1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/accessDecorators.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "prims/methodHandles.hpp"
  39 #include "runtime/biasedLocking.hpp"
  40 #include "runtime/flags/flagSetting.hpp"
  41 #include "runtime/interfaceSupport.inline.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/os.hpp"
  44 #include "runtime/safepoint.hpp"
  45 #include "runtime/safepointMechanism.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/thread.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "crc32c.h"
  51 #ifdef COMPILER2
  52 #include "opto/intrinsicnode.hpp"
  53 #endif
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str) /* nothing */
  57 #define STOP(error) stop(error)
  58 #else
  59 #define BLOCK_COMMENT(str) block_comment(str)
  60 #define STOP(error) block_comment(error); stop(error)
  61 #endif
  62 
  63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  64 
  65 #ifdef ASSERT
  66 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  67 #endif
  68 
  69 static Assembler::Condition reverse[] = {
  70     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  71     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  72     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  73     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  74     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  75     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  76     Assembler::above          /* belowEqual    = 0x6 */ ,
  77     Assembler::belowEqual     /* above         = 0x7 */ ,
  78     Assembler::positive       /* negative      = 0x8 */ ,
  79     Assembler::negative       /* positive      = 0x9 */ ,
  80     Assembler::noParity       /* parity        = 0xa */ ,
  81     Assembler::parity         /* noParity      = 0xb */ ,
  82     Assembler::greaterEqual   /* less          = 0xc */ ,
  83     Assembler::less           /* greaterEqual  = 0xd */ ,
  84     Assembler::greater        /* lessEqual     = 0xe */ ,
  85     Assembler::lessEqual      /* greater       = 0xf, */
  86 
  87 };
  88 
  89 
  90 // Implementation of MacroAssembler
  91 
  92 // First all the versions that have distinct versions depending on 32/64 bit
  93 // Unless the difference is trivial (1 line or so).
  94 
  95 #ifndef _LP64
  96 
  97 // 32bit versions
  98 
  99 Address MacroAssembler::as_Address(AddressLiteral adr) {
 100   return Address(adr.target(), adr.rspec());
 101 }
 102 
 103 Address MacroAssembler::as_Address(ArrayAddress adr) {
 104   return Address::make_array(adr);
 105 }
 106 
 107 void MacroAssembler::call_VM_leaf_base(address entry_point,
 108                                        int number_of_arguments) {
 109   call(RuntimeAddress(entry_point));
 110   increment(rsp, number_of_arguments * wordSize);
 111 }
 112 
 113 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 114   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 115 }
 116 
 117 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 118   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 119 }
 120 
 121 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
 122   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 123 }
 124 
 125 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
 126   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 127 }
 128 
 129 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 130   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 131   bs->obj_equals(this, src1, obj);
 132 }
 133 
 134 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 135   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 136   bs->obj_equals(this, src1, obj);
 137 }
 138 
 139 void MacroAssembler::extend_sign(Register hi, Register lo) {
 140   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 141   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 142     cdql();
 143   } else {
 144     movl(hi, lo);
 145     sarl(hi, 31);
 146   }
 147 }
 148 
 149 void MacroAssembler::jC2(Register tmp, Label& L) {
 150   // set parity bit if FPU flag C2 is set (via rax)
 151   save_rax(tmp);
 152   fwait(); fnstsw_ax();
 153   sahf();
 154   restore_rax(tmp);
 155   // branch
 156   jcc(Assembler::parity, L);
 157 }
 158 
 159 void MacroAssembler::jnC2(Register tmp, Label& L) {
 160   // set parity bit if FPU flag C2 is set (via rax)
 161   save_rax(tmp);
 162   fwait(); fnstsw_ax();
 163   sahf();
 164   restore_rax(tmp);
 165   // branch
 166   jcc(Assembler::noParity, L);
 167 }
 168 
 169 // 32bit can do a case table jump in one instruction but we no longer allow the base
 170 // to be installed in the Address class
 171 void MacroAssembler::jump(ArrayAddress entry) {
 172   jmp(as_Address(entry));
 173 }
 174 
 175 // Note: y_lo will be destroyed
 176 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 177   // Long compare for Java (semantics as described in JVM spec.)
 178   Label high, low, done;
 179 
 180   cmpl(x_hi, y_hi);
 181   jcc(Assembler::less, low);
 182   jcc(Assembler::greater, high);
 183   // x_hi is the return register
 184   xorl(x_hi, x_hi);
 185   cmpl(x_lo, y_lo);
 186   jcc(Assembler::below, low);
 187   jcc(Assembler::equal, done);
 188 
 189   bind(high);
 190   xorl(x_hi, x_hi);
 191   increment(x_hi);
 192   jmp(done);
 193 
 194   bind(low);
 195   xorl(x_hi, x_hi);
 196   decrementl(x_hi);
 197 
 198   bind(done);
 199 }
 200 
 201 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 202     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 203 }
 204 
 205 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 206   // leal(dst, as_Address(adr));
 207   // see note in movl as to why we must use a move
 208   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 209 }
 210 
 211 void MacroAssembler::leave() {
 212   mov(rsp, rbp);
 213   pop(rbp);
 214 }
 215 
 216 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 217   // Multiplication of two Java long values stored on the stack
 218   // as illustrated below. Result is in rdx:rax.
 219   //
 220   // rsp ---> [  ??  ] \               \
 221   //            ....    | y_rsp_offset  |
 222   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 223   //          [ y_hi ]                  | (in bytes)
 224   //            ....                    |
 225   //          [ x_lo ]                 /
 226   //          [ x_hi ]
 227   //            ....
 228   //
 229   // Basic idea: lo(result) = lo(x_lo * y_lo)
 230   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 231   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 232   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 233   Label quick;
 234   // load x_hi, y_hi and check if quick
 235   // multiplication is possible
 236   movl(rbx, x_hi);
 237   movl(rcx, y_hi);
 238   movl(rax, rbx);
 239   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 240   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 241   // do full multiplication
 242   // 1st step
 243   mull(y_lo);                                    // x_hi * y_lo
 244   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 245   // 2nd step
 246   movl(rax, x_lo);
 247   mull(rcx);                                     // x_lo * y_hi
 248   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 249   // 3rd step
 250   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 251   movl(rax, x_lo);
 252   mull(y_lo);                                    // x_lo * y_lo
 253   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 254 }
 255 
 256 void MacroAssembler::lneg(Register hi, Register lo) {
 257   negl(lo);
 258   adcl(hi, 0);
 259   negl(hi);
 260 }
 261 
 262 void MacroAssembler::lshl(Register hi, Register lo) {
 263   // Java shift left long support (semantics as described in JVM spec., p.305)
 264   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 265   // shift value is in rcx !
 266   assert(hi != rcx, "must not use rcx");
 267   assert(lo != rcx, "must not use rcx");
 268   const Register s = rcx;                        // shift count
 269   const int      n = BitsPerWord;
 270   Label L;
 271   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 272   cmpl(s, n);                                    // if (s < n)
 273   jcc(Assembler::less, L);                       // else (s >= n)
 274   movl(hi, lo);                                  // x := x << n
 275   xorl(lo, lo);
 276   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 277   bind(L);                                       // s (mod n) < n
 278   shldl(hi, lo);                                 // x := x << s
 279   shll(lo);
 280 }
 281 
 282 
 283 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 284   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 285   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 286   assert(hi != rcx, "must not use rcx");
 287   assert(lo != rcx, "must not use rcx");
 288   const Register s = rcx;                        // shift count
 289   const int      n = BitsPerWord;
 290   Label L;
 291   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 292   cmpl(s, n);                                    // if (s < n)
 293   jcc(Assembler::less, L);                       // else (s >= n)
 294   movl(lo, hi);                                  // x := x >> n
 295   if (sign_extension) sarl(hi, 31);
 296   else                xorl(hi, hi);
 297   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 298   bind(L);                                       // s (mod n) < n
 299   shrdl(lo, hi);                                 // x := x >> s
 300   if (sign_extension) sarl(hi);
 301   else                shrl(hi);
 302 }
 303 
 304 void MacroAssembler::movoop(Register dst, jobject obj) {
 305   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 306 }
 307 
 308 void MacroAssembler::movoop(Address dst, jobject obj) {
 309   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 310 }
 311 
 312 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 313   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 314 }
 315 
 316 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 317   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 318 }
 319 
 320 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 321   // scratch register is not used,
 322   // it is defined to match parameters of 64-bit version of this method.
 323   if (src.is_lval()) {
 324     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 325   } else {
 326     movl(dst, as_Address(src));
 327   }
 328 }
 329 
 330 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 331   movl(as_Address(dst), src);
 332 }
 333 
 334 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 335   movl(dst, as_Address(src));
 336 }
 337 
 338 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 339 void MacroAssembler::movptr(Address dst, intptr_t src) {
 340   movl(dst, src);
 341 }
 342 
 343 
 344 void MacroAssembler::pop_callee_saved_registers() {
 345   pop(rcx);
 346   pop(rdx);
 347   pop(rdi);
 348   pop(rsi);
 349 }
 350 
 351 void MacroAssembler::pop_fTOS() {
 352   fld_d(Address(rsp, 0));
 353   addl(rsp, 2 * wordSize);
 354 }
 355 
 356 void MacroAssembler::push_callee_saved_registers() {
 357   push(rsi);
 358   push(rdi);
 359   push(rdx);
 360   push(rcx);
 361 }
 362 
 363 void MacroAssembler::push_fTOS() {
 364   subl(rsp, 2 * wordSize);
 365   fstp_d(Address(rsp, 0));
 366 }
 367 
 368 
 369 void MacroAssembler::pushoop(jobject obj) {
 370   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 371 }
 372 
 373 void MacroAssembler::pushklass(Metadata* obj) {
 374   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 375 }
 376 
 377 void MacroAssembler::pushptr(AddressLiteral src) {
 378   if (src.is_lval()) {
 379     push_literal32((int32_t)src.target(), src.rspec());
 380   } else {
 381     pushl(as_Address(src));
 382   }
 383 }
 384 
 385 void MacroAssembler::set_word_if_not_zero(Register dst) {
 386   xorl(dst, dst);
 387   set_byte_if_not_zero(dst);
 388 }
 389 
 390 static void pass_arg0(MacroAssembler* masm, Register arg) {
 391   masm->push(arg);
 392 }
 393 
 394 static void pass_arg1(MacroAssembler* masm, Register arg) {
 395   masm->push(arg);
 396 }
 397 
 398 static void pass_arg2(MacroAssembler* masm, Register arg) {
 399   masm->push(arg);
 400 }
 401 
 402 static void pass_arg3(MacroAssembler* masm, Register arg) {
 403   masm->push(arg);
 404 }
 405 
 406 #ifndef PRODUCT
 407 extern "C" void findpc(intptr_t x);
 408 #endif
 409 
 410 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 411   // In order to get locks to work, we need to fake a in_VM state
 412   JavaThread* thread = JavaThread::current();
 413   JavaThreadState saved_state = thread->thread_state();
 414   thread->set_thread_state(_thread_in_vm);
 415   if (ShowMessageBoxOnError) {
 416     JavaThread* thread = JavaThread::current();
 417     JavaThreadState saved_state = thread->thread_state();
 418     thread->set_thread_state(_thread_in_vm);
 419     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 420       ttyLocker ttyl;
 421       BytecodeCounter::print();
 422     }
 423     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 424     // This is the value of eip which points to where verify_oop will return.
 425     if (os::message_box(msg, "Execution stopped, print registers?")) {
 426       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 427       BREAKPOINT;
 428     }
 429   } else {
 430     ttyLocker ttyl;
 431     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 432   }
 433   // Don't assert holding the ttyLock
 434     assert(false, "DEBUG MESSAGE: %s", msg);
 435   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 436 }
 437 
 438 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 439   ttyLocker ttyl;
 440   FlagSetting fs(Debugging, true);
 441   tty->print_cr("eip = 0x%08x", eip);
 442 #ifndef PRODUCT
 443   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 444     tty->cr();
 445     findpc(eip);
 446     tty->cr();
 447   }
 448 #endif
 449 #define PRINT_REG(rax) \
 450   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 451   PRINT_REG(rax);
 452   PRINT_REG(rbx);
 453   PRINT_REG(rcx);
 454   PRINT_REG(rdx);
 455   PRINT_REG(rdi);
 456   PRINT_REG(rsi);
 457   PRINT_REG(rbp);
 458   PRINT_REG(rsp);
 459 #undef PRINT_REG
 460   // Print some words near top of staack.
 461   int* dump_sp = (int*) rsp;
 462   for (int col1 = 0; col1 < 8; col1++) {
 463     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 464     os::print_location(tty, *dump_sp++);
 465   }
 466   for (int row = 0; row < 16; row++) {
 467     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 468     for (int col = 0; col < 8; col++) {
 469       tty->print(" 0x%08x", *dump_sp++);
 470     }
 471     tty->cr();
 472   }
 473   // Print some instructions around pc:
 474   Disassembler::decode((address)eip-64, (address)eip);
 475   tty->print_cr("--------");
 476   Disassembler::decode((address)eip, (address)eip+32);
 477 }
 478 
 479 void MacroAssembler::stop(const char* msg) {
 480   ExternalAddress message((address)msg);
 481   // push address of message
 482   pushptr(message.addr());
 483   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 484   pusha();                                            // push registers
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 486   hlt();
 487 }
 488 
 489 void MacroAssembler::warn(const char* msg) {
 490   push_CPU_state();
 491 
 492   ExternalAddress message((address) msg);
 493   // push address of message
 494   pushptr(message.addr());
 495 
 496   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 497   addl(rsp, wordSize);       // discard argument
 498   pop_CPU_state();
 499 }
 500 
 501 void MacroAssembler::print_state() {
 502   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 503   pusha();                                            // push registers
 504 
 505   push_CPU_state();
 506   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 507   pop_CPU_state();
 508 
 509   popa();
 510   addl(rsp, wordSize);
 511 }
 512 
 513 #else // _LP64
 514 
 515 // 64 bit versions
 516 
 517 Address MacroAssembler::as_Address(AddressLiteral adr) {
 518   // amd64 always does this as a pc-rel
 519   // we can be absolute or disp based on the instruction type
 520   // jmp/call are displacements others are absolute
 521   assert(!adr.is_lval(), "must be rval");
 522   assert(reachable(adr), "must be");
 523   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 524 
 525 }
 526 
 527 Address MacroAssembler::as_Address(ArrayAddress adr) {
 528   AddressLiteral base = adr.base();
 529   lea(rscratch1, base);
 530   Address index = adr.index();
 531   assert(index._disp == 0, "must not have disp"); // maybe it can?
 532   Address array(rscratch1, index._index, index._scale, index._disp);
 533   return array;
 534 }
 535 
 536 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 537   Label L, E;
 538 
 539 #ifdef _WIN64
 540   // Windows always allocates space for it's register args
 541   assert(num_args <= 4, "only register arguments supported");
 542   subq(rsp,  frame::arg_reg_save_area_bytes);
 543 #endif
 544 
 545   // Align stack if necessary
 546   testl(rsp, 15);
 547   jcc(Assembler::zero, L);
 548 
 549   subq(rsp, 8);
 550   {
 551     call(RuntimeAddress(entry_point));
 552   }
 553   addq(rsp, 8);
 554   jmp(E);
 555 
 556   bind(L);
 557   {
 558     call(RuntimeAddress(entry_point));
 559   }
 560 
 561   bind(E);
 562 
 563 #ifdef _WIN64
 564   // restore stack pointer
 565   addq(rsp, frame::arg_reg_save_area_bytes);
 566 #endif
 567 
 568 }
 569 
 570 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 571   assert(!src2.is_lval(), "should use cmpptr");
 572 
 573   if (reachable(src2)) {
 574     cmpq(src1, as_Address(src2));
 575   } else {
 576     lea(rscratch1, src2);
 577     Assembler::cmpq(src1, Address(rscratch1, 0));
 578   }
 579 }
 580 
 581 int MacroAssembler::corrected_idivq(Register reg) {
 582   // Full implementation of Java ldiv and lrem; checks for special
 583   // case as described in JVM spec., p.243 & p.271.  The function
 584   // returns the (pc) offset of the idivl instruction - may be needed
 585   // for implicit exceptions.
 586   //
 587   //         normal case                           special case
 588   //
 589   // input : rax: dividend                         min_long
 590   //         reg: divisor   (may not be eax/edx)   -1
 591   //
 592   // output: rax: quotient  (= rax idiv reg)       min_long
 593   //         rdx: remainder (= rax irem reg)       0
 594   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 595   static const int64_t min_long = 0x8000000000000000;
 596   Label normal_case, special_case;
 597 
 598   // check for special case
 599   cmp64(rax, ExternalAddress((address) &min_long));
 600   jcc(Assembler::notEqual, normal_case);
 601   xorl(rdx, rdx); // prepare rdx for possible special case (where
 602                   // remainder = 0)
 603   cmpq(reg, -1);
 604   jcc(Assembler::equal, special_case);
 605 
 606   // handle normal case
 607   bind(normal_case);
 608   cdqq();
 609   int idivq_offset = offset();
 610   idivq(reg);
 611 
 612   // normal and special case exit
 613   bind(special_case);
 614 
 615   return idivq_offset;
 616 }
 617 
 618 void MacroAssembler::decrementq(Register reg, int value) {
 619   if (value == min_jint) { subq(reg, value); return; }
 620   if (value <  0) { incrementq(reg, -value); return; }
 621   if (value == 0) {                        ; return; }
 622   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 623   /* else */      { subq(reg, value)       ; return; }
 624 }
 625 
 626 void MacroAssembler::decrementq(Address dst, int value) {
 627   if (value == min_jint) { subq(dst, value); return; }
 628   if (value <  0) { incrementq(dst, -value); return; }
 629   if (value == 0) {                        ; return; }
 630   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 631   /* else */      { subq(dst, value)       ; return; }
 632 }
 633 
 634 void MacroAssembler::incrementq(AddressLiteral dst) {
 635   if (reachable(dst)) {
 636     incrementq(as_Address(dst));
 637   } else {
 638     lea(rscratch1, dst);
 639     incrementq(Address(rscratch1, 0));
 640   }
 641 }
 642 
 643 void MacroAssembler::incrementq(Register reg, int value) {
 644   if (value == min_jint) { addq(reg, value); return; }
 645   if (value <  0) { decrementq(reg, -value); return; }
 646   if (value == 0) {                        ; return; }
 647   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 648   /* else */      { addq(reg, value)       ; return; }
 649 }
 650 
 651 void MacroAssembler::incrementq(Address dst, int value) {
 652   if (value == min_jint) { addq(dst, value); return; }
 653   if (value <  0) { decrementq(dst, -value); return; }
 654   if (value == 0) {                        ; return; }
 655   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 656   /* else */      { addq(dst, value)       ; return; }
 657 }
 658 
 659 // 32bit can do a case table jump in one instruction but we no longer allow the base
 660 // to be installed in the Address class
 661 void MacroAssembler::jump(ArrayAddress entry) {
 662   lea(rscratch1, entry.base());
 663   Address dispatch = entry.index();
 664   assert(dispatch._base == noreg, "must be");
 665   dispatch._base = rscratch1;
 666   jmp(dispatch);
 667 }
 668 
 669 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 670   ShouldNotReachHere(); // 64bit doesn't use two regs
 671   cmpq(x_lo, y_lo);
 672 }
 673 
 674 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 675     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 676 }
 677 
 678 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 679   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 680   movptr(dst, rscratch1);
 681 }
 682 
 683 void MacroAssembler::leave() {
 684   // %%% is this really better? Why not on 32bit too?
 685   emit_int8((unsigned char)0xC9); // LEAVE
 686 }
 687 
 688 void MacroAssembler::lneg(Register hi, Register lo) {
 689   ShouldNotReachHere(); // 64bit doesn't use two regs
 690   negq(lo);
 691 }
 692 
 693 void MacroAssembler::movoop(Register dst, jobject obj) {
 694   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 695 }
 696 
 697 void MacroAssembler::movoop(Address dst, jobject obj) {
 698   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 699   movq(dst, rscratch1);
 700 }
 701 
 702 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 703   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 704 }
 705 
 706 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 707   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 708   movq(dst, rscratch1);
 709 }
 710 
 711 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 712   if (src.is_lval()) {
 713     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 714   } else {
 715     if (reachable(src)) {
 716       movq(dst, as_Address(src));
 717     } else {
 718       lea(scratch, src);
 719       movq(dst, Address(scratch, 0));
 720     }
 721   }
 722 }
 723 
 724 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 725   movq(as_Address(dst), src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 729   movq(dst, as_Address(src));
 730 }
 731 
 732 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 733 void MacroAssembler::movptr(Address dst, intptr_t src) {
 734   mov64(rscratch1, src);
 735   movq(dst, rscratch1);
 736 }
 737 
 738 // These are mostly for initializing NULL
 739 void MacroAssembler::movptr(Address dst, int32_t src) {
 740   movslq(dst, src);
 741 }
 742 
 743 void MacroAssembler::movptr(Register dst, int32_t src) {
 744   mov64(dst, (intptr_t)src);
 745 }
 746 
 747 void MacroAssembler::pushoop(jobject obj) {
 748   movoop(rscratch1, obj);
 749   push(rscratch1);
 750 }
 751 
 752 void MacroAssembler::pushklass(Metadata* obj) {
 753   mov_metadata(rscratch1, obj);
 754   push(rscratch1);
 755 }
 756 
 757 void MacroAssembler::pushptr(AddressLiteral src) {
 758   lea(rscratch1, src);
 759   if (src.is_lval()) {
 760     push(rscratch1);
 761   } else {
 762     pushq(Address(rscratch1, 0));
 763   }
 764 }
 765 
 766 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 767   // we must set sp to zero to clear frame
 768   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 769   // must clear fp, so that compiled frames are not confused; it is
 770   // possible that we need it only for debugging
 771   if (clear_fp) {
 772     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 773   }
 774 
 775   // Always clear the pc because it could have been set by make_walkable()
 776   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 777   vzeroupper();
 778 }
 779 
 780 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 781                                          Register last_java_fp,
 782                                          address  last_java_pc) {
 783   vzeroupper();
 784   // determine last_java_sp register
 785   if (!last_java_sp->is_valid()) {
 786     last_java_sp = rsp;
 787   }
 788 
 789   // last_java_fp is optional
 790   if (last_java_fp->is_valid()) {
 791     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 792            last_java_fp);
 793   }
 794 
 795   // last_java_pc is optional
 796   if (last_java_pc != NULL) {
 797     Address java_pc(r15_thread,
 798                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 799     lea(rscratch1, InternalAddress(last_java_pc));
 800     movptr(java_pc, rscratch1);
 801   }
 802 
 803   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 804 }
 805 
 806 static void pass_arg0(MacroAssembler* masm, Register arg) {
 807   if (c_rarg0 != arg ) {
 808     masm->mov(c_rarg0, arg);
 809   }
 810 }
 811 
 812 static void pass_arg1(MacroAssembler* masm, Register arg) {
 813   if (c_rarg1 != arg ) {
 814     masm->mov(c_rarg1, arg);
 815   }
 816 }
 817 
 818 static void pass_arg2(MacroAssembler* masm, Register arg) {
 819   if (c_rarg2 != arg ) {
 820     masm->mov(c_rarg2, arg);
 821   }
 822 }
 823 
 824 static void pass_arg3(MacroAssembler* masm, Register arg) {
 825   if (c_rarg3 != arg ) {
 826     masm->mov(c_rarg3, arg);
 827   }
 828 }
 829 
 830 void MacroAssembler::stop(const char* msg) {
 831   address rip = pc();
 832   pusha(); // get regs on stack
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   lea(c_rarg1, InternalAddress(rip));
 835   movq(c_rarg2, rsp); // pass pointer to regs array
 836   andq(rsp, -16); // align stack as required by ABI
 837   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 838   hlt();
 839 }
 840 
 841 void MacroAssembler::warn(const char* msg) {
 842   push(rbp);
 843   movq(rbp, rsp);
 844   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 845   push_CPU_state();   // keeps alignment at 16 bytes
 846   lea(c_rarg0, ExternalAddress((address) msg));
 847   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 848   call(rax);
 849   pop_CPU_state();
 850   mov(rsp, rbp);
 851   pop(rbp);
 852 }
 853 
 854 void MacroAssembler::print_state() {
 855   address rip = pc();
 856   pusha();            // get regs on stack
 857   push(rbp);
 858   movq(rbp, rsp);
 859   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 860   push_CPU_state();   // keeps alignment at 16 bytes
 861 
 862   lea(c_rarg0, InternalAddress(rip));
 863   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 864   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 865 
 866   pop_CPU_state();
 867   mov(rsp, rbp);
 868   pop(rbp);
 869   popa();
 870 }
 871 
 872 #ifndef PRODUCT
 873 extern "C" void findpc(intptr_t x);
 874 #endif
 875 
 876 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 877   // In order to get locks to work, we need to fake a in_VM state
 878   if (ShowMessageBoxOnError) {
 879     JavaThread* thread = JavaThread::current();
 880     JavaThreadState saved_state = thread->thread_state();
 881     thread->set_thread_state(_thread_in_vm);
 882 #ifndef PRODUCT
 883     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 884       ttyLocker ttyl;
 885       BytecodeCounter::print();
 886     }
 887 #endif
 888     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 889     // XXX correct this offset for amd64
 890     // This is the value of eip which points to where verify_oop will return.
 891     if (os::message_box(msg, "Execution stopped, print registers?")) {
 892       print_state64(pc, regs);
 893       BREAKPOINT;
 894       assert(false, "start up GDB");
 895     }
 896     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 897   } else {
 898     ttyLocker ttyl;
 899     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 900                     msg);
 901     assert(false, "DEBUG MESSAGE: %s", msg);
 902   }
 903 }
 904 
 905 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 906   ttyLocker ttyl;
 907   FlagSetting fs(Debugging, true);
 908   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 909 #ifndef PRODUCT
 910   tty->cr();
 911   findpc(pc);
 912   tty->cr();
 913 #endif
 914 #define PRINT_REG(rax, value) \
 915   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 916   PRINT_REG(rax, regs[15]);
 917   PRINT_REG(rbx, regs[12]);
 918   PRINT_REG(rcx, regs[14]);
 919   PRINT_REG(rdx, regs[13]);
 920   PRINT_REG(rdi, regs[8]);
 921   PRINT_REG(rsi, regs[9]);
 922   PRINT_REG(rbp, regs[10]);
 923   PRINT_REG(rsp, regs[11]);
 924   PRINT_REG(r8 , regs[7]);
 925   PRINT_REG(r9 , regs[6]);
 926   PRINT_REG(r10, regs[5]);
 927   PRINT_REG(r11, regs[4]);
 928   PRINT_REG(r12, regs[3]);
 929   PRINT_REG(r13, regs[2]);
 930   PRINT_REG(r14, regs[1]);
 931   PRINT_REG(r15, regs[0]);
 932 #undef PRINT_REG
 933   // Print some words near top of staack.
 934   int64_t* rsp = (int64_t*) regs[11];
 935   int64_t* dump_sp = rsp;
 936   for (int col1 = 0; col1 < 8; col1++) {
 937     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 938     os::print_location(tty, *dump_sp++);
 939   }
 940   for (int row = 0; row < 25; row++) {
 941     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 942     for (int col = 0; col < 4; col++) {
 943       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 944     }
 945     tty->cr();
 946   }
 947   // Print some instructions around pc:
 948   Disassembler::decode((address)pc-64, (address)pc);
 949   tty->print_cr("--------");
 950   Disassembler::decode((address)pc, (address)pc+32);
 951 }
 952 
 953 #endif // _LP64
 954 
 955 // Now versions that are common to 32/64 bit
 956 
 957 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 958   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 959 }
 960 
 961 void MacroAssembler::addptr(Register dst, Register src) {
 962   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 963 }
 964 
 965 void MacroAssembler::addptr(Address dst, Register src) {
 966   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 967 }
 968 
 969 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 970   if (reachable(src)) {
 971     Assembler::addsd(dst, as_Address(src));
 972   } else {
 973     lea(rscratch1, src);
 974     Assembler::addsd(dst, Address(rscratch1, 0));
 975   }
 976 }
 977 
 978 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 979   if (reachable(src)) {
 980     addss(dst, as_Address(src));
 981   } else {
 982     lea(rscratch1, src);
 983     addss(dst, Address(rscratch1, 0));
 984   }
 985 }
 986 
 987 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 988   if (reachable(src)) {
 989     Assembler::addpd(dst, as_Address(src));
 990   } else {
 991     lea(rscratch1, src);
 992     Assembler::addpd(dst, Address(rscratch1, 0));
 993   }
 994 }
 995 
 996 void MacroAssembler::align(int modulus) {
 997   align(modulus, offset());
 998 }
 999 
1000 void MacroAssembler::align(int modulus, int target) {
1001   if (target % modulus != 0) {
1002     nop(modulus - (target % modulus));
1003   }
1004 }
1005 
1006 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
1007   // Used in sign-masking with aligned address.
1008   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1009   if (reachable(src)) {
1010     Assembler::andpd(dst, as_Address(src));
1011   } else {
1012     lea(rscratch1, src);
1013     Assembler::andpd(dst, Address(rscratch1, 0));
1014   }
1015 }
1016 
1017 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1018   // Used in sign-masking with aligned address.
1019   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1020   if (reachable(src)) {
1021     Assembler::andps(dst, as_Address(src));
1022   } else {
1023     lea(rscratch1, src);
1024     Assembler::andps(dst, Address(rscratch1, 0));
1025   }
1026 }
1027 
1028 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1029   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1030 }
1031 
1032 void MacroAssembler::atomic_incl(Address counter_addr) {
1033   if (os::is_MP())
1034     lock();
1035   incrementl(counter_addr);
1036 }
1037 
1038 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1039   if (reachable(counter_addr)) {
1040     atomic_incl(as_Address(counter_addr));
1041   } else {
1042     lea(scr, counter_addr);
1043     atomic_incl(Address(scr, 0));
1044   }
1045 }
1046 
1047 #ifdef _LP64
1048 void MacroAssembler::atomic_incq(Address counter_addr) {
1049   if (os::is_MP())
1050     lock();
1051   incrementq(counter_addr);
1052 }
1053 
1054 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1055   if (reachable(counter_addr)) {
1056     atomic_incq(as_Address(counter_addr));
1057   } else {
1058     lea(scr, counter_addr);
1059     atomic_incq(Address(scr, 0));
1060   }
1061 }
1062 #endif
1063 
1064 // Writes to stack successive pages until offset reached to check for
1065 // stack overflow + shadow pages.  This clobbers tmp.
1066 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1067   movptr(tmp, rsp);
1068   // Bang stack for total size given plus shadow page size.
1069   // Bang one page at a time because large size can bang beyond yellow and
1070   // red zones.
1071   Label loop;
1072   bind(loop);
1073   movl(Address(tmp, (-os::vm_page_size())), size );
1074   subptr(tmp, os::vm_page_size());
1075   subl(size, os::vm_page_size());
1076   jcc(Assembler::greater, loop);
1077 
1078   // Bang down shadow pages too.
1079   // At this point, (tmp-0) is the last address touched, so don't
1080   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1081   // was post-decremented.)  Skip this address by starting at i=1, and
1082   // touch a few more pages below.  N.B.  It is important to touch all
1083   // the way down including all pages in the shadow zone.
1084   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1085     // this could be any sized move but this is can be a debugging crumb
1086     // so the bigger the better.
1087     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1088   }
1089 }
1090 
1091 void MacroAssembler::reserved_stack_check() {
1092     // testing if reserved zone needs to be enabled
1093     Label no_reserved_zone_enabling;
1094     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1095     NOT_LP64(get_thread(rsi);)
1096 
1097     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1098     jcc(Assembler::below, no_reserved_zone_enabling);
1099 
1100     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1101     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1102     should_not_reach_here();
1103 
1104     bind(no_reserved_zone_enabling);
1105 }
1106 
1107 int MacroAssembler::biased_locking_enter(Register lock_reg,
1108                                          Register obj_reg,
1109                                          Register swap_reg,
1110                                          Register tmp_reg,
1111                                          bool swap_reg_contains_mark,
1112                                          Label& done,
1113                                          Label* slow_case,
1114                                          BiasedLockingCounters* counters) {
1115   assert(UseBiasedLocking, "why call this otherwise?");
1116   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1117   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1118   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1119   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1120   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1121   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1122 
1123   if (PrintBiasedLockingStatistics && counters == NULL) {
1124     counters = BiasedLocking::counters();
1125   }
1126   // Biased locking
1127   // See whether the lock is currently biased toward our thread and
1128   // whether the epoch is still valid
1129   // Note that the runtime guarantees sufficient alignment of JavaThread
1130   // pointers to allow age to be placed into low bits
1131   // First check to see whether biasing is even enabled for this object
1132   Label cas_label;
1133   int null_check_offset = -1;
1134   if (!swap_reg_contains_mark) {
1135     null_check_offset = offset();
1136     movptr(swap_reg, mark_addr);
1137   }
1138   movptr(tmp_reg, swap_reg);
1139   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1140   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1141   jcc(Assembler::notEqual, cas_label);
1142   // The bias pattern is present in the object's header. Need to check
1143   // whether the bias owner and the epoch are both still current.
1144 #ifndef _LP64
1145   // Note that because there is no current thread register on x86_32 we
1146   // need to store off the mark word we read out of the object to
1147   // avoid reloading it and needing to recheck invariants below. This
1148   // store is unfortunate but it makes the overall code shorter and
1149   // simpler.
1150   movptr(saved_mark_addr, swap_reg);
1151 #endif
1152   if (swap_reg_contains_mark) {
1153     null_check_offset = offset();
1154   }
1155   load_prototype_header(tmp_reg, obj_reg);
1156 #ifdef _LP64
1157   orptr(tmp_reg, r15_thread);
1158   xorptr(tmp_reg, swap_reg);
1159   Register header_reg = tmp_reg;
1160 #else
1161   xorptr(tmp_reg, swap_reg);
1162   get_thread(swap_reg);
1163   xorptr(swap_reg, tmp_reg);
1164   Register header_reg = swap_reg;
1165 #endif
1166   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1167   if (counters != NULL) {
1168     cond_inc32(Assembler::zero,
1169                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1170   }
1171   jcc(Assembler::equal, done);
1172 
1173   Label try_revoke_bias;
1174   Label try_rebias;
1175 
1176   // At this point we know that the header has the bias pattern and
1177   // that we are not the bias owner in the current epoch. We need to
1178   // figure out more details about the state of the header in order to
1179   // know what operations can be legally performed on the object's
1180   // header.
1181 
1182   // If the low three bits in the xor result aren't clear, that means
1183   // the prototype header is no longer biased and we have to revoke
1184   // the bias on this object.
1185   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1186   jccb(Assembler::notZero, try_revoke_bias);
1187 
1188   // Biasing is still enabled for this data type. See whether the
1189   // epoch of the current bias is still valid, meaning that the epoch
1190   // bits of the mark word are equal to the epoch bits of the
1191   // prototype header. (Note that the prototype header's epoch bits
1192   // only change at a safepoint.) If not, attempt to rebias the object
1193   // toward the current thread. Note that we must be absolutely sure
1194   // that the current epoch is invalid in order to do this because
1195   // otherwise the manipulations it performs on the mark word are
1196   // illegal.
1197   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1198   jccb(Assembler::notZero, try_rebias);
1199 
1200   // The epoch of the current bias is still valid but we know nothing
1201   // about the owner; it might be set or it might be clear. Try to
1202   // acquire the bias of the object using an atomic operation. If this
1203   // fails we will go in to the runtime to revoke the object's bias.
1204   // Note that we first construct the presumed unbiased header so we
1205   // don't accidentally blow away another thread's valid bias.
1206   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1207   andptr(swap_reg,
1208          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1209 #ifdef _LP64
1210   movptr(tmp_reg, swap_reg);
1211   orptr(tmp_reg, r15_thread);
1212 #else
1213   get_thread(tmp_reg);
1214   orptr(tmp_reg, swap_reg);
1215 #endif
1216   if (os::is_MP()) {
1217     lock();
1218   }
1219   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1220   // If the biasing toward our thread failed, this means that
1221   // another thread succeeded in biasing it toward itself and we
1222   // need to revoke that bias. The revocation will occur in the
1223   // interpreter runtime in the slow case.
1224   if (counters != NULL) {
1225     cond_inc32(Assembler::zero,
1226                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1227   }
1228   if (slow_case != NULL) {
1229     jcc(Assembler::notZero, *slow_case);
1230   }
1231   jmp(done);
1232 
1233   bind(try_rebias);
1234   // At this point we know the epoch has expired, meaning that the
1235   // current "bias owner", if any, is actually invalid. Under these
1236   // circumstances _only_, we are allowed to use the current header's
1237   // value as the comparison value when doing the cas to acquire the
1238   // bias in the current epoch. In other words, we allow transfer of
1239   // the bias from one thread to another directly in this situation.
1240   //
1241   // FIXME: due to a lack of registers we currently blow away the age
1242   // bits in this situation. Should attempt to preserve them.
1243   load_prototype_header(tmp_reg, obj_reg);
1244 #ifdef _LP64
1245   orptr(tmp_reg, r15_thread);
1246 #else
1247   get_thread(swap_reg);
1248   orptr(tmp_reg, swap_reg);
1249   movptr(swap_reg, saved_mark_addr);
1250 #endif
1251   if (os::is_MP()) {
1252     lock();
1253   }
1254   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1255   // If the biasing toward our thread failed, then another thread
1256   // succeeded in biasing it toward itself and we need to revoke that
1257   // bias. The revocation will occur in the runtime in the slow case.
1258   if (counters != NULL) {
1259     cond_inc32(Assembler::zero,
1260                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1261   }
1262   if (slow_case != NULL) {
1263     jcc(Assembler::notZero, *slow_case);
1264   }
1265   jmp(done);
1266 
1267   bind(try_revoke_bias);
1268   // The prototype mark in the klass doesn't have the bias bit set any
1269   // more, indicating that objects of this data type are not supposed
1270   // to be biased any more. We are going to try to reset the mark of
1271   // this object to the prototype value and fall through to the
1272   // CAS-based locking scheme. Note that if our CAS fails, it means
1273   // that another thread raced us for the privilege of revoking the
1274   // bias of this particular object, so it's okay to continue in the
1275   // normal locking code.
1276   //
1277   // FIXME: due to a lack of registers we currently blow away the age
1278   // bits in this situation. Should attempt to preserve them.
1279   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1280   load_prototype_header(tmp_reg, obj_reg);
1281   if (os::is_MP()) {
1282     lock();
1283   }
1284   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1285   // Fall through to the normal CAS-based lock, because no matter what
1286   // the result of the above CAS, some thread must have succeeded in
1287   // removing the bias bit from the object's header.
1288   if (counters != NULL) {
1289     cond_inc32(Assembler::zero,
1290                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1291   }
1292 
1293   bind(cas_label);
1294 
1295   return null_check_offset;
1296 }
1297 
1298 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1299   assert(UseBiasedLocking, "why call this otherwise?");
1300 
1301   // Check for biased locking unlock case, which is a no-op
1302   // Note: we do not have to check the thread ID for two reasons.
1303   // First, the interpreter checks for IllegalMonitorStateException at
1304   // a higher level. Second, if the bias was revoked while we held the
1305   // lock, the object could not be rebiased toward another thread, so
1306   // the bias bit would be clear.
1307   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1308   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1309   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1310   jcc(Assembler::equal, done);
1311 }
1312 
1313 #ifdef COMPILER2
1314 
1315 #if INCLUDE_RTM_OPT
1316 
1317 // Update rtm_counters based on abort status
1318 // input: abort_status
1319 //        rtm_counters (RTMLockingCounters*)
1320 // flags are killed
1321 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1322 
1323   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1324   if (PrintPreciseRTMLockingStatistics) {
1325     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1326       Label check_abort;
1327       testl(abort_status, (1<<i));
1328       jccb(Assembler::equal, check_abort);
1329       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1330       bind(check_abort);
1331     }
1332   }
1333 }
1334 
1335 // Branch if (random & (count-1) != 0), count is 2^n
1336 // tmp, scr and flags are killed
1337 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1338   assert(tmp == rax, "");
1339   assert(scr == rdx, "");
1340   rdtsc(); // modifies EDX:EAX
1341   andptr(tmp, count-1);
1342   jccb(Assembler::notZero, brLabel);
1343 }
1344 
1345 // Perform abort ratio calculation, set no_rtm bit if high ratio
1346 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1347 // tmpReg, rtm_counters_Reg and flags are killed
1348 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1349                                                  Register rtm_counters_Reg,
1350                                                  RTMLockingCounters* rtm_counters,
1351                                                  Metadata* method_data) {
1352   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1353 
1354   if (RTMLockingCalculationDelay > 0) {
1355     // Delay calculation
1356     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1357     testptr(tmpReg, tmpReg);
1358     jccb(Assembler::equal, L_done);
1359   }
1360   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1361   //   Aborted transactions = abort_count * 100
1362   //   All transactions = total_count *  RTMTotalCountIncrRate
1363   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1364 
1365   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1366   cmpptr(tmpReg, RTMAbortThreshold);
1367   jccb(Assembler::below, L_check_always_rtm2);
1368   imulptr(tmpReg, tmpReg, 100);
1369 
1370   Register scrReg = rtm_counters_Reg;
1371   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1372   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1373   imulptr(scrReg, scrReg, RTMAbortRatio);
1374   cmpptr(tmpReg, scrReg);
1375   jccb(Assembler::below, L_check_always_rtm1);
1376   if (method_data != NULL) {
1377     // set rtm_state to "no rtm" in MDO
1378     mov_metadata(tmpReg, method_data);
1379     if (os::is_MP()) {
1380       lock();
1381     }
1382     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1383   }
1384   jmpb(L_done);
1385   bind(L_check_always_rtm1);
1386   // Reload RTMLockingCounters* address
1387   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1388   bind(L_check_always_rtm2);
1389   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1390   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1391   jccb(Assembler::below, L_done);
1392   if (method_data != NULL) {
1393     // set rtm_state to "always rtm" in MDO
1394     mov_metadata(tmpReg, method_data);
1395     if (os::is_MP()) {
1396       lock();
1397     }
1398     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1399   }
1400   bind(L_done);
1401 }
1402 
1403 // Update counters and perform abort ratio calculation
1404 // input:  abort_status_Reg
1405 // rtm_counters_Reg, flags are killed
1406 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1407                                    Register rtm_counters_Reg,
1408                                    RTMLockingCounters* rtm_counters,
1409                                    Metadata* method_data,
1410                                    bool profile_rtm) {
1411 
1412   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1413   // update rtm counters based on rax value at abort
1414   // reads abort_status_Reg, updates flags
1415   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1416   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1417   if (profile_rtm) {
1418     // Save abort status because abort_status_Reg is used by following code.
1419     if (RTMRetryCount > 0) {
1420       push(abort_status_Reg);
1421     }
1422     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1423     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1424     // restore abort status
1425     if (RTMRetryCount > 0) {
1426       pop(abort_status_Reg);
1427     }
1428   }
1429 }
1430 
1431 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1432 // inputs: retry_count_Reg
1433 //       : abort_status_Reg
1434 // output: retry_count_Reg decremented by 1
1435 // flags are killed
1436 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1437   Label doneRetry;
1438   assert(abort_status_Reg == rax, "");
1439   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1440   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1441   // if reason is in 0x6 and retry count != 0 then retry
1442   andptr(abort_status_Reg, 0x6);
1443   jccb(Assembler::zero, doneRetry);
1444   testl(retry_count_Reg, retry_count_Reg);
1445   jccb(Assembler::zero, doneRetry);
1446   pause();
1447   decrementl(retry_count_Reg);
1448   jmp(retryLabel);
1449   bind(doneRetry);
1450 }
1451 
1452 // Spin and retry if lock is busy,
1453 // inputs: box_Reg (monitor address)
1454 //       : retry_count_Reg
1455 // output: retry_count_Reg decremented by 1
1456 //       : clear z flag if retry count exceeded
1457 // tmp_Reg, scr_Reg, flags are killed
1458 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1459                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1460   Label SpinLoop, SpinExit, doneRetry;
1461   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1462 
1463   testl(retry_count_Reg, retry_count_Reg);
1464   jccb(Assembler::zero, doneRetry);
1465   decrementl(retry_count_Reg);
1466   movptr(scr_Reg, RTMSpinLoopCount);
1467 
1468   bind(SpinLoop);
1469   pause();
1470   decrementl(scr_Reg);
1471   jccb(Assembler::lessEqual, SpinExit);
1472   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1473   testptr(tmp_Reg, tmp_Reg);
1474   jccb(Assembler::notZero, SpinLoop);
1475 
1476   bind(SpinExit);
1477   jmp(retryLabel);
1478   bind(doneRetry);
1479   incrementl(retry_count_Reg); // clear z flag
1480 }
1481 
1482 // Use RTM for normal stack locks
1483 // Input: objReg (object to lock)
1484 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1485                                        Register retry_on_abort_count_Reg,
1486                                        RTMLockingCounters* stack_rtm_counters,
1487                                        Metadata* method_data, bool profile_rtm,
1488                                        Label& DONE_LABEL, Label& IsInflated) {
1489   assert(UseRTMForStackLocks, "why call this otherwise?");
1490   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1491   assert(tmpReg == rax, "");
1492   assert(scrReg == rdx, "");
1493   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1494 
1495   if (RTMRetryCount > 0) {
1496     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1497     bind(L_rtm_retry);
1498   }
1499   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1500   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1501   jcc(Assembler::notZero, IsInflated);
1502 
1503   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1504     Label L_noincrement;
1505     if (RTMTotalCountIncrRate > 1) {
1506       // tmpReg, scrReg and flags are killed
1507       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1508     }
1509     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1510     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1511     bind(L_noincrement);
1512   }
1513   xbegin(L_on_abort);
1514   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1515   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1516   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1517   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1518 
1519   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1520   if (UseRTMXendForLockBusy) {
1521     xend();
1522     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1523     jmp(L_decrement_retry);
1524   }
1525   else {
1526     xabort(0);
1527   }
1528   bind(L_on_abort);
1529   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1530     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1531   }
1532   bind(L_decrement_retry);
1533   if (RTMRetryCount > 0) {
1534     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1535     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1536   }
1537 }
1538 
1539 // Use RTM for inflating locks
1540 // inputs: objReg (object to lock)
1541 //         boxReg (on-stack box address (displaced header location) - KILLED)
1542 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1543 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1544                                           Register scrReg, Register retry_on_busy_count_Reg,
1545                                           Register retry_on_abort_count_Reg,
1546                                           RTMLockingCounters* rtm_counters,
1547                                           Metadata* method_data, bool profile_rtm,
1548                                           Label& DONE_LABEL) {
1549   assert(UseRTMLocking, "why call this otherwise?");
1550   assert(tmpReg == rax, "");
1551   assert(scrReg == rdx, "");
1552   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1553   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1554 
1555   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1556   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1557   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1558 
1559   if (RTMRetryCount > 0) {
1560     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1561     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1562     bind(L_rtm_retry);
1563   }
1564   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1565     Label L_noincrement;
1566     if (RTMTotalCountIncrRate > 1) {
1567       // tmpReg, scrReg and flags are killed
1568       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1569     }
1570     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1571     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1572     bind(L_noincrement);
1573   }
1574   xbegin(L_on_abort);
1575   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1576   movptr(tmpReg, Address(tmpReg, owner_offset));
1577   testptr(tmpReg, tmpReg);
1578   jcc(Assembler::zero, DONE_LABEL);
1579   if (UseRTMXendForLockBusy) {
1580     xend();
1581     jmp(L_decrement_retry);
1582   }
1583   else {
1584     xabort(0);
1585   }
1586   bind(L_on_abort);
1587   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1588   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1589     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1590   }
1591   if (RTMRetryCount > 0) {
1592     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1593     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1594   }
1595 
1596   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1597   testptr(tmpReg, tmpReg) ;
1598   jccb(Assembler::notZero, L_decrement_retry) ;
1599 
1600   // Appears unlocked - try to swing _owner from null to non-null.
1601   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1602 #ifdef _LP64
1603   Register threadReg = r15_thread;
1604 #else
1605   get_thread(scrReg);
1606   Register threadReg = scrReg;
1607 #endif
1608   if (os::is_MP()) {
1609     lock();
1610   }
1611   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1612 
1613   if (RTMRetryCount > 0) {
1614     // success done else retry
1615     jccb(Assembler::equal, DONE_LABEL) ;
1616     bind(L_decrement_retry);
1617     // Spin and retry if lock is busy.
1618     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1619   }
1620   else {
1621     bind(L_decrement_retry);
1622   }
1623 }
1624 
1625 #endif //  INCLUDE_RTM_OPT
1626 
1627 // Fast_Lock and Fast_Unlock used by C2
1628 
1629 // Because the transitions from emitted code to the runtime
1630 // monitorenter/exit helper stubs are so slow it's critical that
1631 // we inline both the stack-locking fast-path and the inflated fast path.
1632 //
1633 // See also: cmpFastLock and cmpFastUnlock.
1634 //
1635 // What follows is a specialized inline transliteration of the code
1636 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1637 // another option would be to emit TrySlowEnter and TrySlowExit methods
1638 // at startup-time.  These methods would accept arguments as
1639 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1640 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1641 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1642 // In practice, however, the # of lock sites is bounded and is usually small.
1643 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1644 // if the processor uses simple bimodal branch predictors keyed by EIP
1645 // Since the helper routines would be called from multiple synchronization
1646 // sites.
1647 //
1648 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1649 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1650 // to those specialized methods.  That'd give us a mostly platform-independent
1651 // implementation that the JITs could optimize and inline at their pleasure.
1652 // Done correctly, the only time we'd need to cross to native could would be
1653 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1654 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1655 // (b) explicit barriers or fence operations.
1656 //
1657 // TODO:
1658 //
1659 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1660 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1661 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1662 //    the lock operators would typically be faster than reifying Self.
1663 //
1664 // *  Ideally I'd define the primitives as:
1665 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1666 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1667 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1668 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1669 //    Furthermore the register assignments are overconstrained, possibly resulting in
1670 //    sub-optimal code near the synchronization site.
1671 //
1672 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1673 //    Alternately, use a better sp-proximity test.
1674 //
1675 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1676 //    Either one is sufficient to uniquely identify a thread.
1677 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1678 //
1679 // *  Intrinsify notify() and notifyAll() for the common cases where the
1680 //    object is locked by the calling thread but the waitlist is empty.
1681 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1682 //
1683 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1684 //    But beware of excessive branch density on AMD Opterons.
1685 //
1686 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1687 //    or failure of the fast-path.  If the fast-path fails then we pass
1688 //    control to the slow-path, typically in C.  In Fast_Lock and
1689 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1690 //    will emit a conditional branch immediately after the node.
1691 //    So we have branches to branches and lots of ICC.ZF games.
1692 //    Instead, it might be better to have C2 pass a "FailureLabel"
1693 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1694 //    will drop through the node.  ICC.ZF is undefined at exit.
1695 //    In the case of failure, the node will branch directly to the
1696 //    FailureLabel
1697 
1698 
1699 // obj: object to lock
1700 // box: on-stack box address (displaced header location) - KILLED
1701 // rax,: tmp -- KILLED
1702 // scr: tmp -- KILLED
1703 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1704                                Register scrReg, Register cx1Reg, Register cx2Reg,
1705                                BiasedLockingCounters* counters,
1706                                RTMLockingCounters* rtm_counters,
1707                                RTMLockingCounters* stack_rtm_counters,
1708                                Metadata* method_data,
1709                                bool use_rtm, bool profile_rtm) {
1710   // Ensure the register assignments are disjoint
1711   assert(tmpReg == rax, "");
1712 
1713   if (use_rtm) {
1714     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1715   } else {
1716     assert(cx1Reg == noreg, "");
1717     assert(cx2Reg == noreg, "");
1718     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1719   }
1720 
1721   if (counters != NULL) {
1722     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1723   }
1724   if (EmitSync & 1) {
1725       // set box->dhw = markOopDesc::unused_mark()
1726       // Force all sync thru slow-path: slow_enter() and slow_exit()
1727       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1728       cmpptr (rsp, (int32_t)NULL_WORD);
1729   } else {
1730     // Possible cases that we'll encounter in fast_lock
1731     // ------------------------------------------------
1732     // * Inflated
1733     //    -- unlocked
1734     //    -- Locked
1735     //       = by self
1736     //       = by other
1737     // * biased
1738     //    -- by Self
1739     //    -- by other
1740     // * neutral
1741     // * stack-locked
1742     //    -- by self
1743     //       = sp-proximity test hits
1744     //       = sp-proximity test generates false-negative
1745     //    -- by other
1746     //
1747 
1748     Label IsInflated, DONE_LABEL;
1749 
1750     // it's stack-locked, biased or neutral
1751     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1752     // order to reduce the number of conditional branches in the most common cases.
1753     // Beware -- there's a subtle invariant that fetch of the markword
1754     // at [FETCH], below, will never observe a biased encoding (*101b).
1755     // If this invariant is not held we risk exclusion (safety) failure.
1756     if (UseBiasedLocking && !UseOptoBiasInlining) {
1757       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1758     }
1759 
1760 #if INCLUDE_RTM_OPT
1761     if (UseRTMForStackLocks && use_rtm) {
1762       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1763                         stack_rtm_counters, method_data, profile_rtm,
1764                         DONE_LABEL, IsInflated);
1765     }
1766 #endif // INCLUDE_RTM_OPT
1767 
1768     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1769     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1770     jccb(Assembler::notZero, IsInflated);
1771 
1772     // Attempt stack-locking ...
1773     orptr (tmpReg, markOopDesc::unlocked_value);
1774     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1775     if (os::is_MP()) {
1776       lock();
1777     }
1778     cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1779     if (counters != NULL) {
1780       cond_inc32(Assembler::equal,
1781                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1782     }
1783     jcc(Assembler::equal, DONE_LABEL);           // Success
1784 
1785     // Recursive locking.
1786     // The object is stack-locked: markword contains stack pointer to BasicLock.
1787     // Locked by current thread if difference with current SP is less than one page.
1788     subptr(tmpReg, rsp);
1789     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1790     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1791     movptr(Address(boxReg, 0), tmpReg);
1792     if (counters != NULL) {
1793       cond_inc32(Assembler::equal,
1794                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1795     }
1796     jmp(DONE_LABEL);
1797 
1798     bind(IsInflated);
1799     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1800 
1801 #if INCLUDE_RTM_OPT
1802     // Use the same RTM locking code in 32- and 64-bit VM.
1803     if (use_rtm) {
1804       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1805                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1806     } else {
1807 #endif // INCLUDE_RTM_OPT
1808 
1809 #ifndef _LP64
1810     // The object is inflated.
1811 
1812     // boxReg refers to the on-stack BasicLock in the current frame.
1813     // We'd like to write:
1814     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1815     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1816     // additional latency as we have another ST in the store buffer that must drain.
1817 
1818     if (EmitSync & 8192) {
1819        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1820        get_thread (scrReg);
1821        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1822        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1823        if (os::is_MP()) {
1824          lock();
1825        }
1826        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1827     } else
1828     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1829        // register juggle because we need tmpReg for cmpxchgptr below
1830        movptr(scrReg, boxReg);
1831        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1832 
1833        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1834        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1835           // prefetchw [eax + Offset(_owner)-2]
1836           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1837        }
1838 
1839        if ((EmitSync & 64) == 0) {
1840          // Optimistic form: consider XORL tmpReg,tmpReg
1841          movptr(tmpReg, NULL_WORD);
1842        } else {
1843          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1844          // Test-And-CAS instead of CAS
1845          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1846          testptr(tmpReg, tmpReg);                   // Locked ?
1847          jccb  (Assembler::notZero, DONE_LABEL);
1848        }
1849 
1850        // Appears unlocked - try to swing _owner from null to non-null.
1851        // Ideally, I'd manifest "Self" with get_thread and then attempt
1852        // to CAS the register containing Self into m->Owner.
1853        // But we don't have enough registers, so instead we can either try to CAS
1854        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1855        // we later store "Self" into m->Owner.  Transiently storing a stack address
1856        // (rsp or the address of the box) into  m->owner is harmless.
1857        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1858        if (os::is_MP()) {
1859          lock();
1860        }
1861        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1862        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1863        // If we weren't able to swing _owner from NULL to the BasicLock
1864        // then take the slow path.
1865        jccb  (Assembler::notZero, DONE_LABEL);
1866        // update _owner from BasicLock to thread
1867        get_thread (scrReg);                    // beware: clobbers ICCs
1868        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1869        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1870 
1871        // If the CAS fails we can either retry or pass control to the slow-path.
1872        // We use the latter tactic.
1873        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1874        // If the CAS was successful ...
1875        //   Self has acquired the lock
1876        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1877        // Intentional fall-through into DONE_LABEL ...
1878     } else {
1879        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1880        movptr(boxReg, tmpReg);
1881 
1882        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1883        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1884           // prefetchw [eax + Offset(_owner)-2]
1885           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1886        }
1887 
1888        if ((EmitSync & 64) == 0) {
1889          // Optimistic form
1890          xorptr  (tmpReg, tmpReg);
1891        } else {
1892          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1893          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1894          testptr(tmpReg, tmpReg);                   // Locked ?
1895          jccb  (Assembler::notZero, DONE_LABEL);
1896        }
1897 
1898        // Appears unlocked - try to swing _owner from null to non-null.
1899        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1900        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1901        get_thread (scrReg);
1902        if (os::is_MP()) {
1903          lock();
1904        }
1905        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1906 
1907        // If the CAS fails we can either retry or pass control to the slow-path.
1908        // We use the latter tactic.
1909        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1910        // If the CAS was successful ...
1911        //   Self has acquired the lock
1912        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1913        // Intentional fall-through into DONE_LABEL ...
1914     }
1915 #else // _LP64
1916     // It's inflated
1917     movq(scrReg, tmpReg);
1918     xorq(tmpReg, tmpReg);
1919 
1920     if (os::is_MP()) {
1921       lock();
1922     }
1923     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1924     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1925     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1926     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1927     // Intentional fall-through into DONE_LABEL ...
1928     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1929 #endif // _LP64
1930 #if INCLUDE_RTM_OPT
1931     } // use_rtm()
1932 #endif
1933     // DONE_LABEL is a hot target - we'd really like to place it at the
1934     // start of cache line by padding with NOPs.
1935     // See the AMD and Intel software optimization manuals for the
1936     // most efficient "long" NOP encodings.
1937     // Unfortunately none of our alignment mechanisms suffice.
1938     bind(DONE_LABEL);
1939 
1940     // At DONE_LABEL the icc ZFlag is set as follows ...
1941     // Fast_Unlock uses the same protocol.
1942     // ZFlag == 1 -> Success
1943     // ZFlag == 0 -> Failure - force control through the slow-path
1944   }
1945 }
1946 
1947 // obj: object to unlock
1948 // box: box address (displaced header location), killed.  Must be EAX.
1949 // tmp: killed, cannot be obj nor box.
1950 //
1951 // Some commentary on balanced locking:
1952 //
1953 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1954 // Methods that don't have provably balanced locking are forced to run in the
1955 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1956 // The interpreter provides two properties:
1957 // I1:  At return-time the interpreter automatically and quietly unlocks any
1958 //      objects acquired the current activation (frame).  Recall that the
1959 //      interpreter maintains an on-stack list of locks currently held by
1960 //      a frame.
1961 // I2:  If a method attempts to unlock an object that is not held by the
1962 //      the frame the interpreter throws IMSX.
1963 //
1964 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1965 // B() doesn't have provably balanced locking so it runs in the interpreter.
1966 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1967 // is still locked by A().
1968 //
1969 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1970 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1971 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1972 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1973 // Arguably given that the spec legislates the JNI case as undefined our implementation
1974 // could reasonably *avoid* checking owner in Fast_Unlock().
1975 // In the interest of performance we elide m->Owner==Self check in unlock.
1976 // A perfectly viable alternative is to elide the owner check except when
1977 // Xcheck:jni is enabled.
1978 
1979 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1980   assert(boxReg == rax, "");
1981   assert_different_registers(objReg, boxReg, tmpReg);
1982 
1983   if (EmitSync & 4) {
1984     // Disable - inhibit all inlining.  Force control through the slow-path
1985     cmpptr (rsp, 0);
1986   } else {
1987     Label DONE_LABEL, Stacked, CheckSucc;
1988 
1989     // Critically, the biased locking test must have precedence over
1990     // and appear before the (box->dhw == 0) recursive stack-lock test.
1991     if (UseBiasedLocking && !UseOptoBiasInlining) {
1992        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1993     }
1994 
1995 #if INCLUDE_RTM_OPT
1996     if (UseRTMForStackLocks && use_rtm) {
1997       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1998       Label L_regular_unlock;
1999       movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
2000       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2001       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
2002       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
2003       xend();                                       // otherwise end...
2004       jmp(DONE_LABEL);                              // ... and we're done
2005       bind(L_regular_unlock);
2006     }
2007 #endif
2008 
2009     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
2010     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2011     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
2012     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2013     jccb  (Assembler::zero, Stacked);
2014 
2015     // It's inflated.
2016 #if INCLUDE_RTM_OPT
2017     if (use_rtm) {
2018       Label L_regular_inflated_unlock;
2019       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2020       movptr(boxReg, Address(tmpReg, owner_offset));
2021       testptr(boxReg, boxReg);
2022       jccb(Assembler::notZero, L_regular_inflated_unlock);
2023       xend();
2024       jmpb(DONE_LABEL);
2025       bind(L_regular_inflated_unlock);
2026     }
2027 #endif
2028 
2029     // Despite our balanced locking property we still check that m->_owner == Self
2030     // as java routines or native JNI code called by this thread might
2031     // have released the lock.
2032     // Refer to the comments in synchronizer.cpp for how we might encode extra
2033     // state in _succ so we can avoid fetching EntryList|cxq.
2034     //
2035     // I'd like to add more cases in fast_lock() and fast_unlock() --
2036     // such as recursive enter and exit -- but we have to be wary of
2037     // I$ bloat, T$ effects and BP$ effects.
2038     //
2039     // If there's no contention try a 1-0 exit.  That is, exit without
2040     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2041     // we detect and recover from the race that the 1-0 exit admits.
2042     //
2043     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2044     // before it STs null into _owner, releasing the lock.  Updates
2045     // to data protected by the critical section must be visible before
2046     // we drop the lock (and thus before any other thread could acquire
2047     // the lock and observe the fields protected by the lock).
2048     // IA32's memory-model is SPO, so STs are ordered with respect to
2049     // each other and there's no need for an explicit barrier (fence).
2050     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2051 #ifndef _LP64
2052     get_thread (boxReg);
2053     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2054       // prefetchw [ebx + Offset(_owner)-2]
2055       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2056     }
2057 
2058     // Note that we could employ various encoding schemes to reduce
2059     // the number of loads below (currently 4) to just 2 or 3.
2060     // Refer to the comments in synchronizer.cpp.
2061     // In practice the chain of fetches doesn't seem to impact performance, however.
2062     xorptr(boxReg, boxReg);
2063     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2064        // Attempt to reduce branch density - AMD's branch predictor.
2065        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2066        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2067        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2068        jccb  (Assembler::notZero, DONE_LABEL);
2069        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2070        jmpb  (DONE_LABEL);
2071     } else {
2072        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2073        jccb  (Assembler::notZero, DONE_LABEL);
2074        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2075        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2076        jccb  (Assembler::notZero, CheckSucc);
2077        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2078        jmpb  (DONE_LABEL);
2079     }
2080 
2081     // The Following code fragment (EmitSync & 65536) improves the performance of
2082     // contended applications and contended synchronization microbenchmarks.
2083     // Unfortunately the emission of the code - even though not executed - causes regressions
2084     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2085     // with an equal number of never-executed NOPs results in the same regression.
2086     // We leave it off by default.
2087 
2088     if ((EmitSync & 65536) != 0) {
2089        Label LSuccess, LGoSlowPath ;
2090 
2091        bind  (CheckSucc);
2092 
2093        // Optional pre-test ... it's safe to elide this
2094        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2095        jccb(Assembler::zero, LGoSlowPath);
2096 
2097        // We have a classic Dekker-style idiom:
2098        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2099        // There are a number of ways to implement the barrier:
2100        // (1) lock:andl &m->_owner, 0
2101        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2102        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2103        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2104        // (2) If supported, an explicit MFENCE is appealing.
2105        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2106        //     particularly if the write-buffer is full as might be the case if
2107        //     if stores closely precede the fence or fence-equivalent instruction.
2108        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2109        //     as the situation has changed with Nehalem and Shanghai.
2110        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2111        //     The $lines underlying the top-of-stack should be in M-state.
2112        //     The locked add instruction is serializing, of course.
2113        // (4) Use xchg, which is serializing
2114        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2115        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2116        //     The integer condition codes will tell us if succ was 0.
2117        //     Since _succ and _owner should reside in the same $line and
2118        //     we just stored into _owner, it's likely that the $line
2119        //     remains in M-state for the lock:orl.
2120        //
2121        // We currently use (3), although it's likely that switching to (2)
2122        // is correct for the future.
2123 
2124        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2125        if (os::is_MP()) {
2126          lock(); addptr(Address(rsp, 0), 0);
2127        }
2128        // Ratify _succ remains non-null
2129        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2130        jccb  (Assembler::notZero, LSuccess);
2131 
2132        xorptr(boxReg, boxReg);                  // box is really EAX
2133        if (os::is_MP()) { lock(); }
2134        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2135        // There's no successor so we tried to regrab the lock with the
2136        // placeholder value. If that didn't work, then another thread
2137        // grabbed the lock so we're done (and exit was a success).
2138        jccb  (Assembler::notEqual, LSuccess);
2139        // Since we're low on registers we installed rsp as a placeholding in _owner.
2140        // Now install Self over rsp.  This is safe as we're transitioning from
2141        // non-null to non=null
2142        get_thread (boxReg);
2143        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2144        // Intentional fall-through into LGoSlowPath ...
2145 
2146        bind  (LGoSlowPath);
2147        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2148        jmpb  (DONE_LABEL);
2149 
2150        bind  (LSuccess);
2151        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2152        jmpb  (DONE_LABEL);
2153     }
2154 
2155     bind (Stacked);
2156     // It's not inflated and it's not recursively stack-locked and it's not biased.
2157     // It must be stack-locked.
2158     // Try to reset the header to displaced header.
2159     // The "box" value on the stack is stable, so we can reload
2160     // and be assured we observe the same value as above.
2161     movptr(tmpReg, Address(boxReg, 0));
2162     if (os::is_MP()) {
2163       lock();
2164     }
2165     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2166     // Intention fall-thru into DONE_LABEL
2167 
2168     // DONE_LABEL is a hot target - we'd really like to place it at the
2169     // start of cache line by padding with NOPs.
2170     // See the AMD and Intel software optimization manuals for the
2171     // most efficient "long" NOP encodings.
2172     // Unfortunately none of our alignment mechanisms suffice.
2173     if ((EmitSync & 65536) == 0) {
2174        bind (CheckSucc);
2175     }
2176 #else // _LP64
2177     // It's inflated
2178     if (EmitSync & 1024) {
2179       // Emit code to check that _owner == Self
2180       // We could fold the _owner test into subsequent code more efficiently
2181       // than using a stand-alone check, but since _owner checking is off by
2182       // default we don't bother. We also might consider predicating the
2183       // _owner==Self check on Xcheck:jni or running on a debug build.
2184       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2185       xorptr(boxReg, r15_thread);
2186     } else {
2187       xorptr(boxReg, boxReg);
2188     }
2189     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2190     jccb  (Assembler::notZero, DONE_LABEL);
2191     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2192     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2193     jccb  (Assembler::notZero, CheckSucc);
2194     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2195     jmpb  (DONE_LABEL);
2196 
2197     if ((EmitSync & 65536) == 0) {
2198       // Try to avoid passing control into the slow_path ...
2199       Label LSuccess, LGoSlowPath ;
2200       bind  (CheckSucc);
2201 
2202       // The following optional optimization can be elided if necessary
2203       // Effectively: if (succ == null) goto SlowPath
2204       // The code reduces the window for a race, however,
2205       // and thus benefits performance.
2206       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2207       jccb  (Assembler::zero, LGoSlowPath);
2208 
2209       xorptr(boxReg, boxReg);
2210       if ((EmitSync & 16) && os::is_MP()) {
2211         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2212       } else {
2213         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2214         if (os::is_MP()) {
2215           // Memory barrier/fence
2216           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2217           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2218           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2219           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2220           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2221           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2222           lock(); addl(Address(rsp, 0), 0);
2223         }
2224       }
2225       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2226       jccb  (Assembler::notZero, LSuccess);
2227 
2228       // Rare inopportune interleaving - race.
2229       // The successor vanished in the small window above.
2230       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2231       // We need to ensure progress and succession.
2232       // Try to reacquire the lock.
2233       // If that fails then the new owner is responsible for succession and this
2234       // thread needs to take no further action and can exit via the fast path (success).
2235       // If the re-acquire succeeds then pass control into the slow path.
2236       // As implemented, this latter mode is horrible because we generated more
2237       // coherence traffic on the lock *and* artifically extended the critical section
2238       // length while by virtue of passing control into the slow path.
2239 
2240       // box is really RAX -- the following CMPXCHG depends on that binding
2241       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2242       if (os::is_MP()) { lock(); }
2243       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2244       // There's no successor so we tried to regrab the lock.
2245       // If that didn't work, then another thread grabbed the
2246       // lock so we're done (and exit was a success).
2247       jccb  (Assembler::notEqual, LSuccess);
2248       // Intentional fall-through into slow-path
2249 
2250       bind  (LGoSlowPath);
2251       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2252       jmpb  (DONE_LABEL);
2253 
2254       bind  (LSuccess);
2255       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2256       jmpb  (DONE_LABEL);
2257     }
2258 
2259     bind  (Stacked);
2260     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2261     if (os::is_MP()) { lock(); }
2262     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2263 
2264     if (EmitSync & 65536) {
2265        bind (CheckSucc);
2266     }
2267 #endif
2268     bind(DONE_LABEL);
2269   }
2270 }
2271 #endif // COMPILER2
2272 
2273 void MacroAssembler::c2bool(Register x) {
2274   // implements x == 0 ? 0 : 1
2275   // note: must only look at least-significant byte of x
2276   //       since C-style booleans are stored in one byte
2277   //       only! (was bug)
2278   andl(x, 0xFF);
2279   setb(Assembler::notZero, x);
2280 }
2281 
2282 // Wouldn't need if AddressLiteral version had new name
2283 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2284   Assembler::call(L, rtype);
2285 }
2286 
2287 void MacroAssembler::call(Register entry) {
2288   Assembler::call(entry);
2289 }
2290 
2291 void MacroAssembler::call(AddressLiteral entry) {
2292   if (reachable(entry)) {
2293     Assembler::call_literal(entry.target(), entry.rspec());
2294   } else {
2295     lea(rscratch1, entry);
2296     Assembler::call(rscratch1);
2297   }
2298 }
2299 
2300 void MacroAssembler::ic_call(address entry, jint method_index) {
2301   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2302   movptr(rax, (intptr_t)Universe::non_oop_word());
2303   call(AddressLiteral(entry, rh));
2304 }
2305 
2306 // Implementation of call_VM versions
2307 
2308 void MacroAssembler::call_VM(Register oop_result,
2309                              address entry_point,
2310                              bool check_exceptions) {
2311   Label C, E;
2312   call(C, relocInfo::none);
2313   jmp(E);
2314 
2315   bind(C);
2316   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2317   ret(0);
2318 
2319   bind(E);
2320 }
2321 
2322 void MacroAssembler::call_VM(Register oop_result,
2323                              address entry_point,
2324                              Register arg_1,
2325                              bool check_exceptions) {
2326   Label C, E;
2327   call(C, relocInfo::none);
2328   jmp(E);
2329 
2330   bind(C);
2331   pass_arg1(this, arg_1);
2332   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2333   ret(0);
2334 
2335   bind(E);
2336 }
2337 
2338 void MacroAssembler::call_VM(Register oop_result,
2339                              address entry_point,
2340                              Register arg_1,
2341                              Register arg_2,
2342                              bool check_exceptions) {
2343   Label C, E;
2344   call(C, relocInfo::none);
2345   jmp(E);
2346 
2347   bind(C);
2348 
2349   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2350 
2351   pass_arg2(this, arg_2);
2352   pass_arg1(this, arg_1);
2353   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2354   ret(0);
2355 
2356   bind(E);
2357 }
2358 
2359 void MacroAssembler::call_VM(Register oop_result,
2360                              address entry_point,
2361                              Register arg_1,
2362                              Register arg_2,
2363                              Register arg_3,
2364                              bool check_exceptions) {
2365   Label C, E;
2366   call(C, relocInfo::none);
2367   jmp(E);
2368 
2369   bind(C);
2370 
2371   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2372   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2373   pass_arg3(this, arg_3);
2374 
2375   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2376   pass_arg2(this, arg_2);
2377 
2378   pass_arg1(this, arg_1);
2379   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2380   ret(0);
2381 
2382   bind(E);
2383 }
2384 
2385 void MacroAssembler::call_VM(Register oop_result,
2386                              Register last_java_sp,
2387                              address entry_point,
2388                              int number_of_arguments,
2389                              bool check_exceptions) {
2390   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2391   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2392 }
2393 
2394 void MacroAssembler::call_VM(Register oop_result,
2395                              Register last_java_sp,
2396                              address entry_point,
2397                              Register arg_1,
2398                              bool check_exceptions) {
2399   pass_arg1(this, arg_1);
2400   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2401 }
2402 
2403 void MacroAssembler::call_VM(Register oop_result,
2404                              Register last_java_sp,
2405                              address entry_point,
2406                              Register arg_1,
2407                              Register arg_2,
2408                              bool check_exceptions) {
2409 
2410   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2411   pass_arg2(this, arg_2);
2412   pass_arg1(this, arg_1);
2413   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2414 }
2415 
2416 void MacroAssembler::call_VM(Register oop_result,
2417                              Register last_java_sp,
2418                              address entry_point,
2419                              Register arg_1,
2420                              Register arg_2,
2421                              Register arg_3,
2422                              bool check_exceptions) {
2423   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2424   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2425   pass_arg3(this, arg_3);
2426   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2427   pass_arg2(this, arg_2);
2428   pass_arg1(this, arg_1);
2429   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2430 }
2431 
2432 void MacroAssembler::super_call_VM(Register oop_result,
2433                                    Register last_java_sp,
2434                                    address entry_point,
2435                                    int number_of_arguments,
2436                                    bool check_exceptions) {
2437   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2438   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2439 }
2440 
2441 void MacroAssembler::super_call_VM(Register oop_result,
2442                                    Register last_java_sp,
2443                                    address entry_point,
2444                                    Register arg_1,
2445                                    bool check_exceptions) {
2446   pass_arg1(this, arg_1);
2447   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2448 }
2449 
2450 void MacroAssembler::super_call_VM(Register oop_result,
2451                                    Register last_java_sp,
2452                                    address entry_point,
2453                                    Register arg_1,
2454                                    Register arg_2,
2455                                    bool check_exceptions) {
2456 
2457   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2458   pass_arg2(this, arg_2);
2459   pass_arg1(this, arg_1);
2460   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2461 }
2462 
2463 void MacroAssembler::super_call_VM(Register oop_result,
2464                                    Register last_java_sp,
2465                                    address entry_point,
2466                                    Register arg_1,
2467                                    Register arg_2,
2468                                    Register arg_3,
2469                                    bool check_exceptions) {
2470   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2471   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2472   pass_arg3(this, arg_3);
2473   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2474   pass_arg2(this, arg_2);
2475   pass_arg1(this, arg_1);
2476   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2477 }
2478 
2479 void MacroAssembler::call_VM_base(Register oop_result,
2480                                   Register java_thread,
2481                                   Register last_java_sp,
2482                                   address  entry_point,
2483                                   int      number_of_arguments,
2484                                   bool     check_exceptions) {
2485   // determine java_thread register
2486   if (!java_thread->is_valid()) {
2487 #ifdef _LP64
2488     java_thread = r15_thread;
2489 #else
2490     java_thread = rdi;
2491     get_thread(java_thread);
2492 #endif // LP64
2493   }
2494   // determine last_java_sp register
2495   if (!last_java_sp->is_valid()) {
2496     last_java_sp = rsp;
2497   }
2498   // debugging support
2499   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2500   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2501 #ifdef ASSERT
2502   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2503   // r12 is the heapbase.
2504   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2505 #endif // ASSERT
2506 
2507   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2508   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2509 
2510   // push java thread (becomes first argument of C function)
2511 
2512   NOT_LP64(push(java_thread); number_of_arguments++);
2513   LP64_ONLY(mov(c_rarg0, r15_thread));
2514 
2515   // set last Java frame before call
2516   assert(last_java_sp != rbp, "can't use ebp/rbp");
2517 
2518   // Only interpreter should have to set fp
2519   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2520 
2521   // do the call, remove parameters
2522   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2523 
2524   // restore the thread (cannot use the pushed argument since arguments
2525   // may be overwritten by C code generated by an optimizing compiler);
2526   // however can use the register value directly if it is callee saved.
2527   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2528     // rdi & rsi (also r15) are callee saved -> nothing to do
2529 #ifdef ASSERT
2530     guarantee(java_thread != rax, "change this code");
2531     push(rax);
2532     { Label L;
2533       get_thread(rax);
2534       cmpptr(java_thread, rax);
2535       jcc(Assembler::equal, L);
2536       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2537       bind(L);
2538     }
2539     pop(rax);
2540 #endif
2541   } else {
2542     get_thread(java_thread);
2543   }
2544   // reset last Java frame
2545   // Only interpreter should have to clear fp
2546   reset_last_Java_frame(java_thread, true);
2547 
2548    // C++ interp handles this in the interpreter
2549   check_and_handle_popframe(java_thread);
2550   check_and_handle_earlyret(java_thread);
2551 
2552   if (check_exceptions) {
2553     // check for pending exceptions (java_thread is set upon return)
2554     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2555 #ifndef _LP64
2556     jump_cc(Assembler::notEqual,
2557             RuntimeAddress(StubRoutines::forward_exception_entry()));
2558 #else
2559     // This used to conditionally jump to forward_exception however it is
2560     // possible if we relocate that the branch will not reach. So we must jump
2561     // around so we can always reach
2562 
2563     Label ok;
2564     jcc(Assembler::equal, ok);
2565     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2566     bind(ok);
2567 #endif // LP64
2568   }
2569 
2570   // get oop result if there is one and reset the value in the thread
2571   if (oop_result->is_valid()) {
2572     get_vm_result(oop_result, java_thread);
2573   }
2574 }
2575 
2576 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2577 
2578   // Calculate the value for last_Java_sp
2579   // somewhat subtle. call_VM does an intermediate call
2580   // which places a return address on the stack just under the
2581   // stack pointer as the user finsihed with it. This allows
2582   // use to retrieve last_Java_pc from last_Java_sp[-1].
2583   // On 32bit we then have to push additional args on the stack to accomplish
2584   // the actual requested call. On 64bit call_VM only can use register args
2585   // so the only extra space is the return address that call_VM created.
2586   // This hopefully explains the calculations here.
2587 
2588 #ifdef _LP64
2589   // We've pushed one address, correct last_Java_sp
2590   lea(rax, Address(rsp, wordSize));
2591 #else
2592   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2593 #endif // LP64
2594 
2595   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2596 
2597 }
2598 
2599 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2600 void MacroAssembler::call_VM_leaf0(address entry_point) {
2601   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2602 }
2603 
2604 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2605   call_VM_leaf_base(entry_point, number_of_arguments);
2606 }
2607 
2608 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2609   pass_arg0(this, arg_0);
2610   call_VM_leaf(entry_point, 1);
2611 }
2612 
2613 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2614 
2615   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2616   pass_arg1(this, arg_1);
2617   pass_arg0(this, arg_0);
2618   call_VM_leaf(entry_point, 2);
2619 }
2620 
2621 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2622   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2623   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2624   pass_arg2(this, arg_2);
2625   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2626   pass_arg1(this, arg_1);
2627   pass_arg0(this, arg_0);
2628   call_VM_leaf(entry_point, 3);
2629 }
2630 
2631 void MacroAssembler::super_call_VM_leaf(address entry_point) {
2632   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2633 }
2634 
2635 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2636   pass_arg0(this, arg_0);
2637   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2638 }
2639 
2640 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2641 
2642   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2643   pass_arg1(this, arg_1);
2644   pass_arg0(this, arg_0);
2645   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2646 }
2647 
2648 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2649   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2650   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2651   pass_arg2(this, arg_2);
2652   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2653   pass_arg1(this, arg_1);
2654   pass_arg0(this, arg_0);
2655   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2656 }
2657 
2658 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2659   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2660   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2661   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2662   pass_arg3(this, arg_3);
2663   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2664   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2665   pass_arg2(this, arg_2);
2666   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2667   pass_arg1(this, arg_1);
2668   pass_arg0(this, arg_0);
2669   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2670 }
2671 
2672 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2673   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2674   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2675   verify_oop(oop_result, "broken oop in call_VM_base");
2676 }
2677 
2678 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2679   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2680   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2681 }
2682 
2683 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2684 }
2685 
2686 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2687 }
2688 
2689 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2690   if (reachable(src1)) {
2691     cmpl(as_Address(src1), imm);
2692   } else {
2693     lea(rscratch1, src1);
2694     cmpl(Address(rscratch1, 0), imm);
2695   }
2696 }
2697 
2698 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2699   assert(!src2.is_lval(), "use cmpptr");
2700   if (reachable(src2)) {
2701     cmpl(src1, as_Address(src2));
2702   } else {
2703     lea(rscratch1, src2);
2704     cmpl(src1, Address(rscratch1, 0));
2705   }
2706 }
2707 
2708 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2709   Assembler::cmpl(src1, imm);
2710 }
2711 
2712 void MacroAssembler::cmp32(Register src1, Address src2) {
2713   Assembler::cmpl(src1, src2);
2714 }
2715 
2716 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2717   ucomisd(opr1, opr2);
2718 
2719   Label L;
2720   if (unordered_is_less) {
2721     movl(dst, -1);
2722     jcc(Assembler::parity, L);
2723     jcc(Assembler::below , L);
2724     movl(dst, 0);
2725     jcc(Assembler::equal , L);
2726     increment(dst);
2727   } else { // unordered is greater
2728     movl(dst, 1);
2729     jcc(Assembler::parity, L);
2730     jcc(Assembler::above , L);
2731     movl(dst, 0);
2732     jcc(Assembler::equal , L);
2733     decrementl(dst);
2734   }
2735   bind(L);
2736 }
2737 
2738 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2739   ucomiss(opr1, opr2);
2740 
2741   Label L;
2742   if (unordered_is_less) {
2743     movl(dst, -1);
2744     jcc(Assembler::parity, L);
2745     jcc(Assembler::below , L);
2746     movl(dst, 0);
2747     jcc(Assembler::equal , L);
2748     increment(dst);
2749   } else { // unordered is greater
2750     movl(dst, 1);
2751     jcc(Assembler::parity, L);
2752     jcc(Assembler::above , L);
2753     movl(dst, 0);
2754     jcc(Assembler::equal , L);
2755     decrementl(dst);
2756   }
2757   bind(L);
2758 }
2759 
2760 
2761 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2762   if (reachable(src1)) {
2763     cmpb(as_Address(src1), imm);
2764   } else {
2765     lea(rscratch1, src1);
2766     cmpb(Address(rscratch1, 0), imm);
2767   }
2768 }
2769 
2770 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2771 #ifdef _LP64
2772   if (src2.is_lval()) {
2773     movptr(rscratch1, src2);
2774     Assembler::cmpq(src1, rscratch1);
2775   } else if (reachable(src2)) {
2776     cmpq(src1, as_Address(src2));
2777   } else {
2778     lea(rscratch1, src2);
2779     Assembler::cmpq(src1, Address(rscratch1, 0));
2780   }
2781 #else
2782   if (src2.is_lval()) {
2783     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2784   } else {
2785     cmpl(src1, as_Address(src2));
2786   }
2787 #endif // _LP64
2788 }
2789 
2790 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2791   assert(src2.is_lval(), "not a mem-mem compare");
2792 #ifdef _LP64
2793   // moves src2's literal address
2794   movptr(rscratch1, src2);
2795   Assembler::cmpq(src1, rscratch1);
2796 #else
2797   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2798 #endif // _LP64
2799 }
2800 
2801 void MacroAssembler::cmpoop(Register src1, Register src2) {
2802   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2803   bs->obj_equals(this, src1, src2);
2804 }
2805 
2806 void MacroAssembler::cmpoop(Register src1, Address src2) {
2807   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2808   bs->obj_equals(this, src1, src2);
2809 }
2810 
2811 #ifdef _LP64
2812 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2813   movoop(rscratch1, src2);
2814   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2815   bs->obj_equals(this, src1, rscratch1);
2816 }
2817 #endif
2818 
2819 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2820   if (reachable(adr)) {
2821     if (os::is_MP())
2822       lock();
2823     cmpxchgptr(reg, as_Address(adr));
2824   } else {
2825     lea(rscratch1, adr);
2826     if (os::is_MP())
2827       lock();
2828     cmpxchgptr(reg, Address(rscratch1, 0));
2829   }
2830 }
2831 
2832 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2833   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2834 }
2835 
2836 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2837   if (reachable(src)) {
2838     Assembler::comisd(dst, as_Address(src));
2839   } else {
2840     lea(rscratch1, src);
2841     Assembler::comisd(dst, Address(rscratch1, 0));
2842   }
2843 }
2844 
2845 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2846   if (reachable(src)) {
2847     Assembler::comiss(dst, as_Address(src));
2848   } else {
2849     lea(rscratch1, src);
2850     Assembler::comiss(dst, Address(rscratch1, 0));
2851   }
2852 }
2853 
2854 
2855 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2856   Condition negated_cond = negate_condition(cond);
2857   Label L;
2858   jcc(negated_cond, L);
2859   pushf(); // Preserve flags
2860   atomic_incl(counter_addr);
2861   popf();
2862   bind(L);
2863 }
2864 
2865 int MacroAssembler::corrected_idivl(Register reg) {
2866   // Full implementation of Java idiv and irem; checks for
2867   // special case as described in JVM spec., p.243 & p.271.
2868   // The function returns the (pc) offset of the idivl
2869   // instruction - may be needed for implicit exceptions.
2870   //
2871   //         normal case                           special case
2872   //
2873   // input : rax,: dividend                         min_int
2874   //         reg: divisor   (may not be rax,/rdx)   -1
2875   //
2876   // output: rax,: quotient  (= rax, idiv reg)       min_int
2877   //         rdx: remainder (= rax, irem reg)       0
2878   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2879   const int min_int = 0x80000000;
2880   Label normal_case, special_case;
2881 
2882   // check for special case
2883   cmpl(rax, min_int);
2884   jcc(Assembler::notEqual, normal_case);
2885   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2886   cmpl(reg, -1);
2887   jcc(Assembler::equal, special_case);
2888 
2889   // handle normal case
2890   bind(normal_case);
2891   cdql();
2892   int idivl_offset = offset();
2893   idivl(reg);
2894 
2895   // normal and special case exit
2896   bind(special_case);
2897 
2898   return idivl_offset;
2899 }
2900 
2901 
2902 
2903 void MacroAssembler::decrementl(Register reg, int value) {
2904   if (value == min_jint) {subl(reg, value) ; return; }
2905   if (value <  0) { incrementl(reg, -value); return; }
2906   if (value == 0) {                        ; return; }
2907   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2908   /* else */      { subl(reg, value)       ; return; }
2909 }
2910 
2911 void MacroAssembler::decrementl(Address dst, int value) {
2912   if (value == min_jint) {subl(dst, value) ; return; }
2913   if (value <  0) { incrementl(dst, -value); return; }
2914   if (value == 0) {                        ; return; }
2915   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2916   /* else */      { subl(dst, value)       ; return; }
2917 }
2918 
2919 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2920   assert (shift_value > 0, "illegal shift value");
2921   Label _is_positive;
2922   testl (reg, reg);
2923   jcc (Assembler::positive, _is_positive);
2924   int offset = (1 << shift_value) - 1 ;
2925 
2926   if (offset == 1) {
2927     incrementl(reg);
2928   } else {
2929     addl(reg, offset);
2930   }
2931 
2932   bind (_is_positive);
2933   sarl(reg, shift_value);
2934 }
2935 
2936 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2937   if (reachable(src)) {
2938     Assembler::divsd(dst, as_Address(src));
2939   } else {
2940     lea(rscratch1, src);
2941     Assembler::divsd(dst, Address(rscratch1, 0));
2942   }
2943 }
2944 
2945 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2946   if (reachable(src)) {
2947     Assembler::divss(dst, as_Address(src));
2948   } else {
2949     lea(rscratch1, src);
2950     Assembler::divss(dst, Address(rscratch1, 0));
2951   }
2952 }
2953 
2954 // !defined(COMPILER2) is because of stupid core builds
2955 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2956 void MacroAssembler::empty_FPU_stack() {
2957   if (VM_Version::supports_mmx()) {
2958     emms();
2959   } else {
2960     for (int i = 8; i-- > 0; ) ffree(i);
2961   }
2962 }
2963 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2964 
2965 
2966 void MacroAssembler::enter() {
2967   push(rbp);
2968   mov(rbp, rsp);
2969 }
2970 
2971 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2972 void MacroAssembler::fat_nop() {
2973   if (UseAddressNop) {
2974     addr_nop_5();
2975   } else {
2976     emit_int8(0x26); // es:
2977     emit_int8(0x2e); // cs:
2978     emit_int8(0x64); // fs:
2979     emit_int8(0x65); // gs:
2980     emit_int8((unsigned char)0x90);
2981   }
2982 }
2983 
2984 void MacroAssembler::fcmp(Register tmp) {
2985   fcmp(tmp, 1, true, true);
2986 }
2987 
2988 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2989   assert(!pop_right || pop_left, "usage error");
2990   if (VM_Version::supports_cmov()) {
2991     assert(tmp == noreg, "unneeded temp");
2992     if (pop_left) {
2993       fucomip(index);
2994     } else {
2995       fucomi(index);
2996     }
2997     if (pop_right) {
2998       fpop();
2999     }
3000   } else {
3001     assert(tmp != noreg, "need temp");
3002     if (pop_left) {
3003       if (pop_right) {
3004         fcompp();
3005       } else {
3006         fcomp(index);
3007       }
3008     } else {
3009       fcom(index);
3010     }
3011     // convert FPU condition into eflags condition via rax,
3012     save_rax(tmp);
3013     fwait(); fnstsw_ax();
3014     sahf();
3015     restore_rax(tmp);
3016   }
3017   // condition codes set as follows:
3018   //
3019   // CF (corresponds to C0) if x < y
3020   // PF (corresponds to C2) if unordered
3021   // ZF (corresponds to C3) if x = y
3022 }
3023 
3024 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3025   fcmp2int(dst, unordered_is_less, 1, true, true);
3026 }
3027 
3028 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3029   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3030   Label L;
3031   if (unordered_is_less) {
3032     movl(dst, -1);
3033     jcc(Assembler::parity, L);
3034     jcc(Assembler::below , L);
3035     movl(dst, 0);
3036     jcc(Assembler::equal , L);
3037     increment(dst);
3038   } else { // unordered is greater
3039     movl(dst, 1);
3040     jcc(Assembler::parity, L);
3041     jcc(Assembler::above , L);
3042     movl(dst, 0);
3043     jcc(Assembler::equal , L);
3044     decrementl(dst);
3045   }
3046   bind(L);
3047 }
3048 
3049 void MacroAssembler::fld_d(AddressLiteral src) {
3050   fld_d(as_Address(src));
3051 }
3052 
3053 void MacroAssembler::fld_s(AddressLiteral src) {
3054   fld_s(as_Address(src));
3055 }
3056 
3057 void MacroAssembler::fld_x(AddressLiteral src) {
3058   Assembler::fld_x(as_Address(src));
3059 }
3060 
3061 void MacroAssembler::fldcw(AddressLiteral src) {
3062   Assembler::fldcw(as_Address(src));
3063 }
3064 
3065 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3066   if (reachable(src)) {
3067     Assembler::mulpd(dst, as_Address(src));
3068   } else {
3069     lea(rscratch1, src);
3070     Assembler::mulpd(dst, Address(rscratch1, 0));
3071   }
3072 }
3073 
3074 void MacroAssembler::increase_precision() {
3075   subptr(rsp, BytesPerWord);
3076   fnstcw(Address(rsp, 0));
3077   movl(rax, Address(rsp, 0));
3078   orl(rax, 0x300);
3079   push(rax);
3080   fldcw(Address(rsp, 0));
3081   pop(rax);
3082 }
3083 
3084 void MacroAssembler::restore_precision() {
3085   fldcw(Address(rsp, 0));
3086   addptr(rsp, BytesPerWord);
3087 }
3088 
3089 void MacroAssembler::fpop() {
3090   ffree();
3091   fincstp();
3092 }
3093 
3094 void MacroAssembler::load_float(Address src) {
3095   if (UseSSE >= 1) {
3096     movflt(xmm0, src);
3097   } else {
3098     LP64_ONLY(ShouldNotReachHere());
3099     NOT_LP64(fld_s(src));
3100   }
3101 }
3102 
3103 void MacroAssembler::store_float(Address dst) {
3104   if (UseSSE >= 1) {
3105     movflt(dst, xmm0);
3106   } else {
3107     LP64_ONLY(ShouldNotReachHere());
3108     NOT_LP64(fstp_s(dst));
3109   }
3110 }
3111 
3112 void MacroAssembler::load_double(Address src) {
3113   if (UseSSE >= 2) {
3114     movdbl(xmm0, src);
3115   } else {
3116     LP64_ONLY(ShouldNotReachHere());
3117     NOT_LP64(fld_d(src));
3118   }
3119 }
3120 
3121 void MacroAssembler::store_double(Address dst) {
3122   if (UseSSE >= 2) {
3123     movdbl(dst, xmm0);
3124   } else {
3125     LP64_ONLY(ShouldNotReachHere());
3126     NOT_LP64(fstp_d(dst));
3127   }
3128 }
3129 
3130 void MacroAssembler::push_zmm(XMMRegister reg) {
3131   lea(rsp, Address(rsp, -64)); // Use lea to not affect flags
3132   evmovdqul(Address(rsp, 0), reg, Assembler::AVX_512bit);
3133 }
3134 
3135 void MacroAssembler::pop_zmm(XMMRegister reg) {
3136   evmovdqul(reg, Address(rsp, 0), Assembler::AVX_512bit);
3137   lea(rsp, Address(rsp, 64)); // Use lea to not affect flags
3138 }
3139 
3140 void MacroAssembler::fremr(Register tmp) {
3141   save_rax(tmp);
3142   { Label L;
3143     bind(L);
3144     fprem();
3145     fwait(); fnstsw_ax();
3146 #ifdef _LP64
3147     testl(rax, 0x400);
3148     jcc(Assembler::notEqual, L);
3149 #else
3150     sahf();
3151     jcc(Assembler::parity, L);
3152 #endif // _LP64
3153   }
3154   restore_rax(tmp);
3155   // Result is in ST0.
3156   // Note: fxch & fpop to get rid of ST1
3157   // (otherwise FPU stack could overflow eventually)
3158   fxch(1);
3159   fpop();
3160 }
3161 
3162 // dst = c = a * b + c
3163 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3164   Assembler::vfmadd231sd(c, a, b);
3165   if (dst != c) {
3166     movdbl(dst, c);
3167   }
3168 }
3169 
3170 // dst = c = a * b + c
3171 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3172   Assembler::vfmadd231ss(c, a, b);
3173   if (dst != c) {
3174     movflt(dst, c);
3175   }
3176 }
3177 
3178 // dst = c = a * b + c
3179 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3180   Assembler::vfmadd231pd(c, a, b, vector_len);
3181   if (dst != c) {
3182     vmovdqu(dst, c);
3183   }
3184 }
3185 
3186 // dst = c = a * b + c
3187 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3188   Assembler::vfmadd231ps(c, a, b, vector_len);
3189   if (dst != c) {
3190     vmovdqu(dst, c);
3191   }
3192 }
3193 
3194 // dst = c = a * b + c
3195 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3196   Assembler::vfmadd231pd(c, a, b, vector_len);
3197   if (dst != c) {
3198     vmovdqu(dst, c);
3199   }
3200 }
3201 
3202 // dst = c = a * b + c
3203 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3204   Assembler::vfmadd231ps(c, a, b, vector_len);
3205   if (dst != c) {
3206     vmovdqu(dst, c);
3207   }
3208 }
3209 
3210 void MacroAssembler::incrementl(AddressLiteral dst) {
3211   if (reachable(dst)) {
3212     incrementl(as_Address(dst));
3213   } else {
3214     lea(rscratch1, dst);
3215     incrementl(Address(rscratch1, 0));
3216   }
3217 }
3218 
3219 void MacroAssembler::incrementl(ArrayAddress dst) {
3220   incrementl(as_Address(dst));
3221 }
3222 
3223 void MacroAssembler::incrementl(Register reg, int value) {
3224   if (value == min_jint) {addl(reg, value) ; return; }
3225   if (value <  0) { decrementl(reg, -value); return; }
3226   if (value == 0) {                        ; return; }
3227   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3228   /* else */      { addl(reg, value)       ; return; }
3229 }
3230 
3231 void MacroAssembler::incrementl(Address dst, int value) {
3232   if (value == min_jint) {addl(dst, value) ; return; }
3233   if (value <  0) { decrementl(dst, -value); return; }
3234   if (value == 0) {                        ; return; }
3235   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3236   /* else */      { addl(dst, value)       ; return; }
3237 }
3238 
3239 void MacroAssembler::jump(AddressLiteral dst) {
3240   if (reachable(dst)) {
3241     jmp_literal(dst.target(), dst.rspec());
3242   } else {
3243     lea(rscratch1, dst);
3244     jmp(rscratch1);
3245   }
3246 }
3247 
3248 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3249   if (reachable(dst)) {
3250     InstructionMark im(this);
3251     relocate(dst.reloc());
3252     const int short_size = 2;
3253     const int long_size = 6;
3254     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3255     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3256       // 0111 tttn #8-bit disp
3257       emit_int8(0x70 | cc);
3258       emit_int8((offs - short_size) & 0xFF);
3259     } else {
3260       // 0000 1111 1000 tttn #32-bit disp
3261       emit_int8(0x0F);
3262       emit_int8((unsigned char)(0x80 | cc));
3263       emit_int32(offs - long_size);
3264     }
3265   } else {
3266 #ifdef ASSERT
3267     warning("reversing conditional branch");
3268 #endif /* ASSERT */
3269     Label skip;
3270     jccb(reverse[cc], skip);
3271     lea(rscratch1, dst);
3272     Assembler::jmp(rscratch1);
3273     bind(skip);
3274   }
3275 }
3276 
3277 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3278   if (reachable(src)) {
3279     Assembler::ldmxcsr(as_Address(src));
3280   } else {
3281     lea(rscratch1, src);
3282     Assembler::ldmxcsr(Address(rscratch1, 0));
3283   }
3284 }
3285 
3286 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3287   int off;
3288   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3289     off = offset();
3290     movsbl(dst, src); // movsxb
3291   } else {
3292     off = load_unsigned_byte(dst, src);
3293     shll(dst, 24);
3294     sarl(dst, 24);
3295   }
3296   return off;
3297 }
3298 
3299 // Note: load_signed_short used to be called load_signed_word.
3300 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3301 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3302 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3303 int MacroAssembler::load_signed_short(Register dst, Address src) {
3304   int off;
3305   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3306     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3307     // version but this is what 64bit has always done. This seems to imply
3308     // that users are only using 32bits worth.
3309     off = offset();
3310     movswl(dst, src); // movsxw
3311   } else {
3312     off = load_unsigned_short(dst, src);
3313     shll(dst, 16);
3314     sarl(dst, 16);
3315   }
3316   return off;
3317 }
3318 
3319 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3320   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3321   // and "3.9 Partial Register Penalties", p. 22).
3322   int off;
3323   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3324     off = offset();
3325     movzbl(dst, src); // movzxb
3326   } else {
3327     xorl(dst, dst);
3328     off = offset();
3329     movb(dst, src);
3330   }
3331   return off;
3332 }
3333 
3334 // Note: load_unsigned_short used to be called load_unsigned_word.
3335 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3336   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3337   // and "3.9 Partial Register Penalties", p. 22).
3338   int off;
3339   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3340     off = offset();
3341     movzwl(dst, src); // movzxw
3342   } else {
3343     xorl(dst, dst);
3344     off = offset();
3345     movw(dst, src);
3346   }
3347   return off;
3348 }
3349 
3350 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3351   switch (size_in_bytes) {
3352 #ifndef _LP64
3353   case  8:
3354     assert(dst2 != noreg, "second dest register required");
3355     movl(dst,  src);
3356     movl(dst2, src.plus_disp(BytesPerInt));
3357     break;
3358 #else
3359   case  8:  movq(dst, src); break;
3360 #endif
3361   case  4:  movl(dst, src); break;
3362   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3363   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3364   default:  ShouldNotReachHere();
3365   }
3366 }
3367 
3368 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3369   switch (size_in_bytes) {
3370 #ifndef _LP64
3371   case  8:
3372     assert(src2 != noreg, "second source register required");
3373     movl(dst,                        src);
3374     movl(dst.plus_disp(BytesPerInt), src2);
3375     break;
3376 #else
3377   case  8:  movq(dst, src); break;
3378 #endif
3379   case  4:  movl(dst, src); break;
3380   case  2:  movw(dst, src); break;
3381   case  1:  movb(dst, src); break;
3382   default:  ShouldNotReachHere();
3383   }
3384 }
3385 
3386 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3387   if (reachable(dst)) {
3388     movl(as_Address(dst), src);
3389   } else {
3390     lea(rscratch1, dst);
3391     movl(Address(rscratch1, 0), src);
3392   }
3393 }
3394 
3395 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3396   if (reachable(src)) {
3397     movl(dst, as_Address(src));
3398   } else {
3399     lea(rscratch1, src);
3400     movl(dst, Address(rscratch1, 0));
3401   }
3402 }
3403 
3404 // C++ bool manipulation
3405 
3406 void MacroAssembler::movbool(Register dst, Address src) {
3407   if(sizeof(bool) == 1)
3408     movb(dst, src);
3409   else if(sizeof(bool) == 2)
3410     movw(dst, src);
3411   else if(sizeof(bool) == 4)
3412     movl(dst, src);
3413   else
3414     // unsupported
3415     ShouldNotReachHere();
3416 }
3417 
3418 void MacroAssembler::movbool(Address dst, bool boolconst) {
3419   if(sizeof(bool) == 1)
3420     movb(dst, (int) boolconst);
3421   else if(sizeof(bool) == 2)
3422     movw(dst, (int) boolconst);
3423   else if(sizeof(bool) == 4)
3424     movl(dst, (int) boolconst);
3425   else
3426     // unsupported
3427     ShouldNotReachHere();
3428 }
3429 
3430 void MacroAssembler::movbool(Address dst, Register src) {
3431   if(sizeof(bool) == 1)
3432     movb(dst, src);
3433   else if(sizeof(bool) == 2)
3434     movw(dst, src);
3435   else if(sizeof(bool) == 4)
3436     movl(dst, src);
3437   else
3438     // unsupported
3439     ShouldNotReachHere();
3440 }
3441 
3442 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3443   movb(as_Address(dst), src);
3444 }
3445 
3446 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3447   if (reachable(src)) {
3448     movdl(dst, as_Address(src));
3449   } else {
3450     lea(rscratch1, src);
3451     movdl(dst, Address(rscratch1, 0));
3452   }
3453 }
3454 
3455 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3456   if (reachable(src)) {
3457     movq(dst, as_Address(src));
3458   } else {
3459     lea(rscratch1, src);
3460     movq(dst, Address(rscratch1, 0));
3461   }
3462 }
3463 
3464 void MacroAssembler::setvectmask(Register dst, Register src) {
3465   Assembler::movl(dst, 1);
3466   Assembler::shlxl(dst, dst, src);
3467   Assembler::decl(dst);
3468   Assembler::kmovdl(k1, dst);
3469   Assembler::movl(dst, src);
3470 }
3471 
3472 void MacroAssembler::restorevectmask() {
3473   Assembler::knotwl(k1, k0);
3474 }
3475 
3476 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3477   if (reachable(src)) {
3478     if (UseXmmLoadAndClearUpper) {
3479       movsd (dst, as_Address(src));
3480     } else {
3481       movlpd(dst, as_Address(src));
3482     }
3483   } else {
3484     lea(rscratch1, src);
3485     if (UseXmmLoadAndClearUpper) {
3486       movsd (dst, Address(rscratch1, 0));
3487     } else {
3488       movlpd(dst, Address(rscratch1, 0));
3489     }
3490   }
3491 }
3492 
3493 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3494   if (reachable(src)) {
3495     movss(dst, as_Address(src));
3496   } else {
3497     lea(rscratch1, src);
3498     movss(dst, Address(rscratch1, 0));
3499   }
3500 }
3501 
3502 void MacroAssembler::movptr(Register dst, Register src) {
3503   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3504 }
3505 
3506 void MacroAssembler::movptr(Register dst, Address src) {
3507   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3508 }
3509 
3510 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3511 void MacroAssembler::movptr(Register dst, intptr_t src) {
3512   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3513 }
3514 
3515 void MacroAssembler::movptr(Address dst, Register src) {
3516   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3517 }
3518 
3519 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3520   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3521     Assembler::vextractf32x4(dst, src, 0);
3522   } else {
3523     Assembler::movdqu(dst, src);
3524   }
3525 }
3526 
3527 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3528   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3529     Assembler::vinsertf32x4(dst, dst, src, 0);
3530   } else {
3531     Assembler::movdqu(dst, src);
3532   }
3533 }
3534 
3535 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3536   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3537     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3538   } else {
3539     Assembler::movdqu(dst, src);
3540   }
3541 }
3542 
3543 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3544   if (reachable(src)) {
3545     movdqu(dst, as_Address(src));
3546   } else {
3547     lea(scratchReg, src);
3548     movdqu(dst, Address(scratchReg, 0));
3549   }
3550 }
3551 
3552 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3553   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3554     vextractf64x4_low(dst, src);
3555   } else {
3556     Assembler::vmovdqu(dst, src);
3557   }
3558 }
3559 
3560 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3561   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3562     vinsertf64x4_low(dst, src);
3563   } else {
3564     Assembler::vmovdqu(dst, src);
3565   }
3566 }
3567 
3568 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3569   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3570     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3571   }
3572   else {
3573     Assembler::vmovdqu(dst, src);
3574   }
3575 }
3576 
3577 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3578   if (reachable(src)) {
3579     vmovdqu(dst, as_Address(src));
3580   }
3581   else {
3582     lea(rscratch1, src);
3583     vmovdqu(dst, Address(rscratch1, 0));
3584   }
3585 }
3586 
3587 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3588   if (reachable(src)) {
3589     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3590   } else {
3591     lea(rscratch, src);
3592     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3593   }
3594 }
3595 
3596 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3597   if (reachable(src)) {
3598     Assembler::movdqa(dst, as_Address(src));
3599   } else {
3600     lea(rscratch1, src);
3601     Assembler::movdqa(dst, Address(rscratch1, 0));
3602   }
3603 }
3604 
3605 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3606   if (reachable(src)) {
3607     Assembler::movsd(dst, as_Address(src));
3608   } else {
3609     lea(rscratch1, src);
3610     Assembler::movsd(dst, Address(rscratch1, 0));
3611   }
3612 }
3613 
3614 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3615   if (reachable(src)) {
3616     Assembler::movss(dst, as_Address(src));
3617   } else {
3618     lea(rscratch1, src);
3619     Assembler::movss(dst, Address(rscratch1, 0));
3620   }
3621 }
3622 
3623 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3624   if (reachable(src)) {
3625     Assembler::mulsd(dst, as_Address(src));
3626   } else {
3627     lea(rscratch1, src);
3628     Assembler::mulsd(dst, Address(rscratch1, 0));
3629   }
3630 }
3631 
3632 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3633   if (reachable(src)) {
3634     Assembler::mulss(dst, as_Address(src));
3635   } else {
3636     lea(rscratch1, src);
3637     Assembler::mulss(dst, Address(rscratch1, 0));
3638   }
3639 }
3640 
3641 void MacroAssembler::null_check(Register reg, int offset) {
3642   if (needs_explicit_null_check(offset)) {
3643     // provoke OS NULL exception if reg = NULL by
3644     // accessing M[reg] w/o changing any (non-CC) registers
3645     // NOTE: cmpl is plenty here to provoke a segv
3646     cmpptr(rax, Address(reg, 0));
3647     // Note: should probably use testl(rax, Address(reg, 0));
3648     //       may be shorter code (however, this version of
3649     //       testl needs to be implemented first)
3650   } else {
3651     // nothing to do, (later) access of M[reg + offset]
3652     // will provoke OS NULL exception if reg = NULL
3653   }
3654 }
3655 
3656 void MacroAssembler::test_klass_is_value(Register klass, Register temp_reg, Label& is_value) {
3657   movl(temp_reg, Address(klass, Klass::access_flags_offset()));
3658   testl(temp_reg, JVM_ACC_VALUE);
3659   jcc(Assembler::notZero, is_value);
3660 }
3661 
3662 void MacroAssembler::test_field_is_flattenable(Register flags, Register temp_reg, Label& is_flattenable) {
3663   movl(temp_reg, flags);
3664   shrl(temp_reg, ConstantPoolCacheEntry::is_flattenable_field_shift);
3665   andl(temp_reg, 0x1);
3666   testl(temp_reg, temp_reg);
3667   jcc(Assembler::notZero, is_flattenable);
3668 }
3669 
3670 void MacroAssembler::test_field_is_not_flattenable(Register flags, Register temp_reg, Label& notFlattenable) {
3671   movl(temp_reg, flags);
3672   shrl(temp_reg, ConstantPoolCacheEntry::is_flattenable_field_shift);
3673   andl(temp_reg, 0x1);
3674   testl(temp_reg, temp_reg);
3675   jcc(Assembler::zero, notFlattenable);
3676 }
3677 
3678 void MacroAssembler::test_field_is_flattened(Register flags, Register temp_reg, Label& is_flattened) {
3679   movl(temp_reg, flags);
3680   shrl(temp_reg, ConstantPoolCacheEntry::is_flattened_field_shift);
3681   andl(temp_reg, 0x1);
3682   testl(temp_reg, temp_reg);
3683   jcc(Assembler::notZero, is_flattened);
3684 }
3685 
3686 void MacroAssembler::test_flat_array_klass(Register klass, Register temp_reg,
3687                                            Label& is_flat_array) {
3688   movl(temp_reg, Address(klass, Klass::layout_helper_offset()));
3689   sarl(temp_reg, Klass::_lh_array_tag_shift);
3690   cmpl(temp_reg, Klass::_lh_array_tag_vt_value);
3691   jcc(Assembler::equal, is_flat_array);
3692 }
3693 
3694 
3695 void MacroAssembler::test_flat_array_oop(Register oop, Register temp_reg,
3696                                          Label& is_flat_array) {
3697   load_klass(temp_reg, oop);
3698   test_flat_array_klass(temp_reg, temp_reg, is_flat_array);
3699 }
3700 
3701 void MacroAssembler::test_value_is_not_buffered(Register value, Register temp_reg, Label& not_buffered) {
3702   ExternalAddress VTBuffer_top(VTBuffer::top_addr());
3703   ExternalAddress VTBuffer_end(VTBuffer::end_addr());
3704 
3705   // Test below is ordered based on the relative positions of
3706   // the Java heap and the VTBuffer to execute a single test for heap-allocated values
3707 
3708   if (VTBuffer::base() < Universe::heap()->base()) {
3709     lea(temp_reg, VTBuffer_end);
3710     cmpptr(value, temp_reg);
3711     jcc(Assembler::greaterEqual, not_buffered);
3712     lea(temp_reg, VTBuffer_top);
3713     cmpptr(value, temp_reg);
3714     jcc(Assembler::less, not_buffered);
3715   } else {
3716     lea(temp_reg, VTBuffer_top);
3717     cmpptr(value, temp_reg);
3718     jcc(Assembler::less, not_buffered);
3719     lea(temp_reg, VTBuffer_end);
3720     cmpptr(value, temp_reg);
3721     jcc(Assembler::greaterEqual, not_buffered);
3722   }
3723 }
3724 
3725 void MacroAssembler::os_breakpoint() {
3726   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3727   // (e.g., MSVC can't call ps() otherwise)
3728   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3729 }
3730 
3731 void MacroAssembler::unimplemented(const char* what) {
3732   const char* buf = NULL;
3733   {
3734     ResourceMark rm;
3735     stringStream ss;
3736     ss.print("unimplemented: %s", what);
3737     buf = code_string(ss.as_string());
3738   }
3739   stop(buf);
3740 }
3741 
3742 #ifdef _LP64
3743 #define XSTATE_BV 0x200
3744 #endif
3745 
3746 void MacroAssembler::pop_CPU_state() {
3747   pop_FPU_state();
3748   pop_IU_state();
3749 }
3750 
3751 void MacroAssembler::pop_FPU_state() {
3752 #ifndef _LP64
3753   frstor(Address(rsp, 0));
3754 #else
3755   fxrstor(Address(rsp, 0));
3756 #endif
3757   addptr(rsp, FPUStateSizeInWords * wordSize);
3758 }
3759 
3760 void MacroAssembler::pop_IU_state() {
3761   popa();
3762   LP64_ONLY(addq(rsp, 8));
3763   popf();
3764 }
3765 
3766 // Save Integer and Float state
3767 // Warning: Stack must be 16 byte aligned (64bit)
3768 void MacroAssembler::push_CPU_state() {
3769   push_IU_state();
3770   push_FPU_state();
3771 }
3772 
3773 void MacroAssembler::push_FPU_state() {
3774   subptr(rsp, FPUStateSizeInWords * wordSize);
3775 #ifndef _LP64
3776   fnsave(Address(rsp, 0));
3777   fwait();
3778 #else
3779   fxsave(Address(rsp, 0));
3780 #endif // LP64
3781 }
3782 
3783 void MacroAssembler::push_IU_state() {
3784   // Push flags first because pusha kills them
3785   pushf();
3786   // Make sure rsp stays 16-byte aligned
3787   LP64_ONLY(subq(rsp, 8));
3788   pusha();
3789 }
3790 
3791 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3792   if (!java_thread->is_valid()) {
3793     java_thread = rdi;
3794     get_thread(java_thread);
3795   }
3796   // we must set sp to zero to clear frame
3797   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3798   if (clear_fp) {
3799     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3800   }
3801 
3802   // Always clear the pc because it could have been set by make_walkable()
3803   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3804 
3805   vzeroupper();
3806 }
3807 
3808 void MacroAssembler::restore_rax(Register tmp) {
3809   if (tmp == noreg) pop(rax);
3810   else if (tmp != rax) mov(rax, tmp);
3811 }
3812 
3813 void MacroAssembler::round_to(Register reg, int modulus) {
3814   addptr(reg, modulus - 1);
3815   andptr(reg, -modulus);
3816 }
3817 
3818 void MacroAssembler::save_rax(Register tmp) {
3819   if (tmp == noreg) push(rax);
3820   else if (tmp != rax) mov(tmp, rax);
3821 }
3822 
3823 // Write serialization page so VM thread can do a pseudo remote membar.
3824 // We use the current thread pointer to calculate a thread specific
3825 // offset to write to within the page. This minimizes bus traffic
3826 // due to cache line collision.
3827 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3828   movl(tmp, thread);
3829   shrl(tmp, os::get_serialize_page_shift_count());
3830   andl(tmp, (os::vm_page_size() - sizeof(int)));
3831 
3832   Address index(noreg, tmp, Address::times_1);
3833   ExternalAddress page(os::get_memory_serialize_page());
3834 
3835   // Size of store must match masking code above
3836   movl(as_Address(ArrayAddress(page, index)), tmp);
3837 }
3838 
3839 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3840   if (SafepointMechanism::uses_thread_local_poll()) {
3841 #ifdef _LP64
3842     assert(thread_reg == r15_thread, "should be");
3843 #else
3844     if (thread_reg == noreg) {
3845       thread_reg = temp_reg;
3846       get_thread(thread_reg);
3847     }
3848 #endif
3849     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3850     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3851   } else {
3852     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3853         SafepointSynchronize::_not_synchronized);
3854     jcc(Assembler::notEqual, slow_path);
3855   }
3856 }
3857 
3858 // Calls to C land
3859 //
3860 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3861 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3862 // has to be reset to 0. This is required to allow proper stack traversal.
3863 void MacroAssembler::set_last_Java_frame(Register java_thread,
3864                                          Register last_java_sp,
3865                                          Register last_java_fp,
3866                                          address  last_java_pc) {
3867   vzeroupper();
3868   // determine java_thread register
3869   if (!java_thread->is_valid()) {
3870     java_thread = rdi;
3871     get_thread(java_thread);
3872   }
3873   // determine last_java_sp register
3874   if (!last_java_sp->is_valid()) {
3875     last_java_sp = rsp;
3876   }
3877 
3878   // last_java_fp is optional
3879 
3880   if (last_java_fp->is_valid()) {
3881     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3882   }
3883 
3884   // last_java_pc is optional
3885 
3886   if (last_java_pc != NULL) {
3887     lea(Address(java_thread,
3888                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3889         InternalAddress(last_java_pc));
3890 
3891   }
3892   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3893 }
3894 
3895 void MacroAssembler::shlptr(Register dst, int imm8) {
3896   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3897 }
3898 
3899 void MacroAssembler::shrptr(Register dst, int imm8) {
3900   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3901 }
3902 
3903 void MacroAssembler::sign_extend_byte(Register reg) {
3904   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3905     movsbl(reg, reg); // movsxb
3906   } else {
3907     shll(reg, 24);
3908     sarl(reg, 24);
3909   }
3910 }
3911 
3912 void MacroAssembler::sign_extend_short(Register reg) {
3913   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3914     movswl(reg, reg); // movsxw
3915   } else {
3916     shll(reg, 16);
3917     sarl(reg, 16);
3918   }
3919 }
3920 
3921 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3922   assert(reachable(src), "Address should be reachable");
3923   testl(dst, as_Address(src));
3924 }
3925 
3926 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3927   int dst_enc = dst->encoding();
3928   int src_enc = src->encoding();
3929   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3930     Assembler::pcmpeqb(dst, src);
3931   } else if ((dst_enc < 16) && (src_enc < 16)) {
3932     Assembler::pcmpeqb(dst, src);
3933   } else if (src_enc < 16) {
3934     push_zmm(xmm0);
3935     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3936     Assembler::pcmpeqb(xmm0, src);
3937     movdqu(dst, xmm0);
3938     pop_zmm(xmm0);
3939   } else if (dst_enc < 16) {
3940     push_zmm(xmm0);
3941     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3942     Assembler::pcmpeqb(dst, xmm0);
3943     pop_zmm(xmm0);
3944   } else {
3945     push_zmm(xmm0);
3946     push_zmm(xmm1);
3947     movdqu(xmm0, src);
3948     movdqu(xmm1, dst);
3949     Assembler::pcmpeqb(xmm1, xmm0);
3950     movdqu(dst, xmm1);
3951     pop_zmm(xmm1);
3952     pop_zmm(xmm0);
3953   }
3954 }
3955 
3956 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3957   int dst_enc = dst->encoding();
3958   int src_enc = src->encoding();
3959   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3960     Assembler::pcmpeqw(dst, src);
3961   } else if ((dst_enc < 16) && (src_enc < 16)) {
3962     Assembler::pcmpeqw(dst, src);
3963   } else if (src_enc < 16) {
3964     push_zmm(xmm0);
3965     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3966     Assembler::pcmpeqw(xmm0, src);
3967     movdqu(dst, xmm0);
3968     pop_zmm(xmm0);
3969   } else if (dst_enc < 16) {
3970     push_zmm(xmm0);
3971     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3972     Assembler::pcmpeqw(dst, xmm0);
3973     pop_zmm(xmm0);
3974   } else {
3975     push_zmm(xmm0);
3976     push_zmm(xmm1);
3977     movdqu(xmm0, src);
3978     movdqu(xmm1, dst);
3979     Assembler::pcmpeqw(xmm1, xmm0);
3980     movdqu(dst, xmm1);
3981     pop_zmm(xmm1);
3982     pop_zmm(xmm0);
3983   }
3984 }
3985 
3986 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3987   int dst_enc = dst->encoding();
3988   if (dst_enc < 16) {
3989     Assembler::pcmpestri(dst, src, imm8);
3990   } else {
3991     push_zmm(xmm0);
3992     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3993     Assembler::pcmpestri(xmm0, src, imm8);
3994     movdqu(dst, xmm0);
3995     pop_zmm(xmm0);
3996   }
3997 }
3998 
3999 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
4000   int dst_enc = dst->encoding();
4001   int src_enc = src->encoding();
4002   if ((dst_enc < 16) && (src_enc < 16)) {
4003     Assembler::pcmpestri(dst, src, imm8);
4004   } else if (src_enc < 16) {
4005     push_zmm(xmm0);
4006     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4007     Assembler::pcmpestri(xmm0, src, imm8);
4008     movdqu(dst, xmm0);
4009     pop_zmm(xmm0);
4010   } else if (dst_enc < 16) {
4011     push_zmm(xmm0);
4012     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4013     Assembler::pcmpestri(dst, xmm0, imm8);
4014     pop_zmm(xmm0);
4015   } else {
4016     push_zmm(xmm0);
4017     push_zmm(xmm1);
4018     movdqu(xmm0, src);
4019     movdqu(xmm1, dst);
4020     Assembler::pcmpestri(xmm1, xmm0, imm8);
4021     movdqu(dst, xmm1);
4022     pop_zmm(xmm1);
4023     pop_zmm(xmm0);
4024   }
4025 }
4026 
4027 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
4028   int dst_enc = dst->encoding();
4029   int src_enc = src->encoding();
4030   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4031     Assembler::pmovzxbw(dst, src);
4032   } else if ((dst_enc < 16) && (src_enc < 16)) {
4033     Assembler::pmovzxbw(dst, src);
4034   } else if (src_enc < 16) {
4035     push_zmm(xmm0);
4036     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4037     Assembler::pmovzxbw(xmm0, src);
4038     movdqu(dst, xmm0);
4039     pop_zmm(xmm0);
4040   } else if (dst_enc < 16) {
4041     push_zmm(xmm0);
4042     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4043     Assembler::pmovzxbw(dst, xmm0);
4044     pop_zmm(xmm0);
4045   } else {
4046     push_zmm(xmm0);
4047     push_zmm(xmm1);
4048     movdqu(xmm0, src);
4049     movdqu(xmm1, dst);
4050     Assembler::pmovzxbw(xmm1, xmm0);
4051     movdqu(dst, xmm1);
4052     pop_zmm(xmm1);
4053     pop_zmm(xmm0);
4054   }
4055 }
4056 
4057 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
4058   int dst_enc = dst->encoding();
4059   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4060     Assembler::pmovzxbw(dst, src);
4061   } else if (dst_enc < 16) {
4062     Assembler::pmovzxbw(dst, src);
4063   } else {
4064     push_zmm(xmm0);
4065     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4066     Assembler::pmovzxbw(xmm0, src);
4067     movdqu(dst, xmm0);
4068     pop_zmm(xmm0);
4069   }
4070 }
4071 
4072 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
4073   int src_enc = src->encoding();
4074   if (src_enc < 16) {
4075     Assembler::pmovmskb(dst, src);
4076   } else {
4077     push_zmm(xmm0);
4078     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4079     Assembler::pmovmskb(dst, xmm0);
4080     pop_zmm(xmm0);
4081   }
4082 }
4083 
4084 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
4085   int dst_enc = dst->encoding();
4086   int src_enc = src->encoding();
4087   if ((dst_enc < 16) && (src_enc < 16)) {
4088     Assembler::ptest(dst, src);
4089   } else if (src_enc < 16) {
4090     push_zmm(xmm0);
4091     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4092     Assembler::ptest(xmm0, src);
4093     pop_zmm(xmm0);
4094   } else if (dst_enc < 16) {
4095     push_zmm(xmm0);
4096     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4097     Assembler::ptest(dst, xmm0);
4098     pop_zmm(xmm0);
4099   } else {
4100     push_zmm(xmm0);
4101     push_zmm(xmm1);
4102     movdqu(xmm0, src);
4103     movdqu(xmm1, dst);
4104     Assembler::ptest(xmm1, xmm0);
4105     pop_zmm(xmm1);
4106     pop_zmm(xmm0);
4107   }
4108 }
4109 
4110 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4111   if (reachable(src)) {
4112     Assembler::sqrtsd(dst, as_Address(src));
4113   } else {
4114     lea(rscratch1, src);
4115     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4116   }
4117 }
4118 
4119 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4120   if (reachable(src)) {
4121     Assembler::sqrtss(dst, as_Address(src));
4122   } else {
4123     lea(rscratch1, src);
4124     Assembler::sqrtss(dst, Address(rscratch1, 0));
4125   }
4126 }
4127 
4128 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4129   if (reachable(src)) {
4130     Assembler::subsd(dst, as_Address(src));
4131   } else {
4132     lea(rscratch1, src);
4133     Assembler::subsd(dst, Address(rscratch1, 0));
4134   }
4135 }
4136 
4137 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4138   if (reachable(src)) {
4139     Assembler::subss(dst, as_Address(src));
4140   } else {
4141     lea(rscratch1, src);
4142     Assembler::subss(dst, Address(rscratch1, 0));
4143   }
4144 }
4145 
4146 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4147   if (reachable(src)) {
4148     Assembler::ucomisd(dst, as_Address(src));
4149   } else {
4150     lea(rscratch1, src);
4151     Assembler::ucomisd(dst, Address(rscratch1, 0));
4152   }
4153 }
4154 
4155 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4156   if (reachable(src)) {
4157     Assembler::ucomiss(dst, as_Address(src));
4158   } else {
4159     lea(rscratch1, src);
4160     Assembler::ucomiss(dst, Address(rscratch1, 0));
4161   }
4162 }
4163 
4164 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4165   // Used in sign-bit flipping with aligned address.
4166   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4167   if (reachable(src)) {
4168     Assembler::xorpd(dst, as_Address(src));
4169   } else {
4170     lea(rscratch1, src);
4171     Assembler::xorpd(dst, Address(rscratch1, 0));
4172   }
4173 }
4174 
4175 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4176   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4177     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4178   }
4179   else {
4180     Assembler::xorpd(dst, src);
4181   }
4182 }
4183 
4184 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4185   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4186     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4187   } else {
4188     Assembler::xorps(dst, src);
4189   }
4190 }
4191 
4192 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4193   // Used in sign-bit flipping with aligned address.
4194   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4195   if (reachable(src)) {
4196     Assembler::xorps(dst, as_Address(src));
4197   } else {
4198     lea(rscratch1, src);
4199     Assembler::xorps(dst, Address(rscratch1, 0));
4200   }
4201 }
4202 
4203 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4204   // Used in sign-bit flipping with aligned address.
4205   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4206   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4207   if (reachable(src)) {
4208     Assembler::pshufb(dst, as_Address(src));
4209   } else {
4210     lea(rscratch1, src);
4211     Assembler::pshufb(dst, Address(rscratch1, 0));
4212   }
4213 }
4214 
4215 // AVX 3-operands instructions
4216 
4217 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4218   if (reachable(src)) {
4219     vaddsd(dst, nds, as_Address(src));
4220   } else {
4221     lea(rscratch1, src);
4222     vaddsd(dst, nds, Address(rscratch1, 0));
4223   }
4224 }
4225 
4226 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4227   if (reachable(src)) {
4228     vaddss(dst, nds, as_Address(src));
4229   } else {
4230     lea(rscratch1, src);
4231     vaddss(dst, nds, Address(rscratch1, 0));
4232   }
4233 }
4234 
4235 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4236   int dst_enc = dst->encoding();
4237   int nds_enc = nds->encoding();
4238   int src_enc = src->encoding();
4239   if ((dst_enc < 16) && (nds_enc < 16)) {
4240     vandps(dst, nds, negate_field, vector_len);
4241   } else if ((src_enc < 16) && (dst_enc < 16)) {
4242     // Use src scratch register
4243     evmovdqul(src, nds, Assembler::AVX_512bit);
4244     vandps(dst, src, negate_field, vector_len);
4245   } else if (dst_enc < 16) {
4246     evmovdqul(dst, nds, Assembler::AVX_512bit);
4247     vandps(dst, dst, negate_field, vector_len);
4248   } else if (nds_enc < 16) {
4249     vandps(nds, nds, negate_field, vector_len);
4250     evmovdqul(dst, nds, Assembler::AVX_512bit);
4251   } else if (src_enc < 16) {
4252     evmovdqul(src, nds, Assembler::AVX_512bit);
4253     vandps(src, src, negate_field, vector_len);
4254     evmovdqul(dst, src, Assembler::AVX_512bit);
4255   } else {
4256     if (src_enc != dst_enc) {
4257       // Use src scratch register
4258       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4259       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4260       vandps(xmm0, xmm0, negate_field, vector_len);
4261       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4262       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4263     } else {
4264       push_zmm(xmm0);
4265       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4266       vandps(xmm0, xmm0, negate_field, vector_len);
4267       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4268       pop_zmm(xmm0);
4269     }
4270   }
4271 }
4272 
4273 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4274   int dst_enc = dst->encoding();
4275   int nds_enc = nds->encoding();
4276   int src_enc = src->encoding();
4277   if ((dst_enc < 16) && (nds_enc < 16)) {
4278     vandpd(dst, nds, negate_field, vector_len);
4279   } else if ((src_enc < 16) && (dst_enc < 16)) {
4280     // Use src scratch register
4281     evmovdqul(src, nds, Assembler::AVX_512bit);
4282     vandpd(dst, src, negate_field, vector_len);
4283   } else if (dst_enc < 16) {
4284     evmovdqul(dst, nds, Assembler::AVX_512bit);
4285     vandpd(dst, dst, negate_field, vector_len);
4286   } else if (nds_enc < 16) {
4287     vandpd(nds, nds, negate_field, vector_len);
4288     evmovdqul(dst, nds, Assembler::AVX_512bit);
4289   } else if (src_enc < 16) {
4290     evmovdqul(src, nds, Assembler::AVX_512bit);
4291     vandpd(src, src, negate_field, vector_len);
4292     evmovdqul(dst, src, Assembler::AVX_512bit);
4293   } else {
4294     if (src_enc != dst_enc) {
4295       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4296       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4297       vandpd(xmm0, xmm0, negate_field, vector_len);
4298       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4299       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4300     } else {
4301       push_zmm(xmm0);
4302       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4303       vandpd(xmm0, xmm0, negate_field, vector_len);
4304       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4305       pop_zmm(xmm0);
4306     }
4307   }
4308 }
4309 
4310 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4311   int dst_enc = dst->encoding();
4312   int nds_enc = nds->encoding();
4313   int src_enc = src->encoding();
4314   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4315     Assembler::vpaddb(dst, nds, src, vector_len);
4316   } else if ((dst_enc < 16) && (src_enc < 16)) {
4317     Assembler::vpaddb(dst, dst, src, vector_len);
4318   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4319     // use nds as scratch for src
4320     evmovdqul(nds, src, Assembler::AVX_512bit);
4321     Assembler::vpaddb(dst, dst, nds, vector_len);
4322   } else if ((src_enc < 16) && (nds_enc < 16)) {
4323     // use nds as scratch for dst
4324     evmovdqul(nds, dst, Assembler::AVX_512bit);
4325     Assembler::vpaddb(nds, nds, src, vector_len);
4326     evmovdqul(dst, nds, Assembler::AVX_512bit);
4327   } else if (dst_enc < 16) {
4328     // use nds as scatch for xmm0 to hold src
4329     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4330     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4331     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4332     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4333   } else {
4334     // worse case scenario, all regs are in the upper bank
4335     push_zmm(xmm1);
4336     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4337     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4338     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4339     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4340     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4341     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4342     pop_zmm(xmm1);
4343   }
4344 }
4345 
4346 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4347   int dst_enc = dst->encoding();
4348   int nds_enc = nds->encoding();
4349   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4350     Assembler::vpaddb(dst, nds, src, vector_len);
4351   } else if (dst_enc < 16) {
4352     Assembler::vpaddb(dst, dst, src, vector_len);
4353   } else if (nds_enc < 16) {
4354     // implies dst_enc in upper bank with src as scratch
4355     evmovdqul(nds, dst, Assembler::AVX_512bit);
4356     Assembler::vpaddb(nds, nds, src, vector_len);
4357     evmovdqul(dst, nds, Assembler::AVX_512bit);
4358   } else {
4359     // worse case scenario, all regs in upper bank
4360     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4361     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4362     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4363     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4364     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4365   }
4366 }
4367 
4368 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4369   int dst_enc = dst->encoding();
4370   int nds_enc = nds->encoding();
4371   int src_enc = src->encoding();
4372   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4373     Assembler::vpaddw(dst, nds, src, vector_len);
4374   } else if ((dst_enc < 16) && (src_enc < 16)) {
4375     Assembler::vpaddw(dst, dst, src, vector_len);
4376   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4377     // use nds as scratch for src
4378     evmovdqul(nds, src, Assembler::AVX_512bit);
4379     Assembler::vpaddw(dst, dst, nds, vector_len);
4380   } else if ((src_enc < 16) && (nds_enc < 16)) {
4381     // use nds as scratch for dst
4382     evmovdqul(nds, dst, Assembler::AVX_512bit);
4383     Assembler::vpaddw(nds, nds, src, vector_len);
4384     evmovdqul(dst, nds, Assembler::AVX_512bit);
4385   } else if (dst_enc < 16) {
4386     // use nds as scatch for xmm0 to hold src
4387     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4388     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4389     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4390     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4391   } else {
4392     // worse case scenario, all regs are in the upper bank
4393     push_zmm(xmm1);
4394     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4395     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4396     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4397     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4398     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4399     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4400     pop_zmm(xmm1);
4401   }
4402 }
4403 
4404 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4405   int dst_enc = dst->encoding();
4406   int nds_enc = nds->encoding();
4407   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4408     Assembler::vpaddw(dst, nds, src, vector_len);
4409   } else if (dst_enc < 16) {
4410     Assembler::vpaddw(dst, dst, src, vector_len);
4411   } else if (nds_enc < 16) {
4412     // implies dst_enc in upper bank with nds as scratch
4413     evmovdqul(nds, dst, Assembler::AVX_512bit);
4414     Assembler::vpaddw(nds, nds, src, vector_len);
4415     evmovdqul(dst, nds, Assembler::AVX_512bit);
4416   } else {
4417     // worse case scenario, all regs in upper bank
4418     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4419     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4420     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4421     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4422     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4423   }
4424 }
4425 
4426 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4427   if (reachable(src)) {
4428     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4429   } else {
4430     lea(rscratch1, src);
4431     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4432   }
4433 }
4434 
4435 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4436   int dst_enc = dst->encoding();
4437   int src_enc = src->encoding();
4438   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4439     Assembler::vpbroadcastw(dst, src);
4440   } else if ((dst_enc < 16) && (src_enc < 16)) {
4441     Assembler::vpbroadcastw(dst, src);
4442   } else if (src_enc < 16) {
4443     push_zmm(xmm0);
4444     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4445     Assembler::vpbroadcastw(xmm0, src);
4446     movdqu(dst, xmm0);
4447     pop_zmm(xmm0);
4448   } else if (dst_enc < 16) {
4449     push_zmm(xmm0);
4450     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4451     Assembler::vpbroadcastw(dst, xmm0);
4452     pop_zmm(xmm0);
4453   } else {
4454     push_zmm(xmm0);
4455     push_zmm(xmm1);
4456     movdqu(xmm0, src);
4457     movdqu(xmm1, dst);
4458     Assembler::vpbroadcastw(xmm1, xmm0);
4459     movdqu(dst, xmm1);
4460     pop_zmm(xmm1);
4461     pop_zmm(xmm0);
4462   }
4463 }
4464 
4465 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4466   int dst_enc = dst->encoding();
4467   int nds_enc = nds->encoding();
4468   int src_enc = src->encoding();
4469   assert(dst_enc == nds_enc, "");
4470   if ((dst_enc < 16) && (src_enc < 16)) {
4471     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4472   } else if (src_enc < 16) {
4473     push_zmm(xmm0);
4474     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4475     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4476     movdqu(dst, xmm0);
4477     pop_zmm(xmm0);
4478   } else if (dst_enc < 16) {
4479     push_zmm(xmm0);
4480     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4481     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4482     pop_zmm(xmm0);
4483   } else {
4484     push_zmm(xmm0);
4485     push_zmm(xmm1);
4486     movdqu(xmm0, src);
4487     movdqu(xmm1, dst);
4488     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4489     movdqu(dst, xmm1);
4490     pop_zmm(xmm1);
4491     pop_zmm(xmm0);
4492   }
4493 }
4494 
4495 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4496   int dst_enc = dst->encoding();
4497   int nds_enc = nds->encoding();
4498   int src_enc = src->encoding();
4499   assert(dst_enc == nds_enc, "");
4500   if ((dst_enc < 16) && (src_enc < 16)) {
4501     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4502   } else if (src_enc < 16) {
4503     push_zmm(xmm0);
4504     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4505     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4506     movdqu(dst, xmm0);
4507     pop_zmm(xmm0);
4508   } else if (dst_enc < 16) {
4509     push_zmm(xmm0);
4510     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4511     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4512     pop_zmm(xmm0);
4513   } else {
4514     push_zmm(xmm0);
4515     push_zmm(xmm1);
4516     movdqu(xmm0, src);
4517     movdqu(xmm1, dst);
4518     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4519     movdqu(dst, xmm1);
4520     pop_zmm(xmm1);
4521     pop_zmm(xmm0);
4522   }
4523 }
4524 
4525 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4526   int dst_enc = dst->encoding();
4527   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4528     Assembler::vpmovzxbw(dst, src, vector_len);
4529   } else if (dst_enc < 16) {
4530     Assembler::vpmovzxbw(dst, src, vector_len);
4531   } else {
4532     push_zmm(xmm0);
4533     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4534     Assembler::vpmovzxbw(xmm0, src, vector_len);
4535     movdqu(dst, xmm0);
4536     pop_zmm(xmm0);
4537   }
4538 }
4539 
4540 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4541   int src_enc = src->encoding();
4542   if (src_enc < 16) {
4543     Assembler::vpmovmskb(dst, src);
4544   } else {
4545     push_zmm(xmm0);
4546     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4547     Assembler::vpmovmskb(dst, xmm0);
4548     pop_zmm(xmm0);
4549   }
4550 }
4551 
4552 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4553   int dst_enc = dst->encoding();
4554   int nds_enc = nds->encoding();
4555   int src_enc = src->encoding();
4556   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4557     Assembler::vpmullw(dst, nds, src, vector_len);
4558   } else if ((dst_enc < 16) && (src_enc < 16)) {
4559     Assembler::vpmullw(dst, dst, src, vector_len);
4560   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4561     // use nds as scratch for src
4562     evmovdqul(nds, src, Assembler::AVX_512bit);
4563     Assembler::vpmullw(dst, dst, nds, vector_len);
4564   } else if ((src_enc < 16) && (nds_enc < 16)) {
4565     // use nds as scratch for dst
4566     evmovdqul(nds, dst, Assembler::AVX_512bit);
4567     Assembler::vpmullw(nds, nds, src, vector_len);
4568     evmovdqul(dst, nds, Assembler::AVX_512bit);
4569   } else if (dst_enc < 16) {
4570     // use nds as scatch for xmm0 to hold src
4571     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4572     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4573     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4574     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4575   } else {
4576     // worse case scenario, all regs are in the upper bank
4577     push_zmm(xmm1);
4578     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4579     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4580     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4581     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4582     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4583     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4584     pop_zmm(xmm1);
4585   }
4586 }
4587 
4588 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4589   int dst_enc = dst->encoding();
4590   int nds_enc = nds->encoding();
4591   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4592     Assembler::vpmullw(dst, nds, src, vector_len);
4593   } else if (dst_enc < 16) {
4594     Assembler::vpmullw(dst, dst, src, vector_len);
4595   } else if (nds_enc < 16) {
4596     // implies dst_enc in upper bank with src as scratch
4597     evmovdqul(nds, dst, Assembler::AVX_512bit);
4598     Assembler::vpmullw(nds, nds, src, vector_len);
4599     evmovdqul(dst, nds, Assembler::AVX_512bit);
4600   } else {
4601     // worse case scenario, all regs in upper bank
4602     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4603     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4604     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4605     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4606     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4607   }
4608 }
4609 
4610 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4611   int dst_enc = dst->encoding();
4612   int nds_enc = nds->encoding();
4613   int src_enc = src->encoding();
4614   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4615     Assembler::vpsubb(dst, nds, src, vector_len);
4616   } else if ((dst_enc < 16) && (src_enc < 16)) {
4617     Assembler::vpsubb(dst, dst, src, vector_len);
4618   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4619     // use nds as scratch for src
4620     evmovdqul(nds, src, Assembler::AVX_512bit);
4621     Assembler::vpsubb(dst, dst, nds, vector_len);
4622   } else if ((src_enc < 16) && (nds_enc < 16)) {
4623     // use nds as scratch for dst
4624     evmovdqul(nds, dst, Assembler::AVX_512bit);
4625     Assembler::vpsubb(nds, nds, src, vector_len);
4626     evmovdqul(dst, nds, Assembler::AVX_512bit);
4627   } else if (dst_enc < 16) {
4628     // use nds as scatch for xmm0 to hold src
4629     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4630     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4631     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4632     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4633   } else {
4634     // worse case scenario, all regs are in the upper bank
4635     push_zmm(xmm1);
4636     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4637     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4638     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4639     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4640     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4641     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4642     pop_zmm(xmm1);
4643   }
4644 }
4645 
4646 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4647   int dst_enc = dst->encoding();
4648   int nds_enc = nds->encoding();
4649   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4650     Assembler::vpsubb(dst, nds, src, vector_len);
4651   } else if (dst_enc < 16) {
4652     Assembler::vpsubb(dst, dst, src, vector_len);
4653   } else if (nds_enc < 16) {
4654     // implies dst_enc in upper bank with src as scratch
4655     evmovdqul(nds, dst, Assembler::AVX_512bit);
4656     Assembler::vpsubb(nds, nds, src, vector_len);
4657     evmovdqul(dst, nds, Assembler::AVX_512bit);
4658   } else {
4659     // worse case scenario, all regs in upper bank
4660     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4661     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4662     Assembler::vpsubb(xmm0, xmm0, src, vector_len);
4663     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4664     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4665   }
4666 }
4667 
4668 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4669   int dst_enc = dst->encoding();
4670   int nds_enc = nds->encoding();
4671   int src_enc = src->encoding();
4672   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4673     Assembler::vpsubw(dst, nds, src, vector_len);
4674   } else if ((dst_enc < 16) && (src_enc < 16)) {
4675     Assembler::vpsubw(dst, dst, src, vector_len);
4676   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4677     // use nds as scratch for src
4678     evmovdqul(nds, src, Assembler::AVX_512bit);
4679     Assembler::vpsubw(dst, dst, nds, vector_len);
4680   } else if ((src_enc < 16) && (nds_enc < 16)) {
4681     // use nds as scratch for dst
4682     evmovdqul(nds, dst, Assembler::AVX_512bit);
4683     Assembler::vpsubw(nds, nds, src, vector_len);
4684     evmovdqul(dst, nds, Assembler::AVX_512bit);
4685   } else if (dst_enc < 16) {
4686     // use nds as scatch for xmm0 to hold src
4687     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4688     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4689     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4690     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4691   } else {
4692     // worse case scenario, all regs are in the upper bank
4693     push_zmm(xmm1);
4694     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4695     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4696     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4697     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4698     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4699     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4700     pop_zmm(xmm1);
4701   }
4702 }
4703 
4704 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4705   int dst_enc = dst->encoding();
4706   int nds_enc = nds->encoding();
4707   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4708     Assembler::vpsubw(dst, nds, src, vector_len);
4709   } else if (dst_enc < 16) {
4710     Assembler::vpsubw(dst, dst, src, vector_len);
4711   } else if (nds_enc < 16) {
4712     // implies dst_enc in upper bank with src as scratch
4713     evmovdqul(nds, dst, Assembler::AVX_512bit);
4714     Assembler::vpsubw(nds, nds, src, vector_len);
4715     evmovdqul(dst, nds, Assembler::AVX_512bit);
4716   } else {
4717     // worse case scenario, all regs in upper bank
4718     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4719     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4720     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4721     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4722     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4723   }
4724 }
4725 
4726 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4727   int dst_enc = dst->encoding();
4728   int nds_enc = nds->encoding();
4729   int shift_enc = shift->encoding();
4730   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4731     Assembler::vpsraw(dst, nds, shift, vector_len);
4732   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4733     Assembler::vpsraw(dst, dst, shift, vector_len);
4734   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4735     // use nds as scratch with shift
4736     evmovdqul(nds, shift, Assembler::AVX_512bit);
4737     Assembler::vpsraw(dst, dst, nds, vector_len);
4738   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4739     // use nds as scratch with dst
4740     evmovdqul(nds, dst, Assembler::AVX_512bit);
4741     Assembler::vpsraw(nds, nds, shift, vector_len);
4742     evmovdqul(dst, nds, Assembler::AVX_512bit);
4743   } else if (dst_enc < 16) {
4744     // use nds to save a copy of xmm0 and hold shift
4745     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4746     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4747     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4748     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4749   } else if (nds_enc < 16) {
4750     // use nds and dst as temps
4751     evmovdqul(nds, dst, Assembler::AVX_512bit);
4752     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4753     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4754     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4755     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4756     evmovdqul(dst, nds, Assembler::AVX_512bit);
4757   } else {
4758     // worse case scenario, all regs are in the upper bank
4759     push_zmm(xmm1);
4760     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4761     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4762     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4763     Assembler::vpsraw(xmm0, xmm0, xmm1, vector_len);
4764     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4765     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4766     pop_zmm(xmm1);
4767   }
4768 }
4769 
4770 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4771   int dst_enc = dst->encoding();
4772   int nds_enc = nds->encoding();
4773   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4774     Assembler::vpsraw(dst, nds, shift, vector_len);
4775   } else if (dst_enc < 16) {
4776     Assembler::vpsraw(dst, dst, shift, vector_len);
4777   } else if (nds_enc < 16) {
4778     // use nds as scratch
4779     evmovdqul(nds, dst, Assembler::AVX_512bit);
4780     Assembler::vpsraw(nds, nds, shift, vector_len);
4781     evmovdqul(dst, nds, Assembler::AVX_512bit);
4782   } else {
4783     // use nds as scratch for xmm0
4784     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4785     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4786     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4787     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4788     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4789   }
4790 }
4791 
4792 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4793   int dst_enc = dst->encoding();
4794   int nds_enc = nds->encoding();
4795   int shift_enc = shift->encoding();
4796   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4797     Assembler::vpsrlw(dst, nds, shift, vector_len);
4798   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4799     Assembler::vpsrlw(dst, dst, shift, vector_len);
4800   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4801     // use nds as scratch with shift
4802     evmovdqul(nds, shift, Assembler::AVX_512bit);
4803     Assembler::vpsrlw(dst, dst, nds, vector_len);
4804   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4805     // use nds as scratch with dst
4806     evmovdqul(nds, dst, Assembler::AVX_512bit);
4807     Assembler::vpsrlw(nds, nds, shift, vector_len);
4808     evmovdqul(dst, nds, Assembler::AVX_512bit);
4809   } else if (dst_enc < 16) {
4810     // use nds to save a copy of xmm0 and hold shift
4811     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4812     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4813     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4814     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4815   } else if (nds_enc < 16) {
4816     // use nds and dst as temps
4817     evmovdqul(nds, dst, Assembler::AVX_512bit);
4818     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4819     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4820     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4821     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4822     evmovdqul(dst, nds, Assembler::AVX_512bit);
4823   } else {
4824     // worse case scenario, all regs are in the upper bank
4825     push_zmm(xmm1);
4826     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4827     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4828     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4829     Assembler::vpsrlw(xmm0, xmm0, xmm1, vector_len);
4830     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4831     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4832     pop_zmm(xmm1);
4833   }
4834 }
4835 
4836 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4837   int dst_enc = dst->encoding();
4838   int nds_enc = nds->encoding();
4839   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4840     Assembler::vpsrlw(dst, nds, shift, vector_len);
4841   } else if (dst_enc < 16) {
4842     Assembler::vpsrlw(dst, dst, shift, vector_len);
4843   } else if (nds_enc < 16) {
4844     // use nds as scratch
4845     evmovdqul(nds, dst, Assembler::AVX_512bit);
4846     Assembler::vpsrlw(nds, nds, shift, vector_len);
4847     evmovdqul(dst, nds, Assembler::AVX_512bit);
4848   } else {
4849     // use nds as scratch for xmm0
4850     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4851     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4852     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4853     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4854     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4855   }
4856 }
4857 
4858 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4859   int dst_enc = dst->encoding();
4860   int nds_enc = nds->encoding();
4861   int shift_enc = shift->encoding();
4862   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4863     Assembler::vpsllw(dst, nds, shift, vector_len);
4864   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4865     Assembler::vpsllw(dst, dst, shift, vector_len);
4866   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4867     // use nds as scratch with shift
4868     evmovdqul(nds, shift, Assembler::AVX_512bit);
4869     Assembler::vpsllw(dst, dst, nds, vector_len);
4870   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4871     // use nds as scratch with dst
4872     evmovdqul(nds, dst, Assembler::AVX_512bit);
4873     Assembler::vpsllw(nds, nds, shift, vector_len);
4874     evmovdqul(dst, nds, Assembler::AVX_512bit);
4875   } else if (dst_enc < 16) {
4876     // use nds to save a copy of xmm0 and hold shift
4877     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4878     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4879     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4880     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4881   } else if (nds_enc < 16) {
4882     // use nds and dst as temps
4883     evmovdqul(nds, dst, Assembler::AVX_512bit);
4884     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4885     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4886     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4887     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4888     evmovdqul(dst, nds, Assembler::AVX_512bit);
4889   } else {
4890     // worse case scenario, all regs are in the upper bank
4891     push_zmm(xmm1);
4892     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4893     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4894     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4895     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4896     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4897     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4898     pop_zmm(xmm1);
4899   }
4900 }
4901 
4902 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4903   int dst_enc = dst->encoding();
4904   int nds_enc = nds->encoding();
4905   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4906     Assembler::vpsllw(dst, nds, shift, vector_len);
4907   } else if (dst_enc < 16) {
4908     Assembler::vpsllw(dst, dst, shift, vector_len);
4909   } else if (nds_enc < 16) {
4910     // use nds as scratch
4911     evmovdqul(nds, dst, Assembler::AVX_512bit);
4912     Assembler::vpsllw(nds, nds, shift, vector_len);
4913     evmovdqul(dst, nds, Assembler::AVX_512bit);
4914   } else {
4915     // use nds as scratch for xmm0
4916     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4917     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4918     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4919     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4920     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4921   }
4922 }
4923 
4924 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4925   int dst_enc = dst->encoding();
4926   int src_enc = src->encoding();
4927   if ((dst_enc < 16) && (src_enc < 16)) {
4928     Assembler::vptest(dst, src);
4929   } else if (src_enc < 16) {
4930     push_zmm(xmm0);
4931     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4932     Assembler::vptest(xmm0, src);
4933     pop_zmm(xmm0);
4934   } else if (dst_enc < 16) {
4935     push_zmm(xmm0);
4936     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4937     Assembler::vptest(dst, xmm0);
4938     pop_zmm(xmm0);
4939   } else {
4940     push_zmm(xmm0);
4941     push_zmm(xmm1);
4942     movdqu(xmm0, src);
4943     movdqu(xmm1, dst);
4944     Assembler::vptest(xmm1, xmm0);
4945     pop_zmm(xmm1);
4946     pop_zmm(xmm0);
4947   }
4948 }
4949 
4950 // This instruction exists within macros, ergo we cannot control its input
4951 // when emitted through those patterns.
4952 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4953   if (VM_Version::supports_avx512nobw()) {
4954     int dst_enc = dst->encoding();
4955     int src_enc = src->encoding();
4956     if (dst_enc == src_enc) {
4957       if (dst_enc < 16) {
4958         Assembler::punpcklbw(dst, src);
4959       } else {
4960         push_zmm(xmm0);
4961         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4962         Assembler::punpcklbw(xmm0, xmm0);
4963         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4964         pop_zmm(xmm0);
4965       }
4966     } else {
4967       if ((src_enc < 16) && (dst_enc < 16)) {
4968         Assembler::punpcklbw(dst, src);
4969       } else if (src_enc < 16) {
4970         push_zmm(xmm0);
4971         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4972         Assembler::punpcklbw(xmm0, src);
4973         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4974         pop_zmm(xmm0);
4975       } else if (dst_enc < 16) {
4976         push_zmm(xmm0);
4977         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4978         Assembler::punpcklbw(dst, xmm0);
4979         pop_zmm(xmm0);
4980       } else {
4981         push_zmm(xmm0);
4982         push_zmm(xmm1);
4983         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4984         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4985         Assembler::punpcklbw(xmm0, xmm1);
4986         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4987         pop_zmm(xmm1);
4988         pop_zmm(xmm0);
4989       }
4990     }
4991   } else {
4992     Assembler::punpcklbw(dst, src);
4993   }
4994 }
4995 
4996 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
4997   if (VM_Version::supports_avx512vl()) {
4998     Assembler::pshufd(dst, src, mode);
4999   } else {
5000     int dst_enc = dst->encoding();
5001     if (dst_enc < 16) {
5002       Assembler::pshufd(dst, src, mode);
5003     } else {
5004       push_zmm(xmm0);
5005       Assembler::pshufd(xmm0, src, mode);
5006       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5007       pop_zmm(xmm0);
5008     }
5009   }
5010 }
5011 
5012 // This instruction exists within macros, ergo we cannot control its input
5013 // when emitted through those patterns.
5014 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
5015   if (VM_Version::supports_avx512nobw()) {
5016     int dst_enc = dst->encoding();
5017     int src_enc = src->encoding();
5018     if (dst_enc == src_enc) {
5019       if (dst_enc < 16) {
5020         Assembler::pshuflw(dst, src, mode);
5021       } else {
5022         push_zmm(xmm0);
5023         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5024         Assembler::pshuflw(xmm0, xmm0, mode);
5025         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5026         pop_zmm(xmm0);
5027       }
5028     } else {
5029       if ((src_enc < 16) && (dst_enc < 16)) {
5030         Assembler::pshuflw(dst, src, mode);
5031       } else if (src_enc < 16) {
5032         push_zmm(xmm0);
5033         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5034         Assembler::pshuflw(xmm0, src, mode);
5035         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5036         pop_zmm(xmm0);
5037       } else if (dst_enc < 16) {
5038         push_zmm(xmm0);
5039         evmovdqul(xmm0, src, Assembler::AVX_512bit);
5040         Assembler::pshuflw(dst, xmm0, mode);
5041         pop_zmm(xmm0);
5042       } else {
5043         push_zmm(xmm0);
5044         push_zmm(xmm1);
5045         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5046         evmovdqul(xmm1, src, Assembler::AVX_512bit);
5047         Assembler::pshuflw(xmm0, xmm1, mode);
5048         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5049         pop_zmm(xmm1);
5050         pop_zmm(xmm0);
5051       }
5052     }
5053   } else {
5054     Assembler::pshuflw(dst, src, mode);
5055   }
5056 }
5057 
5058 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5059   if (reachable(src)) {
5060     vandpd(dst, nds, as_Address(src), vector_len);
5061   } else {
5062     lea(rscratch1, src);
5063     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
5064   }
5065 }
5066 
5067 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5068   if (reachable(src)) {
5069     vandps(dst, nds, as_Address(src), vector_len);
5070   } else {
5071     lea(rscratch1, src);
5072     vandps(dst, nds, Address(rscratch1, 0), vector_len);
5073   }
5074 }
5075 
5076 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5077   if (reachable(src)) {
5078     vdivsd(dst, nds, as_Address(src));
5079   } else {
5080     lea(rscratch1, src);
5081     vdivsd(dst, nds, Address(rscratch1, 0));
5082   }
5083 }
5084 
5085 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5086   if (reachable(src)) {
5087     vdivss(dst, nds, as_Address(src));
5088   } else {
5089     lea(rscratch1, src);
5090     vdivss(dst, nds, Address(rscratch1, 0));
5091   }
5092 }
5093 
5094 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5095   if (reachable(src)) {
5096     vmulsd(dst, nds, as_Address(src));
5097   } else {
5098     lea(rscratch1, src);
5099     vmulsd(dst, nds, Address(rscratch1, 0));
5100   }
5101 }
5102 
5103 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5104   if (reachable(src)) {
5105     vmulss(dst, nds, as_Address(src));
5106   } else {
5107     lea(rscratch1, src);
5108     vmulss(dst, nds, Address(rscratch1, 0));
5109   }
5110 }
5111 
5112 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5113   if (reachable(src)) {
5114     vsubsd(dst, nds, as_Address(src));
5115   } else {
5116     lea(rscratch1, src);
5117     vsubsd(dst, nds, Address(rscratch1, 0));
5118   }
5119 }
5120 
5121 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5122   if (reachable(src)) {
5123     vsubss(dst, nds, as_Address(src));
5124   } else {
5125     lea(rscratch1, src);
5126     vsubss(dst, nds, Address(rscratch1, 0));
5127   }
5128 }
5129 
5130 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5131   int nds_enc = nds->encoding();
5132   int dst_enc = dst->encoding();
5133   bool dst_upper_bank = (dst_enc > 15);
5134   bool nds_upper_bank = (nds_enc > 15);
5135   if (VM_Version::supports_avx512novl() &&
5136       (nds_upper_bank || dst_upper_bank)) {
5137     if (dst_upper_bank) {
5138       push_zmm(xmm0);
5139       movflt(xmm0, nds);
5140       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5141       movflt(dst, xmm0);
5142       pop_zmm(xmm0);
5143     } else {
5144       movflt(dst, nds);
5145       vxorps(dst, dst, src, Assembler::AVX_128bit);
5146     }
5147   } else {
5148     vxorps(dst, nds, src, Assembler::AVX_128bit);
5149   }
5150 }
5151 
5152 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5153   int nds_enc = nds->encoding();
5154   int dst_enc = dst->encoding();
5155   bool dst_upper_bank = (dst_enc > 15);
5156   bool nds_upper_bank = (nds_enc > 15);
5157   if (VM_Version::supports_avx512novl() &&
5158       (nds_upper_bank || dst_upper_bank)) {
5159     if (dst_upper_bank) {
5160       push_zmm(xmm0);
5161       movdbl(xmm0, nds);
5162       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5163       movdbl(dst, xmm0);
5164       pop_zmm(xmm0);
5165     } else {
5166       movdbl(dst, nds);
5167       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5168     }
5169   } else {
5170     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5171   }
5172 }
5173 
5174 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5175   if (reachable(src)) {
5176     vxorpd(dst, nds, as_Address(src), vector_len);
5177   } else {
5178     lea(rscratch1, src);
5179     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5180   }
5181 }
5182 
5183 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5184   if (reachable(src)) {
5185     vxorps(dst, nds, as_Address(src), vector_len);
5186   } else {
5187     lea(rscratch1, src);
5188     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5189   }
5190 }
5191 
5192 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
5193   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
5194   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
5195   // The inverted mask is sign-extended
5196   andptr(possibly_jweak, inverted_jweak_mask);
5197 }
5198 
5199 void MacroAssembler::resolve_jobject(Register value,
5200                                      Register thread,
5201                                      Register tmp) {
5202   assert_different_registers(value, thread, tmp);
5203   Label done, not_weak;
5204   testptr(value, value);
5205   jcc(Assembler::zero, done);                // Use NULL as-is.
5206   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
5207   jcc(Assembler::zero, not_weak);
5208   // Resolve jweak.
5209   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5210                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
5211   verify_oop(value);
5212   jmp(done);
5213   bind(not_weak);
5214   // Resolve (untagged) jobject.
5215   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
5216   verify_oop(value);
5217   bind(done);
5218 }
5219 
5220 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5221   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5222 }
5223 
5224 // Force generation of a 4 byte immediate value even if it fits into 8bit
5225 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5226   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5227 }
5228 
5229 void MacroAssembler::subptr(Register dst, Register src) {
5230   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5231 }
5232 
5233 // C++ bool manipulation
5234 void MacroAssembler::testbool(Register dst) {
5235   if(sizeof(bool) == 1)
5236     testb(dst, 0xff);
5237   else if(sizeof(bool) == 2) {
5238     // testw implementation needed for two byte bools
5239     ShouldNotReachHere();
5240   } else if(sizeof(bool) == 4)
5241     testl(dst, dst);
5242   else
5243     // unsupported
5244     ShouldNotReachHere();
5245 }
5246 
5247 void MacroAssembler::testptr(Register dst, Register src) {
5248   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5249 }
5250 
5251 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5252 void MacroAssembler::tlab_allocate(Register thread, Register obj,
5253                                    Register var_size_in_bytes,
5254                                    int con_size_in_bytes,
5255                                    Register t1,
5256                                    Register t2,
5257                                    Label& slow_case) {
5258   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5259   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
5260 }
5261 
5262 // Defines obj, preserves var_size_in_bytes
5263 void MacroAssembler::eden_allocate(Register thread, Register obj,
5264                                    Register var_size_in_bytes,
5265                                    int con_size_in_bytes,
5266                                    Register t1,
5267                                    Label& slow_case) {
5268   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5269   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
5270 }
5271 
5272 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5273 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5274   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5275   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5276   Label done;
5277 
5278   testptr(length_in_bytes, length_in_bytes);
5279   jcc(Assembler::zero, done);
5280 
5281   // initialize topmost word, divide index by 2, check if odd and test if zero
5282   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5283 #ifdef ASSERT
5284   {
5285     Label L;
5286     testptr(length_in_bytes, BytesPerWord - 1);
5287     jcc(Assembler::zero, L);
5288     stop("length must be a multiple of BytesPerWord");
5289     bind(L);
5290   }
5291 #endif
5292   Register index = length_in_bytes;
5293   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5294   if (UseIncDec) {
5295     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5296   } else {
5297     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5298     shrptr(index, 1);
5299   }
5300 #ifndef _LP64
5301   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5302   {
5303     Label even;
5304     // note: if index was a multiple of 8, then it cannot
5305     //       be 0 now otherwise it must have been 0 before
5306     //       => if it is even, we don't need to check for 0 again
5307     jcc(Assembler::carryClear, even);
5308     // clear topmost word (no jump would be needed if conditional assignment worked here)
5309     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5310     // index could be 0 now, must check again
5311     jcc(Assembler::zero, done);
5312     bind(even);
5313   }
5314 #endif // !_LP64
5315   // initialize remaining object fields: index is a multiple of 2 now
5316   {
5317     Label loop;
5318     bind(loop);
5319     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5320     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5321     decrement(index);
5322     jcc(Assembler::notZero, loop);
5323   }
5324 
5325   bind(done);
5326 }
5327 
5328 // Look up the method for a megamorphic invokeinterface call.
5329 // The target method is determined by <intf_klass, itable_index>.
5330 // The receiver klass is in recv_klass.
5331 // On success, the result will be in method_result, and execution falls through.
5332 // On failure, execution transfers to the given label.
5333 void MacroAssembler::lookup_interface_method(Register recv_klass,
5334                                              Register intf_klass,
5335                                              RegisterOrConstant itable_index,
5336                                              Register method_result,
5337                                              Register scan_temp,
5338                                              Label& L_no_such_interface,
5339                                              bool return_method) {
5340   assert_different_registers(recv_klass, intf_klass, scan_temp);
5341   assert_different_registers(method_result, intf_klass, scan_temp);
5342   assert(recv_klass != method_result || !return_method,
5343          "recv_klass can be destroyed when method isn't needed");
5344 
5345   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5346          "caller must use same register for non-constant itable index as for method");
5347 
5348   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5349   int vtable_base = in_bytes(Klass::vtable_start_offset());
5350   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5351   int scan_step   = itableOffsetEntry::size() * wordSize;
5352   int vte_size    = vtableEntry::size_in_bytes();
5353   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5354   assert(vte_size == wordSize, "else adjust times_vte_scale");
5355 
5356   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5357 
5358   // %%% Could store the aligned, prescaled offset in the klassoop.
5359   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5360 
5361   if (return_method) {
5362     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5363     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5364     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5365   }
5366 
5367   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5368   //   if (scan->interface() == intf) {
5369   //     result = (klass + scan->offset() + itable_index);
5370   //   }
5371   // }
5372   Label search, found_method;
5373 
5374   for (int peel = 1; peel >= 0; peel--) {
5375     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5376     cmpptr(intf_klass, method_result);
5377 
5378     if (peel) {
5379       jccb(Assembler::equal, found_method);
5380     } else {
5381       jccb(Assembler::notEqual, search);
5382       // (invert the test to fall through to found_method...)
5383     }
5384 
5385     if (!peel)  break;
5386 
5387     bind(search);
5388 
5389     // Check that the previous entry is non-null.  A null entry means that
5390     // the receiver class doesn't implement the interface, and wasn't the
5391     // same as when the caller was compiled.
5392     testptr(method_result, method_result);
5393     jcc(Assembler::zero, L_no_such_interface);
5394     addptr(scan_temp, scan_step);
5395   }
5396 
5397   bind(found_method);
5398 
5399   if (return_method) {
5400     // Got a hit.
5401     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5402     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5403   }
5404 }
5405 
5406 
5407 // virtual method calling
5408 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5409                                            RegisterOrConstant vtable_index,
5410                                            Register method_result) {
5411   const int base = in_bytes(Klass::vtable_start_offset());
5412   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5413   Address vtable_entry_addr(recv_klass,
5414                             vtable_index, Address::times_ptr,
5415                             base + vtableEntry::method_offset_in_bytes());
5416   movptr(method_result, vtable_entry_addr);
5417 }
5418 
5419 
5420 void MacroAssembler::check_klass_subtype(Register sub_klass,
5421                            Register super_klass,
5422                            Register temp_reg,
5423                            Label& L_success) {
5424   Label L_failure;
5425   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5426   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5427   bind(L_failure);
5428 }
5429 
5430 
5431 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5432                                                    Register super_klass,
5433                                                    Register temp_reg,
5434                                                    Label* L_success,
5435                                                    Label* L_failure,
5436                                                    Label* L_slow_path,
5437                                         RegisterOrConstant super_check_offset) {
5438   assert_different_registers(sub_klass, super_klass, temp_reg);
5439   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5440   if (super_check_offset.is_register()) {
5441     assert_different_registers(sub_klass, super_klass,
5442                                super_check_offset.as_register());
5443   } else if (must_load_sco) {
5444     assert(temp_reg != noreg, "supply either a temp or a register offset");
5445   }
5446 
5447   Label L_fallthrough;
5448   int label_nulls = 0;
5449   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5450   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5451   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5452   assert(label_nulls <= 1, "at most one NULL in the batch");
5453 
5454   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5455   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5456   Address super_check_offset_addr(super_klass, sco_offset);
5457 
5458   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5459   // range of a jccb.  If this routine grows larger, reconsider at
5460   // least some of these.
5461 #define local_jcc(assembler_cond, label)                                \
5462   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5463   else                             jcc( assembler_cond, label) /*omit semi*/
5464 
5465   // Hacked jmp, which may only be used just before L_fallthrough.
5466 #define final_jmp(label)                                                \
5467   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5468   else                            jmp(label)                /*omit semi*/
5469 
5470   // If the pointers are equal, we are done (e.g., String[] elements).
5471   // This self-check enables sharing of secondary supertype arrays among
5472   // non-primary types such as array-of-interface.  Otherwise, each such
5473   // type would need its own customized SSA.
5474   // We move this check to the front of the fast path because many
5475   // type checks are in fact trivially successful in this manner,
5476   // so we get a nicely predicted branch right at the start of the check.
5477   cmpptr(sub_klass, super_klass);
5478   local_jcc(Assembler::equal, *L_success);
5479 
5480   // Check the supertype display:
5481   if (must_load_sco) {
5482     // Positive movl does right thing on LP64.
5483     movl(temp_reg, super_check_offset_addr);
5484     super_check_offset = RegisterOrConstant(temp_reg);
5485   }
5486   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5487   cmpptr(super_klass, super_check_addr); // load displayed supertype
5488 
5489   // This check has worked decisively for primary supers.
5490   // Secondary supers are sought in the super_cache ('super_cache_addr').
5491   // (Secondary supers are interfaces and very deeply nested subtypes.)
5492   // This works in the same check above because of a tricky aliasing
5493   // between the super_cache and the primary super display elements.
5494   // (The 'super_check_addr' can address either, as the case requires.)
5495   // Note that the cache is updated below if it does not help us find
5496   // what we need immediately.
5497   // So if it was a primary super, we can just fail immediately.
5498   // Otherwise, it's the slow path for us (no success at this point).
5499 
5500   if (super_check_offset.is_register()) {
5501     local_jcc(Assembler::equal, *L_success);
5502     cmpl(super_check_offset.as_register(), sc_offset);
5503     if (L_failure == &L_fallthrough) {
5504       local_jcc(Assembler::equal, *L_slow_path);
5505     } else {
5506       local_jcc(Assembler::notEqual, *L_failure);
5507       final_jmp(*L_slow_path);
5508     }
5509   } else if (super_check_offset.as_constant() == sc_offset) {
5510     // Need a slow path; fast failure is impossible.
5511     if (L_slow_path == &L_fallthrough) {
5512       local_jcc(Assembler::equal, *L_success);
5513     } else {
5514       local_jcc(Assembler::notEqual, *L_slow_path);
5515       final_jmp(*L_success);
5516     }
5517   } else {
5518     // No slow path; it's a fast decision.
5519     if (L_failure == &L_fallthrough) {
5520       local_jcc(Assembler::equal, *L_success);
5521     } else {
5522       local_jcc(Assembler::notEqual, *L_failure);
5523       final_jmp(*L_success);
5524     }
5525   }
5526 
5527   bind(L_fallthrough);
5528 
5529 #undef local_jcc
5530 #undef final_jmp
5531 }
5532 
5533 
5534 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5535                                                    Register super_klass,
5536                                                    Register temp_reg,
5537                                                    Register temp2_reg,
5538                                                    Label* L_success,
5539                                                    Label* L_failure,
5540                                                    bool set_cond_codes) {
5541   assert_different_registers(sub_klass, super_klass, temp_reg);
5542   if (temp2_reg != noreg)
5543     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5544 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5545 
5546   Label L_fallthrough;
5547   int label_nulls = 0;
5548   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5549   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5550   assert(label_nulls <= 1, "at most one NULL in the batch");
5551 
5552   // a couple of useful fields in sub_klass:
5553   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5554   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5555   Address secondary_supers_addr(sub_klass, ss_offset);
5556   Address super_cache_addr(     sub_klass, sc_offset);
5557 
5558   // Do a linear scan of the secondary super-klass chain.
5559   // This code is rarely used, so simplicity is a virtue here.
5560   // The repne_scan instruction uses fixed registers, which we must spill.
5561   // Don't worry too much about pre-existing connections with the input regs.
5562 
5563   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5564   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5565 
5566   // Get super_klass value into rax (even if it was in rdi or rcx).
5567   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5568   if (super_klass != rax || UseCompressedOops) {
5569     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5570     mov(rax, super_klass);
5571   }
5572   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5573   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5574 
5575 #ifndef PRODUCT
5576   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5577   ExternalAddress pst_counter_addr((address) pst_counter);
5578   NOT_LP64(  incrementl(pst_counter_addr) );
5579   LP64_ONLY( lea(rcx, pst_counter_addr) );
5580   LP64_ONLY( incrementl(Address(rcx, 0)) );
5581 #endif //PRODUCT
5582 
5583   // We will consult the secondary-super array.
5584   movptr(rdi, secondary_supers_addr);
5585   // Load the array length.  (Positive movl does right thing on LP64.)
5586   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5587   // Skip to start of data.
5588   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5589 
5590   // Scan RCX words at [RDI] for an occurrence of RAX.
5591   // Set NZ/Z based on last compare.
5592   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5593   // not change flags (only scas instruction which is repeated sets flags).
5594   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5595 
5596     testptr(rax,rax); // Set Z = 0
5597     repne_scan();
5598 
5599   // Unspill the temp. registers:
5600   if (pushed_rdi)  pop(rdi);
5601   if (pushed_rcx)  pop(rcx);
5602   if (pushed_rax)  pop(rax);
5603 
5604   if (set_cond_codes) {
5605     // Special hack for the AD files:  rdi is guaranteed non-zero.
5606     assert(!pushed_rdi, "rdi must be left non-NULL");
5607     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5608   }
5609 
5610   if (L_failure == &L_fallthrough)
5611         jccb(Assembler::notEqual, *L_failure);
5612   else  jcc(Assembler::notEqual, *L_failure);
5613 
5614   // Success.  Cache the super we found and proceed in triumph.
5615   movptr(super_cache_addr, super_klass);
5616 
5617   if (L_success != &L_fallthrough) {
5618     jmp(*L_success);
5619   }
5620 
5621 #undef IS_A_TEMP
5622 
5623   bind(L_fallthrough);
5624 }
5625 
5626 
5627 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5628   if (VM_Version::supports_cmov()) {
5629     cmovl(cc, dst, src);
5630   } else {
5631     Label L;
5632     jccb(negate_condition(cc), L);
5633     movl(dst, src);
5634     bind(L);
5635   }
5636 }
5637 
5638 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5639   if (VM_Version::supports_cmov()) {
5640     cmovl(cc, dst, src);
5641   } else {
5642     Label L;
5643     jccb(negate_condition(cc), L);
5644     movl(dst, src);
5645     bind(L);
5646   }
5647 }
5648 
5649 void MacroAssembler::verify_oop(Register reg, const char* s) {
5650   if (!VerifyOops || VerifyAdapterSharing) {
5651     // Below address of the code string confuses VerifyAdapterSharing
5652     // because it may differ between otherwise equivalent adapters.
5653     return;
5654   }
5655 
5656   // Pass register number to verify_oop_subroutine
5657   const char* b = NULL;
5658   {
5659     ResourceMark rm;
5660     stringStream ss;
5661     ss.print("verify_oop: %s: %s", reg->name(), s);
5662     b = code_string(ss.as_string());
5663   }
5664   BLOCK_COMMENT("verify_oop {");
5665 #ifdef _LP64
5666   push(rscratch1);                    // save r10, trashed by movptr()
5667 #endif
5668   push(rax);                          // save rax,
5669   push(reg);                          // pass register argument
5670   ExternalAddress buffer((address) b);
5671   // avoid using pushptr, as it modifies scratch registers
5672   // and our contract is not to modify anything
5673   movptr(rax, buffer.addr());
5674   push(rax);
5675   // call indirectly to solve generation ordering problem
5676   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5677   call(rax);
5678   // Caller pops the arguments (oop, message) and restores rax, r10
5679   BLOCK_COMMENT("} verify_oop");
5680 }
5681 
5682 
5683 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5684                                                       Register tmp,
5685                                                       int offset) {
5686   intptr_t value = *delayed_value_addr;
5687   if (value != 0)
5688     return RegisterOrConstant(value + offset);
5689 
5690   // load indirectly to solve generation ordering problem
5691   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5692 
5693 #ifdef ASSERT
5694   { Label L;
5695     testptr(tmp, tmp);
5696     if (WizardMode) {
5697       const char* buf = NULL;
5698       {
5699         ResourceMark rm;
5700         stringStream ss;
5701         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
5702         buf = code_string(ss.as_string());
5703       }
5704       jcc(Assembler::notZero, L);
5705       STOP(buf);
5706     } else {
5707       jccb(Assembler::notZero, L);
5708       hlt();
5709     }
5710     bind(L);
5711   }
5712 #endif
5713 
5714   if (offset != 0)
5715     addptr(tmp, offset);
5716 
5717   return RegisterOrConstant(tmp);
5718 }
5719 
5720 
5721 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5722                                          int extra_slot_offset) {
5723   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5724   int stackElementSize = Interpreter::stackElementSize;
5725   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5726 #ifdef ASSERT
5727   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5728   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5729 #endif
5730   Register             scale_reg    = noreg;
5731   Address::ScaleFactor scale_factor = Address::no_scale;
5732   if (arg_slot.is_constant()) {
5733     offset += arg_slot.as_constant() * stackElementSize;
5734   } else {
5735     scale_reg    = arg_slot.as_register();
5736     scale_factor = Address::times(stackElementSize);
5737   }
5738   offset += wordSize;           // return PC is on stack
5739   return Address(rsp, scale_reg, scale_factor, offset);
5740 }
5741 
5742 
5743 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5744   if (!VerifyOops || VerifyAdapterSharing) {
5745     // Below address of the code string confuses VerifyAdapterSharing
5746     // because it may differ between otherwise equivalent adapters.
5747     return;
5748   }
5749 
5750   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5751   // Pass register number to verify_oop_subroutine
5752   const char* b = NULL;
5753   {
5754     ResourceMark rm;
5755     stringStream ss;
5756     ss.print("verify_oop_addr: %s", s);
5757     b = code_string(ss.as_string());
5758   }
5759 #ifdef _LP64
5760   push(rscratch1);                    // save r10, trashed by movptr()
5761 #endif
5762   push(rax);                          // save rax,
5763   // addr may contain rsp so we will have to adjust it based on the push
5764   // we just did (and on 64 bit we do two pushes)
5765   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5766   // stores rax into addr which is backwards of what was intended.
5767   if (addr.uses(rsp)) {
5768     lea(rax, addr);
5769     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5770   } else {
5771     pushptr(addr);
5772   }
5773 
5774   ExternalAddress buffer((address) b);
5775   // pass msg argument
5776   // avoid using pushptr, as it modifies scratch registers
5777   // and our contract is not to modify anything
5778   movptr(rax, buffer.addr());
5779   push(rax);
5780 
5781   // call indirectly to solve generation ordering problem
5782   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5783   call(rax);
5784   // Caller pops the arguments (addr, message) and restores rax, r10.
5785 }
5786 
5787 void MacroAssembler::verify_tlab() {
5788 #ifdef ASSERT
5789   if (UseTLAB && VerifyOops) {
5790     Label next, ok;
5791     Register t1 = rsi;
5792     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5793 
5794     push(t1);
5795     NOT_LP64(push(thread_reg));
5796     NOT_LP64(get_thread(thread_reg));
5797 
5798     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5799     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5800     jcc(Assembler::aboveEqual, next);
5801     STOP("assert(top >= start)");
5802     should_not_reach_here();
5803 
5804     bind(next);
5805     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5806     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5807     jcc(Assembler::aboveEqual, ok);
5808     STOP("assert(top <= end)");
5809     should_not_reach_here();
5810 
5811     bind(ok);
5812     NOT_LP64(pop(thread_reg));
5813     pop(t1);
5814   }
5815 #endif
5816 }
5817 
5818 class ControlWord {
5819  public:
5820   int32_t _value;
5821 
5822   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5823   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5824   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5825   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5826   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5827   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5828   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5829   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5830 
5831   void print() const {
5832     // rounding control
5833     const char* rc;
5834     switch (rounding_control()) {
5835       case 0: rc = "round near"; break;
5836       case 1: rc = "round down"; break;
5837       case 2: rc = "round up  "; break;
5838       case 3: rc = "chop      "; break;
5839     };
5840     // precision control
5841     const char* pc;
5842     switch (precision_control()) {
5843       case 0: pc = "24 bits "; break;
5844       case 1: pc = "reserved"; break;
5845       case 2: pc = "53 bits "; break;
5846       case 3: pc = "64 bits "; break;
5847     };
5848     // flags
5849     char f[9];
5850     f[0] = ' ';
5851     f[1] = ' ';
5852     f[2] = (precision   ()) ? 'P' : 'p';
5853     f[3] = (underflow   ()) ? 'U' : 'u';
5854     f[4] = (overflow    ()) ? 'O' : 'o';
5855     f[5] = (zero_divide ()) ? 'Z' : 'z';
5856     f[6] = (denormalized()) ? 'D' : 'd';
5857     f[7] = (invalid     ()) ? 'I' : 'i';
5858     f[8] = '\x0';
5859     // output
5860     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5861   }
5862 
5863 };
5864 
5865 class StatusWord {
5866  public:
5867   int32_t _value;
5868 
5869   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5870   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5871   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5872   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5873   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5874   int  top() const                     { return  (_value >> 11) & 7      ; }
5875   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5876   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5877   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5878   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5879   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5880   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5881   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5882   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5883 
5884   void print() const {
5885     // condition codes
5886     char c[5];
5887     c[0] = (C3()) ? '3' : '-';
5888     c[1] = (C2()) ? '2' : '-';
5889     c[2] = (C1()) ? '1' : '-';
5890     c[3] = (C0()) ? '0' : '-';
5891     c[4] = '\x0';
5892     // flags
5893     char f[9];
5894     f[0] = (error_status()) ? 'E' : '-';
5895     f[1] = (stack_fault ()) ? 'S' : '-';
5896     f[2] = (precision   ()) ? 'P' : '-';
5897     f[3] = (underflow   ()) ? 'U' : '-';
5898     f[4] = (overflow    ()) ? 'O' : '-';
5899     f[5] = (zero_divide ()) ? 'Z' : '-';
5900     f[6] = (denormalized()) ? 'D' : '-';
5901     f[7] = (invalid     ()) ? 'I' : '-';
5902     f[8] = '\x0';
5903     // output
5904     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5905   }
5906 
5907 };
5908 
5909 class TagWord {
5910  public:
5911   int32_t _value;
5912 
5913   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5914 
5915   void print() const {
5916     printf("%04x", _value & 0xFFFF);
5917   }
5918 
5919 };
5920 
5921 class FPU_Register {
5922  public:
5923   int32_t _m0;
5924   int32_t _m1;
5925   int16_t _ex;
5926 
5927   bool is_indefinite() const           {
5928     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5929   }
5930 
5931   void print() const {
5932     char  sign = (_ex < 0) ? '-' : '+';
5933     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5934     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5935   };
5936 
5937 };
5938 
5939 class FPU_State {
5940  public:
5941   enum {
5942     register_size       = 10,
5943     number_of_registers =  8,
5944     register_mask       =  7
5945   };
5946 
5947   ControlWord  _control_word;
5948   StatusWord   _status_word;
5949   TagWord      _tag_word;
5950   int32_t      _error_offset;
5951   int32_t      _error_selector;
5952   int32_t      _data_offset;
5953   int32_t      _data_selector;
5954   int8_t       _register[register_size * number_of_registers];
5955 
5956   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5957   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5958 
5959   const char* tag_as_string(int tag) const {
5960     switch (tag) {
5961       case 0: return "valid";
5962       case 1: return "zero";
5963       case 2: return "special";
5964       case 3: return "empty";
5965     }
5966     ShouldNotReachHere();
5967     return NULL;
5968   }
5969 
5970   void print() const {
5971     // print computation registers
5972     { int t = _status_word.top();
5973       for (int i = 0; i < number_of_registers; i++) {
5974         int j = (i - t) & register_mask;
5975         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5976         st(j)->print();
5977         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5978       }
5979     }
5980     printf("\n");
5981     // print control registers
5982     printf("ctrl = "); _control_word.print(); printf("\n");
5983     printf("stat = "); _status_word .print(); printf("\n");
5984     printf("tags = "); _tag_word    .print(); printf("\n");
5985   }
5986 
5987 };
5988 
5989 class Flag_Register {
5990  public:
5991   int32_t _value;
5992 
5993   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5994   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5995   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5996   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5997   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5998   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5999   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6000 
6001   void print() const {
6002     // flags
6003     char f[8];
6004     f[0] = (overflow       ()) ? 'O' : '-';
6005     f[1] = (direction      ()) ? 'D' : '-';
6006     f[2] = (sign           ()) ? 'S' : '-';
6007     f[3] = (zero           ()) ? 'Z' : '-';
6008     f[4] = (auxiliary_carry()) ? 'A' : '-';
6009     f[5] = (parity         ()) ? 'P' : '-';
6010     f[6] = (carry          ()) ? 'C' : '-';
6011     f[7] = '\x0';
6012     // output
6013     printf("%08x  flags = %s", _value, f);
6014   }
6015 
6016 };
6017 
6018 class IU_Register {
6019  public:
6020   int32_t _value;
6021 
6022   void print() const {
6023     printf("%08x  %11d", _value, _value);
6024   }
6025 
6026 };
6027 
6028 class IU_State {
6029  public:
6030   Flag_Register _eflags;
6031   IU_Register   _rdi;
6032   IU_Register   _rsi;
6033   IU_Register   _rbp;
6034   IU_Register   _rsp;
6035   IU_Register   _rbx;
6036   IU_Register   _rdx;
6037   IU_Register   _rcx;
6038   IU_Register   _rax;
6039 
6040   void print() const {
6041     // computation registers
6042     printf("rax,  = "); _rax.print(); printf("\n");
6043     printf("rbx,  = "); _rbx.print(); printf("\n");
6044     printf("rcx  = "); _rcx.print(); printf("\n");
6045     printf("rdx  = "); _rdx.print(); printf("\n");
6046     printf("rdi  = "); _rdi.print(); printf("\n");
6047     printf("rsi  = "); _rsi.print(); printf("\n");
6048     printf("rbp,  = "); _rbp.print(); printf("\n");
6049     printf("rsp  = "); _rsp.print(); printf("\n");
6050     printf("\n");
6051     // control registers
6052     printf("flgs = "); _eflags.print(); printf("\n");
6053   }
6054 };
6055 
6056 
6057 class CPU_State {
6058  public:
6059   FPU_State _fpu_state;
6060   IU_State  _iu_state;
6061 
6062   void print() const {
6063     printf("--------------------------------------------------\n");
6064     _iu_state .print();
6065     printf("\n");
6066     _fpu_state.print();
6067     printf("--------------------------------------------------\n");
6068   }
6069 
6070 };
6071 
6072 
6073 static void _print_CPU_state(CPU_State* state) {
6074   state->print();
6075 };
6076 
6077 
6078 void MacroAssembler::print_CPU_state() {
6079   push_CPU_state();
6080   push(rsp);                // pass CPU state
6081   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6082   addptr(rsp, wordSize);       // discard argument
6083   pop_CPU_state();
6084 }
6085 
6086 
6087 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6088   static int counter = 0;
6089   FPU_State* fs = &state->_fpu_state;
6090   counter++;
6091   // For leaf calls, only verify that the top few elements remain empty.
6092   // We only need 1 empty at the top for C2 code.
6093   if( stack_depth < 0 ) {
6094     if( fs->tag_for_st(7) != 3 ) {
6095       printf("FPR7 not empty\n");
6096       state->print();
6097       assert(false, "error");
6098       return false;
6099     }
6100     return true;                // All other stack states do not matter
6101   }
6102 
6103   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6104          "bad FPU control word");
6105 
6106   // compute stack depth
6107   int i = 0;
6108   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6109   int d = i;
6110   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6111   // verify findings
6112   if (i != FPU_State::number_of_registers) {
6113     // stack not contiguous
6114     printf("%s: stack not contiguous at ST%d\n", s, i);
6115     state->print();
6116     assert(false, "error");
6117     return false;
6118   }
6119   // check if computed stack depth corresponds to expected stack depth
6120   if (stack_depth < 0) {
6121     // expected stack depth is -stack_depth or less
6122     if (d > -stack_depth) {
6123       // too many elements on the stack
6124       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6125       state->print();
6126       assert(false, "error");
6127       return false;
6128     }
6129   } else {
6130     // expected stack depth is stack_depth
6131     if (d != stack_depth) {
6132       // wrong stack depth
6133       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6134       state->print();
6135       assert(false, "error");
6136       return false;
6137     }
6138   }
6139   // everything is cool
6140   return true;
6141 }
6142 
6143 
6144 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6145   if (!VerifyFPU) return;
6146   push_CPU_state();
6147   push(rsp);                // pass CPU state
6148   ExternalAddress msg((address) s);
6149   // pass message string s
6150   pushptr(msg.addr());
6151   push(stack_depth);        // pass stack depth
6152   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6153   addptr(rsp, 3 * wordSize);   // discard arguments
6154   // check for error
6155   { Label L;
6156     testl(rax, rax);
6157     jcc(Assembler::notZero, L);
6158     int3();                  // break if error condition
6159     bind(L);
6160   }
6161   pop_CPU_state();
6162 }
6163 
6164 void MacroAssembler::restore_cpu_control_state_after_jni() {
6165   // Either restore the MXCSR register after returning from the JNI Call
6166   // or verify that it wasn't changed (with -Xcheck:jni flag).
6167   if (VM_Version::supports_sse()) {
6168     if (RestoreMXCSROnJNICalls) {
6169       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6170     } else if (CheckJNICalls) {
6171       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6172     }
6173   }
6174   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6175   vzeroupper();
6176   // Reset k1 to 0xffff.
6177   if (VM_Version::supports_evex()) {
6178     push(rcx);
6179     movl(rcx, 0xffff);
6180     kmovwl(k1, rcx);
6181     pop(rcx);
6182   }
6183 
6184 #ifndef _LP64
6185   // Either restore the x87 floating pointer control word after returning
6186   // from the JNI call or verify that it wasn't changed.
6187   if (CheckJNICalls) {
6188     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6189   }
6190 #endif // _LP64
6191 }
6192 
6193 // ((OopHandle)result).resolve();
6194 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
6195   assert_different_registers(result, tmp);
6196 
6197   // Only 64 bit platforms support GCs that require a tmp register
6198   // Only IN_HEAP loads require a thread_tmp register
6199   // OopHandle::resolve is an indirection like jobject.
6200   access_load_at(T_OBJECT, IN_NATIVE,
6201                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
6202 }
6203 
6204 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
6205   // get mirror
6206   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6207   movptr(mirror, Address(method, Method::const_offset()));
6208   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6209   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6210   movptr(mirror, Address(mirror, mirror_offset));
6211   resolve_oop_handle(mirror, tmp);
6212 }
6213 
6214 void MacroAssembler::load_klass(Register dst, Register src) {
6215 #ifdef _LP64
6216   if (UseCompressedClassPointers) {
6217     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6218     decode_klass_not_null(dst);
6219   } else
6220 #endif
6221     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6222 }
6223 
6224 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6225   load_klass(dst, src);
6226   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6227 }
6228 
6229 void MacroAssembler::store_klass(Register dst, Register src) {
6230 #ifdef _LP64
6231   if (UseCompressedClassPointers) {
6232     encode_klass_not_null(src);
6233     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6234   } else
6235 #endif
6236     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6237 }
6238 
6239 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
6240                                     Register tmp1, Register thread_tmp) {
6241   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6242   decorators = AccessInternal::decorator_fixup(decorators);
6243   bool as_raw = (decorators & AS_RAW) != 0;
6244   if (as_raw) {
6245     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
6246   } else {
6247     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
6248   }
6249 }
6250 
6251 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
6252                                      Register tmp1, Register tmp2) {
6253   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6254   decorators = AccessInternal::decorator_fixup(decorators);
6255   bool as_raw = (decorators & AS_RAW) != 0;
6256   if (as_raw) {
6257     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
6258   } else {
6259     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
6260   }
6261 }
6262 
6263 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
6264   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
6265   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
6266     decorators |= ACCESS_READ | ACCESS_WRITE;
6267   }
6268   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6269   return bs->resolve(this, decorators, obj);
6270 }
6271 
6272 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
6273                                    Register thread_tmp, DecoratorSet decorators) {
6274   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
6275 }
6276 
6277 // Doesn't do verfication, generates fixed size code
6278 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
6279                                             Register thread_tmp, DecoratorSet decorators) {
6280   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
6281 }
6282 
6283 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
6284                                     Register tmp2, DecoratorSet decorators) {
6285   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
6286 }
6287 
6288 // Used for storing NULLs.
6289 void MacroAssembler::store_heap_oop_null(Address dst) {
6290   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
6291 }
6292 
6293 #ifdef _LP64
6294 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6295   if (UseCompressedClassPointers) {
6296     // Store to klass gap in destination
6297     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6298   }
6299 }
6300 
6301 #ifdef ASSERT
6302 void MacroAssembler::verify_heapbase(const char* msg) {
6303   assert (UseCompressedOops, "should be compressed");
6304   assert (Universe::heap() != NULL, "java heap should be initialized");
6305   if (CheckCompressedOops) {
6306     Label ok;
6307     push(rscratch1); // cmpptr trashes rscratch1
6308     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6309     jcc(Assembler::equal, ok);
6310     STOP(msg);
6311     bind(ok);
6312     pop(rscratch1);
6313   }
6314 }
6315 #endif
6316 
6317 // Algorithm must match oop.inline.hpp encode_heap_oop.
6318 void MacroAssembler::encode_heap_oop(Register r) {
6319 #ifdef ASSERT
6320   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6321 #endif
6322   verify_oop(r, "broken oop in encode_heap_oop");
6323   if (Universe::narrow_oop_base() == NULL) {
6324     if (Universe::narrow_oop_shift() != 0) {
6325       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6326       shrq(r, LogMinObjAlignmentInBytes);
6327     }
6328     return;
6329   }
6330   testq(r, r);
6331   cmovq(Assembler::equal, r, r12_heapbase);
6332   subq(r, r12_heapbase);
6333   shrq(r, LogMinObjAlignmentInBytes);
6334 }
6335 
6336 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6337 #ifdef ASSERT
6338   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6339   if (CheckCompressedOops) {
6340     Label ok;
6341     testq(r, r);
6342     jcc(Assembler::notEqual, ok);
6343     STOP("null oop passed to encode_heap_oop_not_null");
6344     bind(ok);
6345   }
6346 #endif
6347   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6348   if (Universe::narrow_oop_base() != NULL) {
6349     subq(r, r12_heapbase);
6350   }
6351   if (Universe::narrow_oop_shift() != 0) {
6352     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6353     shrq(r, LogMinObjAlignmentInBytes);
6354   }
6355 }
6356 
6357 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6358 #ifdef ASSERT
6359   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6360   if (CheckCompressedOops) {
6361     Label ok;
6362     testq(src, src);
6363     jcc(Assembler::notEqual, ok);
6364     STOP("null oop passed to encode_heap_oop_not_null2");
6365     bind(ok);
6366   }
6367 #endif
6368   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6369   if (dst != src) {
6370     movq(dst, src);
6371   }
6372   if (Universe::narrow_oop_base() != NULL) {
6373     subq(dst, r12_heapbase);
6374   }
6375   if (Universe::narrow_oop_shift() != 0) {
6376     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6377     shrq(dst, LogMinObjAlignmentInBytes);
6378   }
6379 }
6380 
6381 void  MacroAssembler::decode_heap_oop(Register r) {
6382 #ifdef ASSERT
6383   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6384 #endif
6385   if (Universe::narrow_oop_base() == NULL) {
6386     if (Universe::narrow_oop_shift() != 0) {
6387       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6388       shlq(r, LogMinObjAlignmentInBytes);
6389     }
6390   } else {
6391     Label done;
6392     shlq(r, LogMinObjAlignmentInBytes);
6393     jccb(Assembler::equal, done);
6394     addq(r, r12_heapbase);
6395     bind(done);
6396   }
6397   verify_oop(r, "broken oop in decode_heap_oop");
6398 }
6399 
6400 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6401   // Note: it will change flags
6402   assert (UseCompressedOops, "should only be used for compressed headers");
6403   assert (Universe::heap() != NULL, "java heap should be initialized");
6404   // Cannot assert, unverified entry point counts instructions (see .ad file)
6405   // vtableStubs also counts instructions in pd_code_size_limit.
6406   // Also do not verify_oop as this is called by verify_oop.
6407   if (Universe::narrow_oop_shift() != 0) {
6408     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6409     shlq(r, LogMinObjAlignmentInBytes);
6410     if (Universe::narrow_oop_base() != NULL) {
6411       addq(r, r12_heapbase);
6412     }
6413   } else {
6414     assert (Universe::narrow_oop_base() == NULL, "sanity");
6415   }
6416 }
6417 
6418 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6419   // Note: it will change flags
6420   assert (UseCompressedOops, "should only be used for compressed headers");
6421   assert (Universe::heap() != NULL, "java heap should be initialized");
6422   // Cannot assert, unverified entry point counts instructions (see .ad file)
6423   // vtableStubs also counts instructions in pd_code_size_limit.
6424   // Also do not verify_oop as this is called by verify_oop.
6425   if (Universe::narrow_oop_shift() != 0) {
6426     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6427     if (LogMinObjAlignmentInBytes == Address::times_8) {
6428       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6429     } else {
6430       if (dst != src) {
6431         movq(dst, src);
6432       }
6433       shlq(dst, LogMinObjAlignmentInBytes);
6434       if (Universe::narrow_oop_base() != NULL) {
6435         addq(dst, r12_heapbase);
6436       }
6437     }
6438   } else {
6439     assert (Universe::narrow_oop_base() == NULL, "sanity");
6440     if (dst != src) {
6441       movq(dst, src);
6442     }
6443   }
6444 }
6445 
6446 void MacroAssembler::encode_klass_not_null(Register r) {
6447   if (Universe::narrow_klass_base() != NULL) {
6448     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6449     assert(r != r12_heapbase, "Encoding a klass in r12");
6450     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6451     subq(r, r12_heapbase);
6452   }
6453   if (Universe::narrow_klass_shift() != 0) {
6454     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6455     shrq(r, LogKlassAlignmentInBytes);
6456   }
6457   if (Universe::narrow_klass_base() != NULL) {
6458     reinit_heapbase();
6459   }
6460 }
6461 
6462 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6463   if (dst == src) {
6464     encode_klass_not_null(src);
6465   } else {
6466     if (Universe::narrow_klass_base() != NULL) {
6467       mov64(dst, (int64_t)Universe::narrow_klass_base());
6468       negq(dst);
6469       addq(dst, src);
6470     } else {
6471       movptr(dst, src);
6472     }
6473     if (Universe::narrow_klass_shift() != 0) {
6474       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6475       shrq(dst, LogKlassAlignmentInBytes);
6476     }
6477   }
6478 }
6479 
6480 // Function instr_size_for_decode_klass_not_null() counts the instructions
6481 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6482 // when (Universe::heap() != NULL).  Hence, if the instructions they
6483 // generate change, then this method needs to be updated.
6484 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6485   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6486   if (Universe::narrow_klass_base() != NULL) {
6487     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6488     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6489   } else {
6490     // longest load decode klass function, mov64, leaq
6491     return 16;
6492   }
6493 }
6494 
6495 // !!! If the instructions that get generated here change then function
6496 // instr_size_for_decode_klass_not_null() needs to get updated.
6497 void  MacroAssembler::decode_klass_not_null(Register r) {
6498   // Note: it will change flags
6499   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6500   assert(r != r12_heapbase, "Decoding a klass in r12");
6501   // Cannot assert, unverified entry point counts instructions (see .ad file)
6502   // vtableStubs also counts instructions in pd_code_size_limit.
6503   // Also do not verify_oop as this is called by verify_oop.
6504   if (Universe::narrow_klass_shift() != 0) {
6505     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6506     shlq(r, LogKlassAlignmentInBytes);
6507   }
6508   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6509   if (Universe::narrow_klass_base() != NULL) {
6510     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6511     addq(r, r12_heapbase);
6512     reinit_heapbase();
6513   }
6514 }
6515 
6516 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6517   // Note: it will change flags
6518   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6519   if (dst == src) {
6520     decode_klass_not_null(dst);
6521   } else {
6522     // Cannot assert, unverified entry point counts instructions (see .ad file)
6523     // vtableStubs also counts instructions in pd_code_size_limit.
6524     // Also do not verify_oop as this is called by verify_oop.
6525     mov64(dst, (int64_t)Universe::narrow_klass_base());
6526     if (Universe::narrow_klass_shift() != 0) {
6527       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6528       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6529       leaq(dst, Address(dst, src, Address::times_8, 0));
6530     } else {
6531       addq(dst, src);
6532     }
6533   }
6534 }
6535 
6536 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6537   assert (UseCompressedOops, "should only be used for compressed headers");
6538   assert (Universe::heap() != NULL, "java heap should be initialized");
6539   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6540   int oop_index = oop_recorder()->find_index(obj);
6541   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6542   mov_narrow_oop(dst, oop_index, rspec);
6543 }
6544 
6545 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6546   assert (UseCompressedOops, "should only be used for compressed headers");
6547   assert (Universe::heap() != NULL, "java heap should be initialized");
6548   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6549   int oop_index = oop_recorder()->find_index(obj);
6550   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6551   mov_narrow_oop(dst, oop_index, rspec);
6552 }
6553 
6554 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6555   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6556   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6557   int klass_index = oop_recorder()->find_index(k);
6558   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6559   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6560 }
6561 
6562 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6563   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6564   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6565   int klass_index = oop_recorder()->find_index(k);
6566   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6567   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6568 }
6569 
6570 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6571   assert (UseCompressedOops, "should only be used for compressed headers");
6572   assert (Universe::heap() != NULL, "java heap should be initialized");
6573   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6574   int oop_index = oop_recorder()->find_index(obj);
6575   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6576   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6577 }
6578 
6579 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6580   assert (UseCompressedOops, "should only be used for compressed headers");
6581   assert (Universe::heap() != NULL, "java heap should be initialized");
6582   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6583   int oop_index = oop_recorder()->find_index(obj);
6584   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6585   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6586 }
6587 
6588 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6589   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6590   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6591   int klass_index = oop_recorder()->find_index(k);
6592   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6593   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6594 }
6595 
6596 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6597   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6598   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6599   int klass_index = oop_recorder()->find_index(k);
6600   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6601   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6602 }
6603 
6604 void MacroAssembler::reinit_heapbase() {
6605   if (UseCompressedOops || UseCompressedClassPointers) {
6606     if (Universe::heap() != NULL) {
6607       if (Universe::narrow_oop_base() == NULL) {
6608         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6609       } else {
6610         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6611       }
6612     } else {
6613       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6614     }
6615   }
6616 }
6617 
6618 #endif // _LP64
6619 
6620 // C2 compiled method's prolog code.
6621 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6622 
6623   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6624   // NativeJump::patch_verified_entry will be able to patch out the entry
6625   // code safely. The push to verify stack depth is ok at 5 bytes,
6626   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6627   // stack bang then we must use the 6 byte frame allocation even if
6628   // we have no frame. :-(
6629   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6630 
6631   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6632   // Remove word for return addr
6633   framesize -= wordSize;
6634   stack_bang_size -= wordSize;
6635 
6636   // Calls to C2R adapters often do not accept exceptional returns.
6637   // We require that their callers must bang for them.  But be careful, because
6638   // some VM calls (such as call site linkage) can use several kilobytes of
6639   // stack.  But the stack safety zone should account for that.
6640   // See bugs 4446381, 4468289, 4497237.
6641   if (stack_bang_size > 0) {
6642     generate_stack_overflow_check(stack_bang_size);
6643 
6644     // We always push rbp, so that on return to interpreter rbp, will be
6645     // restored correctly and we can correct the stack.
6646     push(rbp);
6647     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6648     if (PreserveFramePointer) {
6649       mov(rbp, rsp);
6650     }
6651     // Remove word for ebp
6652     framesize -= wordSize;
6653 
6654     // Create frame
6655     if (framesize) {
6656       subptr(rsp, framesize);
6657     }
6658   } else {
6659     // Create frame (force generation of a 4 byte immediate value)
6660     subptr_imm32(rsp, framesize);
6661 
6662     // Save RBP register now.
6663     framesize -= wordSize;
6664     movptr(Address(rsp, framesize), rbp);
6665     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6666     if (PreserveFramePointer) {
6667       movptr(rbp, rsp);
6668       if (framesize > 0) {
6669         addptr(rbp, framesize);
6670       }
6671     }
6672   }
6673 
6674   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6675     framesize -= wordSize;
6676     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6677   }
6678 
6679 #ifndef _LP64
6680   // If method sets FPU control word do it now
6681   if (fp_mode_24b) {
6682     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6683   }
6684   if (UseSSE >= 2 && VerifyFPU) {
6685     verify_FPU(0, "FPU stack must be clean on entry");
6686   }
6687 #endif
6688 
6689 #ifdef ASSERT
6690   if (VerifyStackAtCalls) {
6691     Label L;
6692     push(rax);
6693     mov(rax, rsp);
6694     andptr(rax, StackAlignmentInBytes-1);
6695     cmpptr(rax, StackAlignmentInBytes-wordSize);
6696     pop(rax);
6697     jcc(Assembler::equal, L);
6698     STOP("Stack is not properly aligned!");
6699     bind(L);
6700   }
6701 #endif
6702 
6703 }
6704 
6705 // Add null checks for all value type arguments
6706 void MacroAssembler::null_check_value_args(Method* method) {
6707   // Get registers/stack slots for arguments
6708   assert(method->has_value_args(), "must have value type args");
6709   Symbol* sig_ext = method->adapter()->get_sig_extended();
6710   assert(sig_ext != NULL, "must have extended signature");
6711   BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
6712   VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
6713   int num = 0;
6714   for (SignatureStream ss(sig_ext); !ss.at_return_type(); ss.next()) {
6715     BasicType bt = ss.type();
6716     sig_bt[num++] = bt;
6717     if (type2size[bt] == 2) {
6718       sig_bt[num++] = T_VOID;
6719     }
6720   }
6721   SharedRuntime::java_calling_convention(sig_bt, regs, num, false);
6722 
6723   // Jump to c2i adapter if a value type argument is null
6724   bool has_receiver = !method->is_static();
6725   RuntimeAddress interpreter_entry = RuntimeAddress(method->get_c2i_entry());
6726   num = 0;
6727   for (SignatureStream ss(sig_ext); !ss.at_return_type(); num += type2size[ss.type()], ss.next()) {
6728     if ((has_receiver && num == 0) || ss.type() != T_VALUETYPEPTR) {
6729       continue; // Skip receiver and non value type args
6730     }
6731     VMReg r = regs[num].first();
6732     if (r->is_reg()) {
6733       testptr(r->as_Register(), r->as_Register());
6734     } else {
6735       if (!r->is_stack()) {
6736         r->print();
6737       }
6738       int st_off = r->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
6739       cmpptr(Address(rsp, st_off), NULL_WORD);
6740     }
6741     jump_cc(Assembler::zero, interpreter_entry);
6742   }
6743 }
6744 
6745 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
6746 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp) {
6747   // cnt - number of qwords (8-byte words).
6748   // base - start address, qword aligned.
6749   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
6750   movdq(xtmp, val);
6751   if (UseAVX >= 2) {
6752     punpcklqdq(xtmp, xtmp);
6753     vinserti128_high(xtmp, xtmp);
6754   } else {
6755     punpcklqdq(xtmp, xtmp);
6756   }
6757   jmp(L_zero_64_bytes);
6758 
6759   BIND(L_loop);
6760   if (UseAVX >= 2) {
6761     vmovdqu(Address(base,  0), xtmp);
6762     vmovdqu(Address(base, 32), xtmp);
6763   } else {
6764     movdqu(Address(base,  0), xtmp);
6765     movdqu(Address(base, 16), xtmp);
6766     movdqu(Address(base, 32), xtmp);
6767     movdqu(Address(base, 48), xtmp);
6768   }
6769   addptr(base, 64);
6770 
6771   BIND(L_zero_64_bytes);
6772   subptr(cnt, 8);
6773   jccb(Assembler::greaterEqual, L_loop);
6774   addptr(cnt, 4);
6775   jccb(Assembler::less, L_tail);
6776   // Copy trailing 32 bytes
6777   if (UseAVX >= 2) {
6778     vmovdqu(Address(base, 0), xtmp);
6779   } else {
6780     movdqu(Address(base,  0), xtmp);
6781     movdqu(Address(base, 16), xtmp);
6782   }
6783   addptr(base, 32);
6784   subptr(cnt, 4);
6785 
6786   BIND(L_tail);
6787   addptr(cnt, 4);
6788   jccb(Assembler::lessEqual, L_end);
6789   decrement(cnt);
6790 
6791   BIND(L_sloop);
6792   movq(Address(base, 0), xtmp);
6793   addptr(base, 8);
6794   decrement(cnt);
6795   jccb(Assembler::greaterEqual, L_sloop);
6796   BIND(L_end);
6797 }
6798 
6799 void MacroAssembler::clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only) {
6800   // cnt - number of qwords (8-byte words).
6801   // base - start address, qword aligned.
6802   // is_large - if optimizers know cnt is larger than InitArrayShortSize
6803   assert(base==rdi, "base register must be edi for rep stos");
6804   assert(val==rax,   "tmp register must be eax for rep stos");
6805   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6806   assert(InitArrayShortSize % BytesPerLong == 0,
6807     "InitArrayShortSize should be the multiple of BytesPerLong");
6808 
6809   Label DONE;
6810 
6811   if (!is_large) {
6812     Label LOOP, LONG;
6813     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
6814     jccb(Assembler::greater, LONG);
6815 
6816     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
6817 
6818     decrement(cnt);
6819     jccb(Assembler::negative, DONE); // Zero length
6820 
6821     // Use individual pointer-sized stores for small counts:
6822     BIND(LOOP);
6823     movptr(Address(base, cnt, Address::times_ptr), val);
6824     decrement(cnt);
6825     jccb(Assembler::greaterEqual, LOOP);
6826     jmpb(DONE);
6827 
6828     BIND(LONG);
6829   }
6830 
6831   // Use longer rep-prefixed ops for non-small counts:
6832   if (UseFastStosb && !word_copy_only) {
6833     shlptr(cnt, 3); // convert to number of bytes
6834     rep_stosb();
6835   } else if (UseXMMForObjInit) {
6836     xmm_clear_mem(base, cnt, val, xtmp);
6837   } else {
6838     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
6839     rep_stos();
6840   }
6841 
6842   BIND(DONE);
6843 }
6844 
6845 #ifdef COMPILER2
6846 
6847 // IndexOf for constant substrings with size >= 8 chars
6848 // which don't need to be loaded through stack.
6849 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6850                                       Register cnt1, Register cnt2,
6851                                       int int_cnt2,  Register result,
6852                                       XMMRegister vec, Register tmp,
6853                                       int ae) {
6854   ShortBranchVerifier sbv(this);
6855   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6856   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6857 
6858   // This method uses the pcmpestri instruction with bound registers
6859   //   inputs:
6860   //     xmm - substring
6861   //     rax - substring length (elements count)
6862   //     mem - scanned string
6863   //     rdx - string length (elements count)
6864   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6865   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6866   //   outputs:
6867   //     rcx - matched index in string
6868   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6869   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6870   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6871   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6872   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6873 
6874   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6875         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6876         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6877 
6878   // Note, inline_string_indexOf() generates checks:
6879   // if (substr.count > string.count) return -1;
6880   // if (substr.count == 0) return 0;
6881   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
6882 
6883   // Load substring.
6884   if (ae == StrIntrinsicNode::UL) {
6885     pmovzxbw(vec, Address(str2, 0));
6886   } else {
6887     movdqu(vec, Address(str2, 0));
6888   }
6889   movl(cnt2, int_cnt2);
6890   movptr(result, str1); // string addr
6891 
6892   if (int_cnt2 > stride) {
6893     jmpb(SCAN_TO_SUBSTR);
6894 
6895     // Reload substr for rescan, this code
6896     // is executed only for large substrings (> 8 chars)
6897     bind(RELOAD_SUBSTR);
6898     if (ae == StrIntrinsicNode::UL) {
6899       pmovzxbw(vec, Address(str2, 0));
6900     } else {
6901       movdqu(vec, Address(str2, 0));
6902     }
6903     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6904 
6905     bind(RELOAD_STR);
6906     // We came here after the beginning of the substring was
6907     // matched but the rest of it was not so we need to search
6908     // again. Start from the next element after the previous match.
6909 
6910     // cnt2 is number of substring reminding elements and
6911     // cnt1 is number of string reminding elements when cmp failed.
6912     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6913     subl(cnt1, cnt2);
6914     addl(cnt1, int_cnt2);
6915     movl(cnt2, int_cnt2); // Now restore cnt2
6916 
6917     decrementl(cnt1);     // Shift to next element
6918     cmpl(cnt1, cnt2);
6919     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6920 
6921     addptr(result, (1<<scale1));
6922 
6923   } // (int_cnt2 > 8)
6924 
6925   // Scan string for start of substr in 16-byte vectors
6926   bind(SCAN_TO_SUBSTR);
6927   pcmpestri(vec, Address(result, 0), mode);
6928   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6929   subl(cnt1, stride);
6930   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6931   cmpl(cnt1, cnt2);
6932   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6933   addptr(result, 16);
6934   jmpb(SCAN_TO_SUBSTR);
6935 
6936   // Found a potential substr
6937   bind(FOUND_CANDIDATE);
6938   // Matched whole vector if first element matched (tmp(rcx) == 0).
6939   if (int_cnt2 == stride) {
6940     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6941   } else { // int_cnt2 > 8
6942     jccb(Assembler::overflow, FOUND_SUBSTR);
6943   }
6944   // After pcmpestri tmp(rcx) contains matched element index
6945   // Compute start addr of substr
6946   lea(result, Address(result, tmp, scale1));
6947 
6948   // Make sure string is still long enough
6949   subl(cnt1, tmp);
6950   cmpl(cnt1, cnt2);
6951   if (int_cnt2 == stride) {
6952     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6953   } else { // int_cnt2 > 8
6954     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6955   }
6956   // Left less then substring.
6957 
6958   bind(RET_NOT_FOUND);
6959   movl(result, -1);
6960   jmp(EXIT);
6961 
6962   if (int_cnt2 > stride) {
6963     // This code is optimized for the case when whole substring
6964     // is matched if its head is matched.
6965     bind(MATCH_SUBSTR_HEAD);
6966     pcmpestri(vec, Address(result, 0), mode);
6967     // Reload only string if does not match
6968     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
6969 
6970     Label CONT_SCAN_SUBSTR;
6971     // Compare the rest of substring (> 8 chars).
6972     bind(FOUND_SUBSTR);
6973     // First 8 chars are already matched.
6974     negptr(cnt2);
6975     addptr(cnt2, stride);
6976 
6977     bind(SCAN_SUBSTR);
6978     subl(cnt1, stride);
6979     cmpl(cnt2, -stride); // Do not read beyond substring
6980     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6981     // Back-up strings to avoid reading beyond substring:
6982     // cnt1 = cnt1 - cnt2 + 8
6983     addl(cnt1, cnt2); // cnt2 is negative
6984     addl(cnt1, stride);
6985     movl(cnt2, stride); negptr(cnt2);
6986     bind(CONT_SCAN_SUBSTR);
6987     if (int_cnt2 < (int)G) {
6988       int tail_off1 = int_cnt2<<scale1;
6989       int tail_off2 = int_cnt2<<scale2;
6990       if (ae == StrIntrinsicNode::UL) {
6991         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
6992       } else {
6993         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
6994       }
6995       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
6996     } else {
6997       // calculate index in register to avoid integer overflow (int_cnt2*2)
6998       movl(tmp, int_cnt2);
6999       addptr(tmp, cnt2);
7000       if (ae == StrIntrinsicNode::UL) {
7001         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7002       } else {
7003         movdqu(vec, Address(str2, tmp, scale2, 0));
7004       }
7005       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7006     }
7007     // Need to reload strings pointers if not matched whole vector
7008     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7009     addptr(cnt2, stride);
7010     jcc(Assembler::negative, SCAN_SUBSTR);
7011     // Fall through if found full substring
7012 
7013   } // (int_cnt2 > 8)
7014 
7015   bind(RET_FOUND);
7016   // Found result if we matched full small substring.
7017   // Compute substr offset
7018   subptr(result, str1);
7019   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7020     shrl(result, 1); // index
7021   }
7022   bind(EXIT);
7023 
7024 } // string_indexofC8
7025 
7026 // Small strings are loaded through stack if they cross page boundary.
7027 void MacroAssembler::string_indexof(Register str1, Register str2,
7028                                     Register cnt1, Register cnt2,
7029                                     int int_cnt2,  Register result,
7030                                     XMMRegister vec, Register tmp,
7031                                     int ae) {
7032   ShortBranchVerifier sbv(this);
7033   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7034   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7035 
7036   //
7037   // int_cnt2 is length of small (< 8 chars) constant substring
7038   // or (-1) for non constant substring in which case its length
7039   // is in cnt2 register.
7040   //
7041   // Note, inline_string_indexOf() generates checks:
7042   // if (substr.count > string.count) return -1;
7043   // if (substr.count == 0) return 0;
7044   //
7045   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7046   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7047   // This method uses the pcmpestri instruction with bound registers
7048   //   inputs:
7049   //     xmm - substring
7050   //     rax - substring length (elements count)
7051   //     mem - scanned string
7052   //     rdx - string length (elements count)
7053   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7054   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7055   //   outputs:
7056   //     rcx - matched index in string
7057   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7058   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7059   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7060   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7061 
7062   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7063         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7064         FOUND_CANDIDATE;
7065 
7066   { //========================================================
7067     // We don't know where these strings are located
7068     // and we can't read beyond them. Load them through stack.
7069     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7070 
7071     movptr(tmp, rsp); // save old SP
7072 
7073     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7074       if (int_cnt2 == (1>>scale2)) { // One byte
7075         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7076         load_unsigned_byte(result, Address(str2, 0));
7077         movdl(vec, result); // move 32 bits
7078       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7079         // Not enough header space in 32-bit VM: 12+3 = 15.
7080         movl(result, Address(str2, -1));
7081         shrl(result, 8);
7082         movdl(vec, result); // move 32 bits
7083       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7084         load_unsigned_short(result, Address(str2, 0));
7085         movdl(vec, result); // move 32 bits
7086       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7087         movdl(vec, Address(str2, 0)); // move 32 bits
7088       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7089         movq(vec, Address(str2, 0));  // move 64 bits
7090       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7091         // Array header size is 12 bytes in 32-bit VM
7092         // + 6 bytes for 3 chars == 18 bytes,
7093         // enough space to load vec and shift.
7094         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7095         if (ae == StrIntrinsicNode::UL) {
7096           int tail_off = int_cnt2-8;
7097           pmovzxbw(vec, Address(str2, tail_off));
7098           psrldq(vec, -2*tail_off);
7099         }
7100         else {
7101           int tail_off = int_cnt2*(1<<scale2);
7102           movdqu(vec, Address(str2, tail_off-16));
7103           psrldq(vec, 16-tail_off);
7104         }
7105       }
7106     } else { // not constant substring
7107       cmpl(cnt2, stride);
7108       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7109 
7110       // We can read beyond string if srt+16 does not cross page boundary
7111       // since heaps are aligned and mapped by pages.
7112       assert(os::vm_page_size() < (int)G, "default page should be small");
7113       movl(result, str2); // We need only low 32 bits
7114       andl(result, (os::vm_page_size()-1));
7115       cmpl(result, (os::vm_page_size()-16));
7116       jccb(Assembler::belowEqual, CHECK_STR);
7117 
7118       // Move small strings to stack to allow load 16 bytes into vec.
7119       subptr(rsp, 16);
7120       int stk_offset = wordSize-(1<<scale2);
7121       push(cnt2);
7122 
7123       bind(COPY_SUBSTR);
7124       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7125         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7126         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7127       } else if (ae == StrIntrinsicNode::UU) {
7128         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7129         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7130       }
7131       decrement(cnt2);
7132       jccb(Assembler::notZero, COPY_SUBSTR);
7133 
7134       pop(cnt2);
7135       movptr(str2, rsp);  // New substring address
7136     } // non constant
7137 
7138     bind(CHECK_STR);
7139     cmpl(cnt1, stride);
7140     jccb(Assembler::aboveEqual, BIG_STRINGS);
7141 
7142     // Check cross page boundary.
7143     movl(result, str1); // We need only low 32 bits
7144     andl(result, (os::vm_page_size()-1));
7145     cmpl(result, (os::vm_page_size()-16));
7146     jccb(Assembler::belowEqual, BIG_STRINGS);
7147 
7148     subptr(rsp, 16);
7149     int stk_offset = -(1<<scale1);
7150     if (int_cnt2 < 0) { // not constant
7151       push(cnt2);
7152       stk_offset += wordSize;
7153     }
7154     movl(cnt2, cnt1);
7155 
7156     bind(COPY_STR);
7157     if (ae == StrIntrinsicNode::LL) {
7158       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7159       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7160     } else {
7161       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7162       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7163     }
7164     decrement(cnt2);
7165     jccb(Assembler::notZero, COPY_STR);
7166 
7167     if (int_cnt2 < 0) { // not constant
7168       pop(cnt2);
7169     }
7170     movptr(str1, rsp);  // New string address
7171 
7172     bind(BIG_STRINGS);
7173     // Load substring.
7174     if (int_cnt2 < 0) { // -1
7175       if (ae == StrIntrinsicNode::UL) {
7176         pmovzxbw(vec, Address(str2, 0));
7177       } else {
7178         movdqu(vec, Address(str2, 0));
7179       }
7180       push(cnt2);       // substr count
7181       push(str2);       // substr addr
7182       push(str1);       // string addr
7183     } else {
7184       // Small (< 8 chars) constant substrings are loaded already.
7185       movl(cnt2, int_cnt2);
7186     }
7187     push(tmp);  // original SP
7188 
7189   } // Finished loading
7190 
7191   //========================================================
7192   // Start search
7193   //
7194 
7195   movptr(result, str1); // string addr
7196 
7197   if (int_cnt2  < 0) {  // Only for non constant substring
7198     jmpb(SCAN_TO_SUBSTR);
7199 
7200     // SP saved at sp+0
7201     // String saved at sp+1*wordSize
7202     // Substr saved at sp+2*wordSize
7203     // Substr count saved at sp+3*wordSize
7204 
7205     // Reload substr for rescan, this code
7206     // is executed only for large substrings (> 8 chars)
7207     bind(RELOAD_SUBSTR);
7208     movptr(str2, Address(rsp, 2*wordSize));
7209     movl(cnt2, Address(rsp, 3*wordSize));
7210     if (ae == StrIntrinsicNode::UL) {
7211       pmovzxbw(vec, Address(str2, 0));
7212     } else {
7213       movdqu(vec, Address(str2, 0));
7214     }
7215     // We came here after the beginning of the substring was
7216     // matched but the rest of it was not so we need to search
7217     // again. Start from the next element after the previous match.
7218     subptr(str1, result); // Restore counter
7219     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7220       shrl(str1, 1);
7221     }
7222     addl(cnt1, str1);
7223     decrementl(cnt1);   // Shift to next element
7224     cmpl(cnt1, cnt2);
7225     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7226 
7227     addptr(result, (1<<scale1));
7228   } // non constant
7229 
7230   // Scan string for start of substr in 16-byte vectors
7231   bind(SCAN_TO_SUBSTR);
7232   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7233   pcmpestri(vec, Address(result, 0), mode);
7234   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7235   subl(cnt1, stride);
7236   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7237   cmpl(cnt1, cnt2);
7238   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7239   addptr(result, 16);
7240 
7241   bind(ADJUST_STR);
7242   cmpl(cnt1, stride); // Do not read beyond string
7243   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7244   // Back-up string to avoid reading beyond string.
7245   lea(result, Address(result, cnt1, scale1, -16));
7246   movl(cnt1, stride);
7247   jmpb(SCAN_TO_SUBSTR);
7248 
7249   // Found a potential substr
7250   bind(FOUND_CANDIDATE);
7251   // After pcmpestri tmp(rcx) contains matched element index
7252 
7253   // Make sure string is still long enough
7254   subl(cnt1, tmp);
7255   cmpl(cnt1, cnt2);
7256   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7257   // Left less then substring.
7258 
7259   bind(RET_NOT_FOUND);
7260   movl(result, -1);
7261   jmp(CLEANUP);
7262 
7263   bind(FOUND_SUBSTR);
7264   // Compute start addr of substr
7265   lea(result, Address(result, tmp, scale1));
7266   if (int_cnt2 > 0) { // Constant substring
7267     // Repeat search for small substring (< 8 chars)
7268     // from new point without reloading substring.
7269     // Have to check that we don't read beyond string.
7270     cmpl(tmp, stride-int_cnt2);
7271     jccb(Assembler::greater, ADJUST_STR);
7272     // Fall through if matched whole substring.
7273   } else { // non constant
7274     assert(int_cnt2 == -1, "should be != 0");
7275 
7276     addl(tmp, cnt2);
7277     // Found result if we matched whole substring.
7278     cmpl(tmp, stride);
7279     jcc(Assembler::lessEqual, RET_FOUND);
7280 
7281     // Repeat search for small substring (<= 8 chars)
7282     // from new point 'str1' without reloading substring.
7283     cmpl(cnt2, stride);
7284     // Have to check that we don't read beyond string.
7285     jccb(Assembler::lessEqual, ADJUST_STR);
7286 
7287     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7288     // Compare the rest of substring (> 8 chars).
7289     movptr(str1, result);
7290 
7291     cmpl(tmp, cnt2);
7292     // First 8 chars are already matched.
7293     jccb(Assembler::equal, CHECK_NEXT);
7294 
7295     bind(SCAN_SUBSTR);
7296     pcmpestri(vec, Address(str1, 0), mode);
7297     // Need to reload strings pointers if not matched whole vector
7298     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7299 
7300     bind(CHECK_NEXT);
7301     subl(cnt2, stride);
7302     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7303     addptr(str1, 16);
7304     if (ae == StrIntrinsicNode::UL) {
7305       addptr(str2, 8);
7306     } else {
7307       addptr(str2, 16);
7308     }
7309     subl(cnt1, stride);
7310     cmpl(cnt2, stride); // Do not read beyond substring
7311     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7312     // Back-up strings to avoid reading beyond substring.
7313 
7314     if (ae == StrIntrinsicNode::UL) {
7315       lea(str2, Address(str2, cnt2, scale2, -8));
7316       lea(str1, Address(str1, cnt2, scale1, -16));
7317     } else {
7318       lea(str2, Address(str2, cnt2, scale2, -16));
7319       lea(str1, Address(str1, cnt2, scale1, -16));
7320     }
7321     subl(cnt1, cnt2);
7322     movl(cnt2, stride);
7323     addl(cnt1, stride);
7324     bind(CONT_SCAN_SUBSTR);
7325     if (ae == StrIntrinsicNode::UL) {
7326       pmovzxbw(vec, Address(str2, 0));
7327     } else {
7328       movdqu(vec, Address(str2, 0));
7329     }
7330     jmp(SCAN_SUBSTR);
7331 
7332     bind(RET_FOUND_LONG);
7333     movptr(str1, Address(rsp, wordSize));
7334   } // non constant
7335 
7336   bind(RET_FOUND);
7337   // Compute substr offset
7338   subptr(result, str1);
7339   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7340     shrl(result, 1); // index
7341   }
7342   bind(CLEANUP);
7343   pop(rsp); // restore SP
7344 
7345 } // string_indexof
7346 
7347 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7348                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7349   ShortBranchVerifier sbv(this);
7350   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7351 
7352   int stride = 8;
7353 
7354   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7355         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7356         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7357         FOUND_SEQ_CHAR, DONE_LABEL;
7358 
7359   movptr(result, str1);
7360   if (UseAVX >= 2) {
7361     cmpl(cnt1, stride);
7362     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7363     cmpl(cnt1, 2*stride);
7364     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7365     movdl(vec1, ch);
7366     vpbroadcastw(vec1, vec1);
7367     vpxor(vec2, vec2);
7368     movl(tmp, cnt1);
7369     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7370     andl(cnt1,0x0000000F);  //tail count (in chars)
7371 
7372     bind(SCAN_TO_16_CHAR_LOOP);
7373     vmovdqu(vec3, Address(result, 0));
7374     vpcmpeqw(vec3, vec3, vec1, 1);
7375     vptest(vec2, vec3);
7376     jcc(Assembler::carryClear, FOUND_CHAR);
7377     addptr(result, 32);
7378     subl(tmp, 2*stride);
7379     jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7380     jmp(SCAN_TO_8_CHAR);
7381     bind(SCAN_TO_8_CHAR_INIT);
7382     movdl(vec1, ch);
7383     pshuflw(vec1, vec1, 0x00);
7384     pshufd(vec1, vec1, 0);
7385     pxor(vec2, vec2);
7386   }
7387   bind(SCAN_TO_8_CHAR);
7388   cmpl(cnt1, stride);
7389   if (UseAVX >= 2) {
7390     jcc(Assembler::less, SCAN_TO_CHAR);
7391   } else {
7392     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7393     movdl(vec1, ch);
7394     pshuflw(vec1, vec1, 0x00);
7395     pshufd(vec1, vec1, 0);
7396     pxor(vec2, vec2);
7397   }
7398   movl(tmp, cnt1);
7399   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7400   andl(cnt1,0x00000007);  //tail count (in chars)
7401 
7402   bind(SCAN_TO_8_CHAR_LOOP);
7403   movdqu(vec3, Address(result, 0));
7404   pcmpeqw(vec3, vec1);
7405   ptest(vec2, vec3);
7406   jcc(Assembler::carryClear, FOUND_CHAR);
7407   addptr(result, 16);
7408   subl(tmp, stride);
7409   jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7410   bind(SCAN_TO_CHAR);
7411   testl(cnt1, cnt1);
7412   jcc(Assembler::zero, RET_NOT_FOUND);
7413   bind(SCAN_TO_CHAR_LOOP);
7414   load_unsigned_short(tmp, Address(result, 0));
7415   cmpl(ch, tmp);
7416   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7417   addptr(result, 2);
7418   subl(cnt1, 1);
7419   jccb(Assembler::zero, RET_NOT_FOUND);
7420   jmp(SCAN_TO_CHAR_LOOP);
7421 
7422   bind(RET_NOT_FOUND);
7423   movl(result, -1);
7424   jmpb(DONE_LABEL);
7425 
7426   bind(FOUND_CHAR);
7427   if (UseAVX >= 2) {
7428     vpmovmskb(tmp, vec3);
7429   } else {
7430     pmovmskb(tmp, vec3);
7431   }
7432   bsfl(ch, tmp);
7433   addl(result, ch);
7434 
7435   bind(FOUND_SEQ_CHAR);
7436   subptr(result, str1);
7437   shrl(result, 1);
7438 
7439   bind(DONE_LABEL);
7440 } // string_indexof_char
7441 
7442 // helper function for string_compare
7443 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7444                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7445                                         Address::ScaleFactor scale2, Register index, int ae) {
7446   if (ae == StrIntrinsicNode::LL) {
7447     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7448     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7449   } else if (ae == StrIntrinsicNode::UU) {
7450     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7451     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7452   } else {
7453     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7454     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7455   }
7456 }
7457 
7458 // Compare strings, used for char[] and byte[].
7459 void MacroAssembler::string_compare(Register str1, Register str2,
7460                                     Register cnt1, Register cnt2, Register result,
7461                                     XMMRegister vec1, int ae) {
7462   ShortBranchVerifier sbv(this);
7463   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7464   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7465   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7466   int stride2x2 = 0x40;
7467   Address::ScaleFactor scale = Address::no_scale;
7468   Address::ScaleFactor scale1 = Address::no_scale;
7469   Address::ScaleFactor scale2 = Address::no_scale;
7470 
7471   if (ae != StrIntrinsicNode::LL) {
7472     stride2x2 = 0x20;
7473   }
7474 
7475   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7476     shrl(cnt2, 1);
7477   }
7478   // Compute the minimum of the string lengths and the
7479   // difference of the string lengths (stack).
7480   // Do the conditional move stuff
7481   movl(result, cnt1);
7482   subl(cnt1, cnt2);
7483   push(cnt1);
7484   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7485 
7486   // Is the minimum length zero?
7487   testl(cnt2, cnt2);
7488   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7489   if (ae == StrIntrinsicNode::LL) {
7490     // Load first bytes
7491     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7492     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7493   } else if (ae == StrIntrinsicNode::UU) {
7494     // Load first characters
7495     load_unsigned_short(result, Address(str1, 0));
7496     load_unsigned_short(cnt1, Address(str2, 0));
7497   } else {
7498     load_unsigned_byte(result, Address(str1, 0));
7499     load_unsigned_short(cnt1, Address(str2, 0));
7500   }
7501   subl(result, cnt1);
7502   jcc(Assembler::notZero,  POP_LABEL);
7503 
7504   if (ae == StrIntrinsicNode::UU) {
7505     // Divide length by 2 to get number of chars
7506     shrl(cnt2, 1);
7507   }
7508   cmpl(cnt2, 1);
7509   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7510 
7511   // Check if the strings start at the same location and setup scale and stride
7512   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7513     cmpptr(str1, str2);
7514     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7515     if (ae == StrIntrinsicNode::LL) {
7516       scale = Address::times_1;
7517       stride = 16;
7518     } else {
7519       scale = Address::times_2;
7520       stride = 8;
7521     }
7522   } else {
7523     scale1 = Address::times_1;
7524     scale2 = Address::times_2;
7525     // scale not used
7526     stride = 8;
7527   }
7528 
7529   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7530     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7531     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7532     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7533     Label COMPARE_TAIL_LONG;
7534     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7535 
7536     int pcmpmask = 0x19;
7537     if (ae == StrIntrinsicNode::LL) {
7538       pcmpmask &= ~0x01;
7539     }
7540 
7541     // Setup to compare 16-chars (32-bytes) vectors,
7542     // start from first character again because it has aligned address.
7543     if (ae == StrIntrinsicNode::LL) {
7544       stride2 = 32;
7545     } else {
7546       stride2 = 16;
7547     }
7548     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7549       adr_stride = stride << scale;
7550     } else {
7551       adr_stride1 = 8;  //stride << scale1;
7552       adr_stride2 = 16; //stride << scale2;
7553     }
7554 
7555     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7556     // rax and rdx are used by pcmpestri as elements counters
7557     movl(result, cnt2);
7558     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7559     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7560 
7561     // fast path : compare first 2 8-char vectors.
7562     bind(COMPARE_16_CHARS);
7563     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7564       movdqu(vec1, Address(str1, 0));
7565     } else {
7566       pmovzxbw(vec1, Address(str1, 0));
7567     }
7568     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7569     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7570 
7571     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7572       movdqu(vec1, Address(str1, adr_stride));
7573       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7574     } else {
7575       pmovzxbw(vec1, Address(str1, adr_stride1));
7576       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7577     }
7578     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7579     addl(cnt1, stride);
7580 
7581     // Compare the characters at index in cnt1
7582     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7583     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7584     subl(result, cnt2);
7585     jmp(POP_LABEL);
7586 
7587     // Setup the registers to start vector comparison loop
7588     bind(COMPARE_WIDE_VECTORS);
7589     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7590       lea(str1, Address(str1, result, scale));
7591       lea(str2, Address(str2, result, scale));
7592     } else {
7593       lea(str1, Address(str1, result, scale1));
7594       lea(str2, Address(str2, result, scale2));
7595     }
7596     subl(result, stride2);
7597     subl(cnt2, stride2);
7598     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7599     negptr(result);
7600 
7601     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7602     bind(COMPARE_WIDE_VECTORS_LOOP);
7603 
7604 #ifdef _LP64
7605     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7606       cmpl(cnt2, stride2x2);
7607       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7608       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7609       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7610 
7611       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7612       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7613         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7614         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7615       } else {
7616         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7617         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7618       }
7619       kortestql(k7, k7);
7620       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7621       addptr(result, stride2x2);  // update since we already compared at this addr
7622       subl(cnt2, stride2x2);      // and sub the size too
7623       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7624 
7625       vpxor(vec1, vec1);
7626       jmpb(COMPARE_WIDE_TAIL);
7627     }//if (VM_Version::supports_avx512vlbw())
7628 #endif // _LP64
7629 
7630 
7631     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7632     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7633       vmovdqu(vec1, Address(str1, result, scale));
7634       vpxor(vec1, Address(str2, result, scale));
7635     } else {
7636       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7637       vpxor(vec1, Address(str2, result, scale2));
7638     }
7639     vptest(vec1, vec1);
7640     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7641     addptr(result, stride2);
7642     subl(cnt2, stride2);
7643     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7644     // clean upper bits of YMM registers
7645     vpxor(vec1, vec1);
7646 
7647     // compare wide vectors tail
7648     bind(COMPARE_WIDE_TAIL);
7649     testptr(result, result);
7650     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7651 
7652     movl(result, stride2);
7653     movl(cnt2, result);
7654     negptr(result);
7655     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7656 
7657     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
7658     bind(VECTOR_NOT_EQUAL);
7659     // clean upper bits of YMM registers
7660     vpxor(vec1, vec1);
7661     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7662       lea(str1, Address(str1, result, scale));
7663       lea(str2, Address(str2, result, scale));
7664     } else {
7665       lea(str1, Address(str1, result, scale1));
7666       lea(str2, Address(str2, result, scale2));
7667     }
7668     jmp(COMPARE_16_CHARS);
7669 
7670     // Compare tail chars, length between 1 to 15 chars
7671     bind(COMPARE_TAIL_LONG);
7672     movl(cnt2, result);
7673     cmpl(cnt2, stride);
7674     jcc(Assembler::less, COMPARE_SMALL_STR);
7675 
7676     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7677       movdqu(vec1, Address(str1, 0));
7678     } else {
7679       pmovzxbw(vec1, Address(str1, 0));
7680     }
7681     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7682     jcc(Assembler::below, COMPARE_INDEX_CHAR);
7683     subptr(cnt2, stride);
7684     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7685     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7686       lea(str1, Address(str1, result, scale));
7687       lea(str2, Address(str2, result, scale));
7688     } else {
7689       lea(str1, Address(str1, result, scale1));
7690       lea(str2, Address(str2, result, scale2));
7691     }
7692     negptr(cnt2);
7693     jmpb(WHILE_HEAD_LABEL);
7694 
7695     bind(COMPARE_SMALL_STR);
7696   } else if (UseSSE42Intrinsics) {
7697     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
7698     int pcmpmask = 0x19;
7699     // Setup to compare 8-char (16-byte) vectors,
7700     // start from first character again because it has aligned address.
7701     movl(result, cnt2);
7702     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
7703     if (ae == StrIntrinsicNode::LL) {
7704       pcmpmask &= ~0x01;
7705     }
7706     jcc(Assembler::zero, COMPARE_TAIL);
7707     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7708       lea(str1, Address(str1, result, scale));
7709       lea(str2, Address(str2, result, scale));
7710     } else {
7711       lea(str1, Address(str1, result, scale1));
7712       lea(str2, Address(str2, result, scale2));
7713     }
7714     negptr(result);
7715 
7716     // pcmpestri
7717     //   inputs:
7718     //     vec1- substring
7719     //     rax - negative string length (elements count)
7720     //     mem - scanned string
7721     //     rdx - string length (elements count)
7722     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
7723     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
7724     //   outputs:
7725     //     rcx - first mismatched element index
7726     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7727 
7728     bind(COMPARE_WIDE_VECTORS);
7729     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7730       movdqu(vec1, Address(str1, result, scale));
7731       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7732     } else {
7733       pmovzxbw(vec1, Address(str1, result, scale1));
7734       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7735     }
7736     // After pcmpestri cnt1(rcx) contains mismatched element index
7737 
7738     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
7739     addptr(result, stride);
7740     subptr(cnt2, stride);
7741     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
7742 
7743     // compare wide vectors tail
7744     testptr(result, result);
7745     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7746 
7747     movl(cnt2, stride);
7748     movl(result, stride);
7749     negptr(result);
7750     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7751       movdqu(vec1, Address(str1, result, scale));
7752       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7753     } else {
7754       pmovzxbw(vec1, Address(str1, result, scale1));
7755       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7756     }
7757     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
7758 
7759     // Mismatched characters in the vectors
7760     bind(VECTOR_NOT_EQUAL);
7761     addptr(cnt1, result);
7762     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7763     subl(result, cnt2);
7764     jmpb(POP_LABEL);
7765 
7766     bind(COMPARE_TAIL); // limit is zero
7767     movl(cnt2, result);
7768     // Fallthru to tail compare
7769   }
7770   // Shift str2 and str1 to the end of the arrays, negate min
7771   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7772     lea(str1, Address(str1, cnt2, scale));
7773     lea(str2, Address(str2, cnt2, scale));
7774   } else {
7775     lea(str1, Address(str1, cnt2, scale1));
7776     lea(str2, Address(str2, cnt2, scale2));
7777   }
7778   decrementl(cnt2);  // first character was compared already
7779   negptr(cnt2);
7780 
7781   // Compare the rest of the elements
7782   bind(WHILE_HEAD_LABEL);
7783   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
7784   subl(result, cnt1);
7785   jccb(Assembler::notZero, POP_LABEL);
7786   increment(cnt2);
7787   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
7788 
7789   // Strings are equal up to min length.  Return the length difference.
7790   bind(LENGTH_DIFF_LABEL);
7791   pop(result);
7792   if (ae == StrIntrinsicNode::UU) {
7793     // Divide diff by 2 to get number of chars
7794     sarl(result, 1);
7795   }
7796   jmpb(DONE_LABEL);
7797 
7798 #ifdef _LP64
7799   if (VM_Version::supports_avx512vlbw()) {
7800 
7801     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
7802 
7803     kmovql(cnt1, k7);
7804     notq(cnt1);
7805     bsfq(cnt2, cnt1);
7806     if (ae != StrIntrinsicNode::LL) {
7807       // Divide diff by 2 to get number of chars
7808       sarl(cnt2, 1);
7809     }
7810     addq(result, cnt2);
7811     if (ae == StrIntrinsicNode::LL) {
7812       load_unsigned_byte(cnt1, Address(str2, result));
7813       load_unsigned_byte(result, Address(str1, result));
7814     } else if (ae == StrIntrinsicNode::UU) {
7815       load_unsigned_short(cnt1, Address(str2, result, scale));
7816       load_unsigned_short(result, Address(str1, result, scale));
7817     } else {
7818       load_unsigned_short(cnt1, Address(str2, result, scale2));
7819       load_unsigned_byte(result, Address(str1, result, scale1));
7820     }
7821     subl(result, cnt1);
7822     jmpb(POP_LABEL);
7823   }//if (VM_Version::supports_avx512vlbw())
7824 #endif // _LP64
7825 
7826   // Discard the stored length difference
7827   bind(POP_LABEL);
7828   pop(cnt1);
7829 
7830   // That's it
7831   bind(DONE_LABEL);
7832   if(ae == StrIntrinsicNode::UL) {
7833     negl(result);
7834   }
7835 
7836 }
7837 
7838 // Search for Non-ASCII character (Negative byte value) in a byte array,
7839 // return true if it has any and false otherwise.
7840 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
7841 //   @HotSpotIntrinsicCandidate
7842 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
7843 //     for (int i = off; i < off + len; i++) {
7844 //       if (ba[i] < 0) {
7845 //         return true;
7846 //       }
7847 //     }
7848 //     return false;
7849 //   }
7850 void MacroAssembler::has_negatives(Register ary1, Register len,
7851   Register result, Register tmp1,
7852   XMMRegister vec1, XMMRegister vec2) {
7853   // rsi: byte array
7854   // rcx: len
7855   // rax: result
7856   ShortBranchVerifier sbv(this);
7857   assert_different_registers(ary1, len, result, tmp1);
7858   assert_different_registers(vec1, vec2);
7859   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
7860 
7861   // len == 0
7862   testl(len, len);
7863   jcc(Assembler::zero, FALSE_LABEL);
7864 
7865   if ((UseAVX > 2) && // AVX512
7866     VM_Version::supports_avx512vlbw() &&
7867     VM_Version::supports_bmi2()) {
7868 
7869     set_vector_masking();  // opening of the stub context for programming mask registers
7870 
7871     Label test_64_loop, test_tail;
7872     Register tmp3_aliased = len;
7873 
7874     movl(tmp1, len);
7875     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
7876 
7877     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
7878     andl(len, ~(64 - 1));    // vector count (in chars)
7879     jccb(Assembler::zero, test_tail);
7880 
7881     lea(ary1, Address(ary1, len, Address::times_1));
7882     negptr(len);
7883 
7884     bind(test_64_loop);
7885     // Check whether our 64 elements of size byte contain negatives
7886     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
7887     kortestql(k2, k2);
7888     jcc(Assembler::notZero, TRUE_LABEL);
7889 
7890     addptr(len, 64);
7891     jccb(Assembler::notZero, test_64_loop);
7892 
7893 
7894     bind(test_tail);
7895     // bail out when there is nothing to be done
7896     testl(tmp1, -1);
7897     jcc(Assembler::zero, FALSE_LABEL);
7898 
7899     // Save k1
7900     kmovql(k3, k1);
7901 
7902     // ~(~0 << len) applied up to two times (for 32-bit scenario)
7903 #ifdef _LP64
7904     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
7905     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
7906     notq(tmp3_aliased);
7907     kmovql(k1, tmp3_aliased);
7908 #else
7909     Label k_init;
7910     jmp(k_init);
7911 
7912     // We could not read 64-bits from a general purpose register thus we move
7913     // data required to compose 64 1's to the instruction stream
7914     // We emit 64 byte wide series of elements from 0..63 which later on would
7915     // be used as a compare targets with tail count contained in tmp1 register.
7916     // Result would be a k1 register having tmp1 consecutive number or 1
7917     // counting from least significant bit.
7918     address tmp = pc();
7919     emit_int64(0x0706050403020100);
7920     emit_int64(0x0F0E0D0C0B0A0908);
7921     emit_int64(0x1716151413121110);
7922     emit_int64(0x1F1E1D1C1B1A1918);
7923     emit_int64(0x2726252423222120);
7924     emit_int64(0x2F2E2D2C2B2A2928);
7925     emit_int64(0x3736353433323130);
7926     emit_int64(0x3F3E3D3C3B3A3938);
7927 
7928     bind(k_init);
7929     lea(len, InternalAddress(tmp));
7930     // create mask to test for negative byte inside a vector
7931     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
7932     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
7933 
7934 #endif
7935     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
7936     ktestq(k2, k1);
7937     // Restore k1
7938     kmovql(k1, k3);
7939     jcc(Assembler::notZero, TRUE_LABEL);
7940 
7941     jmp(FALSE_LABEL);
7942 
7943     clear_vector_masking();   // closing of the stub context for programming mask registers
7944   } else {
7945     movl(result, len); // copy
7946 
7947     if (UseAVX == 2 && UseSSE >= 2) {
7948       // With AVX2, use 32-byte vector compare
7949       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7950 
7951       // Compare 32-byte vectors
7952       andl(result, 0x0000001f);  //   tail count (in bytes)
7953       andl(len, 0xffffffe0);   // vector count (in bytes)
7954       jccb(Assembler::zero, COMPARE_TAIL);
7955 
7956       lea(ary1, Address(ary1, len, Address::times_1));
7957       negptr(len);
7958 
7959       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
7960       movdl(vec2, tmp1);
7961       vpbroadcastd(vec2, vec2);
7962 
7963       bind(COMPARE_WIDE_VECTORS);
7964       vmovdqu(vec1, Address(ary1, len, Address::times_1));
7965       vptest(vec1, vec2);
7966       jccb(Assembler::notZero, TRUE_LABEL);
7967       addptr(len, 32);
7968       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7969 
7970       testl(result, result);
7971       jccb(Assembler::zero, FALSE_LABEL);
7972 
7973       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7974       vptest(vec1, vec2);
7975       jccb(Assembler::notZero, TRUE_LABEL);
7976       jmpb(FALSE_LABEL);
7977 
7978       bind(COMPARE_TAIL); // len is zero
7979       movl(len, result);
7980       // Fallthru to tail compare
7981     } else if (UseSSE42Intrinsics) {
7982       // With SSE4.2, use double quad vector compare
7983       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7984 
7985       // Compare 16-byte vectors
7986       andl(result, 0x0000000f);  //   tail count (in bytes)
7987       andl(len, 0xfffffff0);   // vector count (in bytes)
7988       jcc(Assembler::zero, COMPARE_TAIL);
7989 
7990       lea(ary1, Address(ary1, len, Address::times_1));
7991       negptr(len);
7992 
7993       movl(tmp1, 0x80808080);
7994       movdl(vec2, tmp1);
7995       pshufd(vec2, vec2, 0);
7996 
7997       bind(COMPARE_WIDE_VECTORS);
7998       movdqu(vec1, Address(ary1, len, Address::times_1));
7999       ptest(vec1, vec2);
8000       jcc(Assembler::notZero, TRUE_LABEL);
8001       addptr(len, 16);
8002       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8003 
8004       testl(result, result);
8005       jcc(Assembler::zero, FALSE_LABEL);
8006 
8007       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8008       ptest(vec1, vec2);
8009       jccb(Assembler::notZero, TRUE_LABEL);
8010       jmpb(FALSE_LABEL);
8011 
8012       bind(COMPARE_TAIL); // len is zero
8013       movl(len, result);
8014       // Fallthru to tail compare
8015     }
8016   }
8017   // Compare 4-byte vectors
8018   andl(len, 0xfffffffc); // vector count (in bytes)
8019   jccb(Assembler::zero, COMPARE_CHAR);
8020 
8021   lea(ary1, Address(ary1, len, Address::times_1));
8022   negptr(len);
8023 
8024   bind(COMPARE_VECTORS);
8025   movl(tmp1, Address(ary1, len, Address::times_1));
8026   andl(tmp1, 0x80808080);
8027   jccb(Assembler::notZero, TRUE_LABEL);
8028   addptr(len, 4);
8029   jcc(Assembler::notZero, COMPARE_VECTORS);
8030 
8031   // Compare trailing char (final 2 bytes), if any
8032   bind(COMPARE_CHAR);
8033   testl(result, 0x2);   // tail  char
8034   jccb(Assembler::zero, COMPARE_BYTE);
8035   load_unsigned_short(tmp1, Address(ary1, 0));
8036   andl(tmp1, 0x00008080);
8037   jccb(Assembler::notZero, TRUE_LABEL);
8038   subptr(result, 2);
8039   lea(ary1, Address(ary1, 2));
8040 
8041   bind(COMPARE_BYTE);
8042   testl(result, 0x1);   // tail  byte
8043   jccb(Assembler::zero, FALSE_LABEL);
8044   load_unsigned_byte(tmp1, Address(ary1, 0));
8045   andl(tmp1, 0x00000080);
8046   jccb(Assembler::notEqual, TRUE_LABEL);
8047   jmpb(FALSE_LABEL);
8048 
8049   bind(TRUE_LABEL);
8050   movl(result, 1);   // return true
8051   jmpb(DONE);
8052 
8053   bind(FALSE_LABEL);
8054   xorl(result, result); // return false
8055 
8056   // That's it
8057   bind(DONE);
8058   if (UseAVX >= 2 && UseSSE >= 2) {
8059     // clean upper bits of YMM registers
8060     vpxor(vec1, vec1);
8061     vpxor(vec2, vec2);
8062   }
8063 }
8064 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8065 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8066                                    Register limit, Register result, Register chr,
8067                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8068   ShortBranchVerifier sbv(this);
8069   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8070 
8071   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8072   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8073 
8074   if (is_array_equ) {
8075     // Check the input args
8076     cmpoop(ary1, ary2);
8077     jcc(Assembler::equal, TRUE_LABEL);
8078 
8079     // Need additional checks for arrays_equals.
8080     testptr(ary1, ary1);
8081     jcc(Assembler::zero, FALSE_LABEL);
8082     testptr(ary2, ary2);
8083     jcc(Assembler::zero, FALSE_LABEL);
8084 
8085     // Check the lengths
8086     movl(limit, Address(ary1, length_offset));
8087     cmpl(limit, Address(ary2, length_offset));
8088     jcc(Assembler::notEqual, FALSE_LABEL);
8089   }
8090 
8091   // count == 0
8092   testl(limit, limit);
8093   jcc(Assembler::zero, TRUE_LABEL);
8094 
8095   if (is_array_equ) {
8096     // Load array address
8097     lea(ary1, Address(ary1, base_offset));
8098     lea(ary2, Address(ary2, base_offset));
8099   }
8100 
8101   if (is_array_equ && is_char) {
8102     // arrays_equals when used for char[].
8103     shll(limit, 1);      // byte count != 0
8104   }
8105   movl(result, limit); // copy
8106 
8107   if (UseAVX >= 2) {
8108     // With AVX2, use 32-byte vector compare
8109     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8110 
8111     // Compare 32-byte vectors
8112     andl(result, 0x0000001f);  //   tail count (in bytes)
8113     andl(limit, 0xffffffe0);   // vector count (in bytes)
8114     jcc(Assembler::zero, COMPARE_TAIL);
8115 
8116     lea(ary1, Address(ary1, limit, Address::times_1));
8117     lea(ary2, Address(ary2, limit, Address::times_1));
8118     negptr(limit);
8119 
8120     bind(COMPARE_WIDE_VECTORS);
8121 
8122 #ifdef _LP64
8123     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8124       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8125 
8126       cmpl(limit, -64);
8127       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8128 
8129       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8130 
8131       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8132       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8133       kortestql(k7, k7);
8134       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8135       addptr(limit, 64);  // update since we already compared at this addr
8136       cmpl(limit, -64);
8137       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8138 
8139       // At this point we may still need to compare -limit+result bytes.
8140       // We could execute the next two instruction and just continue via non-wide path:
8141       //  cmpl(limit, 0);
8142       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8143       // But since we stopped at the points ary{1,2}+limit which are
8144       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8145       // (|limit| <= 32 and result < 32),
8146       // we may just compare the last 64 bytes.
8147       //
8148       addptr(result, -64);   // it is safe, bc we just came from this area
8149       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8150       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8151       kortestql(k7, k7);
8152       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8153 
8154       jmp(TRUE_LABEL);
8155 
8156       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8157 
8158     }//if (VM_Version::supports_avx512vlbw())
8159 #endif //_LP64
8160 
8161     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8162     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8163     vpxor(vec1, vec2);
8164 
8165     vptest(vec1, vec1);
8166     jcc(Assembler::notZero, FALSE_LABEL);
8167     addptr(limit, 32);
8168     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8169 
8170     testl(result, result);
8171     jcc(Assembler::zero, TRUE_LABEL);
8172 
8173     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8174     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8175     vpxor(vec1, vec2);
8176 
8177     vptest(vec1, vec1);
8178     jccb(Assembler::notZero, FALSE_LABEL);
8179     jmpb(TRUE_LABEL);
8180 
8181     bind(COMPARE_TAIL); // limit is zero
8182     movl(limit, result);
8183     // Fallthru to tail compare
8184   } else if (UseSSE42Intrinsics) {
8185     // With SSE4.2, use double quad vector compare
8186     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8187 
8188     // Compare 16-byte vectors
8189     andl(result, 0x0000000f);  //   tail count (in bytes)
8190     andl(limit, 0xfffffff0);   // vector count (in bytes)
8191     jcc(Assembler::zero, COMPARE_TAIL);
8192 
8193     lea(ary1, Address(ary1, limit, Address::times_1));
8194     lea(ary2, Address(ary2, limit, Address::times_1));
8195     negptr(limit);
8196 
8197     bind(COMPARE_WIDE_VECTORS);
8198     movdqu(vec1, Address(ary1, limit, Address::times_1));
8199     movdqu(vec2, Address(ary2, limit, Address::times_1));
8200     pxor(vec1, vec2);
8201 
8202     ptest(vec1, vec1);
8203     jcc(Assembler::notZero, FALSE_LABEL);
8204     addptr(limit, 16);
8205     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8206 
8207     testl(result, result);
8208     jcc(Assembler::zero, TRUE_LABEL);
8209 
8210     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8211     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8212     pxor(vec1, vec2);
8213 
8214     ptest(vec1, vec1);
8215     jccb(Assembler::notZero, FALSE_LABEL);
8216     jmpb(TRUE_LABEL);
8217 
8218     bind(COMPARE_TAIL); // limit is zero
8219     movl(limit, result);
8220     // Fallthru to tail compare
8221   }
8222 
8223   // Compare 4-byte vectors
8224   andl(limit, 0xfffffffc); // vector count (in bytes)
8225   jccb(Assembler::zero, COMPARE_CHAR);
8226 
8227   lea(ary1, Address(ary1, limit, Address::times_1));
8228   lea(ary2, Address(ary2, limit, Address::times_1));
8229   negptr(limit);
8230 
8231   bind(COMPARE_VECTORS);
8232   movl(chr, Address(ary1, limit, Address::times_1));
8233   cmpl(chr, Address(ary2, limit, Address::times_1));
8234   jccb(Assembler::notEqual, FALSE_LABEL);
8235   addptr(limit, 4);
8236   jcc(Assembler::notZero, COMPARE_VECTORS);
8237 
8238   // Compare trailing char (final 2 bytes), if any
8239   bind(COMPARE_CHAR);
8240   testl(result, 0x2);   // tail  char
8241   jccb(Assembler::zero, COMPARE_BYTE);
8242   load_unsigned_short(chr, Address(ary1, 0));
8243   load_unsigned_short(limit, Address(ary2, 0));
8244   cmpl(chr, limit);
8245   jccb(Assembler::notEqual, FALSE_LABEL);
8246 
8247   if (is_array_equ && is_char) {
8248     bind(COMPARE_BYTE);
8249   } else {
8250     lea(ary1, Address(ary1, 2));
8251     lea(ary2, Address(ary2, 2));
8252 
8253     bind(COMPARE_BYTE);
8254     testl(result, 0x1);   // tail  byte
8255     jccb(Assembler::zero, TRUE_LABEL);
8256     load_unsigned_byte(chr, Address(ary1, 0));
8257     load_unsigned_byte(limit, Address(ary2, 0));
8258     cmpl(chr, limit);
8259     jccb(Assembler::notEqual, FALSE_LABEL);
8260   }
8261   bind(TRUE_LABEL);
8262   movl(result, 1);   // return true
8263   jmpb(DONE);
8264 
8265   bind(FALSE_LABEL);
8266   xorl(result, result); // return false
8267 
8268   // That's it
8269   bind(DONE);
8270   if (UseAVX >= 2) {
8271     // clean upper bits of YMM registers
8272     vpxor(vec1, vec1);
8273     vpxor(vec2, vec2);
8274   }
8275 }
8276 
8277 #endif
8278 
8279 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8280                                    Register to, Register value, Register count,
8281                                    Register rtmp, XMMRegister xtmp) {
8282   ShortBranchVerifier sbv(this);
8283   assert_different_registers(to, value, count, rtmp);
8284   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8285   Label L_fill_2_bytes, L_fill_4_bytes;
8286 
8287   int shift = -1;
8288   switch (t) {
8289     case T_BYTE:
8290       shift = 2;
8291       break;
8292     case T_SHORT:
8293       shift = 1;
8294       break;
8295     case T_INT:
8296       shift = 0;
8297       break;
8298     default: ShouldNotReachHere();
8299   }
8300 
8301   if (t == T_BYTE) {
8302     andl(value, 0xff);
8303     movl(rtmp, value);
8304     shll(rtmp, 8);
8305     orl(value, rtmp);
8306   }
8307   if (t == T_SHORT) {
8308     andl(value, 0xffff);
8309   }
8310   if (t == T_BYTE || t == T_SHORT) {
8311     movl(rtmp, value);
8312     shll(rtmp, 16);
8313     orl(value, rtmp);
8314   }
8315 
8316   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8317   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8318   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8319     // align source address at 4 bytes address boundary
8320     if (t == T_BYTE) {
8321       // One byte misalignment happens only for byte arrays
8322       testptr(to, 1);
8323       jccb(Assembler::zero, L_skip_align1);
8324       movb(Address(to, 0), value);
8325       increment(to);
8326       decrement(count);
8327       BIND(L_skip_align1);
8328     }
8329     // Two bytes misalignment happens only for byte and short (char) arrays
8330     testptr(to, 2);
8331     jccb(Assembler::zero, L_skip_align2);
8332     movw(Address(to, 0), value);
8333     addptr(to, 2);
8334     subl(count, 1<<(shift-1));
8335     BIND(L_skip_align2);
8336   }
8337   if (UseSSE < 2) {
8338     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8339     // Fill 32-byte chunks
8340     subl(count, 8 << shift);
8341     jcc(Assembler::less, L_check_fill_8_bytes);
8342     align(16);
8343 
8344     BIND(L_fill_32_bytes_loop);
8345 
8346     for (int i = 0; i < 32; i += 4) {
8347       movl(Address(to, i), value);
8348     }
8349 
8350     addptr(to, 32);
8351     subl(count, 8 << shift);
8352     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8353     BIND(L_check_fill_8_bytes);
8354     addl(count, 8 << shift);
8355     jccb(Assembler::zero, L_exit);
8356     jmpb(L_fill_8_bytes);
8357 
8358     //
8359     // length is too short, just fill qwords
8360     //
8361     BIND(L_fill_8_bytes_loop);
8362     movl(Address(to, 0), value);
8363     movl(Address(to, 4), value);
8364     addptr(to, 8);
8365     BIND(L_fill_8_bytes);
8366     subl(count, 1 << (shift + 1));
8367     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8368     // fall through to fill 4 bytes
8369   } else {
8370     Label L_fill_32_bytes;
8371     if (!UseUnalignedLoadStores) {
8372       // align to 8 bytes, we know we are 4 byte aligned to start
8373       testptr(to, 4);
8374       jccb(Assembler::zero, L_fill_32_bytes);
8375       movl(Address(to, 0), value);
8376       addptr(to, 4);
8377       subl(count, 1<<shift);
8378     }
8379     BIND(L_fill_32_bytes);
8380     {
8381       assert( UseSSE >= 2, "supported cpu only" );
8382       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8383       if (UseAVX > 2) {
8384         movl(rtmp, 0xffff);
8385         kmovwl(k1, rtmp);
8386       }
8387       movdl(xtmp, value);
8388       if (UseAVX > 2 && UseUnalignedLoadStores) {
8389         // Fill 64-byte chunks
8390         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8391         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8392 
8393         subl(count, 16 << shift);
8394         jcc(Assembler::less, L_check_fill_32_bytes);
8395         align(16);
8396 
8397         BIND(L_fill_64_bytes_loop);
8398         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8399         addptr(to, 64);
8400         subl(count, 16 << shift);
8401         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8402 
8403         BIND(L_check_fill_32_bytes);
8404         addl(count, 8 << shift);
8405         jccb(Assembler::less, L_check_fill_8_bytes);
8406         vmovdqu(Address(to, 0), xtmp);
8407         addptr(to, 32);
8408         subl(count, 8 << shift);
8409 
8410         BIND(L_check_fill_8_bytes);
8411       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8412         // Fill 64-byte chunks
8413         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8414         vpbroadcastd(xtmp, xtmp);
8415 
8416         subl(count, 16 << shift);
8417         jcc(Assembler::less, L_check_fill_32_bytes);
8418         align(16);
8419 
8420         BIND(L_fill_64_bytes_loop);
8421         vmovdqu(Address(to, 0), xtmp);
8422         vmovdqu(Address(to, 32), xtmp);
8423         addptr(to, 64);
8424         subl(count, 16 << shift);
8425         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8426 
8427         BIND(L_check_fill_32_bytes);
8428         addl(count, 8 << shift);
8429         jccb(Assembler::less, L_check_fill_8_bytes);
8430         vmovdqu(Address(to, 0), xtmp);
8431         addptr(to, 32);
8432         subl(count, 8 << shift);
8433 
8434         BIND(L_check_fill_8_bytes);
8435         // clean upper bits of YMM registers
8436         movdl(xtmp, value);
8437         pshufd(xtmp, xtmp, 0);
8438       } else {
8439         // Fill 32-byte chunks
8440         pshufd(xtmp, xtmp, 0);
8441 
8442         subl(count, 8 << shift);
8443         jcc(Assembler::less, L_check_fill_8_bytes);
8444         align(16);
8445 
8446         BIND(L_fill_32_bytes_loop);
8447 
8448         if (UseUnalignedLoadStores) {
8449           movdqu(Address(to, 0), xtmp);
8450           movdqu(Address(to, 16), xtmp);
8451         } else {
8452           movq(Address(to, 0), xtmp);
8453           movq(Address(to, 8), xtmp);
8454           movq(Address(to, 16), xtmp);
8455           movq(Address(to, 24), xtmp);
8456         }
8457 
8458         addptr(to, 32);
8459         subl(count, 8 << shift);
8460         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8461 
8462         BIND(L_check_fill_8_bytes);
8463       }
8464       addl(count, 8 << shift);
8465       jccb(Assembler::zero, L_exit);
8466       jmpb(L_fill_8_bytes);
8467 
8468       //
8469       // length is too short, just fill qwords
8470       //
8471       BIND(L_fill_8_bytes_loop);
8472       movq(Address(to, 0), xtmp);
8473       addptr(to, 8);
8474       BIND(L_fill_8_bytes);
8475       subl(count, 1 << (shift + 1));
8476       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8477     }
8478   }
8479   // fill trailing 4 bytes
8480   BIND(L_fill_4_bytes);
8481   testl(count, 1<<shift);
8482   jccb(Assembler::zero, L_fill_2_bytes);
8483   movl(Address(to, 0), value);
8484   if (t == T_BYTE || t == T_SHORT) {
8485     addptr(to, 4);
8486     BIND(L_fill_2_bytes);
8487     // fill trailing 2 bytes
8488     testl(count, 1<<(shift-1));
8489     jccb(Assembler::zero, L_fill_byte);
8490     movw(Address(to, 0), value);
8491     if (t == T_BYTE) {
8492       addptr(to, 2);
8493       BIND(L_fill_byte);
8494       // fill trailing byte
8495       testl(count, 1);
8496       jccb(Assembler::zero, L_exit);
8497       movb(Address(to, 0), value);
8498     } else {
8499       BIND(L_fill_byte);
8500     }
8501   } else {
8502     BIND(L_fill_2_bytes);
8503   }
8504   BIND(L_exit);
8505 }
8506 
8507 // encode char[] to byte[] in ISO_8859_1
8508    //@HotSpotIntrinsicCandidate
8509    //private static int implEncodeISOArray(byte[] sa, int sp,
8510    //byte[] da, int dp, int len) {
8511    //  int i = 0;
8512    //  for (; i < len; i++) {
8513    //    char c = StringUTF16.getChar(sa, sp++);
8514    //    if (c > '\u00FF')
8515    //      break;
8516    //    da[dp++] = (byte)c;
8517    //  }
8518    //  return i;
8519    //}
8520 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8521   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8522   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8523   Register tmp5, Register result) {
8524 
8525   // rsi: src
8526   // rdi: dst
8527   // rdx: len
8528   // rcx: tmp5
8529   // rax: result
8530   ShortBranchVerifier sbv(this);
8531   assert_different_registers(src, dst, len, tmp5, result);
8532   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8533 
8534   // set result
8535   xorl(result, result);
8536   // check for zero length
8537   testl(len, len);
8538   jcc(Assembler::zero, L_done);
8539 
8540   movl(result, len);
8541 
8542   // Setup pointers
8543   lea(src, Address(src, len, Address::times_2)); // char[]
8544   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8545   negptr(len);
8546 
8547   if (UseSSE42Intrinsics || UseAVX >= 2) {
8548     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8549     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8550 
8551     if (UseAVX >= 2) {
8552       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8553       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8554       movdl(tmp1Reg, tmp5);
8555       vpbroadcastd(tmp1Reg, tmp1Reg);
8556       jmp(L_chars_32_check);
8557 
8558       bind(L_copy_32_chars);
8559       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8560       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8561       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8562       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8563       jccb(Assembler::notZero, L_copy_32_chars_exit);
8564       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8565       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8566       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8567 
8568       bind(L_chars_32_check);
8569       addptr(len, 32);
8570       jcc(Assembler::lessEqual, L_copy_32_chars);
8571 
8572       bind(L_copy_32_chars_exit);
8573       subptr(len, 16);
8574       jccb(Assembler::greater, L_copy_16_chars_exit);
8575 
8576     } else if (UseSSE42Intrinsics) {
8577       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8578       movdl(tmp1Reg, tmp5);
8579       pshufd(tmp1Reg, tmp1Reg, 0);
8580       jmpb(L_chars_16_check);
8581     }
8582 
8583     bind(L_copy_16_chars);
8584     if (UseAVX >= 2) {
8585       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8586       vptest(tmp2Reg, tmp1Reg);
8587       jcc(Assembler::notZero, L_copy_16_chars_exit);
8588       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8589       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8590     } else {
8591       if (UseAVX > 0) {
8592         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8593         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8594         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8595       } else {
8596         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8597         por(tmp2Reg, tmp3Reg);
8598         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8599         por(tmp2Reg, tmp4Reg);
8600       }
8601       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8602       jccb(Assembler::notZero, L_copy_16_chars_exit);
8603       packuswb(tmp3Reg, tmp4Reg);
8604     }
8605     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8606 
8607     bind(L_chars_16_check);
8608     addptr(len, 16);
8609     jcc(Assembler::lessEqual, L_copy_16_chars);
8610 
8611     bind(L_copy_16_chars_exit);
8612     if (UseAVX >= 2) {
8613       // clean upper bits of YMM registers
8614       vpxor(tmp2Reg, tmp2Reg);
8615       vpxor(tmp3Reg, tmp3Reg);
8616       vpxor(tmp4Reg, tmp4Reg);
8617       movdl(tmp1Reg, tmp5);
8618       pshufd(tmp1Reg, tmp1Reg, 0);
8619     }
8620     subptr(len, 8);
8621     jccb(Assembler::greater, L_copy_8_chars_exit);
8622 
8623     bind(L_copy_8_chars);
8624     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8625     ptest(tmp3Reg, tmp1Reg);
8626     jccb(Assembler::notZero, L_copy_8_chars_exit);
8627     packuswb(tmp3Reg, tmp1Reg);
8628     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8629     addptr(len, 8);
8630     jccb(Assembler::lessEqual, L_copy_8_chars);
8631 
8632     bind(L_copy_8_chars_exit);
8633     subptr(len, 8);
8634     jccb(Assembler::zero, L_done);
8635   }
8636 
8637   bind(L_copy_1_char);
8638   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8639   testl(tmp5, 0xff00);      // check if Unicode char
8640   jccb(Assembler::notZero, L_copy_1_char_exit);
8641   movb(Address(dst, len, Address::times_1, 0), tmp5);
8642   addptr(len, 1);
8643   jccb(Assembler::less, L_copy_1_char);
8644 
8645   bind(L_copy_1_char_exit);
8646   addptr(result, len); // len is negative count of not processed elements
8647 
8648   bind(L_done);
8649 }
8650 
8651 #ifdef _LP64
8652 /**
8653  * Helper for multiply_to_len().
8654  */
8655 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8656   addq(dest_lo, src1);
8657   adcq(dest_hi, 0);
8658   addq(dest_lo, src2);
8659   adcq(dest_hi, 0);
8660 }
8661 
8662 /**
8663  * Multiply 64 bit by 64 bit first loop.
8664  */
8665 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8666                                            Register y, Register y_idx, Register z,
8667                                            Register carry, Register product,
8668                                            Register idx, Register kdx) {
8669   //
8670   //  jlong carry, x[], y[], z[];
8671   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8672   //    huge_128 product = y[idx] * x[xstart] + carry;
8673   //    z[kdx] = (jlong)product;
8674   //    carry  = (jlong)(product >>> 64);
8675   //  }
8676   //  z[xstart] = carry;
8677   //
8678 
8679   Label L_first_loop, L_first_loop_exit;
8680   Label L_one_x, L_one_y, L_multiply;
8681 
8682   decrementl(xstart);
8683   jcc(Assembler::negative, L_one_x);
8684 
8685   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8686   rorq(x_xstart, 32); // convert big-endian to little-endian
8687 
8688   bind(L_first_loop);
8689   decrementl(idx);
8690   jcc(Assembler::negative, L_first_loop_exit);
8691   decrementl(idx);
8692   jcc(Assembler::negative, L_one_y);
8693   movq(y_idx, Address(y, idx, Address::times_4,  0));
8694   rorq(y_idx, 32); // convert big-endian to little-endian
8695   bind(L_multiply);
8696   movq(product, x_xstart);
8697   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8698   addq(product, carry);
8699   adcq(rdx, 0);
8700   subl(kdx, 2);
8701   movl(Address(z, kdx, Address::times_4,  4), product);
8702   shrq(product, 32);
8703   movl(Address(z, kdx, Address::times_4,  0), product);
8704   movq(carry, rdx);
8705   jmp(L_first_loop);
8706 
8707   bind(L_one_y);
8708   movl(y_idx, Address(y,  0));
8709   jmp(L_multiply);
8710 
8711   bind(L_one_x);
8712   movl(x_xstart, Address(x,  0));
8713   jmp(L_first_loop);
8714 
8715   bind(L_first_loop_exit);
8716 }
8717 
8718 /**
8719  * Multiply 64 bit by 64 bit and add 128 bit.
8720  */
8721 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
8722                                             Register yz_idx, Register idx,
8723                                             Register carry, Register product, int offset) {
8724   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
8725   //     z[kdx] = (jlong)product;
8726 
8727   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
8728   rorq(yz_idx, 32); // convert big-endian to little-endian
8729   movq(product, x_xstart);
8730   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
8731   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
8732   rorq(yz_idx, 32); // convert big-endian to little-endian
8733 
8734   add2_with_carry(rdx, product, carry, yz_idx);
8735 
8736   movl(Address(z, idx, Address::times_4,  offset+4), product);
8737   shrq(product, 32);
8738   movl(Address(z, idx, Address::times_4,  offset), product);
8739 
8740 }
8741 
8742 /**
8743  * Multiply 128 bit by 128 bit. Unrolled inner loop.
8744  */
8745 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
8746                                              Register yz_idx, Register idx, Register jdx,
8747                                              Register carry, Register product,
8748                                              Register carry2) {
8749   //   jlong carry, x[], y[], z[];
8750   //   int kdx = ystart+1;
8751   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8752   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
8753   //     z[kdx+idx+1] = (jlong)product;
8754   //     jlong carry2  = (jlong)(product >>> 64);
8755   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
8756   //     z[kdx+idx] = (jlong)product;
8757   //     carry  = (jlong)(product >>> 64);
8758   //   }
8759   //   idx += 2;
8760   //   if (idx > 0) {
8761   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
8762   //     z[kdx+idx] = (jlong)product;
8763   //     carry  = (jlong)(product >>> 64);
8764   //   }
8765   //
8766 
8767   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8768 
8769   movl(jdx, idx);
8770   andl(jdx, 0xFFFFFFFC);
8771   shrl(jdx, 2);
8772 
8773   bind(L_third_loop);
8774   subl(jdx, 1);
8775   jcc(Assembler::negative, L_third_loop_exit);
8776   subl(idx, 4);
8777 
8778   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
8779   movq(carry2, rdx);
8780 
8781   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
8782   movq(carry, rdx);
8783   jmp(L_third_loop);
8784 
8785   bind (L_third_loop_exit);
8786 
8787   andl (idx, 0x3);
8788   jcc(Assembler::zero, L_post_third_loop_done);
8789 
8790   Label L_check_1;
8791   subl(idx, 2);
8792   jcc(Assembler::negative, L_check_1);
8793 
8794   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
8795   movq(carry, rdx);
8796 
8797   bind (L_check_1);
8798   addl (idx, 0x2);
8799   andl (idx, 0x1);
8800   subl(idx, 1);
8801   jcc(Assembler::negative, L_post_third_loop_done);
8802 
8803   movl(yz_idx, Address(y, idx, Address::times_4,  0));
8804   movq(product, x_xstart);
8805   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
8806   movl(yz_idx, Address(z, idx, Address::times_4,  0));
8807 
8808   add2_with_carry(rdx, product, yz_idx, carry);
8809 
8810   movl(Address(z, idx, Address::times_4,  0), product);
8811   shrq(product, 32);
8812 
8813   shlq(rdx, 32);
8814   orq(product, rdx);
8815   movq(carry, product);
8816 
8817   bind(L_post_third_loop_done);
8818 }
8819 
8820 /**
8821  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
8822  *
8823  */
8824 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
8825                                                   Register carry, Register carry2,
8826                                                   Register idx, Register jdx,
8827                                                   Register yz_idx1, Register yz_idx2,
8828                                                   Register tmp, Register tmp3, Register tmp4) {
8829   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
8830 
8831   //   jlong carry, x[], y[], z[];
8832   //   int kdx = ystart+1;
8833   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8834   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
8835   //     jlong carry2  = (jlong)(tmp3 >>> 64);
8836   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
8837   //     carry  = (jlong)(tmp4 >>> 64);
8838   //     z[kdx+idx+1] = (jlong)tmp3;
8839   //     z[kdx+idx] = (jlong)tmp4;
8840   //   }
8841   //   idx += 2;
8842   //   if (idx > 0) {
8843   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
8844   //     z[kdx+idx] = (jlong)yz_idx1;
8845   //     carry  = (jlong)(yz_idx1 >>> 64);
8846   //   }
8847   //
8848 
8849   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8850 
8851   movl(jdx, idx);
8852   andl(jdx, 0xFFFFFFFC);
8853   shrl(jdx, 2);
8854 
8855   bind(L_third_loop);
8856   subl(jdx, 1);
8857   jcc(Assembler::negative, L_third_loop_exit);
8858   subl(idx, 4);
8859 
8860   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
8861   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
8862   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
8863   rorxq(yz_idx2, yz_idx2, 32);
8864 
8865   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
8866   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
8867 
8868   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
8869   rorxq(yz_idx1, yz_idx1, 32);
8870   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
8871   rorxq(yz_idx2, yz_idx2, 32);
8872 
8873   if (VM_Version::supports_adx()) {
8874     adcxq(tmp3, carry);
8875     adoxq(tmp3, yz_idx1);
8876 
8877     adcxq(tmp4, tmp);
8878     adoxq(tmp4, yz_idx2);
8879 
8880     movl(carry, 0); // does not affect flags
8881     adcxq(carry2, carry);
8882     adoxq(carry2, carry);
8883   } else {
8884     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
8885     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
8886   }
8887   movq(carry, carry2);
8888 
8889   movl(Address(z, idx, Address::times_4, 12), tmp3);
8890   shrq(tmp3, 32);
8891   movl(Address(z, idx, Address::times_4,  8), tmp3);
8892 
8893   movl(Address(z, idx, Address::times_4,  4), tmp4);
8894   shrq(tmp4, 32);
8895   movl(Address(z, idx, Address::times_4,  0), tmp4);
8896 
8897   jmp(L_third_loop);
8898 
8899   bind (L_third_loop_exit);
8900 
8901   andl (idx, 0x3);
8902   jcc(Assembler::zero, L_post_third_loop_done);
8903 
8904   Label L_check_1;
8905   subl(idx, 2);
8906   jcc(Assembler::negative, L_check_1);
8907 
8908   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
8909   rorxq(yz_idx1, yz_idx1, 32);
8910   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
8911   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
8912   rorxq(yz_idx2, yz_idx2, 32);
8913 
8914   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
8915 
8916   movl(Address(z, idx, Address::times_4,  4), tmp3);
8917   shrq(tmp3, 32);
8918   movl(Address(z, idx, Address::times_4,  0), tmp3);
8919   movq(carry, tmp4);
8920 
8921   bind (L_check_1);
8922   addl (idx, 0x2);
8923   andl (idx, 0x1);
8924   subl(idx, 1);
8925   jcc(Assembler::negative, L_post_third_loop_done);
8926   movl(tmp4, Address(y, idx, Address::times_4,  0));
8927   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
8928   movl(tmp4, Address(z, idx, Address::times_4,  0));
8929 
8930   add2_with_carry(carry2, tmp3, tmp4, carry);
8931 
8932   movl(Address(z, idx, Address::times_4,  0), tmp3);
8933   shrq(tmp3, 32);
8934 
8935   shlq(carry2, 32);
8936   orq(tmp3, carry2);
8937   movq(carry, tmp3);
8938 
8939   bind(L_post_third_loop_done);
8940 }
8941 
8942 /**
8943  * Code for BigInteger::multiplyToLen() instrinsic.
8944  *
8945  * rdi: x
8946  * rax: xlen
8947  * rsi: y
8948  * rcx: ylen
8949  * r8:  z
8950  * r11: zlen
8951  * r12: tmp1
8952  * r13: tmp2
8953  * r14: tmp3
8954  * r15: tmp4
8955  * rbx: tmp5
8956  *
8957  */
8958 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
8959                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
8960   ShortBranchVerifier sbv(this);
8961   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
8962 
8963   push(tmp1);
8964   push(tmp2);
8965   push(tmp3);
8966   push(tmp4);
8967   push(tmp5);
8968 
8969   push(xlen);
8970   push(zlen);
8971 
8972   const Register idx = tmp1;
8973   const Register kdx = tmp2;
8974   const Register xstart = tmp3;
8975 
8976   const Register y_idx = tmp4;
8977   const Register carry = tmp5;
8978   const Register product  = xlen;
8979   const Register x_xstart = zlen;  // reuse register
8980 
8981   // First Loop.
8982   //
8983   //  final static long LONG_MASK = 0xffffffffL;
8984   //  int xstart = xlen - 1;
8985   //  int ystart = ylen - 1;
8986   //  long carry = 0;
8987   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8988   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
8989   //    z[kdx] = (int)product;
8990   //    carry = product >>> 32;
8991   //  }
8992   //  z[xstart] = (int)carry;
8993   //
8994 
8995   movl(idx, ylen);      // idx = ylen;
8996   movl(kdx, zlen);      // kdx = xlen+ylen;
8997   xorq(carry, carry);   // carry = 0;
8998 
8999   Label L_done;
9000 
9001   movl(xstart, xlen);
9002   decrementl(xstart);
9003   jcc(Assembler::negative, L_done);
9004 
9005   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9006 
9007   Label L_second_loop;
9008   testl(kdx, kdx);
9009   jcc(Assembler::zero, L_second_loop);
9010 
9011   Label L_carry;
9012   subl(kdx, 1);
9013   jcc(Assembler::zero, L_carry);
9014 
9015   movl(Address(z, kdx, Address::times_4,  0), carry);
9016   shrq(carry, 32);
9017   subl(kdx, 1);
9018 
9019   bind(L_carry);
9020   movl(Address(z, kdx, Address::times_4,  0), carry);
9021 
9022   // Second and third (nested) loops.
9023   //
9024   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9025   //   carry = 0;
9026   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9027   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9028   //                    (z[k] & LONG_MASK) + carry;
9029   //     z[k] = (int)product;
9030   //     carry = product >>> 32;
9031   //   }
9032   //   z[i] = (int)carry;
9033   // }
9034   //
9035   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9036 
9037   const Register jdx = tmp1;
9038 
9039   bind(L_second_loop);
9040   xorl(carry, carry);    // carry = 0;
9041   movl(jdx, ylen);       // j = ystart+1
9042 
9043   subl(xstart, 1);       // i = xstart-1;
9044   jcc(Assembler::negative, L_done);
9045 
9046   push (z);
9047 
9048   Label L_last_x;
9049   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9050   subl(xstart, 1);       // i = xstart-1;
9051   jcc(Assembler::negative, L_last_x);
9052 
9053   if (UseBMI2Instructions) {
9054     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9055     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9056   } else {
9057     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9058     rorq(x_xstart, 32);  // convert big-endian to little-endian
9059   }
9060 
9061   Label L_third_loop_prologue;
9062   bind(L_third_loop_prologue);
9063 
9064   push (x);
9065   push (xstart);
9066   push (ylen);
9067 
9068 
9069   if (UseBMI2Instructions) {
9070     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9071   } else { // !UseBMI2Instructions
9072     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9073   }
9074 
9075   pop(ylen);
9076   pop(xlen);
9077   pop(x);
9078   pop(z);
9079 
9080   movl(tmp3, xlen);
9081   addl(tmp3, 1);
9082   movl(Address(z, tmp3, Address::times_4,  0), carry);
9083   subl(tmp3, 1);
9084   jccb(Assembler::negative, L_done);
9085 
9086   shrq(carry, 32);
9087   movl(Address(z, tmp3, Address::times_4,  0), carry);
9088   jmp(L_second_loop);
9089 
9090   // Next infrequent code is moved outside loops.
9091   bind(L_last_x);
9092   if (UseBMI2Instructions) {
9093     movl(rdx, Address(x,  0));
9094   } else {
9095     movl(x_xstart, Address(x,  0));
9096   }
9097   jmp(L_third_loop_prologue);
9098 
9099   bind(L_done);
9100 
9101   pop(zlen);
9102   pop(xlen);
9103 
9104   pop(tmp5);
9105   pop(tmp4);
9106   pop(tmp3);
9107   pop(tmp2);
9108   pop(tmp1);
9109 }
9110 
9111 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9112   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9113   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9114   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
9115   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9116   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9117   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9118   Label SAME_TILL_END, DONE;
9119   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9120 
9121   //scale is in rcx in both Win64 and Unix
9122   ShortBranchVerifier sbv(this);
9123 
9124   shlq(length);
9125   xorq(result, result);
9126 
9127   if ((UseAVX > 2) &&
9128       VM_Version::supports_avx512vlbw()) {
9129     set_vector_masking();  // opening of the stub context for programming mask registers
9130     cmpq(length, 64);
9131     jcc(Assembler::less, VECTOR32_TAIL);
9132     movq(tmp1, length);
9133     andq(tmp1, 0x3F);      // tail count
9134     andq(length, ~(0x3F)); //vector count
9135 
9136     bind(VECTOR64_LOOP);
9137     // AVX512 code to compare 64 byte vectors.
9138     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9139     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9140     kortestql(k7, k7);
9141     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9142     addq(result, 64);
9143     subq(length, 64);
9144     jccb(Assembler::notZero, VECTOR64_LOOP);
9145 
9146     //bind(VECTOR64_TAIL);
9147     testq(tmp1, tmp1);
9148     jcc(Assembler::zero, SAME_TILL_END);
9149 
9150     bind(VECTOR64_TAIL);
9151     // AVX512 code to compare upto 63 byte vectors.
9152     // Save k1
9153     kmovql(k3, k1);
9154     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9155     shlxq(tmp2, tmp2, tmp1);
9156     notq(tmp2);
9157     kmovql(k1, tmp2);
9158 
9159     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9160     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9161 
9162     ktestql(k7, k1);
9163     // Restore k1
9164     kmovql(k1, k3);
9165     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9166 
9167     bind(VECTOR64_NOT_EQUAL);
9168     kmovql(tmp1, k7);
9169     notq(tmp1);
9170     tzcntq(tmp1, tmp1);
9171     addq(result, tmp1);
9172     shrq(result);
9173     jmp(DONE);
9174     bind(VECTOR32_TAIL);
9175     clear_vector_masking();   // closing of the stub context for programming mask registers
9176   }
9177 
9178   cmpq(length, 8);
9179   jcc(Assembler::equal, VECTOR8_LOOP);
9180   jcc(Assembler::less, VECTOR4_TAIL);
9181 
9182   if (UseAVX >= 2) {
9183 
9184     cmpq(length, 16);
9185     jcc(Assembler::equal, VECTOR16_LOOP);
9186     jcc(Assembler::less, VECTOR8_LOOP);
9187 
9188     cmpq(length, 32);
9189     jccb(Assembler::less, VECTOR16_TAIL);
9190 
9191     subq(length, 32);
9192     bind(VECTOR32_LOOP);
9193     vmovdqu(rymm0, Address(obja, result));
9194     vmovdqu(rymm1, Address(objb, result));
9195     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9196     vptest(rymm2, rymm2);
9197     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9198     addq(result, 32);
9199     subq(length, 32);
9200     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
9201     addq(length, 32);
9202     jcc(Assembler::equal, SAME_TILL_END);
9203     //falling through if less than 32 bytes left //close the branch here.
9204 
9205     bind(VECTOR16_TAIL);
9206     cmpq(length, 16);
9207     jccb(Assembler::less, VECTOR8_TAIL);
9208     bind(VECTOR16_LOOP);
9209     movdqu(rymm0, Address(obja, result));
9210     movdqu(rymm1, Address(objb, result));
9211     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9212     ptest(rymm2, rymm2);
9213     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9214     addq(result, 16);
9215     subq(length, 16);
9216     jcc(Assembler::equal, SAME_TILL_END);
9217     //falling through if less than 16 bytes left
9218   } else {//regular intrinsics
9219 
9220     cmpq(length, 16);
9221     jccb(Assembler::less, VECTOR8_TAIL);
9222 
9223     subq(length, 16);
9224     bind(VECTOR16_LOOP);
9225     movdqu(rymm0, Address(obja, result));
9226     movdqu(rymm1, Address(objb, result));
9227     pxor(rymm0, rymm1);
9228     ptest(rymm0, rymm0);
9229     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9230     addq(result, 16);
9231     subq(length, 16);
9232     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9233     addq(length, 16);
9234     jcc(Assembler::equal, SAME_TILL_END);
9235     //falling through if less than 16 bytes left
9236   }
9237 
9238   bind(VECTOR8_TAIL);
9239   cmpq(length, 8);
9240   jccb(Assembler::less, VECTOR4_TAIL);
9241   bind(VECTOR8_LOOP);
9242   movq(tmp1, Address(obja, result));
9243   movq(tmp2, Address(objb, result));
9244   xorq(tmp1, tmp2);
9245   testq(tmp1, tmp1);
9246   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9247   addq(result, 8);
9248   subq(length, 8);
9249   jcc(Assembler::equal, SAME_TILL_END);
9250   //falling through if less than 8 bytes left
9251 
9252   bind(VECTOR4_TAIL);
9253   cmpq(length, 4);
9254   jccb(Assembler::less, BYTES_TAIL);
9255   bind(VECTOR4_LOOP);
9256   movl(tmp1, Address(obja, result));
9257   xorl(tmp1, Address(objb, result));
9258   testl(tmp1, tmp1);
9259   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9260   addq(result, 4);
9261   subq(length, 4);
9262   jcc(Assembler::equal, SAME_TILL_END);
9263   //falling through if less than 4 bytes left
9264 
9265   bind(BYTES_TAIL);
9266   bind(BYTES_LOOP);
9267   load_unsigned_byte(tmp1, Address(obja, result));
9268   load_unsigned_byte(tmp2, Address(objb, result));
9269   xorl(tmp1, tmp2);
9270   testl(tmp1, tmp1);
9271   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9272   decq(length);
9273   jcc(Assembler::zero, SAME_TILL_END);
9274   incq(result);
9275   load_unsigned_byte(tmp1, Address(obja, result));
9276   load_unsigned_byte(tmp2, Address(objb, result));
9277   xorl(tmp1, tmp2);
9278   testl(tmp1, tmp1);
9279   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9280   decq(length);
9281   jcc(Assembler::zero, SAME_TILL_END);
9282   incq(result);
9283   load_unsigned_byte(tmp1, Address(obja, result));
9284   load_unsigned_byte(tmp2, Address(objb, result));
9285   xorl(tmp1, tmp2);
9286   testl(tmp1, tmp1);
9287   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9288   jmp(SAME_TILL_END);
9289 
9290   if (UseAVX >= 2) {
9291     bind(VECTOR32_NOT_EQUAL);
9292     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9293     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9294     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9295     vpmovmskb(tmp1, rymm0);
9296     bsfq(tmp1, tmp1);
9297     addq(result, tmp1);
9298     shrq(result);
9299     jmp(DONE);
9300   }
9301 
9302   bind(VECTOR16_NOT_EQUAL);
9303   if (UseAVX >= 2) {
9304     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9305     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9306     pxor(rymm0, rymm2);
9307   } else {
9308     pcmpeqb(rymm2, rymm2);
9309     pxor(rymm0, rymm1);
9310     pcmpeqb(rymm0, rymm1);
9311     pxor(rymm0, rymm2);
9312   }
9313   pmovmskb(tmp1, rymm0);
9314   bsfq(tmp1, tmp1);
9315   addq(result, tmp1);
9316   shrq(result);
9317   jmpb(DONE);
9318 
9319   bind(VECTOR8_NOT_EQUAL);
9320   bind(VECTOR4_NOT_EQUAL);
9321   bsfq(tmp1, tmp1);
9322   shrq(tmp1, 3);
9323   addq(result, tmp1);
9324   bind(BYTES_NOT_EQUAL);
9325   shrq(result);
9326   jmpb(DONE);
9327 
9328   bind(SAME_TILL_END);
9329   mov64(result, -1);
9330 
9331   bind(DONE);
9332 }
9333 
9334 //Helper functions for square_to_len()
9335 
9336 /**
9337  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9338  * Preserves x and z and modifies rest of the registers.
9339  */
9340 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9341   // Perform square and right shift by 1
9342   // Handle odd xlen case first, then for even xlen do the following
9343   // jlong carry = 0;
9344   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9345   //     huge_128 product = x[j:j+1] * x[j:j+1];
9346   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9347   //     z[i+2:i+3] = (jlong)(product >>> 1);
9348   //     carry = (jlong)product;
9349   // }
9350 
9351   xorq(tmp5, tmp5);     // carry
9352   xorq(rdxReg, rdxReg);
9353   xorl(tmp1, tmp1);     // index for x
9354   xorl(tmp4, tmp4);     // index for z
9355 
9356   Label L_first_loop, L_first_loop_exit;
9357 
9358   testl(xlen, 1);
9359   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9360 
9361   // Square and right shift by 1 the odd element using 32 bit multiply
9362   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9363   imulq(raxReg, raxReg);
9364   shrq(raxReg, 1);
9365   adcq(tmp5, 0);
9366   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9367   incrementl(tmp1);
9368   addl(tmp4, 2);
9369 
9370   // Square and  right shift by 1 the rest using 64 bit multiply
9371   bind(L_first_loop);
9372   cmpptr(tmp1, xlen);
9373   jccb(Assembler::equal, L_first_loop_exit);
9374 
9375   // Square
9376   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9377   rorq(raxReg, 32);    // convert big-endian to little-endian
9378   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9379 
9380   // Right shift by 1 and save carry
9381   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9382   rcrq(rdxReg, 1);
9383   rcrq(raxReg, 1);
9384   adcq(tmp5, 0);
9385 
9386   // Store result in z
9387   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9388   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9389 
9390   // Update indices for x and z
9391   addl(tmp1, 2);
9392   addl(tmp4, 4);
9393   jmp(L_first_loop);
9394 
9395   bind(L_first_loop_exit);
9396 }
9397 
9398 
9399 /**
9400  * Perform the following multiply add operation using BMI2 instructions
9401  * carry:sum = sum + op1*op2 + carry
9402  * op2 should be in rdx
9403  * op2 is preserved, all other registers are modified
9404  */
9405 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9406   // assert op2 is rdx
9407   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9408   addq(sum, carry);
9409   adcq(tmp2, 0);
9410   addq(sum, op1);
9411   adcq(tmp2, 0);
9412   movq(carry, tmp2);
9413 }
9414 
9415 /**
9416  * Perform the following multiply add operation:
9417  * carry:sum = sum + op1*op2 + carry
9418  * Preserves op1, op2 and modifies rest of registers
9419  */
9420 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9421   // rdx:rax = op1 * op2
9422   movq(raxReg, op2);
9423   mulq(op1);
9424 
9425   //  rdx:rax = sum + carry + rdx:rax
9426   addq(sum, carry);
9427   adcq(rdxReg, 0);
9428   addq(sum, raxReg);
9429   adcq(rdxReg, 0);
9430 
9431   // carry:sum = rdx:sum
9432   movq(carry, rdxReg);
9433 }
9434 
9435 /**
9436  * Add 64 bit long carry into z[] with carry propogation.
9437  * Preserves z and carry register values and modifies rest of registers.
9438  *
9439  */
9440 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9441   Label L_fourth_loop, L_fourth_loop_exit;
9442 
9443   movl(tmp1, 1);
9444   subl(zlen, 2);
9445   addq(Address(z, zlen, Address::times_4, 0), carry);
9446 
9447   bind(L_fourth_loop);
9448   jccb(Assembler::carryClear, L_fourth_loop_exit);
9449   subl(zlen, 2);
9450   jccb(Assembler::negative, L_fourth_loop_exit);
9451   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9452   jmp(L_fourth_loop);
9453   bind(L_fourth_loop_exit);
9454 }
9455 
9456 /**
9457  * Shift z[] left by 1 bit.
9458  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9459  *
9460  */
9461 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9462 
9463   Label L_fifth_loop, L_fifth_loop_exit;
9464 
9465   // Fifth loop
9466   // Perform primitiveLeftShift(z, zlen, 1)
9467 
9468   const Register prev_carry = tmp1;
9469   const Register new_carry = tmp4;
9470   const Register value = tmp2;
9471   const Register zidx = tmp3;
9472 
9473   // int zidx, carry;
9474   // long value;
9475   // carry = 0;
9476   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9477   //    (carry:value)  = (z[i] << 1) | carry ;
9478   //    z[i] = value;
9479   // }
9480 
9481   movl(zidx, zlen);
9482   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9483 
9484   bind(L_fifth_loop);
9485   decl(zidx);  // Use decl to preserve carry flag
9486   decl(zidx);
9487   jccb(Assembler::negative, L_fifth_loop_exit);
9488 
9489   if (UseBMI2Instructions) {
9490      movq(value, Address(z, zidx, Address::times_4, 0));
9491      rclq(value, 1);
9492      rorxq(value, value, 32);
9493      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9494   }
9495   else {
9496     // clear new_carry
9497     xorl(new_carry, new_carry);
9498 
9499     // Shift z[i] by 1, or in previous carry and save new carry
9500     movq(value, Address(z, zidx, Address::times_4, 0));
9501     shlq(value, 1);
9502     adcl(new_carry, 0);
9503 
9504     orq(value, prev_carry);
9505     rorq(value, 0x20);
9506     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9507 
9508     // Set previous carry = new carry
9509     movl(prev_carry, new_carry);
9510   }
9511   jmp(L_fifth_loop);
9512 
9513   bind(L_fifth_loop_exit);
9514 }
9515 
9516 
9517 /**
9518  * Code for BigInteger::squareToLen() intrinsic
9519  *
9520  * rdi: x
9521  * rsi: len
9522  * r8:  z
9523  * rcx: zlen
9524  * r12: tmp1
9525  * r13: tmp2
9526  * r14: tmp3
9527  * r15: tmp4
9528  * rbx: tmp5
9529  *
9530  */
9531 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9532 
9533   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9534   push(tmp1);
9535   push(tmp2);
9536   push(tmp3);
9537   push(tmp4);
9538   push(tmp5);
9539 
9540   // First loop
9541   // Store the squares, right shifted one bit (i.e., divided by 2).
9542   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9543 
9544   // Add in off-diagonal sums.
9545   //
9546   // Second, third (nested) and fourth loops.
9547   // zlen +=2;
9548   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9549   //    carry = 0;
9550   //    long op2 = x[xidx:xidx+1];
9551   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9552   //       k -= 2;
9553   //       long op1 = x[j:j+1];
9554   //       long sum = z[k:k+1];
9555   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9556   //       z[k:k+1] = sum;
9557   //    }
9558   //    add_one_64(z, k, carry, tmp_regs);
9559   // }
9560 
9561   const Register carry = tmp5;
9562   const Register sum = tmp3;
9563   const Register op1 = tmp4;
9564   Register op2 = tmp2;
9565 
9566   push(zlen);
9567   push(len);
9568   addl(zlen,2);
9569   bind(L_second_loop);
9570   xorq(carry, carry);
9571   subl(zlen, 4);
9572   subl(len, 2);
9573   push(zlen);
9574   push(len);
9575   cmpl(len, 0);
9576   jccb(Assembler::lessEqual, L_second_loop_exit);
9577 
9578   // Multiply an array by one 64 bit long.
9579   if (UseBMI2Instructions) {
9580     op2 = rdxReg;
9581     movq(op2, Address(x, len, Address::times_4,  0));
9582     rorxq(op2, op2, 32);
9583   }
9584   else {
9585     movq(op2, Address(x, len, Address::times_4,  0));
9586     rorq(op2, 32);
9587   }
9588 
9589   bind(L_third_loop);
9590   decrementl(len);
9591   jccb(Assembler::negative, L_third_loop_exit);
9592   decrementl(len);
9593   jccb(Assembler::negative, L_last_x);
9594 
9595   movq(op1, Address(x, len, Address::times_4,  0));
9596   rorq(op1, 32);
9597 
9598   bind(L_multiply);
9599   subl(zlen, 2);
9600   movq(sum, Address(z, zlen, Address::times_4,  0));
9601 
9602   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9603   if (UseBMI2Instructions) {
9604     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9605   }
9606   else {
9607     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9608   }
9609 
9610   movq(Address(z, zlen, Address::times_4, 0), sum);
9611 
9612   jmp(L_third_loop);
9613   bind(L_third_loop_exit);
9614 
9615   // Fourth loop
9616   // Add 64 bit long carry into z with carry propogation.
9617   // Uses offsetted zlen.
9618   add_one_64(z, zlen, carry, tmp1);
9619 
9620   pop(len);
9621   pop(zlen);
9622   jmp(L_second_loop);
9623 
9624   // Next infrequent code is moved outside loops.
9625   bind(L_last_x);
9626   movl(op1, Address(x, 0));
9627   jmp(L_multiply);
9628 
9629   bind(L_second_loop_exit);
9630   pop(len);
9631   pop(zlen);
9632   pop(len);
9633   pop(zlen);
9634 
9635   // Fifth loop
9636   // Shift z left 1 bit.
9637   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9638 
9639   // z[zlen-1] |= x[len-1] & 1;
9640   movl(tmp3, Address(x, len, Address::times_4, -4));
9641   andl(tmp3, 1);
9642   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9643 
9644   pop(tmp5);
9645   pop(tmp4);
9646   pop(tmp3);
9647   pop(tmp2);
9648   pop(tmp1);
9649 }
9650 
9651 /**
9652  * Helper function for mul_add()
9653  * Multiply the in[] by int k and add to out[] starting at offset offs using
9654  * 128 bit by 32 bit multiply and return the carry in tmp5.
9655  * Only quad int aligned length of in[] is operated on in this function.
9656  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9657  * This function preserves out, in and k registers.
9658  * len and offset point to the appropriate index in "in" & "out" correspondingly
9659  * tmp5 has the carry.
9660  * other registers are temporary and are modified.
9661  *
9662  */
9663 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9664   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9665   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9666 
9667   Label L_first_loop, L_first_loop_exit;
9668 
9669   movl(tmp1, len);
9670   shrl(tmp1, 2);
9671 
9672   bind(L_first_loop);
9673   subl(tmp1, 1);
9674   jccb(Assembler::negative, L_first_loop_exit);
9675 
9676   subl(len, 4);
9677   subl(offset, 4);
9678 
9679   Register op2 = tmp2;
9680   const Register sum = tmp3;
9681   const Register op1 = tmp4;
9682   const Register carry = tmp5;
9683 
9684   if (UseBMI2Instructions) {
9685     op2 = rdxReg;
9686   }
9687 
9688   movq(op1, Address(in, len, Address::times_4,  8));
9689   rorq(op1, 32);
9690   movq(sum, Address(out, offset, Address::times_4,  8));
9691   rorq(sum, 32);
9692   if (UseBMI2Instructions) {
9693     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9694   }
9695   else {
9696     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9697   }
9698   // Store back in big endian from little endian
9699   rorq(sum, 0x20);
9700   movq(Address(out, offset, Address::times_4,  8), sum);
9701 
9702   movq(op1, Address(in, len, Address::times_4,  0));
9703   rorq(op1, 32);
9704   movq(sum, Address(out, offset, Address::times_4,  0));
9705   rorq(sum, 32);
9706   if (UseBMI2Instructions) {
9707     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9708   }
9709   else {
9710     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9711   }
9712   // Store back in big endian from little endian
9713   rorq(sum, 0x20);
9714   movq(Address(out, offset, Address::times_4,  0), sum);
9715 
9716   jmp(L_first_loop);
9717   bind(L_first_loop_exit);
9718 }
9719 
9720 /**
9721  * Code for BigInteger::mulAdd() intrinsic
9722  *
9723  * rdi: out
9724  * rsi: in
9725  * r11: offs (out.length - offset)
9726  * rcx: len
9727  * r8:  k
9728  * r12: tmp1
9729  * r13: tmp2
9730  * r14: tmp3
9731  * r15: tmp4
9732  * rbx: tmp5
9733  * Multiply the in[] by word k and add to out[], return the carry in rax
9734  */
9735 void MacroAssembler::mul_add(Register out, Register in, Register offs,
9736    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
9737    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9738 
9739   Label L_carry, L_last_in, L_done;
9740 
9741 // carry = 0;
9742 // for (int j=len-1; j >= 0; j--) {
9743 //    long product = (in[j] & LONG_MASK) * kLong +
9744 //                   (out[offs] & LONG_MASK) + carry;
9745 //    out[offs--] = (int)product;
9746 //    carry = product >>> 32;
9747 // }
9748 //
9749   push(tmp1);
9750   push(tmp2);
9751   push(tmp3);
9752   push(tmp4);
9753   push(tmp5);
9754 
9755   Register op2 = tmp2;
9756   const Register sum = tmp3;
9757   const Register op1 = tmp4;
9758   const Register carry =  tmp5;
9759 
9760   if (UseBMI2Instructions) {
9761     op2 = rdxReg;
9762     movl(op2, k);
9763   }
9764   else {
9765     movl(op2, k);
9766   }
9767 
9768   xorq(carry, carry);
9769 
9770   //First loop
9771 
9772   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
9773   //The carry is in tmp5
9774   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
9775 
9776   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
9777   decrementl(len);
9778   jccb(Assembler::negative, L_carry);
9779   decrementl(len);
9780   jccb(Assembler::negative, L_last_in);
9781 
9782   movq(op1, Address(in, len, Address::times_4,  0));
9783   rorq(op1, 32);
9784 
9785   subl(offs, 2);
9786   movq(sum, Address(out, offs, Address::times_4,  0));
9787   rorq(sum, 32);
9788 
9789   if (UseBMI2Instructions) {
9790     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9791   }
9792   else {
9793     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9794   }
9795 
9796   // Store back in big endian from little endian
9797   rorq(sum, 0x20);
9798   movq(Address(out, offs, Address::times_4,  0), sum);
9799 
9800   testl(len, len);
9801   jccb(Assembler::zero, L_carry);
9802 
9803   //Multiply the last in[] entry, if any
9804   bind(L_last_in);
9805   movl(op1, Address(in, 0));
9806   movl(sum, Address(out, offs, Address::times_4,  -4));
9807 
9808   movl(raxReg, k);
9809   mull(op1); //tmp4 * eax -> edx:eax
9810   addl(sum, carry);
9811   adcl(rdxReg, 0);
9812   addl(sum, raxReg);
9813   adcl(rdxReg, 0);
9814   movl(carry, rdxReg);
9815 
9816   movl(Address(out, offs, Address::times_4,  -4), sum);
9817 
9818   bind(L_carry);
9819   //return tmp5/carry as carry in rax
9820   movl(rax, carry);
9821 
9822   bind(L_done);
9823   pop(tmp5);
9824   pop(tmp4);
9825   pop(tmp3);
9826   pop(tmp2);
9827   pop(tmp1);
9828 }
9829 #endif
9830 
9831 /**
9832  * Emits code to update CRC-32 with a byte value according to constants in table
9833  *
9834  * @param [in,out]crc   Register containing the crc.
9835  * @param [in]val       Register containing the byte to fold into the CRC.
9836  * @param [in]table     Register containing the table of crc constants.
9837  *
9838  * uint32_t crc;
9839  * val = crc_table[(val ^ crc) & 0xFF];
9840  * crc = val ^ (crc >> 8);
9841  *
9842  */
9843 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
9844   xorl(val, crc);
9845   andl(val, 0xFF);
9846   shrl(crc, 8); // unsigned shift
9847   xorl(crc, Address(table, val, Address::times_4, 0));
9848 }
9849 
9850 /**
9851 * Fold four 128-bit data chunks
9852 */
9853 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
9854   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
9855   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
9856   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
9857   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
9858 }
9859 
9860 /**
9861  * Fold 128-bit data chunk
9862  */
9863 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
9864   if (UseAVX > 0) {
9865     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
9866     vpclmulldq(xcrc, xK, xcrc); // [63:0]
9867     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
9868     pxor(xcrc, xtmp);
9869   } else {
9870     movdqa(xtmp, xcrc);
9871     pclmulhdq(xtmp, xK);   // [123:64]
9872     pclmulldq(xcrc, xK);   // [63:0]
9873     pxor(xcrc, xtmp);
9874     movdqu(xtmp, Address(buf, offset));
9875     pxor(xcrc, xtmp);
9876   }
9877 }
9878 
9879 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
9880   if (UseAVX > 0) {
9881     vpclmulhdq(xtmp, xK, xcrc);
9882     vpclmulldq(xcrc, xK, xcrc);
9883     pxor(xcrc, xbuf);
9884     pxor(xcrc, xtmp);
9885   } else {
9886     movdqa(xtmp, xcrc);
9887     pclmulhdq(xtmp, xK);
9888     pclmulldq(xcrc, xK);
9889     pxor(xcrc, xbuf);
9890     pxor(xcrc, xtmp);
9891   }
9892 }
9893 
9894 /**
9895  * 8-bit folds to compute 32-bit CRC
9896  *
9897  * uint64_t xcrc;
9898  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
9899  */
9900 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
9901   movdl(tmp, xcrc);
9902   andl(tmp, 0xFF);
9903   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
9904   psrldq(xcrc, 1); // unsigned shift one byte
9905   pxor(xcrc, xtmp);
9906 }
9907 
9908 /**
9909  * uint32_t crc;
9910  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
9911  */
9912 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
9913   movl(tmp, crc);
9914   andl(tmp, 0xFF);
9915   shrl(crc, 8);
9916   xorl(crc, Address(table, tmp, Address::times_4, 0));
9917 }
9918 
9919 /**
9920  * @param crc   register containing existing CRC (32-bit)
9921  * @param buf   register pointing to input byte buffer (byte*)
9922  * @param len   register containing number of bytes
9923  * @param table register that will contain address of CRC table
9924  * @param tmp   scratch register
9925  */
9926 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
9927   assert_different_registers(crc, buf, len, table, tmp, rax);
9928 
9929   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
9930   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
9931 
9932   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
9933   // context for the registers used, where all instructions below are using 128-bit mode
9934   // On EVEX without VL and BW, these instructions will all be AVX.
9935   if (VM_Version::supports_avx512vlbw()) {
9936     movl(tmp, 0xffff);
9937     kmovwl(k1, tmp);
9938   }
9939 
9940   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
9941   notl(crc); // ~crc
9942   cmpl(len, 16);
9943   jcc(Assembler::less, L_tail);
9944 
9945   // Align buffer to 16 bytes
9946   movl(tmp, buf);
9947   andl(tmp, 0xF);
9948   jccb(Assembler::zero, L_aligned);
9949   subl(tmp,  16);
9950   addl(len, tmp);
9951 
9952   align(4);
9953   BIND(L_align_loop);
9954   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9955   update_byte_crc32(crc, rax, table);
9956   increment(buf);
9957   incrementl(tmp);
9958   jccb(Assembler::less, L_align_loop);
9959 
9960   BIND(L_aligned);
9961   movl(tmp, len); // save
9962   shrl(len, 4);
9963   jcc(Assembler::zero, L_tail_restore);
9964 
9965   // Fold total 512 bits of polynomial on each iteration
9966   if (VM_Version::supports_vpclmulqdq()) {
9967     Label Parallel_loop, L_No_Parallel;
9968 
9969     cmpl(len, 8);
9970     jccb(Assembler::less, L_No_Parallel);
9971 
9972     movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
9973     evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
9974     movdl(xmm5, crc);
9975     evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
9976     addptr(buf, 64);
9977     subl(len, 7);
9978     evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
9979 
9980     BIND(Parallel_loop);
9981     fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
9982     addptr(buf, 64);
9983     subl(len, 4);
9984     jcc(Assembler::greater, Parallel_loop);
9985 
9986     vextracti64x2(xmm2, xmm1, 0x01);
9987     vextracti64x2(xmm3, xmm1, 0x02);
9988     vextracti64x2(xmm4, xmm1, 0x03);
9989     jmp(L_fold_512b);
9990 
9991     BIND(L_No_Parallel);
9992   }
9993   // Fold crc into first bytes of vector
9994   movdqa(xmm1, Address(buf, 0));
9995   movdl(rax, xmm1);
9996   xorl(crc, rax);
9997   if (VM_Version::supports_sse4_1()) {
9998     pinsrd(xmm1, crc, 0);
9999   } else {
10000     pinsrw(xmm1, crc, 0);
10001     shrl(crc, 16);
10002     pinsrw(xmm1, crc, 1);
10003   }
10004   addptr(buf, 16);
10005   subl(len, 4); // len > 0
10006   jcc(Assembler::less, L_fold_tail);
10007 
10008   movdqa(xmm2, Address(buf,  0));
10009   movdqa(xmm3, Address(buf, 16));
10010   movdqa(xmm4, Address(buf, 32));
10011   addptr(buf, 48);
10012   subl(len, 3);
10013   jcc(Assembler::lessEqual, L_fold_512b);
10014 
10015   // Fold total 512 bits of polynomial on each iteration,
10016   // 128 bits per each of 4 parallel streams.
10017   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10018 
10019   align(32);
10020   BIND(L_fold_512b_loop);
10021   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10022   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10023   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10024   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10025   addptr(buf, 64);
10026   subl(len, 4);
10027   jcc(Assembler::greater, L_fold_512b_loop);
10028 
10029   // Fold 512 bits to 128 bits.
10030   BIND(L_fold_512b);
10031   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10032   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10033   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10034   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10035 
10036   // Fold the rest of 128 bits data chunks
10037   BIND(L_fold_tail);
10038   addl(len, 3);
10039   jccb(Assembler::lessEqual, L_fold_128b);
10040   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10041 
10042   BIND(L_fold_tail_loop);
10043   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10044   addptr(buf, 16);
10045   decrementl(len);
10046   jccb(Assembler::greater, L_fold_tail_loop);
10047 
10048   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10049   BIND(L_fold_128b);
10050   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10051   if (UseAVX > 0) {
10052     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10053     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10054     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10055   } else {
10056     movdqa(xmm2, xmm0);
10057     pclmulqdq(xmm2, xmm1, 0x1);
10058     movdqa(xmm3, xmm0);
10059     pand(xmm3, xmm2);
10060     pclmulqdq(xmm0, xmm3, 0x1);
10061   }
10062   psrldq(xmm1, 8);
10063   psrldq(xmm2, 4);
10064   pxor(xmm0, xmm1);
10065   pxor(xmm0, xmm2);
10066 
10067   // 8 8-bit folds to compute 32-bit CRC.
10068   for (int j = 0; j < 4; j++) {
10069     fold_8bit_crc32(xmm0, table, xmm1, rax);
10070   }
10071   movdl(crc, xmm0); // mov 32 bits to general register
10072   for (int j = 0; j < 4; j++) {
10073     fold_8bit_crc32(crc, table, rax);
10074   }
10075 
10076   BIND(L_tail_restore);
10077   movl(len, tmp); // restore
10078   BIND(L_tail);
10079   andl(len, 0xf);
10080   jccb(Assembler::zero, L_exit);
10081 
10082   // Fold the rest of bytes
10083   align(4);
10084   BIND(L_tail_loop);
10085   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10086   update_byte_crc32(crc, rax, table);
10087   increment(buf);
10088   decrementl(len);
10089   jccb(Assembler::greater, L_tail_loop);
10090 
10091   BIND(L_exit);
10092   notl(crc); // ~c
10093 }
10094 
10095 #ifdef _LP64
10096 // S. Gueron / Information Processing Letters 112 (2012) 184
10097 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10098 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10099 // Output: the 64-bit carry-less product of B * CONST
10100 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10101                                      Register tmp1, Register tmp2, Register tmp3) {
10102   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10103   if (n > 0) {
10104     addq(tmp3, n * 256 * 8);
10105   }
10106   //    Q1 = TABLEExt[n][B & 0xFF];
10107   movl(tmp1, in);
10108   andl(tmp1, 0x000000FF);
10109   shll(tmp1, 3);
10110   addq(tmp1, tmp3);
10111   movq(tmp1, Address(tmp1, 0));
10112 
10113   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10114   movl(tmp2, in);
10115   shrl(tmp2, 8);
10116   andl(tmp2, 0x000000FF);
10117   shll(tmp2, 3);
10118   addq(tmp2, tmp3);
10119   movq(tmp2, Address(tmp2, 0));
10120 
10121   shlq(tmp2, 8);
10122   xorq(tmp1, tmp2);
10123 
10124   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10125   movl(tmp2, in);
10126   shrl(tmp2, 16);
10127   andl(tmp2, 0x000000FF);
10128   shll(tmp2, 3);
10129   addq(tmp2, tmp3);
10130   movq(tmp2, Address(tmp2, 0));
10131 
10132   shlq(tmp2, 16);
10133   xorq(tmp1, tmp2);
10134 
10135   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10136   shrl(in, 24);
10137   andl(in, 0x000000FF);
10138   shll(in, 3);
10139   addq(in, tmp3);
10140   movq(in, Address(in, 0));
10141 
10142   shlq(in, 24);
10143   xorq(in, tmp1);
10144   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10145 }
10146 
10147 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10148                                       Register in_out,
10149                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10150                                       XMMRegister w_xtmp2,
10151                                       Register tmp1,
10152                                       Register n_tmp2, Register n_tmp3) {
10153   if (is_pclmulqdq_supported) {
10154     movdl(w_xtmp1, in_out); // modified blindly
10155 
10156     movl(tmp1, const_or_pre_comp_const_index);
10157     movdl(w_xtmp2, tmp1);
10158     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10159 
10160     movdq(in_out, w_xtmp1);
10161   } else {
10162     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10163   }
10164 }
10165 
10166 // Recombination Alternative 2: No bit-reflections
10167 // T1 = (CRC_A * U1) << 1
10168 // T2 = (CRC_B * U2) << 1
10169 // C1 = T1 >> 32
10170 // C2 = T2 >> 32
10171 // T1 = T1 & 0xFFFFFFFF
10172 // T2 = T2 & 0xFFFFFFFF
10173 // T1 = CRC32(0, T1)
10174 // T2 = CRC32(0, T2)
10175 // C1 = C1 ^ T1
10176 // C2 = C2 ^ T2
10177 // CRC = C1 ^ C2 ^ CRC_C
10178 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10179                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10180                                      Register tmp1, Register tmp2,
10181                                      Register n_tmp3) {
10182   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10183   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10184   shlq(in_out, 1);
10185   movl(tmp1, in_out);
10186   shrq(in_out, 32);
10187   xorl(tmp2, tmp2);
10188   crc32(tmp2, tmp1, 4);
10189   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10190   shlq(in1, 1);
10191   movl(tmp1, in1);
10192   shrq(in1, 32);
10193   xorl(tmp2, tmp2);
10194   crc32(tmp2, tmp1, 4);
10195   xorl(in1, tmp2);
10196   xorl(in_out, in1);
10197   xorl(in_out, in2);
10198 }
10199 
10200 // Set N to predefined value
10201 // Subtract from a lenght of a buffer
10202 // execute in a loop:
10203 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10204 // for i = 1 to N do
10205 //  CRC_A = CRC32(CRC_A, A[i])
10206 //  CRC_B = CRC32(CRC_B, B[i])
10207 //  CRC_C = CRC32(CRC_C, C[i])
10208 // end for
10209 // Recombine
10210 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10211                                        Register in_out1, Register in_out2, Register in_out3,
10212                                        Register tmp1, Register tmp2, Register tmp3,
10213                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10214                                        Register tmp4, Register tmp5,
10215                                        Register n_tmp6) {
10216   Label L_processPartitions;
10217   Label L_processPartition;
10218   Label L_exit;
10219 
10220   bind(L_processPartitions);
10221   cmpl(in_out1, 3 * size);
10222   jcc(Assembler::less, L_exit);
10223     xorl(tmp1, tmp1);
10224     xorl(tmp2, tmp2);
10225     movq(tmp3, in_out2);
10226     addq(tmp3, size);
10227 
10228     bind(L_processPartition);
10229       crc32(in_out3, Address(in_out2, 0), 8);
10230       crc32(tmp1, Address(in_out2, size), 8);
10231       crc32(tmp2, Address(in_out2, size * 2), 8);
10232       addq(in_out2, 8);
10233       cmpq(in_out2, tmp3);
10234       jcc(Assembler::less, L_processPartition);
10235     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10236             w_xtmp1, w_xtmp2, w_xtmp3,
10237             tmp4, tmp5,
10238             n_tmp6);
10239     addq(in_out2, 2 * size);
10240     subl(in_out1, 3 * size);
10241     jmp(L_processPartitions);
10242 
10243   bind(L_exit);
10244 }
10245 #else
10246 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10247                                      Register tmp1, Register tmp2, Register tmp3,
10248                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10249   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10250   if (n > 0) {
10251     addl(tmp3, n * 256 * 8);
10252   }
10253   //    Q1 = TABLEExt[n][B & 0xFF];
10254   movl(tmp1, in_out);
10255   andl(tmp1, 0x000000FF);
10256   shll(tmp1, 3);
10257   addl(tmp1, tmp3);
10258   movq(xtmp1, Address(tmp1, 0));
10259 
10260   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10261   movl(tmp2, in_out);
10262   shrl(tmp2, 8);
10263   andl(tmp2, 0x000000FF);
10264   shll(tmp2, 3);
10265   addl(tmp2, tmp3);
10266   movq(xtmp2, Address(tmp2, 0));
10267 
10268   psllq(xtmp2, 8);
10269   pxor(xtmp1, xtmp2);
10270 
10271   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10272   movl(tmp2, in_out);
10273   shrl(tmp2, 16);
10274   andl(tmp2, 0x000000FF);
10275   shll(tmp2, 3);
10276   addl(tmp2, tmp3);
10277   movq(xtmp2, Address(tmp2, 0));
10278 
10279   psllq(xtmp2, 16);
10280   pxor(xtmp1, xtmp2);
10281 
10282   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10283   shrl(in_out, 24);
10284   andl(in_out, 0x000000FF);
10285   shll(in_out, 3);
10286   addl(in_out, tmp3);
10287   movq(xtmp2, Address(in_out, 0));
10288 
10289   psllq(xtmp2, 24);
10290   pxor(xtmp1, xtmp2); // Result in CXMM
10291   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10292 }
10293 
10294 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10295                                       Register in_out,
10296                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10297                                       XMMRegister w_xtmp2,
10298                                       Register tmp1,
10299                                       Register n_tmp2, Register n_tmp3) {
10300   if (is_pclmulqdq_supported) {
10301     movdl(w_xtmp1, in_out);
10302 
10303     movl(tmp1, const_or_pre_comp_const_index);
10304     movdl(w_xtmp2, tmp1);
10305     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10306     // Keep result in XMM since GPR is 32 bit in length
10307   } else {
10308     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10309   }
10310 }
10311 
10312 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10313                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10314                                      Register tmp1, Register tmp2,
10315                                      Register n_tmp3) {
10316   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10317   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10318 
10319   psllq(w_xtmp1, 1);
10320   movdl(tmp1, w_xtmp1);
10321   psrlq(w_xtmp1, 32);
10322   movdl(in_out, w_xtmp1);
10323 
10324   xorl(tmp2, tmp2);
10325   crc32(tmp2, tmp1, 4);
10326   xorl(in_out, tmp2);
10327 
10328   psllq(w_xtmp2, 1);
10329   movdl(tmp1, w_xtmp2);
10330   psrlq(w_xtmp2, 32);
10331   movdl(in1, w_xtmp2);
10332 
10333   xorl(tmp2, tmp2);
10334   crc32(tmp2, tmp1, 4);
10335   xorl(in1, tmp2);
10336   xorl(in_out, in1);
10337   xorl(in_out, in2);
10338 }
10339 
10340 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10341                                        Register in_out1, Register in_out2, Register in_out3,
10342                                        Register tmp1, Register tmp2, Register tmp3,
10343                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10344                                        Register tmp4, Register tmp5,
10345                                        Register n_tmp6) {
10346   Label L_processPartitions;
10347   Label L_processPartition;
10348   Label L_exit;
10349 
10350   bind(L_processPartitions);
10351   cmpl(in_out1, 3 * size);
10352   jcc(Assembler::less, L_exit);
10353     xorl(tmp1, tmp1);
10354     xorl(tmp2, tmp2);
10355     movl(tmp3, in_out2);
10356     addl(tmp3, size);
10357 
10358     bind(L_processPartition);
10359       crc32(in_out3, Address(in_out2, 0), 4);
10360       crc32(tmp1, Address(in_out2, size), 4);
10361       crc32(tmp2, Address(in_out2, size*2), 4);
10362       crc32(in_out3, Address(in_out2, 0+4), 4);
10363       crc32(tmp1, Address(in_out2, size+4), 4);
10364       crc32(tmp2, Address(in_out2, size*2+4), 4);
10365       addl(in_out2, 8);
10366       cmpl(in_out2, tmp3);
10367       jcc(Assembler::less, L_processPartition);
10368 
10369         push(tmp3);
10370         push(in_out1);
10371         push(in_out2);
10372         tmp4 = tmp3;
10373         tmp5 = in_out1;
10374         n_tmp6 = in_out2;
10375 
10376       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10377             w_xtmp1, w_xtmp2, w_xtmp3,
10378             tmp4, tmp5,
10379             n_tmp6);
10380 
10381         pop(in_out2);
10382         pop(in_out1);
10383         pop(tmp3);
10384 
10385     addl(in_out2, 2 * size);
10386     subl(in_out1, 3 * size);
10387     jmp(L_processPartitions);
10388 
10389   bind(L_exit);
10390 }
10391 #endif //LP64
10392 
10393 #ifdef _LP64
10394 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10395 // Input: A buffer I of L bytes.
10396 // Output: the CRC32C value of the buffer.
10397 // Notations:
10398 // Write L = 24N + r, with N = floor (L/24).
10399 // r = L mod 24 (0 <= r < 24).
10400 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10401 // N quadwords, and R consists of r bytes.
10402 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10403 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10404 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10405 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10406 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10407                                           Register tmp1, Register tmp2, Register tmp3,
10408                                           Register tmp4, Register tmp5, Register tmp6,
10409                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10410                                           bool is_pclmulqdq_supported) {
10411   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10412   Label L_wordByWord;
10413   Label L_byteByByteProlog;
10414   Label L_byteByByte;
10415   Label L_exit;
10416 
10417   if (is_pclmulqdq_supported ) {
10418     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10419     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10420 
10421     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10422     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10423 
10424     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10425     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10426     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10427   } else {
10428     const_or_pre_comp_const_index[0] = 1;
10429     const_or_pre_comp_const_index[1] = 0;
10430 
10431     const_or_pre_comp_const_index[2] = 3;
10432     const_or_pre_comp_const_index[3] = 2;
10433 
10434     const_or_pre_comp_const_index[4] = 5;
10435     const_or_pre_comp_const_index[5] = 4;
10436    }
10437   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10438                     in2, in1, in_out,
10439                     tmp1, tmp2, tmp3,
10440                     w_xtmp1, w_xtmp2, w_xtmp3,
10441                     tmp4, tmp5,
10442                     tmp6);
10443   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10444                     in2, in1, in_out,
10445                     tmp1, tmp2, tmp3,
10446                     w_xtmp1, w_xtmp2, w_xtmp3,
10447                     tmp4, tmp5,
10448                     tmp6);
10449   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10450                     in2, in1, in_out,
10451                     tmp1, tmp2, tmp3,
10452                     w_xtmp1, w_xtmp2, w_xtmp3,
10453                     tmp4, tmp5,
10454                     tmp6);
10455   movl(tmp1, in2);
10456   andl(tmp1, 0x00000007);
10457   negl(tmp1);
10458   addl(tmp1, in2);
10459   addq(tmp1, in1);
10460 
10461   BIND(L_wordByWord);
10462   cmpq(in1, tmp1);
10463   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10464     crc32(in_out, Address(in1, 0), 4);
10465     addq(in1, 4);
10466     jmp(L_wordByWord);
10467 
10468   BIND(L_byteByByteProlog);
10469   andl(in2, 0x00000007);
10470   movl(tmp2, 1);
10471 
10472   BIND(L_byteByByte);
10473   cmpl(tmp2, in2);
10474   jccb(Assembler::greater, L_exit);
10475     crc32(in_out, Address(in1, 0), 1);
10476     incq(in1);
10477     incl(tmp2);
10478     jmp(L_byteByByte);
10479 
10480   BIND(L_exit);
10481 }
10482 #else
10483 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10484                                           Register tmp1, Register  tmp2, Register tmp3,
10485                                           Register tmp4, Register  tmp5, Register tmp6,
10486                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10487                                           bool is_pclmulqdq_supported) {
10488   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10489   Label L_wordByWord;
10490   Label L_byteByByteProlog;
10491   Label L_byteByByte;
10492   Label L_exit;
10493 
10494   if (is_pclmulqdq_supported) {
10495     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10496     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10497 
10498     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10499     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10500 
10501     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10502     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10503   } else {
10504     const_or_pre_comp_const_index[0] = 1;
10505     const_or_pre_comp_const_index[1] = 0;
10506 
10507     const_or_pre_comp_const_index[2] = 3;
10508     const_or_pre_comp_const_index[3] = 2;
10509 
10510     const_or_pre_comp_const_index[4] = 5;
10511     const_or_pre_comp_const_index[5] = 4;
10512   }
10513   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10514                     in2, in1, in_out,
10515                     tmp1, tmp2, tmp3,
10516                     w_xtmp1, w_xtmp2, w_xtmp3,
10517                     tmp4, tmp5,
10518                     tmp6);
10519   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10520                     in2, in1, in_out,
10521                     tmp1, tmp2, tmp3,
10522                     w_xtmp1, w_xtmp2, w_xtmp3,
10523                     tmp4, tmp5,
10524                     tmp6);
10525   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10526                     in2, in1, in_out,
10527                     tmp1, tmp2, tmp3,
10528                     w_xtmp1, w_xtmp2, w_xtmp3,
10529                     tmp4, tmp5,
10530                     tmp6);
10531   movl(tmp1, in2);
10532   andl(tmp1, 0x00000007);
10533   negl(tmp1);
10534   addl(tmp1, in2);
10535   addl(tmp1, in1);
10536 
10537   BIND(L_wordByWord);
10538   cmpl(in1, tmp1);
10539   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10540     crc32(in_out, Address(in1,0), 4);
10541     addl(in1, 4);
10542     jmp(L_wordByWord);
10543 
10544   BIND(L_byteByByteProlog);
10545   andl(in2, 0x00000007);
10546   movl(tmp2, 1);
10547 
10548   BIND(L_byteByByte);
10549   cmpl(tmp2, in2);
10550   jccb(Assembler::greater, L_exit);
10551     movb(tmp1, Address(in1, 0));
10552     crc32(in_out, tmp1, 1);
10553     incl(in1);
10554     incl(tmp2);
10555     jmp(L_byteByByte);
10556 
10557   BIND(L_exit);
10558 }
10559 #endif // LP64
10560 #undef BIND
10561 #undef BLOCK_COMMENT
10562 
10563 // Compress char[] array to byte[].
10564 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10565 //   @HotSpotIntrinsicCandidate
10566 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10567 //     for (int i = 0; i < len; i++) {
10568 //       int c = src[srcOff++];
10569 //       if (c >>> 8 != 0) {
10570 //         return 0;
10571 //       }
10572 //       dst[dstOff++] = (byte)c;
10573 //     }
10574 //     return len;
10575 //   }
10576 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10577   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10578   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10579   Register tmp5, Register result) {
10580   Label copy_chars_loop, return_length, return_zero, done;
10581 
10582   // rsi: src
10583   // rdi: dst
10584   // rdx: len
10585   // rcx: tmp5
10586   // rax: result
10587 
10588   // rsi holds start addr of source char[] to be compressed
10589   // rdi holds start addr of destination byte[]
10590   // rdx holds length
10591 
10592   assert(len != result, "");
10593 
10594   // save length for return
10595   push(len);
10596 
10597   if ((UseAVX > 2) && // AVX512
10598     VM_Version::supports_avx512vlbw() &&
10599     VM_Version::supports_bmi2()) {
10600 
10601     set_vector_masking();  // opening of the stub context for programming mask registers
10602 
10603     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero, below_threshold;
10604 
10605     // alignment
10606     Label post_alignment;
10607 
10608     // if length of the string is less than 16, handle it in an old fashioned way
10609     testl(len, -32);
10610     jcc(Assembler::zero, below_threshold);
10611 
10612     // First check whether a character is compressable ( <= 0xFF).
10613     // Create mask to test for Unicode chars inside zmm vector
10614     movl(result, 0x00FF);
10615     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10616 
10617     // Save k1
10618     kmovql(k3, k1);
10619 
10620     testl(len, -64);
10621     jcc(Assembler::zero, post_alignment);
10622 
10623     movl(tmp5, dst);
10624     andl(tmp5, (32 - 1));
10625     negl(tmp5);
10626     andl(tmp5, (32 - 1));
10627 
10628     // bail out when there is nothing to be done
10629     testl(tmp5, 0xFFFFFFFF);
10630     jcc(Assembler::zero, post_alignment);
10631 
10632     // ~(~0 << len), where len is the # of remaining elements to process
10633     movl(result, 0xFFFFFFFF);
10634     shlxl(result, result, tmp5);
10635     notl(result);
10636     kmovdl(k1, result);
10637 
10638     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10639     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10640     ktestd(k2, k1);
10641     jcc(Assembler::carryClear, restore_k1_return_zero);
10642 
10643     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10644 
10645     addptr(src, tmp5);
10646     addptr(src, tmp5);
10647     addptr(dst, tmp5);
10648     subl(len, tmp5);
10649 
10650     bind(post_alignment);
10651     // end of alignment
10652 
10653     movl(tmp5, len);
10654     andl(tmp5, (32 - 1));    // tail count (in chars)
10655     andl(len, ~(32 - 1));    // vector count (in chars)
10656     jcc(Assembler::zero, copy_loop_tail);
10657 
10658     lea(src, Address(src, len, Address::times_2));
10659     lea(dst, Address(dst, len, Address::times_1));
10660     negptr(len);
10661 
10662     bind(copy_32_loop);
10663     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10664     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10665     kortestdl(k2, k2);
10666     jcc(Assembler::carryClear, restore_k1_return_zero);
10667 
10668     // All elements in current processed chunk are valid candidates for
10669     // compression. Write a truncated byte elements to the memory.
10670     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10671     addptr(len, 32);
10672     jcc(Assembler::notZero, copy_32_loop);
10673 
10674     bind(copy_loop_tail);
10675     // bail out when there is nothing to be done
10676     testl(tmp5, 0xFFFFFFFF);
10677     // Restore k1
10678     kmovql(k1, k3);
10679     jcc(Assembler::zero, return_length);
10680 
10681     movl(len, tmp5);
10682 
10683     // ~(~0 << len), where len is the # of remaining elements to process
10684     movl(result, 0xFFFFFFFF);
10685     shlxl(result, result, len);
10686     notl(result);
10687 
10688     kmovdl(k1, result);
10689 
10690     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10691     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10692     ktestd(k2, k1);
10693     jcc(Assembler::carryClear, restore_k1_return_zero);
10694 
10695     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10696     // Restore k1
10697     kmovql(k1, k3);
10698     jmp(return_length);
10699 
10700     bind(restore_k1_return_zero);
10701     // Restore k1
10702     kmovql(k1, k3);
10703     jmp(return_zero);
10704 
10705     clear_vector_masking();   // closing of the stub context for programming mask registers
10706 
10707     bind(below_threshold);
10708   }
10709 
10710   if (UseSSE42Intrinsics) {
10711     Label copy_32_loop, copy_16, copy_tail;
10712 
10713     movl(result, len);
10714 
10715     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10716 
10717     // vectored compression
10718     andl(len, 0xfffffff0);    // vector count (in chars)
10719     andl(result, 0x0000000f);    // tail count (in chars)
10720     testl(len, len);
10721     jcc(Assembler::zero, copy_16);
10722 
10723     // compress 16 chars per iter
10724     movdl(tmp1Reg, tmp5);
10725     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10726     pxor(tmp4Reg, tmp4Reg);
10727 
10728     lea(src, Address(src, len, Address::times_2));
10729     lea(dst, Address(dst, len, Address::times_1));
10730     negptr(len);
10731 
10732     bind(copy_32_loop);
10733     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10734     por(tmp4Reg, tmp2Reg);
10735     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10736     por(tmp4Reg, tmp3Reg);
10737     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10738     jcc(Assembler::notZero, return_zero);
10739     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10740     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10741     addptr(len, 16);
10742     jcc(Assembler::notZero, copy_32_loop);
10743 
10744     // compress next vector of 8 chars (if any)
10745     bind(copy_16);
10746     movl(len, result);
10747     andl(len, 0xfffffff8);    // vector count (in chars)
10748     andl(result, 0x00000007);    // tail count (in chars)
10749     testl(len, len);
10750     jccb(Assembler::zero, copy_tail);
10751 
10752     movdl(tmp1Reg, tmp5);
10753     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10754     pxor(tmp3Reg, tmp3Reg);
10755 
10756     movdqu(tmp2Reg, Address(src, 0));
10757     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10758     jccb(Assembler::notZero, return_zero);
10759     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10760     movq(Address(dst, 0), tmp2Reg);
10761     addptr(src, 16);
10762     addptr(dst, 8);
10763 
10764     bind(copy_tail);
10765     movl(len, result);
10766   }
10767   // compress 1 char per iter
10768   testl(len, len);
10769   jccb(Assembler::zero, return_length);
10770   lea(src, Address(src, len, Address::times_2));
10771   lea(dst, Address(dst, len, Address::times_1));
10772   negptr(len);
10773 
10774   bind(copy_chars_loop);
10775   load_unsigned_short(result, Address(src, len, Address::times_2));
10776   testl(result, 0xff00);      // check if Unicode char
10777   jccb(Assembler::notZero, return_zero);
10778   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
10779   increment(len);
10780   jcc(Assembler::notZero, copy_chars_loop);
10781 
10782   // if compression succeeded, return length
10783   bind(return_length);
10784   pop(result);
10785   jmpb(done);
10786 
10787   // if compression failed, return 0
10788   bind(return_zero);
10789   xorl(result, result);
10790   addptr(rsp, wordSize);
10791 
10792   bind(done);
10793 }
10794 
10795 // Inflate byte[] array to char[].
10796 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
10797 //   @HotSpotIntrinsicCandidate
10798 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
10799 //     for (int i = 0; i < len; i++) {
10800 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
10801 //     }
10802 //   }
10803 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
10804   XMMRegister tmp1, Register tmp2) {
10805   Label copy_chars_loop, done, below_threshold;
10806   // rsi: src
10807   // rdi: dst
10808   // rdx: len
10809   // rcx: tmp2
10810 
10811   // rsi holds start addr of source byte[] to be inflated
10812   // rdi holds start addr of destination char[]
10813   // rdx holds length
10814   assert_different_registers(src, dst, len, tmp2);
10815 
10816   if ((UseAVX > 2) && // AVX512
10817     VM_Version::supports_avx512vlbw() &&
10818     VM_Version::supports_bmi2()) {
10819 
10820     set_vector_masking();  // opening of the stub context for programming mask registers
10821 
10822     Label copy_32_loop, copy_tail;
10823     Register tmp3_aliased = len;
10824 
10825     // if length of the string is less than 16, handle it in an old fashioned way
10826     testl(len, -16);
10827     jcc(Assembler::zero, below_threshold);
10828 
10829     // In order to use only one arithmetic operation for the main loop we use
10830     // this pre-calculation
10831     movl(tmp2, len);
10832     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
10833     andl(len, -32);     // vector count
10834     jccb(Assembler::zero, copy_tail);
10835 
10836     lea(src, Address(src, len, Address::times_1));
10837     lea(dst, Address(dst, len, Address::times_2));
10838     negptr(len);
10839 
10840 
10841     // inflate 32 chars per iter
10842     bind(copy_32_loop);
10843     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
10844     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
10845     addptr(len, 32);
10846     jcc(Assembler::notZero, copy_32_loop);
10847 
10848     bind(copy_tail);
10849     // bail out when there is nothing to be done
10850     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
10851     jcc(Assembler::zero, done);
10852 
10853     // Save k1
10854     kmovql(k2, k1);
10855 
10856     // ~(~0 << length), where length is the # of remaining elements to process
10857     movl(tmp3_aliased, -1);
10858     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
10859     notl(tmp3_aliased);
10860     kmovdl(k1, tmp3_aliased);
10861     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
10862     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
10863 
10864     // Restore k1
10865     kmovql(k1, k2);
10866     jmp(done);
10867 
10868     clear_vector_masking();   // closing of the stub context for programming mask registers
10869   }
10870   if (UseSSE42Intrinsics) {
10871     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
10872 
10873     movl(tmp2, len);
10874 
10875     if (UseAVX > 1) {
10876       andl(tmp2, (16 - 1));
10877       andl(len, -16);
10878       jccb(Assembler::zero, copy_new_tail);
10879     } else {
10880       andl(tmp2, 0x00000007);   // tail count (in chars)
10881       andl(len, 0xfffffff8);    // vector count (in chars)
10882       jccb(Assembler::zero, copy_tail);
10883     }
10884 
10885     // vectored inflation
10886     lea(src, Address(src, len, Address::times_1));
10887     lea(dst, Address(dst, len, Address::times_2));
10888     negptr(len);
10889 
10890     if (UseAVX > 1) {
10891       bind(copy_16_loop);
10892       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
10893       vmovdqu(Address(dst, len, Address::times_2), tmp1);
10894       addptr(len, 16);
10895       jcc(Assembler::notZero, copy_16_loop);
10896 
10897       bind(below_threshold);
10898       bind(copy_new_tail);
10899       if ((UseAVX > 2) &&
10900         VM_Version::supports_avx512vlbw() &&
10901         VM_Version::supports_bmi2()) {
10902         movl(tmp2, len);
10903       } else {
10904         movl(len, tmp2);
10905       }
10906       andl(tmp2, 0x00000007);
10907       andl(len, 0xFFFFFFF8);
10908       jccb(Assembler::zero, copy_tail);
10909 
10910       pmovzxbw(tmp1, Address(src, 0));
10911       movdqu(Address(dst, 0), tmp1);
10912       addptr(src, 8);
10913       addptr(dst, 2 * 8);
10914 
10915       jmp(copy_tail, true);
10916     }
10917 
10918     // inflate 8 chars per iter
10919     bind(copy_8_loop);
10920     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
10921     movdqu(Address(dst, len, Address::times_2), tmp1);
10922     addptr(len, 8);
10923     jcc(Assembler::notZero, copy_8_loop);
10924 
10925     bind(copy_tail);
10926     movl(len, tmp2);
10927 
10928     cmpl(len, 4);
10929     jccb(Assembler::less, copy_bytes);
10930 
10931     movdl(tmp1, Address(src, 0));  // load 4 byte chars
10932     pmovzxbw(tmp1, tmp1);
10933     movq(Address(dst, 0), tmp1);
10934     subptr(len, 4);
10935     addptr(src, 4);
10936     addptr(dst, 8);
10937 
10938     bind(copy_bytes);
10939   } else {
10940     bind(below_threshold);
10941   }
10942 
10943   testl(len, len);
10944   jccb(Assembler::zero, done);
10945   lea(src, Address(src, len, Address::times_1));
10946   lea(dst, Address(dst, len, Address::times_2));
10947   negptr(len);
10948 
10949   // inflate 1 char per iter
10950   bind(copy_chars_loop);
10951   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
10952   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
10953   increment(len);
10954   jcc(Assembler::notZero, copy_chars_loop);
10955 
10956   bind(done);
10957 }
10958 
10959 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10960   switch (cond) {
10961     // Note some conditions are synonyms for others
10962     case Assembler::zero:         return Assembler::notZero;
10963     case Assembler::notZero:      return Assembler::zero;
10964     case Assembler::less:         return Assembler::greaterEqual;
10965     case Assembler::lessEqual:    return Assembler::greater;
10966     case Assembler::greater:      return Assembler::lessEqual;
10967     case Assembler::greaterEqual: return Assembler::less;
10968     case Assembler::below:        return Assembler::aboveEqual;
10969     case Assembler::belowEqual:   return Assembler::above;
10970     case Assembler::above:        return Assembler::belowEqual;
10971     case Assembler::aboveEqual:   return Assembler::below;
10972     case Assembler::overflow:     return Assembler::noOverflow;
10973     case Assembler::noOverflow:   return Assembler::overflow;
10974     case Assembler::negative:     return Assembler::positive;
10975     case Assembler::positive:     return Assembler::negative;
10976     case Assembler::parity:       return Assembler::noParity;
10977     case Assembler::noParity:     return Assembler::parity;
10978   }
10979   ShouldNotReachHere(); return Assembler::overflow;
10980 }
10981 
10982 SkipIfEqual::SkipIfEqual(
10983     MacroAssembler* masm, const bool* flag_addr, bool value) {
10984   _masm = masm;
10985   _masm->cmp8(ExternalAddress((address)flag_addr), value);
10986   _masm->jcc(Assembler::equal, _label);
10987 }
10988 
10989 SkipIfEqual::~SkipIfEqual() {
10990   _masm->bind(_label);
10991 }
10992 
10993 // 32-bit Windows has its own fast-path implementation
10994 // of get_thread
10995 #if !defined(WIN32) || defined(_LP64)
10996 
10997 // This is simply a call to Thread::current()
10998 void MacroAssembler::get_thread(Register thread) {
10999   if (thread != rax) {
11000     push(rax);
11001   }
11002   LP64_ONLY(push(rdi);)
11003   LP64_ONLY(push(rsi);)
11004   push(rdx);
11005   push(rcx);
11006 #ifdef _LP64
11007   push(r8);
11008   push(r9);
11009   push(r10);
11010   push(r11);
11011 #endif
11012 
11013   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
11014 
11015 #ifdef _LP64
11016   pop(r11);
11017   pop(r10);
11018   pop(r9);
11019   pop(r8);
11020 #endif
11021   pop(rcx);
11022   pop(rdx);
11023   LP64_ONLY(pop(rsi);)
11024   LP64_ONLY(pop(rdi);)
11025   if (thread != rax) {
11026     mov(thread, rax);
11027     pop(rax);
11028   }
11029 }
11030 
11031 #endif