
Copyright © 2018 Oracle America, Inc. Legal Notice.

This document proposes changes to the Java Virtual Machine
Specification to introduce a new category of types called value types.

Last updated: 1008/0907/2018 in file LW2-World-JVMS-draft-201808071009.pdf

Changelog
10/04/2018:
• Removed ValueTypes attribute and value types consistency checks

• Removed ACC_FLATTENABLE flag

• Added type descriptors to CONSTANT_Class_info

• Added LW2 semantics

07/26/2018:
• Cleanup / clarification about static value fields

• Cleanup in loading/initialization between containers and value classes

• Precisions in verifier rules

• Minor editorial changes

06/20/2018:
• Added consistency checks rules

• Removed restriction that ACC_FLATTENABLE cannot be used on static fields

05/23/2018:
• Added ValueTypes attribute specification

• Added consistency rules between ACC_FLATENNABLE and the ValueTypes attribute

• Added pre-loading rules for method argument types and return value types

• Added class initialization requirement for any use of value class’ default value

04/11/2018 changes:
• Restored restriction that ACC_FLATTENABLE cannot be used on static fields

02/05/2018 changes:
• Renamed ACC_NON_NULLABLE with ACC_FLATTENABLE

• Removed restriction that ACC_FLATTENABLE cannot be used on static fields

• Added rules about circularity restrictions for fields with the ACC_FLATTENABLE flag set

• Added rules about initialization of classes of flattenable fields

01/31/2018 changes:
• Replaced ACC_VALUE_TYPE flag for field with ACC_FLATTENABLE, with a new semantic

associated with this flag, including field initialization, handling of the null reference by
putfield/withfield/aastore

• Added definition of a value class’ default value.

• Removed areturn, and invoke* (they do not changes anymore)

• Added updated specifications for anewarray and multi anewarray

01/24/2018 changes:
• cleaned up null reference handling for value class references (areturn, invoke*)

• fix runtime error for putfield

• rename vdefault and vwithfield to defaultvalue and withfield respectively, and change

opcode value

https://docs.oracle.com/javase/specs/jvms/se9/html/index.html
https://docs.oracle.com/javase/specs/jvms/se9/html/index.html

• Add description of ACC_VALUE_TYPE flag meaning for fields, and handling of such field
during the loading phase

01/23/2018 changes:
• removal of Q-descriptors

2.4. Reference Types and Values
There are four kinds of reference types: object class types, value class types, array
types, and interface types. Their values are references to dynamically created object
class instances, value class instances, arrays, or object class instances or value class
instances or arrays that implement interfaces, respectively.

An object class type is a class type which is neither a value class type nor an array
class type.

A value class type defines a class for which all instances are identity-less and
immutable.

Unless specified otherwise, the term class is used to designate either an object class or
a value class.

An array type consists of a component type with a single dimension (whose length is not
given by the type). The component type of an array type may itself be an array type. If,
starting from any array type, one considers its component type, and then (if that is also
an array type) the component type of that type, and so on, eventually one must reach a
component type that is not an array type; this is called the element type of the array
type. The element type of an array type is necessarily either a primitive type, or a class
type, or an interface type.

A reference value may also be the special null reference, a reference to no object,
which will be denoted here by null. The null reference initially has no run-time type,
but may be cast to any type. The default value of a reference type is null.

Some reference types may also allow the special null reference, a reference to no
instance, which will be denoted here by null. Reference types allowing the special
null reference are called nullable references. Reference types not allowing the
special null reference are called null-free references. The null reference
initially has no run-time type, but may be cast to any nullable reference type.
The null reference cannot be cast to a null-free reference type. Object class
types can only be referenced via nullable references. Value class types can be
handled either by null-free references or nullable references. The default
value of a nullable reference type is null. The default value of a null-free
reference is the default value of its value class (§2.4).

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.4

Unless specified otherwise, the term reference is used to designate either a
nullable reference or a non-free reference.

This specification does not mandate a concrete value encoding null.

Value classes have a special value, called the default value, which has all its instance
variables set to their default value according to their declaration (§4.5) and the initial
default value of each type (§2.3, §2.4). This default value for value classes is a valid,
fully initialized value. Any use of a default value of a value type requires class
initialization of the value class since a default value is an instance and all instance
bytecodes assume pre-initialization. This is subject to the same exception all classes
have, which is that during <clinit> the initializing thread can create instances
(including default values) of themselves.

Note: the JVMS treats references to value class instances as if they were indirection to
dynamically created values allocated in or outside of the Java heap. Implementations
are free to use a different representation, for instance using an immediate
representation rather than an indirection.

2.11.5. Instances Creation and Manipulation

The Java Virtual Machine creates and manipulates object class instances, value class
instances and arrays using distinct sets of instructions:

 • Create a new object class instance: new.

 • Create a new value class instance: defaultvalue, withfield

 • Create a new array: newarray, anewarray, multianewarray. 

 • Access fields of classes (static fields, known as class variables) and fields of
class instances (non-static fields, known as instance
variables): getstatic, putstatic, getfield, putfield (except for value classes:
because of their immutability, putfield cannot be used on a value class instance,
withfield must be used instead). 

 • Load an array component onto the operand
stack: baload, caload, saload, iaload, laload, faload, daload, aaload. 

 • Store a value from the operand stack as an array
component: bastore, castore, sastore, iastore, lastore, fastore, dastore, aastore. 

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.5
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.3
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.4

 • Get the length of array: arraylength. 

 • Check properties of class instances or arrays: instanceof, checkcast. 

4.1. The ClassFile Structure
A class file consists of a single ClassFile structure:

ClassFile {
 u4 magic;
 u2 minor_version;
 u2 major_version;
 u2 constant_pool_count;
 cp_info constant_pool[constant_pool_count-1];
 u2 access_flags;
 u2 this_class;
 u2 super_class;
 u2 interfaces_count;
 u2 interfaces[interfaces_count];
 u2 fields_count;
 field_info fields[fields_count];
 u2 methods_count;
 method_info methods[methods_count];
 u2 attributes_count;
 attribute_info attributes[attributes_count];
}

The items in the ClassFile structure are as follows:

magic
The magic item supplies the magic number identifying the class file format; it has the
value 0xCAFEBABE.

minor_version, major_version
The values of the minor_version and major_version items are the minor and
major version numbers of this class file. Together, a major and a minor version number
determine the version of the class file format. If a class file has major version number
M and minor version number m, we denote the version of its classfile format as M.m.
Thus, class file format versions may be ordered lexicographically, for example, 1.5 <
2.0 < 2.1.

A Java Virtual Machine implementation can support a class file format of version v if
and only if v lies in some contiguous range Mi.0 ≤ v ≤ Mj.m. The release level of the

Java SE platform to which a Java Virtual Machine implementation conforms is
responsible for determining the range.

Oracle's Java Virtual Machine implementation in JDK release 1.0.2 supports class file format versions
45.0 through 45.3 inclusive. JDK releases 1.1.* support class file format versions in the range 45.0
through 45.65535 inclusive. For k ≥ 2, JDK release 1.k supports class file format versions in the range
45.0 through 44+k.0 inclusive.

constant_pool_count
The value of the constant_pool_count item is equal to the number of entries in
the constant_pooltable plus one. A constant_pool index is considered valid if it is
greater than zero and less than constant_pool_count, with the exception for
constants of type long and double noted in §4.4.5.

constant_pool[]
The constant_pool is a table of structures (§4.4) representing various string
constants, class and interface names, field names, and other constants that are referred
to within the ClassFile structure and its substructures. The format of
each constant_pool table entry is indicated by its first "tag" byte.

The constant_pool table is indexed from 1 to constant_pool_count - 1.

access_flags
The value of the access_flags item is a mask of flags used to denote access
permissions to and properties of this class or interface. The interpretation of each flag,
when set, is specified in Table 4.1-A.

Table 4.1-A. Class access and property modifiers

Flag Name Value Interpretation

ACC_PUBLIC 0x0001 Declared public; may be accessed from outside its
package.

ACC_FINAL 0x0010 Declared final; no subclasses allowed.

ACC_SUPER 0x0020 Treat superclass methods specially when invoked by
the invokespecialinstruction.

ACC_VALUE_TYPE 0x0100 Is a value class, not an object class.

ACC_INTERFACE 0x0200 Is an interface, not a class.

ACC_ABSTRACT 0x0400 Declared abstract; must not be instantiated.

ACC_SYNTHETIC 0x1000 Declared synthetic; not present in the source code.

ACC_ANNOTATION 0x2000 Declared as an annotation type.

ACC_ENUM 0x4000 Declared as an enum type.

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.4.5
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.4
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.1-200-E.1

An interface is distinguished by the ACC_INTERFACE flag being set. If
the ACC_INTERFACE flag is not set, this class file defines a class, not an interface.

If the ACC_INTERFACE flag is set, the ACC_ABSTRACT flag must also be set, and
the ACC_FINAL, ACC_SUPER, and ACC_ENUM flags set must not be set.

If the ACC_INTERFACE flag is not set, any of the other flags in Table 4.1-A may be set
except ACC_ANNOTATION. However, such a class file must not have both
its ACC_FINAL and ACC_ABSTRACT flags set (JLS §8.1.1.2).

A value class is distinguished by the ACC_VALUE_TYPE flag being set. If the
ACC_VALUE_TYPE flag is not set, this class file defines an object class or an interface,
not a value class. A class file with the ACC_VALUE_TYPE flag set must not have either
ACC_INTERFACE or ACC_ABSTRACT flags set. The super class of a value class must
be the java.lang.Object class.

If the ACC_VALUE_TYPE flag is set, the ACC_FINAL flag must also be set, and all non-
static fields declared in this class file must have the ACC_FINAL flag set too.

A value class must not have an <init> method.

A value class must not have any synchronized instance methods.

If neither the ACC_VALUE_TYPE or the ACC_INTERFACE flag is set, then this class file
defines an object class.

The ACC_SUPER flag indicates which of two alternative semantics is to be expressed by
the invokespecial instruction (§invokespecial) if it appears in this class or interface.
Compilers to the instruction set of the Java Virtual Machine should set
the ACC_SUPER flag. In Java SE 8 and above, the Java Virtual Machine considers
the ACC_SUPER flag to be set in every class file, regardless of the actual value of the
flag in the class file and the version of the class file.

The ACC_SUPER flag exists for backward compatibility with code compiled by older compilers for the
Java programming language. In JDK releases prior to 1.0.2, the compiler generated access_flags in
which the flag now representing ACC_SUPER had no assigned meaning, and Oracle's Java Virtual
Machine implementation ignored the flag if it was set.

The ACC_SYNTHETIC flag indicates that this class or interface was generated by a
compiler and does not appear in source code.

An annotation type must have its ACC_ANNOTATION flag set. If
the ACC_ANNOTATION flag is set, the ACC_INTERFACE flag must also be set.

The ACC_ENUM flag indicates that this class or its superclass is declared as an
enumerated type. A class file must not have both ACC_ENUM and ACC_VALUE_TYPE
flags set.

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.1-200-E.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.invokespecial

All bits of the access_flags item not assigned in Table 4.1-A are reserved for future
use. They should be set to zero in generated class files and should be ignored by
Java Virtual Machine implementations.

this_class
The value of the this_class item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Class_info structure (§4.4.1) representing the class or interface
defined by this class file.

super_class
For a class, the value of the super_class item either must be zero or must be a valid
index into the constant_pool table. If the value of the super_class item is nonzero,
the constant_pool entry at that index must be a CONSTANT_Class_info structure
representing the direct superclass of the class defined by this class file. Neither the
direct superclass nor any of its superclasses may have the ACC_FINAL flag set in
the access_flags item of its ClassFile structure.

If the value of the super_class item is zero, then this class file must represent the
class Object, the only class or interface without a direct superclass.

For an interface, the value of the super_class item must always be a valid index into
the constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Class_info structure representing the class Object.

For a value class, the value of the super_class item must always be a valid index into
the constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Class_info structure representing the class Object.

interfaces_count
The value of the interfaces_count item gives the number of direct superinterfaces
of this class or interface type.

interfaces[]
Each value in the interfaces array must be a valid index into
the constant_pool table. The constant_pool entry at each value
of interfaces[i], where 0 ≤ i < interfaces_count, must be
aCONSTANT_Class_info structure representing an interface that is a direct
superinterface of this class or interface type, in the left-to-right order given in the source
for the type.

fields_count
The value of the fields_count item gives the number of field_info structures in
the fields table. The field_info structures represent all fields, both class variables
and instance variables, declared by this class or interface type.

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.1-200-E.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.4.1

fields[]
Each value in the fields table must be a field_info structure (§4.5) giving a
complete description of a field in this class or interface. The fields table includes only
those fields that are declared by this class or interface. It does not include items
representing fields that are inherited from superclasses or superinterfaces.

methods_count
The value of the methods_count item gives the number of method_info structures
in the methods table.

methods[]
Each value in the methods table must be a method_info structure (§4.6) giving a
complete description of a method in this class or interface. If neither of
the ACC_NATIVE and ACC_ABSTRACT flags are set in the access_flags item of
a method_info structure, the Java Virtual Machine instructions implementing the
method are also supplied.

The method_info structures represent all methods declared by this class or interface
type, including instance methods, class methods, instance initialization methods (§2.9),
and any class or interface initialization method (§2.9). The methods table does not
include items representing methods that are inherited from superclasses or
superinterfaces.

attributes_count
The value of the attributes_count item gives the number of attributes in
the attributes table of this class.

attributes[]
Each value of the attributes table must be an attribute_info structure (§4.7).

The attributes defined by this specification as appearing in the attributes table of
a ClassFile structure are listed in Table 4.7-C.

The rules concerning attributes defined to appear in the attributes table of
a ClassFile structure are given in §4.7.

The rules concerning non-predefined attributes in the attributes table of
a ClassFile structure are given in §4.7.1.

4.3. Descriptors
A descriptor is a string representing the type of a field or method. Descriptors are
represented in the class file format using modified UTF-8 strings (§4.4.7) and thus
may be drawn, where not further constrained, from the entire Unicode codespace.

4.3.1. Grammar Notation

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.5
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.6
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.9
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.9
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7-320
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7.1
https://docs.oracle.com/javase/specs/jvms/se11/html/jvms-4.html#jvms-4.4.7

Descriptors are specified using a grammar. The grammar is a set of productions that
describe how sequences of characters can form syntactically correct descriptors of
various kinds. Terminal symbols of the grammar are shown in fixed width font.
Nonterminal symbols are shown in italic type. The definition of a nonterminal is
introduced by the name of the nonterminal being defined, followed by a colon. One or
more alternative definitions for the nonterminal then follow on succeeding lines.

The syntax {x} on the right-hand side of a production denotes zero or more occurrences
of x.

The phrase (one of) on the right-hand side of a production signifies that each of the
terminal symbols on the following line or lines is an alternative definition.

4.3.2. Type Descriptors

A type descriptor represents the type of an object class or a value class, with potentially
some restrictions.

TypeDescriptor:

L ClassName ;

Q ValueClassName ;

ClassName represents a binary class , value class or interface name encoded in
internal form (§4.2.1). ValueClassName represents a binary value class name encoded
in internal form (§4.2.1).The interpretation of field descriptors as types is shown in the
table below:

The type from which a type descriptor is derived is called the fundamental type of this
type descriptor (it could be either an object class or a value class).

A reference of a nullable type C means a reference to an instance of the fundamental
class C or the null reference. A reference of a null-free type C means a reference to an
instance of the fundamental class C but never the null reference. For a given value
class VC, both the nullable type LVC; and the null-free type QVC; are legal types. An
instance of a value class C can be referenced either by a null-free reference QC; or a
nullable reference LC;.

Note: Should TypeDescriptor be propagated to the Field Descriptor definition below?

TypeDescriptor term Type Interpretation
L ClassName ; reference nullable type derived from class ClassName

Q ValueClassName ; reference null-free type derived from value class
ValueClassName

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.2.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.2.1

4.3.32. Field Descriptors

A field descriptor represents the type of a class, instance, or local variable.

FieldDescriptor:
FieldType
FieldType:
BaseType
InstanceType
ArrayType
BaseType:
(one of)
B C D F I J S Z
InstanceType:
L ClassName ;
Q ValueClassName ;
ArrayType:
[ComponentType
ComponentType:
FieldType
The characters of BaseType, the L, Q and ; of InstanceType, and
the [of ArrayType are all ASCII characters.

ClassName represents a binary class , value class or interface name encoded in
internal form (§4.2.1). ValueClassName represents a binary value class name encoded
in internal form (§4.2.1) .The interpretation of field descriptors as types is shown
in Table 4.3-A.

A field descriptor representing an array type is valid only if it represents a type with 255
or fewer dimensions.

Table 4.3-A. Interpretation of field descriptors

FieldType term Type Interpretation
B byte signed byte

C char Unicode character code point in the Basic
Multilingual Plane, encoded with UTF-16

D double double-precision floating-point value

F float single-precision floating-point value

I int integer

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-FieldType
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-BaseType
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-ObjectType
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-ArrayType
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-ComponentType
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-FieldType
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.2.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.2.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2-200

The field descriptor of an instance variable of type int is simply I.

The field descriptor of an instance variable of type Object is Ljava/lang/Object;. Note that the
internal form of the binary name for class Object is used.

The field descriptor of an instance variable of the multidimensional array type double[][][] is [[[D.

4.4.1. The CONSTANT_Class_info Structure

The CONSTANT_Class_info structure is used to represent a class or an interface:

CONSTANT_Class_info {
 u1 tag;
 u2 name_index;
}
The items of the CONSTANT_Class_info structure are as follows:

tag
The tag item has the value CONSTANT_Class (7).

name_index
The value of the name_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Utf8_info structure (§4.4.7) representing a valid binary class or
interface name encoded in internal form (§4.2.1), or a type descriptor (§4.3.2). When
the CONSTANT_Utf8_info structure represents a valid binary class or interface C, it
designates a nullable type derived from C, and is equivalent to the type descriptor
“LC;”.

Because arrays are objects, the opcodes anewarray and multianewarray - but not the
opcodes new or defaultvalue - can reference array "classes"

J long long integer

L ClassName ; reference a nullable reference to an instance of
class ClassName

Q ValueClassName ; reference
a null-free reference to an instance of value
class ValueClassName (also called a null-
free field)

S short signed short

Z boolean true or false

[reference one array dimension

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.4.7
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.2.1

via CONSTANT_Class_info structures in the constant_pool table. For such array
classes, the name of the class is the descriptor of the array type (§4.3.3)§4.3.2).

The opcode defaultvalue - but not the opcode new - can reference value classes a null-
free type via CONSTANT_Class_info structures in the constant_pool table.

The opcode new - but not the opcode defaultvalue - can reference object classes a
nullable type via CONSTANT_Class_info structures in the constant_pool table.

For example, the class name representing the two-dimensional array type int[][] is [[I, while the
class name representing the type Thread[] is [Ljava/lang/Thread;.

An array type descriptor is valid only if it represents 255 or fewer dimensions.

4.5. Fields
Each field is described by a field_info structure.

No two fields in one class file may have the same name and descriptor (§4.3.2).

The structure has the following format:

field_info {
 u2 access_flags;
 u2 name_index;
 u2 descriptor_index;
 u2 attributes_count;
 attribute_info attributes[attributes_count];
}
The items of the field_info structure are as follows:

access_flags
The value of the access_flags item is a mask of flags used to denote access
permission to and properties of this field. The interpretation of each flag, when set, is
specified in Table 4.5-A.

Table 4.5-A. Field access and property flags

Flag Name Flag
Name Interpretation

ACC_PUBLIC 0x0001 Declared public; may be accessed from outside its
package.

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.5-200-A.1

Fields of classes may set any of the flags in Table 4.5-A. However, each field of a class
may have at most one of its ACC_PUBLIC, ACC_PRIVATE, and ACC_PROTECTED flags
set (JLS §8.3.1), and must not have both its ACC_FINAL and ACC_VOLATILE flags set
(JLS §8.3.1.4).

Fields of value class may have at most one of its ACC_PUBLIC, ACC_PRIVATE,
and ACC_PROTECTED flags set (JLS §8.3.1), Each field with the ACC_STATIC flag not
set must have its ACC_FINAL flag set.

Fields of interfaces must have their ACC_PUBLIC, ACC_STATIC, and ACC_FINAL flags
set; they may have their ACC_SYNTHETIC flag set and must not have any of the other
flags in Table 4.5-A set (JLS §9.3).

The ACC_SYNTHETIC flag indicates that this field was generated by a compiler and
does not appear in source code.

The ACC_ENUM flag indicates that this field is used to hold an element of an enumerated
type.

The ACC_FLATTENABLE flag indicates that this field must never store the null
reference. The field signature must be the signature of a class. The class specified in
the field’s signature is loaded during the loading phase of the class declaring this field.
The class of the field must be listed in the ValueTypes attribute of the current class. This
field must be initialized with the default value of this value class.

A field declared with a reference type and the ACC_FLATTENABLE flag not set must be
initialized with the null reference.

A field declared with the ACC_FLATTENABLE flag set must not have the type of its
declaring class, nor refer indirectly to its declaring class through a chain of fields with
the ACC_FLATTENABLE flag set.

ACC_PRIVATE 0x0002 Declared private; usable only within the defining
class.

ACC_PROTECTED 0x0004 Declared protected; may be accessed within
subclasses.

ACC_STATIC 0x0008 Declared static.

ACC_FINAL 0x0010 Declared final; never directly assigned to after
object construction (JLS §17.5).

ACC_VOLATILE 0x0040 Declared volatile; cannot be cached.

ACC_TRANSIENT 0x0080 Declared transient; not written or read by a
persistent object manager.

ACC_SYNTHETIC 0x1000 Declared synthetic; not present in the source code.

ACC_ENUM 0x4000 Declared as an element of an enum.

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.5-200-A.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.5-200-A.1

All bits of the access_flags item not assigned in Table 4.5-A are reserved for future
use. They should be set to zero in generated class files and should be ignored by
Java Virtual Machine implementations.

name_index
The value of the name_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Utf8_info structure (§4.4.7) which represents a valid unqualified name
denoting a field (§4.2.2).

descriptor_index
The value of the descriptor_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Utf8_info structure (§4.4.7) which represents a valid field descriptor
(§4.3.2).

attributes_count
The value of the attributes_count item indicates the number of additional attributes
of this field.

attributes[]
Each value of the attributes table must be an attribute_info structure (§4.7).

A field can have any number of optional attributes associated with it.

The attributes defined by this specification as appearing in the attributes table of
a field_info structure are listed in Table 4.7-C.

The rules concerning attributes defined to appear in the attributes table of
a field_info structure are given in §4.7.

The rules concerning non-predefined attributes in the attributes table of
a field_info structure are given in §4.7.1.

4.7.25. ValueTypes attribute

The ValueTypes attribute is a variable-length attribute in the attributes table of a
ClassFile structure (§4.1). The ValueTypes attribute records types that were known to
be value class types at the time the class file was generated.

There may be at most one ValueTypes attribute in the attributes table of a ClassFile
structure.

The ValueTypes attribute has the following format:

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.5-200-A.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.4.7
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.2.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.4.7
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7-320
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7.1

ValueTypes_attribute {
 u2 attribute_name_index;
 u4 attribute_length;
 u2 number_of_value_types;
 {
 u2 value_types_info_index;
 } value_types[number_of_value_types];
}

attribute_name_index
The value of the attribute_name_index item must be a valid index into the constant_pool
table. The constant_pool entry at that index must be a CONSTANT_Utf8_info structure
(§4.4.7) representing the string “ValueTypes".

attribute_length
The value of the attribute_length item indicates the length of the attribute, excluding the
initial six bytes.

number_of_value_types
The value of the number_of_value_types item indicates the number of entries in the
value_types array.

value_types[]
Each value in the value_types array must be a valid index into the constant_pool table.
The constant_pool entry at that index must be a CONSTANT_Class_info structure
(§4.4.1).

4.9.1. Static Constraints

The static constraints on a class file are those defining the well-formedness of the file.
These constraints have been given in the previous sections, except for static constraints
on the code in the class file. The static constraints on the code in a class file specify
how Java Virtual Machine instructions must be laid out in the code array and what the
operands of individual instructions must be.

The static constraints on the instructions in the code array are as follows:

 • Only instances of the instructions documented in §6.5 may appear in
the code array. Instances of instructions using the reserved opcodes (§6.2) or
any opcodes not documented in this specification must not appear in
the code array. 
If the class file version number is 51.0 or above, then neither the jsr opcode or
the jsr_w opcode may appear in the code array. 

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.2

 • The opcode of the first instruction in the code array begins at index 0. 

 • For each instruction in the code array except the last, the index of the opcode of
the next instruction equals the index of the opcode of the current instruction plus
the length of that instruction, including all its operands. 
The wide instruction is treated like any other instruction for these purposes; the
opcode specifying the operation that a wide instruction is to modify is treated as
one of the operands of that wide instruction. That opcode must never be directly
reachable by the computation. 

 • The last byte of the last instruction in the code array must be the byte at
index code_length - 1. 

The static constraints on the operands of instructions in the code array are as follows:

 • The target of each jump and branch instruction
(jsr, jsr_w, goto, goto_w, ifeq, ifne, ifle, iflt, ifge, ifgt, ifnull, ifnonnull, if_icmpeq, if_i
cmpne, if_icmple, if_icmplt, if_icmpge, if_icmpgt, if_acmpeq, if_acmpne) must be
the opcode of an instruction within this method. 
The target of a jump or branch instruction must never be the opcode used to
specify the operation to be modified by a wide instruction; a jump or branch
target may be the wide instruction itself. 

 • Each target, including the default, of each tableswitch instruction must be the
opcode of an instruction within this method. 
Each tableswitch instruction must have a number of entries in its jump table that
is consistent with the value of its low and high jump table operands, and
its low value must be less than or equal to its high value. 
No target of a tableswitch instruction may be the opcode used to specify the
operation to be modified by a wideinstruction; a tableswitch target may be
a wide instruction itself. 

 • Each target, including the default, of each lookupswitch instruction must be the
opcode of an instruction within this method. 
Each lookupswitch instruction must have a number of match-offset pairs that is
consistent with the value of its npairs operand. The match-offset pairs must be
sorted in increasing numerical order by signed match value. 
No target of a lookupswitch instruction may be the opcode used to specify the
operation to be modified by a wideinstruction; a lookupswitch target may be
a wide instruction itself. 

 • The operand of each ldc instruction and each ldc_w instruction must be a valid
index into the constant_pooltable. The constant pool entry referenced by that
index must be of type:

◦ CONSTANT_Integer, CONSTANT_Float, or CONSTANT_String if
the class file version number is less than 49.0. 

◦ CONSTANT_Integer, CONSTANT_Float, CONSTANT_String,
or CONSTANT_Class if the class file version number is 49.0 or 50.0. 

◦
CONSTANT_Integer, CONSTANT_Float, CONSTANT_String, CONSTAN
T_Class, CONSTANT_MethodType, or CONSTANT_MethodHandle if
the class file version number is 51.0 or above. 
 

 • The operands of each ldc2_w instruction must represent a valid index into
the constant_pool table. The constant pool entry referenced by that index
must be of type CONSTANT_Long or CONSTANT_Double. 
The subsequent constant pool index must also be a valid index into the constant
pool, and the constant pool entry at that index must not be used. 

 • The operands of each getfield, putfield, getstatic, putstatic and withfield
instruction must represent a valid index into the constant_pool table. The
constant pool entry referenced by that index must be of
type CONSTANT_Fieldref.

 • The constant pool entry referenced by the operand of a withfield instruction must
be a CONSTANT_Fieldref entry that represents a field of a null-free value class
listed in the ValueTypes attrribute.

 • The constant pool entry referenced by the operand of a putfield instruction must
be a CONSTANT_Fieldref entry that represents a field of a class not listed in
the ValueTypes attrribute that is not a null-free value class.

 • The indexbyte operands of each invokevirtual instruction must represent a valid
index into the constant_pooltable. The constant pool entry referenced by that
index must be of type CONSTANT_Methodref.

 • The indexbyte operands of each invokespecial and invokestatic instruction must
represent a valid index into the constant_pool table. If the class file version
number is less than 52.0, the constant pool entry referenced by that index must

be of type CONSTANT_Methodref; if the class file version number is 52.0 or
above, the constant pool entry referenced by that index must be of
type CONSTANT_Methodref or CONSTANT_InterfaceMethodref. 

 • The indexbyte operands of each invokeinterface instruction must represent a
valid index into the constant_pool table. The constant pool entry referenced
by that index must be of type CONSTANT_InterfaceMethodref. 
The value of the count operand of each invokeinterface instruction must reflect
the number of local variables necessary to store the arguments to be passed to
the interface method, as implied by the descriptor of
theCONSTANT_NameAndType_info structure referenced by
the CONSTANT_InterfaceMethodref constant pool entry. 
The fourth operand byte of each invokeinterface instruction must have the value
zero. 

 • The indexbyte operands of each invokedynamic instruction must represent a
valid index into the constant_pool table. The constant pool entry referenced
by that index must be of type CONSTANT_InvokeDynamic. 
The third and fourth operand bytes of each invokedynamic instruction must have
the value zero. 

 • Only the invokespecial instruction is allowed to invoke an instance initialization
method (§2.9). 
No other method whose name begins with the character '<' ('\u003c') may be
called by the method invocation instructions. In particular, the class or interface
initialization method specially named <clinit> is never called explicitly from
Java Virtual Machine instructions, but only implicitly by the Java Virtual Machine
itself. 

 • The operands of each instanceof, checkcast, new, anewarray and defaultvalue
instruction, and the indexbyte operands of each multianewarray instruction, must
represent a valid index into the constant_pool table. The constant pool entry
referenced by that index must be of type CONSTANT_Class. 

 • No new instruction may reference a constant pool entry of
type CONSTANT_Class that represents an array type (§4.3.2).
The new instruction cannot be used to create an array.

 • No new instruction may reference a constant pool entry of
type CONSTANT_Class that represents a class null-free type listed in the

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.9
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2

ValueTypes attribute. The new instruction cannot be used to create an instance
of a value class.

 • No defaultvalue instruction may reference a constant pool entry of type
 CONSTANT_Class that represents an array type (§4.3.2).
 The defaultvalue instruction cannot be used to create an array.

 • No defaultvalue instruction may reference a constant pool entry of type
 CONSTANT_Class that represents a classnullable type not listed in the
ValueTypes 
 attribute. The defaultvalue instruction cannot be used to create an instance of a 
 class other than a value class.

 • No anewarray instruction may be used to create an array of more than 255
dimensions. 

 • A multianewarray instruction must be used only to create an array of a type that
has at least as many dimensions as the value of its dimensions operand. That is,
while a multianewarray instruction is not required to create all of the dimensions
of the array type referenced by its indexbyte operands, it must not attempt to
create more dimensions than are in the array type. 
The dimensions operand of each multianewarray instruction must not be zero. 

 • The atype operand of each newarray instruction must take one of the
values T_BOOLEAN (4), T_CHAR (5), T_FLOAT (6), T_DOUBLE (7), T_BYTE (8), T
_SHORT (9), T_INT (10), or T_LONG (11). 

 • The index operand of each iload, fload, aload, istore, fstore, astore, iinc,
and ret instruction must be a non-negative integer no greater than max_locals
- 1. 
The implicit index of
each iload_<n>, fload_<n>, aload_<n>, istore_<n>, fstore_<n>,
and astore_<n> instruction must be no greater than max_locals - 1. 

 • The index operand of each lload, dload, lstore, and dstore instruction must be no
greater than max_locals - 2. 
The implicit index of each lload_<n>, dload_<n>, lstore_<n>,
and dstore_<n> instruction must be no greater than max_locals - 2. 

 • The indexbyte operands of each wide instruction modifying
an iload, fload, aload, istore, fstore, astore, iinc, or ret instruction must represent

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2

a non-negative integer no greater than max_locals - 1. 
The indexbyte operands of each wide instruction modifying
an lload, dload, lstore, or dstore instruction must represent a non-negative
integer no greater than max_locals - 2. 

4.10.1.2. Verification Type System

Chart has to be updated to include null-tree types: TBD

Verifier has to ensure that null is never assigned to a null-free type.

4.10.1.9. Type Checking Instructions

defaultvalue
A defaultvalue instruction with operand CP at offset Offset is type safe iff CP refers to a
constant pool entry denoting a null-free value class type, and one can validly push the
class type onto the incoming operand stack yielding the outgoing type state.

<Prolog code is TBD>

withfield

A withfield instruction with operand CP is type safe iff all of the following are true:
 • Its first operand, CP, refers to a constant pool entry denoting a field whose

declared type is FieldType, declared in a
class FieldClassName. FieldClassName must be a null-free value class
type.

 • One can validly pop types matching FieldType and FieldClassName off the
incoming operand stack yielding the outgoing type state.

<Prolog code is TBD>

5.3.5. Deriving a Class from a class File Representation

The following steps are used to derive a Class object for the nonarray class or
interface C denoted by N using loader L from a purported representation in class file
format.

 1. First, the Java Virtual Machine determines whether it has already recorded
that L is an initiating loader of a class or interface denoted by N. If so, this
creation attempt is invalid and loading throws a LinkageError. 

 2. Otherwise, the Java Virtual Machine attempts to parse the purported
representation. However, the purported representation may not in fact be a valid
representation of C. 
This phase of loading must detect the following errors:

 • If the purported representation is not a ClassFile structure
(§4.1, §4.8), loading throws an instance of ClassFormatError. 

 • Otherwise, if the purported representation is not of a supported
major or minor version (§4.1), loading throws an instance
of UnsupportedClassVersionError. 
UnsupportedClassVersionError, a subclass of ClassFormatError, was
introduced to enable easy identification of aClassFormatError caused by an attempt
to load a class whose representation uses an unsupported version of the class file
format. In JDK release 1.1 and earlier, an instance
of NoClassDefFoundError or ClassFormatError was thrown in case of an
unsupported version, depending on whether the class was being loaded by the system
class loader or a user-defined class loader. 

 • Otherwise, if the purported representation does not actually
represent a class named N, loading throws an instance
of NoClassDefFoundError or an instance of one of its subclasses. 
 

 3. If C has a direct superclass, the symbolic reference from C to its direct
superclass is resolved using the algorithm of §5.4.3.1. Note that if C is an
interface or a value class it must have Object as its direct superclass, which
must already have been loaded. Only Object has no direct superclass. 
Any exceptions that can be thrown due to class or interface resolution can
be thrown as a result of this phase of loading. In addition, this phase of
loading must detect the following errors:

 • If the class or interface named as the direct superclass of C is in fact
an interface or a value class, loading throws
an IncompatibleClassChangeError. 

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.8
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.1

 • Otherwise, if any of the superclasses of C is C itself, loading throws
a ClassCircularityError. 

 4. If C has any direct superinterfaces, the symbolic references from C to its direct
superinterfaces are resolved using the algorithm of §5.4.3.1. 
Any exceptions that can be thrown due to class or interface resolution can
be thrown as a result of this phase of loading. In addition, this phase of
loading must detect the following errors:

 • If any of the classes or interfaces named as direct superinterfaces
of C is not in fact an interface, loading throws
an IncompatibleClassChangeError. 

 • Otherwise, if any of the superinterfaces of C is C itself, loading
throws a ClassCircularityError. 

 5. For each field declared by C with the ACC_FLATTENABLE flag set a null-free
reference to an instance, the symbolic reference from C to the class of this field
is resolved using the algorithm of §5.4.3.1.

 Any exceptions that can be thrown due to class or interface resolution can
be thrown as a result of this phase of loading. If the field marked as
ACC_FLATTENABLE declared with a null-free reference contains the class
C either directly or indirectly, via a chain of fields with the
ACC_FLATTENABLE flat set declared as null-free references, loading
throws a ClassCircularityError.

 If the resolved class is a value class, the JVM may use its knowledge of the
layout of the resolved class instances to flatten the field.

 If the resolved class is not a value class, an
IncompatibleClassChangeError is thrown.

 6. The Java Virtual Machine marks C as having L as its defining class loader and
records that L is an initiating loader of C (§5.3.4). 

5.4.2. Preparation

Preparation involves creating the static fields for a class or interface and initializing such
fields to their default values (§2.3, §2.4). This does not require the execution of any
Java Virtual Machine code; explicit initializers for static fields are executed as part of
initialization (§5.5), not preparation.

During preparation of a class or interface C, the Java Virtual Machine also imposes
loading constraints (§5.3.4) and value types consistency checking. Let L1 be the

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.3.4
https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-2.html#jvms-2.3
https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-5.html#jvms-5.5
https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-5.html#jvms-5.3.4

defining loader of C. For each method m declared in C that overrides (§5.4.5) a method
declared in a superclass or superinterface <D, L2>, the Java Virtual Machine imposes
the following loading constraints and value types consistency checking:

• Given that the return type of m is Tr, and that the formal parameter types
of m are Tf1, ..., Tfn, then:  
 
If Tr not an array type, let T0 be Tr; otherwise, let T0 be the element type (§2.4) of Tr. 
 
For i = 1 to n: If Tfi is not an array type, let Ti be Tfi; otherwise, let Ti be the element
type (§2.4) of Tfi.

• Then TiL1 = TiL2 for i = 0 to n,

• Ti is either listed in ValueTypes attributes of both <C, L1> and <D, L2>, or is
not listed in either of them, otherwise an
IncompatibleClassChangeError is thrown.

Furthermore, if C implements a method m declared in a superinterface <I, L3> of C,
but C does not itself declare the method m, then let <D, L2> be the superclass of C that
declares the implementation of method m inherited by C. The Java Virtual Machine
imposes the following constraints:

• Given that the return type of m is Tr, and that the formal parameter types
of m are Tf1, ..., Tfn, then:  
 
If Tr not an array type, let T0 be Tr; otherwise, let T0 be the element type (§2.4) of Tr. 
 
For i = 1 to n: If Tfi is not an array type, let Ti be Tfi; otherwise, let Ti be the element
type (§2.4) of Tfi.

• Then TiL2 = TiL3 for i = 0 to n,

• Ti is either listed in ValueTypes attributes of both <D, L2> and <I, L3>, or is
not listed in either of them, otherwise an
IncompatibleClassChangeError is thrown.

Preparation may occur at any time following creation but must be completed prior to
initialization.

5.4.3. Resolution

The Java Virtual Machine
instructions anewarray, checkcast, getfield, getstatic, instanceof, invokedynamic, invoke
interface, invokespecial, invokestatic, invokevirtual, ldc, ldc_w, multianewarray, new, put
field, and putstatic make symbolic references to the run-time constant pool. Execution of
any of these instructions requires resolution of its symbolic reference.

https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-5.html#jvms-5.4.5
https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-2.html#jvms-2.4

Resolution is the process of dynamically determining concrete values from symbolic
references in the run-time constant pool.

Resolution of the symbolic reference of one occurrence of
an invokedynamic instruction does not imply that the same symbolic reference is
considered resolved for any other invokedynamic instruction.

For all other instructions above, resolution of the symbolic reference of one occurrence
of an instruction does imply that the same symbolic reference is considered resolved for
any other non-invokedynamic instruction.

(The above text implies that the concrete value determined by resolution for a
specific invokedynamic instruction is a call site object bound to that
specific invokedynamic instruction.)

Resolution can be attempted on a symbolic reference that has already been resolved.
An attempt to resolve a symbolic reference that has already successfully been resolved
always succeeds trivially and always results in the same entity produced by the initial
resolution of that reference.

If an error occurs during resolution of a symbolic reference, then an instance
of IncompatibleClassChangeError (or a subclass) must be thrown at a point in
the program that (directly or indirectly) uses the symbolic reference.

If an attempt by the Java Virtual Machine to resolve a symbolic reference fails
because an error is thrown that is an instance of LinkageError (or a subclass),
then subsequent attempts to resolve the reference always fail with the same error
that was thrown as a result of the initial resolution attempt.

This means that a class in one module that attempts to access, via resolution of a
symbolic reference in its run-time constant pool, an unexported public type in a
different module will always receive the same error indicating an inaccessible
type (§5.4.4), even if the Java SE Platform API is used to dynamically export
the public type's package at some time after the class's first attempt.

A symbolic reference to a call site specifier by a specific invokedynamic instruction must
not be resolved prior to execution of that instruction.

In the case of failed resolution of an invokedynamic instruction, the bootstrap method is
not re-executed on subsequent resolution attempts.

Certain of the instructions above require additional linking checks when resolving
symbolic references. For instance, in order for a getfield instruction to successfully
resolve the symbolic reference to the field on which it operates, it must not only
complete the field resolution steps given in §5.4.3.2 but also check that the field is
not static. If it is a static field, a linking exception must be thrown.

https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-5.html#jvms-5.4.4
https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-5.html#jvms-5.4.3.2

Notably, in order for an invokedynamic instruction to successfully resolve the symbolic
reference to a call site specifier, the bootstrap method specified therein must complete
normally and return a suitable call site object. If the bootstrap method completes
abruptly or returns an unsuitable call site object, a linking exception must be thrown.

Linking exceptions generated by checks that are specific to the execution of a particular
Java Virtual Machine instruction are given in the description of that instruction and are
not covered in this general discussion of resolution. Note that such exceptions, although
described as part of the execution of Java Virtual Machine instructions rather than
resolution, are still properly considered failures of resolution.

The following sections describe the process of resolving a symbolic reference in the
run-time constant pool (§5.1) of a class or interface D. Details of resolution differ with
the kind of symbolic reference to be resolved.

5.4.3.1. Class and Interface Resolution

To resolve an unresolved symbolic reference from D to a class or interface C denoted
by N, the following steps are performed:

1. The defining class loader of D is used to create a class or interface denoted by N.
This class or interface is C. The details of the process are given in §5.3. 
Any exception that can be thrown as a result of failure of class or interface
creation can thus be thrown as a result of failure of class and interface
resolution.

2. If C is an array class and its element type E is a reference type, then a
symbolic reference to the class or interface representing E is resolved by
invoking the algorithm in §5.4.3.1 recursively.

3. If C or E is a value class but is not listed in the ValueTypes attribute of D, or
if C or E is not a value class but is listed in the ValueTypes attribute of D, is
declared as null-free type but is not a value class the class resolution
throws an IncompatibleClassChangeError.

4. Finally, access permissions to C are checked.

• If C is not accessible (§5.4.4) to D, class or interface resolution throws
an IllegalAccessError. 
This condition can occur, for example, if C is a class that was originally declared to
be public but was changed to be non-public after D was compiled. 

If steps 1 and 2 succeed but step 3 or 4 fail, C is still valid and usable. Nevertheless,
resolution fails, and D is prohibited from accessing C or E.

https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-5.html#jvms-5.1
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.3
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.4.3.1
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.4.4

5.4.3.2. Field Resolution

To resolve an unresolved symbolic reference from D to a field in a class or
interface C, the symbolic reference to C given by the field reference must first be
resolved (§5.4.3.1). Therefore, any exception that can be thrown as a result of
failure of resolution of a class or interface reference can be thrown as a result of
failure of field resolution. If the reference to C can be successfully resolved, an
exception relating to the failure of resolution of the field reference itself can be
thrown.

When resolving a field reference, field resolution first attempts to look up the referenced
field in C and its superclasses:

1. If C declares a field with the name and descriptor specified by the field reference,
field lookup succeeds. The declared field is the result of the field lookup.

2. Otherwise, field lookup is applied recursively to the direct superinterfaces of the
specified class or interface C.

3. Otherwise, if C has a superclass S, field lookup is applied recursively to S.

4. Otherwise, field lookup fails. 

Then:

• If field lookup fails, field resolution throws a NoSuchFieldError.

• Otherwise, if field lookup succeeds but the referenced field is not
accessible (§5.4.4) to D, field resolution throws an IllegalAccessError.

• Otherwise, let <E, L1> be the class or interface in which the referenced field is
actually declared and let L2 be the defining loader of D. 
Given that the type of the referenced field is Tf, let T be Tf if Tf is not an array
type, and let T be the element type (§2.4) of Tf otherwise.

• The Java Virtual Machine must impose the loading constraint
that TL1 = TL2 (§5.3.4).

• Let VAD be the ValueTypes attribute of <D, L2> and VAE the ValueTypes
attribute of <E, L1>. If T is listed in VAD but is not listed in VAE or if T is
listed in VAE but is not listed in VAD, field resolution throws an
IncompatibleClassChangeError.

5.4.3.3. Method Resolution

https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.4.3.1
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.4.4
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.3.4

To resolve an unresolved symbolic reference from D to a method in a class C, the
symbolic reference to C given by the method reference is first resolved (§5.4.3.1).
Therefore, any exception that can be thrown as a result of failure of resolution of
a class reference can be thrown as a result of failure of method resolution. If the
reference to C can be successfully resolved, exceptions relating to the resolution
of the method reference itself can be thrown.

When resolving a method reference:

1. If C is an interface, method resolution throws
an IncompatibleClassChangeError.

2. Otherwise, method resolution attempts to locate the referenced method in C and
its superclasses:

• If C declares exactly one method with the name specified by the method
reference, and the declaration is a signature polymorphic method (§2.9.3),
then method lookup succeeds. All the class names mentioned in the
descriptor are resolved (§5.4.3.1). 
The resolved method is the signature polymorphic method declaration. It
is not necessary for C to declare a method with the descriptor specified by
the method reference.

• Otherwise, if C declares a method with the name and descriptor specified
by the method reference, method lookup succeeds.

• Otherwise, if C has a superclass, step 2 of method resolution is
recursively invoked on the direct superclass of C. 
 

3. Otherwise, method resolution attempts to locate the referenced method in the
superinterfaces of the specified class C:

• If the maximally-specific superinterface methods of C for the name and
descriptor specified by the method reference include exactly one method
that does not have its ACC_ABSTRACT flag set, then this method is chosen
and method lookup succeeds.

• Otherwise, if any superinterface of C declares a method with the name
and descriptor specified by the method reference that has neither
its ACC_PRIVATE flag nor its ACC_STATIC flag set, one of these is
arbitrarily chosen and method lookup succeeds.

• Otherwise, method lookup fails. 

https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.4.3.1
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-2.html#jvms-2.9.3
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.4.3.1

5. A maximally-specific superinterface method of a class or interface C for a
particular method name and descriptor is any method for which all of the
following are true:

• The method is declared in a superinterface (direct or indirect) of C.

• The method is declared with the specified name and descriptor.

• The method has neither its ACC_PRIVATE flag nor its ACC_STATIC flag set.

• Where the method is declared in interface I, there exists no other maximally-
specific superinterface method of Cwith the specified name and descriptor that is
declared in a subinterface of I. 

The result of method resolution is determined by whether method lookup succeeds or
fails:

• If method lookup fails, method resolution throws a NoSuchMethodError.

• Otherwise, if method lookup succeeds and the referenced method is not
accessible (§5.4.4) to D, method resolution throws
an IllegalAccessError.

• Otherwise, let <E, L1> be the class or interface in which the referenced
method m is actually declared, and let L2 be the defining loader of D. 
Given that the return type of m is Tr, and that the formal parameter types
of m are Tf1, ..., Tfn, then:  
If Tr is not an array type, let T0 be Tr; otherwise, let T0 be the element type (§2.4)
of Tr. 
For i = 1 to n: If Tfi is not an array type, let Ti be Tfi; otherwise, let Ti be the
element type (§2.4) of Tfi.

• The Java Virtual Machine must impose the loading
constraints TiL1 = TiL2 for i = 0 to n (§5.3.4).

• Let VAD be the ValueTypes attribute of <D, L2> and VAE the ValueTypes
attribute of <E, L1>.  
For i = 1 to n: If Tfi is not an array type, let Ti be Tfi; otherwise, let Ti be the
element type (§2.4) of Tfi. 
If Ti is listed in VAD but is not listed in VAE, or if Ti is listed in VAE but is
not listed in VAD, method resolution throws an
IncompatibleClassChangeError. 
 

https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.4.4
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.3.4
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-2.html#jvms-2.4

When resolution searches for a method in the class's superinterfaces, the best outcome is to identify a
maximally-specific non-abstract method. It is possible that this method will be chosen by method
selection, so it is desirable to add class loader constraints for it.

Otherwise, the result is nondeterministic. This is not new: The Java® Virtual Machine Specification has
never identified exactly which method is chosen, and how "ties" should be broken. Prior to Java SE 8,
this was mostly an unobservable distinction. However, beginning with Java SE 8, the set of interface
methods is more heterogenous, so care must be taken to avoid problems with nondeterministic
behavior. Thus:

• Superinterface methods that are private and static are ignored by resolution. This is
consistent with the Java programming language, where such interface methods are not
inherited.

• Any behavior controlled by the resolved method should not depend on whether the method
is abstract or not. 

Note that if the result of resolution is an abstract method, the referenced class C may be non-
abstract. Requiring C to be abstract would conflict with the nondeterministic choice of
superinterface methods. Instead, resolution assumes that the run time class of the invoked object has a
concrete implementation of the method.

5.4.3.4. Interface Method Resolution

To resolve an unresolved symbolic reference from D to an interface method in an
interface C, the symbolic reference to C given by the interface method reference
is first resolved (§5.4.3.1). Therefore, any exception that can be thrown as a result
of failure of resolution of an interface reference can be thrown as a result of
failure of interface method resolution. If the reference to C can be successfully
resolved, exceptions relating to the resolution of the interface method reference
itself can be thrown.

When resolving an interface method reference:

1. If C is not an interface, interface method resolution throws
an IncompatibleClassChangeError.

2. Otherwise, if C declares a method with the name and descriptor specified by the
interface method reference, method lookup succeeds.

3. Otherwise, if the class Object declares a method with the name and descriptor
specified by the interface method reference, which has its ACC_PUBLIC flag set
and does not have its ACC_STATIC flag set, method lookup succeeds.

4. Otherwise, if the maximally-specific superinterface methods (§5.4.3.3) of C for
the name and descriptor specified by the method reference include exactly one
method that does not have its ACC_ABSTRACT flag set, then this method is
chosen and method lookup succeeds.

https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.4.3.1
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.4.3.3

5. Otherwise, if any superinterface of C declares a method with the name and
descriptor specified by the method reference that has neither
its ACC_PRIVATE flag nor its ACC_STATIC flag set, one of these is arbitrarily
chosen and method lookup succeeds.

6. Otherwise, method lookup fails. 

The result of interface method resolution is determined by whether method lookup
succeeds or fails:

• If method lookup fails, interface method resolution throws
a NoSuchMethodError.

• If method lookup succeeds and the referenced method is not accessible
(§5.4.4) to D, interface method resolution throws an IllegalAccessError.

• Otherwise, let <E, L1> be the class or interface in which the referenced interface
method m is actually declared, and let L2 be the defining loader of D. 
Given that the return type of m is Tr, and that the formal parameter types
of m are Tf1, ..., Tfn, then:  
If Tr is not an array type, let T0 be Tr; otherwise, let T0 be the element type (§2.4)
of Tr. 
For i = 1 to n: If Tfi is not an array type, let Ti be Tfi; otherwise, let Ti be the
element type (§2.4) of Tfi.

• The Java Virtual Machine must impose the loading
constraints TiL1 = TiL2 for i = 0 to n (§5.3.4).

• Let VAD be the ValueTypes attribute of <D, L2> and VAE the ValueTypes
attribute of <E, L1>.  
For i = 1 to n: If Tfi is not an array type, let Ti be Tfi; otherwise, let Ti be the
element type (§2.4) of Tfi. 
If Ti is listed in VAD but is not listed in VAE, or if Ti is listed in VAE but is
not listed in VAD, method resolution throws an
IncompatibleClassChangeError. 
 

The clause about accessibility is necessary because interface method resolution may pick
a private method of interface C. (Prior to Java SE 8, the result of interface method resolution could
be a non-public method of class Object or a static method of class Object; such results were
not consistent with the inheritance model of the Java programming language, and are disallowed in
Java SE 8 and above.)

https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.4.4
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-5.html#jvms-5.3.4
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-2.html#jvms-2.4

5.5. Initialization
Initialization of a class or interface consists of executing its class or interface
initialization method (§2.9).

A class or interface C may be initialized only as a result of:

 • The execution of any one of the Java Virtual Machine
instructions new, defaultvalue, getstatic, putstatic, or invokestatic that
references C (§new, §defaultvalue, §getstatic, §putstatic, §invokestatic). These
instructions reference a class or interface directly or indirectly through either a
field reference or a method reference. 
Upon execution of a new or defaultvalue instruction, the referenced class is
initialized if it has not been initialized already. 
Upon execution of a getstatic, putstatic, or invokestatic instruction, the class or
interface that declared the resolved field or method is initialized if it has not been
initialized already. 
Upon execution of a anewarray, or multianewarray, if the element type of the
array is a value classdescribed as a null-free type, the class is resolved and
initialized if it has not been initialized already.

 • The first invocation of a java.lang.invoke.MethodHandle instance which
was the result of method handle resolution (§5.4.3.5) for a method handle of kind
2 (REF_getStatic), 4 (REF_putStatic), 6 (REF_invokeStatic), or 8
(REF_newInvokeSpecial). 
This implies that the class of a bootstrap method is initialized when the bootstrap method is
invoked for an invokedynamic instruction (§invokedynamic), as part of the continuing resolution
of the call site specifier. 

 • Invocation of certain reflective methods in the class library (§2.12), for example,
in class Class or in package java.lang.reflect. 

 • If C is a class, the initialization of one of its subclasses. 

 • If C is an interface that declares a non-abstract, non-static method, the
initialization of a class that implements C directly or indirectly.

 • If C is a reference type and a containing class B declares a null-free field with
type C with the ACC_FLATTENABLE flag set, C is initialized during step 8 of the
initialization process of B.

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.9
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.new
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.getstatic
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.putstatic
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.invokestatic
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.5
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.invokedynamic
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.12

 • If C is a class, its designation as the initial class at Java Virtual Machine startup
(§5.2). 

Prior to initialization, a class or interface must be linked, that is, verified, prepared, and
optionally resolved.

Because the Java Virtual Machine is multithreaded, initialization of a class or interface
requires careful synchronization, since some other thread may be trying to initialize the
same class or interface at the same time. There is also the possibility that initialization of
a class or interface may be requested recursively as part of the initialization of that class
or interface. The implementation of the Java Virtual Machine is responsible for taking
care of synchronization and recursive initialization by using the following procedure. It
assumes that the Class object has already been verified and prepared, and that
the Class object contains state that indicates one of four situations:

 • This Class object is verified and prepared but not initialized. 

 • This Class object is being initialized by some particular thread. 

 • This Class object is fully initialized and ready for use. 

 • This Class object is in an erroneous state, perhaps because initialization was
attempted and failed. 

For each class or interface C, there is a unique initialization lock LC. The mapping
from C to LC is left to the discretion of the Java Virtual Machine implementation. For
example, LC could be the Class object for C, or the monitor associated with
that Class object. The procedure for initializing C is then as follows:

 1. Synchronize on the initialization lock, LC, for C. This involves waiting until the
current thread can acquire LC. 

 2. If the Class object for C indicates that initialization is in progress for C by some
other thread, then release LC and block the current thread until informed that the
in-progress initialization has completed, at which time repeat this procedure. 
Thread interrupt status is unaffected by execution of the initialization procedure. 

 3. If the Class object for C indicates that initialization is in progress for C by the
current thread, then this must be a recursive request for initialization.

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.2

Release LC and complete normally. 

 4. If the Class object for C indicates that C has already been initialized, then no
further action is required. Release LC and complete normally. 

 5. If the Class object for C is in an erroneous state, then initialization is not
possible. Release LC and throw a NoClassDefFoundError. 

 6. Otherwise, record the fact that initialization of the Class object for C is in
progress by the current thread, and release LC. 
Then, initialize each final static field of C with the constant value in
its ConstantValue attribute (§4.7.2), in the order the fields appear in
the ClassFile structure. 

 7. Next, if C is a class rather than an interface, and its superclass has not yet been
initialized, then let SC be its superclass and let SI1, ..., SIn be all superinterfaces
of C (whether direct or indirect) that declare at least one non-abstract, non-
static method. The order of superinterfaces is given by a recursive
enumeration over the superinterface hierarchy of each interface directly
implemented by C. For each interface I directly implemented by C (in the order of
the interfaces array of C), the enumeration recurs on I's superinterfaces (in
the order of the interfaces array of I) before returning I. 
For each S in the list [SC, SI1, ..., SIn], recursively perform this entire procedure
for S. If necessary, verify and prepare S first. 
If the initialization of S completes abruptly because of a thrown exception,
then acquire LC, label the Class object for C as erroneous, notify all
waiting threads, release LC, and complete abruptly, throwing the same
exception that resulted from initializing SC.

 8. If C has any null-free field F declared with a reference type FC and the
ACC_FLATTENABLE flag set, and FC has not yet been initialized, then this
entire procedure is performed for FC, even if F is not flattened. If necessary,
verify and prepare FC first. This step might require to resolve, load and prepare
FC if FC has not yet been resolved, loaded or prepared.

 If the initialization of FC completes abruptly because of a thrown exception,
then acquire LC, label the Class object for C as erroneous, notify all
waiting threads, release LC, and complete abruptly, throwing the same
exception that resulted from initializing FC.

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7.2

 9. Next, determine whether assertions are enabled for C by querying its defining
class loader. 

 10. Next, execute the class or interface initialization method of C. 

 11. If the execution of the class or interface initialization method completes normally,
then acquire LC, label the Class object for C as fully initialized, notify all waiting
threads, release LC, and complete this procedure normally. 

 12. Otherwise, the class or interface initialization method must have completed
abruptly by throwing some exception E. If the class of E is not Error or
one of its subclasses, then create a new instance of the
class ExceptionInInitializerError with E as the argument, and use
this object in place of E in the following step. If a new instance
of ExceptionInInitializerError cannot be created because
anOutOfMemoryError occurs, then use an OutOfMemoryError object in
place of E in the following step.  

 13. Acquire LC, label the Class object for C as erroneous, notify all waiting
threads, release LC, and complete this procedure abruptly with reason E or
its replacement as determined in the previous step. 

A Java Virtual Machine implementation may optimize this procedure by eliding the lock
acquisition in step 1 (and release in step 4/5) when it can determine that the initialization
of the class has already completed, provided that, in terms of the Java memory model,
all happens-before orderings (JLS §17.4.5) that would exist if the lock were acquired,
still exist when the optimization is performed.

6.5. Instructions

aastore

Operation

Store into reference array

Format

 
aastore  

Forms

aastore = 83 (0x53)

Operand Stack

..., arrayref, index, value →

...

Description

The arrayref must be of type reference and must refer to an array whose components
are of type reference. The index must be of type int and value must be of
type reference. The arrayref, index, and value are popped from the operand stack.
The reference value is stored as the component of the array at index.

At run time, the type of value must be compatible with the type of the components of the
array referenced by arrayref. Specifically, assignment of a value of reference
type S (source) to an array component of reference type T (target) is allowed only if:

 • If S is a class type, then:

 ◦ If T is a class type, then S must be the same class as T, or S must be a
subclass of T;

 ◦ If T is an interface type, then S must implement interface T. 

 • If S is an interface type, then:

 ◦ If T is a class type, then T must be Object.

 ◦ If T is an interface type, then T must be the same interface as S or a
superinterface of S.

 • If S is an array type, namely, the type SC[], that is, an array of components of
type SC, then:

 ◦ If T is a class type, then T must be Object.

 ◦ If T is an interface type, then T must be one of the interfaces implemented
by arrays (JLS §4.10.3).

 ◦ If T is an array type TC[], that is, an array of components of type TC, then
one of the following must be true:

 ▪ TC and SC are the same primitive type.

 ▪ TC and SC are reference types, and type SC is assignable to TC by
these run-time rules. 

Run-time Exceptions

If arrayref is null, aastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref,
the aastore instruction throws an ArrayIndexOutOfBoundsException.

Otherwise, if the actual type of the components of the array is a value class type,
and value is the null reference, aastore throws a NullPointerException.

Note: it is weird to have a special case for null here. Considering that null is not
assignable to a null-free type, it should be handle by the statement below and throw an
ArrayStoreException.

Otherwise, if arrayref is not null and the actual type of value is not assignment
compatible (JLS §5.2) with the actual type of the components of the
array, aastore throws an ArrayStoreException.

anewarray

Operation

Create new array of reference

Format

 
anewarray  
indexbyte1  
indexbyte2  

Forms

anewarray = 189 (0xbd)

Operand Stack

..., count →

..., arrayref

Description

The count must be of type int. It is popped off the operand stack. The count represents
the number of components of the array to be created. The
unsigned indexbyte1 and indexbyte2 are used to construct an index into the run-time
constant pool of the current class (§2.6), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The run-time constant pool item at that index must be a
symbolic reference to a class, array, or interface type. The named class, array, or
interface type is resolved (§5.4.3.1).

If the type of the components is a null-free type, then the type of the component is
initialized if it has not already been initialized (§5.5).

A new array with components of that type, of length count, is allocated from the
garbage-collected heap, and a reference arrayref to this new array object is pushed
onto the operand stack. If the type of the components is a value class typenull-free type,
all components of the new array are initialized to the default value of the fundamental
type this value class of this null-free type(§2.4). Otherwise, all components of the new
array are initialized to null, the default value for nullable reference types (§2.4).

Linking Exceptions

During resolution of the symbolic reference to the class, array, or interface type,
any of the exceptions documented in §5.4.3.1 can be thrown.

Run-time Exceptions

Otherwise, if the execution of this anewarray instruction causes initialization of the type
of the components, anewarray may throw an Error as detailed in (§5.5).

Otherwise, if count is less than zero, the anewarray instruction throws
a NegativeArraySizeException.

Notes

The anewarray instruction is used to create a single dimension of an array of object
references or part of a multidimensional array.

checkcast

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.6
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.1

Operation

Check whether object is of given type

Format

 
checkcast  
indexbyte1  
indexbyte2  

Forms

checkcast = 192 (0xc0)

Operand Stack

..., objectref →

..., objectref

Description

The objectref must be of type reference. The
unsigned indexbyte1 and indexbyte2 are used to construct an index into the run-time
constant pool of the current class (§2.6), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The run-time constant pool entry at the index must be a
symbolic reference to a class, array, or interface type, or a type descriptor.

If objectref is null and the constant pool entry is not the type descriptor of a null-free
type, then the operand stack is unchanged.

If objectref is null and the constant pool entry is the type descriptor of a null-free type,
then a NullPointerException is thrown.

Otherwise, the named class, array, or interface type or the fundamental type of the type
descriptor is resolved (§5.4.3.1). If objectref can be cast to the resolved class, array, or
interface type, and is compatible with the type descriptor if any, the operand stack is
unchanged; otherwise, the checkcast instruction throws a ClassCastException.

The following rules are used to determine whether an objectref that is not null can be
cast to the resolved type. If S is the type of the object referred to by objectref, and T is
the resolved class, array, or interface type, then checkcast determines
whether objectref can be cast to type T as follows:

• If S is a class type, then:

https://docs.oracle.com/javase/specs/jvms/se11/html/jvms-2.html#jvms-2.6
https://docs.oracle.com/javase/specs/jvms/se11/html/jvms-5.html#jvms-5.4.3.1

◦ If T is a class type, then S must be the same class as T, or S must be a
subclass of T; 

◦ If T is an interface type, then S must implement interface T. 

•  

• If S is an array type SC[], that is, an array of components of type SC, then:

◦ If T is a class type, then T must be Object. 

◦ If T is an interface type, then T must be one of the interfaces implemented
by arrays (JLS §4.10.3). 

◦ If T is an array type TC[], that is, an array of components of type TC, then
one of the following must be true:

▪ TC and SC are the same primitive type. 

▪ TC and SC are reference types and,

▪ if TC is a null-free type:

▪ SC and TC are the same type

▪ otherwise, and type SC can be cast to TC by recursive
application of these rules. 

 

 

Linking Exceptions

During resolution of the symbolic reference to the class, array, or interface type,
any of the exceptions documented in §5.4.3.1 can be thrown.

Run-time Exception

Otherwise, if objectref cannot be cast to the resolved class, array, or interface
type, the checkcastinstruction throws a ClassCastException.

https://docs.oracle.com/javase/specs/jvms/se11/html/jvms-5.html#jvms-5.4.3.1

Notes

The checkcast instruction is very similar to the instanceof instruction (§instanceof). It
differs in its treatment of null, its behavior when its test fails (checkcast throws an
exception, instanceof pushes a result code), and its effect on the operand stack.

if_acmp<cond>

Operation

Branch if reference comparison succeeds

Format

 
if_acmp<cond>  
branchbyte1  
branchbyte2  

Forms

if_acmpeq = 165 (0xa5)

if_acmpne = 166 (0xa6)

Operand Stack

..., value1, value2 →

...

Description

Both value1 and value2 must be of type reference. They are both popped from the
operand stack and compared. The results of the comparison are as follows:

 • if_acmpeq succeeds if and only if value1 = value2 and neither is an instance of a
value class.

 • if_acmpne succeeds if and only if value1 ≠ value2 or either is an instance of a
value class.

If the comparison succeeds, the unsigned branchbyte1 and branchbyte2 are used to
construct a signed 16-bit offset, where the offset is calculated to be (branchbyte1 << 8) |

https://docs.oracle.com/javase/specs/jvms/se11/html/jvms-6.html#jvms-6.5.instanceof

 branchbyte2. Execution then proceeds at that offset from the address of the opcode of
this if_acmp<cond> instruction. The target address must be that of an opcode of an
instruction within the method that contains this if_acmp<cond> instruction.

Otherwise, if the comparison fails, execution proceeds at the address of the instruction
following this if_acmp<cond>instruction.

monitorenter

Operation

Enter monitor for object

Format

 
monitorenter  

Forms

monitorenter = 194 (0xc2)

Operand Stack

..., objectref →

...

Description

The objectref must be of type reference.

Each object is associated with a monitor. A monitor is locked if and only if it has an
owner. The thread that executesmonitorenter attempts to gain ownership of the monitor
associated with objectref, as follows:

 • If the entry count of the monitor associated with objectref is zero, the thread
enters the monitor and sets its entry count to one. The thread is then the owner
of the monitor. 

 • If the thread already owns the monitor associated with objectref, it reenters the
monitor, incrementing its entry count. 

 • If another thread already owns the monitor associated with objectref, the thread
blocks until the monitor's entry count is zero, then tries again to gain ownership. 

Run-time Exception

If objectref is null, monitorenter throws a NullPointerException.

Otherwise, if objectref is an instance of a value class , monitorenter throws
an IllegalMonitorStateException.

Notes

A monitorenter instruction may be used with one or more monitorexit instructions
(§monitorexit) to implement asynchronized statement in the Java programming
language (§3.14). The monitorenter and monitorexit instructions are not used in the
implementation of synchronized methods, although they can be used to provide
equivalent locking semantics. Monitor entry on invocation of a synchronized method,
and monitor exit on its return, are handled implicitly by the Java Virtual Machine's
method invocation and return instructions, as if monitorenter and monitorexit were used.

The association of a monitor with an object may be managed in various ways that are
beyond the scope of this specification. For instance, the monitor may be allocated and
deallocated at the same time as the object. Alternatively, it may be dynamically
allocated at the time when a thread attempts to gain exclusive access to the object and
freed at some later time when no thread remains in the monitor for the object.

The synchronization constructs of the Java programming language require support for
operations on monitors besides entry and exit. These include waiting on a monitor
(Object.wait) and notifying other threads waiting on a monitor
(Object.notifyAll and Object.notify). These operations are supported in the
standard package java.lang supplied with the Java Virtual Machine. No explicit
support for these operations appears in the instruction set of the Java Virtual Machine.

monitorexit

Operation

Exit monitor for object

Format

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.monitorexit
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-3.html#jvms-3.14

 
monitorexit  

Forms

monitorexit = 195 (0xc3)

Operand Stack

..., objectref →

...

Description

The objectref must be of type reference.

The thread that executes monitorexit must be the owner of the monitor associated with
the instance referenced byobjectref.

The thread decrements the entry count of the monitor associated with objectref. If as a
result the value of the entry count is zero, the thread exits the monitor and is no longer
its owner. Other threads that are blocking to enter the monitor are allowed to attempt to
do so.

Run-time Exceptions

If objectref is null, monitorexit throws a NullPointerException.

Otherwise, if objectref is an instance of a value class , monitorexit throws
a IllegalMonitorStateException.

Otherwise, if the thread that executes monitorexit is not the owner of the monitor
associated with the instance referenced by objectref, monitorexit throws
an IllegalMonitorStateException.

Otherwise, if the Java Virtual Machine implementation enforces the rules on
structured locking described in §2.11.10 and if the second of those rules is
violated by the execution of this monitorexit instruction, then monitorexit throws
an IllegalMonitorStateException.

Notes

One or more monitorexit instructions may be used with a monitorenter instruction
(§monitorenter) to implement a synchronized statement in the Java programming
language (§3.14). The monitorenter and monitorexit instructions are not used in the

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.11.10
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.monitorenter
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-3.html#jvms-3.14

implementation of synchronized methods, although they can be used to provide
equivalent locking semantics.

The Java Virtual Machine supports exceptions thrown within synchronized methods
and synchronized statements differently:

 • Monitor exit on normal synchronized method completion is handled by the
Java Virtual Machine's return instructions. Monitor exit on
abrupt synchronized method completion is handled implicitly by the Java
Virtual Machine's athrow instruction. 

 • When an exception is thrown from within a synchronized statement, exit from
the monitor entered prior to the execution of the synchronized statement is
achieved using the Java Virtual Machine's exception handling mechanism
(§3.14).

multianewarray

Operation

Create new multidimensional array

Format

 
multianewarray  
indexbyte1  
indexbyte2  
dimensions  

Forms

multianewarray = 197 (0xc5)

Operand Stack

..., count1, [count2, ...] →

..., arrayref

Description

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-3.html#jvms-3.14

The dimensions operand is an unsigned byte that must be greater than or equal to 1. It
represents the number of dimensions of the array to be created. The operand stack
must contain dimensions values. Each such value represents the number of
components in a dimension of the array to be created, must be of type int, and must
be non-negative. The count1 is the desired length in the first dimension, count2 in the
second, etc.

All of the count values are popped off the operand stack. The
unsigned indexbyte1 and indexbyte2 are used to construct an index into the run-time
constant pool of the current class (§2.6), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The run-time constant pool item at the index must be a
symbolic reference to a class, array, or interface type. The named class, array, or
interface type is resolved (§5.4.3.1). The resulting entry must be an array class type of
dimensionality greater than or equal to dimensions.

If the type of the components of the last dimension is a null-free type, then the type of
the component is initialized if it has not already been initialized (§5.5).

A new multidimensional array of the array type is allocated from the garbage-collected
heap. If any count value is zero, no subsequent dimensions are allocated. The
components of the array in the first dimension are initialized to subarrays of the type of
the second dimension, and so on. If the type of the components of the last allocated
dimension of the array is a value class null-free type, all components are initialized to
the default value of this value class its fundamental value class (§4.3.2). Otherwise,
they are initialized to the default initial value (§2.3, §2.4) for the element type of the
array type. A reference arrayref to the new array is pushed onto the operand stack.

Linking Exceptions

During resolution of the symbolic reference to the class, array, or interface type,
any of the exceptions documented in §5.4.3.1 can be thrown.

Otherwise, if the current class does not have permission to access the element
type of the resolved array class, multianewarray throws
an IllegalAccessError.

Run-time Exception

Otherwise, if the execution of this anewarray instruction causes initialization of the type
of the components of the last dimension, anewarray may throw an Error as detailed in
(§5.5).

Otherwise, if any of the dimensions values on the operand stack are less than
zero, the multianewarrayinstruction throws a NegativeArraySizeException.

Notes

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.6
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.3
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.1

It may be more efficient to use newarray or anewarray (§newarray, §anewarray) when
creating an array of a single dimension.

The array class referenced via the run-time constant pool may have more dimensions
than the dimensions operand of the multianewarray instruction. In that case, only the
first dimensions of the dimensions of the array are created.

new

Operation

Create new object

Format

 
new  
indexbyte1  
indexbyte2  

Forms

new = 187 (0xbb)

Operand Stack

... →

..., objectref

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the run-
time constant pool of the current class (§2.6), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The run-time constant pool item at the index must be a
symbolic reference to a class or interface type. The named class or interface type is
resolved (§5.4.3.1) and should result in an object class type a nullable type not derived
from a value class. Memory for a new instance of that object class is allocated from the
garbage-collected heap, and the instance variables of the new object are initialized
according to their declaration (§4.5), using the default initial values (§2.3, §2.4).
The objectref, a reference to the instance, is pushed onto the operand stack.

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.newarray
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.anewarray
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.6
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.5
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.3
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.4

On successful resolution of the class, it is initialized (§5.5) if it has not already been
initialized.

Linking Exceptions

During resolution of the symbolic reference to the class, array, or interface type,
any of the exceptions documented in §5.4.3.1 can be thrown.

Otherwise, if the symbolic reference to the class, array, or interface type resolves
to an interface or is an abstract class or a nullable type derived from a value
class or a null-free type, new throws an InstantiationError.

Run-time Exception

Otherwise, if execution of this new instruction causes initialization of the
referenced class, new may throw an Error as detailed in JLS §15.9.4.

Notes

The new instruction does not completely create a new instance; instance creation is not
completed until an instance initialization method (§2.9) has been invoked on the
uninitialized instance.

putfield

Operation

Set field in object

Format

 
putfield  
indexbyte1  
indexbyte2  

Forms

putfield = 181 (0xb5)

Operand Stack

..., objectref, value →

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.5
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.9

...

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the run-
time constant pool of the current class (§2.6), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The run-time constant pool item at that index must be a
symbolic reference to a field (§5.1), which gives the name and descriptor of the field as
well as a symbolic reference to the class in which the field is to be found. The class
of objectref must not be an array nor a value class. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
run-time package (§5.3) as the current class, then the class of objectref must be either
the current class or a subclass of the current class.

The referenced field is resolved (§5.4.3.2). The type of a value stored by
a putfield instruction must be compatible with the descriptor of the referenced field
(§4.3.2). If the field descriptor type is boolean, byte, char, short, or int, then
the value must be an int. If the field descriptor type is float, long, or double, then
the value must be a float, long, or double, respectively. If the field descriptor type is
a reference type, then the value must be of a type that is assignment compatible (JLS
§5.2) with the field descriptor type. If the field is final, it must be declared in the
current class, and the instruction must occur in an instance initialization method
(<init>) of the current class (§2.9).

The value and objectref are popped from the operand stack. The objectref must be of
type reference. The value undergoes value set conversion (§2.8.3), resulting
in value', and the referenced field in objectref is set to value'.

Linking Exceptions

During resolution of the symbolic reference to the field, any of the exceptions
pertaining to field resolution (§5.4.3.2) can be thrown.

Otherwise, if the resolved field is a static field, putfield throws
an IncompatibleClassChangeError.

Otherwise, if the resolved field is a field of a value class, putfield throws
an IllegalAccessError.

Otherwise, if the field is final, it must be declared in the current class, and the
instruction must occur in an instance initialization method (<init>) of the current
class. Otherwise, an IllegalAccessError is thrown.

Run-time Exception

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.6
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.3
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.9
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.8.3
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.2

Otherwise, if objectref is null, the putfield instruction throws
a NullPointerException.

Otherwise, if the field has been declared with ACC_FLATTENABLE flag set and the
value is the null reference, a NullPointerException is thrown.

Note: it is weird to have a special case for null. If the field has been declared with a
null-free type and null or a nullable type is on the top of stack, then the value is not
assignment compatible with the field descriptor, and this should have been detected
earlier.

putstatic

Operation

Set static field in class

Format

 
putstatic  
indexbyte1  
indexbyte2  

Forms

putstatic = 179 (0xb3)

Operand Stack

..., value →

...

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the run-
time constant pool of the current class (§2.6), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The run-time constant pool item at that index must be a
symbolic reference to a field (§5.1), which gives the name and descriptor of the field as
well as a symbolic reference to the class or interface in which the field is to be found.
The referenced field is resolved (§5.4.3.2).

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.6
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.2

On successful resolution of the field, the class or interface that declared the resolved
field is initialized (§5.5) if that class or interface has not already been initialized.

The type of a value stored by a putstatic instruction must be compatible with the
descriptor of the referenced field (§4.3.2). If the field descriptor type
is boolean, byte, char, short, or int, then the value must be an int. If the field
descriptor type is float, long, or double, then the value must be a float, long,
or double, respectively. If the field descriptor type is a reference type, then
the value must be of a type that is assignment compatible (JLS §5.2) with the field
descriptor type. If the field is final, it must be declared in the current class, and the
instruction must occur in the <clinit> method of the current class (§2.9).

The value is popped from the operand stack and undergoes value set conversion
(§2.8.3), resulting in value'. The class field is set to value'.

Linking Exceptions

During resolution of the symbolic reference to the class or interface field, any of
the exceptions pertaining to field resolution (§5.4.3.2) can be thrown.

Otherwise, if the resolved field is not a static (class) field or an interface
field, putstatic throws an IncompatibleClassChangeError.

Otherwise, if the field is final, it must be declared in the current class, and the
instruction must occur in the <clinit> method of the current class. Otherwise,
an IllegalAccessError is thrown.

Run-time Exception

Otherwise, if execution of this putstatic instruction causes initialization of the
referenced class or interface, putstatic may throw an Error as detailed in §5.5.

Otherwise, if the field has been declared with ACC_FLATTENABLE flag set and the
value is the null reference, a NullPointerException is thrown.

Note: it is weird to have a special case for null. If the field has been declared with a
null-free type and null or a nullable type is on the top of stack, then the value is not
assignment compatible with the field descriptor, and this should have been detected
earlier.

Notes

A putstatic instruction may be used only to set the value of an interface field on the
initialization of that field. Interface fields may be assigned to only once, on execution of

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.5
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.9
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.8.3
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.5

an interface variable initialization expression when the interface is initialized (§5.5, JLS
§9.3.1).

defaultvalue

Operation

Provide a value class instance with all its instance variables set to their default value.

Format

 
defaultvalue  
indexbyte1  
indexbyte2  

Forms

defaultvalue = 203 (0xcb)

Operand Stack

... →

…, valueref

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the run-
time constant pool of the current class (§2.6), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The run-time constant pool item at the index must be a
symbolic reference to a value class. The named value class is resolved (§5.4.3.1) and
should result in a value class null-free type. A valueref, a reference to an instance of
the value class of this null-free type, is pushed onto the operand stack. The valueref can
point to either a newly allocated instance or an existing instance, either stored in or
outside of the Java heap. All instance variables of this instance must have their values
set according to their declaration (§4.5), and the default initial values (§2.3, §2.4).

On successful resolution of the class, it is initialized (§5.5) if it has not already been
initialized.

Linking Exceptions

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.5
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.6
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.5
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.3
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.4
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.5

During resolution of the symbolic reference to the class, array, or interface type,
any of the exceptions documented in §5.4.3.1 can be thrown.

Otherwise, if the symbolic reference to the class, array, or interface type resolves
to an interface or is an abstract class, defaultvalue throws
an InstantiationError.

Otherwise, if the symbolic reference to the class, array, or interface type resolves
to an object class a nullable type, defaultvalue throws
an IncompatibleClassChangeError.

Run-time Exception

Otherwise, if execution of this defaultvalue instruction causes initialization of the
referenced class, defaultvalue may throw an Error as detailed in JLS §15.9.4.

Notes

The defaultvalue instruction does provide a completely initialized instance; known as the
default value of the value class.

withfield

Operation

Return an instance of a value class with an updated instance field.

Format

 
withfield  
indexbyte1  
indexbyte2  

Forms

withtfield = 204 (0xcc)

Operand Stack

..., valueref, value →

…, newvalueref

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.1

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the run-
time constant pool of the current class (§2.6), where the value of the index is
(indexbyte1 << 8) | indexbyte2. The run-time constant pool item at that index must be a
symbolic reference to a field (§5.1), which gives the name and descriptor of the field as
well as a symbolic reference to the value class in which the field is to be found.

The referenced field is resolved (§5.4.3.2). The type of a value stored by
a withfield instruction must be compatible with the descriptor of the referenced field
(§4.3.2). If the field descriptor type is boolean, byte, char, short, or int, then
the value must be an int. If the field descriptor type is float, long, or double, then
the value must be a float, long, or double, respectively. If the field descriptor type is
a reference type, then the value must be of a type that is assignment compatible (JLS
§5.2) with the field descriptor type.

The value and valueref are popped from the operand stack. The valueref must be of
type reference. The value undergoes value set conversion (§2.8.3), resulting
in value', a copy of valueref is created, resulting in newvalueref and the referenced field
in newvalueref is set to value’ before newvalueref is pushed on the stack.

Linking Exceptions

During resolution of the symbolic reference to the field, any of the exceptions
pertaining to field resolution (§5.4.3.2) can be thrown.

Otherwise, if the resolved field is a static field, withfield throws
an IncompatibleClassChangeError.

Otherwise, if the resolved field is a field of an object class, withfield throws
an IncompatibleClassChangeError.

The field must be final, it must be declared in the current value class, and the
instruction must occur in a method of the current value class. Otherwise,
an IllegalAccessError is thrown.

Run-time Exception

Otherwise, if valueref is null, the withfield instruction throws
a NullPointerException.

Otherwise, if the resolved field has been declared with the ACC_FLATTENABLE flag
set and the value is the null reference, a NullPointerException is thrown.

Note: it is weird to have a special case for null. If the field has been declared with a
null-free type and null or a nullable type is on the top of stack, then the value is not

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.6
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.8.3
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html#jvms-5.4.3.2

assignment compatible with the field descriptor, and this should have been detected
earlier.

Legal Notice
Copyright © 2018 Oracle America, Inc. 4150 Network Circle, Santa Clara, California 95054, U.S.A. All
rights reserved.

Notice

The Specification is protected by copyright and the information described therein may be protected by
one or more U.S. patents, foreign patents, or pending applications. Except as provided under the
following license, no part of the Specification may be reproduced in any form by any means without the
prior written authorization of Oracle America, Inc. ("Oracle") and its licensors, if any. Any use of the
Specification and the information described therein will be governed by the terms and conditions of this
Agreement.

Subject to the terms and conditions of this license, including your compliance with Paragraphs 1 and 2
below, Oracle hereby grants you a fully-paid, non-exclusive, non-transferable, limited license (without the
right to sublicense) under Oracle's intellectual property rights to:

1. Review the Specification for the purposes of evaluation. This includes: (i) developing
implementations of the Specification for your internal, non-commercial use; (ii) discussing the
Specification with any third party; and (iii) excerpting brief portions of the Specification in oral or
written communications which discuss the Specification provided that such excerpts do not in the
aggregate constitute a significant portion of the Technology. 

2. Distribute implementations of the Specification to third parties for their testing and evaluation use,
provided that any such implementation:

i. does not modify, subset, superset or otherwise extend the Licensor Name Space, or
include any public or protected packages, classes, Java interfaces, fields or methods
within the Licensor Name Space other than those required/authorized by the
Specification or Specifications being implemented; 

ii. is clearly and prominently marked with the word "UNTESTED" or "EARLY ACCESS" or
"INCOMPATIBLE" or "UNSTABLE" or "BETA" in any list of available builds and in
proximity to every link initiating its download, where the list or link is under Licensee's
control; and  

iii. includes the following notice: "This is an implementation of an early-draft specification
developed under the Java Community Process (JCP) and is made available for testing
and evaluation purposes only. The code is not compatible with any specification of the
JCP." 

The grant set forth above concerning your distribution of implementations of the specification is
contingent upon your agreement to terminate development and distribution of your "early draft"
implementation as soon as feasible following final completion of the specification. If you fail to do so, the
foregoing grant shall be considered null and void.

No provision of this Agreement shall be understood to restrict your ability to make and distribute to third
parties applications written to the Specification.

Other than this limited license, you acquire no right, title or interest in or to the Specification or any other
Oracle intellectual property, and the Specification may only be used in accordance with the license terms
set forth herein. This license will expire on the earlier of: (a) two (2) years from the date of Release listed
above; (b) the date on which the final version of the Specification is publicly released; or (c) the date on
which the Java Specification Request (JSR) to which the Specification corresponds is withdrawn. In
addition, this license will terminate immediately without notice from Oracle if you fail to comply with any
provision of this license. Upon termination, you must cease use of or destroy the Specification.

"Licensor Name Space" means the public class or interface declarations whose names begin with "java",
"javax", "com.oracle" or their equivalents in any subsequent naming convention adopted by Oracle
through the Java Community Process, or any recognized successors or replacements thereof.

Trademarks

No right, title, or interest in or to any trademarks, service marks, or trade names of Oracle or Oracle's
licensors is granted hereunder. Oracle, the Oracle logo, Java are trademarks or registered trademarks of
Oracle USA, Inc. in the U.S. and other countries.

Disclaimer of Warranties

THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN DEFECTS
OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY ORACLE. ORACLE MAKES
NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This
document does not represent any commitment to release or implement any portion of the Specification in
any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY.
ORACLE MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the
Specification will be governed by the then-current license for the applicable version of the Specification.

Limitation of Liability

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ORACLE OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR
DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION,
EVEN IF ORACLE AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

You will hold Oracle (and its licensors) harmless from any claims based on your use of the Specification
for any purposes other than the limited right of evaluation as described above, and from any claims that
later versions or releases of any Specification furnished to you are incompatible with the Specification
provided to you under this license.

Restricted Rights Legend

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government's rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201
through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212
(for non-DoD acquisitions).

Report

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your evaluation of the Specification ("Feedback"). To the extent that you provide Oracle with any
Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-
confidential basis, and (ii) grant Oracle a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable
license, with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and
use without limitation the Feedback for any purpose related to the Specification and future versions,
implementations, and test suites thereof.

General Terms

Any action related to this Agreement will be governed by California law and controlling U.S. federal law.
The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdiction will
not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations
in other countries. Licensee agrees to comply strictly with all such laws and regulations and
acknowledges that it has the responsibility to obtain such licenses to export, re-export or import as may
be required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or
contemporaneous oral or written communications, proposals, conditions, representations and warranties
and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other
communication between the parties relating to its subject matter during the term of this Agreement. No
modification to this Agreement will be binding, unless in writing and signed by an authorized
representative of each party.

