/* * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "interpreter/oopMapCache.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "memory/allocation.inline.hpp" #include "memory/resourceArea.hpp" #include "oops/oop.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/signature.hpp" class OopMapCacheEntry: private InterpreterOopMap { friend class InterpreterOopMap; friend class OopMapForCacheEntry; friend class OopMapCache; friend class VerifyClosure; private: OopMapCacheEntry* _next; protected: // Initialization void fill(const methodHandle& method, int bci); // fills the bit mask for native calls void fill_for_native(const methodHandle& method); void set_mask(CellTypeState* vars, CellTypeState* stack, int stack_top); // Deallocate bit masks and initialize fields void flush(); private: void allocate_bit_mask(); // allocates the bit mask on C heap f necessary void deallocate_bit_mask(); // allocates the bit mask on C heap f necessary bool verify_mask(CellTypeState *vars, CellTypeState *stack, int max_locals, int stack_top); public: OopMapCacheEntry() : InterpreterOopMap() { _next = NULL; #ifdef ASSERT _resource_allocate_bit_mask = false; #endif } }; // Implementation of OopMapForCacheEntry // (subclass of GenerateOopMap, initializes an OopMapCacheEntry for a given method and bci) class OopMapForCacheEntry: public GenerateOopMap { OopMapCacheEntry *_entry; int _bci; int _stack_top; virtual bool report_results() const { return false; } virtual bool possible_gc_point (BytecodeStream *bcs); virtual void fill_stackmap_prolog (int nof_gc_points); virtual void fill_stackmap_epilog (); virtual void fill_stackmap_for_opcodes (BytecodeStream *bcs, CellTypeState* vars, CellTypeState* stack, int stack_top); virtual void fill_init_vars (GrowableArray *init_vars); public: OopMapForCacheEntry(const methodHandle& method, int bci, OopMapCacheEntry *entry); // Computes stack map for (method,bci) and initialize entry void compute_map(TRAPS); int size(); }; OopMapForCacheEntry::OopMapForCacheEntry(const methodHandle& method, int bci, OopMapCacheEntry* entry) : GenerateOopMap(method) { _bci = bci; _entry = entry; _stack_top = -1; } void OopMapForCacheEntry::compute_map(TRAPS) { assert(!method()->is_native(), "cannot compute oop map for native methods"); // First check if it is a method where the stackmap is always empty if (method()->code_size() == 0 || method()->max_locals() + method()->max_stack() == 0) { _entry->set_mask_size(0); } else { ResourceMark rm; GenerateOopMap::compute_map(CATCH); result_for_basicblock(_bci); } } bool OopMapForCacheEntry::possible_gc_point(BytecodeStream *bcs) { return false; // We are not reporting any result. We call result_for_basicblock directly } void OopMapForCacheEntry::fill_stackmap_prolog(int nof_gc_points) { // Do nothing } void OopMapForCacheEntry::fill_stackmap_epilog() { // Do nothing } void OopMapForCacheEntry::fill_init_vars(GrowableArray *init_vars) { // Do nothing } void OopMapForCacheEntry::fill_stackmap_for_opcodes(BytecodeStream *bcs, CellTypeState* vars, CellTypeState* stack, int stack_top) { // Only interested in one specific bci if (bcs->bci() == _bci) { _entry->set_mask(vars, stack, stack_top); _stack_top = stack_top; } } int OopMapForCacheEntry::size() { assert(_stack_top != -1, "compute_map must be called first"); return ((method()->is_static()) ? 0 : 1) + method()->max_locals() + _stack_top; } // Implementation of InterpreterOopMap and OopMapCacheEntry class VerifyClosure : public OffsetClosure { private: OopMapCacheEntry* _entry; bool _failed; public: VerifyClosure(OopMapCacheEntry* entry) { _entry = entry; _failed = false; } void offset_do(int offset) { if (!_entry->is_oop(offset)) _failed = true; } bool failed() const { return _failed; } }; InterpreterOopMap::InterpreterOopMap() { initialize(); #ifdef ASSERT _resource_allocate_bit_mask = true; #endif } InterpreterOopMap::~InterpreterOopMap() { // The expection is that the bit mask was allocated // last in this resource area. That would make the free of the // bit_mask effective (see how FREE_RESOURCE_ARRAY does a free). // If it was not allocated last, there is not a correctness problem // but the space for the bit_mask is not freed. assert(_resource_allocate_bit_mask, "Trying to free C heap space"); if (mask_size() > small_mask_limit) { FREE_RESOURCE_ARRAY(uintptr_t, _bit_mask[0], mask_word_size()); } } bool InterpreterOopMap::is_empty() const { bool result = _method == NULL; assert(_method != NULL || (_bci == 0 && (_mask_size == 0 || _mask_size == USHRT_MAX) && _bit_mask[0] == 0), "Should be completely empty"); return result; } void InterpreterOopMap::initialize() { _method = NULL; _mask_size = USHRT_MAX; // This value should cause a failure quickly _bci = 0; _expression_stack_size = 0; for (int i = 0; i < N; i++) _bit_mask[i] = 0; } void InterpreterOopMap::iterate_oop(OffsetClosure* oop_closure) const { int n = number_of_entries(); int word_index = 0; uintptr_t value = 0; uintptr_t mask = 0; // iterate over entries for (int i = 0; i < n; i++, mask <<= bits_per_entry) { // get current word if (mask == 0) { value = bit_mask()[word_index++]; mask = 1; } // test for oop if ((value & (mask << oop_bit_number)) != 0) oop_closure->offset_do(i); } } void InterpreterOopMap::print() const { int n = number_of_entries(); tty->print("oop map for "); method()->print_value(); tty->print(" @ %d = [%d] { ", bci(), n); for (int i = 0; i < n; i++) { if (is_dead(i)) tty->print("%d+ ", i); else if (is_oop(i)) tty->print("%d ", i); } tty->print_cr("}"); } class MaskFillerForNative: public NativeSignatureIterator { private: uintptr_t * _mask; // the bit mask to be filled int _size; // the mask size in bits void set_one(int i) { i *= InterpreterOopMap::bits_per_entry; assert(0 <= i && i < _size, "offset out of bounds"); _mask[i / BitsPerWord] |= (((uintptr_t) 1 << InterpreterOopMap::oop_bit_number) << (i % BitsPerWord)); } public: void pass_int() { /* ignore */ } void pass_long() { /* ignore */ } void pass_float() { /* ignore */ } void pass_double() { /* ignore */ } void pass_object() { set_one(offset()); } void pass_valuetype() { set_one(offset()); } MaskFillerForNative(const methodHandle& method, uintptr_t* mask, int size) : NativeSignatureIterator(method) { _mask = mask; _size = size; // initialize with 0 int i = (size + BitsPerWord - 1) / BitsPerWord; while (i-- > 0) _mask[i] = 0; } void generate() { NativeSignatureIterator::iterate(); } }; bool OopMapCacheEntry::verify_mask(CellTypeState* vars, CellTypeState* stack, int max_locals, int stack_top) { // Check mask includes map VerifyClosure blk(this); iterate_oop(&blk); if (blk.failed()) return false; // Check if map is generated correctly // (Use ?: operator to make sure all 'true' & 'false' are represented exactly the same so we can use == afterwards) Log(interpreter, oopmap) logv; LogStream st(logv.trace()); st.print("Locals (%d): ", max_locals); for(int i = 0; i < max_locals; i++) { bool v1 = is_oop(i) ? true : false; bool v2 = vars[i].is_reference(); assert(v1 == v2, "locals oop mask generation error"); st.print("%d", v1 ? 1 : 0); } st.cr(); st.print("Stack (%d): ", stack_top); for(int j = 0; j < stack_top; j++) { bool v1 = is_oop(max_locals + j) ? true : false; bool v2 = stack[j].is_reference(); assert(v1 == v2, "stack oop mask generation error"); st.print("%d", v1 ? 1 : 0); } st.cr(); return true; } void OopMapCacheEntry::allocate_bit_mask() { if (mask_size() > small_mask_limit) { assert(_bit_mask[0] == 0, "bit mask should be new or just flushed"); _bit_mask[0] = (intptr_t) NEW_C_HEAP_ARRAY(uintptr_t, mask_word_size(), mtClass); } } void OopMapCacheEntry::deallocate_bit_mask() { if (mask_size() > small_mask_limit && _bit_mask[0] != 0) { assert(!Thread::current()->resource_area()->contains((void*)_bit_mask[0]), "This bit mask should not be in the resource area"); FREE_C_HEAP_ARRAY(uintptr_t, _bit_mask[0]); debug_only(_bit_mask[0] = 0;) } } void OopMapCacheEntry::fill_for_native(const methodHandle& mh) { assert(mh->is_native(), "method must be native method"); set_mask_size(mh->size_of_parameters() * bits_per_entry); allocate_bit_mask(); // fill mask for parameters MaskFillerForNative mf(mh, bit_mask(), mask_size()); mf.generate(); } void OopMapCacheEntry::fill(const methodHandle& method, int bci) { HandleMark hm; // Flush entry to deallocate an existing entry flush(); set_method(method()); set_bci(bci); if (method->is_native()) { // Native method activations have oops only among the parameters and one // extra oop following the parameters (the mirror for static native methods). fill_for_native(method); } else { EXCEPTION_MARK; OopMapForCacheEntry gen(method, bci, this); gen.compute_map(CATCH); } } void OopMapCacheEntry::set_mask(CellTypeState *vars, CellTypeState *stack, int stack_top) { // compute bit mask size int max_locals = method()->max_locals(); int n_entries = max_locals + stack_top; set_mask_size(n_entries * bits_per_entry); allocate_bit_mask(); set_expression_stack_size(stack_top); // compute bits int word_index = 0; uintptr_t value = 0; uintptr_t mask = 1; CellTypeState* cell = vars; for (int entry_index = 0; entry_index < n_entries; entry_index++, mask <<= bits_per_entry, cell++) { // store last word if (mask == 0) { bit_mask()[word_index++] = value; value = 0; mask = 1; } // switch to stack when done with locals if (entry_index == max_locals) { cell = stack; } // set oop bit if (cell->is_reference()) { value |= (mask << oop_bit_number ); } // set dead bit if (!cell->is_live()) { value |= (mask << dead_bit_number); assert(!cell->is_reference(), "dead value marked as oop"); } } // make sure last word is stored bit_mask()[word_index] = value; // verify bit mask assert(verify_mask(vars, stack, max_locals, stack_top), "mask could not be verified"); } void OopMapCacheEntry::flush() { deallocate_bit_mask(); initialize(); } // Implementation of OopMapCache void InterpreterOopMap::resource_copy(OopMapCacheEntry* from) { assert(_resource_allocate_bit_mask, "Should not resource allocate the _bit_mask"); set_method(from->method()); set_bci(from->bci()); set_mask_size(from->mask_size()); set_expression_stack_size(from->expression_stack_size()); // Is the bit mask contained in the entry? if (from->mask_size() <= small_mask_limit) { memcpy((void *)_bit_mask, (void *)from->_bit_mask, mask_word_size() * BytesPerWord); } else { // The expectation is that this InterpreterOopMap is a recently created // and empty. It is used to get a copy of a cached entry. // If the bit mask has a value, it should be in the // resource area. assert(_bit_mask[0] == 0 || Thread::current()->resource_area()->contains((void*)_bit_mask[0]), "The bit mask should have been allocated from a resource area"); // Allocate the bit_mask from a Resource area for performance. Allocating // from the C heap as is done for OopMapCache has a significant // performance impact. _bit_mask[0] = (uintptr_t) NEW_RESOURCE_ARRAY(uintptr_t, mask_word_size()); assert(_bit_mask[0] != 0, "bit mask was not allocated"); memcpy((void*) _bit_mask[0], (void*) from->_bit_mask[0], mask_word_size() * BytesPerWord); } } inline unsigned int OopMapCache::hash_value_for(const methodHandle& method, int bci) const { // We use method->code_size() rather than method->identity_hash() below since // the mark may not be present if a pointer to the method is already reversed. return ((unsigned int) bci) ^ ((unsigned int) method->max_locals() << 2) ^ ((unsigned int) method->code_size() << 4) ^ ((unsigned int) method->size_of_parameters() << 6); } OopMapCacheEntry* volatile OopMapCache::_old_entries = NULL; OopMapCache::OopMapCache() { _array = NEW_C_HEAP_ARRAY(OopMapCacheEntry*, _size, mtClass); for(int i = 0; i < _size; i++) _array[i] = NULL; } OopMapCache::~OopMapCache() { assert(_array != NULL, "sanity check"); // Deallocate oop maps that are allocated out-of-line flush(); // Deallocate array FREE_C_HEAP_ARRAY(OopMapCacheEntry*, _array); } OopMapCacheEntry* OopMapCache::entry_at(int i) const { return OrderAccess::load_acquire(&(_array[i % _size])); } bool OopMapCache::put_at(int i, OopMapCacheEntry* entry, OopMapCacheEntry* old) { return Atomic::cmpxchg(entry, &_array[i % _size], old) == old; } void OopMapCache::flush() { for (int i = 0; i < _size; i++) { OopMapCacheEntry* entry = _array[i]; if (entry != NULL) { _array[i] = NULL; // no barrier, only called in OopMapCache destructor entry->flush(); FREE_C_HEAP_OBJ(entry); } } } void OopMapCache::flush_obsolete_entries() { assert(SafepointSynchronize::is_at_safepoint(), "called by RedefineClasses in a safepoint"); for (int i = 0; i < _size; i++) { OopMapCacheEntry* entry = _array[i]; if (entry != NULL && !entry->is_empty() && entry->method()->is_old()) { // Cache entry is occupied by an old redefined method and we don't want // to pin it down so flush the entry. if (log_is_enabled(Debug, redefine, class, oopmap)) { ResourceMark rm; log_debug(redefine, class, interpreter, oopmap) ("flush: %s(%s): cached entry @%d", entry->method()->name()->as_C_string(), entry->method()->signature()->as_C_string(), i); } _array[i] = NULL; entry->flush(); FREE_C_HEAP_OBJ(entry); } } } // Called by GC for thread root scan during a safepoint only. The other interpreted frame oopmaps // are generated locally and not cached. void OopMapCache::lookup(const methodHandle& method, int bci, InterpreterOopMap* entry_for) { assert(SafepointSynchronize::is_at_safepoint(), "called by GC in a safepoint"); int probe = hash_value_for(method, bci); int i; OopMapCacheEntry* entry = NULL; if (log_is_enabled(Debug, interpreter, oopmap)) { static int count = 0; ResourceMark rm; log_debug(interpreter, oopmap) ("%d - Computing oopmap at bci %d for %s at hash %d", ++count, bci, method()->name_and_sig_as_C_string(), probe); } // Search hashtable for match for(i = 0; i < _probe_depth; i++) { entry = entry_at(probe + i); if (entry != NULL && !entry->is_empty() && entry->match(method, bci)) { entry_for->resource_copy(entry); assert(!entry_for->is_empty(), "A non-empty oop map should be returned"); log_debug(interpreter, oopmap)("- found at hash %d", probe + i); return; } } // Entry is not in hashtable. // Compute entry OopMapCacheEntry* tmp = NEW_C_HEAP_OBJ(OopMapCacheEntry, mtClass); tmp->initialize(); tmp->fill(method, bci); entry_for->resource_copy(tmp); if (method->should_not_be_cached()) { // It is either not safe or not a good idea to cache this Method* // at this time. We give the caller of lookup() a copy of the // interesting info via parameter entry_for, but we don't add it to // the cache. See the gory details in Method*.cpp. FREE_C_HEAP_OBJ(tmp); return; } // First search for an empty slot for(i = 0; i < _probe_depth; i++) { entry = entry_at(probe + i); if (entry == NULL) { if (put_at(probe + i, tmp, NULL)) { assert(!entry_for->is_empty(), "A non-empty oop map should be returned"); return; } } } log_debug(interpreter, oopmap)("*** collision in oopmap cache - flushing item ***"); // No empty slot (uncommon case). Use (some approximation of a) LRU algorithm // where the first entry in the collision array is replaced with the new one. OopMapCacheEntry* old = entry_at(probe + 0); if (put_at(probe + 0, tmp, old)) { enqueue_for_cleanup(old); } else { enqueue_for_cleanup(tmp); } assert(!entry_for->is_empty(), "A non-empty oop map should be returned"); return; } void OopMapCache::enqueue_for_cleanup(OopMapCacheEntry* entry) { bool success = false; OopMapCacheEntry* head; do { head = _old_entries; entry->_next = head; success = Atomic::cmpxchg(entry, &_old_entries, head) == head; } while (!success); if (log_is_enabled(Debug, interpreter, oopmap)) { ResourceMark rm; log_debug(interpreter, oopmap)("enqueue %s at bci %d for cleanup", entry->method()->name_and_sig_as_C_string(), entry->bci()); } } // This is called after GC threads are done and nothing is accessing the old_entries // list, so no synchronization needed. void OopMapCache::cleanup_old_entries() { OopMapCacheEntry* entry = _old_entries; _old_entries = NULL; while (entry != NULL) { if (log_is_enabled(Debug, interpreter, oopmap)) { ResourceMark rm; log_debug(interpreter, oopmap)("cleanup entry %s at bci %d", entry->method()->name_and_sig_as_C_string(), entry->bci()); } OopMapCacheEntry* next = entry->_next; entry->flush(); FREE_C_HEAP_OBJ(entry); entry = next; } } void OopMapCache::compute_one_oop_map(const methodHandle& method, int bci, InterpreterOopMap* entry) { // Due to the invariants above it's tricky to allocate a temporary OopMapCacheEntry on the stack OopMapCacheEntry* tmp = NEW_C_HEAP_ARRAY(OopMapCacheEntry, 1, mtClass); tmp->initialize(); tmp->fill(method, bci); entry->resource_copy(tmp); FREE_C_HEAP_ARRAY(OopMapCacheEntry, tmp); }