1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/block.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/callGenerator.hpp"
  41 #include "opto/callnode.hpp"
  42 #include "opto/castnode.hpp"
  43 #include "opto/cfgnode.hpp"
  44 #include "opto/chaitin.hpp"
  45 #include "opto/compile.hpp"
  46 #include "opto/connode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/divnode.hpp"
  49 #include "opto/escape.hpp"
  50 #include "opto/idealGraphPrinter.hpp"
  51 #include "opto/loopnode.hpp"
  52 #include "opto/machnode.hpp"
  53 #include "opto/macro.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/mathexactnode.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/narrowptrnode.hpp"
  59 #include "opto/node.hpp"
  60 #include "opto/opcodes.hpp"
  61 #include "opto/output.hpp"
  62 #include "opto/parse.hpp"
  63 #include "opto/phaseX.hpp"
  64 #include "opto/rootnode.hpp"
  65 #include "opto/runtime.hpp"
  66 #include "opto/stringopts.hpp"
  67 #include "opto/type.hpp"
  68 #include "opto/valuetypenode.hpp"
  69 #include "opto/vectornode.hpp"
  70 #include "runtime/arguments.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/timer.hpp"
  75 #include "utilities/align.hpp"
  76 #include "utilities/copy.hpp"
  77 
  78 
  79 // -------------------- Compile::mach_constant_base_node -----------------------
  80 // Constant table base node singleton.
  81 MachConstantBaseNode* Compile::mach_constant_base_node() {
  82   if (_mach_constant_base_node == NULL) {
  83     _mach_constant_base_node = new MachConstantBaseNode();
  84     _mach_constant_base_node->add_req(C->root());
  85   }
  86   return _mach_constant_base_node;
  87 }
  88 
  89 
  90 /// Support for intrinsics.
  91 
  92 // Return the index at which m must be inserted (or already exists).
  93 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  94 class IntrinsicDescPair {
  95  private:
  96   ciMethod* _m;
  97   bool _is_virtual;
  98  public:
  99   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 100   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 101     ciMethod* m= elt->method();
 102     ciMethod* key_m = key->_m;
 103     if (key_m < m)      return -1;
 104     else if (key_m > m) return 1;
 105     else {
 106       bool is_virtual = elt->is_virtual();
 107       bool key_virtual = key->_is_virtual;
 108       if (key_virtual < is_virtual)      return -1;
 109       else if (key_virtual > is_virtual) return 1;
 110       else                               return 0;
 111     }
 112   }
 113 };
 114 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 115 #ifdef ASSERT
 116   for (int i = 1; i < _intrinsics->length(); i++) {
 117     CallGenerator* cg1 = _intrinsics->at(i-1);
 118     CallGenerator* cg2 = _intrinsics->at(i);
 119     assert(cg1->method() != cg2->method()
 120            ? cg1->method()     < cg2->method()
 121            : cg1->is_virtual() < cg2->is_virtual(),
 122            "compiler intrinsics list must stay sorted");
 123   }
 124 #endif
 125   IntrinsicDescPair pair(m, is_virtual);
 126   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 127 }
 128 
 129 void Compile::register_intrinsic(CallGenerator* cg) {
 130   if (_intrinsics == NULL) {
 131     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 132   }
 133   int len = _intrinsics->length();
 134   bool found = false;
 135   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 136   assert(!found, "registering twice");
 137   _intrinsics->insert_before(index, cg);
 138   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 139 }
 140 
 141 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 142   assert(m->is_loaded(), "don't try this on unloaded methods");
 143   if (_intrinsics != NULL) {
 144     bool found = false;
 145     int index = intrinsic_insertion_index(m, is_virtual, found);
 146      if (found) {
 147       return _intrinsics->at(index);
 148     }
 149   }
 150   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 151   if (m->intrinsic_id() != vmIntrinsics::_none &&
 152       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 153     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 154     if (cg != NULL) {
 155       // Save it for next time:
 156       register_intrinsic(cg);
 157       return cg;
 158     } else {
 159       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 160     }
 161   }
 162   return NULL;
 163 }
 164 
 165 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 166 // in library_call.cpp.
 167 
 168 
 169 #ifndef PRODUCT
 170 // statistics gathering...
 171 
 172 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 173 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 174 
 175 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 176   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 177   int oflags = _intrinsic_hist_flags[id];
 178   assert(flags != 0, "what happened?");
 179   if (is_virtual) {
 180     flags |= _intrinsic_virtual;
 181   }
 182   bool changed = (flags != oflags);
 183   if ((flags & _intrinsic_worked) != 0) {
 184     juint count = (_intrinsic_hist_count[id] += 1);
 185     if (count == 1) {
 186       changed = true;           // first time
 187     }
 188     // increment the overall count also:
 189     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 190   }
 191   if (changed) {
 192     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 193       // Something changed about the intrinsic's virtuality.
 194       if ((flags & _intrinsic_virtual) != 0) {
 195         // This is the first use of this intrinsic as a virtual call.
 196         if (oflags != 0) {
 197           // We already saw it as a non-virtual, so note both cases.
 198           flags |= _intrinsic_both;
 199         }
 200       } else if ((oflags & _intrinsic_both) == 0) {
 201         // This is the first use of this intrinsic as a non-virtual
 202         flags |= _intrinsic_both;
 203       }
 204     }
 205     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 206   }
 207   // update the overall flags also:
 208   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 209   return changed;
 210 }
 211 
 212 static char* format_flags(int flags, char* buf) {
 213   buf[0] = 0;
 214   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 215   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 216   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 217   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 218   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 219   if (buf[0] == 0)  strcat(buf, ",");
 220   assert(buf[0] == ',', "must be");
 221   return &buf[1];
 222 }
 223 
 224 void Compile::print_intrinsic_statistics() {
 225   char flagsbuf[100];
 226   ttyLocker ttyl;
 227   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 228   tty->print_cr("Compiler intrinsic usage:");
 229   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 230   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 231   #define PRINT_STAT_LINE(name, c, f) \
 232     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 233   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 234     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 235     int   flags = _intrinsic_hist_flags[id];
 236     juint count = _intrinsic_hist_count[id];
 237     if ((flags | count) != 0) {
 238       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 239     }
 240   }
 241   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 242   if (xtty != NULL)  xtty->tail("statistics");
 243 }
 244 
 245 void Compile::print_statistics() {
 246   { ttyLocker ttyl;
 247     if (xtty != NULL)  xtty->head("statistics type='opto'");
 248     Parse::print_statistics();
 249     PhaseCCP::print_statistics();
 250     PhaseRegAlloc::print_statistics();
 251     Scheduling::print_statistics();
 252     PhasePeephole::print_statistics();
 253     PhaseIdealLoop::print_statistics();
 254     if (xtty != NULL)  xtty->tail("statistics");
 255   }
 256   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 257     // put this under its own <statistics> element.
 258     print_intrinsic_statistics();
 259   }
 260 }
 261 #endif //PRODUCT
 262 
 263 // Support for bundling info
 264 Bundle* Compile::node_bundling(const Node *n) {
 265   assert(valid_bundle_info(n), "oob");
 266   return &_node_bundling_base[n->_idx];
 267 }
 268 
 269 bool Compile::valid_bundle_info(const Node *n) {
 270   return (_node_bundling_limit > n->_idx);
 271 }
 272 
 273 
 274 void Compile::gvn_replace_by(Node* n, Node* nn) {
 275   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 276     Node* use = n->last_out(i);
 277     bool is_in_table = initial_gvn()->hash_delete(use);
 278     uint uses_found = 0;
 279     for (uint j = 0; j < use->len(); j++) {
 280       if (use->in(j) == n) {
 281         if (j < use->req())
 282           use->set_req(j, nn);
 283         else
 284           use->set_prec(j, nn);
 285         uses_found++;
 286       }
 287     }
 288     if (is_in_table) {
 289       // reinsert into table
 290       initial_gvn()->hash_find_insert(use);
 291     }
 292     record_for_igvn(use);
 293     i -= uses_found;    // we deleted 1 or more copies of this edge
 294   }
 295 }
 296 
 297 
 298 static inline bool not_a_node(const Node* n) {
 299   if (n == NULL)                   return true;
 300   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 301   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 302   return false;
 303 }
 304 
 305 // Identify all nodes that are reachable from below, useful.
 306 // Use breadth-first pass that records state in a Unique_Node_List,
 307 // recursive traversal is slower.
 308 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 309   int estimated_worklist_size = live_nodes();
 310   useful.map( estimated_worklist_size, NULL );  // preallocate space
 311 
 312   // Initialize worklist
 313   if (root() != NULL)     { useful.push(root()); }
 314   // If 'top' is cached, declare it useful to preserve cached node
 315   if( cached_top_node() ) { useful.push(cached_top_node()); }
 316 
 317   // Push all useful nodes onto the list, breadthfirst
 318   for( uint next = 0; next < useful.size(); ++next ) {
 319     assert( next < unique(), "Unique useful nodes < total nodes");
 320     Node *n  = useful.at(next);
 321     uint max = n->len();
 322     for( uint i = 0; i < max; ++i ) {
 323       Node *m = n->in(i);
 324       if (not_a_node(m))  continue;
 325       useful.push(m);
 326     }
 327   }
 328 }
 329 
 330 // Update dead_node_list with any missing dead nodes using useful
 331 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 332 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 333   uint max_idx = unique();
 334   VectorSet& useful_node_set = useful.member_set();
 335 
 336   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 337     // If node with index node_idx is not in useful set,
 338     // mark it as dead in dead node list.
 339     if (! useful_node_set.test(node_idx) ) {
 340       record_dead_node(node_idx);
 341     }
 342   }
 343 }
 344 
 345 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 346   int shift = 0;
 347   for (int i = 0; i < inlines->length(); i++) {
 348     CallGenerator* cg = inlines->at(i);
 349     CallNode* call = cg->call_node();
 350     if (shift > 0) {
 351       inlines->at_put(i-shift, cg);
 352     }
 353     if (!useful.member(call)) {
 354       shift++;
 355     }
 356   }
 357   inlines->trunc_to(inlines->length()-shift);
 358 }
 359 
 360 // Disconnect all useless nodes by disconnecting those at the boundary.
 361 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 362   uint next = 0;
 363   while (next < useful.size()) {
 364     Node *n = useful.at(next++);
 365     if (n->is_SafePoint()) {
 366       // We're done with a parsing phase. Replaced nodes are not valid
 367       // beyond that point.
 368       n->as_SafePoint()->delete_replaced_nodes();
 369     }
 370     // Use raw traversal of out edges since this code removes out edges
 371     int max = n->outcnt();
 372     for (int j = 0; j < max; ++j) {
 373       Node* child = n->raw_out(j);
 374       if (! useful.member(child)) {
 375         assert(!child->is_top() || child != top(),
 376                "If top is cached in Compile object it is in useful list");
 377         // Only need to remove this out-edge to the useless node
 378         n->raw_del_out(j);
 379         --j;
 380         --max;
 381       }
 382     }
 383     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 384       record_for_igvn(n->unique_out());
 385     }
 386   }
 387   // Remove useless macro and predicate opaq nodes
 388   for (int i = C->macro_count()-1; i >= 0; i--) {
 389     Node* n = C->macro_node(i);
 390     if (!useful.member(n)) {
 391       remove_macro_node(n);
 392     }
 393   }
 394   // Remove useless CastII nodes with range check dependency
 395   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 396     Node* cast = range_check_cast_node(i);
 397     if (!useful.member(cast)) {
 398       remove_range_check_cast(cast);
 399     }
 400   }
 401   // Remove useless expensive node
 402   for (int i = C->expensive_count()-1; i >= 0; i--) {
 403     Node* n = C->expensive_node(i);
 404     if (!useful.member(n)) {
 405       remove_expensive_node(n);
 406     }
 407   }
 408   // Remove useless value type nodes
 409   if (_value_type_nodes != NULL) {
 410     _value_type_nodes->remove_useless_nodes(useful.member_set());
 411   }
 412   // clean up the late inline lists
 413   remove_useless_late_inlines(&_string_late_inlines, useful);
 414   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 415   remove_useless_late_inlines(&_late_inlines, useful);
 416   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 417 }
 418 
 419 //------------------------------frame_size_in_words-----------------------------
 420 // frame_slots in units of words
 421 int Compile::frame_size_in_words() const {
 422   // shift is 0 in LP32 and 1 in LP64
 423   const int shift = (LogBytesPerWord - LogBytesPerInt);
 424   int words = _frame_slots >> shift;
 425   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 426   return words;
 427 }
 428 
 429 // To bang the stack of this compiled method we use the stack size
 430 // that the interpreter would need in case of a deoptimization. This
 431 // removes the need to bang the stack in the deoptimization blob which
 432 // in turn simplifies stack overflow handling.
 433 int Compile::bang_size_in_bytes() const {
 434   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 435 }
 436 
 437 // ============================================================================
 438 //------------------------------CompileWrapper---------------------------------
 439 class CompileWrapper : public StackObj {
 440   Compile *const _compile;
 441  public:
 442   CompileWrapper(Compile* compile);
 443 
 444   ~CompileWrapper();
 445 };
 446 
 447 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 448   // the Compile* pointer is stored in the current ciEnv:
 449   ciEnv* env = compile->env();
 450   assert(env == ciEnv::current(), "must already be a ciEnv active");
 451   assert(env->compiler_data() == NULL, "compile already active?");
 452   env->set_compiler_data(compile);
 453   assert(compile == Compile::current(), "sanity");
 454 
 455   compile->set_type_dict(NULL);
 456   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 457   compile->clone_map().set_clone_idx(0);
 458   compile->set_type_hwm(NULL);
 459   compile->set_type_last_size(0);
 460   compile->set_last_tf(NULL, NULL);
 461   compile->set_indexSet_arena(NULL);
 462   compile->set_indexSet_free_block_list(NULL);
 463   compile->init_type_arena();
 464   Type::Initialize(compile);
 465   _compile->set_scratch_buffer_blob(NULL);
 466   _compile->begin_method();
 467   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 468 }
 469 CompileWrapper::~CompileWrapper() {
 470   _compile->end_method();
 471   if (_compile->scratch_buffer_blob() != NULL)
 472     BufferBlob::free(_compile->scratch_buffer_blob());
 473   _compile->env()->set_compiler_data(NULL);
 474 }
 475 
 476 
 477 //----------------------------print_compile_messages---------------------------
 478 void Compile::print_compile_messages() {
 479 #ifndef PRODUCT
 480   // Check if recompiling
 481   if (_subsume_loads == false && PrintOpto) {
 482     // Recompiling without allowing machine instructions to subsume loads
 483     tty->print_cr("*********************************************************");
 484     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 485     tty->print_cr("*********************************************************");
 486   }
 487   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 488     // Recompiling without escape analysis
 489     tty->print_cr("*********************************************************");
 490     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 491     tty->print_cr("*********************************************************");
 492   }
 493   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 494     // Recompiling without boxing elimination
 495     tty->print_cr("*********************************************************");
 496     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 497     tty->print_cr("*********************************************************");
 498   }
 499   if (C->directive()->BreakAtCompileOption) {
 500     // Open the debugger when compiling this method.
 501     tty->print("### Breaking when compiling: ");
 502     method()->print_short_name();
 503     tty->cr();
 504     BREAKPOINT;
 505   }
 506 
 507   if( PrintOpto ) {
 508     if (is_osr_compilation()) {
 509       tty->print("[OSR]%3d", _compile_id);
 510     } else {
 511       tty->print("%3d", _compile_id);
 512     }
 513   }
 514 #endif
 515 }
 516 
 517 
 518 //-----------------------init_scratch_buffer_blob------------------------------
 519 // Construct a temporary BufferBlob and cache it for this compile.
 520 void Compile::init_scratch_buffer_blob(int const_size) {
 521   // If there is already a scratch buffer blob allocated and the
 522   // constant section is big enough, use it.  Otherwise free the
 523   // current and allocate a new one.
 524   BufferBlob* blob = scratch_buffer_blob();
 525   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 526     // Use the current blob.
 527   } else {
 528     if (blob != NULL) {
 529       BufferBlob::free(blob);
 530     }
 531 
 532     ResourceMark rm;
 533     _scratch_const_size = const_size;
 534     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 535     blob = BufferBlob::create("Compile::scratch_buffer", size);
 536     // Record the buffer blob for next time.
 537     set_scratch_buffer_blob(blob);
 538     // Have we run out of code space?
 539     if (scratch_buffer_blob() == NULL) {
 540       // Let CompilerBroker disable further compilations.
 541       record_failure("Not enough space for scratch buffer in CodeCache");
 542       return;
 543     }
 544   }
 545 
 546   // Initialize the relocation buffers
 547   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 548   set_scratch_locs_memory(locs_buf);
 549 }
 550 
 551 
 552 //-----------------------scratch_emit_size-------------------------------------
 553 // Helper function that computes size by emitting code
 554 uint Compile::scratch_emit_size(const Node* n) {
 555   // Start scratch_emit_size section.
 556   set_in_scratch_emit_size(true);
 557 
 558   // Emit into a trash buffer and count bytes emitted.
 559   // This is a pretty expensive way to compute a size,
 560   // but it works well enough if seldom used.
 561   // All common fixed-size instructions are given a size
 562   // method by the AD file.
 563   // Note that the scratch buffer blob and locs memory are
 564   // allocated at the beginning of the compile task, and
 565   // may be shared by several calls to scratch_emit_size.
 566   // The allocation of the scratch buffer blob is particularly
 567   // expensive, since it has to grab the code cache lock.
 568   BufferBlob* blob = this->scratch_buffer_blob();
 569   assert(blob != NULL, "Initialize BufferBlob at start");
 570   assert(blob->size() > MAX_inst_size, "sanity");
 571   relocInfo* locs_buf = scratch_locs_memory();
 572   address blob_begin = blob->content_begin();
 573   address blob_end   = (address)locs_buf;
 574   assert(blob->contains(blob_end), "sanity");
 575   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 576   buf.initialize_consts_size(_scratch_const_size);
 577   buf.initialize_stubs_size(MAX_stubs_size);
 578   assert(locs_buf != NULL, "sanity");
 579   int lsize = MAX_locs_size / 3;
 580   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 581   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 582   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 583   // Mark as scratch buffer.
 584   buf.consts()->set_scratch_emit();
 585   buf.insts()->set_scratch_emit();
 586   buf.stubs()->set_scratch_emit();
 587 
 588   // Do the emission.
 589 
 590   Label fakeL; // Fake label for branch instructions.
 591   Label*   saveL = NULL;
 592   uint save_bnum = 0;
 593   bool is_branch = n->is_MachBranch();
 594   if (is_branch) {
 595     MacroAssembler masm(&buf);
 596     masm.bind(fakeL);
 597     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 598     n->as_MachBranch()->label_set(&fakeL, 0);
 599   }
 600   n->emit(buf, this->regalloc());
 601 
 602   // Emitting into the scratch buffer should not fail
 603   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 604 
 605   if (is_branch) // Restore label.
 606     n->as_MachBranch()->label_set(saveL, save_bnum);
 607 
 608   // End scratch_emit_size section.
 609   set_in_scratch_emit_size(false);
 610 
 611   return buf.insts_size();
 612 }
 613 
 614 
 615 // ============================================================================
 616 //------------------------------Compile standard-------------------------------
 617 debug_only( int Compile::_debug_idx = 100000; )
 618 
 619 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 620 // the continuation bci for on stack replacement.
 621 
 622 
 623 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 624                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 625                 : Phase(Compiler),
 626                   _env(ci_env),
 627                   _directive(directive),
 628                   _log(ci_env->log()),
 629                   _compile_id(ci_env->compile_id()),
 630                   _save_argument_registers(false),
 631                   _stub_name(NULL),
 632                   _stub_function(NULL),
 633                   _stub_entry_point(NULL),
 634                   _method(target),
 635                   _entry_bci(osr_bci),
 636                   _initial_gvn(NULL),
 637                   _for_igvn(NULL),
 638                   _warm_calls(NULL),
 639                   _subsume_loads(subsume_loads),
 640                   _do_escape_analysis(do_escape_analysis),
 641                   _eliminate_boxing(eliminate_boxing),
 642                   _failure_reason(NULL),
 643                   _code_buffer("Compile::Fill_buffer"),
 644                   _orig_pc_slot(0),
 645                   _orig_pc_slot_offset_in_bytes(0),
 646                   _has_method_handle_invokes(false),
 647                   _mach_constant_base_node(NULL),
 648                   _node_bundling_limit(0),
 649                   _node_bundling_base(NULL),
 650                   _java_calls(0),
 651                   _inner_loops(0),
 652                   _scratch_const_size(-1),
 653                   _in_scratch_emit_size(false),
 654                   _dead_node_list(comp_arena()),
 655                   _dead_node_count(0),
 656 #ifndef PRODUCT
 657                   _trace_opto_output(directive->TraceOptoOutputOption),
 658                   _in_dump_cnt(0),
 659                   _printer(IdealGraphPrinter::printer()),
 660 #endif
 661                   _congraph(NULL),
 662                   _comp_arena(mtCompiler),
 663                   _node_arena(mtCompiler),
 664                   _old_arena(mtCompiler),
 665                   _Compile_types(mtCompiler),
 666                   _replay_inline_data(NULL),
 667                   _late_inlines(comp_arena(), 2, 0, NULL),
 668                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 669                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 670                   _late_inlines_pos(0),
 671                   _number_of_mh_late_inlines(0),
 672                   _inlining_progress(false),
 673                   _inlining_incrementally(false),
 674                   _print_inlining_list(NULL),
 675                   _print_inlining_stream(NULL),
 676                   _print_inlining_idx(0),
 677                   _print_inlining_output(NULL),
 678                   _interpreter_frame_size(0),
 679                   _max_node_limit(MaxNodeLimit),
 680                   _has_reserved_stack_access(target->has_reserved_stack_access()) {
 681   C = this;
 682 #ifndef PRODUCT
 683   if (_printer != NULL) {
 684     _printer->set_compile(this);
 685   }
 686 #endif
 687   CompileWrapper cw(this);
 688 
 689   if (CITimeVerbose) {
 690     tty->print(" ");
 691     target->holder()->name()->print();
 692     tty->print(".");
 693     target->print_short_name();
 694     tty->print("  ");
 695   }
 696   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 697   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 698 
 699 #ifndef PRODUCT
 700   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 701   if (!print_opto_assembly) {
 702     bool print_assembly = directive->PrintAssemblyOption;
 703     if (print_assembly && !Disassembler::can_decode()) {
 704       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 705       print_opto_assembly = true;
 706     }
 707   }
 708   set_print_assembly(print_opto_assembly);
 709   set_parsed_irreducible_loop(false);
 710 
 711   if (directive->ReplayInlineOption) {
 712     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 713   }
 714 #endif
 715   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 716   set_print_intrinsics(directive->PrintIntrinsicsOption);
 717   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 718 
 719   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 720     // Make sure the method being compiled gets its own MDO,
 721     // so we can at least track the decompile_count().
 722     // Need MDO to record RTM code generation state.
 723     method()->ensure_method_data();
 724   }
 725 
 726   Init(::AliasLevel);
 727 
 728 
 729   print_compile_messages();
 730 
 731   _ilt = InlineTree::build_inline_tree_root();
 732 
 733   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 734   assert(num_alias_types() >= AliasIdxRaw, "");
 735 
 736 #define MINIMUM_NODE_HASH  1023
 737   // Node list that Iterative GVN will start with
 738   Unique_Node_List for_igvn(comp_arena());
 739   set_for_igvn(&for_igvn);
 740 
 741   // GVN that will be run immediately on new nodes
 742   uint estimated_size = method()->code_size()*4+64;
 743   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 744   PhaseGVN gvn(node_arena(), estimated_size);
 745   set_initial_gvn(&gvn);
 746 
 747   print_inlining_init();
 748   { // Scope for timing the parser
 749     TracePhase tp("parse", &timers[_t_parser]);
 750 
 751     // Put top into the hash table ASAP.
 752     initial_gvn()->transform_no_reclaim(top());
 753 
 754     // Set up tf(), start(), and find a CallGenerator.
 755     CallGenerator* cg = NULL;
 756     if (is_osr_compilation()) {
 757       const TypeTuple *domain = StartOSRNode::osr_domain();
 758       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 759       init_tf(TypeFunc::make(domain, range));
 760       StartNode* s = new StartOSRNode(root(), domain);
 761       initial_gvn()->set_type_bottom(s);
 762       init_start(s);
 763       cg = CallGenerator::for_osr(method(), entry_bci());
 764     } else {
 765       // Normal case.
 766       init_tf(TypeFunc::make(method()));
 767       StartNode* s = new StartNode(root(), tf()->domain_cc());
 768       initial_gvn()->set_type_bottom(s);
 769       init_start(s);
 770       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 771         // With java.lang.ref.reference.get() we must go through the
 772         // intrinsic when G1 is enabled - even when get() is the root
 773         // method of the compile - so that, if necessary, the value in
 774         // the referent field of the reference object gets recorded by
 775         // the pre-barrier code.
 776         // Specifically, if G1 is enabled, the value in the referent
 777         // field is recorded by the G1 SATB pre barrier. This will
 778         // result in the referent being marked live and the reference
 779         // object removed from the list of discovered references during
 780         // reference processing.
 781         cg = find_intrinsic(method(), false);
 782       }
 783       if (cg == NULL) {
 784         float past_uses = method()->interpreter_invocation_count();
 785         float expected_uses = past_uses;
 786         cg = CallGenerator::for_inline(method(), expected_uses);
 787       }
 788     }
 789     if (failing())  return;
 790     if (cg == NULL) {
 791       record_method_not_compilable("cannot parse method");
 792       return;
 793     }
 794     JVMState* jvms = build_start_state(start(), tf());
 795     if ((jvms = cg->generate(jvms)) == NULL) {
 796       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 797         record_method_not_compilable("method parse failed");
 798       }
 799       return;
 800     }
 801     GraphKit kit(jvms);
 802 
 803     if (!kit.stopped()) {
 804       // Accept return values, and transfer control we know not where.
 805       // This is done by a special, unique ReturnNode bound to root.
 806       return_values(kit.jvms());
 807     }
 808 
 809     if (kit.has_exceptions()) {
 810       // Any exceptions that escape from this call must be rethrown
 811       // to whatever caller is dynamically above us on the stack.
 812       // This is done by a special, unique RethrowNode bound to root.
 813       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 814     }
 815 
 816     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 817 
 818     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 819       inline_string_calls(true);
 820     }
 821 
 822     if (failing())  return;
 823 
 824     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 825 
 826     // Remove clutter produced by parsing.
 827     if (!failing()) {
 828       ResourceMark rm;
 829       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 830     }
 831   }
 832 
 833   // Note:  Large methods are capped off in do_one_bytecode().
 834   if (failing())  return;
 835 
 836   // After parsing, node notes are no longer automagic.
 837   // They must be propagated by register_new_node_with_optimizer(),
 838   // clone(), or the like.
 839   set_default_node_notes(NULL);
 840 
 841   for (;;) {
 842     int successes = Inline_Warm();
 843     if (failing())  return;
 844     if (successes == 0)  break;
 845   }
 846 
 847   // Drain the list.
 848   Finish_Warm();
 849 #ifndef PRODUCT
 850   if (_printer && _printer->should_print(1)) {
 851     _printer->print_inlining();
 852   }
 853 #endif
 854 
 855   if (failing())  return;
 856   NOT_PRODUCT( verify_graph_edges(); )
 857 
 858   // Now optimize
 859   Optimize();
 860   if (failing())  return;
 861   NOT_PRODUCT( verify_graph_edges(); )
 862 
 863 #ifndef PRODUCT
 864   if (PrintIdeal) {
 865     ttyLocker ttyl;  // keep the following output all in one block
 866     // This output goes directly to the tty, not the compiler log.
 867     // To enable tools to match it up with the compilation activity,
 868     // be sure to tag this tty output with the compile ID.
 869     if (xtty != NULL) {
 870       xtty->head("ideal compile_id='%d'%s", compile_id(),
 871                  is_osr_compilation()    ? " compile_kind='osr'" :
 872                  "");
 873     }
 874     root()->dump(9999);
 875     if (xtty != NULL) {
 876       xtty->tail("ideal");
 877     }
 878   }
 879 #endif
 880 
 881   NOT_PRODUCT( verify_barriers(); )
 882 
 883   // Dump compilation data to replay it.
 884   if (directive->DumpReplayOption) {
 885     env()->dump_replay_data(_compile_id);
 886   }
 887   if (directive->DumpInlineOption && (ilt() != NULL)) {
 888     env()->dump_inline_data(_compile_id);
 889   }
 890 
 891   // Now that we know the size of all the monitors we can add a fixed slot
 892   // for the original deopt pc.
 893 
 894   _orig_pc_slot =  fixed_slots();
 895   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 896   set_fixed_slots(next_slot);
 897 
 898   // Compute when to use implicit null checks. Used by matching trap based
 899   // nodes and NullCheck optimization.
 900   set_allowed_deopt_reasons();
 901 
 902   // Now generate code
 903   Code_Gen();
 904   if (failing())  return;
 905 
 906   // Check if we want to skip execution of all compiled code.
 907   {
 908 #ifndef PRODUCT
 909     if (OptoNoExecute) {
 910       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 911       return;
 912     }
 913 #endif
 914     TracePhase tp("install_code", &timers[_t_registerMethod]);
 915 
 916     if (is_osr_compilation()) {
 917       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 918       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 919     } else {
 920       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 921       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 922     }
 923 
 924     env()->register_method(_method, _entry_bci,
 925                            &_code_offsets,
 926                            _orig_pc_slot_offset_in_bytes,
 927                            code_buffer(),
 928                            frame_size_in_words(), _oop_map_set,
 929                            &_handler_table, &_inc_table,
 930                            compiler,
 931                            has_unsafe_access(),
 932                            SharedRuntime::is_wide_vector(max_vector_size()),
 933                            rtm_state()
 934                            );
 935 
 936     if (log() != NULL) // Print code cache state into compiler log
 937       log()->code_cache_state();
 938   }
 939 }
 940 
 941 //------------------------------Compile----------------------------------------
 942 // Compile a runtime stub
 943 Compile::Compile( ciEnv* ci_env,
 944                   TypeFunc_generator generator,
 945                   address stub_function,
 946                   const char *stub_name,
 947                   int is_fancy_jump,
 948                   bool pass_tls,
 949                   bool save_arg_registers,
 950                   bool return_pc,
 951                   DirectiveSet* directive)
 952   : Phase(Compiler),
 953     _env(ci_env),
 954     _directive(directive),
 955     _log(ci_env->log()),
 956     _compile_id(0),
 957     _save_argument_registers(save_arg_registers),
 958     _method(NULL),
 959     _stub_name(stub_name),
 960     _stub_function(stub_function),
 961     _stub_entry_point(NULL),
 962     _entry_bci(InvocationEntryBci),
 963     _initial_gvn(NULL),
 964     _for_igvn(NULL),
 965     _warm_calls(NULL),
 966     _orig_pc_slot(0),
 967     _orig_pc_slot_offset_in_bytes(0),
 968     _subsume_loads(true),
 969     _do_escape_analysis(false),
 970     _eliminate_boxing(false),
 971     _failure_reason(NULL),
 972     _code_buffer("Compile::Fill_buffer"),
 973     _has_method_handle_invokes(false),
 974     _mach_constant_base_node(NULL),
 975     _node_bundling_limit(0),
 976     _node_bundling_base(NULL),
 977     _java_calls(0),
 978     _inner_loops(0),
 979 #ifndef PRODUCT
 980     _trace_opto_output(directive->TraceOptoOutputOption),
 981     _in_dump_cnt(0),
 982     _printer(NULL),
 983 #endif
 984     _comp_arena(mtCompiler),
 985     _node_arena(mtCompiler),
 986     _old_arena(mtCompiler),
 987     _Compile_types(mtCompiler),
 988     _dead_node_list(comp_arena()),
 989     _dead_node_count(0),
 990     _congraph(NULL),
 991     _replay_inline_data(NULL),
 992     _number_of_mh_late_inlines(0),
 993     _inlining_progress(false),
 994     _inlining_incrementally(false),
 995     _print_inlining_list(NULL),
 996     _print_inlining_stream(NULL),
 997     _print_inlining_idx(0),
 998     _print_inlining_output(NULL),
 999     _allowed_reasons(0),
1000     _interpreter_frame_size(0),
1001     _max_node_limit(MaxNodeLimit),
1002     _has_reserved_stack_access(false) {
1003   C = this;
1004 
1005   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1006   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1007 
1008 #ifndef PRODUCT
1009   set_print_assembly(PrintFrameConverterAssembly);
1010   set_parsed_irreducible_loop(false);
1011 #endif
1012   set_has_irreducible_loop(false); // no loops
1013 
1014   CompileWrapper cw(this);
1015   Init(/*AliasLevel=*/ 0);
1016   init_tf((*generator)());
1017 
1018   {
1019     // The following is a dummy for the sake of GraphKit::gen_stub
1020     Unique_Node_List for_igvn(comp_arena());
1021     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1022     PhaseGVN gvn(Thread::current()->resource_area(),255);
1023     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1024     gvn.transform_no_reclaim(top());
1025 
1026     GraphKit kit;
1027     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1028   }
1029 
1030   NOT_PRODUCT( verify_graph_edges(); )
1031   Code_Gen();
1032   if (failing())  return;
1033 
1034 
1035   // Entry point will be accessed using compile->stub_entry_point();
1036   if (code_buffer() == NULL) {
1037     Matcher::soft_match_failure();
1038   } else {
1039     if (PrintAssembly && (WizardMode || Verbose))
1040       tty->print_cr("### Stub::%s", stub_name);
1041 
1042     if (!failing()) {
1043       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1044 
1045       // Make the NMethod
1046       // For now we mark the frame as never safe for profile stackwalking
1047       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1048                                                       code_buffer(),
1049                                                       CodeOffsets::frame_never_safe,
1050                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1051                                                       frame_size_in_words(),
1052                                                       _oop_map_set,
1053                                                       save_arg_registers);
1054       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1055 
1056       _stub_entry_point = rs->entry_point();
1057     }
1058   }
1059 }
1060 
1061 //------------------------------Init-------------------------------------------
1062 // Prepare for a single compilation
1063 void Compile::Init(int aliaslevel) {
1064   _unique  = 0;
1065   _regalloc = NULL;
1066 
1067   _tf      = NULL;  // filled in later
1068   _top     = NULL;  // cached later
1069   _matcher = NULL;  // filled in later
1070   _cfg     = NULL;  // filled in later
1071 
1072   set_24_bit_selection_and_mode(Use24BitFP, false);
1073 
1074   _node_note_array = NULL;
1075   _default_node_notes = NULL;
1076   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1077 
1078   _immutable_memory = NULL; // filled in at first inquiry
1079 
1080   // Globally visible Nodes
1081   // First set TOP to NULL to give safe behavior during creation of RootNode
1082   set_cached_top_node(NULL);
1083   set_root(new RootNode());
1084   // Now that you have a Root to point to, create the real TOP
1085   set_cached_top_node( new ConNode(Type::TOP) );
1086   set_recent_alloc(NULL, NULL);
1087 
1088   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1089   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1090   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1091   env()->set_dependencies(new Dependencies(env()));
1092 
1093   _fixed_slots = 0;
1094   set_has_split_ifs(false);
1095   set_has_loops(has_method() && method()->has_loops()); // first approximation
1096   set_has_stringbuilder(false);
1097   set_has_boxed_value(false);
1098   _trap_can_recompile = false;  // no traps emitted yet
1099   _major_progress = true; // start out assuming good things will happen
1100   set_has_unsafe_access(false);
1101   set_max_vector_size(0);
1102   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1103   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1104   set_decompile_count(0);
1105 
1106   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1107   set_num_loop_opts(LoopOptsCount);
1108   set_do_inlining(Inline);
1109   set_max_inline_size(MaxInlineSize);
1110   set_freq_inline_size(FreqInlineSize);
1111   set_do_scheduling(OptoScheduling);
1112   set_do_count_invocations(false);
1113   set_do_method_data_update(false);
1114 
1115   set_do_vector_loop(false);
1116 
1117   if (AllowVectorizeOnDemand) {
1118     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1119       set_do_vector_loop(true);
1120       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1121     } else if (has_method() && method()->name() != 0 &&
1122                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1123       set_do_vector_loop(true);
1124     }
1125   }
1126   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1127   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1128 
1129   set_age_code(has_method() && method()->profile_aging());
1130   set_rtm_state(NoRTM); // No RTM lock eliding by default
1131   _max_node_limit = _directive->MaxNodeLimitOption;
1132 
1133 #if INCLUDE_RTM_OPT
1134   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1135     int rtm_state = method()->method_data()->rtm_state();
1136     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1137       // Don't generate RTM lock eliding code.
1138       set_rtm_state(NoRTM);
1139     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1140       // Generate RTM lock eliding code without abort ratio calculation code.
1141       set_rtm_state(UseRTM);
1142     } else if (UseRTMDeopt) {
1143       // Generate RTM lock eliding code and include abort ratio calculation
1144       // code if UseRTMDeopt is on.
1145       set_rtm_state(ProfileRTM);
1146     }
1147   }
1148 #endif
1149   if (debug_info()->recording_non_safepoints()) {
1150     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1151                         (comp_arena(), 8, 0, NULL));
1152     set_default_node_notes(Node_Notes::make(this));
1153   }
1154 
1155   // // -- Initialize types before each compile --
1156   // // Update cached type information
1157   // if( _method && _method->constants() )
1158   //   Type::update_loaded_types(_method, _method->constants());
1159 
1160   // Init alias_type map.
1161   if (!_do_escape_analysis && aliaslevel == 3)
1162     aliaslevel = 2;  // No unique types without escape analysis
1163   _AliasLevel = aliaslevel;
1164   const int grow_ats = 16;
1165   _max_alias_types = grow_ats;
1166   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1167   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1168   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1169   {
1170     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1171   }
1172   // Initialize the first few types.
1173   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1174   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1175   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1176   _num_alias_types = AliasIdxRaw+1;
1177   // Zero out the alias type cache.
1178   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1179   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1180   probe_alias_cache(NULL)->_index = AliasIdxTop;
1181 
1182   _intrinsics = NULL;
1183   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1184   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1185   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1186   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1187   _value_type_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
1188   register_library_intrinsics();
1189 }
1190 
1191 //---------------------------init_start----------------------------------------
1192 // Install the StartNode on this compile object.
1193 void Compile::init_start(StartNode* s) {
1194   if (failing())
1195     return; // already failing
1196   assert(s == start(), "");
1197 }
1198 
1199 /**
1200  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1201  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1202  * the ideal graph.
1203  */
1204 StartNode* Compile::start() const {
1205   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1206   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1207     Node* start = root()->fast_out(i);
1208     if (start->is_Start()) {
1209       return start->as_Start();
1210     }
1211   }
1212   fatal("Did not find Start node!");
1213   return NULL;
1214 }
1215 
1216 //-------------------------------immutable_memory-------------------------------------
1217 // Access immutable memory
1218 Node* Compile::immutable_memory() {
1219   if (_immutable_memory != NULL) {
1220     return _immutable_memory;
1221   }
1222   StartNode* s = start();
1223   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1224     Node *p = s->fast_out(i);
1225     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1226       _immutable_memory = p;
1227       return _immutable_memory;
1228     }
1229   }
1230   ShouldNotReachHere();
1231   return NULL;
1232 }
1233 
1234 //----------------------set_cached_top_node------------------------------------
1235 // Install the cached top node, and make sure Node::is_top works correctly.
1236 void Compile::set_cached_top_node(Node* tn) {
1237   if (tn != NULL)  verify_top(tn);
1238   Node* old_top = _top;
1239   _top = tn;
1240   // Calling Node::setup_is_top allows the nodes the chance to adjust
1241   // their _out arrays.
1242   if (_top != NULL)     _top->setup_is_top();
1243   if (old_top != NULL)  old_top->setup_is_top();
1244   assert(_top == NULL || top()->is_top(), "");
1245 }
1246 
1247 #ifdef ASSERT
1248 uint Compile::count_live_nodes_by_graph_walk() {
1249   Unique_Node_List useful(comp_arena());
1250   // Get useful node list by walking the graph.
1251   identify_useful_nodes(useful);
1252   return useful.size();
1253 }
1254 
1255 void Compile::print_missing_nodes() {
1256 
1257   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1258   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1259     return;
1260   }
1261 
1262   // This is an expensive function. It is executed only when the user
1263   // specifies VerifyIdealNodeCount option or otherwise knows the
1264   // additional work that needs to be done to identify reachable nodes
1265   // by walking the flow graph and find the missing ones using
1266   // _dead_node_list.
1267 
1268   Unique_Node_List useful(comp_arena());
1269   // Get useful node list by walking the graph.
1270   identify_useful_nodes(useful);
1271 
1272   uint l_nodes = C->live_nodes();
1273   uint l_nodes_by_walk = useful.size();
1274 
1275   if (l_nodes != l_nodes_by_walk) {
1276     if (_log != NULL) {
1277       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1278       _log->stamp();
1279       _log->end_head();
1280     }
1281     VectorSet& useful_member_set = useful.member_set();
1282     int last_idx = l_nodes_by_walk;
1283     for (int i = 0; i < last_idx; i++) {
1284       if (useful_member_set.test(i)) {
1285         if (_dead_node_list.test(i)) {
1286           if (_log != NULL) {
1287             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1288           }
1289           if (PrintIdealNodeCount) {
1290             // Print the log message to tty
1291               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1292               useful.at(i)->dump();
1293           }
1294         }
1295       }
1296       else if (! _dead_node_list.test(i)) {
1297         if (_log != NULL) {
1298           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1299         }
1300         if (PrintIdealNodeCount) {
1301           // Print the log message to tty
1302           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1303         }
1304       }
1305     }
1306     if (_log != NULL) {
1307       _log->tail("mismatched_nodes");
1308     }
1309   }
1310 }
1311 void Compile::record_modified_node(Node* n) {
1312   if (_modified_nodes != NULL && !_inlining_incrementally &&
1313       n->outcnt() != 0 && !n->is_Con()) {
1314     _modified_nodes->push(n);
1315   }
1316 }
1317 
1318 void Compile::remove_modified_node(Node* n) {
1319   if (_modified_nodes != NULL) {
1320     _modified_nodes->remove(n);
1321   }
1322 }
1323 #endif
1324 
1325 #ifndef PRODUCT
1326 void Compile::verify_top(Node* tn) const {
1327   if (tn != NULL) {
1328     assert(tn->is_Con(), "top node must be a constant");
1329     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1330     assert(tn->in(0) != NULL, "must have live top node");
1331   }
1332 }
1333 #endif
1334 
1335 
1336 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1337 
1338 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1339   guarantee(arr != NULL, "");
1340   int num_blocks = arr->length();
1341   if (grow_by < num_blocks)  grow_by = num_blocks;
1342   int num_notes = grow_by * _node_notes_block_size;
1343   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1344   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1345   while (num_notes > 0) {
1346     arr->append(notes);
1347     notes     += _node_notes_block_size;
1348     num_notes -= _node_notes_block_size;
1349   }
1350   assert(num_notes == 0, "exact multiple, please");
1351 }
1352 
1353 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1354   if (source == NULL || dest == NULL)  return false;
1355 
1356   if (dest->is_Con())
1357     return false;               // Do not push debug info onto constants.
1358 
1359 #ifdef ASSERT
1360   // Leave a bread crumb trail pointing to the original node:
1361   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1362     dest->set_debug_orig(source);
1363   }
1364 #endif
1365 
1366   if (node_note_array() == NULL)
1367     return false;               // Not collecting any notes now.
1368 
1369   // This is a copy onto a pre-existing node, which may already have notes.
1370   // If both nodes have notes, do not overwrite any pre-existing notes.
1371   Node_Notes* source_notes = node_notes_at(source->_idx);
1372   if (source_notes == NULL || source_notes->is_clear())  return false;
1373   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1374   if (dest_notes == NULL || dest_notes->is_clear()) {
1375     return set_node_notes_at(dest->_idx, source_notes);
1376   }
1377 
1378   Node_Notes merged_notes = (*source_notes);
1379   // The order of operations here ensures that dest notes will win...
1380   merged_notes.update_from(dest_notes);
1381   return set_node_notes_at(dest->_idx, &merged_notes);
1382 }
1383 
1384 
1385 //--------------------------allow_range_check_smearing-------------------------
1386 // Gating condition for coalescing similar range checks.
1387 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1388 // single covering check that is at least as strong as any of them.
1389 // If the optimization succeeds, the simplified (strengthened) range check
1390 // will always succeed.  If it fails, we will deopt, and then give up
1391 // on the optimization.
1392 bool Compile::allow_range_check_smearing() const {
1393   // If this method has already thrown a range-check,
1394   // assume it was because we already tried range smearing
1395   // and it failed.
1396   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1397   return !already_trapped;
1398 }
1399 
1400 
1401 //------------------------------flatten_alias_type-----------------------------
1402 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1403   int offset = tj->offset();
1404   TypePtr::PTR ptr = tj->ptr();
1405 
1406   // Known instance (scalarizable allocation) alias only with itself.
1407   bool is_known_inst = tj->isa_oopptr() != NULL &&
1408                        tj->is_oopptr()->is_known_instance();
1409 
1410   // Process weird unsafe references.
1411   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1412     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1413     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1414     tj = TypeOopPtr::BOTTOM;
1415     ptr = tj->ptr();
1416     offset = tj->offset();
1417   }
1418 
1419   // Array pointers need some flattening
1420   const TypeAryPtr *ta = tj->isa_aryptr();
1421   if (ta && ta->is_stable()) {
1422     // Erase stability property for alias analysis.
1423     tj = ta = ta->cast_to_stable(false);
1424   }
1425   if( ta && is_known_inst ) {
1426     if ( offset != Type::OffsetBot &&
1427          offset > arrayOopDesc::length_offset_in_bytes() ) {
1428       offset = Type::OffsetBot; // Flatten constant access into array body only
1429       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, Type::Offset(offset), ta->field_offset(), ta->instance_id());
1430     }
1431   } else if( ta && _AliasLevel >= 2 ) {
1432     // For arrays indexed by constant indices, we flatten the alias
1433     // space to include all of the array body.  Only the header, klass
1434     // and array length can be accessed un-aliased.
1435     // For flattened value type array, each field has its own slice so
1436     // we must include the field offset.
1437     if( offset != Type::OffsetBot ) {
1438       if( ta->const_oop() ) { // MethodData* or Method*
1439         offset = Type::OffsetBot;   // Flatten constant access into array body
1440         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1441       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1442         // range is OK as-is.
1443         tj = ta = TypeAryPtr::RANGE;
1444       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1445         tj = TypeInstPtr::KLASS; // all klass loads look alike
1446         ta = TypeAryPtr::RANGE; // generic ignored junk
1447         ptr = TypePtr::BotPTR;
1448       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1449         tj = TypeInstPtr::MARK;
1450         ta = TypeAryPtr::RANGE; // generic ignored junk
1451         ptr = TypePtr::BotPTR;
1452       } else {                  // Random constant offset into array body
1453         offset = Type::OffsetBot;   // Flatten constant access into array body
1454         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1455       }
1456     }
1457     // Arrays of fixed size alias with arrays of unknown size.
1458     if (ta->size() != TypeInt::POS) {
1459       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1460       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,Type::Offset(offset), ta->field_offset());
1461     }
1462     // Arrays of known objects become arrays of unknown objects.
1463     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1464       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1465       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1466     }
1467     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1468       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1469       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1470     }
1471     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1472     // cannot be distinguished by bytecode alone.
1473     if (ta->elem() == TypeInt::BOOL) {
1474       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1475       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1476       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset());
1477     }
1478     // During the 2nd round of IterGVN, NotNull castings are removed.
1479     // Make sure the Bottom and NotNull variants alias the same.
1480     // Also, make sure exact and non-exact variants alias the same.
1481     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1482       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1483     }
1484   }
1485 
1486   // Oop pointers need some flattening
1487   const TypeInstPtr *to = tj->isa_instptr();
1488   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1489     ciInstanceKlass *k = to->klass()->as_instance_klass();
1490     if( ptr == TypePtr::Constant ) {
1491       if (to->klass() != ciEnv::current()->Class_klass() ||
1492           offset < k->size_helper() * wordSize) {
1493         // No constant oop pointers (such as Strings); they alias with
1494         // unknown strings.
1495         assert(!is_known_inst, "not scalarizable allocation");
1496         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1497       }
1498     } else if( is_known_inst ) {
1499       tj = to; // Keep NotNull and klass_is_exact for instance type
1500     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1501       // During the 2nd round of IterGVN, NotNull castings are removed.
1502       // Make sure the Bottom and NotNull variants alias the same.
1503       // Also, make sure exact and non-exact variants alias the same.
1504       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1505     }
1506     if (to->speculative() != NULL) {
1507       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),Type::Offset(to->offset()), to->instance_id());
1508     }
1509     // Canonicalize the holder of this field
1510     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1511       // First handle header references such as a LoadKlassNode, even if the
1512       // object's klass is unloaded at compile time (4965979).
1513       if (!is_known_inst) { // Do it only for non-instance types
1514         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, Type::Offset(offset));
1515       }
1516     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1517       // Static fields are in the space above the normal instance
1518       // fields in the java.lang.Class instance.
1519       if (to->klass() != ciEnv::current()->Class_klass()) {
1520         to = NULL;
1521         tj = TypeOopPtr::BOTTOM;
1522         offset = tj->offset();
1523       }
1524     } else {
1525       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1526       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1527         if( is_known_inst ) {
1528           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, Type::Offset(offset), to->instance_id());
1529         } else {
1530           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, Type::Offset(offset));
1531         }
1532       }
1533     }
1534   }
1535 
1536   // Value type pointers need flattening
1537   const TypeValueTypePtr* tv = tj->isa_valuetypeptr();
1538   if (tv != NULL && _AliasLevel >= 2) {
1539     assert(tv->speculative() == NULL, "should not have speculative type information");
1540     ciValueKlass* vk = tv->klass()->as_value_klass();
1541     if (ptr == TypePtr::Constant) {
1542       assert(!is_known_inst, "not scalarizable allocation");
1543       tj = tv = TypeValueTypePtr::make(TypePtr::BotPTR, tv->value_klass(), NULL, Type::Offset(offset));
1544     } else if (is_known_inst) {
1545       tj = tv; // Keep NotNull and klass_is_exact for instance type
1546     } else if (ptr == TypePtr::NotNull || tv->klass_is_exact()) {
1547       // During the 2nd round of IterGVN, NotNull castings are removed.
1548       // Make sure the Bottom and NotNull variants alias the same.
1549       // Also, make sure exact and non-exact variants alias the same.
1550       tj = tv = TypeValueTypePtr::make(TypePtr::BotPTR, tv->value_klass(), tv->const_oop(), Type::Offset(offset));
1551     }
1552     // Canonicalize the holder of this field
1553     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1554       // First handle header references such as a LoadKlassNode, even if the
1555       // object's klass is unloaded at compile time (4965979).
1556       if (!is_known_inst) { // Do it only for non-instance types
1557         tj = tv = TypeValueTypePtr::make(TypePtr::BotPTR, env()->___Value_klass()->as_value_klass(), NULL, Type::Offset(offset));
1558       }
1559     } else if (offset < 0 || offset >= vk->size_helper() * wordSize) {
1560       // Static fields are in the space above the normal instance
1561       // fields in the java.lang.Class instance.
1562       tv = NULL;
1563       tj = TypeOopPtr::BOTTOM;
1564       offset = tj->offset();
1565     } else {
1566       ciInstanceKlass* canonical_holder = vk->get_canonical_holder(offset);
1567       assert(vk->equals(canonical_holder), "value types should not inherit fields");
1568     }
1569   }
1570 
1571   // Klass pointers to object array klasses need some flattening
1572   const TypeKlassPtr *tk = tj->isa_klassptr();
1573   if( tk ) {
1574     // If we are referencing a field within a Klass, we need
1575     // to assume the worst case of an Object.  Both exact and
1576     // inexact types must flatten to the same alias class so
1577     // use NotNull as the PTR.
1578     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1579 
1580       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1581                                    TypeKlassPtr::OBJECT->klass(),
1582                                    Type::Offset(offset));
1583     }
1584 
1585     ciKlass* klass = tk->klass();
1586     if (klass != NULL && klass->is_obj_array_klass()) {
1587       ciKlass* k = TypeAryPtr::OOPS->klass();
1588       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1589         k = TypeInstPtr::BOTTOM->klass();
1590       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, k, Type::Offset(offset));
1591     }
1592 
1593     // Check for precise loads from the primary supertype array and force them
1594     // to the supertype cache alias index.  Check for generic array loads from
1595     // the primary supertype array and also force them to the supertype cache
1596     // alias index.  Since the same load can reach both, we need to merge
1597     // these 2 disparate memories into the same alias class.  Since the
1598     // primary supertype array is read-only, there's no chance of confusion
1599     // where we bypass an array load and an array store.
1600     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1601     if (offset == Type::OffsetBot ||
1602         (offset >= primary_supers_offset &&
1603          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1604         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1605       offset = in_bytes(Klass::secondary_super_cache_offset());
1606       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, tk->klass(), Type::Offset(offset));
1607     }
1608   }
1609 
1610   // Flatten all Raw pointers together.
1611   if (tj->base() == Type::RawPtr)
1612     tj = TypeRawPtr::BOTTOM;
1613 
1614   if (tj->base() == Type::AnyPtr)
1615     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1616 
1617   // Flatten all to bottom for now
1618   switch( _AliasLevel ) {
1619   case 0:
1620     tj = TypePtr::BOTTOM;
1621     break;
1622   case 1:                       // Flatten to: oop, static, field or array
1623     switch (tj->base()) {
1624     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1625     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1626     case Type::AryPtr:   // do not distinguish arrays at all
1627     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1628     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1629     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1630     default: ShouldNotReachHere();
1631     }
1632     break;
1633   case 2:                       // No collapsing at level 2; keep all splits
1634   case 3:                       // No collapsing at level 3; keep all splits
1635     break;
1636   default:
1637     Unimplemented();
1638   }
1639 
1640   offset = tj->offset();
1641   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1642 
1643   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1644           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1645           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1646           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1647           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1648           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1649           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1650           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1651   assert( tj->ptr() != TypePtr::TopPTR &&
1652           tj->ptr() != TypePtr::AnyNull &&
1653           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1654 //    assert( tj->ptr() != TypePtr::Constant ||
1655 //            tj->base() == Type::RawPtr ||
1656 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1657 
1658   return tj;
1659 }
1660 
1661 void Compile::AliasType::Init(int i, const TypePtr* at) {
1662   _index = i;
1663   _adr_type = at;
1664   _field = NULL;
1665   _element = NULL;
1666   _is_rewritable = true; // default
1667   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1668   if (atoop != NULL && atoop->is_known_instance()) {
1669     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1670     _general_index = Compile::current()->get_alias_index(gt);
1671   } else {
1672     _general_index = 0;
1673   }
1674 }
1675 
1676 BasicType Compile::AliasType::basic_type() const {
1677   if (element() != NULL) {
1678     const Type* element = adr_type()->is_aryptr()->elem();
1679     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1680   } if (field() != NULL) {
1681     return field()->layout_type();
1682   } else {
1683     return T_ILLEGAL; // unknown
1684   }
1685 }
1686 
1687 //---------------------------------print_on------------------------------------
1688 #ifndef PRODUCT
1689 void Compile::AliasType::print_on(outputStream* st) {
1690   if (index() < 10)
1691         st->print("@ <%d> ", index());
1692   else  st->print("@ <%d>",  index());
1693   st->print(is_rewritable() ? "   " : " RO");
1694   int offset = adr_type()->offset();
1695   if (offset == Type::OffsetBot)
1696         st->print(" +any");
1697   else  st->print(" +%-3d", offset);
1698   st->print(" in ");
1699   adr_type()->dump_on(st);
1700   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1701   if (field() != NULL && tjp) {
1702     if (tjp->klass()  != field()->holder() ||
1703         tjp->offset() != field()->offset_in_bytes()) {
1704       st->print(" != ");
1705       field()->print();
1706       st->print(" ***");
1707     }
1708   }
1709 }
1710 
1711 void print_alias_types() {
1712   Compile* C = Compile::current();
1713   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1714   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1715     C->alias_type(idx)->print_on(tty);
1716     tty->cr();
1717   }
1718 }
1719 #endif
1720 
1721 
1722 //----------------------------probe_alias_cache--------------------------------
1723 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1724   intptr_t key = (intptr_t) adr_type;
1725   key ^= key >> logAliasCacheSize;
1726   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1727 }
1728 
1729 
1730 //-----------------------------grow_alias_types--------------------------------
1731 void Compile::grow_alias_types() {
1732   const int old_ats  = _max_alias_types; // how many before?
1733   const int new_ats  = old_ats;          // how many more?
1734   const int grow_ats = old_ats+new_ats;  // how many now?
1735   _max_alias_types = grow_ats;
1736   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1737   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1738   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1739   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1740 }
1741 
1742 
1743 //--------------------------------find_alias_type------------------------------
1744 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1745   if (_AliasLevel == 0)
1746     return alias_type(AliasIdxBot);
1747 
1748   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1749   if (ace->_adr_type == adr_type) {
1750     return alias_type(ace->_index);
1751   }
1752 
1753   // Handle special cases.
1754   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1755   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1756 
1757   // Do it the slow way.
1758   const TypePtr* flat = flatten_alias_type(adr_type);
1759 
1760 #ifdef ASSERT
1761   {
1762     ResourceMark rm;
1763     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1764            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1765     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1766            Type::str(adr_type));
1767     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1768       const TypeOopPtr* foop = flat->is_oopptr();
1769       // Scalarizable allocations have exact klass always.
1770       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1771       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1772       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1773              Type::str(foop), Type::str(xoop));
1774     }
1775   }
1776 #endif
1777 
1778   int idx = AliasIdxTop;
1779   for (int i = 0; i < num_alias_types(); i++) {
1780     if (alias_type(i)->adr_type() == flat) {
1781       idx = i;
1782       break;
1783     }
1784   }
1785 
1786   if (idx == AliasIdxTop) {
1787     if (no_create)  return NULL;
1788     // Grow the array if necessary.
1789     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1790     // Add a new alias type.
1791     idx = _num_alias_types++;
1792     _alias_types[idx]->Init(idx, flat);
1793     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1794     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1795     if (flat->isa_instptr()) {
1796       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1797           && flat->is_instptr()->klass() == env()->Class_klass())
1798         alias_type(idx)->set_rewritable(false);
1799     }
1800     if (flat->isa_aryptr()) {
1801 #ifdef ASSERT
1802       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1803       // (T_BYTE has the weakest alignment and size restrictions...)
1804       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1805 #endif
1806       if (flat->offset() == TypePtr::OffsetBot) {
1807         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1808       }
1809     }
1810     if (flat->isa_klassptr()) {
1811       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1812         alias_type(idx)->set_rewritable(false);
1813       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1814         alias_type(idx)->set_rewritable(false);
1815       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1816         alias_type(idx)->set_rewritable(false);
1817       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1818         alias_type(idx)->set_rewritable(false);
1819     }
1820     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1821     // but the base pointer type is not distinctive enough to identify
1822     // references into JavaThread.)
1823 
1824     // Check for final fields.
1825     const TypeInstPtr* tinst = flat->isa_instptr();
1826     const TypeValueTypePtr* vtptr = flat->isa_valuetypeptr();
1827     ciField* field = NULL;
1828     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1829       if (tinst->const_oop() != NULL &&
1830           tinst->klass() == ciEnv::current()->Class_klass() &&
1831           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1832         // static field
1833         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1834         field = k->get_field_by_offset(tinst->offset(), true);
1835       } else {
1836         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1837         field = k->get_field_by_offset(tinst->offset(), false);
1838       }
1839     } else if (vtptr) {
1840       // Value type field
1841       ciValueKlass* vk = vtptr->klass()->as_value_klass();
1842       field = vk->get_field_by_offset(vtptr->offset(), false);
1843     }
1844     assert(field == NULL ||
1845            original_field == NULL ||
1846            (field->holder() == original_field->holder() &&
1847             field->offset() == original_field->offset() &&
1848             field->is_static() == original_field->is_static()), "wrong field?");
1849     // Set field() and is_rewritable() attributes.
1850     if (field != NULL)  alias_type(idx)->set_field(field);
1851   }
1852 
1853   // Fill the cache for next time.
1854   ace->_adr_type = adr_type;
1855   ace->_index    = idx;
1856   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1857 
1858   // Might as well try to fill the cache for the flattened version, too.
1859   AliasCacheEntry* face = probe_alias_cache(flat);
1860   if (face->_adr_type == NULL) {
1861     face->_adr_type = flat;
1862     face->_index    = idx;
1863     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1864   }
1865 
1866   return alias_type(idx);
1867 }
1868 
1869 
1870 Compile::AliasType* Compile::alias_type(ciField* field) {
1871   const TypeOopPtr* t;
1872   if (field->is_static())
1873     t = TypeInstPtr::make(field->holder()->java_mirror());
1874   else
1875     t = TypeOopPtr::make_from_klass_raw(field->holder());
1876   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1877   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1878   return atp;
1879 }
1880 
1881 
1882 //------------------------------have_alias_type--------------------------------
1883 bool Compile::have_alias_type(const TypePtr* adr_type) {
1884   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1885   if (ace->_adr_type == adr_type) {
1886     return true;
1887   }
1888 
1889   // Handle special cases.
1890   if (adr_type == NULL)             return true;
1891   if (adr_type == TypePtr::BOTTOM)  return true;
1892 
1893   return find_alias_type(adr_type, true, NULL) != NULL;
1894 }
1895 
1896 //-----------------------------must_alias--------------------------------------
1897 // True if all values of the given address type are in the given alias category.
1898 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1899   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1900   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1901   if (alias_idx == AliasIdxTop)         return false; // the empty category
1902   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1903 
1904   // the only remaining possible overlap is identity
1905   int adr_idx = get_alias_index(adr_type);
1906   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1907   assert(adr_idx == alias_idx ||
1908          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1909           && adr_type                       != TypeOopPtr::BOTTOM),
1910          "should not be testing for overlap with an unsafe pointer");
1911   return adr_idx == alias_idx;
1912 }
1913 
1914 //------------------------------can_alias--------------------------------------
1915 // True if any values of the given address type are in the given alias category.
1916 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1917   if (alias_idx == AliasIdxTop)         return false; // the empty category
1918   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1919   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1920   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1921 
1922   // the only remaining possible overlap is identity
1923   int adr_idx = get_alias_index(adr_type);
1924   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1925   return adr_idx == alias_idx;
1926 }
1927 
1928 
1929 
1930 //---------------------------pop_warm_call-------------------------------------
1931 WarmCallInfo* Compile::pop_warm_call() {
1932   WarmCallInfo* wci = _warm_calls;
1933   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1934   return wci;
1935 }
1936 
1937 //----------------------------Inline_Warm--------------------------------------
1938 int Compile::Inline_Warm() {
1939   // If there is room, try to inline some more warm call sites.
1940   // %%% Do a graph index compaction pass when we think we're out of space?
1941   if (!InlineWarmCalls)  return 0;
1942 
1943   int calls_made_hot = 0;
1944   int room_to_grow   = NodeCountInliningCutoff - unique();
1945   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1946   int amount_grown   = 0;
1947   WarmCallInfo* call;
1948   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1949     int est_size = (int)call->size();
1950     if (est_size > (room_to_grow - amount_grown)) {
1951       // This one won't fit anyway.  Get rid of it.
1952       call->make_cold();
1953       continue;
1954     }
1955     call->make_hot();
1956     calls_made_hot++;
1957     amount_grown   += est_size;
1958     amount_to_grow -= est_size;
1959   }
1960 
1961   if (calls_made_hot > 0)  set_major_progress();
1962   return calls_made_hot;
1963 }
1964 
1965 
1966 //----------------------------Finish_Warm--------------------------------------
1967 void Compile::Finish_Warm() {
1968   if (!InlineWarmCalls)  return;
1969   if (failing())  return;
1970   if (warm_calls() == NULL)  return;
1971 
1972   // Clean up loose ends, if we are out of space for inlining.
1973   WarmCallInfo* call;
1974   while ((call = pop_warm_call()) != NULL) {
1975     call->make_cold();
1976   }
1977 }
1978 
1979 //---------------------cleanup_loop_predicates-----------------------
1980 // Remove the opaque nodes that protect the predicates so that all unused
1981 // checks and uncommon_traps will be eliminated from the ideal graph
1982 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1983   if (predicate_count()==0) return;
1984   for (int i = predicate_count(); i > 0; i--) {
1985     Node * n = predicate_opaque1_node(i-1);
1986     assert(n->Opcode() == Op_Opaque1, "must be");
1987     igvn.replace_node(n, n->in(1));
1988   }
1989   assert(predicate_count()==0, "should be clean!");
1990 }
1991 
1992 void Compile::add_range_check_cast(Node* n) {
1993   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1994   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1995   _range_check_casts->append(n);
1996 }
1997 
1998 // Remove all range check dependent CastIINodes.
1999 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
2000   for (int i = range_check_cast_count(); i > 0; i--) {
2001     Node* cast = range_check_cast_node(i-1);
2002     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2003     igvn.replace_node(cast, cast->in(1));
2004   }
2005   assert(range_check_cast_count() == 0, "should be empty");
2006 }
2007 
2008 void Compile::add_value_type(Node* n) {
2009   assert(n->is_ValueTypeBase(), "unexpected node");
2010   if (_value_type_nodes != NULL) {
2011     _value_type_nodes->push(n);
2012   }
2013 }
2014 
2015 void Compile::remove_value_type(Node* n) {
2016   assert(n->is_ValueTypeBase(), "unexpected node");
2017   if (_value_type_nodes != NULL) {
2018     _value_type_nodes->remove(n);
2019   }
2020 }
2021 
2022 void Compile::process_value_types(PhaseIterGVN &igvn) {
2023   // Make value types scalar in safepoints
2024   while (_value_type_nodes->size() != 0) {
2025     ValueTypeBaseNode* vt = _value_type_nodes->pop()->as_ValueTypeBase();
2026     vt->make_scalar_in_safepoints(igvn.C->root(), &igvn);
2027     if (vt->is_ValueTypePtr()) {
2028       igvn.replace_node(vt, vt->get_oop());
2029     }
2030   }
2031   _value_type_nodes = NULL;
2032   igvn.optimize();
2033 }
2034 
2035 // StringOpts and late inlining of string methods
2036 void Compile::inline_string_calls(bool parse_time) {
2037   {
2038     // remove useless nodes to make the usage analysis simpler
2039     ResourceMark rm;
2040     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2041   }
2042 
2043   {
2044     ResourceMark rm;
2045     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2046     PhaseStringOpts pso(initial_gvn(), for_igvn());
2047     print_method(PHASE_AFTER_STRINGOPTS, 3);
2048   }
2049 
2050   // now inline anything that we skipped the first time around
2051   if (!parse_time) {
2052     _late_inlines_pos = _late_inlines.length();
2053   }
2054 
2055   while (_string_late_inlines.length() > 0) {
2056     CallGenerator* cg = _string_late_inlines.pop();
2057     cg->do_late_inline();
2058     if (failing())  return;
2059   }
2060   _string_late_inlines.trunc_to(0);
2061 }
2062 
2063 // Late inlining of boxing methods
2064 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2065   if (_boxing_late_inlines.length() > 0) {
2066     assert(has_boxed_value(), "inconsistent");
2067 
2068     PhaseGVN* gvn = initial_gvn();
2069     set_inlining_incrementally(true);
2070 
2071     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2072     for_igvn()->clear();
2073     gvn->replace_with(&igvn);
2074 
2075     _late_inlines_pos = _late_inlines.length();
2076 
2077     while (_boxing_late_inlines.length() > 0) {
2078       CallGenerator* cg = _boxing_late_inlines.pop();
2079       cg->do_late_inline();
2080       if (failing())  return;
2081     }
2082     _boxing_late_inlines.trunc_to(0);
2083 
2084     {
2085       ResourceMark rm;
2086       PhaseRemoveUseless pru(gvn, for_igvn());
2087     }
2088 
2089     igvn = PhaseIterGVN(gvn);
2090     igvn.optimize();
2091 
2092     set_inlining_progress(false);
2093     set_inlining_incrementally(false);
2094   }
2095 }
2096 
2097 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2098   assert(IncrementalInline, "incremental inlining should be on");
2099   PhaseGVN* gvn = initial_gvn();
2100 
2101   set_inlining_progress(false);
2102   for_igvn()->clear();
2103   gvn->replace_with(&igvn);
2104 
2105   {
2106     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2107     int i = 0;
2108     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2109       CallGenerator* cg = _late_inlines.at(i);
2110       _late_inlines_pos = i+1;
2111       cg->do_late_inline();
2112       if (failing())  return;
2113     }
2114     int j = 0;
2115     for (; i < _late_inlines.length(); i++, j++) {
2116       _late_inlines.at_put(j, _late_inlines.at(i));
2117     }
2118     _late_inlines.trunc_to(j);
2119   }
2120 
2121   {
2122     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2123     ResourceMark rm;
2124     PhaseRemoveUseless pru(gvn, for_igvn());
2125   }
2126 
2127   {
2128     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2129     igvn = PhaseIterGVN(gvn);
2130   }
2131 }
2132 
2133 // Perform incremental inlining until bound on number of live nodes is reached
2134 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2135   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2136 
2137   PhaseGVN* gvn = initial_gvn();
2138 
2139   set_inlining_incrementally(true);
2140   set_inlining_progress(true);
2141   uint low_live_nodes = 0;
2142 
2143   while(inlining_progress() && _late_inlines.length() > 0) {
2144 
2145     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2146       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2147         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2148         // PhaseIdealLoop is expensive so we only try it once we are
2149         // out of live nodes and we only try it again if the previous
2150         // helped got the number of nodes down significantly
2151         PhaseIdealLoop ideal_loop( igvn, false, true );
2152         if (failing())  return;
2153         low_live_nodes = live_nodes();
2154         _major_progress = true;
2155       }
2156 
2157       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2158         break;
2159       }
2160     }
2161 
2162     inline_incrementally_one(igvn);
2163 
2164     if (failing())  return;
2165 
2166     {
2167       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2168       igvn.optimize();
2169     }
2170 
2171     if (failing())  return;
2172   }
2173 
2174   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2175 
2176   if (_string_late_inlines.length() > 0) {
2177     assert(has_stringbuilder(), "inconsistent");
2178     for_igvn()->clear();
2179     initial_gvn()->replace_with(&igvn);
2180 
2181     inline_string_calls(false);
2182 
2183     if (failing())  return;
2184 
2185     {
2186       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2187       ResourceMark rm;
2188       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2189     }
2190 
2191     {
2192       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2193       igvn = PhaseIterGVN(gvn);
2194       igvn.optimize();
2195     }
2196   }
2197 
2198   set_inlining_incrementally(false);
2199 }
2200 
2201 
2202 //------------------------------Optimize---------------------------------------
2203 // Given a graph, optimize it.
2204 void Compile::Optimize() {
2205   TracePhase tp("optimizer", &timers[_t_optimizer]);
2206 
2207 #ifndef PRODUCT
2208   if (_directive->BreakAtCompileOption) {
2209     BREAKPOINT;
2210   }
2211 
2212 #endif
2213 
2214   ResourceMark rm;
2215   int          loop_opts_cnt;
2216 
2217   print_inlining_reinit();
2218 
2219   NOT_PRODUCT( verify_graph_edges(); )
2220 
2221   print_method(PHASE_AFTER_PARSING);
2222 
2223  {
2224   // Iterative Global Value Numbering, including ideal transforms
2225   // Initialize IterGVN with types and values from parse-time GVN
2226   PhaseIterGVN igvn(initial_gvn());
2227 #ifdef ASSERT
2228   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2229 #endif
2230   {
2231     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2232     igvn.optimize();
2233   }
2234 
2235   print_method(PHASE_ITER_GVN1, 2);
2236 
2237   if (failing())  return;
2238 
2239   inline_incrementally(igvn);
2240 
2241   print_method(PHASE_INCREMENTAL_INLINE, 2);
2242 
2243   if (failing())  return;
2244 
2245   if (eliminate_boxing()) {
2246     // Inline valueOf() methods now.
2247     inline_boxing_calls(igvn);
2248 
2249     if (AlwaysIncrementalInline) {
2250       inline_incrementally(igvn);
2251     }
2252 
2253     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2254 
2255     if (failing())  return;
2256   }
2257 
2258   // Remove the speculative part of types and clean up the graph from
2259   // the extra CastPP nodes whose only purpose is to carry them. Do
2260   // that early so that optimizations are not disrupted by the extra
2261   // CastPP nodes.
2262   remove_speculative_types(igvn);
2263 
2264   // No more new expensive nodes will be added to the list from here
2265   // so keep only the actual candidates for optimizations.
2266   cleanup_expensive_nodes(igvn);
2267 
2268   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2269     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2270     initial_gvn()->replace_with(&igvn);
2271     for_igvn()->clear();
2272     Unique_Node_List new_worklist(C->comp_arena());
2273     {
2274       ResourceMark rm;
2275       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2276     }
2277     set_for_igvn(&new_worklist);
2278     igvn = PhaseIterGVN(initial_gvn());
2279     igvn.optimize();
2280   }
2281 
2282   if (_value_type_nodes->size() > 0) {
2283     // Do this once all inlining is over to avoid getting inconsistent debug info
2284     process_value_types(igvn);
2285   }
2286 
2287   // Perform escape analysis
2288   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2289     if (has_loops()) {
2290       // Cleanup graph (remove dead nodes).
2291       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2292       PhaseIdealLoop ideal_loop( igvn, false, true );
2293       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2294       if (failing())  return;
2295     }
2296     ConnectionGraph::do_analysis(this, &igvn);
2297 
2298     if (failing())  return;
2299 
2300     // Optimize out fields loads from scalar replaceable allocations.
2301     igvn.optimize();
2302     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2303 
2304     if (failing())  return;
2305 
2306     if (congraph() != NULL && macro_count() > 0) {
2307       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2308       PhaseMacroExpand mexp(igvn);
2309       mexp.eliminate_macro_nodes();
2310       igvn.set_delay_transform(false);
2311 
2312       igvn.optimize();
2313       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2314 
2315       if (failing())  return;
2316     }
2317   }
2318 
2319   // Loop transforms on the ideal graph.  Range Check Elimination,
2320   // peeling, unrolling, etc.
2321 
2322   // Set loop opts counter
2323   loop_opts_cnt = num_loop_opts();
2324   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2325     {
2326       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2327       PhaseIdealLoop ideal_loop( igvn, true );
2328       loop_opts_cnt--;
2329       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2330       if (failing())  return;
2331     }
2332     // Loop opts pass if partial peeling occurred in previous pass
2333     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2334       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2335       PhaseIdealLoop ideal_loop( igvn, false );
2336       loop_opts_cnt--;
2337       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2338       if (failing())  return;
2339     }
2340     // Loop opts pass for loop-unrolling before CCP
2341     if(major_progress() && (loop_opts_cnt > 0)) {
2342       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2343       PhaseIdealLoop ideal_loop( igvn, false );
2344       loop_opts_cnt--;
2345       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2346     }
2347     if (!failing()) {
2348       // Verify that last round of loop opts produced a valid graph
2349       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2350       PhaseIdealLoop::verify(igvn);
2351     }
2352   }
2353   if (failing())  return;
2354 
2355   // Conditional Constant Propagation;
2356   PhaseCCP ccp( &igvn );
2357   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2358   {
2359     TracePhase tp("ccp", &timers[_t_ccp]);
2360     ccp.do_transform();
2361   }
2362   print_method(PHASE_CPP1, 2);
2363 
2364   assert( true, "Break here to ccp.dump_old2new_map()");
2365 
2366   // Iterative Global Value Numbering, including ideal transforms
2367   {
2368     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2369     igvn = ccp;
2370     igvn.optimize();
2371   }
2372 
2373   print_method(PHASE_ITER_GVN2, 2);
2374 
2375   if (failing())  return;
2376 
2377   // Loop transforms on the ideal graph.  Range Check Elimination,
2378   // peeling, unrolling, etc.
2379   if(loop_opts_cnt > 0) {
2380     debug_only( int cnt = 0; );
2381     while(major_progress() && (loop_opts_cnt > 0)) {
2382       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2383       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2384       PhaseIdealLoop ideal_loop( igvn, true);
2385       loop_opts_cnt--;
2386       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2387       if (failing())  return;
2388     }
2389   }
2390   // Ensure that major progress is now clear
2391   C->clear_major_progress();
2392 
2393   {
2394     // Verify that all previous optimizations produced a valid graph
2395     // at least to this point, even if no loop optimizations were done.
2396     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2397     PhaseIdealLoop::verify(igvn);
2398   }
2399 
2400   if (range_check_cast_count() > 0) {
2401     // No more loop optimizations. Remove all range check dependent CastIINodes.
2402     C->remove_range_check_casts(igvn);
2403     igvn.optimize();
2404   }
2405 
2406   {
2407     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2408     PhaseMacroExpand  mex(igvn);
2409     if (mex.expand_macro_nodes()) {
2410       assert(failing(), "must bail out w/ explicit message");
2411       return;
2412     }
2413   }
2414 
2415   DEBUG_ONLY( _modified_nodes = NULL; )
2416  } // (End scope of igvn; run destructor if necessary for asserts.)
2417 
2418  process_print_inlining();
2419  // A method with only infinite loops has no edges entering loops from root
2420  {
2421    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2422    if (final_graph_reshaping()) {
2423      assert(failing(), "must bail out w/ explicit message");
2424      return;
2425    }
2426  }
2427 
2428  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2429 }
2430 
2431 //------------------------------Code_Gen---------------------------------------
2432 // Given a graph, generate code for it
2433 void Compile::Code_Gen() {
2434   if (failing()) {
2435     return;
2436   }
2437 
2438   // Perform instruction selection.  You might think we could reclaim Matcher
2439   // memory PDQ, but actually the Matcher is used in generating spill code.
2440   // Internals of the Matcher (including some VectorSets) must remain live
2441   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2442   // set a bit in reclaimed memory.
2443 
2444   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2445   // nodes.  Mapping is only valid at the root of each matched subtree.
2446   NOT_PRODUCT( verify_graph_edges(); )
2447 
2448   Matcher matcher;
2449   _matcher = &matcher;
2450   {
2451     TracePhase tp("matcher", &timers[_t_matcher]);
2452     matcher.match();
2453   }
2454   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2455   // nodes.  Mapping is only valid at the root of each matched subtree.
2456   NOT_PRODUCT( verify_graph_edges(); )
2457 
2458   // If you have too many nodes, or if matching has failed, bail out
2459   check_node_count(0, "out of nodes matching instructions");
2460   if (failing()) {
2461     return;
2462   }
2463 
2464   // Build a proper-looking CFG
2465   PhaseCFG cfg(node_arena(), root(), matcher);
2466   _cfg = &cfg;
2467   {
2468     TracePhase tp("scheduler", &timers[_t_scheduler]);
2469     bool success = cfg.do_global_code_motion();
2470     if (!success) {
2471       return;
2472     }
2473 
2474     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2475     NOT_PRODUCT( verify_graph_edges(); )
2476     debug_only( cfg.verify(); )
2477   }
2478 
2479   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2480   _regalloc = &regalloc;
2481   {
2482     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2483     // Perform register allocation.  After Chaitin, use-def chains are
2484     // no longer accurate (at spill code) and so must be ignored.
2485     // Node->LRG->reg mappings are still accurate.
2486     _regalloc->Register_Allocate();
2487 
2488     // Bail out if the allocator builds too many nodes
2489     if (failing()) {
2490       return;
2491     }
2492   }
2493 
2494   // Prior to register allocation we kept empty basic blocks in case the
2495   // the allocator needed a place to spill.  After register allocation we
2496   // are not adding any new instructions.  If any basic block is empty, we
2497   // can now safely remove it.
2498   {
2499     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2500     cfg.remove_empty_blocks();
2501     if (do_freq_based_layout()) {
2502       PhaseBlockLayout layout(cfg);
2503     } else {
2504       cfg.set_loop_alignment();
2505     }
2506     cfg.fixup_flow();
2507   }
2508 
2509   // Apply peephole optimizations
2510   if( OptoPeephole ) {
2511     TracePhase tp("peephole", &timers[_t_peephole]);
2512     PhasePeephole peep( _regalloc, cfg);
2513     peep.do_transform();
2514   }
2515 
2516   // Do late expand if CPU requires this.
2517   if (Matcher::require_postalloc_expand) {
2518     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2519     cfg.postalloc_expand(_regalloc);
2520   }
2521 
2522   // Convert Nodes to instruction bits in a buffer
2523   {
2524     TraceTime tp("output", &timers[_t_output], CITime);
2525     Output();
2526   }
2527 
2528   print_method(PHASE_FINAL_CODE);
2529 
2530   // He's dead, Jim.
2531   _cfg     = (PhaseCFG*)0xdeadbeef;
2532   _regalloc = (PhaseChaitin*)0xdeadbeef;
2533 }
2534 
2535 
2536 //------------------------------dump_asm---------------------------------------
2537 // Dump formatted assembly
2538 #ifndef PRODUCT
2539 void Compile::dump_asm(int *pcs, uint pc_limit) {
2540   bool cut_short = false;
2541   tty->print_cr("#");
2542   tty->print("#  ");  _tf->dump();  tty->cr();
2543   tty->print_cr("#");
2544 
2545   // For all blocks
2546   int pc = 0x0;                 // Program counter
2547   char starts_bundle = ' ';
2548   _regalloc->dump_frame();
2549 
2550   Node *n = NULL;
2551   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2552     if (VMThread::should_terminate()) {
2553       cut_short = true;
2554       break;
2555     }
2556     Block* block = _cfg->get_block(i);
2557     if (block->is_connector() && !Verbose) {
2558       continue;
2559     }
2560     n = block->head();
2561     if (pcs && n->_idx < pc_limit) {
2562       tty->print("%3.3x   ", pcs[n->_idx]);
2563     } else {
2564       tty->print("      ");
2565     }
2566     block->dump_head(_cfg);
2567     if (block->is_connector()) {
2568       tty->print_cr("        # Empty connector block");
2569     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2570       tty->print_cr("        # Block is sole successor of call");
2571     }
2572 
2573     // For all instructions
2574     Node *delay = NULL;
2575     for (uint j = 0; j < block->number_of_nodes(); j++) {
2576       if (VMThread::should_terminate()) {
2577         cut_short = true;
2578         break;
2579       }
2580       n = block->get_node(j);
2581       if (valid_bundle_info(n)) {
2582         Bundle* bundle = node_bundling(n);
2583         if (bundle->used_in_unconditional_delay()) {
2584           delay = n;
2585           continue;
2586         }
2587         if (bundle->starts_bundle()) {
2588           starts_bundle = '+';
2589         }
2590       }
2591 
2592       if (WizardMode) {
2593         n->dump();
2594       }
2595 
2596       if( !n->is_Region() &&    // Dont print in the Assembly
2597           !n->is_Phi() &&       // a few noisely useless nodes
2598           !n->is_Proj() &&
2599           !n->is_MachTemp() &&
2600           !n->is_SafePointScalarObject() &&
2601           !n->is_Catch() &&     // Would be nice to print exception table targets
2602           !n->is_MergeMem() &&  // Not very interesting
2603           !n->is_top() &&       // Debug info table constants
2604           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2605           ) {
2606         if (pcs && n->_idx < pc_limit)
2607           tty->print("%3.3x", pcs[n->_idx]);
2608         else
2609           tty->print("   ");
2610         tty->print(" %c ", starts_bundle);
2611         starts_bundle = ' ';
2612         tty->print("\t");
2613         n->format(_regalloc, tty);
2614         tty->cr();
2615       }
2616 
2617       // If we have an instruction with a delay slot, and have seen a delay,
2618       // then back up and print it
2619       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2620         assert(delay != NULL, "no unconditional delay instruction");
2621         if (WizardMode) delay->dump();
2622 
2623         if (node_bundling(delay)->starts_bundle())
2624           starts_bundle = '+';
2625         if (pcs && n->_idx < pc_limit)
2626           tty->print("%3.3x", pcs[n->_idx]);
2627         else
2628           tty->print("   ");
2629         tty->print(" %c ", starts_bundle);
2630         starts_bundle = ' ';
2631         tty->print("\t");
2632         delay->format(_regalloc, tty);
2633         tty->cr();
2634         delay = NULL;
2635       }
2636 
2637       // Dump the exception table as well
2638       if( n->is_Catch() && (Verbose || WizardMode) ) {
2639         // Print the exception table for this offset
2640         _handler_table.print_subtable_for(pc);
2641       }
2642     }
2643 
2644     if (pcs && n->_idx < pc_limit)
2645       tty->print_cr("%3.3x", pcs[n->_idx]);
2646     else
2647       tty->cr();
2648 
2649     assert(cut_short || delay == NULL, "no unconditional delay branch");
2650 
2651   } // End of per-block dump
2652   tty->cr();
2653 
2654   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2655 }
2656 #endif
2657 
2658 //------------------------------Final_Reshape_Counts---------------------------
2659 // This class defines counters to help identify when a method
2660 // may/must be executed using hardware with only 24-bit precision.
2661 struct Final_Reshape_Counts : public StackObj {
2662   int  _call_count;             // count non-inlined 'common' calls
2663   int  _float_count;            // count float ops requiring 24-bit precision
2664   int  _double_count;           // count double ops requiring more precision
2665   int  _java_call_count;        // count non-inlined 'java' calls
2666   int  _inner_loop_count;       // count loops which need alignment
2667   VectorSet _visited;           // Visitation flags
2668   Node_List _tests;             // Set of IfNodes & PCTableNodes
2669 
2670   Final_Reshape_Counts() :
2671     _call_count(0), _float_count(0), _double_count(0),
2672     _java_call_count(0), _inner_loop_count(0),
2673     _visited( Thread::current()->resource_area() ) { }
2674 
2675   void inc_call_count  () { _call_count  ++; }
2676   void inc_float_count () { _float_count ++; }
2677   void inc_double_count() { _double_count++; }
2678   void inc_java_call_count() { _java_call_count++; }
2679   void inc_inner_loop_count() { _inner_loop_count++; }
2680 
2681   int  get_call_count  () const { return _call_count  ; }
2682   int  get_float_count () const { return _float_count ; }
2683   int  get_double_count() const { return _double_count; }
2684   int  get_java_call_count() const { return _java_call_count; }
2685   int  get_inner_loop_count() const { return _inner_loop_count; }
2686 };
2687 
2688 #ifdef ASSERT
2689 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2690   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2691   // Make sure the offset goes inside the instance layout.
2692   return k->contains_field_offset(tp->offset());
2693   // Note that OffsetBot and OffsetTop are very negative.
2694 }
2695 #endif
2696 
2697 // Eliminate trivially redundant StoreCMs and accumulate their
2698 // precedence edges.
2699 void Compile::eliminate_redundant_card_marks(Node* n) {
2700   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2701   if (n->in(MemNode::Address)->outcnt() > 1) {
2702     // There are multiple users of the same address so it might be
2703     // possible to eliminate some of the StoreCMs
2704     Node* mem = n->in(MemNode::Memory);
2705     Node* adr = n->in(MemNode::Address);
2706     Node* val = n->in(MemNode::ValueIn);
2707     Node* prev = n;
2708     bool done = false;
2709     // Walk the chain of StoreCMs eliminating ones that match.  As
2710     // long as it's a chain of single users then the optimization is
2711     // safe.  Eliminating partially redundant StoreCMs would require
2712     // cloning copies down the other paths.
2713     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2714       if (adr == mem->in(MemNode::Address) &&
2715           val == mem->in(MemNode::ValueIn)) {
2716         // redundant StoreCM
2717         if (mem->req() > MemNode::OopStore) {
2718           // Hasn't been processed by this code yet.
2719           n->add_prec(mem->in(MemNode::OopStore));
2720         } else {
2721           // Already converted to precedence edge
2722           for (uint i = mem->req(); i < mem->len(); i++) {
2723             // Accumulate any precedence edges
2724             if (mem->in(i) != NULL) {
2725               n->add_prec(mem->in(i));
2726             }
2727           }
2728           // Everything above this point has been processed.
2729           done = true;
2730         }
2731         // Eliminate the previous StoreCM
2732         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2733         assert(mem->outcnt() == 0, "should be dead");
2734         mem->disconnect_inputs(NULL, this);
2735       } else {
2736         prev = mem;
2737       }
2738       mem = prev->in(MemNode::Memory);
2739     }
2740   }
2741 }
2742 
2743 
2744 //------------------------------final_graph_reshaping_impl----------------------
2745 // Implement items 1-5 from final_graph_reshaping below.
2746 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2747 
2748   if ( n->outcnt() == 0 ) return; // dead node
2749   uint nop = n->Opcode();
2750 
2751   // Check for 2-input instruction with "last use" on right input.
2752   // Swap to left input.  Implements item (2).
2753   if( n->req() == 3 &&          // two-input instruction
2754       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2755       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2756       n->in(2)->outcnt() == 1 &&// right use IS a last use
2757       !n->in(2)->is_Con() ) {   // right use is not a constant
2758     // Check for commutative opcode
2759     switch( nop ) {
2760     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2761     case Op_MaxI:  case Op_MinI:
2762     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2763     case Op_AndL:  case Op_XorL:  case Op_OrL:
2764     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2765       // Move "last use" input to left by swapping inputs
2766       n->swap_edges(1, 2);
2767       break;
2768     }
2769     default:
2770       break;
2771     }
2772   }
2773 
2774 #ifdef ASSERT
2775   if( n->is_Mem() ) {
2776     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2777     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2778             // oop will be recorded in oop map if load crosses safepoint
2779             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2780                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2781             "raw memory operations should have control edge");
2782   }
2783 #endif
2784   // Count FPU ops and common calls, implements item (3)
2785   switch( nop ) {
2786   // Count all float operations that may use FPU
2787   case Op_AddF:
2788   case Op_SubF:
2789   case Op_MulF:
2790   case Op_DivF:
2791   case Op_NegF:
2792   case Op_ModF:
2793   case Op_ConvI2F:
2794   case Op_ConF:
2795   case Op_CmpF:
2796   case Op_CmpF3:
2797   // case Op_ConvL2F: // longs are split into 32-bit halves
2798     frc.inc_float_count();
2799     break;
2800 
2801   case Op_ConvF2D:
2802   case Op_ConvD2F:
2803     frc.inc_float_count();
2804     frc.inc_double_count();
2805     break;
2806 
2807   // Count all double operations that may use FPU
2808   case Op_AddD:
2809   case Op_SubD:
2810   case Op_MulD:
2811   case Op_DivD:
2812   case Op_NegD:
2813   case Op_ModD:
2814   case Op_ConvI2D:
2815   case Op_ConvD2I:
2816   // case Op_ConvL2D: // handled by leaf call
2817   // case Op_ConvD2L: // handled by leaf call
2818   case Op_ConD:
2819   case Op_CmpD:
2820   case Op_CmpD3:
2821     frc.inc_double_count();
2822     break;
2823   case Op_Opaque1:              // Remove Opaque Nodes before matching
2824   case Op_Opaque2:              // Remove Opaque Nodes before matching
2825   case Op_Opaque3:
2826     n->subsume_by(n->in(1), this);
2827     break;
2828   case Op_CallStaticJava:
2829   case Op_CallJava:
2830   case Op_CallDynamicJava:
2831     frc.inc_java_call_count(); // Count java call site;
2832   case Op_CallRuntime:
2833   case Op_CallLeaf:
2834   case Op_CallLeafNoFP: {
2835     assert (n->is_Call(), "");
2836     CallNode *call = n->as_Call();
2837     // Count call sites where the FP mode bit would have to be flipped.
2838     // Do not count uncommon runtime calls:
2839     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2840     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2841     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2842       frc.inc_call_count();   // Count the call site
2843     } else {                  // See if uncommon argument is shared
2844       Node *n = call->in(TypeFunc::Parms);
2845       int nop = n->Opcode();
2846       // Clone shared simple arguments to uncommon calls, item (1).
2847       if (n->outcnt() > 1 &&
2848           !n->is_Proj() &&
2849           nop != Op_CreateEx &&
2850           nop != Op_CheckCastPP &&
2851           nop != Op_DecodeN &&
2852           nop != Op_DecodeNKlass &&
2853           !n->is_Mem() &&
2854           !n->is_Phi()) {
2855         Node *x = n->clone();
2856         call->set_req(TypeFunc::Parms, x);
2857       }
2858     }
2859     break;
2860   }
2861 
2862   case Op_StoreD:
2863   case Op_LoadD:
2864   case Op_LoadD_unaligned:
2865     frc.inc_double_count();
2866     goto handle_mem;
2867   case Op_StoreF:
2868   case Op_LoadF:
2869     frc.inc_float_count();
2870     goto handle_mem;
2871 
2872   case Op_StoreCM:
2873     {
2874       // Convert OopStore dependence into precedence edge
2875       Node* prec = n->in(MemNode::OopStore);
2876       n->del_req(MemNode::OopStore);
2877       n->add_prec(prec);
2878       eliminate_redundant_card_marks(n);
2879     }
2880 
2881     // fall through
2882 
2883   case Op_StoreB:
2884   case Op_StoreC:
2885   case Op_StorePConditional:
2886   case Op_StoreI:
2887   case Op_StoreL:
2888   case Op_StoreIConditional:
2889   case Op_StoreLConditional:
2890   case Op_CompareAndSwapB:
2891   case Op_CompareAndSwapS:
2892   case Op_CompareAndSwapI:
2893   case Op_CompareAndSwapL:
2894   case Op_CompareAndSwapP:
2895   case Op_CompareAndSwapN:
2896   case Op_WeakCompareAndSwapB:
2897   case Op_WeakCompareAndSwapS:
2898   case Op_WeakCompareAndSwapI:
2899   case Op_WeakCompareAndSwapL:
2900   case Op_WeakCompareAndSwapP:
2901   case Op_WeakCompareAndSwapN:
2902   case Op_CompareAndExchangeB:
2903   case Op_CompareAndExchangeS:
2904   case Op_CompareAndExchangeI:
2905   case Op_CompareAndExchangeL:
2906   case Op_CompareAndExchangeP:
2907   case Op_CompareAndExchangeN:
2908   case Op_GetAndAddS:
2909   case Op_GetAndAddB:
2910   case Op_GetAndAddI:
2911   case Op_GetAndAddL:
2912   case Op_GetAndSetS:
2913   case Op_GetAndSetB:
2914   case Op_GetAndSetI:
2915   case Op_GetAndSetL:
2916   case Op_GetAndSetP:
2917   case Op_GetAndSetN:
2918   case Op_StoreP:
2919   case Op_StoreN:
2920   case Op_StoreNKlass:
2921   case Op_LoadB:
2922   case Op_LoadUB:
2923   case Op_LoadUS:
2924   case Op_LoadI:
2925   case Op_LoadKlass:
2926   case Op_LoadNKlass:
2927   case Op_LoadL:
2928   case Op_LoadL_unaligned:
2929   case Op_LoadPLocked:
2930   case Op_LoadP:
2931   case Op_LoadN:
2932   case Op_LoadRange:
2933   case Op_LoadS: {
2934   handle_mem:
2935 #ifdef ASSERT
2936     if( VerifyOptoOopOffsets ) {
2937       assert( n->is_Mem(), "" );
2938       MemNode *mem  = (MemNode*)n;
2939       // Check to see if address types have grounded out somehow.
2940       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2941       assert( !tp || oop_offset_is_sane(tp), "" );
2942     }
2943 #endif
2944     break;
2945   }
2946 
2947   case Op_AddP: {               // Assert sane base pointers
2948     Node *addp = n->in(AddPNode::Address);
2949     assert( !addp->is_AddP() ||
2950             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2951             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2952             "Base pointers must match (addp %u)", addp->_idx );
2953 #ifdef _LP64
2954     if ((UseCompressedOops || UseCompressedClassPointers) &&
2955         addp->Opcode() == Op_ConP &&
2956         addp == n->in(AddPNode::Base) &&
2957         n->in(AddPNode::Offset)->is_Con()) {
2958       // If the transformation of ConP to ConN+DecodeN is beneficial depends
2959       // on the platform and on the compressed oops mode.
2960       // Use addressing with narrow klass to load with offset on x86.
2961       // Some platforms can use the constant pool to load ConP.
2962       // Do this transformation here since IGVN will convert ConN back to ConP.
2963       const Type* t = addp->bottom_type();
2964       bool is_oop   = t->isa_oopptr() != NULL;
2965       bool is_klass = t->isa_klassptr() != NULL;
2966 
2967       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
2968           (is_klass && Matcher::const_klass_prefer_decode())) {
2969         Node* nn = NULL;
2970 
2971         int op = is_oop ? Op_ConN : Op_ConNKlass;
2972 
2973         // Look for existing ConN node of the same exact type.
2974         Node* r  = root();
2975         uint cnt = r->outcnt();
2976         for (uint i = 0; i < cnt; i++) {
2977           Node* m = r->raw_out(i);
2978           if (m!= NULL && m->Opcode() == op &&
2979               m->bottom_type()->make_ptr() == t) {
2980             nn = m;
2981             break;
2982           }
2983         }
2984         if (nn != NULL) {
2985           // Decode a narrow oop to match address
2986           // [R12 + narrow_oop_reg<<3 + offset]
2987           if (is_oop) {
2988             nn = new DecodeNNode(nn, t);
2989           } else {
2990             nn = new DecodeNKlassNode(nn, t);
2991           }
2992           // Check for succeeding AddP which uses the same Base.
2993           // Otherwise we will run into the assertion above when visiting that guy.
2994           for (uint i = 0; i < n->outcnt(); ++i) {
2995             Node *out_i = n->raw_out(i);
2996             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
2997               out_i->set_req(AddPNode::Base, nn);
2998 #ifdef ASSERT
2999               for (uint j = 0; j < out_i->outcnt(); ++j) {
3000                 Node *out_j = out_i->raw_out(j);
3001                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3002                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3003               }
3004 #endif
3005             }
3006           }
3007           n->set_req(AddPNode::Base, nn);
3008           n->set_req(AddPNode::Address, nn);
3009           if (addp->outcnt() == 0) {
3010             addp->disconnect_inputs(NULL, this);
3011           }
3012         }
3013       }
3014     }
3015 #endif
3016     // platform dependent reshaping of the address expression
3017     reshape_address(n->as_AddP());
3018     break;
3019   }
3020 
3021   case Op_CastPP: {
3022     // Remove CastPP nodes to gain more freedom during scheduling but
3023     // keep the dependency they encode as control or precedence edges
3024     // (if control is set already) on memory operations. Some CastPP
3025     // nodes don't have a control (don't carry a dependency): skip
3026     // those.
3027     if (n->in(0) != NULL) {
3028       ResourceMark rm;
3029       Unique_Node_List wq;
3030       wq.push(n);
3031       for (uint next = 0; next < wq.size(); ++next) {
3032         Node *m = wq.at(next);
3033         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3034           Node* use = m->fast_out(i);
3035           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3036             use->ensure_control_or_add_prec(n->in(0));
3037           } else {
3038             switch(use->Opcode()) {
3039             case Op_AddP:
3040             case Op_DecodeN:
3041             case Op_DecodeNKlass:
3042             case Op_CheckCastPP:
3043             case Op_CastPP:
3044               wq.push(use);
3045               break;
3046             }
3047           }
3048         }
3049       }
3050     }
3051     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3052     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3053       Node* in1 = n->in(1);
3054       const Type* t = n->bottom_type();
3055       Node* new_in1 = in1->clone();
3056       new_in1->as_DecodeN()->set_type(t);
3057 
3058       if (!Matcher::narrow_oop_use_complex_address()) {
3059         //
3060         // x86, ARM and friends can handle 2 adds in addressing mode
3061         // and Matcher can fold a DecodeN node into address by using
3062         // a narrow oop directly and do implicit NULL check in address:
3063         //
3064         // [R12 + narrow_oop_reg<<3 + offset]
3065         // NullCheck narrow_oop_reg
3066         //
3067         // On other platforms (Sparc) we have to keep new DecodeN node and
3068         // use it to do implicit NULL check in address:
3069         //
3070         // decode_not_null narrow_oop_reg, base_reg
3071         // [base_reg + offset]
3072         // NullCheck base_reg
3073         //
3074         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3075         // to keep the information to which NULL check the new DecodeN node
3076         // corresponds to use it as value in implicit_null_check().
3077         //
3078         new_in1->set_req(0, n->in(0));
3079       }
3080 
3081       n->subsume_by(new_in1, this);
3082       if (in1->outcnt() == 0) {
3083         in1->disconnect_inputs(NULL, this);
3084       }
3085     } else {
3086       n->subsume_by(n->in(1), this);
3087       if (n->outcnt() == 0) {
3088         n->disconnect_inputs(NULL, this);
3089       }
3090     }
3091     break;
3092   }
3093 #ifdef _LP64
3094   case Op_CmpP:
3095     // Do this transformation here to preserve CmpPNode::sub() and
3096     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3097     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3098       Node* in1 = n->in(1);
3099       Node* in2 = n->in(2);
3100       if (!in1->is_DecodeNarrowPtr()) {
3101         in2 = in1;
3102         in1 = n->in(2);
3103       }
3104       assert(in1->is_DecodeNarrowPtr(), "sanity");
3105 
3106       Node* new_in2 = NULL;
3107       if (in2->is_DecodeNarrowPtr()) {
3108         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3109         new_in2 = in2->in(1);
3110       } else if (in2->Opcode() == Op_ConP) {
3111         const Type* t = in2->bottom_type();
3112         if (t == TypePtr::NULL_PTR) {
3113           assert(in1->is_DecodeN(), "compare klass to null?");
3114           // Don't convert CmpP null check into CmpN if compressed
3115           // oops implicit null check is not generated.
3116           // This will allow to generate normal oop implicit null check.
3117           if (Matcher::gen_narrow_oop_implicit_null_checks())
3118             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3119           //
3120           // This transformation together with CastPP transformation above
3121           // will generated code for implicit NULL checks for compressed oops.
3122           //
3123           // The original code after Optimize()
3124           //
3125           //    LoadN memory, narrow_oop_reg
3126           //    decode narrow_oop_reg, base_reg
3127           //    CmpP base_reg, NULL
3128           //    CastPP base_reg // NotNull
3129           //    Load [base_reg + offset], val_reg
3130           //
3131           // after these transformations will be
3132           //
3133           //    LoadN memory, narrow_oop_reg
3134           //    CmpN narrow_oop_reg, NULL
3135           //    decode_not_null narrow_oop_reg, base_reg
3136           //    Load [base_reg + offset], val_reg
3137           //
3138           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3139           // since narrow oops can be used in debug info now (see the code in
3140           // final_graph_reshaping_walk()).
3141           //
3142           // At the end the code will be matched to
3143           // on x86:
3144           //
3145           //    Load_narrow_oop memory, narrow_oop_reg
3146           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3147           //    NullCheck narrow_oop_reg
3148           //
3149           // and on sparc:
3150           //
3151           //    Load_narrow_oop memory, narrow_oop_reg
3152           //    decode_not_null narrow_oop_reg, base_reg
3153           //    Load [base_reg + offset], val_reg
3154           //    NullCheck base_reg
3155           //
3156         } else if (t->isa_oopptr()) {
3157           new_in2 = ConNode::make(t->make_narrowoop());
3158         } else if (t->isa_klassptr()) {
3159           new_in2 = ConNode::make(t->make_narrowklass());
3160         }
3161       }
3162       if (new_in2 != NULL) {
3163         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3164         n->subsume_by(cmpN, this);
3165         if (in1->outcnt() == 0) {
3166           in1->disconnect_inputs(NULL, this);
3167         }
3168         if (in2->outcnt() == 0) {
3169           in2->disconnect_inputs(NULL, this);
3170         }
3171       }
3172     }
3173     break;
3174 
3175   case Op_DecodeN:
3176   case Op_DecodeNKlass:
3177     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3178     // DecodeN could be pinned when it can't be fold into
3179     // an address expression, see the code for Op_CastPP above.
3180     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3181     break;
3182 
3183   case Op_EncodeP:
3184   case Op_EncodePKlass: {
3185     Node* in1 = n->in(1);
3186     if (in1->is_DecodeNarrowPtr()) {
3187       n->subsume_by(in1->in(1), this);
3188     } else if (in1->Opcode() == Op_ConP) {
3189       const Type* t = in1->bottom_type();
3190       if (t == TypePtr::NULL_PTR) {
3191         assert(t->isa_oopptr(), "null klass?");
3192         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3193       } else if (t->isa_oopptr()) {
3194         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3195       } else if (t->isa_klassptr()) {
3196         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3197       }
3198     }
3199     if (in1->outcnt() == 0) {
3200       in1->disconnect_inputs(NULL, this);
3201     }
3202     break;
3203   }
3204 
3205   case Op_Proj: {
3206     if (OptimizeStringConcat) {
3207       ProjNode* p = n->as_Proj();
3208       if (p->_is_io_use) {
3209         // Separate projections were used for the exception path which
3210         // are normally removed by a late inline.  If it wasn't inlined
3211         // then they will hang around and should just be replaced with
3212         // the original one.
3213         Node* proj = NULL;
3214         // Replace with just one
3215         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3216           Node *use = i.get();
3217           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3218             proj = use;
3219             break;
3220           }
3221         }
3222         assert(proj != NULL, "must be found");
3223         p->subsume_by(proj, this);
3224       }
3225     }
3226     break;
3227   }
3228 
3229   case Op_Phi:
3230     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3231       // The EncodeP optimization may create Phi with the same edges
3232       // for all paths. It is not handled well by Register Allocator.
3233       Node* unique_in = n->in(1);
3234       assert(unique_in != NULL, "");
3235       uint cnt = n->req();
3236       for (uint i = 2; i < cnt; i++) {
3237         Node* m = n->in(i);
3238         assert(m != NULL, "");
3239         if (unique_in != m)
3240           unique_in = NULL;
3241       }
3242       if (unique_in != NULL) {
3243         n->subsume_by(unique_in, this);
3244       }
3245     }
3246     break;
3247 
3248 #endif
3249 
3250 #ifdef ASSERT
3251   case Op_CastII:
3252     // Verify that all range check dependent CastII nodes were removed.
3253     if (n->isa_CastII()->has_range_check()) {
3254       n->dump(3);
3255       assert(false, "Range check dependent CastII node was not removed");
3256     }
3257     break;
3258 #endif
3259 
3260   case Op_ModI:
3261     if (UseDivMod) {
3262       // Check if a%b and a/b both exist
3263       Node* d = n->find_similar(Op_DivI);
3264       if (d) {
3265         // Replace them with a fused divmod if supported
3266         if (Matcher::has_match_rule(Op_DivModI)) {
3267           DivModINode* divmod = DivModINode::make(n);
3268           d->subsume_by(divmod->div_proj(), this);
3269           n->subsume_by(divmod->mod_proj(), this);
3270         } else {
3271           // replace a%b with a-((a/b)*b)
3272           Node* mult = new MulINode(d, d->in(2));
3273           Node* sub  = new SubINode(d->in(1), mult);
3274           n->subsume_by(sub, this);
3275         }
3276       }
3277     }
3278     break;
3279 
3280   case Op_ModL:
3281     if (UseDivMod) {
3282       // Check if a%b and a/b both exist
3283       Node* d = n->find_similar(Op_DivL);
3284       if (d) {
3285         // Replace them with a fused divmod if supported
3286         if (Matcher::has_match_rule(Op_DivModL)) {
3287           DivModLNode* divmod = DivModLNode::make(n);
3288           d->subsume_by(divmod->div_proj(), this);
3289           n->subsume_by(divmod->mod_proj(), this);
3290         } else {
3291           // replace a%b with a-((a/b)*b)
3292           Node* mult = new MulLNode(d, d->in(2));
3293           Node* sub  = new SubLNode(d->in(1), mult);
3294           n->subsume_by(sub, this);
3295         }
3296       }
3297     }
3298     break;
3299 
3300   case Op_LoadVector:
3301   case Op_StoreVector:
3302     break;
3303 
3304   case Op_AddReductionVI:
3305   case Op_AddReductionVL:
3306   case Op_AddReductionVF:
3307   case Op_AddReductionVD:
3308   case Op_MulReductionVI:
3309   case Op_MulReductionVL:
3310   case Op_MulReductionVF:
3311   case Op_MulReductionVD:
3312     break;
3313 
3314   case Op_PackB:
3315   case Op_PackS:
3316   case Op_PackI:
3317   case Op_PackF:
3318   case Op_PackL:
3319   case Op_PackD:
3320     if (n->req()-1 > 2) {
3321       // Replace many operand PackNodes with a binary tree for matching
3322       PackNode* p = (PackNode*) n;
3323       Node* btp = p->binary_tree_pack(1, n->req());
3324       n->subsume_by(btp, this);
3325     }
3326     break;
3327   case Op_Loop:
3328   case Op_CountedLoop:
3329   case Op_OuterStripMinedLoop:
3330     if (n->as_Loop()->is_inner_loop()) {
3331       frc.inc_inner_loop_count();
3332     }
3333     n->as_Loop()->verify_strip_mined(0);
3334     break;
3335   case Op_LShiftI:
3336   case Op_RShiftI:
3337   case Op_URShiftI:
3338   case Op_LShiftL:
3339   case Op_RShiftL:
3340   case Op_URShiftL:
3341     if (Matcher::need_masked_shift_count) {
3342       // The cpu's shift instructions don't restrict the count to the
3343       // lower 5/6 bits. We need to do the masking ourselves.
3344       Node* in2 = n->in(2);
3345       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3346       const TypeInt* t = in2->find_int_type();
3347       if (t != NULL && t->is_con()) {
3348         juint shift = t->get_con();
3349         if (shift > mask) { // Unsigned cmp
3350           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3351         }
3352       } else {
3353         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3354           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3355           n->set_req(2, shift);
3356         }
3357       }
3358       if (in2->outcnt() == 0) { // Remove dead node
3359         in2->disconnect_inputs(NULL, this);
3360       }
3361     }
3362     break;
3363   case Op_MemBarStoreStore:
3364   case Op_MemBarRelease:
3365     // Break the link with AllocateNode: it is no longer useful and
3366     // confuses register allocation.
3367     if (n->req() > MemBarNode::Precedent) {
3368       n->set_req(MemBarNode::Precedent, top());
3369     }
3370     break;
3371   case Op_RangeCheck: {
3372     RangeCheckNode* rc = n->as_RangeCheck();
3373     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3374     n->subsume_by(iff, this);
3375     frc._tests.push(iff);
3376     break;
3377   }
3378   case Op_ConvI2L: {
3379     if (!Matcher::convi2l_type_required) {
3380       // Code generation on some platforms doesn't need accurate
3381       // ConvI2L types. Widening the type can help remove redundant
3382       // address computations.
3383       n->as_Type()->set_type(TypeLong::INT);
3384       ResourceMark rm;
3385       Node_List wq;
3386       wq.push(n);
3387       for (uint next = 0; next < wq.size(); next++) {
3388         Node *m = wq.at(next);
3389 
3390         for(;;) {
3391           // Loop over all nodes with identical inputs edges as m
3392           Node* k = m->find_similar(m->Opcode());
3393           if (k == NULL) {
3394             break;
3395           }
3396           // Push their uses so we get a chance to remove node made
3397           // redundant
3398           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3399             Node* u = k->fast_out(i);
3400             assert(!wq.contains(u), "shouldn't process one node several times");
3401             if (u->Opcode() == Op_LShiftL ||
3402                 u->Opcode() == Op_AddL ||
3403                 u->Opcode() == Op_SubL ||
3404                 u->Opcode() == Op_AddP) {
3405               wq.push(u);
3406             }
3407           }
3408           // Replace all nodes with identical edges as m with m
3409           k->subsume_by(m, this);
3410         }
3411       }
3412     }
3413     break;
3414   }
3415 #ifdef ASSERT
3416   case Op_ValueTypePtr:
3417   case Op_ValueType: {
3418     n->dump(-1);
3419     assert(false, "value type node was not removed");
3420     break;
3421   }
3422 #endif
3423   default:
3424     assert( !n->is_Call(), "" );
3425     assert( !n->is_Mem(), "" );
3426     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3427     break;
3428   }
3429 
3430   // Collect CFG split points
3431   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3432     frc._tests.push(n);
3433   }
3434 }
3435 
3436 //------------------------------final_graph_reshaping_walk---------------------
3437 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3438 // requires that the walk visits a node's inputs before visiting the node.
3439 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3440   ResourceArea *area = Thread::current()->resource_area();
3441   Unique_Node_List sfpt(area);
3442 
3443   frc._visited.set(root->_idx); // first, mark node as visited
3444   uint cnt = root->req();
3445   Node *n = root;
3446   uint  i = 0;
3447   while (true) {
3448     if (i < cnt) {
3449       // Place all non-visited non-null inputs onto stack
3450       Node* m = n->in(i);
3451       ++i;
3452       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3453         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3454           // compute worst case interpreter size in case of a deoptimization
3455           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3456 
3457           sfpt.push(m);
3458         }
3459         cnt = m->req();
3460         nstack.push(n, i); // put on stack parent and next input's index
3461         n = m;
3462         i = 0;
3463       }
3464     } else {
3465       // Now do post-visit work
3466       final_graph_reshaping_impl( n, frc );
3467       if (nstack.is_empty())
3468         break;             // finished
3469       n = nstack.node();   // Get node from stack
3470       cnt = n->req();
3471       i = nstack.index();
3472       nstack.pop();        // Shift to the next node on stack
3473     }
3474   }
3475 
3476   // Skip next transformation if compressed oops are not used.
3477   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3478       (!UseCompressedOops && !UseCompressedClassPointers))
3479     return;
3480 
3481   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3482   // It could be done for an uncommon traps or any safepoints/calls
3483   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3484   while (sfpt.size() > 0) {
3485     n = sfpt.pop();
3486     JVMState *jvms = n->as_SafePoint()->jvms();
3487     assert(jvms != NULL, "sanity");
3488     int start = jvms->debug_start();
3489     int end   = n->req();
3490     bool is_uncommon = (n->is_CallStaticJava() &&
3491                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3492     for (int j = start; j < end; j++) {
3493       Node* in = n->in(j);
3494       if (in->is_DecodeNarrowPtr()) {
3495         bool safe_to_skip = true;
3496         if (!is_uncommon ) {
3497           // Is it safe to skip?
3498           for (uint i = 0; i < in->outcnt(); i++) {
3499             Node* u = in->raw_out(i);
3500             if (!u->is_SafePoint() ||
3501                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3502               safe_to_skip = false;
3503             }
3504           }
3505         }
3506         if (safe_to_skip) {
3507           n->set_req(j, in->in(1));
3508         }
3509         if (in->outcnt() == 0) {
3510           in->disconnect_inputs(NULL, this);
3511         }
3512       }
3513     }
3514   }
3515 }
3516 
3517 //------------------------------final_graph_reshaping--------------------------
3518 // Final Graph Reshaping.
3519 //
3520 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3521 //     and not commoned up and forced early.  Must come after regular
3522 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3523 //     inputs to Loop Phis; these will be split by the allocator anyways.
3524 //     Remove Opaque nodes.
3525 // (2) Move last-uses by commutative operations to the left input to encourage
3526 //     Intel update-in-place two-address operations and better register usage
3527 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3528 //     calls canonicalizing them back.
3529 // (3) Count the number of double-precision FP ops, single-precision FP ops
3530 //     and call sites.  On Intel, we can get correct rounding either by
3531 //     forcing singles to memory (requires extra stores and loads after each
3532 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3533 //     clearing the mode bit around call sites).  The mode bit is only used
3534 //     if the relative frequency of single FP ops to calls is low enough.
3535 //     This is a key transform for SPEC mpeg_audio.
3536 // (4) Detect infinite loops; blobs of code reachable from above but not
3537 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3538 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3539 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3540 //     Detection is by looking for IfNodes where only 1 projection is
3541 //     reachable from below or CatchNodes missing some targets.
3542 // (5) Assert for insane oop offsets in debug mode.
3543 
3544 bool Compile::final_graph_reshaping() {
3545   // an infinite loop may have been eliminated by the optimizer,
3546   // in which case the graph will be empty.
3547   if (root()->req() == 1) {
3548     record_method_not_compilable("trivial infinite loop");
3549     return true;
3550   }
3551 
3552   // Expensive nodes have their control input set to prevent the GVN
3553   // from freely commoning them. There's no GVN beyond this point so
3554   // no need to keep the control input. We want the expensive nodes to
3555   // be freely moved to the least frequent code path by gcm.
3556   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3557   for (int i = 0; i < expensive_count(); i++) {
3558     _expensive_nodes->at(i)->set_req(0, NULL);
3559   }
3560 
3561   Final_Reshape_Counts frc;
3562 
3563   // Visit everybody reachable!
3564   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3565   Node_Stack nstack(live_nodes() >> 1);
3566   final_graph_reshaping_walk(nstack, root(), frc);
3567 
3568   // Check for unreachable (from below) code (i.e., infinite loops).
3569   for( uint i = 0; i < frc._tests.size(); i++ ) {
3570     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3571     // Get number of CFG targets.
3572     // Note that PCTables include exception targets after calls.
3573     uint required_outcnt = n->required_outcnt();
3574     if (n->outcnt() != required_outcnt) {
3575       // Check for a few special cases.  Rethrow Nodes never take the
3576       // 'fall-thru' path, so expected kids is 1 less.
3577       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3578         if (n->in(0)->in(0)->is_Call()) {
3579           CallNode *call = n->in(0)->in(0)->as_Call();
3580           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3581             required_outcnt--;      // Rethrow always has 1 less kid
3582           } else if (call->req() > TypeFunc::Parms &&
3583                      call->is_CallDynamicJava()) {
3584             // Check for null receiver. In such case, the optimizer has
3585             // detected that the virtual call will always result in a null
3586             // pointer exception. The fall-through projection of this CatchNode
3587             // will not be populated.
3588             Node *arg0 = call->in(TypeFunc::Parms);
3589             if (arg0->is_Type() &&
3590                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3591               required_outcnt--;
3592             }
3593           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3594                      call->req() > TypeFunc::Parms+1 &&
3595                      call->is_CallStaticJava()) {
3596             // Check for negative array length. In such case, the optimizer has
3597             // detected that the allocation attempt will always result in an
3598             // exception. There is no fall-through projection of this CatchNode .
3599             Node *arg1 = call->in(TypeFunc::Parms+1);
3600             if (arg1->is_Type() &&
3601                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3602               required_outcnt--;
3603             }
3604           }
3605         }
3606       }
3607       // Recheck with a better notion of 'required_outcnt'
3608       if (n->outcnt() != required_outcnt) {
3609         record_method_not_compilable("malformed control flow");
3610         return true;            // Not all targets reachable!
3611       }
3612     }
3613     // Check that I actually visited all kids.  Unreached kids
3614     // must be infinite loops.
3615     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3616       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3617         record_method_not_compilable("infinite loop");
3618         return true;            // Found unvisited kid; must be unreach
3619       }
3620 
3621     // Here so verification code in final_graph_reshaping_walk()
3622     // always see an OuterStripMinedLoopEnd
3623     if (n->is_OuterStripMinedLoopEnd()) {
3624       IfNode* init_iff = n->as_If();
3625       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3626       n->subsume_by(iff, this);
3627     }
3628   }
3629 
3630   // If original bytecodes contained a mixture of floats and doubles
3631   // check if the optimizer has made it homogenous, item (3).
3632   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3633       frc.get_float_count() > 32 &&
3634       frc.get_double_count() == 0 &&
3635       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3636     set_24_bit_selection_and_mode( false,  true );
3637   }
3638 
3639   set_java_calls(frc.get_java_call_count());
3640   set_inner_loops(frc.get_inner_loop_count());
3641 
3642   // No infinite loops, no reason to bail out.
3643   return false;
3644 }
3645 
3646 //-----------------------------too_many_traps----------------------------------
3647 // Report if there are too many traps at the current method and bci.
3648 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3649 bool Compile::too_many_traps(ciMethod* method,
3650                              int bci,
3651                              Deoptimization::DeoptReason reason) {
3652   ciMethodData* md = method->method_data();
3653   if (md->is_empty()) {
3654     // Assume the trap has not occurred, or that it occurred only
3655     // because of a transient condition during start-up in the interpreter.
3656     return false;
3657   }
3658   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3659   if (md->has_trap_at(bci, m, reason) != 0) {
3660     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3661     // Also, if there are multiple reasons, or if there is no per-BCI record,
3662     // assume the worst.
3663     if (log())
3664       log()->elem("observe trap='%s' count='%d'",
3665                   Deoptimization::trap_reason_name(reason),
3666                   md->trap_count(reason));
3667     return true;
3668   } else {
3669     // Ignore method/bci and see if there have been too many globally.
3670     return too_many_traps(reason, md);
3671   }
3672 }
3673 
3674 // Less-accurate variant which does not require a method and bci.
3675 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3676                              ciMethodData* logmd) {
3677   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3678     // Too many traps globally.
3679     // Note that we use cumulative trap_count, not just md->trap_count.
3680     if (log()) {
3681       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3682       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3683                   Deoptimization::trap_reason_name(reason),
3684                   mcount, trap_count(reason));
3685     }
3686     return true;
3687   } else {
3688     // The coast is clear.
3689     return false;
3690   }
3691 }
3692 
3693 //--------------------------too_many_recompiles--------------------------------
3694 // Report if there are too many recompiles at the current method and bci.
3695 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3696 // Is not eager to return true, since this will cause the compiler to use
3697 // Action_none for a trap point, to avoid too many recompilations.
3698 bool Compile::too_many_recompiles(ciMethod* method,
3699                                   int bci,
3700                                   Deoptimization::DeoptReason reason) {
3701   ciMethodData* md = method->method_data();
3702   if (md->is_empty()) {
3703     // Assume the trap has not occurred, or that it occurred only
3704     // because of a transient condition during start-up in the interpreter.
3705     return false;
3706   }
3707   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3708   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3709   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3710   Deoptimization::DeoptReason per_bc_reason
3711     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3712   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3713   if ((per_bc_reason == Deoptimization::Reason_none
3714        || md->has_trap_at(bci, m, reason) != 0)
3715       // The trap frequency measure we care about is the recompile count:
3716       && md->trap_recompiled_at(bci, m)
3717       && md->overflow_recompile_count() >= bc_cutoff) {
3718     // Do not emit a trap here if it has already caused recompilations.
3719     // Also, if there are multiple reasons, or if there is no per-BCI record,
3720     // assume the worst.
3721     if (log())
3722       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3723                   Deoptimization::trap_reason_name(reason),
3724                   md->trap_count(reason),
3725                   md->overflow_recompile_count());
3726     return true;
3727   } else if (trap_count(reason) != 0
3728              && decompile_count() >= m_cutoff) {
3729     // Too many recompiles globally, and we have seen this sort of trap.
3730     // Use cumulative decompile_count, not just md->decompile_count.
3731     if (log())
3732       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3733                   Deoptimization::trap_reason_name(reason),
3734                   md->trap_count(reason), trap_count(reason),
3735                   md->decompile_count(), decompile_count());
3736     return true;
3737   } else {
3738     // The coast is clear.
3739     return false;
3740   }
3741 }
3742 
3743 // Compute when not to trap. Used by matching trap based nodes and
3744 // NullCheck optimization.
3745 void Compile::set_allowed_deopt_reasons() {
3746   _allowed_reasons = 0;
3747   if (is_method_compilation()) {
3748     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3749       assert(rs < BitsPerInt, "recode bit map");
3750       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3751         _allowed_reasons |= nth_bit(rs);
3752       }
3753     }
3754   }
3755 }
3756 
3757 #ifndef PRODUCT
3758 //------------------------------verify_graph_edges---------------------------
3759 // Walk the Graph and verify that there is a one-to-one correspondence
3760 // between Use-Def edges and Def-Use edges in the graph.
3761 void Compile::verify_graph_edges(bool no_dead_code) {
3762   if (VerifyGraphEdges) {
3763     ResourceArea *area = Thread::current()->resource_area();
3764     Unique_Node_List visited(area);
3765     // Call recursive graph walk to check edges
3766     _root->verify_edges(visited);
3767     if (no_dead_code) {
3768       // Now make sure that no visited node is used by an unvisited node.
3769       bool dead_nodes = false;
3770       Unique_Node_List checked(area);
3771       while (visited.size() > 0) {
3772         Node* n = visited.pop();
3773         checked.push(n);
3774         for (uint i = 0; i < n->outcnt(); i++) {
3775           Node* use = n->raw_out(i);
3776           if (checked.member(use))  continue;  // already checked
3777           if (visited.member(use))  continue;  // already in the graph
3778           if (use->is_Con())        continue;  // a dead ConNode is OK
3779           // At this point, we have found a dead node which is DU-reachable.
3780           if (!dead_nodes) {
3781             tty->print_cr("*** Dead nodes reachable via DU edges:");
3782             dead_nodes = true;
3783           }
3784           use->dump(2);
3785           tty->print_cr("---");
3786           checked.push(use);  // No repeats; pretend it is now checked.
3787         }
3788       }
3789       assert(!dead_nodes, "using nodes must be reachable from root");
3790     }
3791   }
3792 }
3793 
3794 // Verify GC barriers consistency
3795 // Currently supported:
3796 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3797 void Compile::verify_barriers() {
3798   if (UseG1GC) {
3799     // Verify G1 pre-barriers
3800     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
3801 
3802     ResourceArea *area = Thread::current()->resource_area();
3803     Unique_Node_List visited(area);
3804     Node_List worklist(area);
3805     // We're going to walk control flow backwards starting from the Root
3806     worklist.push(_root);
3807     while (worklist.size() > 0) {
3808       Node* x = worklist.pop();
3809       if (x == NULL || x == top()) continue;
3810       if (visited.member(x)) {
3811         continue;
3812       } else {
3813         visited.push(x);
3814       }
3815 
3816       if (x->is_Region()) {
3817         for (uint i = 1; i < x->req(); i++) {
3818           worklist.push(x->in(i));
3819         }
3820       } else {
3821         worklist.push(x->in(0));
3822         // We are looking for the pattern:
3823         //                            /->ThreadLocal
3824         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3825         //              \->ConI(0)
3826         // We want to verify that the If and the LoadB have the same control
3827         // See GraphKit::g1_write_barrier_pre()
3828         if (x->is_If()) {
3829           IfNode *iff = x->as_If();
3830           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3831             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3832             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3833                 && cmp->in(1)->is_Load()) {
3834               LoadNode* load = cmp->in(1)->as_Load();
3835               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3836                   && load->in(2)->in(3)->is_Con()
3837                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3838 
3839                 Node* if_ctrl = iff->in(0);
3840                 Node* load_ctrl = load->in(0);
3841 
3842                 if (if_ctrl != load_ctrl) {
3843                   // Skip possible CProj->NeverBranch in infinite loops
3844                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3845                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3846                     if_ctrl = if_ctrl->in(0)->in(0);
3847                   }
3848                 }
3849                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3850               }
3851             }
3852           }
3853         }
3854       }
3855     }
3856   }
3857 }
3858 
3859 #endif
3860 
3861 // The Compile object keeps track of failure reasons separately from the ciEnv.
3862 // This is required because there is not quite a 1-1 relation between the
3863 // ciEnv and its compilation task and the Compile object.  Note that one
3864 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3865 // to backtrack and retry without subsuming loads.  Other than this backtracking
3866 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3867 // by the logic in C2Compiler.
3868 void Compile::record_failure(const char* reason) {
3869   if (log() != NULL) {
3870     log()->elem("failure reason='%s' phase='compile'", reason);
3871   }
3872   if (_failure_reason == NULL) {
3873     // Record the first failure reason.
3874     _failure_reason = reason;
3875   }
3876 
3877   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3878     C->print_method(PHASE_FAILURE);
3879   }
3880   _root = NULL;  // flush the graph, too
3881 }
3882 
3883 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3884   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3885     _phase_name(name), _dolog(CITimeVerbose)
3886 {
3887   if (_dolog) {
3888     C = Compile::current();
3889     _log = C->log();
3890   } else {
3891     C = NULL;
3892     _log = NULL;
3893   }
3894   if (_log != NULL) {
3895     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3896     _log->stamp();
3897     _log->end_head();
3898   }
3899 }
3900 
3901 Compile::TracePhase::~TracePhase() {
3902 
3903   C = Compile::current();
3904   if (_dolog) {
3905     _log = C->log();
3906   } else {
3907     _log = NULL;
3908   }
3909 
3910 #ifdef ASSERT
3911   if (PrintIdealNodeCount) {
3912     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3913                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3914   }
3915 
3916   if (VerifyIdealNodeCount) {
3917     Compile::current()->print_missing_nodes();
3918   }
3919 #endif
3920 
3921   if (_log != NULL) {
3922     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3923   }
3924 }
3925 
3926 //=============================================================================
3927 // Two Constant's are equal when the type and the value are equal.
3928 bool Compile::Constant::operator==(const Constant& other) {
3929   if (type()          != other.type()         )  return false;
3930   if (can_be_reused() != other.can_be_reused())  return false;
3931   // For floating point values we compare the bit pattern.
3932   switch (type()) {
3933   case T_INT:
3934   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3935   case T_LONG:
3936   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3937   case T_OBJECT:
3938   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3939   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3940   case T_METADATA: return (_v._metadata == other._v._metadata);
3941   default: ShouldNotReachHere(); return false;
3942   }
3943 }
3944 
3945 static int type_to_size_in_bytes(BasicType t) {
3946   switch (t) {
3947   case T_INT:     return sizeof(jint   );
3948   case T_LONG:    return sizeof(jlong  );
3949   case T_FLOAT:   return sizeof(jfloat );
3950   case T_DOUBLE:  return sizeof(jdouble);
3951   case T_METADATA: return sizeof(Metadata*);
3952     // We use T_VOID as marker for jump-table entries (labels) which
3953     // need an internal word relocation.
3954   case T_VOID:
3955   case T_ADDRESS:
3956   case T_OBJECT:  return sizeof(jobject);
3957   default:
3958     ShouldNotReachHere();
3959     return -1;
3960   }
3961 }
3962 
3963 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3964   // sort descending
3965   if (a->freq() > b->freq())  return -1;
3966   if (a->freq() < b->freq())  return  1;
3967   return 0;
3968 }
3969 
3970 void Compile::ConstantTable::calculate_offsets_and_size() {
3971   // First, sort the array by frequencies.
3972   _constants.sort(qsort_comparator);
3973 
3974 #ifdef ASSERT
3975   // Make sure all jump-table entries were sorted to the end of the
3976   // array (they have a negative frequency).
3977   bool found_void = false;
3978   for (int i = 0; i < _constants.length(); i++) {
3979     Constant con = _constants.at(i);
3980     if (con.type() == T_VOID)
3981       found_void = true;  // jump-tables
3982     else
3983       assert(!found_void, "wrong sorting");
3984   }
3985 #endif
3986 
3987   int offset = 0;
3988   for (int i = 0; i < _constants.length(); i++) {
3989     Constant* con = _constants.adr_at(i);
3990 
3991     // Align offset for type.
3992     int typesize = type_to_size_in_bytes(con->type());
3993     offset = align_up(offset, typesize);
3994     con->set_offset(offset);   // set constant's offset
3995 
3996     if (con->type() == T_VOID) {
3997       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3998       offset = offset + typesize * n->outcnt();  // expand jump-table
3999     } else {
4000       offset = offset + typesize;
4001     }
4002   }
4003 
4004   // Align size up to the next section start (which is insts; see
4005   // CodeBuffer::align_at_start).
4006   assert(_size == -1, "already set?");
4007   _size = align_up(offset, (int)CodeEntryAlignment);
4008 }
4009 
4010 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4011   MacroAssembler _masm(&cb);
4012   for (int i = 0; i < _constants.length(); i++) {
4013     Constant con = _constants.at(i);
4014     address constant_addr = NULL;
4015     switch (con.type()) {
4016     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4017     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4018     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4019     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4020     case T_OBJECT: {
4021       jobject obj = con.get_jobject();
4022       int oop_index = _masm.oop_recorder()->find_index(obj);
4023       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4024       break;
4025     }
4026     case T_ADDRESS: {
4027       address addr = (address) con.get_jobject();
4028       constant_addr = _masm.address_constant(addr);
4029       break;
4030     }
4031     // We use T_VOID as marker for jump-table entries (labels) which
4032     // need an internal word relocation.
4033     case T_VOID: {
4034       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4035       // Fill the jump-table with a dummy word.  The real value is
4036       // filled in later in fill_jump_table.
4037       address dummy = (address) n;
4038       constant_addr = _masm.address_constant(dummy);
4039       // Expand jump-table
4040       for (uint i = 1; i < n->outcnt(); i++) {
4041         address temp_addr = _masm.address_constant(dummy + i);
4042         assert(temp_addr, "consts section too small");
4043       }
4044       break;
4045     }
4046     case T_METADATA: {
4047       Metadata* obj = con.get_metadata();
4048       int metadata_index = _masm.oop_recorder()->find_index(obj);
4049       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4050       break;
4051     }
4052     default: ShouldNotReachHere();
4053     }
4054     assert(constant_addr, "consts section too small");
4055     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4056             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4057   }
4058 }
4059 
4060 int Compile::ConstantTable::find_offset(Constant& con) const {
4061   int idx = _constants.find(con);
4062   assert(idx != -1, "constant must be in constant table");
4063   int offset = _constants.at(idx).offset();
4064   assert(offset != -1, "constant table not emitted yet?");
4065   return offset;
4066 }
4067 
4068 void Compile::ConstantTable::add(Constant& con) {
4069   if (con.can_be_reused()) {
4070     int idx = _constants.find(con);
4071     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4072       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4073       return;
4074     }
4075   }
4076   (void) _constants.append(con);
4077 }
4078 
4079 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4080   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4081   Constant con(type, value, b->_freq);
4082   add(con);
4083   return con;
4084 }
4085 
4086 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4087   Constant con(metadata);
4088   add(con);
4089   return con;
4090 }
4091 
4092 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4093   jvalue value;
4094   BasicType type = oper->type()->basic_type();
4095   switch (type) {
4096   case T_LONG:    value.j = oper->constantL(); break;
4097   case T_FLOAT:   value.f = oper->constantF(); break;
4098   case T_DOUBLE:  value.d = oper->constantD(); break;
4099   case T_OBJECT:
4100   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4101   case T_METADATA: return add((Metadata*)oper->constant()); break;
4102   default: guarantee(false, "unhandled type: %s", type2name(type));
4103   }
4104   return add(n, type, value);
4105 }
4106 
4107 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4108   jvalue value;
4109   // We can use the node pointer here to identify the right jump-table
4110   // as this method is called from Compile::Fill_buffer right before
4111   // the MachNodes are emitted and the jump-table is filled (means the
4112   // MachNode pointers do not change anymore).
4113   value.l = (jobject) n;
4114   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4115   add(con);
4116   return con;
4117 }
4118 
4119 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4120   // If called from Compile::scratch_emit_size do nothing.
4121   if (Compile::current()->in_scratch_emit_size())  return;
4122 
4123   assert(labels.is_nonempty(), "must be");
4124   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4125 
4126   // Since MachConstantNode::constant_offset() also contains
4127   // table_base_offset() we need to subtract the table_base_offset()
4128   // to get the plain offset into the constant table.
4129   int offset = n->constant_offset() - table_base_offset();
4130 
4131   MacroAssembler _masm(&cb);
4132   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4133 
4134   for (uint i = 0; i < n->outcnt(); i++) {
4135     address* constant_addr = &jump_table_base[i];
4136     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4137     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4138     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4139   }
4140 }
4141 
4142 //----------------------------static_subtype_check-----------------------------
4143 // Shortcut important common cases when superklass is exact:
4144 // (0) superklass is java.lang.Object (can occur in reflective code)
4145 // (1) subklass is already limited to a subtype of superklass => always ok
4146 // (2) subklass does not overlap with superklass => always fail
4147 // (3) superklass has NO subtypes and we can check with a simple compare.
4148 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4149   if (StressReflectiveCode || superk == NULL || subk == NULL) {
4150     return SSC_full_test;       // Let caller generate the general case.
4151   }
4152 
4153   if (!EnableMVT && !EnableValhalla && superk == env()->Object_klass()) {
4154     return SSC_always_true;     // (0) this test cannot fail
4155   }
4156 
4157   ciType* superelem = superk;
4158   if (superelem->is_array_klass())
4159     superelem = superelem->as_array_klass()->base_element_type();
4160 
4161   if (!subk->is_interface()) {  // cannot trust static interface types yet
4162     if (subk->is_subtype_of(superk)) {
4163       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4164     }
4165     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4166         !superk->is_subtype_of(subk)) {
4167       return SSC_always_false;
4168     }
4169   }
4170 
4171   // If casting to an instance klass, it must have no subtypes
4172   if (superk->is_interface()) {
4173     // Cannot trust interfaces yet.
4174     // %%% S.B. superk->nof_implementors() == 1
4175   } else if (superelem->is_instance_klass()) {
4176     ciInstanceKlass* ik = superelem->as_instance_klass();
4177     if (!ik->has_subklass() && !ik->is_interface()) {
4178       if (!ik->is_final()) {
4179         // Add a dependency if there is a chance of a later subclass.
4180         dependencies()->assert_leaf_type(ik);
4181       }
4182       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4183     }
4184   } else {
4185     // A primitive array type has no subtypes.
4186     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4187   }
4188 
4189   return SSC_full_test;
4190 }
4191 
4192 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4193 #ifdef _LP64
4194   // The scaled index operand to AddP must be a clean 64-bit value.
4195   // Java allows a 32-bit int to be incremented to a negative
4196   // value, which appears in a 64-bit register as a large
4197   // positive number.  Using that large positive number as an
4198   // operand in pointer arithmetic has bad consequences.
4199   // On the other hand, 32-bit overflow is rare, and the possibility
4200   // can often be excluded, if we annotate the ConvI2L node with
4201   // a type assertion that its value is known to be a small positive
4202   // number.  (The prior range check has ensured this.)
4203   // This assertion is used by ConvI2LNode::Ideal.
4204   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4205   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4206   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4207   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4208 #endif
4209   return idx;
4210 }
4211 
4212 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4213 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4214   if (ctrl != NULL) {
4215     // Express control dependency by a CastII node with a narrow type.
4216     value = new CastIINode(value, itype, false, true /* range check dependency */);
4217     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4218     // node from floating above the range check during loop optimizations. Otherwise, the
4219     // ConvI2L node may be eliminated independently of the range check, causing the data path
4220     // to become TOP while the control path is still there (although it's unreachable).
4221     value->set_req(0, ctrl);
4222     // Save CastII node to remove it after loop optimizations.
4223     phase->C->add_range_check_cast(value);
4224     value = phase->transform(value);
4225   }
4226   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4227   return phase->transform(new ConvI2LNode(value, ltype));
4228 }
4229 
4230 // The message about the current inlining is accumulated in
4231 // _print_inlining_stream and transfered into the _print_inlining_list
4232 // once we know whether inlining succeeds or not. For regular
4233 // inlining, messages are appended to the buffer pointed by
4234 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4235 // a new buffer is added after _print_inlining_idx in the list. This
4236 // way we can update the inlining message for late inlining call site
4237 // when the inlining is attempted again.
4238 void Compile::print_inlining_init() {
4239   if (print_inlining() || print_intrinsics()) {
4240     _print_inlining_stream = new stringStream();
4241     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4242   }
4243 }
4244 
4245 void Compile::print_inlining_reinit() {
4246   if (print_inlining() || print_intrinsics()) {
4247     // Re allocate buffer when we change ResourceMark
4248     _print_inlining_stream = new stringStream();
4249   }
4250 }
4251 
4252 void Compile::print_inlining_reset() {
4253   _print_inlining_stream->reset();
4254 }
4255 
4256 void Compile::print_inlining_commit() {
4257   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4258   // Transfer the message from _print_inlining_stream to the current
4259   // _print_inlining_list buffer and clear _print_inlining_stream.
4260   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4261   print_inlining_reset();
4262 }
4263 
4264 void Compile::print_inlining_push() {
4265   // Add new buffer to the _print_inlining_list at current position
4266   _print_inlining_idx++;
4267   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4268 }
4269 
4270 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4271   return _print_inlining_list->at(_print_inlining_idx);
4272 }
4273 
4274 void Compile::print_inlining_update(CallGenerator* cg) {
4275   if (print_inlining() || print_intrinsics()) {
4276     if (!cg->is_late_inline()) {
4277       if (print_inlining_current().cg() != NULL) {
4278         print_inlining_push();
4279       }
4280       print_inlining_commit();
4281     } else {
4282       if (print_inlining_current().cg() != cg &&
4283           (print_inlining_current().cg() != NULL ||
4284            print_inlining_current().ss()->size() != 0)) {
4285         print_inlining_push();
4286       }
4287       print_inlining_commit();
4288       print_inlining_current().set_cg(cg);
4289     }
4290   }
4291 }
4292 
4293 void Compile::print_inlining_move_to(CallGenerator* cg) {
4294   // We resume inlining at a late inlining call site. Locate the
4295   // corresponding inlining buffer so that we can update it.
4296   if (print_inlining()) {
4297     for (int i = 0; i < _print_inlining_list->length(); i++) {
4298       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4299         _print_inlining_idx = i;
4300         return;
4301       }
4302     }
4303     ShouldNotReachHere();
4304   }
4305 }
4306 
4307 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4308   if (print_inlining()) {
4309     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4310     assert(print_inlining_current().cg() == cg, "wrong entry");
4311     // replace message with new message
4312     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4313     print_inlining_commit();
4314     print_inlining_current().set_cg(cg);
4315   }
4316 }
4317 
4318 void Compile::print_inlining_assert_ready() {
4319   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4320 }
4321 
4322 void Compile::process_print_inlining() {
4323   bool do_print_inlining = print_inlining() || print_intrinsics();
4324   if (do_print_inlining || log() != NULL) {
4325     // Print inlining message for candidates that we couldn't inline
4326     // for lack of space
4327     for (int i = 0; i < _late_inlines.length(); i++) {
4328       CallGenerator* cg = _late_inlines.at(i);
4329       if (!cg->is_mh_late_inline()) {
4330         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4331         if (do_print_inlining) {
4332           cg->print_inlining_late(msg);
4333         }
4334         log_late_inline_failure(cg, msg);
4335       }
4336     }
4337   }
4338   if (do_print_inlining) {
4339     ResourceMark rm;
4340     stringStream ss;
4341     for (int i = 0; i < _print_inlining_list->length(); i++) {
4342       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4343     }
4344     size_t end = ss.size();
4345     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4346     strncpy(_print_inlining_output, ss.base(), end+1);
4347     _print_inlining_output[end] = 0;
4348   }
4349 }
4350 
4351 void Compile::dump_print_inlining() {
4352   if (_print_inlining_output != NULL) {
4353     tty->print_raw(_print_inlining_output);
4354   }
4355 }
4356 
4357 void Compile::log_late_inline(CallGenerator* cg) {
4358   if (log() != NULL) {
4359     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4360                 cg->unique_id());
4361     JVMState* p = cg->call_node()->jvms();
4362     while (p != NULL) {
4363       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4364       p = p->caller();
4365     }
4366     log()->tail("late_inline");
4367   }
4368 }
4369 
4370 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4371   log_late_inline(cg);
4372   if (log() != NULL) {
4373     log()->inline_fail(msg);
4374   }
4375 }
4376 
4377 void Compile::log_inline_id(CallGenerator* cg) {
4378   if (log() != NULL) {
4379     // The LogCompilation tool needs a unique way to identify late
4380     // inline call sites. This id must be unique for this call site in
4381     // this compilation. Try to have it unique across compilations as
4382     // well because it can be convenient when grepping through the log
4383     // file.
4384     // Distinguish OSR compilations from others in case CICountOSR is
4385     // on.
4386     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4387     cg->set_unique_id(id);
4388     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4389   }
4390 }
4391 
4392 void Compile::log_inline_failure(const char* msg) {
4393   if (C->log() != NULL) {
4394     C->log()->inline_fail(msg);
4395   }
4396 }
4397 
4398 
4399 // Dump inlining replay data to the stream.
4400 // Don't change thread state and acquire any locks.
4401 void Compile::dump_inline_data(outputStream* out) {
4402   InlineTree* inl_tree = ilt();
4403   if (inl_tree != NULL) {
4404     out->print(" inline %d", inl_tree->count());
4405     inl_tree->dump_replay_data(out);
4406   }
4407 }
4408 
4409 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4410   if (n1->Opcode() < n2->Opcode())      return -1;
4411   else if (n1->Opcode() > n2->Opcode()) return 1;
4412 
4413   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4414   for (uint i = 1; i < n1->req(); i++) {
4415     if (n1->in(i) < n2->in(i))      return -1;
4416     else if (n1->in(i) > n2->in(i)) return 1;
4417   }
4418 
4419   return 0;
4420 }
4421 
4422 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4423   Node* n1 = *n1p;
4424   Node* n2 = *n2p;
4425 
4426   return cmp_expensive_nodes(n1, n2);
4427 }
4428 
4429 void Compile::sort_expensive_nodes() {
4430   if (!expensive_nodes_sorted()) {
4431     _expensive_nodes->sort(cmp_expensive_nodes);
4432   }
4433 }
4434 
4435 bool Compile::expensive_nodes_sorted() const {
4436   for (int i = 1; i < _expensive_nodes->length(); i++) {
4437     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4438       return false;
4439     }
4440   }
4441   return true;
4442 }
4443 
4444 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4445   if (_expensive_nodes->length() == 0) {
4446     return false;
4447   }
4448 
4449   assert(OptimizeExpensiveOps, "optimization off?");
4450 
4451   // Take this opportunity to remove dead nodes from the list
4452   int j = 0;
4453   for (int i = 0; i < _expensive_nodes->length(); i++) {
4454     Node* n = _expensive_nodes->at(i);
4455     if (!n->is_unreachable(igvn)) {
4456       assert(n->is_expensive(), "should be expensive");
4457       _expensive_nodes->at_put(j, n);
4458       j++;
4459     }
4460   }
4461   _expensive_nodes->trunc_to(j);
4462 
4463   // Then sort the list so that similar nodes are next to each other
4464   // and check for at least two nodes of identical kind with same data
4465   // inputs.
4466   sort_expensive_nodes();
4467 
4468   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4469     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4470       return true;
4471     }
4472   }
4473 
4474   return false;
4475 }
4476 
4477 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4478   if (_expensive_nodes->length() == 0) {
4479     return;
4480   }
4481 
4482   assert(OptimizeExpensiveOps, "optimization off?");
4483 
4484   // Sort to bring similar nodes next to each other and clear the
4485   // control input of nodes for which there's only a single copy.
4486   sort_expensive_nodes();
4487 
4488   int j = 0;
4489   int identical = 0;
4490   int i = 0;
4491   bool modified = false;
4492   for (; i < _expensive_nodes->length()-1; i++) {
4493     assert(j <= i, "can't write beyond current index");
4494     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4495       identical++;
4496       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4497       continue;
4498     }
4499     if (identical > 0) {
4500       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4501       identical = 0;
4502     } else {
4503       Node* n = _expensive_nodes->at(i);
4504       igvn.replace_input_of(n, 0, NULL);
4505       igvn.hash_insert(n);
4506       modified = true;
4507     }
4508   }
4509   if (identical > 0) {
4510     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4511   } else if (_expensive_nodes->length() >= 1) {
4512     Node* n = _expensive_nodes->at(i);
4513     igvn.replace_input_of(n, 0, NULL);
4514     igvn.hash_insert(n);
4515     modified = true;
4516   }
4517   _expensive_nodes->trunc_to(j);
4518   if (modified) {
4519     igvn.optimize();
4520   }
4521 }
4522 
4523 void Compile::add_expensive_node(Node * n) {
4524   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4525   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4526   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4527   if (OptimizeExpensiveOps) {
4528     _expensive_nodes->append(n);
4529   } else {
4530     // Clear control input and let IGVN optimize expensive nodes if
4531     // OptimizeExpensiveOps is off.
4532     n->set_req(0, NULL);
4533   }
4534 }
4535 
4536 /**
4537  * Remove the speculative part of types and clean up the graph
4538  */
4539 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4540   if (UseTypeSpeculation) {
4541     Unique_Node_List worklist;
4542     worklist.push(root());
4543     int modified = 0;
4544     // Go over all type nodes that carry a speculative type, drop the
4545     // speculative part of the type and enqueue the node for an igvn
4546     // which may optimize it out.
4547     for (uint next = 0; next < worklist.size(); ++next) {
4548       Node *n  = worklist.at(next);
4549       if (n->is_Type()) {
4550         TypeNode* tn = n->as_Type();
4551         const Type* t = tn->type();
4552         const Type* t_no_spec = t->remove_speculative();
4553         if (t_no_spec != t) {
4554           bool in_hash = igvn.hash_delete(n);
4555           assert(in_hash, "node should be in igvn hash table");
4556           tn->set_type(t_no_spec);
4557           igvn.hash_insert(n);
4558           igvn._worklist.push(n); // give it a chance to go away
4559           modified++;
4560         }
4561       }
4562       uint max = n->len();
4563       for( uint i = 0; i < max; ++i ) {
4564         Node *m = n->in(i);
4565         if (not_a_node(m))  continue;
4566         worklist.push(m);
4567       }
4568     }
4569     // Drop the speculative part of all types in the igvn's type table
4570     igvn.remove_speculative_types();
4571     if (modified > 0) {
4572       igvn.optimize();
4573     }
4574 #ifdef ASSERT
4575     // Verify that after the IGVN is over no speculative type has resurfaced
4576     worklist.clear();
4577     worklist.push(root());
4578     for (uint next = 0; next < worklist.size(); ++next) {
4579       Node *n  = worklist.at(next);
4580       const Type* t = igvn.type_or_null(n);
4581       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4582       if (n->is_Type()) {
4583         t = n->as_Type()->type();
4584         assert(t == t->remove_speculative(), "no more speculative types");
4585       }
4586       uint max = n->len();
4587       for( uint i = 0; i < max; ++i ) {
4588         Node *m = n->in(i);
4589         if (not_a_node(m))  continue;
4590         worklist.push(m);
4591       }
4592     }
4593     igvn.check_no_speculative_types();
4594 #endif
4595   }
4596 }
4597 
4598 // Auxiliary method to support randomized stressing/fuzzing.
4599 //
4600 // This method can be called the arbitrary number of times, with current count
4601 // as the argument. The logic allows selecting a single candidate from the
4602 // running list of candidates as follows:
4603 //    int count = 0;
4604 //    Cand* selected = null;
4605 //    while(cand = cand->next()) {
4606 //      if (randomized_select(++count)) {
4607 //        selected = cand;
4608 //      }
4609 //    }
4610 //
4611 // Including count equalizes the chances any candidate is "selected".
4612 // This is useful when we don't have the complete list of candidates to choose
4613 // from uniformly. In this case, we need to adjust the randomicity of the
4614 // selection, or else we will end up biasing the selection towards the latter
4615 // candidates.
4616 //
4617 // Quick back-envelope calculation shows that for the list of n candidates
4618 // the equal probability for the candidate to persist as "best" can be
4619 // achieved by replacing it with "next" k-th candidate with the probability
4620 // of 1/k. It can be easily shown that by the end of the run, the
4621 // probability for any candidate is converged to 1/n, thus giving the
4622 // uniform distribution among all the candidates.
4623 //
4624 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4625 #define RANDOMIZED_DOMAIN_POW 29
4626 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4627 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4628 bool Compile::randomized_select(int count) {
4629   assert(count > 0, "only positive");
4630   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4631 }
4632 
4633 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4634 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4635 
4636 void NodeCloneInfo::dump() const {
4637   tty->print(" {%d:%d} ", idx(), gen());
4638 }
4639 
4640 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4641   uint64_t val = value(old->_idx);
4642   NodeCloneInfo cio(val);
4643   assert(val != 0, "old node should be in the map");
4644   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4645   insert(nnn->_idx, cin.get());
4646 #ifndef PRODUCT
4647   if (is_debug()) {
4648     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4649   }
4650 #endif
4651 }
4652 
4653 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4654   NodeCloneInfo cio(value(old->_idx));
4655   if (cio.get() == 0) {
4656     cio.set(old->_idx, 0);
4657     insert(old->_idx, cio.get());
4658 #ifndef PRODUCT
4659     if (is_debug()) {
4660       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4661     }
4662 #endif
4663   }
4664   clone(old, nnn, gen);
4665 }
4666 
4667 int CloneMap::max_gen() const {
4668   int g = 0;
4669   DictI di(_dict);
4670   for(; di.test(); ++di) {
4671     int t = gen(di._key);
4672     if (g < t) {
4673       g = t;
4674 #ifndef PRODUCT
4675       if (is_debug()) {
4676         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4677       }
4678 #endif
4679     }
4680   }
4681   return g;
4682 }
4683 
4684 void CloneMap::dump(node_idx_t key) const {
4685   uint64_t val = value(key);
4686   if (val != 0) {
4687     NodeCloneInfo ni(val);
4688     ni.dump();
4689   }
4690 }