1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/vmreg.inline.hpp"
  28 #include "interpreter/bytecode.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/frame.inline.hpp"
  37 #include "runtime/handles.inline.hpp"
  38 #include "runtime/monitorChunk.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/vframe.hpp"
  41 #include "runtime/vframeArray.hpp"
  42 #include "runtime/vframe_hp.hpp"
  43 #include "utilities/copy.hpp"
  44 #include "utilities/events.hpp"
  45 #ifdef COMPILER2
  46 #include "opto/runtime.hpp"
  47 #endif
  48 
  49 int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
  50 
  51 void vframeArrayElement::free_monitors(JavaThread* jt) {
  52   if (_monitors != NULL) {
  53      MonitorChunk* chunk = _monitors;
  54      _monitors = NULL;
  55      jt->remove_monitor_chunk(chunk);
  56      delete chunk;
  57   }
  58 }
  59 
  60 void vframeArrayElement::fill_in(compiledVFrame* vf, bool realloc_failures) {
  61 
  62 // Copy the information from the compiled vframe to the
  63 // interpreter frame we will be creating to replace vf
  64 
  65   _method = vf->method();
  66   _bci    = vf->raw_bci();
  67   _reexecute = vf->should_reexecute();
  68 #ifdef ASSERT
  69   _removed_monitors = false;
  70 #endif
  71 
  72   int index;
  73 
  74   // Get the monitors off-stack
  75 
  76   GrowableArray<MonitorInfo*>* list = vf->monitors();
  77   if (list->is_empty()) {
  78     _monitors = NULL;
  79   } else {
  80 
  81     // Allocate monitor chunk
  82     _monitors = new MonitorChunk(list->length());
  83     vf->thread()->add_monitor_chunk(_monitors);
  84 
  85     // Migrate the BasicLocks from the stack to the monitor chunk
  86     for (index = 0; index < list->length(); index++) {
  87       MonitorInfo* monitor = list->at(index);
  88       assert(!monitor->owner_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
  89       BasicObjectLock* dest = _monitors->at(index);
  90       if (monitor->owner_is_scalar_replaced()) {
  91         dest->set_obj(NULL);
  92       } else {
  93         assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
  94         dest->set_obj(monitor->owner());
  95         monitor->lock()->move_to(monitor->owner(), dest->lock());
  96       }
  97     }
  98   }
  99 
 100   // Convert the vframe locals and expressions to off stack
 101   // values. Because we will not gc all oops can be converted to
 102   // intptr_t (i.e. a stack slot) and we are fine. This is
 103   // good since we are inside a HandleMark and the oops in our
 104   // collection would go away between packing them here and
 105   // unpacking them in unpack_on_stack.
 106 
 107   // First the locals go off-stack
 108 
 109   // FIXME this seems silly it creates a StackValueCollection
 110   // in order to get the size to then copy them and
 111   // convert the types to intptr_t size slots. Seems like it
 112   // could do it in place... Still uses less memory than the
 113   // old way though
 114 
 115   StackValueCollection *locs = vf->locals();
 116   _locals = new StackValueCollection(locs->size());
 117   for(index = 0; index < locs->size(); index++) {
 118     StackValue* value = locs->at(index);
 119     switch(value->type()) {
 120       case T_OBJECT:
 121         assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
 122         // preserve object type
 123         _locals->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
 124         break;
 125       case T_CONFLICT:
 126         // A dead local.  Will be initialized to null/zero.
 127         _locals->add( new StackValue());
 128         break;
 129       case T_INT:
 130         _locals->add( new StackValue(value->get_int()));
 131         break;
 132       default:
 133         ShouldNotReachHere();
 134     }
 135   }
 136 
 137   // Now the expressions off-stack
 138   // Same silliness as above
 139 
 140   StackValueCollection *exprs = vf->expressions();
 141   _expressions = new StackValueCollection(exprs->size());
 142   for(index = 0; index < exprs->size(); index++) {
 143     StackValue* value = exprs->at(index);
 144     switch(value->type()) {
 145       case T_OBJECT:
 146         assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
 147         // preserve object type
 148         _expressions->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
 149         break;
 150       case T_CONFLICT:
 151         // A dead stack element.  Will be initialized to null/zero.
 152         // This can occur when the compiler emits a state in which stack
 153         // elements are known to be dead (because of an imminent exception).
 154         _expressions->add( new StackValue());
 155         break;
 156       case T_INT:
 157         _expressions->add( new StackValue(value->get_int()));
 158         break;
 159       default:
 160         ShouldNotReachHere();
 161     }
 162   }
 163 }
 164 
 165 int unpack_counter = 0;
 166 
 167 void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
 168                                          int callee_parameters,
 169                                          int callee_locals,
 170                                          frame* caller,
 171                                          bool is_top_frame,
 172                                          bool is_bottom_frame,
 173                                          int exec_mode) {
 174   JavaThread* thread = (JavaThread*) Thread::current();
 175 
 176   bool realloc_failure_exception = thread->frames_to_pop_failed_realloc() > 0;
 177 
 178   // Look at bci and decide on bcp and continuation pc
 179   address bcp;
 180   // C++ interpreter doesn't need a pc since it will figure out what to do when it
 181   // begins execution
 182   address pc;
 183   bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
 184                              // rather than the one associated with bcp
 185   if (raw_bci() == SynchronizationEntryBCI) {
 186     // We are deoptimizing while hanging in prologue code for synchronized method
 187     bcp = method()->bcp_from(0); // first byte code
 188     pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
 189   } else if (should_reexecute()) { //reexecute this bytecode
 190     assert(is_top_frame, "reexecute allowed only for the top frame");
 191     bcp = method()->bcp_from(bci());
 192     pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
 193   } else {
 194     bcp = method()->bcp_from(bci());
 195     pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
 196     use_next_mdp = true;
 197   }
 198   assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
 199 
 200   // Monitorenter and pending exceptions:
 201   //
 202   // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
 203   // because there is no safepoint at the null pointer check (it is either handled explicitly
 204   // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
 205   // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
 206   // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
 207   // the monitorenter to place it in the proper exception range.
 208   //
 209   // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
 210   // in which case bcp should point to the monitorenter since it is within the exception's range.
 211   //
 212   // For realloc failure exception we just pop frames, skip the guarantee.
 213 
 214   assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
 215   assert(thread->deopt_compiled_method() != NULL, "compiled method should be known");
 216   guarantee(realloc_failure_exception || !(thread->deopt_compiled_method()->is_compiled_by_c2() &&
 217               *bcp == Bytecodes::_monitorenter             &&
 218               exec_mode == Deoptimization::Unpack_exception),
 219             "shouldn't get exception during monitorenter");
 220 
 221   int popframe_preserved_args_size_in_bytes = 0;
 222   int popframe_preserved_args_size_in_words = 0;
 223   if (is_top_frame) {
 224     JvmtiThreadState *state = thread->jvmti_thread_state();
 225     if (JvmtiExport::can_pop_frame() &&
 226         (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
 227       if (thread->has_pending_popframe()) {
 228         // Pop top frame after deoptimization
 229 #ifndef CC_INTERP
 230         pc = Interpreter::remove_activation_preserving_args_entry();
 231 #else
 232         // Do an uncommon trap type entry. c++ interpreter will know
 233         // to pop frame and preserve the args
 234         pc = Interpreter::deopt_entry(vtos, 0);
 235         use_next_mdp = false;
 236 #endif
 237       } else {
 238         // Reexecute invoke in top frame
 239         pc = Interpreter::deopt_entry(vtos, 0);
 240         use_next_mdp = false;
 241         popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
 242         // Note: the PopFrame-related extension of the expression stack size is done in
 243         // Deoptimization::fetch_unroll_info_helper
 244         popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
 245       }
 246     } else if (!realloc_failure_exception && JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
 247       // Force early return from top frame after deoptimization
 248 #ifndef CC_INTERP
 249       pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
 250 #endif
 251     } else {
 252       if (realloc_failure_exception && JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
 253         state->clr_earlyret_pending();
 254         state->set_earlyret_oop(NULL);
 255         state->clr_earlyret_value();
 256       }
 257       // Possibly override the previous pc computation of the top (youngest) frame
 258       switch (exec_mode) {
 259       case Deoptimization::Unpack_deopt:
 260         // use what we've got
 261         break;
 262       case Deoptimization::Unpack_exception:
 263         // exception is pending
 264         pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
 265         // [phh] We're going to end up in some handler or other, so it doesn't
 266         // matter what mdp we point to.  See exception_handler_for_exception()
 267         // in interpreterRuntime.cpp.
 268         break;
 269       case Deoptimization::Unpack_uncommon_trap:
 270       case Deoptimization::Unpack_reexecute:
 271         // redo last byte code
 272         pc  = Interpreter::deopt_entry(vtos, 0);
 273         use_next_mdp = false;
 274         break;
 275       default:
 276         ShouldNotReachHere();
 277       }
 278     }
 279   }
 280 
 281   // Setup the interpreter frame
 282 
 283   assert(method() != NULL, "method must exist");
 284   int temps = expressions()->size();
 285 
 286   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 287 
 288   Interpreter::layout_activation(method(),
 289                                  temps + callee_parameters,
 290                                  popframe_preserved_args_size_in_words,
 291                                  locks,
 292                                  caller_actual_parameters,
 293                                  callee_parameters,
 294                                  callee_locals,
 295                                  caller,
 296                                  iframe(),
 297                                  is_top_frame,
 298                                  is_bottom_frame);
 299 
 300   iframe()->interpreter_frame_set_vt_alloc_ptr((intptr_t*)thread->vt_alloc_ptr());
 301 
 302   // Update the pc in the frame object and overwrite the temporary pc
 303   // we placed in the skeletal frame now that we finally know the
 304   // exact interpreter address we should use.
 305 
 306   _frame.patch_pc(thread, pc);
 307 
 308   assert (!method()->is_synchronized() || locks > 0 || _removed_monitors || raw_bci() == SynchronizationEntryBCI, "synchronized methods must have monitors");
 309 
 310   BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
 311   for (int index = 0; index < locks; index++) {
 312     top = iframe()->previous_monitor_in_interpreter_frame(top);
 313     BasicObjectLock* src = _monitors->at(index);
 314     top->set_obj(src->obj());
 315     src->lock()->move_to(src->obj(), top->lock());
 316   }
 317   if (ProfileInterpreter) {
 318     iframe()->interpreter_frame_set_mdp(0); // clear out the mdp.
 319   }
 320   iframe()->interpreter_frame_set_bcp(bcp);
 321   if (ProfileInterpreter) {
 322     MethodData* mdo = method()->method_data();
 323     if (mdo != NULL) {
 324       int bci = iframe()->interpreter_frame_bci();
 325       if (use_next_mdp) ++bci;
 326       address mdp = mdo->bci_to_dp(bci);
 327       iframe()->interpreter_frame_set_mdp(mdp);
 328     }
 329   }
 330 
 331   if (PrintDeoptimizationDetails) {
 332     tty->print_cr("Expressions size: %d", expressions()->size());
 333   }
 334 
 335   // Unpack expression stack
 336   // If this is an intermediate frame (i.e. not top frame) then this
 337   // only unpacks the part of the expression stack not used by callee
 338   // as parameters. The callee parameters are unpacked as part of the
 339   // callee locals.
 340   int i;
 341   for(i = 0; i < expressions()->size(); i++) {
 342     StackValue *value = expressions()->at(i);
 343     intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
 344     switch(value->type()) {
 345       case T_INT:
 346         *addr = value->get_int();
 347 #ifndef PRODUCT
 348         if (PrintDeoptimizationDetails) {
 349           tty->print_cr("Reconstructed expression %d (INT): %d", i, (int)(*addr));
 350         }
 351 #endif
 352         break;
 353       case T_OBJECT:
 354         *addr = value->get_int(T_OBJECT);
 355 #ifndef PRODUCT
 356         if (PrintDeoptimizationDetails) {
 357           tty->print("Reconstructed expression %d (OBJECT): ", i);
 358           oop o = (oop)(address)(*addr);
 359           if (o == NULL) {
 360             tty->print_cr("NULL");
 361           } else {
 362             ResourceMark rm;
 363             tty->print_raw_cr(o->klass()->name()->as_C_string());
 364           }
 365         }
 366 #endif
 367         break;
 368       case T_CONFLICT:
 369         // A dead stack slot.  Initialize to null in case it is an oop.
 370         *addr = NULL_WORD;
 371         break;
 372       default:
 373         ShouldNotReachHere();
 374     }
 375   }
 376 
 377 
 378   // Unpack the locals
 379   for(i = 0; i < locals()->size(); i++) {
 380     StackValue *value = locals()->at(i);
 381     intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
 382     switch(value->type()) {
 383       case T_INT:
 384         *addr = value->get_int();
 385 #ifndef PRODUCT
 386         if (PrintDeoptimizationDetails) {
 387           tty->print_cr("Reconstructed local %d (INT): %d", i, (int)(*addr));
 388         }
 389 #endif
 390         break;
 391       case T_OBJECT:
 392         *addr = value->get_int(T_OBJECT);
 393 #ifndef PRODUCT
 394         if (PrintDeoptimizationDetails) {
 395           tty->print("Reconstructed local %d (OBJECT): ", i);
 396           oop o = (oop)(address)(*addr);
 397           if (o == NULL) {
 398             tty->print_cr("NULL");
 399           } else {
 400             ResourceMark rm;
 401             tty->print_raw_cr(o->klass()->name()->as_C_string());
 402           }
 403         }
 404 #endif
 405         break;
 406       case T_CONFLICT:
 407         // A dead location. If it is an oop then we need a NULL to prevent GC from following it
 408         *addr = NULL_WORD;
 409         break;
 410       default:
 411         ShouldNotReachHere();
 412     }
 413   }
 414 
 415   if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 416     // An interpreted frame was popped but it returns to a deoptimized
 417     // frame. The incoming arguments to the interpreted activation
 418     // were preserved in thread-local storage by the
 419     // remove_activation_preserving_args_entry in the interpreter; now
 420     // we put them back into the just-unpacked interpreter frame.
 421     // Note that this assumes that the locals arena grows toward lower
 422     // addresses.
 423     if (popframe_preserved_args_size_in_words != 0) {
 424       void* saved_args = thread->popframe_preserved_args();
 425       assert(saved_args != NULL, "must have been saved by interpreter");
 426 #ifdef ASSERT
 427       assert(popframe_preserved_args_size_in_words <=
 428              iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
 429              "expression stack size should have been extended");
 430 #endif // ASSERT
 431       int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
 432       intptr_t* base;
 433       if (frame::interpreter_frame_expression_stack_direction() < 0) {
 434         base = iframe()->interpreter_frame_expression_stack_at(top_element);
 435       } else {
 436         base = iframe()->interpreter_frame_expression_stack();
 437       }
 438       Copy::conjoint_jbytes(saved_args,
 439                             base,
 440                             popframe_preserved_args_size_in_bytes);
 441       thread->popframe_free_preserved_args();
 442     }
 443   }
 444 
 445 #ifndef PRODUCT
 446   if (PrintDeoptimizationDetails) {
 447     ttyLocker ttyl;
 448     tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
 449     iframe()->print_on(tty);
 450     RegisterMap map(thread);
 451     vframe* f = vframe::new_vframe(iframe(), &map, thread);
 452     f->print();
 453 
 454     tty->print_cr("locals size     %d", locals()->size());
 455     tty->print_cr("expression size %d", expressions()->size());
 456 
 457     method()->print_value();
 458     tty->cr();
 459     // method()->print_codes();
 460   } else if (TraceDeoptimization) {
 461     tty->print("     ");
 462     method()->print_value();
 463     Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
 464     int bci = method()->bci_from(bcp);
 465     tty->print(" - %s", Bytecodes::name(code));
 466     tty->print(" @ bci %d ", bci);
 467     tty->print_cr("sp = " PTR_FORMAT, p2i(iframe()->sp()));
 468   }
 469 #endif // PRODUCT
 470 
 471   // The expression stack and locals are in the resource area don't leave
 472   // a dangling pointer in the vframeArray we leave around for debug
 473   // purposes
 474 
 475   _locals = _expressions = NULL;
 476 
 477 }
 478 
 479 int vframeArrayElement::on_stack_size(int callee_parameters,
 480                                       int callee_locals,
 481                                       bool is_top_frame,
 482                                       int popframe_extra_stack_expression_els) const {
 483   assert(method()->max_locals() == locals()->size(), "just checking");
 484   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 485   int temps = expressions()->size();
 486   return Interpreter::size_activation(method()->max_stack(),
 487                                       temps + callee_parameters,
 488                                       popframe_extra_stack_expression_els,
 489                                       locks,
 490                                       callee_parameters,
 491                                       callee_locals,
 492                                       is_top_frame);
 493 }
 494 
 495 
 496 intptr_t* vframeArray::unextended_sp() const {
 497   return _original.unextended_sp();
 498 }
 499 
 500 vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
 501                                    RegisterMap *reg_map, frame sender, frame caller, frame self,
 502                                    bool realloc_failures) {
 503 
 504   // Allocate the vframeArray
 505   vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
 506                                                      sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
 507                                                      mtCompiler);
 508   result->_frames = chunk->length();
 509   result->_owner_thread = thread;
 510   result->_sender = sender;
 511   result->_caller = caller;
 512   result->_original = self;
 513   result->set_unroll_block(NULL); // initialize it
 514   result->fill_in(thread, frame_size, chunk, reg_map, realloc_failures);
 515   return result;
 516 }
 517 
 518 void vframeArray::fill_in(JavaThread* thread,
 519                           int frame_size,
 520                           GrowableArray<compiledVFrame*>* chunk,
 521                           const RegisterMap *reg_map,
 522                           bool realloc_failures) {
 523   // Set owner first, it is used when adding monitor chunks
 524 
 525   _frame_size = frame_size;
 526   for(int i = 0; i < chunk->length(); i++) {
 527     element(i)->fill_in(chunk->at(i), realloc_failures);
 528   }
 529 
 530   // Copy registers for callee-saved registers
 531   if (reg_map != NULL) {
 532     for(int i = 0; i < RegisterMap::reg_count; i++) {
 533 #ifdef AMD64
 534       // The register map has one entry for every int (32-bit value), so
 535       // 64-bit physical registers have two entries in the map, one for
 536       // each half.  Ignore the high halves of 64-bit registers, just like
 537       // frame::oopmapreg_to_location does.
 538       //
 539       // [phh] FIXME: this is a temporary hack!  This code *should* work
 540       // correctly w/o this hack, possibly by changing RegisterMap::pd_location
 541       // in frame_amd64.cpp and the values of the phantom high half registers
 542       // in amd64.ad.
 543       //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
 544         intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
 545         _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 546         //      } else {
 547         //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
 548         //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 549         //      }
 550 #else
 551       jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
 552       _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 553 #endif
 554       if (src == NULL) {
 555         set_location_valid(i, false);
 556       } else {
 557         set_location_valid(i, true);
 558         jint* dst = (jint*) register_location(i);
 559         *dst = *src;
 560       }
 561     }
 562   }
 563 }
 564 
 565 void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) {
 566   // stack picture
 567   //   unpack_frame
 568   //   [new interpreter frames ] (frames are skeletal but walkable)
 569   //   caller_frame
 570   //
 571   //  This routine fills in the missing data for the skeletal interpreter frames
 572   //  in the above picture.
 573 
 574   // Find the skeletal interpreter frames to unpack into
 575   JavaThread* THREAD = JavaThread::current();
 576   RegisterMap map(THREAD, false);
 577   // Get the youngest frame we will unpack (last to be unpacked)
 578   frame me = unpack_frame.sender(&map);
 579   int index;
 580   for (index = 0; index < frames(); index++ ) {
 581     *element(index)->iframe() = me;
 582     // Get the caller frame (possibly skeletal)
 583     me = me.sender(&map);
 584   }
 585 
 586   // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
 587   // Unpack the frames from the oldest (frames() -1) to the youngest (0)
 588   frame* caller_frame = &me;
 589   for (index = frames() - 1; index >= 0 ; index--) {
 590     vframeArrayElement* elem = element(index);  // caller
 591     int callee_parameters, callee_locals;
 592     if (index == 0) {
 593       callee_parameters = callee_locals = 0;
 594     } else {
 595       methodHandle caller = elem->method();
 596       methodHandle callee = element(index - 1)->method();
 597       Bytecode_invoke inv(caller, elem->bci());
 598       // invokedynamic instructions don't have a class but obviously don't have a MemberName appendix.
 599       // NOTE:  Use machinery here that avoids resolving of any kind.
 600       const bool has_member_arg =
 601           !inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name());
 602       callee_parameters = callee->size_of_parameters() + (has_member_arg ? 1 : 0);
 603       callee_locals     = callee->max_locals();
 604     }
 605     elem->unpack_on_stack(caller_actual_parameters,
 606                           callee_parameters,
 607                           callee_locals,
 608                           caller_frame,
 609                           index == 0,
 610                           index == frames() - 1,
 611                           exec_mode);
 612     if (index == frames() - 1) {
 613       Deoptimization::unwind_callee_save_values(elem->iframe(), this);
 614     }
 615     caller_frame = elem->iframe();
 616     caller_actual_parameters = callee_parameters;
 617   }
 618   deallocate_monitor_chunks();
 619 }
 620 
 621 void vframeArray::deallocate_monitor_chunks() {
 622   JavaThread* jt = JavaThread::current();
 623   for (int index = 0; index < frames(); index++ ) {
 624      element(index)->free_monitors(jt);
 625   }
 626 }
 627 
 628 #ifndef PRODUCT
 629 
 630 bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
 631   if (owner_thread() != thread) return false;
 632   int index = 0;
 633 #if 0 // FIXME can't do this comparison
 634 
 635   // Compare only within vframe array.
 636   for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
 637     if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
 638     index++;
 639   }
 640   if (index != chunk->length()) return false;
 641 #endif
 642 
 643   return true;
 644 }
 645 
 646 #endif
 647 
 648 address vframeArray::register_location(int i) const {
 649   assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
 650   return (address) & _callee_registers[i];
 651 }
 652 
 653 
 654 #ifndef PRODUCT
 655 
 656 // Printing
 657 
 658 // Note: we cannot have print_on as const, as we allocate inside the method
 659 void vframeArray::print_on_2(outputStream* st)  {
 660   st->print_cr(" - sp: " INTPTR_FORMAT, p2i(sp()));
 661   st->print(" - thread: ");
 662   Thread::current()->print();
 663   st->print_cr(" - frame size: %d", frame_size());
 664   for (int index = 0; index < frames() ; index++ ) {
 665     element(index)->print(st);
 666   }
 667 }
 668 
 669 void vframeArrayElement::print(outputStream* st) {
 670   st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, p2i(iframe()->sp()));
 671 }
 672 
 673 void vframeArray::print_value_on(outputStream* st) const {
 674   st->print_cr("vframeArray [%d] ", frames());
 675 }
 676 
 677 
 678 #endif