vtos: /* nothing to do */                             break;
 752     default  : ShouldNotReachHere();
 753   }
 754 }
 755 #endif // _LP64
 756 
 757 
 758 // Helpers for swap and dup
 759 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 760   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 761 }
 762 
 763 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 764   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 765 }
 766 
 767 
 768 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 769   // set sender sp
 770   lea(_bcp_register, Address(rsp, wordSize));
 771   // record last_sp
 772   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
 773 }
 774 
 775 
 776 // Jump to from_interpreted entry of a call unless single stepping is possible
 777 // in this thread in which case we must call the i2i entry
 778 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 779   prepare_to_jump_from_interpreted();
 780 
 781   if (JvmtiExport::can_post_interpreter_events()) {
 782     Label run_compiled_code;
 783     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 784     // compiled code in threads for which the event is enabled.  Check here for
 785     // interp_only_mode if these events CAN be enabled.
 786     // interp_only is an int, on little endian it is sufficient to test the byte only
 787     // Is a cmpl faster?
 788     LP64_ONLY(temp = r15_thread;)
 789     NOT_LP64(get_thread(temp);)
 790     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 791     jccb(Assembler::zero, run_compiled_code);
 792     jmp(Address(method, Method::interpreter_entry_offset()));
 793     bind(run_compiled_code);
 794   }
 795 
 796   jmp(Address(method, Method::from_interpreted_offset()));
 797 }
 798 
 799 // The following two routines provide a hook so that an implementation
 800 // can schedule the dispatch in two parts.  x86 does not do this.
 801 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 802   // Nothing x86 specific to be done here
 803 }
 804 
 805 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 806   dispatch_next(state, step);
 807 }
 808 
 809 void InterpreterMacroAssembler::dispatch_base(TosState state,
 810                                               address* table,
 811                                               bool verifyoop,
 812                                               bool generate_poll) {
 813   verify_FPU(1, state);
 814   if (VerifyActivationFrameSize) {
 815     Label L;
 816     mov(rcx, rbp);
 817     subptr(rcx, rsp);
 818     int32_t min_frame_size =
 819       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 820       wordSize;
 821     cmpptr(rcx, (int32_t)min_frame_size);
 822     jcc(Assembler::greaterEqual, L);
 823     stop("broken stack frame");
 824     bind(L);
 825   }
 826   if (verifyoop) {
 827     verify_oop(rax, state);
 828   }
 829 
 830   address* const safepoint_table = Interpreter::safept_table(state);
 831 #ifdef _LP64
 832   Label no_safepoint, dispatch;
 833   if (SafepointMechanism::uses_thread_local_poll() && table != safepoint_table && generate_poll) {
 834     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 835     testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
 836 
 837     jccb(Assembler::zero, no_safepoint);
 838     lea(rscratch1, ExternalAddress((address)safepoint_table));
 839     jmpb(dispatch);
 840   }
 841 
 842   bind(no_safepoint);
 843   lea(rscratch1, ExternalAddress((address)table));
 844   bind(dispatch);
 845   jmp(Address(rscratch1, rbx, Address::times_8));
 846 
 847 #else
 848   Address index(noreg, rbx, Address::times_ptr);
 849   if (SafepointMechanism::uses_thread_local_poll() && table != safepoint_table && generate_poll) {
 850     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 851     Label no_safepoint;
 852     const Register thread = rcx;
 853     get_thread(thread);
 854     testb(Address(thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
 855 
 856     jccb(Assembler::zero, no_safepoint);
 857     ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index);
 858     jump(dispatch_addr);
 859     bind(no_safepoint);
 860   }
 861 
 862   {
 863     ArrayAddress dispatch_addr(ExternalAddress((address)table), index);
 864     jump(dispatch_addr);
 865   }
 866 #endif // _LP64
 867 }
 868 
 869 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 870   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 871 }
 872 
 873 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 874   dispatch_base(state, Interpreter::normal_table(state));
 875 }
 876 
 877 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 878   dispatch_base(state, Interpreter::normal_table(state), false);
 879 }
 880 
 881 
 882 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 883   // load next bytecode (load before advancing _bcp_register to prevent AGI)
 884   load_unsigned_byte(rbx, Address(_bcp_register, step));
 885   // advance _bcp_register
 886   increment(_bcp_register, step);
 887   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 888 }
 889 
 890 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 891   // load current bytecode
 892   load_unsigned_byte(rbx, Address(_bcp_register, 0));
 893   dispatch_base(state, table);
 894 }
 895 
 896 void InterpreterMacroAssembler::narrow(Register result) {
 897 
 898   // Get method->_constMethod->_result_type
 899   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 900   movptr(rcx, Address(rcx, Method::const_offset()));
 901   load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
 902 
 903   Label done, notBool, notByte, notChar;
 904 
 905   // common case first
 906   cmpl(rcx, T_INT);
 907   jcc(Assembler::equal, done);
 908 
 909   // mask integer result to narrower return type.
 910   cmpl(rcx, T_BOOLEAN);
 911   jcc(Assembler::notEqual, notBool);
 912   andl(result, 0x1);
 913   jmp(done);
 914 
 915   bind(notBool);
 916   cmpl(rcx, T_BYTE);
 917   jcc(Assembler::notEqual, notByte);
 918   LP64_ONLY(movsbl(result, result);)
 919   NOT_LP64(shll(result, 24);)      // truncate upper 24 bits
 920   NOT_LP64(sarl(result, 24);)      // and sign-extend byte
 921   jmp(done);
 922 
 923   bind(notByte);
 924   cmpl(rcx, T_CHAR);
 925   jcc(Assembler::notEqual, notChar);
 926   LP64_ONLY(movzwl(result, result);)
 927   NOT_LP64(andl(result, 0xFFFF);)  // truncate upper 16 bits
 928   jmp(done);
 929 
 930   bind(notChar);
 931   // cmpl(rcx, T_SHORT);  // all that's left
 932   // jcc(Assembler::notEqual, done);
 933   LP64_ONLY(movswl(result, result);)
 934   NOT_LP64(shll(result, 16);)      // truncate upper 16 bits
 935   NOT_LP64(sarl(result, 16);)      // and sign-extend short
 936 
 937   // Nothing to do for T_INT
 938   bind(done);
 939 }
 940 
 941 // remove activation
 942 //
 943 // Unlock the receiver if this is a synchronized method.
 944 // Unlock any Java monitors from syncronized blocks.
 945 // Remove the activation from the stack.
 946 //
 947 // If there are locked Java monitors
 948 //    If throw_monitor_exception
 949 //       throws IllegalMonitorStateException
 950 //    Else if install_monitor_exception
 951 //       installs IllegalMonitorStateException
 952 //    Else
 953 //       no error processing
 954 void InterpreterMacroAssembler::remove_activation(
 955         TosState state,
 956         Register ret_addr,
 957         bool throw_monitor_exception,
 958         bool install_monitor_exception,
 959         bool notify_jvmdi,
 960         bool load_values) {
 961   // Note: Registers rdx xmm0 may be in use for the
 962   // result check if synchronized method
 963   Label unlocked, unlock, no_unlock;
 964 
 965   const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 966   const Register robj    = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
 967   const Register rmon    = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
 968                               // monitor pointers need different register
 969                               // because rdx may have the result in it
 970   NOT_LP64(get_thread(rcx);)
 971 
 972   // get the value of _do_not_unlock_if_synchronized into rdx
 973   const Address do_not_unlock_if_synchronized(rthread,
 974     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 975   movbool(rbx, do_not_unlock_if_synchronized);
 976   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 977 
 978  // get method access flags
 979   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 980   movl(rcx, Address(rcx, Method::access_flags_offset()));
 981   testl(rcx, JVM_ACC_SYNCHRONIZED);
 982   jcc(Assembler::zero, unlocked);
 983 
 984   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 985   // is set.
 986   testbool(rbx);
 987   jcc(Assembler::notZero, no_unlock);
 988 
 989   // unlock monitor
 990   push(state); // save result
 991 
 992   // BasicObjectLock will be first in list, since this is a
 993   // synchronized method. However, need to check that the object has
 994   // not been unlocked by an explicit monitorexit bytecode.
 995   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 996                         wordSize - (int) sizeof(BasicObjectLock));
 997   // We use c_rarg1/rdx so that if we go slow path it will be the correct
 998   // register for unlock_object to pass to VM directly
 999   lea(robj, monitor); // address of first monitor
1000 
1001   movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes()));
1002   testptr(rax, rax);
1003   jcc(Assembler::notZero, unlock);
1004 
1005   pop(state);
1006   if (throw_monitor_exception) {
1007     // Entry already unlocked, need to throw exception
1008     NOT_LP64(empty_FPU_stack();)  // remove possible return value from FPU-stack, otherwise stack could overflow
1009     call_VM(noreg, CAST_FROM_FN_PTR(address,
1010                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1011     should_not_reach_here();
1012   } else {
1013     // Monitor already unlocked during a stack unroll. If requested,
1014     // install an illegal_monitor_state_exception.  Continue with
1015     // stack unrolling.
1016     if (install_monitor_exception) {
1017       NOT_LP64(empty_FPU_stack();)
1018       call_VM(noreg, CAST_FROM_FN_PTR(address,
1019                      InterpreterRuntime::new_illegal_monitor_state_exception));
1020     }
1021     jmp(unlocked);
1022   }
1023 
1024   bind(unlock);
1025   unlock_object(robj);
1026   pop(state);
1027 
1028   // Check that for block-structured locking (i.e., that all locked
1029   // objects has been unlocked)
1030   bind(unlocked);
1031 
1032   // rax, rdx: Might contain return value
1033 
1034   // Check that all monitors are unlocked
1035   {
1036     Label loop, exception, entry, restart;
1037     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1038     const Address monitor_block_top(
1039         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1040     const Address monitor_block_bot(
1041         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1042 
1043     bind(restart);
1044     // We use c_rarg1 so that if we go slow path it will be the correct
1045     // register for unlock_object to pass to VM directly
1046     movptr(rmon, monitor_block_top); // points to current entry, starting
1047                                   // with top-most entry
1048     lea(rbx, monitor_block_bot);  // points to word before bottom of
1049                                   // monitor block
1050     jmp(entry);
1051 
1052     // Entry already locked, need to throw exception
1053     bind(exception);
1054 
1055     if (throw_monitor_exception) {
1056       // Throw exception
1057       NOT_LP64(empty_FPU_stack();)
1058       MacroAssembler::call_VM(noreg,
1059                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
1060                                    throw_illegal_monitor_state_exception));
1061       should_not_reach_here();
1062     } else {
1063       // Stack unrolling. Unlock object and install illegal_monitor_exception.
1064       // Unlock does not block, so don't have to worry about the frame.
1065       // We don't have to preserve c_rarg1 since we are going to throw an exception.
1066 
1067       push(state);
1068       mov(robj, rmon);   // nop if robj and rmon are the same
1069       unlock_object(robj);
1070       pop(state);
1071 
1072       if (install_monitor_exception) {
1073         NOT_LP64(empty_FPU_stack();)
1074         call_VM(noreg, CAST_FROM_FN_PTR(address,
1075                                         InterpreterRuntime::
1076                                         new_illegal_monitor_state_exception));
1077       }
1078 
1079       jmp(restart);
1080     }
1081 
1082     bind(loop);
1083     // check if current entry is used
1084     cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
1085     jcc(Assembler::notEqual, exception);
1086 
1087     addptr(rmon, entry_size); // otherwise advance to next entry
1088     bind(entry);
1089     cmpptr(rmon, rbx); // check if bottom reached
1090     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1091   }
1092 
1093   bind(no_unlock);
1094 
1095   // jvmti support
1096   if (notify_jvmdi) {
1097     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
1098   } else {
1099     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1100   }
1101 
1102   if (StackReservedPages > 0) {
1103     movptr(rbx,
1104                Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1105     // testing if reserved zone needs to be re-enabled
1106     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1107     Label no_reserved_zone_enabling;
1108 
1109     NOT_LP64(get_thread(rthread);)
1110 
1111     cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_enabled);
1112     jcc(Assembler::equal, no_reserved_zone_enabling);
1113 
1114     cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1115     jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1116 
1117     call_VM_leaf(
1118       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1119     call_VM(noreg, CAST_FROM_FN_PTR(address,
1120                    InterpreterRuntime::throw_delayed_StackOverflowError));
1121     should_not_reach_here();
1122 
1123     bind(no_reserved_zone_enabling);
1124   }
1125 





































1126   // remove activation
1127   // get sender sp
1128   movptr(rbx,
1129          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1130 
1131   if (load_values) {
1132     // We are returning a value type, load its fields into registers
1133 #ifndef _LP64
1134     super_call_VM_leaf(StubRoutines::load_value_type_fields_in_regs());
1135 #else
1136     load_klass(rdi, rax);
1137     movptr(rdi, Address(rdi, ValueKlass::unpack_handler_offset()));
1138 
1139     Label skip;
1140     testptr(rdi, rdi);
1141     jcc(Assembler::equal, skip);
1142 
1143     // Load fields from a buffered value with a value class specific
1144     // handler
1145     call(rdi);
1146 
1147     bind(skip);
1148 #endif
1149     // call above kills the value in rbx. Reload it.
1150     movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1151   }
1152   leave();                           // remove frame anchor
1153   pop(ret_addr);                     // get return address
1154   mov(rsp, rbx);                     // set sp to sender sp
1155 }
1156 
1157 void InterpreterMacroAssembler::get_method_counters(Register method,
1158                                                     Register mcs, Label& skip) {
1159   Label has_counters;
1160   movptr(mcs, Address(method, Method::method_counters_offset()));
1161   testptr(mcs, mcs);
1162   jcc(Assembler::notZero, has_counters);
1163   call_VM(noreg, CAST_FROM_FN_PTR(address,
1164           InterpreterRuntime::build_method_counters), method);
1165   movptr(mcs, Address(method,Method::method_counters_offset()));
1166   testptr(mcs, mcs);
1167   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1168   bind(has_counters);
1169 }
1170 
1171 
1172 // Lock object
1173 //
1174 // Args:
1175 //      rdx, c_rarg1: BasicObjectLock to be used for locking
1176 //
1177 // Kills:
1178 //      rax, rbx
1179 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1180   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1181          "The argument is only for looks. It must be c_rarg1");
1182 
1183   if (UseHeavyMonitors) {
1184     call_VM(noreg,
1185             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1186             lock_reg);
1187   } else {
1188     Label done;
1189 
1190     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1191     const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a
1192                                   // problematic case where tmp_reg = no_reg.
1193     const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1194 
1195     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1196     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1197     const int mark_offset = lock_offset +
1198                             BasicLock::displaced_header_offset_in_bytes();
1199 
1200     Label slow_case;
1201 
1202     // Load object pointer into obj_reg
1203     movptr(obj_reg, Address(lock_reg, obj_offset));
1204 
1205     if (UseBiasedLocking) {
1206       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, false, done, &slow_case);
1207     }
1208 
1209     // Load immediate 1 into swap_reg %rax
1210     movl(swap_reg, (int32_t)1);
1211 
1212     // Load (object->mark() | 1) into swap_reg %rax
1213     orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1214     if (EnableValhalla && !UseBiasedLocking) {
1215       // For slow path is_always_locked, using biased, which is never natural for !UseBiasLocking
1216       andptr(swap_reg, ~markOopDesc::biased_lock_bit_in_place);
1217     }
1218 
1219     // Save (object->mark() | 1) into BasicLock's displaced header
1220     movptr(Address(lock_reg, mark_offset), swap_reg);
1221 
1222     assert(lock_offset == 0,
1223            "displaced header must be first word in BasicObjectLock");
1224 
1225     if (os::is_MP()) lock();
1226     cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1227     if (PrintBiasedLockingStatistics) {
1228       cond_inc32(Assembler::zero,
1229                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1230     }
1231     jcc(Assembler::zero, done);
1232 
1233     const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1234 
1235     // Test if the oopMark is an obvious stack pointer, i.e.,
1236     //  1) (mark & zero_bits) == 0, and
1237     //  2) rsp <= mark < mark + os::pagesize()
1238     //
1239     // These 3 tests can be done by evaluating the following
1240     // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1241     // assuming both stack pointer and pagesize have their
1242     // least significant bits clear.
1243     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1244     subptr(swap_reg, rsp);
1245     andptr(swap_reg, zero_bits - os::vm_page_size());
1246 
1247     // Save the test result, for recursive case, the result is zero
1248     movptr(Address(lock_reg, mark_offset), swap_reg);
1249 
1250     if (PrintBiasedLockingStatistics) {
1251       cond_inc32(Assembler::zero,
1252                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1253     }
1254     jcc(Assembler::zero, done);
1255 
1256     bind(slow_case);
1257 
1258     // Call the runtime routine for slow case
1259     call_VM(noreg,
1260             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1261             lock_reg);
1262 
1263     bind(done);
1264   }
1265 }
1266 
1267 
1268 // Unlocks an object. Used in monitorexit bytecode and
1269 // remove_activation.  Throws an IllegalMonitorException if object is
1270 // not locked by current thread.
1271 //
1272 // Args:
1273 //      rdx, c_rarg1: BasicObjectLock for lock
1274 //
1275 // Kills:
1276 //      rax
1277 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1278 //      rscratch1 (scratch reg)
1279 // rax, rbx, rcx, rdx
1280 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1281   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1282          "The argument is only for looks. It must be c_rarg1");
1283 
1284   if (UseHeavyMonitors) {
1285     call_VM(noreg,
1286             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1287             lock_reg);
1288   } else {
1289     Label done;
1290 
1291     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1292     const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx);  // Will contain the old oopMark
1293     const Register obj_reg    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);  // Will contain the oop
1294 
1295     save_bcp(); // Save in case of exception
1296 
1297     // Convert from BasicObjectLock structure to object and BasicLock
1298     // structure Store the BasicLock address into %rax
1299     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
1300 
1301     // Load oop into obj_reg(%c_rarg3)
1302     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
1303 
1304     // Free entry
1305     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
1306 
1307     if (UseBiasedLocking) {
1308       biased_locking_exit(obj_reg, header_reg, done);
1309     }
1310 
1311     // Load the old header from BasicLock structure
1312     movptr(header_reg, Address(swap_reg,
1313                                BasicLock::displaced_header_offset_in_bytes()));
1314 
1315     // Test for recursion
1316     testptr(header_reg, header_reg);
1317 
1318     // zero for recursive case
1319     jcc(Assembler::zero, done);
1320 
1321     // Atomic swap back the old header
1322     if (os::is_MP()) lock();
1323     cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1324 
1325     // zero for simple unlock of a stack-lock case
1326     jcc(Assembler::zero, done);
1327 
1328     // Call the runtime routine for slow case.
1329     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
1330          obj_reg); // restore obj
1331     call_VM(noreg,
1332             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1333             lock_reg);
1334 
1335     bind(done);
1336 
1337     restore_bcp();
1338   }
1339 }
1340 
1341 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1342                                                          Label& zero_continue) {
1343   assert(ProfileInterpreter, "must be profiling interpreter");
1344   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1345   testptr(mdp, mdp);
1346   jcc(Assembler::zero, zero_continue);
1347 }
1348 
1349 
1350 // Set the method data pointer for the current bcp.
1351 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1352   assert(ProfileInterpreter, "must be profiling interpreter");
1353   Label set_mdp;
1354   push(rax);
1355   push(rbx);
1356 
1357   get_method(rbx);
1358   // Test MDO to avoid the call if it is NULL.
1359   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1360   testptr(rax, rax);
1361   jcc(Assembler::zero, set_mdp);
1362   // rbx: method
1363   // _bcp_register: bcp
1364   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1365   // rax: mdi
1366   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1367   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1368   addptr(rbx, in_bytes(MethodData::data_offset()));
1369   addptr(rax, rbx);
1370   bind(set_mdp);
1371   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1372   pop(rbx);
1373   pop(rax);
1374 }
1375 
1376 void InterpreterMacroAssembler::verify_method_data_pointer() {
1377   assert(ProfileInterpreter, "must be profiling interpreter");
1378 #ifdef ASSERT
1379   Label verify_continue;
1380   push(rax);
1381   push(rbx);
1382   Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1383   Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1384   push(arg3_reg);
1385   push(arg2_reg);
1386   test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1387   get_method(rbx);
1388 
1389   // If the mdp is valid, it will point to a DataLayout header which is
1390   // consistent with the bcp.  The converse is highly probable also.
1391   load_unsigned_short(arg2_reg,
1392                       Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1393   addptr(arg2_reg, Address(rbx, Method::const_offset()));
1394   lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1395   cmpptr(arg2_reg, _bcp_register);
1396   jcc(Assembler::equal, verify_continue);
1397   // rbx: method
1398   // _bcp_register: bcp
1399   // c_rarg3: mdp
1400   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1401                rbx, _bcp_register, arg3_reg);
1402   bind(verify_continue);
1403   pop(arg2_reg);
1404   pop(arg3_reg);
1405   pop(rbx);
1406   pop(rax);
1407 #endif // ASSERT
1408 }
1409 
1410 
1411 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1412                                                 int constant,
1413                                                 Register value) {
1414   assert(ProfileInterpreter, "must be profiling interpreter");
1415   Address data(mdp_in, constant);
1416   movptr(data, value);
1417 }
1418 
1419 
1420 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1421                                                       int constant,
1422                                                       bool decrement) {
1423   // Counter address
1424   Address data(mdp_in, constant);
1425 
1426   increment_mdp_data_at(data, decrement);
1427 }
1428 
1429 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1430                                                       bool decrement) {
1431   assert(ProfileInterpreter, "must be profiling interpreter");
1432   // %%% this does 64bit counters at best it is wasting space
1433   // at worst it is a rare bug when counters overflow
1434 
1435   if (decrement) {
1436     // Decrement the register.  Set condition codes.
1437     addptr(data, (int32_t) -DataLayout::counter_increment);
1438     // If the decrement causes the counter to overflow, stay negative
1439     Label L;
1440     jcc(Assembler::negative, L);
1441     addptr(data, (int32_t) DataLayout::counter_increment);
1442     bind(L);
1443   } else {
1444     assert(DataLayout::counter_increment == 1,
1445            "flow-free idiom only works with 1");
1446     // Increment the register.  Set carry flag.
1447     addptr(data, DataLayout::counter_increment);
1448     // If the increment causes the counter to overflow, pull back by 1.
1449     sbbptr(data, (int32_t)0);
1450   }
1451 }
1452 
1453 
1454 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1455                                                       Register reg,
1456                                                       int constant,
1457                                                       bool decrement) {
1458   Address data(mdp_in, reg, Address::times_1, constant);
1459 
1460   increment_mdp_data_at(data, decrement);
1461 }
1462 
1463 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1464                                                 int flag_byte_constant) {
1465   assert(ProfileInterpreter, "must be profiling interpreter");
1466   int header_offset = in_bytes(DataLayout::flags_offset());
1467   int header_bits = flag_byte_constant;
1468   // Set the flag
1469   orb(Address(mdp_in, header_offset), header_bits);
1470 }
1471 
1472 
1473 
1474 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1475                                                  int offset,
1476                                                  Register value,
1477                                                  Register test_value_out,
1478                                                  Label& not_equal_continue) {
1479   assert(ProfileInterpreter, "must be profiling interpreter");
1480   if (test_value_out == noreg) {
1481     cmpptr(value, Address(mdp_in, offset));
1482   } else {
1483     // Put the test value into a register, so caller can use it:
1484     movptr(test_value_out, Address(mdp_in, offset));
1485     cmpptr(test_value_out, value);
1486   }
1487   jcc(Assembler::notEqual, not_equal_continue);
1488 }
1489 
1490 
1491 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1492                                                      int offset_of_disp) {
1493   assert(ProfileInterpreter, "must be profiling interpreter");
1494   Address disp_address(mdp_in, offset_of_disp);
1495   addptr(mdp_in, disp_address);
1496   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1497 }
1498 
1499 
1500 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1501                                                      Register reg,
1502                                                      int offset_of_disp) {
1503   assert(ProfileInterpreter, "must be profiling interpreter");
1504   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1505   addptr(mdp_in, disp_address);
1506   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1507 }
1508 
1509 
1510 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1511                                                        int constant) {
1512   assert(ProfileInterpreter, "must be profiling interpreter");
1513   addptr(mdp_in, constant);
1514   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1515 }
1516 
1517 
1518 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1519   assert(ProfileInterpreter, "must be profiling interpreter");
1520   push(return_bci); // save/restore across call_VM
1521   call_VM(noreg,
1522           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1523           return_bci);
1524   pop(return_bci);
1525 }
1526 
1527 
1528 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1529                                                      Register bumped_count) {
1530   if (ProfileInterpreter) {
1531     Label profile_continue;
1532 
1533     // If no method data exists, go to profile_continue.
1534     // Otherwise, assign to mdp
1535     test_method_data_pointer(mdp, profile_continue);
1536 
1537     // We are taking a branch.  Increment the taken count.
1538     // We inline increment_mdp_data_at to return bumped_count in a register
1539     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1540     Address data(mdp, in_bytes(JumpData::taken_offset()));
1541     movptr(bumped_count, data);
1542     assert(DataLayout::counter_increment == 1,
1543             "flow-free idiom only works with 1");
1544     addptr(bumped_count, DataLayout::counter_increment);
1545     sbbptr(bumped_count, 0);
1546     movptr(data, bumped_count); // Store back out
1547 
1548     // The method data pointer needs to be updated to reflect the new target.
1549     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1550     bind(profile_continue);
1551   }
1552 }
1553 
1554 
1555 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1556   if (ProfileInterpreter) {
1557     Label profile_continue;
1558 
1559     // If no method data exists, go to profile_continue.
1560     test_method_data_pointer(mdp, profile_continue);
1561 
1562     // We are taking a branch.  Increment the not taken count.
1563     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1564 
1565     // The method data pointer needs to be updated to correspond to
1566     // the next bytecode
1567     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1568     bind(profile_continue);
1569   }
1570 }
1571 
1572 void InterpreterMacroAssembler::profile_call(Register mdp) {
1573   if (ProfileInterpreter) {
1574     Label profile_continue;
1575 
1576     // If no method data exists, go to profile_continue.
1577     test_method_data_pointer(mdp, profile_continue);
1578 
1579     // We are making a call.  Increment the count.
1580     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1581 
1582     // The method data pointer needs to be updated to reflect the new target.
1583     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1584     bind(profile_continue);
1585   }
1586 }
1587 
1588 
1589 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1590   if (ProfileInterpreter) {
1591     Label profile_continue;
1592 
1593     // If no method data exists, go to profile_continue.
1594     test_method_data_pointer(mdp, profile_continue);
1595 
1596     // We are making a call.  Increment the count.
1597     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1598 
1599     // The method data pointer needs to be updated to reflect the new target.
1600     update_mdp_by_constant(mdp,
1601                            in_bytes(VirtualCallData::
1602                                     virtual_call_data_size()));
1603     bind(profile_continue);
1604   }
1605 }
1606 
1607 
1608 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1609                                                      Register mdp,
1610                                                      Register reg2,
1611                                                      bool receiver_can_be_null) {
1612   if (ProfileInterpreter) {
1613     Label profile_continue;
1614 
1615     // If no method data exists, go to profile_continue.
1616     test_method_data_pointer(mdp, profile_continue);
1617 
1618     Label skip_receiver_profile;
1619     if (receiver_can_be_null) {
1620       Label not_null;
1621       testptr(receiver, receiver);
1622       jccb(Assembler::notZero, not_null);
1623       // We are making a call.  Increment the count for null receiver.
1624       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1625       jmp(skip_receiver_profile);
1626       bind(not_null);
1627     }
1628 
1629     // Record the receiver type.
1630     record_klass_in_profile(receiver, mdp, reg2, true);
1631     bind(skip_receiver_profile);
1632 
1633     // The method data pointer needs to be updated to reflect the new target.
1634 #if INCLUDE_JVMCI
1635     if (MethodProfileWidth == 0) {
1636       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1637     }
1638 #else // INCLUDE_JVMCI
1639     update_mdp_by_constant(mdp,
1640                            in_bytes(VirtualCallData::
1641                                     virtual_call_data_size()));
1642 #endif // INCLUDE_JVMCI
1643     bind(profile_continue);
1644   }
1645 }
1646 
1647 #if INCLUDE_JVMCI
1648 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1649   assert_different_registers(method, mdp, reg2);
1650   if (ProfileInterpreter && MethodProfileWidth > 0) {
1651     Label profile_continue;
1652 
1653     // If no method data exists, go to profile_continue.
1654     test_method_data_pointer(mdp, profile_continue);
1655 
1656     Label done;
1657     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1658       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1659     bind(done);
1660 
1661     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1662     bind(profile_continue);
1663   }
1664 }
1665 #endif // INCLUDE_JVMCI
1666 
1667 // This routine creates a state machine for updating the multi-row
1668 // type profile at a virtual call site (or other type-sensitive bytecode).
1669 // The machine visits each row (of receiver/count) until the receiver type
1670 // is found, or until it runs out of rows.  At the same time, it remembers
1671 // the location of the first empty row.  (An empty row records null for its
1672 // receiver, and can be allocated for a newly-observed receiver type.)
1673 // Because there are two degrees of freedom in the state, a simple linear
1674 // search will not work; it must be a decision tree.  Hence this helper
1675 // function is recursive, to generate the required tree structured code.
1676 // It's the interpreter, so we are trading off code space for speed.
1677 // See below for example code.
1678 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1679                                         Register receiver, Register mdp,
1680                                         Register reg2, int start_row,
1681                                         Label& done, bool is_virtual_call) {
1682   if (TypeProfileWidth == 0) {
1683     if (is_virtual_call) {
1684       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1685     }
1686 #if INCLUDE_JVMCI
1687     else if (EnableJVMCI) {
1688       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1689     }
1690 #endif // INCLUDE_JVMCI
1691   } else {
1692     int non_profiled_offset = -1;
1693     if (is_virtual_call) {
1694       non_profiled_offset = in_bytes(CounterData::count_offset());
1695     }
1696 #if INCLUDE_JVMCI
1697     else if (EnableJVMCI) {
1698       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1699     }
1700 #endif // INCLUDE_JVMCI
1701 
1702     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1703         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1704   }
1705 }
1706 
1707 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1708                                         Register reg2, int start_row, Label& done, int total_rows,
1709                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1710                                         int non_profiled_offset) {
1711   int last_row = total_rows - 1;
1712   assert(start_row <= last_row, "must be work left to do");
1713   // Test this row for both the item and for null.
1714   // Take any of three different outcomes:
1715   //   1. found item => increment count and goto done
1716   //   2. found null => keep looking for case 1, maybe allocate this cell
1717   //   3. found something else => keep looking for cases 1 and 2
1718   // Case 3 is handled by a recursive call.
1719   for (int row = start_row; row <= last_row; row++) {
1720     Label next_test;
1721     bool test_for_null_also = (row == start_row);
1722 
1723     // See if the item is item[n].
1724     int item_offset = in_bytes(item_offset_fn(row));
1725     test_mdp_data_at(mdp, item_offset, item,
1726                      (test_for_null_also ? reg2 : noreg),
1727                      next_test);
1728     // (Reg2 now contains the item from the CallData.)
1729 
1730     // The item is item[n].  Increment count[n].
1731     int count_offset = in_bytes(item_count_offset_fn(row));
1732     increment_mdp_data_at(mdp, count_offset);
1733     jmp(done);
1734     bind(next_test);
1735 
1736     if (test_for_null_also) {
1737       Label found_null;
1738       // Failed the equality check on item[n]...  Test for null.
1739       testptr(reg2, reg2);
1740       if (start_row == last_row) {
1741         // The only thing left to do is handle the null case.
1742         if (non_profiled_offset >= 0) {
1743           jccb(Assembler::zero, found_null);
1744           // Item did not match any saved item and there is no empty row for it.
1745           // Increment total counter to indicate polymorphic case.
1746           increment_mdp_data_at(mdp, non_profiled_offset);
1747           jmp(done);
1748           bind(found_null);
1749         } else {
1750           jcc(Assembler::notZero, done);
1751         }
1752         break;
1753       }
1754       // Since null is rare, make it be the branch-taken case.
1755       jcc(Assembler::zero, found_null);
1756 
1757       // Put all the "Case 3" tests here.
1758       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1759         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1760 
1761       // Found a null.  Keep searching for a matching item,
1762       // but remember that this is an empty (unused) slot.
1763       bind(found_null);
1764     }
1765   }
1766 
1767   // In the fall-through case, we found no matching item, but we
1768   // observed the item[start_row] is NULL.
1769 
1770   // Fill in the item field and increment the count.
1771   int item_offset = in_bytes(item_offset_fn(start_row));
1772   set_mdp_data_at(mdp, item_offset, item);
1773   int count_offset = in_bytes(item_count_offset_fn(start_row));
1774   movl(reg2, DataLayout::counter_increment);
1775   set_mdp_data_at(mdp, count_offset, reg2);
1776   if (start_row > 0) {
1777     jmp(done);
1778   }
1779 }
1780 
1781 // Example state machine code for three profile rows:
1782 //   // main copy of decision tree, rooted at row[1]
1783 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1784 //   if (row[0].rec != NULL) {
1785 //     // inner copy of decision tree, rooted at row[1]
1786 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1787 //     if (row[1].rec != NULL) {
1788 //       // degenerate decision tree, rooted at row[2]
1789 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1790 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1791 //       row[2].init(rec); goto done;
1792 //     } else {
1793 //       // remember row[1] is empty
1794 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1795 //       row[1].init(rec); goto done;
1796 //     }
1797 //   } else {
1798 //     // remember row[0] is empty
1799 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1800 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1801 //     row[0].init(rec); goto done;
1802 //   }
1803 //   done:
1804 
1805 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1806                                                         Register mdp, Register reg2,
1807                                                         bool is_virtual_call) {
1808   assert(ProfileInterpreter, "must be profiling");
1809   Label done;
1810 
1811   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1812 
1813   bind (done);
1814 }
1815 
1816 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1817                                             Register mdp) {
1818   if (ProfileInterpreter) {
1819     Label profile_continue;
1820     uint row;
1821 
1822     // If no method data exists, go to profile_continue.
1823     test_method_data_pointer(mdp, profile_continue);
1824 
1825     // Update the total ret count.
1826     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1827 
1828     for (row = 0; row < RetData::row_limit(); row++) {
1829       Label next_test;
1830 
1831       // See if return_bci is equal to bci[n]:
1832       test_mdp_data_at(mdp,
1833                        in_bytes(RetData::bci_offset(row)),
1834                        return_bci, noreg,
1835                        next_test);
1836 
1837       // return_bci is equal to bci[n].  Increment the count.
1838       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1839 
1840       // The method data pointer needs to be updated to reflect the new target.
1841       update_mdp_by_offset(mdp,
1842                            in_bytes(RetData::bci_displacement_offset(row)));
1843       jmp(profile_continue);
1844       bind(next_test);
1845     }
1846 
1847     update_mdp_for_ret(return_bci);
1848 
1849     bind(profile_continue);
1850   }
1851 }
1852 
1853 
1854 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1855   if (ProfileInterpreter) {
1856     Label profile_continue;
1857 
1858     // If no method data exists, go to profile_continue.
1859     test_method_data_pointer(mdp, profile_continue);
1860 
1861     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1862 
1863     // The method data pointer needs to be updated.
1864     int mdp_delta = in_bytes(BitData::bit_data_size());
1865     if (TypeProfileCasts) {
1866       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1867     }
1868     update_mdp_by_constant(mdp, mdp_delta);
1869 
1870     bind(profile_continue);
1871   }
1872 }
1873 
1874 
1875 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1876   if (ProfileInterpreter && TypeProfileCasts) {
1877     Label profile_continue;
1878 
1879     // If no method data exists, go to profile_continue.
1880     test_method_data_pointer(mdp, profile_continue);
1881 
1882     int count_offset = in_bytes(CounterData::count_offset());
1883     // Back up the address, since we have already bumped the mdp.
1884     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1885 
1886     // *Decrement* the counter.  We expect to see zero or small negatives.
1887     increment_mdp_data_at(mdp, count_offset, true);
1888 
1889     bind (profile_continue);
1890   }
1891 }
1892 
1893 
1894 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1895   if (ProfileInterpreter) {
1896     Label profile_continue;
1897 
1898     // If no method data exists, go to profile_continue.
1899     test_method_data_pointer(mdp, profile_continue);
1900 
1901     // The method data pointer needs to be updated.
1902     int mdp_delta = in_bytes(BitData::bit_data_size());
1903     if (TypeProfileCasts) {
1904       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1905 
1906       // Record the object type.
1907       record_klass_in_profile(klass, mdp, reg2, false);
1908       NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1909       NOT_LP64(restore_locals();)         // Restore EDI
1910     }
1911     update_mdp_by_constant(mdp, mdp_delta);
1912 
1913     bind(profile_continue);
1914   }
1915 }
1916 
1917 
1918 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1919   if (ProfileInterpreter) {
1920     Label profile_continue;
1921 
1922     // If no method data exists, go to profile_continue.
1923     test_method_data_pointer(mdp, profile_continue);
1924 
1925     // Update the default case count
1926     increment_mdp_data_at(mdp,
1927                           in_bytes(MultiBranchData::default_count_offset()));
1928 
1929     // The method data pointer needs to be updated.
1930     update_mdp_by_offset(mdp,
1931                          in_bytes(MultiBranchData::
1932                                   default_displacement_offset()));
1933 
1934     bind(profile_continue);
1935   }
1936 }
1937 
1938 
1939 void InterpreterMacroAssembler::profile_switch_case(Register index,
1940                                                     Register mdp,
1941                                                     Register reg2) {
1942   if (ProfileInterpreter) {
1943     Label profile_continue;
1944 
1945     // If no method data exists, go to profile_continue.
1946     test_method_data_pointer(mdp, profile_continue);
1947 
1948     // Build the base (index * per_case_size_in_bytes()) +
1949     // case_array_offset_in_bytes()
1950     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1951     imulptr(index, reg2); // XXX l ?
1952     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1953 
1954     // Update the case count
1955     increment_mdp_data_at(mdp,
1956                           index,
1957                           in_bytes(MultiBranchData::relative_count_offset()));
1958 
1959     // The method data pointer needs to be updated.
1960     update_mdp_by_offset(mdp,
1961                          index,
1962                          in_bytes(MultiBranchData::
1963                                   relative_displacement_offset()));
1964 
1965     bind(profile_continue);
1966   }
1967 }
1968 
1969 
1970 
1971 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1972   if (state == atos) {
1973     MacroAssembler::verify_oop(reg);
1974   }
1975 }
1976 
1977 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1978 #ifndef _LP64
1979   if ((state == ftos && UseSSE < 1) ||
1980       (state == dtos && UseSSE < 2)) {
1981     MacroAssembler::verify_FPU(stack_depth);
1982   }
1983 #endif
1984 }
1985 
1986 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1987 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1988                                                         int increment, Address mask,
1989                                                         Register scratch, bool preloaded,
1990                                                         Condition cond, Label* where) {
1991   if (!preloaded) {
1992     movl(scratch, counter_addr);
1993   }
1994   incrementl(scratch, increment);
1995   movl(counter_addr, scratch);
1996   andl(scratch, mask);
1997   if (where != NULL) {
1998     jcc(cond, *where);
1999   }
2000 }
2001 
2002 void InterpreterMacroAssembler::notify_method_entry() {
2003   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2004   // track stack depth.  If it is possible to enter interp_only_mode we add
2005   // the code to check if the event should be sent.
2006   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2007   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2008   if (JvmtiExport::can_post_interpreter_events()) {
2009     Label L;
2010     NOT_LP64(get_thread(rthread);)
2011     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2012     testl(rdx, rdx);
2013     jcc(Assembler::zero, L);
2014     call_VM(noreg, CAST_FROM_FN_PTR(address,
2015                                     InterpreterRuntime::post_method_entry));
2016     bind(L);
2017   }
2018 
2019   {
2020     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2021     NOT_LP64(get_thread(rthread);)
2022     get_method(rarg);
2023     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2024                  rthread, rarg);
2025   }
2026 
2027   // RedefineClasses() tracing support for obsolete method entry
2028   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2029     NOT_LP64(get_thread(rthread);)
2030     get_method(rarg);
2031     call_VM_leaf(
2032       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2033       rthread, rarg);
2034   }
2035 }
2036 
2037 
2038 void InterpreterMacroAssembler::notify_method_exit(
2039     TosState state, NotifyMethodExitMode mode) {
2040   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2041   // track stack depth.  If it is possible to enter interp_only_mode we add
2042   // the code to check if the event should be sent.
2043   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2044   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2045   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2046     Label L;
2047     // Note: frame::interpreter_frame_result has a dependency on how the
2048     // method result is saved across the call to post_method_exit. If this
2049     // is changed then the interpreter_frame_result implementation will
2050     // need to be updated too.
2051 
2052     // template interpreter will leave the result on the top of the stack.
2053     push(state);
2054     NOT_LP64(get_thread(rthread);)
2055     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2056     testl(rdx, rdx);
2057     jcc(Assembler::zero, L);
2058     call_VM(noreg,
2059             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2060     bind(L);
2061     pop(state);
2062   }
2063 
2064   {
2065     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2066     push(state);
2067     NOT_LP64(get_thread(rthread);)
2068     get_method(rarg);
2069     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2070                  rthread, rarg);
2071     pop(state);
2072   }
2073 }
--- EOF ---