1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  public:
  42   // Support for VM calls
  43   //
  44   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  45   // may customize this version by overriding it for its purposes (e.g., to save/restore
  46   // additional registers when doing a VM call).
  47 
  48   virtual void call_VM_leaf_base(
  49     address entry_point,               // the entry point
  50     int     number_of_arguments        // the number of arguments to pop after the call
  51   );
  52 
  53  protected:
  54   // This is the base routine called by the different versions of call_VM. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   //
  58   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  59   // returns the register which contains the thread upon return. If a thread register has been
  60   // specified, the return value will correspond to that register. If no last_java_sp is specified
  61   // (noreg) than rsp will be used instead.
  62   virtual void call_VM_base(           // returns the register containing the thread upon return
  63     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  64     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  65     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  66     address  entry_point,              // the entry point
  67     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  68     bool     check_exceptions          // whether to check for pending exceptions after return
  69   );
  70 
  71   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  72 
  73   // helpers for FPU flag access
  74   // tmp is a temporary register, if none is available use noreg
  75   void save_rax   (Register tmp);
  76   void restore_rax(Register tmp);
  77 
  78  public:
  79   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  80 
  81  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82  // The implementation is only non-empty for the InterpreterMacroAssembler,
  83  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84  virtual void check_and_handle_popframe(Register java_thread);
  85  virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   Address as_Address(AddressLiteral adr);
  88   Address as_Address(ArrayAddress adr);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   void test_klass_is_value(Register klass, Register temp_reg, Label& is_value);
 101 
 102   void test_field_is_flattenable(Register flags, Register temp_reg, Label& is_flattenable);
 103   void test_field_is_not_flattenable(Register flags, Register temp_reg, Label& notFlattenable);
 104   void test_field_is_flattened(Register flags, Register temp_reg, Label& is_flattened);
 105   void test_value_is_not_buffered(Register value, Register temp_reg, Label& not_buffered);
 106 
 107   // Check klass/oops is flat value type array (oop->_klass->_layout_helper & vt_bit)
 108   void test_flat_array_klass(Register klass, Register temp_reg, Label& is_flat_array);
 109   void test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array);
 110 
 111   // Required platform-specific helpers for Label::patch_instructions.
 112   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 113   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 114     unsigned char op = branch[0];
 115     assert(op == 0xE8 /* call */ ||
 116         op == 0xE9 /* jmp */ ||
 117         op == 0xEB /* short jmp */ ||
 118         (op & 0xF0) == 0x70 /* short jcc */ ||
 119         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 120         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 121         "Invalid opcode at patch point");
 122 
 123     if (op == 0xEB || (op & 0xF0) == 0x70) {
 124       // short offset operators (jmp and jcc)
 125       char* disp = (char*) &branch[1];
 126       int imm8 = target - (address) &disp[1];
 127       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d", file, line);
 128       *disp = imm8;
 129     } else {
 130       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 131       int imm32 = target - (address) &disp[1];
 132       *disp = imm32;
 133     }
 134   }
 135 
 136   // The following 4 methods return the offset of the appropriate move instruction
 137 
 138   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 139   int load_unsigned_byte(Register dst, Address src);
 140   int load_unsigned_short(Register dst, Address src);
 141 
 142   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 143   int load_signed_byte(Register dst, Address src);
 144   int load_signed_short(Register dst, Address src);
 145 
 146   // Support for sign-extension (hi:lo = extend_sign(lo))
 147   void extend_sign(Register hi, Register lo);
 148 
 149   // Load and store values by size and signed-ness
 150   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 151   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 152 
 153   // Support for inc/dec with optimal instruction selection depending on value
 154 
 155   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 156   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 157 
 158   void decrementl(Address dst, int value = 1);
 159   void decrementl(Register reg, int value = 1);
 160 
 161   void decrementq(Register reg, int value = 1);
 162   void decrementq(Address dst, int value = 1);
 163 
 164   void incrementl(Address dst, int value = 1);
 165   void incrementl(Register reg, int value = 1);
 166 
 167   void incrementq(Register reg, int value = 1);
 168   void incrementq(Address dst, int value = 1);
 169 
 170   // special instructions for EVEX
 171   void setvectmask(Register dst, Register src);
 172   void restorevectmask();
 173 
 174   // Support optimal SSE move instructions.
 175   void movflt(XMMRegister dst, XMMRegister src) {
 176     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 177     else                       { movss (dst, src); return; }
 178   }
 179   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 180   void movflt(XMMRegister dst, AddressLiteral src);
 181   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 182 
 183   void movdbl(XMMRegister dst, XMMRegister src) {
 184     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 185     else                       { movsd (dst, src); return; }
 186   }
 187 
 188   void movdbl(XMMRegister dst, AddressLiteral src);
 189 
 190   void movdbl(XMMRegister dst, Address src) {
 191     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 192     else                         { movlpd(dst, src); return; }
 193   }
 194   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 195 
 196   void incrementl(AddressLiteral dst);
 197   void incrementl(ArrayAddress dst);
 198 
 199   void incrementq(AddressLiteral dst);
 200 
 201   // Alignment
 202   void align(int modulus);
 203   void align(int modulus, int target);
 204 
 205   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 206   void fat_nop();
 207 
 208   // Stack frame creation/removal
 209   void enter();
 210   void leave();
 211 
 212   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 213   // The pointer will be loaded into the thread register.
 214   void get_thread(Register thread);
 215 
 216 
 217   // Support for VM calls
 218   //
 219   // It is imperative that all calls into the VM are handled via the call_VM macros.
 220   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 221   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 222 
 223 
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                bool check_exceptions = true);
 227   void call_VM(Register oop_result,
 228                address entry_point,
 229                Register arg_1,
 230                bool check_exceptions = true);
 231   void call_VM(Register oop_result,
 232                address entry_point,
 233                Register arg_1, Register arg_2,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                address entry_point,
 237                Register arg_1, Register arg_2, Register arg_3,
 238                bool check_exceptions = true);
 239 
 240   // Overloadings with last_Java_sp
 241   void call_VM(Register oop_result,
 242                Register last_java_sp,
 243                address entry_point,
 244                int number_of_arguments = 0,
 245                bool check_exceptions = true);
 246   void call_VM(Register oop_result,
 247                Register last_java_sp,
 248                address entry_point,
 249                Register arg_1, bool
 250                check_exceptions = true);
 251   void call_VM(Register oop_result,
 252                Register last_java_sp,
 253                address entry_point,
 254                Register arg_1, Register arg_2,
 255                bool check_exceptions = true);
 256   void call_VM(Register oop_result,
 257                Register last_java_sp,
 258                address entry_point,
 259                Register arg_1, Register arg_2, Register arg_3,
 260                bool check_exceptions = true);
 261 
 262   void get_vm_result  (Register oop_result, Register thread);
 263   void get_vm_result_2(Register metadata_result, Register thread);
 264 
 265   // These always tightly bind to MacroAssembler::call_VM_base
 266   // bypassing the virtual implementation
 267   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 268   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 269   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 270   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 271   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 272 
 273   void call_VM_leaf0(address entry_point);
 274   void call_VM_leaf(address entry_point,
 275                     int number_of_arguments = 0);
 276   void call_VM_leaf(address entry_point,
 277                     Register arg_1);
 278   void call_VM_leaf(address entry_point,
 279                     Register arg_1, Register arg_2);
 280   void call_VM_leaf(address entry_point,
 281                     Register arg_1, Register arg_2, Register arg_3);
 282 
 283   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 284   // bypassing the virtual implementation
 285   void super_call_VM_leaf(address entry_point);
 286   void super_call_VM_leaf(address entry_point, Register arg_1);
 287   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 288   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 289   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 290 
 291   // last Java Frame (fills frame anchor)
 292   void set_last_Java_frame(Register thread,
 293                            Register last_java_sp,
 294                            Register last_java_fp,
 295                            address last_java_pc);
 296 
 297   // thread in the default location (r15_thread on 64bit)
 298   void set_last_Java_frame(Register last_java_sp,
 299                            Register last_java_fp,
 300                            address last_java_pc);
 301 
 302   void reset_last_Java_frame(Register thread, bool clear_fp);
 303 
 304   // thread in the default location (r15_thread on 64bit)
 305   void reset_last_Java_frame(bool clear_fp);
 306 
 307   // jobjects
 308   void clear_jweak_tag(Register possibly_jweak);
 309   void resolve_jobject(Register value, Register thread, Register tmp);
 310 
 311   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 312   void c2bool(Register x);
 313 
 314   // C++ bool manipulation
 315 
 316   void movbool(Register dst, Address src);
 317   void movbool(Address dst, bool boolconst);
 318   void movbool(Address dst, Register src);
 319   void testbool(Register dst);
 320 
 321   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 322   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 323 
 324   // oop manipulations
 325   void load_klass(Register dst, Register src);
 326   void store_klass(Register dst, Register src);
 327 
 328   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 329                       Register tmp1, Register thread_tmp);
 330   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 331                        Register tmp1, Register tmp2);
 332 
 333   // Resolves obj access. Result is placed in the same register.
 334   // All other registers are preserved.
 335   void resolve(DecoratorSet decorators, Register obj);
 336 
 337   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 338                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 339   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 340                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 341   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 342                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 343 
 344   // Used for storing NULL. All other oop constants should be
 345   // stored using routines that take a jobject.
 346   void store_heap_oop_null(Address dst);
 347 
 348   void load_prototype_header(Register dst, Register src);
 349 
 350 #ifdef _LP64
 351   void store_klass_gap(Register dst, Register src);
 352 
 353   // This dummy is to prevent a call to store_heap_oop from
 354   // converting a zero (like NULL) into a Register by giving
 355   // the compiler two choices it can't resolve
 356 
 357   void store_heap_oop(Address dst, void* dummy);
 358 
 359   void encode_heap_oop(Register r);
 360   void decode_heap_oop(Register r);
 361   void encode_heap_oop_not_null(Register r);
 362   void decode_heap_oop_not_null(Register r);
 363   void encode_heap_oop_not_null(Register dst, Register src);
 364   void decode_heap_oop_not_null(Register dst, Register src);
 365 
 366   void set_narrow_oop(Register dst, jobject obj);
 367   void set_narrow_oop(Address dst, jobject obj);
 368   void cmp_narrow_oop(Register dst, jobject obj);
 369   void cmp_narrow_oop(Address dst, jobject obj);
 370 
 371   void encode_klass_not_null(Register r);
 372   void decode_klass_not_null(Register r);
 373   void encode_klass_not_null(Register dst, Register src);
 374   void decode_klass_not_null(Register dst, Register src);
 375   void set_narrow_klass(Register dst, Klass* k);
 376   void set_narrow_klass(Address dst, Klass* k);
 377   void cmp_narrow_klass(Register dst, Klass* k);
 378   void cmp_narrow_klass(Address dst, Klass* k);
 379 
 380   // Returns the byte size of the instructions generated by decode_klass_not_null()
 381   // when compressed klass pointers are being used.
 382   static int instr_size_for_decode_klass_not_null();
 383 
 384   // if heap base register is used - reinit it with the correct value
 385   void reinit_heapbase();
 386 
 387   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 388 
 389 #endif // _LP64
 390 
 391   // Int division/remainder for Java
 392   // (as idivl, but checks for special case as described in JVM spec.)
 393   // returns idivl instruction offset for implicit exception handling
 394   int corrected_idivl(Register reg);
 395 
 396   // Long division/remainder for Java
 397   // (as idivq, but checks for special case as described in JVM spec.)
 398   // returns idivq instruction offset for implicit exception handling
 399   int corrected_idivq(Register reg);
 400 
 401   void int3();
 402 
 403   // Long operation macros for a 32bit cpu
 404   // Long negation for Java
 405   void lneg(Register hi, Register lo);
 406 
 407   // Long multiplication for Java
 408   // (destroys contents of eax, ebx, ecx and edx)
 409   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 410 
 411   // Long shifts for Java
 412   // (semantics as described in JVM spec.)
 413   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 414   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 415 
 416   // Long compare for Java
 417   // (semantics as described in JVM spec.)
 418   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 419 
 420 
 421   // misc
 422 
 423   // Sign extension
 424   void sign_extend_short(Register reg);
 425   void sign_extend_byte(Register reg);
 426 
 427   // Division by power of 2, rounding towards 0
 428   void division_with_shift(Register reg, int shift_value);
 429 
 430   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 431   //
 432   // CF (corresponds to C0) if x < y
 433   // PF (corresponds to C2) if unordered
 434   // ZF (corresponds to C3) if x = y
 435   //
 436   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 437   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 438   void fcmp(Register tmp);
 439   // Variant of the above which allows y to be further down the stack
 440   // and which only pops x and y if specified. If pop_right is
 441   // specified then pop_left must also be specified.
 442   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 443 
 444   // Floating-point comparison for Java
 445   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 446   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 447   // (semantics as described in JVM spec.)
 448   void fcmp2int(Register dst, bool unordered_is_less);
 449   // Variant of the above which allows y to be further down the stack
 450   // and which only pops x and y if specified. If pop_right is
 451   // specified then pop_left must also be specified.
 452   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 453 
 454   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 455   // tmp is a temporary register, if none is available use noreg
 456   void fremr(Register tmp);
 457 
 458   // dst = c = a * b + c
 459   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 460   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 461 
 462   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 463   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 464   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 465   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 466 
 467 
 468   // same as fcmp2int, but using SSE2
 469   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 470   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 471 
 472   // branch to L if FPU flag C2 is set/not set
 473   // tmp is a temporary register, if none is available use noreg
 474   void jC2 (Register tmp, Label& L);
 475   void jnC2(Register tmp, Label& L);
 476 
 477   // Pop ST (ffree & fincstp combined)
 478   void fpop();
 479 
 480   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 481   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 482   void load_float(Address src);
 483 
 484   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 485   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 486   void store_float(Address dst);
 487 
 488   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 489   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 490   void load_double(Address src);
 491 
 492   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 493   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 494   void store_double(Address dst);
 495 
 496   // Save/restore ZMM (512bit) register on stack.
 497   void push_zmm(XMMRegister reg);
 498   void pop_zmm(XMMRegister reg);
 499 
 500   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 501   void push_fTOS();
 502 
 503   // pops double TOS element from CPU stack and pushes on FPU stack
 504   void pop_fTOS();
 505 
 506   void empty_FPU_stack();
 507 
 508   void push_IU_state();
 509   void pop_IU_state();
 510 
 511   void push_FPU_state();
 512   void pop_FPU_state();
 513 
 514   void push_CPU_state();
 515   void pop_CPU_state();
 516 
 517   // Round up to a power of two
 518   void round_to(Register reg, int modulus);
 519 
 520   // Callee saved registers handling
 521   void push_callee_saved_registers();
 522   void pop_callee_saved_registers();
 523 
 524   // allocation
 525   void eden_allocate(
 526     Register thread,                   // Current thread
 527     Register obj,                      // result: pointer to object after successful allocation
 528     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 529     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 530     Register t1,                       // temp register
 531     Label&   slow_case                 // continuation point if fast allocation fails
 532   );
 533   void tlab_allocate(
 534     Register thread,                   // Current thread
 535     Register obj,                      // result: pointer to object after successful allocation
 536     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 537     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 538     Register t1,                       // temp register
 539     Register t2,                       // temp register
 540     Label&   slow_case                 // continuation point if fast allocation fails
 541   );
 542   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 543 
 544   // interface method calling
 545   void lookup_interface_method(Register recv_klass,
 546                                Register intf_klass,
 547                                RegisterOrConstant itable_index,
 548                                Register method_result,
 549                                Register scan_temp,
 550                                Label& no_such_interface,
 551                                bool return_method = true);
 552 
 553   // virtual method calling
 554   void lookup_virtual_method(Register recv_klass,
 555                              RegisterOrConstant vtable_index,
 556                              Register method_result);
 557 
 558   // Test sub_klass against super_klass, with fast and slow paths.
 559 
 560   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 561   // One of the three labels can be NULL, meaning take the fall-through.
 562   // If super_check_offset is -1, the value is loaded up from super_klass.
 563   // No registers are killed, except temp_reg.
 564   void check_klass_subtype_fast_path(Register sub_klass,
 565                                      Register super_klass,
 566                                      Register temp_reg,
 567                                      Label* L_success,
 568                                      Label* L_failure,
 569                                      Label* L_slow_path,
 570                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 571 
 572   // The rest of the type check; must be wired to a corresponding fast path.
 573   // It does not repeat the fast path logic, so don't use it standalone.
 574   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 575   // Updates the sub's secondary super cache as necessary.
 576   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 577   void check_klass_subtype_slow_path(Register sub_klass,
 578                                      Register super_klass,
 579                                      Register temp_reg,
 580                                      Register temp2_reg,
 581                                      Label* L_success,
 582                                      Label* L_failure,
 583                                      bool set_cond_codes = false);
 584 
 585   // Simplified, combined version, good for typical uses.
 586   // Falls through on failure.
 587   void check_klass_subtype(Register sub_klass,
 588                            Register super_klass,
 589                            Register temp_reg,
 590                            Label& L_success);
 591 
 592   // method handles (JSR 292)
 593   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 594 
 595   //----
 596   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 597 
 598   // Debugging
 599 
 600   // only if +VerifyOops
 601   // TODO: Make these macros with file and line like sparc version!
 602   void verify_oop(Register reg, const char* s = "broken oop");
 603   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 604 
 605   // TODO: verify method and klass metadata (compare against vptr?)
 606   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 607   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 608 
 609 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 610 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 611 
 612   // only if +VerifyFPU
 613   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 614 
 615   // Verify or restore cpu control state after JNI call
 616   void restore_cpu_control_state_after_jni();
 617 
 618   // prints msg, dumps registers and stops execution
 619   void stop(const char* msg);
 620 
 621   // prints msg and continues
 622   void warn(const char* msg);
 623 
 624   // dumps registers and other state
 625   void print_state();
 626 
 627   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 628   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 629   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 630   static void print_state64(int64_t pc, int64_t regs[]);
 631 
 632   void os_breakpoint();
 633 
 634   void untested()                                { stop("untested"); }
 635 
 636   void unimplemented(const char* what = "");
 637 
 638   void should_not_reach_here()                   { stop("should not reach here"); }
 639 
 640   void print_CPU_state();
 641 
 642   // Stack overflow checking
 643   void bang_stack_with_offset(int offset) {
 644     // stack grows down, caller passes positive offset
 645     assert(offset > 0, "must bang with negative offset");
 646     movl(Address(rsp, (-offset)), rax);
 647   }
 648 
 649   // Writes to stack successive pages until offset reached to check for
 650   // stack overflow + shadow pages.  Also, clobbers tmp
 651   void bang_stack_size(Register size, Register tmp);
 652 
 653   // Check for reserved stack access in method being exited (for JIT)
 654   void reserved_stack_check();
 655 
 656   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 657                                                 Register tmp,
 658                                                 int offset);
 659 
 660   // Support for serializing memory accesses between threads
 661   void serialize_memory(Register thread, Register tmp);
 662 
 663   // If thread_reg is != noreg the code assumes the register passed contains
 664   // the thread (required on 64 bit).
 665   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 666 
 667   void verify_tlab();
 668 
 669   // Biased locking support
 670   // lock_reg and obj_reg must be loaded up with the appropriate values.
 671   // swap_reg must be rax, and is killed.
 672   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 673   // be killed; if not supplied, push/pop will be used internally to
 674   // allocate a temporary (inefficient, avoid if possible).
 675   // Optional slow case is for implementations (interpreter and C1) which branch to
 676   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 677   // Returns offset of first potentially-faulting instruction for null
 678   // check info (currently consumed only by C1). If
 679   // swap_reg_contains_mark is true then returns -1 as it is assumed
 680   // the calling code has already passed any potential faults.
 681   int biased_locking_enter(Register lock_reg, Register obj_reg,
 682                            Register swap_reg, Register tmp_reg,
 683                            bool swap_reg_contains_mark,
 684                            Label& done, Label* slow_case = NULL,
 685                            BiasedLockingCounters* counters = NULL);
 686   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 687 #ifdef COMPILER2
 688   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 689   // See full desription in macroAssembler_x86.cpp.
 690   void fast_lock(Register obj, Register box, Register tmp,
 691                  Register scr, Register cx1, Register cx2,
 692                  BiasedLockingCounters* counters,
 693                  RTMLockingCounters* rtm_counters,
 694                  RTMLockingCounters* stack_rtm_counters,
 695                  Metadata* method_data,
 696                  bool use_rtm, bool profile_rtm);
 697   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 698 #if INCLUDE_RTM_OPT
 699   void rtm_counters_update(Register abort_status, Register rtm_counters);
 700   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 701   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 702                                    RTMLockingCounters* rtm_counters,
 703                                    Metadata* method_data);
 704   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 705                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 706   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 707   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 708   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 709                          Register retry_on_abort_count,
 710                          RTMLockingCounters* stack_rtm_counters,
 711                          Metadata* method_data, bool profile_rtm,
 712                          Label& DONE_LABEL, Label& IsInflated);
 713   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 714                             Register scr, Register retry_on_busy_count,
 715                             Register retry_on_abort_count,
 716                             RTMLockingCounters* rtm_counters,
 717                             Metadata* method_data, bool profile_rtm,
 718                             Label& DONE_LABEL);
 719 #endif
 720 #endif
 721 
 722   Condition negate_condition(Condition cond);
 723 
 724   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 725   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 726   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 727   // here in MacroAssembler. The major exception to this rule is call
 728 
 729   // Arithmetics
 730 
 731 
 732   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 733   void addptr(Address dst, Register src);
 734 
 735   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 736   void addptr(Register dst, int32_t src);
 737   void addptr(Register dst, Register src);
 738   void addptr(Register dst, RegisterOrConstant src) {
 739     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 740     else                   addptr(dst,       src.as_register());
 741   }
 742 
 743   void andptr(Register dst, int32_t src);
 744   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 745 
 746   void cmp8(AddressLiteral src1, int imm);
 747 
 748   // renamed to drag out the casting of address to int32_t/intptr_t
 749   void cmp32(Register src1, int32_t imm);
 750 
 751   void cmp32(AddressLiteral src1, int32_t imm);
 752   // compare reg - mem, or reg - &mem
 753   void cmp32(Register src1, AddressLiteral src2);
 754 
 755   void cmp32(Register src1, Address src2);
 756 
 757 #ifndef _LP64
 758   void cmpklass(Address dst, Metadata* obj);
 759   void cmpklass(Register dst, Metadata* obj);
 760   void cmpoop(Address dst, jobject obj);
 761   void cmpoop_raw(Address dst, jobject obj);
 762 #endif // _LP64
 763 
 764   void cmpoop(Register src1, Register src2);
 765   void cmpoop(Register src1, Address src2);
 766   void cmpoop(Register dst, jobject obj);
 767   void cmpoop_raw(Register dst, jobject obj);
 768 
 769   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 770   void cmpptr(Address src1, AddressLiteral src2);
 771 
 772   void cmpptr(Register src1, AddressLiteral src2);
 773 
 774   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 775   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 776   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 777 
 778   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 779   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 780 
 781   // cmp64 to avoild hiding cmpq
 782   void cmp64(Register src1, AddressLiteral src);
 783 
 784   void cmpxchgptr(Register reg, Address adr);
 785 
 786   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 787 
 788 
 789   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 790   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 791 
 792 
 793   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 794 
 795   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 796 
 797   void shlptr(Register dst, int32_t shift);
 798   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 799 
 800   void shrptr(Register dst, int32_t shift);
 801   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 802 
 803   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 804   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 805 
 806   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 807 
 808   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 809   void subptr(Register dst, int32_t src);
 810   // Force generation of a 4 byte immediate value even if it fits into 8bit
 811   void subptr_imm32(Register dst, int32_t src);
 812   void subptr(Register dst, Register src);
 813   void subptr(Register dst, RegisterOrConstant src) {
 814     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 815     else                   subptr(dst,       src.as_register());
 816   }
 817 
 818   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 819   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 820 
 821   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 822   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 823 
 824   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 825 
 826 
 827 
 828   // Helper functions for statistics gathering.
 829   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 830   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 831   // Unconditional atomic increment.
 832   void atomic_incl(Address counter_addr);
 833   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 834 #ifdef _LP64
 835   void atomic_incq(Address counter_addr);
 836   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 837 #endif
 838   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 839   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 840 
 841   void lea(Register dst, AddressLiteral adr);
 842   void lea(Address dst, AddressLiteral adr);
 843   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 844 
 845   void leal32(Register dst, Address src) { leal(dst, src); }
 846 
 847   // Import other testl() methods from the parent class or else
 848   // they will be hidden by the following overriding declaration.
 849   using Assembler::testl;
 850   void testl(Register dst, AddressLiteral src);
 851 
 852   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 853   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 854   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 855   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 856 
 857   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 858   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 859   void testptr(Register src1, Register src2);
 860 
 861   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 862   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 863 
 864   // Calls
 865 
 866   void call(Label& L, relocInfo::relocType rtype);
 867   void call(Register entry);
 868 
 869   // NOTE: this call transfers to the effective address of entry NOT
 870   // the address contained by entry. This is because this is more natural
 871   // for jumps/calls.
 872   void call(AddressLiteral entry);
 873 
 874   // Emit the CompiledIC call idiom
 875   void ic_call(address entry, jint method_index = 0);
 876 
 877   // Jumps
 878 
 879   // NOTE: these jumps tranfer to the effective address of dst NOT
 880   // the address contained by dst. This is because this is more natural
 881   // for jumps/calls.
 882   void jump(AddressLiteral dst);
 883   void jump_cc(Condition cc, AddressLiteral dst);
 884 
 885   // 32bit can do a case table jump in one instruction but we no longer allow the base
 886   // to be installed in the Address class. This jump will tranfers to the address
 887   // contained in the location described by entry (not the address of entry)
 888   void jump(ArrayAddress entry);
 889 
 890   // Floating
 891 
 892   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 893   void andpd(XMMRegister dst, AddressLiteral src);
 894   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 895 
 896   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 897   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 898   void andps(XMMRegister dst, AddressLiteral src);
 899 
 900   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 901   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 902   void comiss(XMMRegister dst, AddressLiteral src);
 903 
 904   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 905   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 906   void comisd(XMMRegister dst, AddressLiteral src);
 907 
 908   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 909   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 910 
 911   void fldcw(Address src) { Assembler::fldcw(src); }
 912   void fldcw(AddressLiteral src);
 913 
 914   void fld_s(int index)   { Assembler::fld_s(index); }
 915   void fld_s(Address src) { Assembler::fld_s(src); }
 916   void fld_s(AddressLiteral src);
 917 
 918   void fld_d(Address src) { Assembler::fld_d(src); }
 919   void fld_d(AddressLiteral src);
 920 
 921   void fld_x(Address src) { Assembler::fld_x(src); }
 922   void fld_x(AddressLiteral src);
 923 
 924   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 925   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 926 
 927   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 928   void ldmxcsr(AddressLiteral src);
 929 
 930 #ifdef _LP64
 931  private:
 932   void sha256_AVX2_one_round_compute(
 933     Register  reg_old_h,
 934     Register  reg_a,
 935     Register  reg_b,
 936     Register  reg_c,
 937     Register  reg_d,
 938     Register  reg_e,
 939     Register  reg_f,
 940     Register  reg_g,
 941     Register  reg_h,
 942     int iter);
 943   void sha256_AVX2_four_rounds_compute_first(int start);
 944   void sha256_AVX2_four_rounds_compute_last(int start);
 945   void sha256_AVX2_one_round_and_sched(
 946         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 947         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 948         XMMRegister xmm_2,     /* ymm6 */
 949         XMMRegister xmm_3,     /* ymm7 */
 950         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 951         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 952         Register    reg_c,      /* edi */
 953         Register    reg_d,      /* esi */
 954         Register    reg_e,      /* r8d */
 955         Register    reg_f,      /* r9d */
 956         Register    reg_g,      /* r10d */
 957         Register    reg_h,      /* r11d */
 958         int iter);
 959 
 960   void addm(int disp, Register r1, Register r2);
 961 
 962  public:
 963   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 964                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 965                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 966                    bool multi_block, XMMRegister shuf_mask);
 967 #endif
 968 
 969 #ifdef _LP64
 970  private:
 971   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 972                                      Register e, Register f, Register g, Register h, int iteration);
 973 
 974   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 975                                           Register a, Register b, Register c, Register d, Register e, Register f,
 976                                           Register g, Register h, int iteration);
 977 
 978   void addmq(int disp, Register r1, Register r2);
 979  public:
 980   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 981                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 982                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 983                    XMMRegister shuf_mask);
 984 #endif
 985 
 986   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 987                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 988                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 989                  bool multi_block);
 990 
 991 #ifdef _LP64
 992   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 993                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 994                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 995                    bool multi_block, XMMRegister shuf_mask);
 996 #else
 997   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 998                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 999                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1000                    bool multi_block);
1001 #endif
1002 
1003   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1004                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1005                 Register rax, Register rcx, Register rdx, Register tmp);
1006 
1007 #ifdef _LP64
1008   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1009                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1010                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1011 
1012   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1013                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1014                   Register rax, Register rcx, Register rdx, Register r11);
1015 
1016   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1017                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1018                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1019 
1020   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1021                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1022                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1023                 Register tmp3, Register tmp4);
1024 
1025   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1026                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1027                 Register rax, Register rcx, Register rdx, Register tmp1,
1028                 Register tmp2, Register tmp3, Register tmp4);
1029   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1030                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1031                 Register rax, Register rcx, Register rdx, Register tmp1,
1032                 Register tmp2, Register tmp3, Register tmp4);
1033 #else
1034   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1035                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1036                 Register rax, Register rcx, Register rdx, Register tmp1);
1037 
1038   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1039                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1040                 Register rax, Register rcx, Register rdx, Register tmp);
1041 
1042   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1043                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1044                 Register rdx, Register tmp);
1045 
1046   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1047                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1048                 Register rax, Register rbx, Register rdx);
1049 
1050   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1051                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1052                 Register rax, Register rcx, Register rdx, Register tmp);
1053 
1054   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1055                         Register edx, Register ebx, Register esi, Register edi,
1056                         Register ebp, Register esp);
1057 
1058   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1059                          Register esi, Register edi, Register ebp, Register esp);
1060 
1061   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1062                         Register edx, Register ebx, Register esi, Register edi,
1063                         Register ebp, Register esp);
1064 
1065   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1066                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1067                 Register rax, Register rcx, Register rdx, Register tmp);
1068 #endif
1069 
1070   void increase_precision();
1071   void restore_precision();
1072 
1073 private:
1074 
1075   // these are private because users should be doing movflt/movdbl
1076 
1077   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1078   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1079   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1080   void movss(XMMRegister dst, AddressLiteral src);
1081 
1082   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1083   void movlpd(XMMRegister dst, AddressLiteral src);
1084 
1085 public:
1086 
1087   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1088   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1089   void addsd(XMMRegister dst, AddressLiteral src);
1090 
1091   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1092   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1093   void addss(XMMRegister dst, AddressLiteral src);
1094 
1095   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1096   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1097   void addpd(XMMRegister dst, AddressLiteral src);
1098 
1099   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1100   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1101   void divsd(XMMRegister dst, AddressLiteral src);
1102 
1103   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1104   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1105   void divss(XMMRegister dst, AddressLiteral src);
1106 
1107   // Move Unaligned Double Quadword
1108   void movdqu(Address     dst, XMMRegister src);
1109   void movdqu(XMMRegister dst, Address src);
1110   void movdqu(XMMRegister dst, XMMRegister src);
1111   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1112   // AVX Unaligned forms
1113   void vmovdqu(Address     dst, XMMRegister src);
1114   void vmovdqu(XMMRegister dst, Address src);
1115   void vmovdqu(XMMRegister dst, XMMRegister src);
1116   void vmovdqu(XMMRegister dst, AddressLiteral src);
1117   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1118   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1119   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1120   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1121 
1122   // Move Aligned Double Quadword
1123   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1124   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1125   void movdqa(XMMRegister dst, AddressLiteral src);
1126 
1127   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1128   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1129   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1130   void movsd(XMMRegister dst, AddressLiteral src);
1131 
1132   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1133   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1134   void mulpd(XMMRegister dst, AddressLiteral src);
1135 
1136   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1137   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1138   void mulsd(XMMRegister dst, AddressLiteral src);
1139 
1140   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1141   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1142   void mulss(XMMRegister dst, AddressLiteral src);
1143 
1144   // Carry-Less Multiplication Quadword
1145   void pclmulldq(XMMRegister dst, XMMRegister src) {
1146     // 0x00 - multiply lower 64 bits [0:63]
1147     Assembler::pclmulqdq(dst, src, 0x00);
1148   }
1149   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1150     // 0x11 - multiply upper 64 bits [64:127]
1151     Assembler::pclmulqdq(dst, src, 0x11);
1152   }
1153 
1154   void pcmpeqb(XMMRegister dst, XMMRegister src);
1155   void pcmpeqw(XMMRegister dst, XMMRegister src);
1156 
1157   void pcmpestri(XMMRegister dst, Address src, int imm8);
1158   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1159 
1160   void pmovzxbw(XMMRegister dst, XMMRegister src);
1161   void pmovzxbw(XMMRegister dst, Address src);
1162 
1163   void pmovmskb(Register dst, XMMRegister src);
1164 
1165   void ptest(XMMRegister dst, XMMRegister src);
1166 
1167   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1168   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1169   void sqrtsd(XMMRegister dst, AddressLiteral src);
1170 
1171   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1172   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1173   void sqrtss(XMMRegister dst, AddressLiteral src);
1174 
1175   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1176   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1177   void subsd(XMMRegister dst, AddressLiteral src);
1178 
1179   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1180   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1181   void subss(XMMRegister dst, AddressLiteral src);
1182 
1183   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1184   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1185   void ucomiss(XMMRegister dst, AddressLiteral src);
1186 
1187   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1188   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1189   void ucomisd(XMMRegister dst, AddressLiteral src);
1190 
1191   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1192   void xorpd(XMMRegister dst, XMMRegister src);
1193   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1194   void xorpd(XMMRegister dst, AddressLiteral src);
1195 
1196   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1197   void xorps(XMMRegister dst, XMMRegister src);
1198   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1199   void xorps(XMMRegister dst, AddressLiteral src);
1200 
1201   // Shuffle Bytes
1202   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1203   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1204   void pshufb(XMMRegister dst, AddressLiteral src);
1205   // AVX 3-operands instructions
1206 
1207   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1208   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1209   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1210 
1211   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1212   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1213   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1214 
1215   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1216   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1217 
1218   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1219   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1220 
1221   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1222   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1223 
1224   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1225   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1226   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1227 
1228   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1229 
1230   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1231   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1232 
1233   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1234   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1235 
1236   void vpmovmskb(Register dst, XMMRegister src);
1237 
1238   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1239   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1240 
1241   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1242   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1243 
1244   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1245   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1246 
1247   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1248   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1249 
1250   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1251   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1252 
1253   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1254   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1255 
1256   void vptest(XMMRegister dst, XMMRegister src);
1257 
1258   void punpcklbw(XMMRegister dst, XMMRegister src);
1259   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1260 
1261   void pshufd(XMMRegister dst, Address src, int mode);
1262   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1263 
1264   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1265   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1266 
1267   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1268   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1269   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1270 
1271   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1272   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1273   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1274 
1275   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1276   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1277   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1278 
1279   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1280   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1281   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1282 
1283   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1284   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1285   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1286 
1287   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1288   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1289   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1290 
1291   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1292   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1293   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1294 
1295   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1296   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1297   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1298 
1299   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1300   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1301 
1302   // AVX Vector instructions
1303 
1304   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1305   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1306   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1307 
1308   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1309   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1310   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1311 
1312   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1313     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1314       Assembler::vpxor(dst, nds, src, vector_len);
1315     else
1316       Assembler::vxorpd(dst, nds, src, vector_len);
1317   }
1318   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1319     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1320       Assembler::vpxor(dst, nds, src, vector_len);
1321     else
1322       Assembler::vxorpd(dst, nds, src, vector_len);
1323   }
1324 
1325   // Simple version for AVX2 256bit vectors
1326   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1327   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1328 
1329   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1330     if (UseAVX > 2) {
1331       Assembler::vinserti32x4(dst, dst, src, imm8);
1332     } else if (UseAVX > 1) {
1333       // vinserti128 is available only in AVX2
1334       Assembler::vinserti128(dst, nds, src, imm8);
1335     } else {
1336       Assembler::vinsertf128(dst, nds, src, imm8);
1337     }
1338   }
1339 
1340   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1341     if (UseAVX > 2) {
1342       Assembler::vinserti32x4(dst, dst, src, imm8);
1343     } else if (UseAVX > 1) {
1344       // vinserti128 is available only in AVX2
1345       Assembler::vinserti128(dst, nds, src, imm8);
1346     } else {
1347       Assembler::vinsertf128(dst, nds, src, imm8);
1348     }
1349   }
1350 
1351   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1352     if (UseAVX > 2) {
1353       Assembler::vextracti32x4(dst, src, imm8);
1354     } else if (UseAVX > 1) {
1355       // vextracti128 is available only in AVX2
1356       Assembler::vextracti128(dst, src, imm8);
1357     } else {
1358       Assembler::vextractf128(dst, src, imm8);
1359     }
1360   }
1361 
1362   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1363     if (UseAVX > 2) {
1364       Assembler::vextracti32x4(dst, src, imm8);
1365     } else if (UseAVX > 1) {
1366       // vextracti128 is available only in AVX2
1367       Assembler::vextracti128(dst, src, imm8);
1368     } else {
1369       Assembler::vextractf128(dst, src, imm8);
1370     }
1371   }
1372 
1373   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1374   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1375     vinserti128(dst, dst, src, 1);
1376   }
1377   void vinserti128_high(XMMRegister dst, Address src) {
1378     vinserti128(dst, dst, src, 1);
1379   }
1380   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1381     vextracti128(dst, src, 1);
1382   }
1383   void vextracti128_high(Address dst, XMMRegister src) {
1384     vextracti128(dst, src, 1);
1385   }
1386 
1387   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1388     if (UseAVX > 2) {
1389       Assembler::vinsertf32x4(dst, dst, src, 1);
1390     } else {
1391       Assembler::vinsertf128(dst, dst, src, 1);
1392     }
1393   }
1394 
1395   void vinsertf128_high(XMMRegister dst, Address src) {
1396     if (UseAVX > 2) {
1397       Assembler::vinsertf32x4(dst, dst, src, 1);
1398     } else {
1399       Assembler::vinsertf128(dst, dst, src, 1);
1400     }
1401   }
1402 
1403   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1404     if (UseAVX > 2) {
1405       Assembler::vextractf32x4(dst, src, 1);
1406     } else {
1407       Assembler::vextractf128(dst, src, 1);
1408     }
1409   }
1410 
1411   void vextractf128_high(Address dst, XMMRegister src) {
1412     if (UseAVX > 2) {
1413       Assembler::vextractf32x4(dst, src, 1);
1414     } else {
1415       Assembler::vextractf128(dst, src, 1);
1416     }
1417   }
1418 
1419   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1420   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1421     Assembler::vinserti64x4(dst, dst, src, 1);
1422   }
1423   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1424     Assembler::vinsertf64x4(dst, dst, src, 1);
1425   }
1426   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1427     Assembler::vextracti64x4(dst, src, 1);
1428   }
1429   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1430     Assembler::vextractf64x4(dst, src, 1);
1431   }
1432   void vextractf64x4_high(Address dst, XMMRegister src) {
1433     Assembler::vextractf64x4(dst, src, 1);
1434   }
1435   void vinsertf64x4_high(XMMRegister dst, Address src) {
1436     Assembler::vinsertf64x4(dst, dst, src, 1);
1437   }
1438 
1439   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1440   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1441     vinserti128(dst, dst, src, 0);
1442   }
1443   void vinserti128_low(XMMRegister dst, Address src) {
1444     vinserti128(dst, dst, src, 0);
1445   }
1446   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1447     vextracti128(dst, src, 0);
1448   }
1449   void vextracti128_low(Address dst, XMMRegister src) {
1450     vextracti128(dst, src, 0);
1451   }
1452 
1453   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1454     if (UseAVX > 2) {
1455       Assembler::vinsertf32x4(dst, dst, src, 0);
1456     } else {
1457       Assembler::vinsertf128(dst, dst, src, 0);
1458     }
1459   }
1460 
1461   void vinsertf128_low(XMMRegister dst, Address src) {
1462     if (UseAVX > 2) {
1463       Assembler::vinsertf32x4(dst, dst, src, 0);
1464     } else {
1465       Assembler::vinsertf128(dst, dst, src, 0);
1466     }
1467   }
1468 
1469   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1470     if (UseAVX > 2) {
1471       Assembler::vextractf32x4(dst, src, 0);
1472     } else {
1473       Assembler::vextractf128(dst, src, 0);
1474     }
1475   }
1476 
1477   void vextractf128_low(Address dst, XMMRegister src) {
1478     if (UseAVX > 2) {
1479       Assembler::vextractf32x4(dst, src, 0);
1480     } else {
1481       Assembler::vextractf128(dst, src, 0);
1482     }
1483   }
1484 
1485   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1486   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1487     Assembler::vinserti64x4(dst, dst, src, 0);
1488   }
1489   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1490     Assembler::vinsertf64x4(dst, dst, src, 0);
1491   }
1492   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1493     Assembler::vextracti64x4(dst, src, 0);
1494   }
1495   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1496     Assembler::vextractf64x4(dst, src, 0);
1497   }
1498   void vextractf64x4_low(Address dst, XMMRegister src) {
1499     Assembler::vextractf64x4(dst, src, 0);
1500   }
1501   void vinsertf64x4_low(XMMRegister dst, Address src) {
1502     Assembler::vinsertf64x4(dst, dst, src, 0);
1503   }
1504 
1505   // Carry-Less Multiplication Quadword
1506   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1507     // 0x00 - multiply lower 64 bits [0:63]
1508     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1509   }
1510   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1511     // 0x11 - multiply upper 64 bits [64:127]
1512     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1513   }
1514   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1515     // 0x00 - multiply lower 64 bits [0:63]
1516     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1517   }
1518   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1519     // 0x11 - multiply upper 64 bits [64:127]
1520     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1521   }
1522 
1523   // Data
1524 
1525   void cmov32( Condition cc, Register dst, Address  src);
1526   void cmov32( Condition cc, Register dst, Register src);
1527 
1528   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1529 
1530   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1531   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1532 
1533   void movoop(Register dst, jobject obj);
1534   void movoop(Address dst, jobject obj);
1535 
1536   void mov_metadata(Register dst, Metadata* obj);
1537   void mov_metadata(Address dst, Metadata* obj);
1538 
1539   void movptr(ArrayAddress dst, Register src);
1540   // can this do an lea?
1541   void movptr(Register dst, ArrayAddress src);
1542 
1543   void movptr(Register dst, Address src);
1544 
1545 #ifdef _LP64
1546   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1547 #else
1548   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1549 #endif
1550 
1551   void movptr(Register dst, intptr_t src);
1552   void movptr(Register dst, Register src);
1553   void movptr(Address dst, intptr_t src);
1554 
1555   void movptr(Address dst, Register src);
1556 
1557   void movptr(Register dst, RegisterOrConstant src) {
1558     if (src.is_constant()) movptr(dst, src.as_constant());
1559     else                   movptr(dst, src.as_register());
1560   }
1561 
1562 #ifdef _LP64
1563   // Generally the next two are only used for moving NULL
1564   // Although there are situations in initializing the mark word where
1565   // they could be used. They are dangerous.
1566 
1567   // They only exist on LP64 so that int32_t and intptr_t are not the same
1568   // and we have ambiguous declarations.
1569 
1570   void movptr(Address dst, int32_t imm32);
1571   void movptr(Register dst, int32_t imm32);
1572 #endif // _LP64
1573 
1574   // to avoid hiding movl
1575   void mov32(AddressLiteral dst, Register src);
1576   void mov32(Register dst, AddressLiteral src);
1577 
1578   // to avoid hiding movb
1579   void movbyte(ArrayAddress dst, int src);
1580 
1581   // Import other mov() methods from the parent class or else
1582   // they will be hidden by the following overriding declaration.
1583   using Assembler::movdl;
1584   using Assembler::movq;
1585   void movdl(XMMRegister dst, AddressLiteral src);
1586   void movq(XMMRegister dst, AddressLiteral src);
1587 
1588   // Can push value or effective address
1589   void pushptr(AddressLiteral src);
1590 
1591   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1592   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1593 
1594   void pushoop(jobject obj);
1595   void pushklass(Metadata* obj);
1596 
1597   // sign extend as need a l to ptr sized element
1598   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1599   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1600 
1601   // C2 compiled method's prolog code.
1602   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1603 
1604   // Add null checks for all value type arguments
1605   void null_check_value_args(Method* method);
1606 
1607   // clear memory of size 'cnt' qwords, starting at 'base';
1608   // if 'is_large' is set, do not try to produce short loop
1609   void clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only);
1610 
1611   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1612   void xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp);
1613 
1614 #ifdef COMPILER2
1615   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1616                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1617 
1618   // IndexOf strings.
1619   // Small strings are loaded through stack if they cross page boundary.
1620   void string_indexof(Register str1, Register str2,
1621                       Register cnt1, Register cnt2,
1622                       int int_cnt2,  Register result,
1623                       XMMRegister vec, Register tmp,
1624                       int ae);
1625 
1626   // IndexOf for constant substrings with size >= 8 elements
1627   // which don't need to be loaded through stack.
1628   void string_indexofC8(Register str1, Register str2,
1629                       Register cnt1, Register cnt2,
1630                       int int_cnt2,  Register result,
1631                       XMMRegister vec, Register tmp,
1632                       int ae);
1633 
1634     // Smallest code: we don't need to load through stack,
1635     // check string tail.
1636 
1637   // helper function for string_compare
1638   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1639                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1640                           Address::ScaleFactor scale2, Register index, int ae);
1641   // Compare strings.
1642   void string_compare(Register str1, Register str2,
1643                       Register cnt1, Register cnt2, Register result,
1644                       XMMRegister vec1, int ae);
1645 
1646   // Search for Non-ASCII character (Negative byte value) in a byte array,
1647   // return true if it has any and false otherwise.
1648   void has_negatives(Register ary1, Register len,
1649                      Register result, Register tmp1,
1650                      XMMRegister vec1, XMMRegister vec2);
1651 
1652   // Compare char[] or byte[] arrays.
1653   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1654                      Register limit, Register result, Register chr,
1655                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1656 
1657 #endif
1658 
1659   // Fill primitive arrays
1660   void generate_fill(BasicType t, bool aligned,
1661                      Register to, Register value, Register count,
1662                      Register rtmp, XMMRegister xtmp);
1663 
1664   void encode_iso_array(Register src, Register dst, Register len,
1665                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1666                         XMMRegister tmp4, Register tmp5, Register result);
1667 
1668 #ifdef _LP64
1669   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1670   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1671                              Register y, Register y_idx, Register z,
1672                              Register carry, Register product,
1673                              Register idx, Register kdx);
1674   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1675                               Register yz_idx, Register idx,
1676                               Register carry, Register product, int offset);
1677   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1678                                     Register carry, Register carry2,
1679                                     Register idx, Register jdx,
1680                                     Register yz_idx1, Register yz_idx2,
1681                                     Register tmp, Register tmp3, Register tmp4);
1682   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1683                                Register yz_idx, Register idx, Register jdx,
1684                                Register carry, Register product,
1685                                Register carry2);
1686   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1687                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1688   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1689                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1690   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1691                             Register tmp2);
1692   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1693                        Register rdxReg, Register raxReg);
1694   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1695   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1696                        Register tmp3, Register tmp4);
1697   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1698                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1699 
1700   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1701                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1702                Register raxReg);
1703   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1704                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1705                Register raxReg);
1706   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1707                            Register result, Register tmp1, Register tmp2,
1708                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1709 #endif
1710 
1711   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1712   void update_byte_crc32(Register crc, Register val, Register table);
1713   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1714   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1715   // Note on a naming convention:
1716   // Prefix w = register only used on a Westmere+ architecture
1717   // Prefix n = register only used on a Nehalem architecture
1718 #ifdef _LP64
1719   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1720                        Register tmp1, Register tmp2, Register tmp3);
1721 #else
1722   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1723                        Register tmp1, Register tmp2, Register tmp3,
1724                        XMMRegister xtmp1, XMMRegister xtmp2);
1725 #endif
1726   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1727                         Register in_out,
1728                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1729                         XMMRegister w_xtmp2,
1730                         Register tmp1,
1731                         Register n_tmp2, Register n_tmp3);
1732   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1733                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1734                        Register tmp1, Register tmp2,
1735                        Register n_tmp3);
1736   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1737                          Register in_out1, Register in_out2, Register in_out3,
1738                          Register tmp1, Register tmp2, Register tmp3,
1739                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1740                          Register tmp4, Register tmp5,
1741                          Register n_tmp6);
1742   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1743                             Register tmp1, Register tmp2, Register tmp3,
1744                             Register tmp4, Register tmp5, Register tmp6,
1745                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1746                             bool is_pclmulqdq_supported);
1747   // Fold 128-bit data chunk
1748   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1749   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1750   // Fold 8-bit data
1751   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1752   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1753   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1754 
1755   // Compress char[] array to byte[].
1756   void char_array_compress(Register src, Register dst, Register len,
1757                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1758                            XMMRegister tmp4, Register tmp5, Register result);
1759 
1760   // Inflate byte[] array to char[].
1761   void byte_array_inflate(Register src, Register dst, Register len,
1762                           XMMRegister tmp1, Register tmp2);
1763 
1764 };
1765 
1766 /**
1767  * class SkipIfEqual:
1768  *
1769  * Instantiating this class will result in assembly code being output that will
1770  * jump around any code emitted between the creation of the instance and it's
1771  * automatic destruction at the end of a scope block, depending on the value of
1772  * the flag passed to the constructor, which will be checked at run-time.
1773  */
1774 class SkipIfEqual {
1775  private:
1776   MacroAssembler* _masm;
1777   Label _label;
1778 
1779  public:
1780    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1781    ~SkipIfEqual();
1782 };
1783 
1784 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP