1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 const Type::Offset Type::Offset::top(Type::OffsetTop);
  53 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  54 
  55 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  56   // Either is 'TOP' offset?  Return the other offset!
  57   int offset = other._offset;
  58   if (_offset == OffsetTop) return Offset(offset);
  59   if (offset == OffsetTop) return Offset(_offset);
  60   // If either is different, return 'BOTTOM' offset
  61   if (_offset != offset) return bottom;
  62   return Offset(_offset);
  63 }
  64 
  65 const Type::Offset Type::Offset::dual() const {
  66   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  67   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  68   return Offset(_offset);               // Map everything else into self
  69 }
  70 
  71 const Type::Offset Type::Offset::add(intptr_t offset) const {
  72   // Adding to 'TOP' offset?  Return 'TOP'!
  73   if (_offset == OffsetTop || offset == OffsetTop) return top;
  74   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  75   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  76   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  77   offset += (intptr_t)_offset;
  78   if (offset != (int)offset || offset == OffsetTop) return bottom;
  79 
  80   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  81   // It is possible to construct a negative offset during PhaseCCP
  82 
  83   return Offset((int)offset);        // Sum valid offsets
  84 }
  85 
  86 void Type::Offset::dump2(outputStream *st) const {
  87   if (_offset == 0) {
  88     return;
  89   } else if (_offset == OffsetTop) {
  90     st->print("+top");
  91   }
  92   else if (_offset == OffsetBot) {
  93     st->print("+bot");
  94   } else if (_offset) {
  95     st->print("+%d", _offset);
  96   }
  97 }
  98 
  99 // Array which maps compiler types to Basic Types
 100 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 101   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 102   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 103   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 104   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 105   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 106   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 107   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 108   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 109   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 110   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 111 
 112 #ifdef SPARC
 113   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 114   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 115   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 116   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 117   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 118 #elif defined(PPC64)
 119   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 120   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 121   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 122   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 123   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 124 #elif defined(S390)
 125   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 126   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 127   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 128   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 129   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 130 #else // all other
 131   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 132   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 133   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 134   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 135   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 136 #endif
 137   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 138   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 139   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 140   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 141   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 142   { Bad,             T_VALUETYPEPTR,"valueptr:",     true,  Op_RegP,              relocInfo::oop_type      },  // ValueTypePtr
 143   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 144   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 145   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 146   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 147   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 148   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 149   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 150   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 151   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 152   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 153   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 154   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 155   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 156   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 157 };
 158 
 159 // Map ideal registers (machine types) to ideal types
 160 const Type *Type::mreg2type[_last_machine_leaf];
 161 
 162 // Map basic types to canonical Type* pointers.
 163 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 164 
 165 // Map basic types to constant-zero Types.
 166 const Type* Type::            _zero_type[T_CONFLICT+1];
 167 
 168 // Map basic types to array-body alias types.
 169 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 170 
 171 //=============================================================================
 172 // Convenience common pre-built types.
 173 const Type *Type::ABIO;         // State-of-machine only
 174 const Type *Type::BOTTOM;       // All values
 175 const Type *Type::CONTROL;      // Control only
 176 const Type *Type::DOUBLE;       // All doubles
 177 const Type *Type::FLOAT;        // All floats
 178 const Type *Type::HALF;         // Placeholder half of doublewide type
 179 const Type *Type::MEMORY;       // Abstract store only
 180 const Type *Type::RETURN_ADDRESS;
 181 const Type *Type::TOP;          // No values in set
 182 
 183 //------------------------------get_const_type---------------------------
 184 const Type* Type::get_const_type(ciType* type) {
 185   if (type == NULL) {
 186     return NULL;
 187   } else if (type->is_primitive_type()) {
 188     return get_const_basic_type(type->basic_type());
 189   } else {
 190     return TypeOopPtr::make_from_klass(type->as_klass());
 191   }
 192 }
 193 
 194 //---------------------------array_element_basic_type---------------------------------
 195 // Mapping to the array element's basic type.
 196 BasicType Type::array_element_basic_type() const {
 197   BasicType bt = basic_type();
 198   if (bt == T_INT) {
 199     if (this == TypeInt::INT)   return T_INT;
 200     if (this == TypeInt::CHAR)  return T_CHAR;
 201     if (this == TypeInt::BYTE)  return T_BYTE;
 202     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 203     if (this == TypeInt::SHORT) return T_SHORT;
 204     return T_VOID;
 205   }
 206   return bt;
 207 }
 208 
 209 // For two instance arrays of same dimension, return the base element types.
 210 // Otherwise or if the arrays have different dimensions, return NULL.
 211 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 212                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 213 
 214   if (e1) *e1 = NULL;
 215   if (e2) *e2 = NULL;
 216   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 217   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 218 
 219   if (a1tap != NULL && a2tap != NULL) {
 220     // Handle multidimensional arrays
 221     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 222     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 223     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 224       a1tap = a1tp->is_aryptr();
 225       a2tap = a2tp->is_aryptr();
 226       a1tp = a1tap->elem()->make_ptr();
 227       a2tp = a2tap->elem()->make_ptr();
 228     }
 229     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 230       if (e1) *e1 = a1tp->is_instptr();
 231       if (e2) *e2 = a2tp->is_instptr();
 232     }
 233   }
 234 }
 235 
 236 //---------------------------get_typeflow_type---------------------------------
 237 // Import a type produced by ciTypeFlow.
 238 const Type* Type::get_typeflow_type(ciType* type) {
 239   switch (type->basic_type()) {
 240 
 241   case ciTypeFlow::StateVector::T_BOTTOM:
 242     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 243     return Type::BOTTOM;
 244 
 245   case ciTypeFlow::StateVector::T_TOP:
 246     assert(type == ciTypeFlow::StateVector::top_type(), "");
 247     return Type::TOP;
 248 
 249   case ciTypeFlow::StateVector::T_NULL:
 250     assert(type == ciTypeFlow::StateVector::null_type(), "");
 251     return TypePtr::NULL_PTR;
 252 
 253   case ciTypeFlow::StateVector::T_LONG2:
 254     // The ciTypeFlow pass pushes a long, then the half.
 255     // We do the same.
 256     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 257     return TypeInt::TOP;
 258 
 259   case ciTypeFlow::StateVector::T_DOUBLE2:
 260     // The ciTypeFlow pass pushes double, then the half.
 261     // Our convention is the same.
 262     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 263     return Type::TOP;
 264 
 265   case T_ADDRESS:
 266     assert(type->is_return_address(), "");
 267     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 268 
 269   case T_VALUETYPE:
 270     if (type->is__Value()) {
 271       return TypeValueTypePtr::NOTNULL;
 272     } else {
 273       return TypeValueType::make(type->as_value_klass());
 274     }
 275 
 276   default:
 277     // make sure we did not mix up the cases:
 278     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 279     assert(type != ciTypeFlow::StateVector::top_type(), "");
 280     assert(type != ciTypeFlow::StateVector::null_type(), "");
 281     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 282     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 283     assert(!type->is_return_address(), "");
 284 
 285     return Type::get_const_type(type);
 286   }
 287 }
 288 
 289 
 290 //-----------------------make_from_constant------------------------------------
 291 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 292                                      int stable_dimension, bool is_narrow_oop,
 293                                      bool is_autobox_cache) {
 294   switch (constant.basic_type()) {
 295     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 296     case T_CHAR:     return TypeInt::make(constant.as_char());
 297     case T_BYTE:     return TypeInt::make(constant.as_byte());
 298     case T_SHORT:    return TypeInt::make(constant.as_short());
 299     case T_INT:      return TypeInt::make(constant.as_int());
 300     case T_LONG:     return TypeLong::make(constant.as_long());
 301     case T_FLOAT:    return TypeF::make(constant.as_float());
 302     case T_DOUBLE:   return TypeD::make(constant.as_double());
 303     case T_ARRAY:
 304     case T_VALUETYPE:
 305     case T_OBJECT: {
 306         // cases:
 307         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 308         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 309         // An oop is not scavengable if it is in the perm gen.
 310         const Type* con_type = NULL;
 311         ciObject* oop_constant = constant.as_object();
 312         if (oop_constant->is_null_object()) {
 313           con_type = Type::get_zero_type(T_OBJECT);
 314         } else if (require_constant || oop_constant->should_be_constant()) {
 315           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 316           if (con_type != NULL) {
 317             if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 318               con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 319             }
 320             if (stable_dimension > 0) {
 321               assert(FoldStableValues, "sanity");
 322               assert(!con_type->is_zero_type(), "default value for stable field");
 323               con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 324             }
 325           }
 326         }
 327         if (is_narrow_oop) {
 328           con_type = con_type->make_narrowoop();
 329         }
 330         return con_type;
 331       }
 332     case T_ILLEGAL:
 333       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 334       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 335       return NULL;
 336     default:
 337       // Fall through to failure
 338       return NULL;
 339   }
 340 }
 341 
 342 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 343   BasicType conbt = con.basic_type();
 344   switch (conbt) {
 345     case T_BOOLEAN: conbt = T_BYTE;   break;
 346     case T_ARRAY:   conbt = T_OBJECT; break;
 347     case T_VALUETYPE: conbt = T_OBJECT; break;
 348     default:                          break;
 349   }
 350   switch (loadbt) {
 351     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 352     case T_NARROWOOP: loadbt = T_OBJECT; break;
 353     case T_ARRAY:     loadbt = T_OBJECT; break;
 354     case T_VALUETYPE: loadbt = T_OBJECT; break;
 355     case T_ADDRESS:   loadbt = T_OBJECT; break;
 356     default:                             break;
 357   }
 358   if (conbt == loadbt) {
 359     if (is_unsigned && conbt == T_BYTE) {
 360       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 361       return ciConstant(T_INT, con.as_int() & 0xFF);
 362     } else {
 363       return con;
 364     }
 365   }
 366   if (conbt == T_SHORT && loadbt == T_CHAR) {
 367     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 368     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 369   }
 370   return ciConstant(); // T_ILLEGAL
 371 }
 372 
 373 // Try to constant-fold a stable array element.
 374 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 375                                                    BasicType loadbt, bool is_unsigned_load) {
 376   // Decode the results of GraphKit::array_element_address.
 377   ciConstant element_value = array->element_value_by_offset(off);
 378   if (element_value.basic_type() == T_ILLEGAL) {
 379     return NULL; // wrong offset
 380   }
 381   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 382 
 383   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 384          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 385 
 386   if (con.is_valid() &&          // not a mismatched access
 387       !con.is_null_or_zero()) {  // not a default value
 388     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 389     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 390   }
 391   return NULL;
 392 }
 393 
 394 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 395   ciField* field;
 396   ciType* type = holder->java_mirror_type();
 397   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 398     // Static field
 399     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 400   } else {
 401     // Instance field
 402     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 403   }
 404   if (field == NULL) {
 405     return NULL; // Wrong offset
 406   }
 407   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 408 }
 409 
 410 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 411                                            BasicType loadbt, bool is_unsigned_load) {
 412   if (!field->is_constant()) {
 413     return NULL; // Non-constant field
 414   }
 415   ciConstant field_value;
 416   if (field->is_static()) {
 417     // final static field
 418     field_value = field->constant_value();
 419   } else if (holder != NULL) {
 420     // final or stable non-static field
 421     // Treat final non-static fields of trusted classes (classes in
 422     // java.lang.invoke and sun.invoke packages and subpackages) as
 423     // compile time constants.
 424     field_value = field->constant_value_of(holder);
 425   }
 426   if (!field_value.is_valid()) {
 427     return NULL; // Not a constant
 428   }
 429 
 430   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 431 
 432   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 433          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 434 
 435   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 436   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 437   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 438 
 439   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 440                                             stable_dimension, is_narrow_oop,
 441                                             field->is_autobox_cache());
 442   if (con_type != NULL && field->is_call_site_target()) {
 443     ciCallSite* call_site = holder->as_call_site();
 444     if (!call_site->is_constant_call_site()) {
 445       ciMethodHandle* target = con.as_object()->as_method_handle();
 446       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 447     }
 448   }
 449   return con_type;
 450 }
 451 
 452 //------------------------------make-------------------------------------------
 453 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 454 // and look for an existing copy in the type dictionary.
 455 const Type *Type::make( enum TYPES t ) {
 456   return (new Type(t))->hashcons();
 457 }
 458 
 459 //------------------------------cmp--------------------------------------------
 460 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 461   if( t1->_base != t2->_base )
 462     return 1;                   // Missed badly
 463   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 464   return !t1->eq(t2);           // Return ZERO if equal
 465 }
 466 
 467 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 468   if (!include_speculative) {
 469     return remove_speculative();
 470   }
 471   return this;
 472 }
 473 
 474 //------------------------------hash-------------------------------------------
 475 int Type::uhash( const Type *const t ) {
 476   return t->hash();
 477 }
 478 
 479 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 480 
 481 //--------------------------Initialize_shared----------------------------------
 482 void Type::Initialize_shared(Compile* current) {
 483   // This method does not need to be locked because the first system
 484   // compilations (stub compilations) occur serially.  If they are
 485   // changed to proceed in parallel, then this section will need
 486   // locking.
 487 
 488   Arena* save = current->type_arena();
 489   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 490 
 491   current->set_type_arena(shared_type_arena);
 492   _shared_type_dict =
 493     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 494                                   shared_type_arena, 128 );
 495   current->set_type_dict(_shared_type_dict);
 496 
 497   // Make shared pre-built types.
 498   CONTROL = make(Control);      // Control only
 499   TOP     = make(Top);          // No values in set
 500   MEMORY  = make(Memory);       // Abstract store only
 501   ABIO    = make(Abio);         // State-of-machine only
 502   RETURN_ADDRESS=make(Return_Address);
 503   FLOAT   = make(FloatBot);     // All floats
 504   DOUBLE  = make(DoubleBot);    // All doubles
 505   BOTTOM  = make(Bottom);       // Everything
 506   HALF    = make(Half);         // Placeholder half of doublewide type
 507 
 508   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 509   TypeF::ONE  = TypeF::make(1.0); // Float 1
 510 
 511   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 512   TypeD::ONE  = TypeD::make(1.0); // Double 1
 513 
 514   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 515   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 516   TypeInt::ONE     = TypeInt::make( 1);  //  1
 517   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 518   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 519   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 520   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 521   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 522   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 523   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 524   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 525   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 526   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 527   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 528   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 529   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 530   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 531   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 532   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 533   // CmpL is overloaded both as the bytecode computation returning
 534   // a trinary (-1,0,+1) integer result AND as an efficient long
 535   // compare returning optimizer ideal-type flags.
 536   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 537   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 538   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 539   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 540   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 541 
 542   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 543   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 544   TypeLong::ONE     = TypeLong::make( 1);        //  1
 545   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 546   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 547   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 548   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 549   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 550 
 551   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 552   fboth[0] = Type::CONTROL;
 553   fboth[1] = Type::CONTROL;
 554   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 555 
 556   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 557   ffalse[0] = Type::CONTROL;
 558   ffalse[1] = Type::TOP;
 559   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 560 
 561   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 562   fneither[0] = Type::TOP;
 563   fneither[1] = Type::TOP;
 564   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 565 
 566   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 567   ftrue[0] = Type::TOP;
 568   ftrue[1] = Type::CONTROL;
 569   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 570 
 571   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 572   floop[0] = Type::CONTROL;
 573   floop[1] = TypeInt::INT;
 574   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 575 
 576   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 577   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 578   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 579 
 580   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 581   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 582 
 583   const Type **fmembar = TypeTuple::fields(0);
 584   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 585 
 586   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 587   fsc[0] = TypeInt::CC;
 588   fsc[1] = Type::MEMORY;
 589   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 590 
 591   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 592   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 593   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 594   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 595                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 596   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 597                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 598   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 599 
 600   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 601 
 602   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 603   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 604 
 605   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 606 
 607   TypeValueTypePtr::NOTNULL = (EnableValhalla || EnableMVT) ? TypeValueTypePtr::make(TypePtr::NotNull, current->env()->___Value_klass()->as_value_klass()) : NULL;
 608 
 609   mreg2type[Op_Node] = Type::BOTTOM;
 610   mreg2type[Op_Set ] = 0;
 611   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 612   mreg2type[Op_RegI] = TypeInt::INT;
 613   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 614   mreg2type[Op_RegF] = Type::FLOAT;
 615   mreg2type[Op_RegD] = Type::DOUBLE;
 616   mreg2type[Op_RegL] = TypeLong::LONG;
 617   mreg2type[Op_RegFlags] = TypeInt::CC;
 618 
 619   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 620 
 621   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 622 
 623 #ifdef _LP64
 624   if (UseCompressedOops) {
 625     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 626     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 627   } else
 628 #endif
 629   {
 630     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 631     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 632   }
 633   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 634   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 635   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 636   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 637   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 638   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 639   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 640 
 641   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 642   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 643   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 644   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 645   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 646   TypeAryPtr::_array_body_type[T_VALUETYPEPTR] = NULL;
 647   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 648   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 649   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 650   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 651   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 652   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 653   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 654   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 655 
 656   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 657   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 658   TypeKlassPtr::BOTTOM = (EnableValhalla || EnableMVT) ? TypeKlassPtr::make(TypePtr::BotPTR, NULL, Offset(0)) : TypeKlassPtr::OBJECT_OR_NULL;
 659   TypeKlassPtr::VALUE = TypeKlassPtr::make(TypePtr::NotNull, current->env()->___Value_klass(), Offset(0));
 660 
 661   const Type **fi2c = TypeTuple::fields(2);
 662   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 663   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 664   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 665 
 666   const Type **intpair = TypeTuple::fields(2);
 667   intpair[0] = TypeInt::INT;
 668   intpair[1] = TypeInt::INT;
 669   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 670 
 671   const Type **longpair = TypeTuple::fields(2);
 672   longpair[0] = TypeLong::LONG;
 673   longpair[1] = TypeLong::LONG;
 674   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 675 
 676   const Type **intccpair = TypeTuple::fields(2);
 677   intccpair[0] = TypeInt::INT;
 678   intccpair[1] = TypeInt::CC;
 679   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 680 
 681   const Type **longccpair = TypeTuple::fields(2);
 682   longccpair[0] = TypeLong::LONG;
 683   longccpair[1] = TypeInt::CC;
 684   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 685 
 686   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 687   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 688   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 689   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 690   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 691   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 692   _const_basic_type[T_INT]         = TypeInt::INT;
 693   _const_basic_type[T_LONG]        = TypeLong::LONG;
 694   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 695   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 696   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 697   _const_basic_type[T_VALUETYPEPTR]= TypeInstPtr::BOTTOM;
 698   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 699   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 700   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 701   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 702   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 703 
 704   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 705   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 706   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 707   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 708   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 709   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 710   _zero_type[T_INT]         = TypeInt::ZERO;
 711   _zero_type[T_LONG]        = TypeLong::ZERO;
 712   _zero_type[T_FLOAT]       = TypeF::ZERO;
 713   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 714   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 715   _zero_type[T_VALUETYPEPTR]= TypePtr::NULL_PTR;
 716   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 717   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 718   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 719   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 720 
 721   // get_zero_type() should not happen for T_CONFLICT
 722   _zero_type[T_CONFLICT]= NULL;
 723 
 724   // Vector predefined types, it needs initialized _const_basic_type[].
 725   if (Matcher::vector_size_supported(T_BYTE,4)) {
 726     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 727   }
 728   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 729     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 730   }
 731   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 732     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 733   }
 734   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 735     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 736   }
 737   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 738     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 739   }
 740   mreg2type[Op_VecS] = TypeVect::VECTS;
 741   mreg2type[Op_VecD] = TypeVect::VECTD;
 742   mreg2type[Op_VecX] = TypeVect::VECTX;
 743   mreg2type[Op_VecY] = TypeVect::VECTY;
 744   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 745 
 746   // Restore working type arena.
 747   current->set_type_arena(save);
 748   current->set_type_dict(NULL);
 749 }
 750 
 751 //------------------------------Initialize-------------------------------------
 752 void Type::Initialize(Compile* current) {
 753   assert(current->type_arena() != NULL, "must have created type arena");
 754 
 755   if (_shared_type_dict == NULL) {
 756     Initialize_shared(current);
 757   }
 758 
 759   Arena* type_arena = current->type_arena();
 760 
 761   // Create the hash-cons'ing dictionary with top-level storage allocation
 762   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 763   current->set_type_dict(tdic);
 764 
 765   // Transfer the shared types.
 766   DictI i(_shared_type_dict);
 767   for( ; i.test(); ++i ) {
 768     Type* t = (Type*)i._value;
 769     tdic->Insert(t,t);  // New Type, insert into Type table
 770   }
 771 }
 772 
 773 //------------------------------hashcons---------------------------------------
 774 // Do the hash-cons trick.  If the Type already exists in the type table,
 775 // delete the current Type and return the existing Type.  Otherwise stick the
 776 // current Type in the Type table.
 777 const Type *Type::hashcons(void) {
 778   debug_only(base());           // Check the assertion in Type::base().
 779   // Look up the Type in the Type dictionary
 780   Dict *tdic = type_dict();
 781   Type* old = (Type*)(tdic->Insert(this, this, false));
 782   if( old ) {                   // Pre-existing Type?
 783     if( old != this )           // Yes, this guy is not the pre-existing?
 784       delete this;              // Yes, Nuke this guy
 785     assert( old->_dual, "" );
 786     return old;                 // Return pre-existing
 787   }
 788 
 789   // Every type has a dual (to make my lattice symmetric).
 790   // Since we just discovered a new Type, compute its dual right now.
 791   assert( !_dual, "" );         // No dual yet
 792   _dual = xdual();              // Compute the dual
 793   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 794     _dual = this;
 795     return this;
 796   }
 797   assert( !_dual->_dual, "" );  // No reverse dual yet
 798   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 799   // New Type, insert into Type table
 800   tdic->Insert((void*)_dual,(void*)_dual);
 801   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 802 #ifdef ASSERT
 803   Type *dual_dual = (Type*)_dual->xdual();
 804   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 805   delete dual_dual;
 806 #endif
 807   return this;                  // Return new Type
 808 }
 809 
 810 //------------------------------eq---------------------------------------------
 811 // Structural equality check for Type representations
 812 bool Type::eq( const Type * ) const {
 813   return true;                  // Nothing else can go wrong
 814 }
 815 
 816 //------------------------------hash-------------------------------------------
 817 // Type-specific hashing function.
 818 int Type::hash(void) const {
 819   return _base;
 820 }
 821 
 822 //------------------------------is_finite--------------------------------------
 823 // Has a finite value
 824 bool Type::is_finite() const {
 825   return false;
 826 }
 827 
 828 //------------------------------is_nan-----------------------------------------
 829 // Is not a number (NaN)
 830 bool Type::is_nan()    const {
 831   return false;
 832 }
 833 
 834 //----------------------interface_vs_oop---------------------------------------
 835 #ifdef ASSERT
 836 bool Type::interface_vs_oop_helper(const Type *t) const {
 837   bool result = false;
 838 
 839   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 840   const TypePtr*    t_ptr =    t->make_ptr();
 841   if( this_ptr == NULL || t_ptr == NULL )
 842     return result;
 843 
 844   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 845   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 846   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 847     bool this_interface = this_inst->klass()->is_interface();
 848     bool    t_interface =    t_inst->klass()->is_interface();
 849     result = this_interface ^ t_interface;
 850   }
 851 
 852   return result;
 853 }
 854 
 855 bool Type::interface_vs_oop(const Type *t) const {
 856   if (interface_vs_oop_helper(t)) {
 857     return true;
 858   }
 859   // Now check the speculative parts as well
 860   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 861   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 862   if (this_spec != NULL && t_spec != NULL) {
 863     if (this_spec->interface_vs_oop_helper(t_spec)) {
 864       return true;
 865     }
 866     return false;
 867   }
 868   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 869     return true;
 870   }
 871   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 872     return true;
 873   }
 874   return false;
 875 }
 876 
 877 #endif
 878 
 879 //------------------------------meet-------------------------------------------
 880 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 881 // commutative and the lattice is symmetric.
 882 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 883   if (isa_narrowoop() && t->isa_narrowoop()) {
 884     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 885     return result->make_narrowoop();
 886   }
 887   if (isa_narrowklass() && t->isa_narrowklass()) {
 888     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 889     return result->make_narrowklass();
 890   }
 891 
 892   const Type *this_t = maybe_remove_speculative(include_speculative);
 893   t = t->maybe_remove_speculative(include_speculative);
 894 
 895   const Type *mt = this_t->xmeet(t);
 896   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 897   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 898 #ifdef ASSERT
 899   assert(mt == t->xmeet(this_t), "meet not commutative");
 900   const Type* dual_join = mt->_dual;
 901   const Type *t2t    = dual_join->xmeet(t->_dual);
 902   const Type *t2this = dual_join->xmeet(this_t->_dual);
 903 
 904   // Interface meet Oop is Not Symmetric:
 905   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 906   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 907 
 908   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 909     tty->print_cr("=== Meet Not Symmetric ===");
 910     tty->print("t   =                   ");              t->dump(); tty->cr();
 911     tty->print("this=                   ");         this_t->dump(); tty->cr();
 912     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 913 
 914     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 915     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 916     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 917 
 918     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 919     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 920 
 921     fatal("meet not symmetric" );
 922   }
 923 #endif
 924   return mt;
 925 }
 926 
 927 //------------------------------xmeet------------------------------------------
 928 // Compute the MEET of two types.  It returns a new Type object.
 929 const Type *Type::xmeet( const Type *t ) const {
 930   // Perform a fast test for common case; meeting the same types together.
 931   if( this == t ) return this;  // Meeting same type-rep?
 932 
 933   // Meeting TOP with anything?
 934   if( _base == Top ) return t;
 935 
 936   // Meeting BOTTOM with anything?
 937   if( _base == Bottom ) return BOTTOM;
 938 
 939   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 940   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 941   switch (t->base()) {  // Switch on original type
 942 
 943   // Cut in half the number of cases I must handle.  Only need cases for when
 944   // the given enum "t->type" is less than or equal to the local enum "type".
 945   case FloatCon:
 946   case DoubleCon:
 947   case Int:
 948   case Long:
 949     return t->xmeet(this);
 950 
 951   case OopPtr:
 952     return t->xmeet(this);
 953 
 954   case InstPtr:
 955   case ValueTypePtr:
 956     return t->xmeet(this);
 957 
 958   case MetadataPtr:
 959   case KlassPtr:
 960     return t->xmeet(this);
 961 
 962   case AryPtr:
 963     return t->xmeet(this);
 964 
 965   case NarrowOop:
 966     return t->xmeet(this);
 967 
 968   case NarrowKlass:
 969     return t->xmeet(this);
 970 
 971   case ValueType:
 972     return t->xmeet(this);
 973 
 974   case Bad:                     // Type check
 975   default:                      // Bogus type not in lattice
 976     typerr(t);
 977     return Type::BOTTOM;
 978 
 979   case Bottom:                  // Ye Olde Default
 980     return t;
 981 
 982   case FloatTop:
 983     if( _base == FloatTop ) return this;
 984   case FloatBot:                // Float
 985     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 986     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 987     typerr(t);
 988     return Type::BOTTOM;
 989 
 990   case DoubleTop:
 991     if( _base == DoubleTop ) return this;
 992   case DoubleBot:               // Double
 993     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 994     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 995     typerr(t);
 996     return Type::BOTTOM;
 997 
 998   // These next few cases must match exactly or it is a compile-time error.
 999   case Control:                 // Control of code
1000   case Abio:                    // State of world outside of program
1001   case Memory:
1002     if( _base == t->_base )  return this;
1003     typerr(t);
1004     return Type::BOTTOM;
1005 
1006   case Top:                     // Top of the lattice
1007     return this;
1008   }
1009 
1010   // The type is unchanged
1011   return this;
1012 }
1013 
1014 //-----------------------------filter------------------------------------------
1015 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1016   const Type* ft = join_helper(kills, include_speculative);
1017   if (ft->empty())
1018     return Type::TOP;           // Canonical empty value
1019   return ft;
1020 }
1021 
1022 //------------------------------xdual------------------------------------------
1023 // Compute dual right now.
1024 const Type::TYPES Type::dual_type[Type::lastype] = {
1025   Bad,          // Bad
1026   Control,      // Control
1027   Bottom,       // Top
1028   Bad,          // Int - handled in v-call
1029   Bad,          // Long - handled in v-call
1030   Half,         // Half
1031   Bad,          // NarrowOop - handled in v-call
1032   Bad,          // NarrowKlass - handled in v-call
1033 
1034   Bad,          // Tuple - handled in v-call
1035   Bad,          // Array - handled in v-call
1036   Bad,          // VectorS - handled in v-call
1037   Bad,          // VectorD - handled in v-call
1038   Bad,          // VectorX - handled in v-call
1039   Bad,          // VectorY - handled in v-call
1040   Bad,          // VectorZ - handled in v-call
1041   Bad,          // ValueType - handled in v-call
1042 
1043   Bad,          // AnyPtr - handled in v-call
1044   Bad,          // RawPtr - handled in v-call
1045   Bad,          // OopPtr - handled in v-call
1046   Bad,          // InstPtr - handled in v-call
1047   Bad,          // ValueTypePtr - handled in v-call
1048   Bad,          // AryPtr - handled in v-call
1049 
1050   Bad,          //  MetadataPtr - handled in v-call
1051   Bad,          // KlassPtr - handled in v-call
1052 
1053   Bad,          // Function - handled in v-call
1054   Abio,         // Abio
1055   Return_Address,// Return_Address
1056   Memory,       // Memory
1057   FloatBot,     // FloatTop
1058   FloatCon,     // FloatCon
1059   FloatTop,     // FloatBot
1060   DoubleBot,    // DoubleTop
1061   DoubleCon,    // DoubleCon
1062   DoubleTop,    // DoubleBot
1063   Top           // Bottom
1064 };
1065 
1066 const Type *Type::xdual() const {
1067   // Note: the base() accessor asserts the sanity of _base.
1068   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1069   return new Type(_type_info[_base].dual_type);
1070 }
1071 
1072 //------------------------------has_memory-------------------------------------
1073 bool Type::has_memory() const {
1074   Type::TYPES tx = base();
1075   if (tx == Memory) return true;
1076   if (tx == Tuple) {
1077     const TypeTuple *t = is_tuple();
1078     for (uint i=0; i < t->cnt(); i++) {
1079       tx = t->field_at(i)->base();
1080       if (tx == Memory)  return true;
1081     }
1082   }
1083   return false;
1084 }
1085 
1086 #ifndef PRODUCT
1087 //------------------------------dump2------------------------------------------
1088 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1089   st->print("%s", _type_info[_base].msg);
1090 }
1091 
1092 //------------------------------dump-------------------------------------------
1093 void Type::dump_on(outputStream *st) const {
1094   ResourceMark rm;
1095   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1096   dump2(d,1, st);
1097   if (is_ptr_to_narrowoop()) {
1098     st->print(" [narrow]");
1099   } else if (is_ptr_to_narrowklass()) {
1100     st->print(" [narrowklass]");
1101   }
1102 }
1103 
1104 //-----------------------------------------------------------------------------
1105 const char* Type::str(const Type* t) {
1106   stringStream ss;
1107   t->dump_on(&ss);
1108   return ss.as_string();
1109 }
1110 #endif
1111 
1112 //------------------------------singleton--------------------------------------
1113 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1114 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1115 bool Type::singleton(void) const {
1116   return _base == Top || _base == Half;
1117 }
1118 
1119 //------------------------------empty------------------------------------------
1120 // TRUE if Type is a type with no values, FALSE otherwise.
1121 bool Type::empty(void) const {
1122   switch (_base) {
1123   case DoubleTop:
1124   case FloatTop:
1125   case Top:
1126     return true;
1127 
1128   case Half:
1129   case Abio:
1130   case Return_Address:
1131   case Memory:
1132   case Bottom:
1133   case FloatBot:
1134   case DoubleBot:
1135     return false;  // never a singleton, therefore never empty
1136 
1137   default:
1138     ShouldNotReachHere();
1139     return false;
1140   }
1141 }
1142 
1143 //------------------------------dump_stats-------------------------------------
1144 // Dump collected statistics to stderr
1145 #ifndef PRODUCT
1146 void Type::dump_stats() {
1147   tty->print("Types made: %d\n", type_dict()->Size());
1148 }
1149 #endif
1150 
1151 //------------------------------typerr-----------------------------------------
1152 void Type::typerr( const Type *t ) const {
1153 #ifndef PRODUCT
1154   tty->print("\nError mixing types: ");
1155   dump();
1156   tty->print(" and ");
1157   t->dump();
1158   tty->print("\n");
1159 #endif
1160   ShouldNotReachHere();
1161 }
1162 
1163 
1164 //=============================================================================
1165 // Convenience common pre-built types.
1166 const TypeF *TypeF::ZERO;       // Floating point zero
1167 const TypeF *TypeF::ONE;        // Floating point one
1168 
1169 //------------------------------make-------------------------------------------
1170 // Create a float constant
1171 const TypeF *TypeF::make(float f) {
1172   return (TypeF*)(new TypeF(f))->hashcons();
1173 }
1174 
1175 //------------------------------meet-------------------------------------------
1176 // Compute the MEET of two types.  It returns a new Type object.
1177 const Type *TypeF::xmeet( const Type *t ) const {
1178   // Perform a fast test for common case; meeting the same types together.
1179   if( this == t ) return this;  // Meeting same type-rep?
1180 
1181   // Current "this->_base" is FloatCon
1182   switch (t->base()) {          // Switch on original type
1183   case AnyPtr:                  // Mixing with oops happens when javac
1184   case RawPtr:                  // reuses local variables
1185   case OopPtr:
1186   case InstPtr:
1187   case ValueTypePtr:
1188   case AryPtr:
1189   case MetadataPtr:
1190   case KlassPtr:
1191   case NarrowOop:
1192   case NarrowKlass:
1193   case Int:
1194   case Long:
1195   case DoubleTop:
1196   case DoubleCon:
1197   case DoubleBot:
1198   case Bottom:                  // Ye Olde Default
1199     return Type::BOTTOM;
1200 
1201   case FloatBot:
1202     return t;
1203 
1204   default:                      // All else is a mistake
1205     typerr(t);
1206 
1207   case FloatCon:                // Float-constant vs Float-constant?
1208     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1209                                 // must compare bitwise as positive zero, negative zero and NaN have
1210                                 // all the same representation in C++
1211       return FLOAT;             // Return generic float
1212                                 // Equal constants
1213   case Top:
1214   case FloatTop:
1215     break;                      // Return the float constant
1216   }
1217   return this;                  // Return the float constant
1218 }
1219 
1220 //------------------------------xdual------------------------------------------
1221 // Dual: symmetric
1222 const Type *TypeF::xdual() const {
1223   return this;
1224 }
1225 
1226 //------------------------------eq---------------------------------------------
1227 // Structural equality check for Type representations
1228 bool TypeF::eq(const Type *t) const {
1229   // Bitwise comparison to distinguish between +/-0. These values must be treated
1230   // as different to be consistent with C1 and the interpreter.
1231   return (jint_cast(_f) == jint_cast(t->getf()));
1232 }
1233 
1234 //------------------------------hash-------------------------------------------
1235 // Type-specific hashing function.
1236 int TypeF::hash(void) const {
1237   return *(int*)(&_f);
1238 }
1239 
1240 //------------------------------is_finite--------------------------------------
1241 // Has a finite value
1242 bool TypeF::is_finite() const {
1243   return g_isfinite(getf()) != 0;
1244 }
1245 
1246 //------------------------------is_nan-----------------------------------------
1247 // Is not a number (NaN)
1248 bool TypeF::is_nan()    const {
1249   return g_isnan(getf()) != 0;
1250 }
1251 
1252 //------------------------------dump2------------------------------------------
1253 // Dump float constant Type
1254 #ifndef PRODUCT
1255 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1256   Type::dump2(d,depth, st);
1257   st->print("%f", _f);
1258 }
1259 #endif
1260 
1261 //------------------------------singleton--------------------------------------
1262 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1263 // constants (Ldi nodes).  Singletons are integer, float or double constants
1264 // or a single symbol.
1265 bool TypeF::singleton(void) const {
1266   return true;                  // Always a singleton
1267 }
1268 
1269 bool TypeF::empty(void) const {
1270   return false;                 // always exactly a singleton
1271 }
1272 
1273 //=============================================================================
1274 // Convenience common pre-built types.
1275 const TypeD *TypeD::ZERO;       // Floating point zero
1276 const TypeD *TypeD::ONE;        // Floating point one
1277 
1278 //------------------------------make-------------------------------------------
1279 const TypeD *TypeD::make(double d) {
1280   return (TypeD*)(new TypeD(d))->hashcons();
1281 }
1282 
1283 //------------------------------meet-------------------------------------------
1284 // Compute the MEET of two types.  It returns a new Type object.
1285 const Type *TypeD::xmeet( const Type *t ) const {
1286   // Perform a fast test for common case; meeting the same types together.
1287   if( this == t ) return this;  // Meeting same type-rep?
1288 
1289   // Current "this->_base" is DoubleCon
1290   switch (t->base()) {          // Switch on original type
1291   case AnyPtr:                  // Mixing with oops happens when javac
1292   case RawPtr:                  // reuses local variables
1293   case OopPtr:
1294   case InstPtr:
1295   case ValueTypePtr:
1296   case AryPtr:
1297   case MetadataPtr:
1298   case KlassPtr:
1299   case NarrowOop:
1300   case NarrowKlass:
1301   case Int:
1302   case Long:
1303   case FloatTop:
1304   case FloatCon:
1305   case FloatBot:
1306   case Bottom:                  // Ye Olde Default
1307     return Type::BOTTOM;
1308 
1309   case DoubleBot:
1310     return t;
1311 
1312   default:                      // All else is a mistake
1313     typerr(t);
1314 
1315   case DoubleCon:               // Double-constant vs Double-constant?
1316     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1317       return DOUBLE;            // Return generic double
1318   case Top:
1319   case DoubleTop:
1320     break;
1321   }
1322   return this;                  // Return the double constant
1323 }
1324 
1325 //------------------------------xdual------------------------------------------
1326 // Dual: symmetric
1327 const Type *TypeD::xdual() const {
1328   return this;
1329 }
1330 
1331 //------------------------------eq---------------------------------------------
1332 // Structural equality check for Type representations
1333 bool TypeD::eq(const Type *t) const {
1334   // Bitwise comparison to distinguish between +/-0. These values must be treated
1335   // as different to be consistent with C1 and the interpreter.
1336   return (jlong_cast(_d) == jlong_cast(t->getd()));
1337 }
1338 
1339 //------------------------------hash-------------------------------------------
1340 // Type-specific hashing function.
1341 int TypeD::hash(void) const {
1342   return *(int*)(&_d);
1343 }
1344 
1345 //------------------------------is_finite--------------------------------------
1346 // Has a finite value
1347 bool TypeD::is_finite() const {
1348   return g_isfinite(getd()) != 0;
1349 }
1350 
1351 //------------------------------is_nan-----------------------------------------
1352 // Is not a number (NaN)
1353 bool TypeD::is_nan()    const {
1354   return g_isnan(getd()) != 0;
1355 }
1356 
1357 //------------------------------dump2------------------------------------------
1358 // Dump double constant Type
1359 #ifndef PRODUCT
1360 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1361   Type::dump2(d,depth,st);
1362   st->print("%f", _d);
1363 }
1364 #endif
1365 
1366 //------------------------------singleton--------------------------------------
1367 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1368 // constants (Ldi nodes).  Singletons are integer, float or double constants
1369 // or a single symbol.
1370 bool TypeD::singleton(void) const {
1371   return true;                  // Always a singleton
1372 }
1373 
1374 bool TypeD::empty(void) const {
1375   return false;                 // always exactly a singleton
1376 }
1377 
1378 //=============================================================================
1379 // Convience common pre-built types.
1380 const TypeInt *TypeInt::MINUS_1;// -1
1381 const TypeInt *TypeInt::ZERO;   // 0
1382 const TypeInt *TypeInt::ONE;    // 1
1383 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1384 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1385 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1386 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1387 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1388 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1389 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1390 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1391 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1392 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1393 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1394 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1395 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1396 const TypeInt *TypeInt::INT;    // 32-bit integers
1397 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1398 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1399 
1400 //------------------------------TypeInt----------------------------------------
1401 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1402 }
1403 
1404 //------------------------------make-------------------------------------------
1405 const TypeInt *TypeInt::make( jint lo ) {
1406   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1407 }
1408 
1409 static int normalize_int_widen( jint lo, jint hi, int w ) {
1410   // Certain normalizations keep us sane when comparing types.
1411   // The 'SMALLINT' covers constants and also CC and its relatives.
1412   if (lo <= hi) {
1413     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1414     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1415   } else {
1416     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1417     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1418   }
1419   return w;
1420 }
1421 
1422 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1423   w = normalize_int_widen(lo, hi, w);
1424   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1425 }
1426 
1427 //------------------------------meet-------------------------------------------
1428 // Compute the MEET of two types.  It returns a new Type representation object
1429 // with reference count equal to the number of Types pointing at it.
1430 // Caller should wrap a Types around it.
1431 const Type *TypeInt::xmeet( const Type *t ) const {
1432   // Perform a fast test for common case; meeting the same types together.
1433   if( this == t ) return this;  // Meeting same type?
1434 
1435   // Currently "this->_base" is a TypeInt
1436   switch (t->base()) {          // Switch on original type
1437   case AnyPtr:                  // Mixing with oops happens when javac
1438   case RawPtr:                  // reuses local variables
1439   case OopPtr:
1440   case InstPtr:
1441   case ValueTypePtr:
1442   case AryPtr:
1443   case MetadataPtr:
1444   case KlassPtr:
1445   case NarrowOop:
1446   case NarrowKlass:
1447   case Long:
1448   case FloatTop:
1449   case FloatCon:
1450   case FloatBot:
1451   case DoubleTop:
1452   case DoubleCon:
1453   case DoubleBot:
1454   case Bottom:                  // Ye Olde Default
1455     return Type::BOTTOM;
1456   default:                      // All else is a mistake
1457     typerr(t);
1458   case Top:                     // No change
1459     return this;
1460   case Int:                     // Int vs Int?
1461     break;
1462   }
1463 
1464   // Expand covered set
1465   const TypeInt *r = t->is_int();
1466   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1467 }
1468 
1469 //------------------------------xdual------------------------------------------
1470 // Dual: reverse hi & lo; flip widen
1471 const Type *TypeInt::xdual() const {
1472   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1473   return new TypeInt(_hi,_lo,w);
1474 }
1475 
1476 //------------------------------widen------------------------------------------
1477 // Only happens for optimistic top-down optimizations.
1478 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1479   // Coming from TOP or such; no widening
1480   if( old->base() != Int ) return this;
1481   const TypeInt *ot = old->is_int();
1482 
1483   // If new guy is equal to old guy, no widening
1484   if( _lo == ot->_lo && _hi == ot->_hi )
1485     return old;
1486 
1487   // If new guy contains old, then we widened
1488   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1489     // New contains old
1490     // If new guy is already wider than old, no widening
1491     if( _widen > ot->_widen ) return this;
1492     // If old guy was a constant, do not bother
1493     if (ot->_lo == ot->_hi)  return this;
1494     // Now widen new guy.
1495     // Check for widening too far
1496     if (_widen == WidenMax) {
1497       int max = max_jint;
1498       int min = min_jint;
1499       if (limit->isa_int()) {
1500         max = limit->is_int()->_hi;
1501         min = limit->is_int()->_lo;
1502       }
1503       if (min < _lo && _hi < max) {
1504         // If neither endpoint is extremal yet, push out the endpoint
1505         // which is closer to its respective limit.
1506         if (_lo >= 0 ||                 // easy common case
1507             (juint)(_lo - min) >= (juint)(max - _hi)) {
1508           // Try to widen to an unsigned range type of 31 bits:
1509           return make(_lo, max, WidenMax);
1510         } else {
1511           return make(min, _hi, WidenMax);
1512         }
1513       }
1514       return TypeInt::INT;
1515     }
1516     // Returned widened new guy
1517     return make(_lo,_hi,_widen+1);
1518   }
1519 
1520   // If old guy contains new, then we probably widened too far & dropped to
1521   // bottom.  Return the wider fellow.
1522   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1523     return old;
1524 
1525   //fatal("Integer value range is not subset");
1526   //return this;
1527   return TypeInt::INT;
1528 }
1529 
1530 //------------------------------narrow---------------------------------------
1531 // Only happens for pessimistic optimizations.
1532 const Type *TypeInt::narrow( const Type *old ) const {
1533   if (_lo >= _hi)  return this;   // already narrow enough
1534   if (old == NULL)  return this;
1535   const TypeInt* ot = old->isa_int();
1536   if (ot == NULL)  return this;
1537   jint olo = ot->_lo;
1538   jint ohi = ot->_hi;
1539 
1540   // If new guy is equal to old guy, no narrowing
1541   if (_lo == olo && _hi == ohi)  return old;
1542 
1543   // If old guy was maximum range, allow the narrowing
1544   if (olo == min_jint && ohi == max_jint)  return this;
1545 
1546   if (_lo < olo || _hi > ohi)
1547     return this;                // doesn't narrow; pretty wierd
1548 
1549   // The new type narrows the old type, so look for a "death march".
1550   // See comments on PhaseTransform::saturate.
1551   juint nrange = (juint)_hi - _lo;
1552   juint orange = (juint)ohi - olo;
1553   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1554     // Use the new type only if the range shrinks a lot.
1555     // We do not want the optimizer computing 2^31 point by point.
1556     return old;
1557   }
1558 
1559   return this;
1560 }
1561 
1562 //-----------------------------filter------------------------------------------
1563 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1564   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1565   if (ft == NULL || ft->empty())
1566     return Type::TOP;           // Canonical empty value
1567   if (ft->_widen < this->_widen) {
1568     // Do not allow the value of kill->_widen to affect the outcome.
1569     // The widen bits must be allowed to run freely through the graph.
1570     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1571   }
1572   return ft;
1573 }
1574 
1575 //------------------------------eq---------------------------------------------
1576 // Structural equality check for Type representations
1577 bool TypeInt::eq( const Type *t ) const {
1578   const TypeInt *r = t->is_int(); // Handy access
1579   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1580 }
1581 
1582 //------------------------------hash-------------------------------------------
1583 // Type-specific hashing function.
1584 int TypeInt::hash(void) const {
1585   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1586 }
1587 
1588 //------------------------------is_finite--------------------------------------
1589 // Has a finite value
1590 bool TypeInt::is_finite() const {
1591   return true;
1592 }
1593 
1594 //------------------------------dump2------------------------------------------
1595 // Dump TypeInt
1596 #ifndef PRODUCT
1597 static const char* intname(char* buf, jint n) {
1598   if (n == min_jint)
1599     return "min";
1600   else if (n < min_jint + 10000)
1601     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1602   else if (n == max_jint)
1603     return "max";
1604   else if (n > max_jint - 10000)
1605     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1606   else
1607     sprintf(buf, INT32_FORMAT, n);
1608   return buf;
1609 }
1610 
1611 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1612   char buf[40], buf2[40];
1613   if (_lo == min_jint && _hi == max_jint)
1614     st->print("int");
1615   else if (is_con())
1616     st->print("int:%s", intname(buf, get_con()));
1617   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1618     st->print("bool");
1619   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1620     st->print("byte");
1621   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1622     st->print("char");
1623   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1624     st->print("short");
1625   else if (_hi == max_jint)
1626     st->print("int:>=%s", intname(buf, _lo));
1627   else if (_lo == min_jint)
1628     st->print("int:<=%s", intname(buf, _hi));
1629   else
1630     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1631 
1632   if (_widen != 0 && this != TypeInt::INT)
1633     st->print(":%.*s", _widen, "wwww");
1634 }
1635 #endif
1636 
1637 //------------------------------singleton--------------------------------------
1638 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1639 // constants.
1640 bool TypeInt::singleton(void) const {
1641   return _lo >= _hi;
1642 }
1643 
1644 bool TypeInt::empty(void) const {
1645   return _lo > _hi;
1646 }
1647 
1648 //=============================================================================
1649 // Convenience common pre-built types.
1650 const TypeLong *TypeLong::MINUS_1;// -1
1651 const TypeLong *TypeLong::ZERO; // 0
1652 const TypeLong *TypeLong::ONE;  // 1
1653 const TypeLong *TypeLong::POS;  // >=0
1654 const TypeLong *TypeLong::LONG; // 64-bit integers
1655 const TypeLong *TypeLong::INT;  // 32-bit subrange
1656 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1657 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1658 
1659 //------------------------------TypeLong---------------------------------------
1660 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1661 }
1662 
1663 //------------------------------make-------------------------------------------
1664 const TypeLong *TypeLong::make( jlong lo ) {
1665   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1666 }
1667 
1668 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1669   // Certain normalizations keep us sane when comparing types.
1670   // The 'SMALLINT' covers constants.
1671   if (lo <= hi) {
1672     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1673     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1674   } else {
1675     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1676     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1677   }
1678   return w;
1679 }
1680 
1681 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1682   w = normalize_long_widen(lo, hi, w);
1683   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1684 }
1685 
1686 
1687 //------------------------------meet-------------------------------------------
1688 // Compute the MEET of two types.  It returns a new Type representation object
1689 // with reference count equal to the number of Types pointing at it.
1690 // Caller should wrap a Types around it.
1691 const Type *TypeLong::xmeet( const Type *t ) const {
1692   // Perform a fast test for common case; meeting the same types together.
1693   if( this == t ) return this;  // Meeting same type?
1694 
1695   // Currently "this->_base" is a TypeLong
1696   switch (t->base()) {          // Switch on original type
1697   case AnyPtr:                  // Mixing with oops happens when javac
1698   case RawPtr:                  // reuses local variables
1699   case OopPtr:
1700   case InstPtr:
1701   case ValueTypePtr:
1702   case AryPtr:
1703   case MetadataPtr:
1704   case KlassPtr:
1705   case NarrowOop:
1706   case NarrowKlass:
1707   case Int:
1708   case FloatTop:
1709   case FloatCon:
1710   case FloatBot:
1711   case DoubleTop:
1712   case DoubleCon:
1713   case DoubleBot:
1714   case Bottom:                  // Ye Olde Default
1715     return Type::BOTTOM;
1716   default:                      // All else is a mistake
1717     typerr(t);
1718   case Top:                     // No change
1719     return this;
1720   case Long:                    // Long vs Long?
1721     break;
1722   }
1723 
1724   // Expand covered set
1725   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1726   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1727 }
1728 
1729 //------------------------------xdual------------------------------------------
1730 // Dual: reverse hi & lo; flip widen
1731 const Type *TypeLong::xdual() const {
1732   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1733   return new TypeLong(_hi,_lo,w);
1734 }
1735 
1736 //------------------------------widen------------------------------------------
1737 // Only happens for optimistic top-down optimizations.
1738 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1739   // Coming from TOP or such; no widening
1740   if( old->base() != Long ) return this;
1741   const TypeLong *ot = old->is_long();
1742 
1743   // If new guy is equal to old guy, no widening
1744   if( _lo == ot->_lo && _hi == ot->_hi )
1745     return old;
1746 
1747   // If new guy contains old, then we widened
1748   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1749     // New contains old
1750     // If new guy is already wider than old, no widening
1751     if( _widen > ot->_widen ) return this;
1752     // If old guy was a constant, do not bother
1753     if (ot->_lo == ot->_hi)  return this;
1754     // Now widen new guy.
1755     // Check for widening too far
1756     if (_widen == WidenMax) {
1757       jlong max = max_jlong;
1758       jlong min = min_jlong;
1759       if (limit->isa_long()) {
1760         max = limit->is_long()->_hi;
1761         min = limit->is_long()->_lo;
1762       }
1763       if (min < _lo && _hi < max) {
1764         // If neither endpoint is extremal yet, push out the endpoint
1765         // which is closer to its respective limit.
1766         if (_lo >= 0 ||                 // easy common case
1767             ((julong)_lo - min) >= ((julong)max - _hi)) {
1768           // Try to widen to an unsigned range type of 32/63 bits:
1769           if (max >= max_juint && _hi < max_juint)
1770             return make(_lo, max_juint, WidenMax);
1771           else
1772             return make(_lo, max, WidenMax);
1773         } else {
1774           return make(min, _hi, WidenMax);
1775         }
1776       }
1777       return TypeLong::LONG;
1778     }
1779     // Returned widened new guy
1780     return make(_lo,_hi,_widen+1);
1781   }
1782 
1783   // If old guy contains new, then we probably widened too far & dropped to
1784   // bottom.  Return the wider fellow.
1785   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1786     return old;
1787 
1788   //  fatal("Long value range is not subset");
1789   // return this;
1790   return TypeLong::LONG;
1791 }
1792 
1793 //------------------------------narrow----------------------------------------
1794 // Only happens for pessimistic optimizations.
1795 const Type *TypeLong::narrow( const Type *old ) const {
1796   if (_lo >= _hi)  return this;   // already narrow enough
1797   if (old == NULL)  return this;
1798   const TypeLong* ot = old->isa_long();
1799   if (ot == NULL)  return this;
1800   jlong olo = ot->_lo;
1801   jlong ohi = ot->_hi;
1802 
1803   // If new guy is equal to old guy, no narrowing
1804   if (_lo == olo && _hi == ohi)  return old;
1805 
1806   // If old guy was maximum range, allow the narrowing
1807   if (olo == min_jlong && ohi == max_jlong)  return this;
1808 
1809   if (_lo < olo || _hi > ohi)
1810     return this;                // doesn't narrow; pretty wierd
1811 
1812   // The new type narrows the old type, so look for a "death march".
1813   // See comments on PhaseTransform::saturate.
1814   julong nrange = _hi - _lo;
1815   julong orange = ohi - olo;
1816   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1817     // Use the new type only if the range shrinks a lot.
1818     // We do not want the optimizer computing 2^31 point by point.
1819     return old;
1820   }
1821 
1822   return this;
1823 }
1824 
1825 //-----------------------------filter------------------------------------------
1826 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1827   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1828   if (ft == NULL || ft->empty())
1829     return Type::TOP;           // Canonical empty value
1830   if (ft->_widen < this->_widen) {
1831     // Do not allow the value of kill->_widen to affect the outcome.
1832     // The widen bits must be allowed to run freely through the graph.
1833     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1834   }
1835   return ft;
1836 }
1837 
1838 //------------------------------eq---------------------------------------------
1839 // Structural equality check for Type representations
1840 bool TypeLong::eq( const Type *t ) const {
1841   const TypeLong *r = t->is_long(); // Handy access
1842   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1843 }
1844 
1845 //------------------------------hash-------------------------------------------
1846 // Type-specific hashing function.
1847 int TypeLong::hash(void) const {
1848   return (int)(_lo+_hi+_widen+(int)Type::Long);
1849 }
1850 
1851 //------------------------------is_finite--------------------------------------
1852 // Has a finite value
1853 bool TypeLong::is_finite() const {
1854   return true;
1855 }
1856 
1857 //------------------------------dump2------------------------------------------
1858 // Dump TypeLong
1859 #ifndef PRODUCT
1860 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1861   if (n > x) {
1862     if (n >= x + 10000)  return NULL;
1863     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1864   } else if (n < x) {
1865     if (n <= x - 10000)  return NULL;
1866     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1867   } else {
1868     return xname;
1869   }
1870   return buf;
1871 }
1872 
1873 static const char* longname(char* buf, jlong n) {
1874   const char* str;
1875   if (n == min_jlong)
1876     return "min";
1877   else if (n < min_jlong + 10000)
1878     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1879   else if (n == max_jlong)
1880     return "max";
1881   else if (n > max_jlong - 10000)
1882     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1883   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1884     return str;
1885   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1886     return str;
1887   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1888     return str;
1889   else
1890     sprintf(buf, JLONG_FORMAT, n);
1891   return buf;
1892 }
1893 
1894 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1895   char buf[80], buf2[80];
1896   if (_lo == min_jlong && _hi == max_jlong)
1897     st->print("long");
1898   else if (is_con())
1899     st->print("long:%s", longname(buf, get_con()));
1900   else if (_hi == max_jlong)
1901     st->print("long:>=%s", longname(buf, _lo));
1902   else if (_lo == min_jlong)
1903     st->print("long:<=%s", longname(buf, _hi));
1904   else
1905     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1906 
1907   if (_widen != 0 && this != TypeLong::LONG)
1908     st->print(":%.*s", _widen, "wwww");
1909 }
1910 #endif
1911 
1912 //------------------------------singleton--------------------------------------
1913 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1914 // constants
1915 bool TypeLong::singleton(void) const {
1916   return _lo >= _hi;
1917 }
1918 
1919 bool TypeLong::empty(void) const {
1920   return _lo > _hi;
1921 }
1922 
1923 //=============================================================================
1924 // Convenience common pre-built types.
1925 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1926 const TypeTuple *TypeTuple::IFFALSE;
1927 const TypeTuple *TypeTuple::IFTRUE;
1928 const TypeTuple *TypeTuple::IFNEITHER;
1929 const TypeTuple *TypeTuple::LOOPBODY;
1930 const TypeTuple *TypeTuple::MEMBAR;
1931 const TypeTuple *TypeTuple::STORECONDITIONAL;
1932 const TypeTuple *TypeTuple::START_I2C;
1933 const TypeTuple *TypeTuple::INT_PAIR;
1934 const TypeTuple *TypeTuple::LONG_PAIR;
1935 const TypeTuple *TypeTuple::INT_CC_PAIR;
1936 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1937 
1938 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos) {
1939   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1940     ciField* field = vk->nonstatic_field_at(j);
1941     BasicType bt = field->type()->basic_type();
1942     const Type* ft = Type::get_const_type(field->type());
1943     field_array[pos++] = ft;
1944     if (bt == T_LONG || bt == T_DOUBLE) {
1945       field_array[pos++] = Type::HALF;
1946     }
1947   }
1948 }
1949 
1950 //------------------------------make-------------------------------------------
1951 // Make a TypeTuple from the range of a method signature
1952 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1953   ciType* return_type = sig->return_type();
1954   return make_range(return_type, ret_vt_fields);
1955 }
1956 
1957 const TypeTuple *TypeTuple::make_range(ciType* return_type, bool ret_vt_fields) {
1958   uint arg_cnt = 0;
1959   if (ret_vt_fields) {
1960     ret_vt_fields = return_type->is_valuetype() && ((ciValueKlass*)return_type)->can_be_returned_as_fields();
1961   }
1962   if (ret_vt_fields) {
1963     ciValueKlass* vk = (ciValueKlass*)return_type;
1964     arg_cnt = vk->value_arg_slots()+1;
1965   } else {
1966     arg_cnt = return_type->size();
1967   }
1968 
1969   const Type **field_array = fields(arg_cnt);
1970   switch (return_type->basic_type()) {
1971   case T_LONG:
1972     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1973     field_array[TypeFunc::Parms+1] = Type::HALF;
1974     break;
1975   case T_DOUBLE:
1976     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1977     field_array[TypeFunc::Parms+1] = Type::HALF;
1978     break;
1979   case T_OBJECT:
1980   case T_ARRAY:
1981   case T_BOOLEAN:
1982   case T_CHAR:
1983   case T_FLOAT:
1984   case T_BYTE:
1985   case T_SHORT:
1986   case T_INT:
1987     field_array[TypeFunc::Parms] = get_const_type(return_type);
1988     break;
1989   case T_VALUETYPE:
1990     if (ret_vt_fields) {
1991       ciValueKlass* vk = (ciValueKlass*)return_type;
1992       uint pos = TypeFunc::Parms;
1993       field_array[pos] = TypePtr::BOTTOM;
1994       pos++;
1995       collect_value_fields(vk, field_array, pos);
1996     } else {
1997       // Value type returns cannot be NULL
1998       field_array[TypeFunc::Parms] = get_const_type(return_type)->join_speculative(TypePtr::NOTNULL);
1999     }
2000     break;
2001   case T_VOID:
2002     break;
2003   default:
2004     ShouldNotReachHere();
2005   }
2006   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2007 }
2008 
2009 // Make a TypeTuple from the domain of a method signature
2010 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, bool vt_fields_as_args) {
2011   uint arg_cnt = sig->size();
2012 
2013   int vt_extra = 0;
2014   if (vt_fields_as_args) {
2015     for (int i = 0; i < sig->count(); i++) {
2016       ciType* type = sig->type_at(i);
2017       if (type->basic_type() == T_VALUETYPE && !type->is__Value()) {
2018         assert(type->is_valuetype(), "inconsistent type");
2019         ciValueKlass* vk = (ciValueKlass*)type;
2020         vt_extra += vk->value_arg_slots()-1;
2021       }
2022     }
2023     assert(((int)arg_cnt) + vt_extra >= 0, "negative number of actual arguments?");
2024   }
2025 
2026   uint pos = TypeFunc::Parms;
2027   const Type **field_array;
2028   if (recv != NULL) {
2029     arg_cnt++;
2030     bool vt_fields_for_recv = vt_fields_as_args && recv->is_valuetype() && !recv->is__Value();
2031     if (vt_fields_for_recv) {
2032       ciValueKlass* vk = (ciValueKlass*)recv;
2033       vt_extra += vk->value_arg_slots()-1;
2034     }
2035     field_array = fields(arg_cnt + vt_extra);
2036     // Use get_const_type here because it respects UseUniqueSubclasses:
2037     if (vt_fields_for_recv) {
2038       ciValueKlass* vk = (ciValueKlass*)recv;
2039       collect_value_fields(vk, field_array, pos);
2040     } else {
2041       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2042     }
2043   } else {
2044     field_array = fields(arg_cnt + vt_extra);
2045   }
2046 
2047   int i = 0;
2048   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
2049     ciType* type = sig->type_at(i);
2050 
2051     switch (type->basic_type()) {
2052     case T_LONG:
2053       field_array[pos++] = TypeLong::LONG;
2054       field_array[pos++] = Type::HALF;
2055       break;
2056     case T_DOUBLE:
2057       field_array[pos++] = Type::DOUBLE;
2058       field_array[pos++] = Type::HALF;
2059       break;
2060     case T_OBJECT:
2061     case T_ARRAY:
2062     case T_FLOAT:
2063     case T_INT:
2064       field_array[pos++] = get_const_type(type);
2065       break;
2066     case T_BOOLEAN:
2067     case T_CHAR:
2068     case T_BYTE:
2069     case T_SHORT:
2070       field_array[pos++] = TypeInt::INT;
2071       break;
2072     case T_VALUETYPE: {
2073       assert(type->is_valuetype(), "inconsistent type");
2074       if (vt_fields_as_args && !type->is__Value()) {
2075         ciValueKlass* vk = (ciValueKlass*)type;
2076         collect_value_fields(vk, field_array, pos);
2077       } else {
2078         // Value types arguments cannot be NULL
2079         field_array[pos++] = get_const_type(type)->join_speculative(TypePtr::NOTNULL);
2080       }
2081       break;
2082     }
2083     default:
2084       ShouldNotReachHere();
2085     }
2086     i++;
2087   }
2088   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
2089 
2090   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
2091 }
2092 
2093 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2094   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2095 }
2096 
2097 //------------------------------fields-----------------------------------------
2098 // Subroutine call type with space allocated for argument types
2099 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2100 const Type **TypeTuple::fields( uint arg_cnt ) {
2101   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2102   flds[TypeFunc::Control  ] = Type::CONTROL;
2103   flds[TypeFunc::I_O      ] = Type::ABIO;
2104   flds[TypeFunc::Memory   ] = Type::MEMORY;
2105   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2106   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2107 
2108   return flds;
2109 }
2110 
2111 //------------------------------meet-------------------------------------------
2112 // Compute the MEET of two types.  It returns a new Type object.
2113 const Type *TypeTuple::xmeet( const Type *t ) const {
2114   // Perform a fast test for common case; meeting the same types together.
2115   if( this == t ) return this;  // Meeting same type-rep?
2116 
2117   // Current "this->_base" is Tuple
2118   switch (t->base()) {          // switch on original type
2119 
2120   case Bottom:                  // Ye Olde Default
2121     return t;
2122 
2123   default:                      // All else is a mistake
2124     typerr(t);
2125 
2126   case Tuple: {                 // Meeting 2 signatures?
2127     const TypeTuple *x = t->is_tuple();
2128     assert( _cnt == x->_cnt, "" );
2129     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2130     for( uint i=0; i<_cnt; i++ )
2131       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2132     return TypeTuple::make(_cnt,fields);
2133   }
2134   case Top:
2135     break;
2136   }
2137   return this;                  // Return the double constant
2138 }
2139 
2140 //------------------------------xdual------------------------------------------
2141 // Dual: compute field-by-field dual
2142 const Type *TypeTuple::xdual() const {
2143   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2144   for( uint i=0; i<_cnt; i++ )
2145     fields[i] = _fields[i]->dual();
2146   return new TypeTuple(_cnt,fields);
2147 }
2148 
2149 //------------------------------eq---------------------------------------------
2150 // Structural equality check for Type representations
2151 bool TypeTuple::eq( const Type *t ) const {
2152   const TypeTuple *s = (const TypeTuple *)t;
2153   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2154   for (uint i = 0; i < _cnt; i++)
2155     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2156       return false;             // Missed
2157   return true;
2158 }
2159 
2160 //------------------------------hash-------------------------------------------
2161 // Type-specific hashing function.
2162 int TypeTuple::hash(void) const {
2163   intptr_t sum = _cnt;
2164   for( uint i=0; i<_cnt; i++ )
2165     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2166   return sum;
2167 }
2168 
2169 //------------------------------dump2------------------------------------------
2170 // Dump signature Type
2171 #ifndef PRODUCT
2172 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2173   st->print("{");
2174   if( !depth || d[this] ) {     // Check for recursive print
2175     st->print("...}");
2176     return;
2177   }
2178   d.Insert((void*)this, (void*)this);   // Stop recursion
2179   if( _cnt ) {
2180     uint i;
2181     for( i=0; i<_cnt-1; i++ ) {
2182       st->print("%d:", i);
2183       _fields[i]->dump2(d, depth-1, st);
2184       st->print(", ");
2185     }
2186     st->print("%d:", i);
2187     _fields[i]->dump2(d, depth-1, st);
2188   }
2189   st->print("}");
2190 }
2191 #endif
2192 
2193 //------------------------------singleton--------------------------------------
2194 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2195 // constants (Ldi nodes).  Singletons are integer, float or double constants
2196 // or a single symbol.
2197 bool TypeTuple::singleton(void) const {
2198   return false;                 // Never a singleton
2199 }
2200 
2201 bool TypeTuple::empty(void) const {
2202   for( uint i=0; i<_cnt; i++ ) {
2203     if (_fields[i]->empty())  return true;
2204   }
2205   return false;
2206 }
2207 
2208 //=============================================================================
2209 // Convenience common pre-built types.
2210 
2211 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2212   // Certain normalizations keep us sane when comparing types.
2213   // We do not want arrayOop variables to differ only by the wideness
2214   // of their index types.  Pick minimum wideness, since that is the
2215   // forced wideness of small ranges anyway.
2216   if (size->_widen != Type::WidenMin)
2217     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2218   else
2219     return size;
2220 }
2221 
2222 //------------------------------make-------------------------------------------
2223 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2224   if (elem->isa_valuetypeptr()) {
2225     // Value type array elements cannot be NULL
2226     elem = elem->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2227   }
2228   if (UseCompressedOops && elem->isa_oopptr()) {
2229     elem = elem->make_narrowoop();
2230   }
2231   size = normalize_array_size(size);
2232   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2233 }
2234 
2235 //------------------------------meet-------------------------------------------
2236 // Compute the MEET of two types.  It returns a new Type object.
2237 const Type *TypeAry::xmeet( const Type *t ) const {
2238   // Perform a fast test for common case; meeting the same types together.
2239   if( this == t ) return this;  // Meeting same type-rep?
2240 
2241   // Current "this->_base" is Ary
2242   switch (t->base()) {          // switch on original type
2243 
2244   case Bottom:                  // Ye Olde Default
2245     return t;
2246 
2247   default:                      // All else is a mistake
2248     typerr(t);
2249 
2250   case Array: {                 // Meeting 2 arrays?
2251     const TypeAry *a = t->is_ary();
2252     return TypeAry::make(_elem->meet_speculative(a->_elem),
2253                          _size->xmeet(a->_size)->is_int(),
2254                          _stable & a->_stable);
2255   }
2256   case Top:
2257     break;
2258   }
2259   return this;                  // Return the double constant
2260 }
2261 
2262 //------------------------------xdual------------------------------------------
2263 // Dual: compute field-by-field dual
2264 const Type *TypeAry::xdual() const {
2265   const TypeInt* size_dual = _size->dual()->is_int();
2266   size_dual = normalize_array_size(size_dual);
2267   return new TypeAry(_elem->dual(), size_dual, !_stable);
2268 }
2269 
2270 //------------------------------eq---------------------------------------------
2271 // Structural equality check for Type representations
2272 bool TypeAry::eq( const Type *t ) const {
2273   const TypeAry *a = (const TypeAry*)t;
2274   return _elem == a->_elem &&
2275     _stable == a->_stable &&
2276     _size == a->_size;
2277 }
2278 
2279 //------------------------------hash-------------------------------------------
2280 // Type-specific hashing function.
2281 int TypeAry::hash(void) const {
2282   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2283 }
2284 
2285 /**
2286  * Return same type without a speculative part in the element
2287  */
2288 const Type* TypeAry::remove_speculative() const {
2289   return make(_elem->remove_speculative(), _size, _stable);
2290 }
2291 
2292 /**
2293  * Return same type with cleaned up speculative part of element
2294  */
2295 const Type* TypeAry::cleanup_speculative() const {
2296   return make(_elem->cleanup_speculative(), _size, _stable);
2297 }
2298 
2299 /**
2300  * Return same type but with a different inline depth (used for speculation)
2301  *
2302  * @param depth  depth to meet with
2303  */
2304 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2305   if (!UseInlineDepthForSpeculativeTypes) {
2306     return this;
2307   }
2308   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2309 }
2310 
2311 //----------------------interface_vs_oop---------------------------------------
2312 #ifdef ASSERT
2313 bool TypeAry::interface_vs_oop(const Type *t) const {
2314   const TypeAry* t_ary = t->is_ary();
2315   if (t_ary) {
2316     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2317     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2318     if(this_ptr != NULL && t_ptr != NULL) {
2319       return this_ptr->interface_vs_oop(t_ptr);
2320     }
2321   }
2322   return false;
2323 }
2324 #endif
2325 
2326 //------------------------------dump2------------------------------------------
2327 #ifndef PRODUCT
2328 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2329   if (_stable)  st->print("stable:");
2330   _elem->dump2(d, depth, st);
2331   st->print("[");
2332   _size->dump2(d, depth, st);
2333   st->print("]");
2334 }
2335 #endif
2336 
2337 //------------------------------singleton--------------------------------------
2338 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2339 // constants (Ldi nodes).  Singletons are integer, float or double constants
2340 // or a single symbol.
2341 bool TypeAry::singleton(void) const {
2342   return false;                 // Never a singleton
2343 }
2344 
2345 bool TypeAry::empty(void) const {
2346   return _elem->empty() || _size->empty();
2347 }
2348 
2349 //--------------------------ary_must_be_exact----------------------------------
2350 bool TypeAry::ary_must_be_exact() const {
2351   if (!UseExactTypes)       return false;
2352   // This logic looks at the element type of an array, and returns true
2353   // if the element type is either a primitive or a final instance class.
2354   // In such cases, an array built on this ary must have no subclasses.
2355   if (_elem == BOTTOM)      return false;  // general array not exact
2356   if (_elem == TOP   )      return false;  // inverted general array not exact
2357   const TypeOopPtr*  toop = NULL;
2358   if (UseCompressedOops && _elem->isa_narrowoop()) {
2359     toop = _elem->make_ptr()->isa_oopptr();
2360   } else {
2361     toop = _elem->isa_oopptr();
2362   }
2363   if (!toop)                return true;   // a primitive type, like int
2364   ciKlass* tklass = toop->klass();
2365   if (tklass == NULL)       return false;  // unloaded class
2366   if (!tklass->is_loaded()) return false;  // unloaded class
2367   const TypeInstPtr* tinst;
2368   if (_elem->isa_narrowoop())
2369     tinst = _elem->make_ptr()->isa_instptr();
2370   else
2371     tinst = _elem->isa_instptr();
2372   if (tinst)
2373     return tklass->as_instance_klass()->is_final();
2374   const TypeAryPtr*  tap;
2375   if (_elem->isa_narrowoop())
2376     tap = _elem->make_ptr()->isa_aryptr();
2377   else
2378     tap = _elem->isa_aryptr();
2379   if (tap)
2380     return tap->ary()->ary_must_be_exact();
2381   return false;
2382 }
2383 
2384 //==============================TypeValueType=======================================
2385 
2386 //------------------------------make-------------------------------------------
2387 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2388   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2389 }
2390 
2391 //------------------------------meet-------------------------------------------
2392 // Compute the MEET of two types.  It returns a new Type object.
2393 const Type* TypeValueType::xmeet(const Type* t) const {
2394   // Perform a fast test for common case; meeting the same types together.
2395   if(this == t) return this;  // Meeting same type-rep?
2396 
2397   // Current "this->_base" is ValueType
2398   switch (t->base()) {          // switch on original type
2399 
2400   case Top:
2401     break;
2402 
2403   case Bottom:
2404     return t;
2405 
2406   default:                      // All else is a mistake
2407     typerr(t);
2408 
2409   }
2410   return this;
2411 }
2412 
2413 //------------------------------xdual------------------------------------------
2414 const Type* TypeValueType::xdual() const {
2415   // FIXME
2416   return new TypeValueType(_vk);
2417 }
2418 
2419 //------------------------------eq---------------------------------------------
2420 // Structural equality check for Type representations
2421 bool TypeValueType::eq(const Type* t) const {
2422   const TypeValueType* vt = t->is_valuetype();
2423   return (_vk == vt->value_klass());
2424 }
2425 
2426 //------------------------------hash-------------------------------------------
2427 // Type-specific hashing function.
2428 int TypeValueType::hash(void) const {
2429   return (intptr_t)_vk;
2430 }
2431 
2432 //------------------------------singleton--------------------------------------
2433 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2434 bool TypeValueType::singleton(void) const {
2435   // FIXME
2436   return false;
2437 }
2438 
2439 //------------------------------empty------------------------------------------
2440 // TRUE if Type is a type with no values, FALSE otherwise.
2441 bool TypeValueType::empty(void) const {
2442   // FIXME
2443   return false;
2444 }
2445 
2446 //------------------------------dump2------------------------------------------
2447 #ifndef PRODUCT
2448 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2449   int count = _vk->nof_declared_nonstatic_fields();
2450   st->print("valuetype[%d]:{", count);
2451   st->print("%s", count != 0 ? _vk->declared_nonstatic_field_at(0)->type()->name() : "empty");
2452   for (int i = 1; i < count; ++i) {
2453     st->print(", %s", _vk->declared_nonstatic_field_at(i)->type()->name());
2454   }
2455   st->print("}");
2456 }
2457 #endif
2458 
2459 //==============================TypeVect=======================================
2460 // Convenience common pre-built types.
2461 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2462 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2463 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2464 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2465 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2466 
2467 //------------------------------make-------------------------------------------
2468 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2469   BasicType elem_bt = elem->array_element_basic_type();
2470   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2471   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2472   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2473   int size = length * type2aelembytes(elem_bt);
2474   switch (Matcher::vector_ideal_reg(size)) {
2475   case Op_VecS:
2476     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2477   case Op_RegL:
2478   case Op_VecD:
2479   case Op_RegD:
2480     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2481   case Op_VecX:
2482     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2483   case Op_VecY:
2484     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2485   case Op_VecZ:
2486     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2487   }
2488  ShouldNotReachHere();
2489   return NULL;
2490 }
2491 
2492 //------------------------------meet-------------------------------------------
2493 // Compute the MEET of two types.  It returns a new Type object.
2494 const Type *TypeVect::xmeet( const Type *t ) const {
2495   // Perform a fast test for common case; meeting the same types together.
2496   if( this == t ) return this;  // Meeting same type-rep?
2497 
2498   // Current "this->_base" is Vector
2499   switch (t->base()) {          // switch on original type
2500 
2501   case Bottom:                  // Ye Olde Default
2502     return t;
2503 
2504   default:                      // All else is a mistake
2505     typerr(t);
2506 
2507   case VectorS:
2508   case VectorD:
2509   case VectorX:
2510   case VectorY:
2511   case VectorZ: {                // Meeting 2 vectors?
2512     const TypeVect* v = t->is_vect();
2513     assert(  base() == v->base(), "");
2514     assert(length() == v->length(), "");
2515     assert(element_basic_type() == v->element_basic_type(), "");
2516     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2517   }
2518   case Top:
2519     break;
2520   }
2521   return this;
2522 }
2523 
2524 //------------------------------xdual------------------------------------------
2525 // Dual: compute field-by-field dual
2526 const Type *TypeVect::xdual() const {
2527   return new TypeVect(base(), _elem->dual(), _length);
2528 }
2529 
2530 //------------------------------eq---------------------------------------------
2531 // Structural equality check for Type representations
2532 bool TypeVect::eq(const Type *t) const {
2533   const TypeVect *v = t->is_vect();
2534   return (_elem == v->_elem) && (_length == v->_length);
2535 }
2536 
2537 //------------------------------hash-------------------------------------------
2538 // Type-specific hashing function.
2539 int TypeVect::hash(void) const {
2540   return (intptr_t)_elem + (intptr_t)_length;
2541 }
2542 
2543 //------------------------------singleton--------------------------------------
2544 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2545 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2546 // constant value (when vector is created with Replicate code).
2547 bool TypeVect::singleton(void) const {
2548 // There is no Con node for vectors yet.
2549 //  return _elem->singleton();
2550   return false;
2551 }
2552 
2553 bool TypeVect::empty(void) const {
2554   return _elem->empty();
2555 }
2556 
2557 //------------------------------dump2------------------------------------------
2558 #ifndef PRODUCT
2559 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2560   switch (base()) {
2561   case VectorS:
2562     st->print("vectors["); break;
2563   case VectorD:
2564     st->print("vectord["); break;
2565   case VectorX:
2566     st->print("vectorx["); break;
2567   case VectorY:
2568     st->print("vectory["); break;
2569   case VectorZ:
2570     st->print("vectorz["); break;
2571   default:
2572     ShouldNotReachHere();
2573   }
2574   st->print("%d]:{", _length);
2575   _elem->dump2(d, depth, st);
2576   st->print("}");
2577 }
2578 #endif
2579 
2580 
2581 //=============================================================================
2582 // Convenience common pre-built types.
2583 const TypePtr *TypePtr::NULL_PTR;
2584 const TypePtr *TypePtr::NOTNULL;
2585 const TypePtr *TypePtr::BOTTOM;
2586 
2587 //------------------------------meet-------------------------------------------
2588 // Meet over the PTR enum
2589 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2590   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2591   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2592   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2593   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2594   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2595   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2596   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2597 };
2598 
2599 //------------------------------make-------------------------------------------
2600 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2601   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2602 }
2603 
2604 //------------------------------cast_to_ptr_type-------------------------------
2605 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2606   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2607   if( ptr == _ptr ) return this;
2608   return make(_base, ptr, _offset, _speculative, _inline_depth);
2609 }
2610 
2611 //------------------------------get_con----------------------------------------
2612 intptr_t TypePtr::get_con() const {
2613   assert( _ptr == Null, "" );
2614   return offset();
2615 }
2616 
2617 //------------------------------meet-------------------------------------------
2618 // Compute the MEET of two types.  It returns a new Type object.
2619 const Type *TypePtr::xmeet(const Type *t) const {
2620   const Type* res = xmeet_helper(t);
2621   if (res->isa_ptr() == NULL) {
2622     return res;
2623   }
2624 
2625   const TypePtr* res_ptr = res->is_ptr();
2626   if (res_ptr->speculative() != NULL) {
2627     // type->speculative() == NULL means that speculation is no better
2628     // than type, i.e. type->speculative() == type. So there are 2
2629     // ways to represent the fact that we have no useful speculative
2630     // data and we should use a single one to be able to test for
2631     // equality between types. Check whether type->speculative() ==
2632     // type and set speculative to NULL if it is the case.
2633     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2634       return res_ptr->remove_speculative();
2635     }
2636   }
2637 
2638   return res;
2639 }
2640 
2641 const Type *TypePtr::xmeet_helper(const Type *t) const {
2642   // Perform a fast test for common case; meeting the same types together.
2643   if( this == t ) return this;  // Meeting same type-rep?
2644 
2645   // Current "this->_base" is AnyPtr
2646   switch (t->base()) {          // switch on original type
2647   case Int:                     // Mixing ints & oops happens when javac
2648   case Long:                    // reuses local variables
2649   case FloatTop:
2650   case FloatCon:
2651   case FloatBot:
2652   case DoubleTop:
2653   case DoubleCon:
2654   case DoubleBot:
2655   case NarrowOop:
2656   case NarrowKlass:
2657   case Bottom:                  // Ye Olde Default
2658     return Type::BOTTOM;
2659   case Top:
2660     return this;
2661 
2662   case AnyPtr: {                // Meeting to AnyPtrs
2663     const TypePtr *tp = t->is_ptr();
2664     const TypePtr* speculative = xmeet_speculative(tp);
2665     int depth = meet_inline_depth(tp->inline_depth());
2666     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2667   }
2668   case RawPtr:                  // For these, flip the call around to cut down
2669   case OopPtr:
2670   case InstPtr:                 // on the cases I have to handle.
2671   case ValueTypePtr:
2672   case AryPtr:
2673   case MetadataPtr:
2674   case KlassPtr:
2675     return t->xmeet(this);      // Call in reverse direction
2676   default:                      // All else is a mistake
2677     typerr(t);
2678 
2679   }
2680   return this;
2681 }
2682 
2683 //------------------------------meet_offset------------------------------------
2684 Type::Offset TypePtr::meet_offset(int offset) const {
2685   return _offset.meet(Offset(offset));
2686 }
2687 
2688 //------------------------------dual_offset------------------------------------
2689 Type::Offset TypePtr::dual_offset() const {
2690   return _offset.dual();
2691 }
2692 
2693 //------------------------------xdual------------------------------------------
2694 // Dual: compute field-by-field dual
2695 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2696   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2697 };
2698 const Type *TypePtr::xdual() const {
2699   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2700 }
2701 
2702 //------------------------------xadd_offset------------------------------------
2703 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2704   return _offset.add(offset);
2705 }
2706 
2707 //------------------------------add_offset-------------------------------------
2708 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2709   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2710 }
2711 
2712 //------------------------------eq---------------------------------------------
2713 // Structural equality check for Type representations
2714 bool TypePtr::eq( const Type *t ) const {
2715   const TypePtr *a = (const TypePtr*)t;
2716   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2717 }
2718 
2719 //------------------------------hash-------------------------------------------
2720 // Type-specific hashing function.
2721 int TypePtr::hash(void) const {
2722   return java_add(java_add((jint)_ptr, (jint)offset()), java_add((jint)hash_speculative(), (jint)_inline_depth));
2723 ;
2724 }
2725 
2726 /**
2727  * Return same type without a speculative part
2728  */
2729 const Type* TypePtr::remove_speculative() const {
2730   if (_speculative == NULL) {
2731     return this;
2732   }
2733   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2734   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2735 }
2736 
2737 /**
2738  * Return same type but drop speculative part if we know we won't use
2739  * it
2740  */
2741 const Type* TypePtr::cleanup_speculative() const {
2742   if (speculative() == NULL) {
2743     return this;
2744   }
2745   const Type* no_spec = remove_speculative();
2746   // If this is NULL_PTR then we don't need the speculative type
2747   // (with_inline_depth in case the current type inline depth is
2748   // InlineDepthTop)
2749   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2750     return no_spec;
2751   }
2752   if (above_centerline(speculative()->ptr())) {
2753     return no_spec;
2754   }
2755   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2756   // If the speculative may be null and is an inexact klass then it
2757   // doesn't help
2758   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2759       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2760     return no_spec;
2761   }
2762   return this;
2763 }
2764 
2765 /**
2766  * dual of the speculative part of the type
2767  */
2768 const TypePtr* TypePtr::dual_speculative() const {
2769   if (_speculative == NULL) {
2770     return NULL;
2771   }
2772   return _speculative->dual()->is_ptr();
2773 }
2774 
2775 /**
2776  * meet of the speculative parts of 2 types
2777  *
2778  * @param other  type to meet with
2779  */
2780 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2781   bool this_has_spec = (_speculative != NULL);
2782   bool other_has_spec = (other->speculative() != NULL);
2783 
2784   if (!this_has_spec && !other_has_spec) {
2785     return NULL;
2786   }
2787 
2788   // If we are at a point where control flow meets and one branch has
2789   // a speculative type and the other has not, we meet the speculative
2790   // type of one branch with the actual type of the other. If the
2791   // actual type is exact and the speculative is as well, then the
2792   // result is a speculative type which is exact and we can continue
2793   // speculation further.
2794   const TypePtr* this_spec = _speculative;
2795   const TypePtr* other_spec = other->speculative();
2796 
2797   if (!this_has_spec) {
2798     this_spec = this;
2799   }
2800 
2801   if (!other_has_spec) {
2802     other_spec = other;
2803   }
2804 
2805   return this_spec->meet(other_spec)->is_ptr();
2806 }
2807 
2808 /**
2809  * dual of the inline depth for this type (used for speculation)
2810  */
2811 int TypePtr::dual_inline_depth() const {
2812   return -inline_depth();
2813 }
2814 
2815 /**
2816  * meet of 2 inline depths (used for speculation)
2817  *
2818  * @param depth  depth to meet with
2819  */
2820 int TypePtr::meet_inline_depth(int depth) const {
2821   return MAX2(inline_depth(), depth);
2822 }
2823 
2824 /**
2825  * Are the speculative parts of 2 types equal?
2826  *
2827  * @param other  type to compare this one to
2828  */
2829 bool TypePtr::eq_speculative(const TypePtr* other) const {
2830   if (_speculative == NULL || other->speculative() == NULL) {
2831     return _speculative == other->speculative();
2832   }
2833 
2834   if (_speculative->base() != other->speculative()->base()) {
2835     return false;
2836   }
2837 
2838   return _speculative->eq(other->speculative());
2839 }
2840 
2841 /**
2842  * Hash of the speculative part of the type
2843  */
2844 int TypePtr::hash_speculative() const {
2845   if (_speculative == NULL) {
2846     return 0;
2847   }
2848 
2849   return _speculative->hash();
2850 }
2851 
2852 /**
2853  * add offset to the speculative part of the type
2854  *
2855  * @param offset  offset to add
2856  */
2857 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2858   if (_speculative == NULL) {
2859     return NULL;
2860   }
2861   return _speculative->add_offset(offset)->is_ptr();
2862 }
2863 
2864 /**
2865  * return exact klass from the speculative type if there's one
2866  */
2867 ciKlass* TypePtr::speculative_type() const {
2868   if (_speculative != NULL && _speculative->isa_oopptr()) {
2869     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2870     if (speculative->klass_is_exact()) {
2871       return speculative->klass();
2872     }
2873   }
2874   return NULL;
2875 }
2876 
2877 /**
2878  * return true if speculative type may be null
2879  */
2880 bool TypePtr::speculative_maybe_null() const {
2881   if (_speculative != NULL) {
2882     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2883     return speculative->maybe_null();
2884   }
2885   return true;
2886 }
2887 
2888 bool TypePtr::speculative_always_null() const {
2889   if (_speculative != NULL) {
2890     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2891     return speculative == TypePtr::NULL_PTR;
2892   }
2893   return false;
2894 }
2895 
2896 /**
2897  * Same as TypePtr::speculative_type() but return the klass only if
2898  * the speculative tells us is not null
2899  */
2900 ciKlass* TypePtr::speculative_type_not_null() const {
2901   if (speculative_maybe_null()) {
2902     return NULL;
2903   }
2904   return speculative_type();
2905 }
2906 
2907 /**
2908  * Check whether new profiling would improve speculative type
2909  *
2910  * @param   exact_kls    class from profiling
2911  * @param   inline_depth inlining depth of profile point
2912  *
2913  * @return  true if type profile is valuable
2914  */
2915 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2916   // no profiling?
2917   if (exact_kls == NULL) {
2918     return false;
2919   }
2920   if (speculative() == TypePtr::NULL_PTR) {
2921     return false;
2922   }
2923   // no speculative type or non exact speculative type?
2924   if (speculative_type() == NULL) {
2925     return true;
2926   }
2927   // If the node already has an exact speculative type keep it,
2928   // unless it was provided by profiling that is at a deeper
2929   // inlining level. Profiling at a higher inlining depth is
2930   // expected to be less accurate.
2931   if (_speculative->inline_depth() == InlineDepthBottom) {
2932     return false;
2933   }
2934   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2935   return inline_depth < _speculative->inline_depth();
2936 }
2937 
2938 /**
2939  * Check whether new profiling would improve ptr (= tells us it is non
2940  * null)
2941  *
2942  * @param   ptr_kind always null or not null?
2943  *
2944  * @return  true if ptr profile is valuable
2945  */
2946 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2947   // profiling doesn't tell us anything useful
2948   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2949     return false;
2950   }
2951   // We already know this is not null
2952   if (!this->maybe_null()) {
2953     return false;
2954   }
2955   // We already know the speculative type cannot be null
2956   if (!speculative_maybe_null()) {
2957     return false;
2958   }
2959   // We already know this is always null
2960   if (this == TypePtr::NULL_PTR) {
2961     return false;
2962   }
2963   // We already know the speculative type is always null
2964   if (speculative_always_null()) {
2965     return false;
2966   }
2967   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2968     return false;
2969   }
2970   return true;
2971 }
2972 
2973 //------------------------------dump2------------------------------------------
2974 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2975   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2976 };
2977 
2978 #ifndef PRODUCT
2979 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2980   if( _ptr == Null ) st->print("NULL");
2981   else st->print("%s *", ptr_msg[_ptr]);
2982   _offset.dump2(st);
2983   dump_inline_depth(st);
2984   dump_speculative(st);
2985 }
2986 
2987 /**
2988  *dump the speculative part of the type
2989  */
2990 void TypePtr::dump_speculative(outputStream *st) const {
2991   if (_speculative != NULL) {
2992     st->print(" (speculative=");
2993     _speculative->dump_on(st);
2994     st->print(")");
2995   }
2996 }
2997 
2998 /**
2999  *dump the inline depth of the type
3000  */
3001 void TypePtr::dump_inline_depth(outputStream *st) const {
3002   if (_inline_depth != InlineDepthBottom) {
3003     if (_inline_depth == InlineDepthTop) {
3004       st->print(" (inline_depth=InlineDepthTop)");
3005     } else {
3006       st->print(" (inline_depth=%d)", _inline_depth);
3007     }
3008   }
3009 }
3010 #endif
3011 
3012 //------------------------------singleton--------------------------------------
3013 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3014 // constants
3015 bool TypePtr::singleton(void) const {
3016   // TopPTR, Null, AnyNull, Constant are all singletons
3017   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3018 }
3019 
3020 bool TypePtr::empty(void) const {
3021   return (_offset == Offset::top) || above_centerline(_ptr);
3022 }
3023 
3024 //=============================================================================
3025 // Convenience common pre-built types.
3026 const TypeRawPtr *TypeRawPtr::BOTTOM;
3027 const TypeRawPtr *TypeRawPtr::NOTNULL;
3028 
3029 //------------------------------make-------------------------------------------
3030 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3031   assert( ptr != Constant, "what is the constant?" );
3032   assert( ptr != Null, "Use TypePtr for NULL" );
3033   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3034 }
3035 
3036 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3037   assert( bits, "Use TypePtr for NULL" );
3038   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3039 }
3040 
3041 //------------------------------cast_to_ptr_type-------------------------------
3042 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3043   assert( ptr != Constant, "what is the constant?" );
3044   assert( ptr != Null, "Use TypePtr for NULL" );
3045   assert( _bits==0, "Why cast a constant address?");
3046   if( ptr == _ptr ) return this;
3047   return make(ptr);
3048 }
3049 
3050 //------------------------------get_con----------------------------------------
3051 intptr_t TypeRawPtr::get_con() const {
3052   assert( _ptr == Null || _ptr == Constant, "" );
3053   return (intptr_t)_bits;
3054 }
3055 
3056 //------------------------------meet-------------------------------------------
3057 // Compute the MEET of two types.  It returns a new Type object.
3058 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3059   // Perform a fast test for common case; meeting the same types together.
3060   if( this == t ) return this;  // Meeting same type-rep?
3061 
3062   // Current "this->_base" is RawPtr
3063   switch( t->base() ) {         // switch on original type
3064   case Bottom:                  // Ye Olde Default
3065     return t;
3066   case Top:
3067     return this;
3068   case AnyPtr:                  // Meeting to AnyPtrs
3069     break;
3070   case RawPtr: {                // might be top, bot, any/not or constant
3071     enum PTR tptr = t->is_ptr()->ptr();
3072     enum PTR ptr = meet_ptr( tptr );
3073     if( ptr == Constant ) {     // Cannot be equal constants, so...
3074       if( tptr == Constant && _ptr != Constant)  return t;
3075       if( _ptr == Constant && tptr != Constant)  return this;
3076       ptr = NotNull;            // Fall down in lattice
3077     }
3078     return make( ptr );
3079   }
3080 
3081   case OopPtr:
3082   case InstPtr:
3083   case ValueTypePtr:
3084   case AryPtr:
3085   case MetadataPtr:
3086   case KlassPtr:
3087     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3088   default:                      // All else is a mistake
3089     typerr(t);
3090   }
3091 
3092   // Found an AnyPtr type vs self-RawPtr type
3093   const TypePtr *tp = t->is_ptr();
3094   switch (tp->ptr()) {
3095   case TypePtr::TopPTR:  return this;
3096   case TypePtr::BotPTR:  return t;
3097   case TypePtr::Null:
3098     if( _ptr == TypePtr::TopPTR ) return t;
3099     return TypeRawPtr::BOTTOM;
3100   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3101   case TypePtr::AnyNull:
3102     if( _ptr == TypePtr::Constant) return this;
3103     return make( meet_ptr(TypePtr::AnyNull) );
3104   default: ShouldNotReachHere();
3105   }
3106   return this;
3107 }
3108 
3109 //------------------------------xdual------------------------------------------
3110 // Dual: compute field-by-field dual
3111 const Type *TypeRawPtr::xdual() const {
3112   return new TypeRawPtr( dual_ptr(), _bits );
3113 }
3114 
3115 //------------------------------add_offset-------------------------------------
3116 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3117   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3118   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3119   if( offset == 0 ) return this; // No change
3120   switch (_ptr) {
3121   case TypePtr::TopPTR:
3122   case TypePtr::BotPTR:
3123   case TypePtr::NotNull:
3124     return this;
3125   case TypePtr::Null:
3126   case TypePtr::Constant: {
3127     address bits = _bits+offset;
3128     if ( bits == 0 ) return TypePtr::NULL_PTR;
3129     return make( bits );
3130   }
3131   default:  ShouldNotReachHere();
3132   }
3133   return NULL;                  // Lint noise
3134 }
3135 
3136 //------------------------------eq---------------------------------------------
3137 // Structural equality check for Type representations
3138 bool TypeRawPtr::eq( const Type *t ) const {
3139   const TypeRawPtr *a = (const TypeRawPtr*)t;
3140   return _bits == a->_bits && TypePtr::eq(t);
3141 }
3142 
3143 //------------------------------hash-------------------------------------------
3144 // Type-specific hashing function.
3145 int TypeRawPtr::hash(void) const {
3146   return (intptr_t)_bits + TypePtr::hash();
3147 }
3148 
3149 //------------------------------dump2------------------------------------------
3150 #ifndef PRODUCT
3151 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3152   if( _ptr == Constant )
3153     st->print(INTPTR_FORMAT, p2i(_bits));
3154   else
3155     st->print("rawptr:%s", ptr_msg[_ptr]);
3156 }
3157 #endif
3158 
3159 //=============================================================================
3160 // Convenience common pre-built type.
3161 const TypeOopPtr *TypeOopPtr::BOTTOM;
3162 
3163 //------------------------------TypeOopPtr-------------------------------------
3164 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3165                        int instance_id, const TypePtr* speculative, int inline_depth)
3166   : TypePtr(t, ptr, offset, speculative, inline_depth),
3167     _const_oop(o), _klass(k),
3168     _klass_is_exact(xk),
3169     _is_ptr_to_narrowoop(false),
3170     _is_ptr_to_narrowklass(false),
3171     _is_ptr_to_boxed_value(false),
3172     _instance_id(instance_id) {
3173   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3174       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3175     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3176   }
3177 #ifdef _LP64
3178   if (this->offset() != 0) {
3179     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3180       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3181     } else if (klass() == NULL) {
3182       // Array with unknown body type
3183       assert(this->isa_aryptr(), "only arrays without klass");
3184       _is_ptr_to_narrowoop = UseCompressedOops;
3185     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3186       if (klass()->is_obj_array_klass()) {
3187         _is_ptr_to_narrowoop = true;
3188       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3189         // Check if the field of the value type array element contains oops
3190         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3191         int foffset = field_offset.get() + vk->first_field_offset();
3192         ciField* field = vk->get_field_by_offset(foffset, false);
3193         assert(field != NULL, "missing field");
3194         BasicType bt = field->layout_type();
3195         assert(bt != T_VALUETYPEPTR, "unexpected type");
3196         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY || T_VALUETYPE);
3197       }
3198     } else if (klass()->is_instance_klass()) {
3199       if (this->isa_klassptr()) {
3200         // Perm objects don't use compressed references
3201       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3202         // unsafe access
3203         _is_ptr_to_narrowoop = UseCompressedOops;
3204       } else { // exclude unsafe ops
3205         assert(this->isa_instptr() || this->isa_valuetypeptr(), "must be an instance ptr.");
3206         if (klass() == ciEnv::current()->Class_klass() &&
3207             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3208              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3209           // Special hidden fields from the Class.
3210           assert(this->isa_instptr(), "must be an instance ptr.");
3211           _is_ptr_to_narrowoop = false;
3212         } else if (klass() == ciEnv::current()->Class_klass() &&
3213                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3214           // Static fields
3215           assert(o != NULL, "must be constant");
3216           ciInstanceKlass* ik = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3217           BasicType basic_elem_type;
3218           if (ik->is_valuetype() && this->offset() == ik->as_value_klass()->default_value_offset()) {
3219             // Special hidden field that contains the oop of the default value type
3220             basic_elem_type = T_VALUETYPE;
3221           } else {
3222             ciField* field = ik->get_field_by_offset(this->offset(), true);
3223             assert(field != NULL, "missing field");
3224             basic_elem_type = field->layout_type();
3225           }
3226           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3227                                                        basic_elem_type == T_VALUETYPE ||
3228                                                        basic_elem_type == T_ARRAY);
3229         } else {
3230           // Instance fields which contains a compressed oop references.
3231           ciInstanceKlass* ik = klass()->as_instance_klass();
3232           ciField* field = ik->get_field_by_offset(this->offset(), false);
3233           if (field != NULL) {
3234             BasicType basic_elem_type = field->layout_type();
3235             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3236                                                          basic_elem_type == T_VALUETYPE ||
3237                                                          basic_elem_type == T_ARRAY);
3238             assert(basic_elem_type != T_VALUETYPEPTR, "unexpected type");
3239           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3240             // Compile::find_alias_type() cast exactness on all types to verify
3241             // that it does not affect alias type.
3242             _is_ptr_to_narrowoop = UseCompressedOops;
3243           } else {
3244             // Type for the copy start in LibraryCallKit::inline_native_clone().
3245             _is_ptr_to_narrowoop = UseCompressedOops;
3246           }
3247         }
3248       }
3249     }
3250   }
3251 #endif
3252 }
3253 
3254 //------------------------------make-------------------------------------------
3255 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3256                                    const TypePtr* speculative, int inline_depth) {
3257   assert(ptr != Constant, "no constant generic pointers");
3258   ciKlass*  k = Compile::current()->env()->Object_klass();
3259   bool      xk = false;
3260   ciObject* o = NULL;
3261   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3262 }
3263 
3264 
3265 //------------------------------cast_to_ptr_type-------------------------------
3266 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3267   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3268   if( ptr == _ptr ) return this;
3269   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3270 }
3271 
3272 //-----------------------------cast_to_instance_id----------------------------
3273 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3274   // There are no instances of a general oop.
3275   // Return self unchanged.
3276   return this;
3277 }
3278 
3279 //-----------------------------cast_to_exactness-------------------------------
3280 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3281   // There is no such thing as an exact general oop.
3282   // Return self unchanged.
3283   return this;
3284 }
3285 
3286 
3287 //------------------------------as_klass_type----------------------------------
3288 // Return the klass type corresponding to this instance or array type.
3289 // It is the type that is loaded from an object of this type.
3290 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3291   ciKlass* k = klass();
3292   bool    xk = klass_is_exact();
3293   if (k == NULL)
3294     return TypeKlassPtr::OBJECT;
3295   else
3296     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3297 }
3298 
3299 //------------------------------meet-------------------------------------------
3300 // Compute the MEET of two types.  It returns a new Type object.
3301 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3302   // Perform a fast test for common case; meeting the same types together.
3303   if( this == t ) return this;  // Meeting same type-rep?
3304 
3305   // Current "this->_base" is OopPtr
3306   switch (t->base()) {          // switch on original type
3307 
3308   case Int:                     // Mixing ints & oops happens when javac
3309   case Long:                    // reuses local variables
3310   case FloatTop:
3311   case FloatCon:
3312   case FloatBot:
3313   case DoubleTop:
3314   case DoubleCon:
3315   case DoubleBot:
3316   case NarrowOop:
3317   case NarrowKlass:
3318   case Bottom:                  // Ye Olde Default
3319     return Type::BOTTOM;
3320   case Top:
3321     return this;
3322 
3323   default:                      // All else is a mistake
3324     typerr(t);
3325 
3326   case RawPtr:
3327   case MetadataPtr:
3328   case KlassPtr:
3329     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3330 
3331   case AnyPtr: {
3332     // Found an AnyPtr type vs self-OopPtr type
3333     const TypePtr *tp = t->is_ptr();
3334     Offset offset = meet_offset(tp->offset());
3335     PTR ptr = meet_ptr(tp->ptr());
3336     const TypePtr* speculative = xmeet_speculative(tp);
3337     int depth = meet_inline_depth(tp->inline_depth());
3338     switch (tp->ptr()) {
3339     case Null:
3340       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3341       // else fall through:
3342     case TopPTR:
3343     case AnyNull: {
3344       int instance_id = meet_instance_id(InstanceTop);
3345       return make(ptr, offset, instance_id, speculative, depth);
3346     }
3347     case BotPTR:
3348     case NotNull:
3349       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3350     default: typerr(t);
3351     }
3352   }
3353 
3354   case OopPtr: {                 // Meeting to other OopPtrs
3355     const TypeOopPtr *tp = t->is_oopptr();
3356     int instance_id = meet_instance_id(tp->instance_id());
3357     const TypePtr* speculative = xmeet_speculative(tp);
3358     int depth = meet_inline_depth(tp->inline_depth());
3359     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3360   }
3361 
3362   case InstPtr:                  // For these, flip the call around to cut down
3363   case ValueTypePtr:
3364   case AryPtr:
3365     return t->xmeet(this);      // Call in reverse direction
3366 
3367   } // End of switch
3368   return this;                  // Return the double constant
3369 }
3370 
3371 
3372 //------------------------------xdual------------------------------------------
3373 // Dual of a pure heap pointer.  No relevant klass or oop information.
3374 const Type *TypeOopPtr::xdual() const {
3375   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3376   assert(const_oop() == NULL,             "no constants here");
3377   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3378 }
3379 
3380 //--------------------------make_from_klass_common-----------------------------
3381 // Computes the element-type given a klass.
3382 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3383   if (klass->is_valuetype()) {
3384     return TypeValueTypePtr::make(TypePtr::BotPTR, klass->as_value_klass());
3385   } else if (klass->is_instance_klass()) {
3386     Compile* C = Compile::current();
3387     Dependencies* deps = C->dependencies();
3388     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3389     // Element is an instance
3390     bool klass_is_exact = false;
3391     if (klass->is_loaded()) {
3392       // Try to set klass_is_exact.
3393       ciInstanceKlass* ik = klass->as_instance_klass();
3394       klass_is_exact = ik->is_final();
3395       if (!klass_is_exact && klass_change
3396           && deps != NULL && UseUniqueSubclasses) {
3397         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3398         if (sub != NULL) {
3399           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3400           klass = ik = sub;
3401           klass_is_exact = sub->is_final();
3402         }
3403       }
3404       if (!klass_is_exact && try_for_exact
3405           && deps != NULL && UseExactTypes) {
3406         if (!ik->is_interface() && !ik->has_subklass()) {
3407           // Add a dependence; if concrete subclass added we need to recompile
3408           deps->assert_leaf_type(ik);
3409           klass_is_exact = true;
3410         }
3411       }
3412     }
3413     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3414   } else if (klass->is_obj_array_klass()) {
3415     // Element is an object or value array. Recursively call ourself.
3416     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3417     bool xk = etype->klass_is_exact();
3418     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3419     // We used to pass NotNull in here, asserting that the sub-arrays
3420     // are all not-null.  This is not true in generally, as code can
3421     // slam NULLs down in the subarrays.
3422     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3423     return arr;
3424   } else if (klass->is_type_array_klass()) {
3425     // Element is an typeArray
3426     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3427     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3428     // We used to pass NotNull in here, asserting that the array pointer
3429     // is not-null. That was not true in general.
3430     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3431     return arr;
3432   } else if (klass->is_value_array_klass()) {
3433     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3434     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::POS);
3435     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3436     return arr;
3437   } else {
3438     ShouldNotReachHere();
3439     return NULL;
3440   }
3441 }
3442 
3443 //------------------------------make_from_constant-----------------------------
3444 // Make a java pointer from an oop constant
3445 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3446   assert(!o->is_null_object(), "null object not yet handled here.");
3447   ciKlass* klass = o->klass();
3448   if (klass->is_valuetype()) {
3449     // Element is a value type
3450     if (require_constant) {
3451       if (!o->can_be_constant())  return NULL;
3452     } else if (!o->should_be_constant()) {
3453       return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3454     }
3455     return TypeValueTypePtr::make(o);
3456   } else if (klass->is_instance_klass()) {
3457     // Element is an instance
3458     if (require_constant) {
3459       if (!o->can_be_constant())  return NULL;
3460     } else if (!o->should_be_constant()) {
3461       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3462     }
3463     return TypeInstPtr::make(o);
3464   } else if (klass->is_obj_array_klass() || klass->is_value_array_klass()) {
3465     // Element is an object array. Recursively call ourself.
3466     const TypeOopPtr *etype =
3467       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3468     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3469     // We used to pass NotNull in here, asserting that the sub-arrays
3470     // are all not-null.  This is not true in generally, as code can
3471     // slam NULLs down in the subarrays.
3472     if (require_constant) {
3473       if (!o->can_be_constant())  return NULL;
3474     } else if (!o->should_be_constant()) {
3475       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3476     }
3477     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3478     return arr;
3479   } else if (klass->is_type_array_klass()) {
3480     // Element is an typeArray
3481     const Type* etype =
3482       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3483     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3484     // We used to pass NotNull in here, asserting that the array pointer
3485     // is not-null. That was not true in general.
3486     if (require_constant) {
3487       if (!o->can_be_constant())  return NULL;
3488     } else if (!o->should_be_constant()) {
3489       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3490     }
3491     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3492     return arr;
3493   }
3494 
3495   fatal("unhandled object type");
3496   return NULL;
3497 }
3498 
3499 //------------------------------get_con----------------------------------------
3500 intptr_t TypeOopPtr::get_con() const {
3501   assert( _ptr == Null || _ptr == Constant, "" );
3502   assert(offset() >= 0, "");
3503 
3504   if (offset() != 0) {
3505     // After being ported to the compiler interface, the compiler no longer
3506     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3507     // to a handle at compile time.  This handle is embedded in the generated
3508     // code and dereferenced at the time the nmethod is made.  Until that time,
3509     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3510     // have access to the addresses!).  This does not seem to currently happen,
3511     // but this assertion here is to help prevent its occurence.
3512     tty->print_cr("Found oop constant with non-zero offset");
3513     ShouldNotReachHere();
3514   }
3515 
3516   return (intptr_t)const_oop()->constant_encoding();
3517 }
3518 
3519 
3520 //-----------------------------filter------------------------------------------
3521 // Do not allow interface-vs.-noninterface joins to collapse to top.
3522 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3523 
3524   const Type* ft = join_helper(kills, include_speculative);
3525   const TypeInstPtr* ftip = ft->isa_instptr();
3526   const TypeInstPtr* ktip = kills->isa_instptr();
3527 
3528   if (ft->empty()) {
3529     // Check for evil case of 'this' being a class and 'kills' expecting an
3530     // interface.  This can happen because the bytecodes do not contain
3531     // enough type info to distinguish a Java-level interface variable
3532     // from a Java-level object variable.  If we meet 2 classes which
3533     // both implement interface I, but their meet is at 'j/l/O' which
3534     // doesn't implement I, we have no way to tell if the result should
3535     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3536     // into a Phi which "knows" it's an Interface type we'll have to
3537     // uplift the type.
3538     if (!empty()) {
3539       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3540         return kills;           // Uplift to interface
3541       }
3542       // Also check for evil cases of 'this' being a class array
3543       // and 'kills' expecting an array of interfaces.
3544       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3545       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3546         return kills;           // Uplift to array of interface
3547       }
3548     }
3549 
3550     return Type::TOP;           // Canonical empty value
3551   }
3552 
3553   // If we have an interface-typed Phi or cast and we narrow to a class type,
3554   // the join should report back the class.  However, if we have a J/L/Object
3555   // class-typed Phi and an interface flows in, it's possible that the meet &
3556   // join report an interface back out.  This isn't possible but happens
3557   // because the type system doesn't interact well with interfaces.
3558   if (ftip != NULL && ktip != NULL &&
3559       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3560       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3561     assert(!ftip->klass_is_exact(), "interface could not be exact");
3562     return ktip->cast_to_ptr_type(ftip->ptr());
3563   }
3564 
3565   return ft;
3566 }
3567 
3568 //------------------------------eq---------------------------------------------
3569 // Structural equality check for Type representations
3570 bool TypeOopPtr::eq( const Type *t ) const {
3571   const TypeOopPtr *a = (const TypeOopPtr*)t;
3572   if (_klass_is_exact != a->_klass_is_exact ||
3573       _instance_id != a->_instance_id)  return false;
3574   ciObject* one = const_oop();
3575   ciObject* two = a->const_oop();
3576   if (one == NULL || two == NULL) {
3577     return (one == two) && TypePtr::eq(t);
3578   } else {
3579     return one->equals(two) && TypePtr::eq(t);
3580   }
3581 }
3582 
3583 //------------------------------hash-------------------------------------------
3584 // Type-specific hashing function.
3585 int TypeOopPtr::hash(void) const {
3586   return
3587     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3588              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3589 }
3590 
3591 //------------------------------dump2------------------------------------------
3592 #ifndef PRODUCT
3593 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3594   st->print("oopptr:%s", ptr_msg[_ptr]);
3595   if( _klass_is_exact ) st->print(":exact");
3596   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3597   _offset.dump2(st);
3598   if (_instance_id == InstanceTop)
3599     st->print(",iid=top");
3600   else if (_instance_id != InstanceBot)
3601     st->print(",iid=%d",_instance_id);
3602 
3603   dump_inline_depth(st);
3604   dump_speculative(st);
3605 }
3606 #endif
3607 
3608 //------------------------------singleton--------------------------------------
3609 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3610 // constants
3611 bool TypeOopPtr::singleton(void) const {
3612   // detune optimizer to not generate constant oop + constant offset as a constant!
3613   // TopPTR, Null, AnyNull, Constant are all singletons
3614   return (offset() == 0) && !below_centerline(_ptr);
3615 }
3616 
3617 //------------------------------add_offset-------------------------------------
3618 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3619   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3620 }
3621 
3622 /**
3623  * Return same type without a speculative part
3624  */
3625 const Type* TypeOopPtr::remove_speculative() const {
3626   if (_speculative == NULL) {
3627     return this;
3628   }
3629   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3630   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3631 }
3632 
3633 /**
3634  * Return same type but drop speculative part if we know we won't use
3635  * it
3636  */
3637 const Type* TypeOopPtr::cleanup_speculative() const {
3638   // If the klass is exact and the ptr is not null then there's
3639   // nothing that the speculative type can help us with
3640   if (klass_is_exact() && !maybe_null()) {
3641     return remove_speculative();
3642   }
3643   return TypePtr::cleanup_speculative();
3644 }
3645 
3646 /**
3647  * Return same type but with a different inline depth (used for speculation)
3648  *
3649  * @param depth  depth to meet with
3650  */
3651 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3652   if (!UseInlineDepthForSpeculativeTypes) {
3653     return this;
3654   }
3655   return make(_ptr, _offset, _instance_id, _speculative, depth);
3656 }
3657 
3658 //------------------------------meet_instance_id--------------------------------
3659 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3660   // Either is 'TOP' instance?  Return the other instance!
3661   if( _instance_id == InstanceTop ) return  instance_id;
3662   if(  instance_id == InstanceTop ) return _instance_id;
3663   // If either is different, return 'BOTTOM' instance
3664   if( _instance_id != instance_id ) return InstanceBot;
3665   return _instance_id;
3666 }
3667 
3668 //------------------------------dual_instance_id--------------------------------
3669 int TypeOopPtr::dual_instance_id( ) const {
3670   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3671   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3672   return _instance_id;              // Map everything else into self
3673 }
3674 
3675 /**
3676  * Check whether new profiling would improve speculative type
3677  *
3678  * @param   exact_kls    class from profiling
3679  * @param   inline_depth inlining depth of profile point
3680  *
3681  * @return  true if type profile is valuable
3682  */
3683 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3684   // no way to improve an already exact type
3685   if (klass_is_exact()) {
3686     return false;
3687   }
3688   return TypePtr::would_improve_type(exact_kls, inline_depth);
3689 }
3690 
3691 //=============================================================================
3692 // Convenience common pre-built types.
3693 const TypeInstPtr *TypeInstPtr::NOTNULL;
3694 const TypeInstPtr *TypeInstPtr::BOTTOM;
3695 const TypeInstPtr *TypeInstPtr::MIRROR;
3696 const TypeInstPtr *TypeInstPtr::MARK;
3697 const TypeInstPtr *TypeInstPtr::KLASS;
3698 
3699 //------------------------------TypeInstPtr-------------------------------------
3700 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3701                          int instance_id, const TypePtr* speculative, int inline_depth)
3702   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3703     _name(k->name()) {
3704    assert(k != NULL &&
3705           (k->is_loaded() || o == NULL),
3706           "cannot have constants with non-loaded klass");
3707 };
3708 
3709 //------------------------------make-------------------------------------------
3710 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3711                                      ciKlass* k,
3712                                      bool xk,
3713                                      ciObject* o,
3714                                      Offset offset,
3715                                      int instance_id,
3716                                      const TypePtr* speculative,
3717                                      int inline_depth) {
3718   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3719   // Either const_oop() is NULL or else ptr is Constant
3720   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3721           "constant pointers must have a value supplied" );
3722   // Ptr is never Null
3723   assert( ptr != Null, "NULL pointers are not typed" );
3724 
3725   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3726   if (!UseExactTypes)  xk = false;
3727   if (ptr == Constant) {
3728     // Note:  This case includes meta-object constants, such as methods.
3729     xk = true;
3730   } else if (k->is_loaded()) {
3731     ciInstanceKlass* ik = k->as_instance_klass();
3732     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3733     if (xk && ik->is_interface())  xk = false;  // no exact interface
3734   }
3735 
3736   // Now hash this baby
3737   TypeInstPtr *result =
3738     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3739 
3740   return result;
3741 }
3742 
3743 /**
3744  *  Create constant type for a constant boxed value
3745  */
3746 const Type* TypeInstPtr::get_const_boxed_value() const {
3747   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3748   assert((const_oop() != NULL), "should be called only for constant object");
3749   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3750   BasicType bt = constant.basic_type();
3751   switch (bt) {
3752     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3753     case T_INT:      return TypeInt::make(constant.as_int());
3754     case T_CHAR:     return TypeInt::make(constant.as_char());
3755     case T_BYTE:     return TypeInt::make(constant.as_byte());
3756     case T_SHORT:    return TypeInt::make(constant.as_short());
3757     case T_FLOAT:    return TypeF::make(constant.as_float());
3758     case T_DOUBLE:   return TypeD::make(constant.as_double());
3759     case T_LONG:     return TypeLong::make(constant.as_long());
3760     default:         break;
3761   }
3762   fatal("Invalid boxed value type '%s'", type2name(bt));
3763   return NULL;
3764 }
3765 
3766 //------------------------------cast_to_ptr_type-------------------------------
3767 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3768   if( ptr == _ptr ) return this;
3769   // Reconstruct _sig info here since not a problem with later lazy
3770   // construction, _sig will show up on demand.
3771   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3772 }
3773 
3774 
3775 //-----------------------------cast_to_exactness-------------------------------
3776 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3777   if( klass_is_exact == _klass_is_exact ) return this;
3778   if (!UseExactTypes)  return this;
3779   if (!_klass->is_loaded())  return this;
3780   ciInstanceKlass* ik = _klass->as_instance_klass();
3781   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3782   if( ik->is_interface() )              return this;  // cannot set xk
3783   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3784 }
3785 
3786 //-----------------------------cast_to_instance_id----------------------------
3787 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3788   if( instance_id == _instance_id ) return this;
3789   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3790 }
3791 
3792 //------------------------------xmeet_unloaded---------------------------------
3793 // Compute the MEET of two InstPtrs when at least one is unloaded.
3794 // Assume classes are different since called after check for same name/class-loader
3795 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3796     Offset off = meet_offset(tinst->offset());
3797     PTR ptr = meet_ptr(tinst->ptr());
3798     int instance_id = meet_instance_id(tinst->instance_id());
3799     const TypePtr* speculative = xmeet_speculative(tinst);
3800     int depth = meet_inline_depth(tinst->inline_depth());
3801 
3802     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3803     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3804     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3805       //
3806       // Meet unloaded class with java/lang/Object
3807       //
3808       // Meet
3809       //          |                     Unloaded Class
3810       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3811       //  ===================================================================
3812       //   TOP    | ..........................Unloaded......................|
3813       //  AnyNull |  U-AN    |................Unloaded......................|
3814       // Constant | ... O-NN .................................. |   O-BOT   |
3815       //  NotNull | ... O-NN .................................. |   O-BOT   |
3816       //  BOTTOM  | ........................Object-BOTTOM ..................|
3817       //
3818       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3819       //
3820       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3821       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3822       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3823       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3824         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3825         else                                      { return TypeInstPtr::NOTNULL; }
3826       }
3827       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3828 
3829       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3830     }
3831 
3832     // Both are unloaded, not the same class, not Object
3833     // Or meet unloaded with a different loaded class, not java/lang/Object
3834     if( ptr != TypePtr::BotPTR ) {
3835       return TypeInstPtr::NOTNULL;
3836     }
3837     return TypeInstPtr::BOTTOM;
3838 }
3839 
3840 
3841 //------------------------------meet-------------------------------------------
3842 // Compute the MEET of two types.  It returns a new Type object.
3843 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3844   // Perform a fast test for common case; meeting the same types together.
3845   if( this == t ) return this;  // Meeting same type-rep?
3846 
3847   // Current "this->_base" is Pointer
3848   switch (t->base()) {          // switch on original type
3849 
3850   case Int:                     // Mixing ints & oops happens when javac
3851   case Long:                    // reuses local variables
3852   case FloatTop:
3853   case FloatCon:
3854   case FloatBot:
3855   case DoubleTop:
3856   case DoubleCon:
3857   case DoubleBot:
3858   case NarrowOop:
3859   case NarrowKlass:
3860   case Bottom:                  // Ye Olde Default
3861     return Type::BOTTOM;
3862   case Top:
3863     return this;
3864 
3865   default:                      // All else is a mistake
3866     typerr(t);
3867 
3868   case MetadataPtr:
3869   case KlassPtr:
3870   case RawPtr: return TypePtr::BOTTOM;
3871 
3872   case AryPtr: {                // All arrays inherit from Object class
3873     const TypeAryPtr *tp = t->is_aryptr();
3874     Offset offset = meet_offset(tp->offset());
3875     PTR ptr = meet_ptr(tp->ptr());
3876     int instance_id = meet_instance_id(tp->instance_id());
3877     const TypePtr* speculative = xmeet_speculative(tp);
3878     int depth = meet_inline_depth(tp->inline_depth());
3879     switch (ptr) {
3880     case TopPTR:
3881     case AnyNull:                // Fall 'down' to dual of object klass
3882       // For instances when a subclass meets a superclass we fall
3883       // below the centerline when the superclass is exact. We need to
3884       // do the same here.
3885       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3886         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3887       } else {
3888         // cannot subclass, so the meet has to fall badly below the centerline
3889         ptr = NotNull;
3890         instance_id = InstanceBot;
3891         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3892       }
3893     case Constant:
3894     case NotNull:
3895     case BotPTR:                // Fall down to object klass
3896       // LCA is object_klass, but if we subclass from the top we can do better
3897       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3898         // If 'this' (InstPtr) is above the centerline and it is Object class
3899         // then we can subclass in the Java class hierarchy.
3900         // For instances when a subclass meets a superclass we fall
3901         // below the centerline when the superclass is exact. We need
3902         // to do the same here.
3903         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3904           // that is, tp's array type is a subtype of my klass
3905           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3906                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3907         }
3908       }
3909       // The other case cannot happen, since I cannot be a subtype of an array.
3910       // The meet falls down to Object class below centerline.
3911       if( ptr == Constant )
3912          ptr = NotNull;
3913       instance_id = InstanceBot;
3914       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3915     default: typerr(t);
3916     }
3917   }
3918 
3919   case OopPtr: {                // Meeting to OopPtrs
3920     // Found a OopPtr type vs self-InstPtr type
3921     const TypeOopPtr *tp = t->is_oopptr();
3922     Offset offset = meet_offset(tp->offset());
3923     PTR ptr = meet_ptr(tp->ptr());
3924     switch (tp->ptr()) {
3925     case TopPTR:
3926     case AnyNull: {
3927       int instance_id = meet_instance_id(InstanceTop);
3928       const TypePtr* speculative = xmeet_speculative(tp);
3929       int depth = meet_inline_depth(tp->inline_depth());
3930       return make(ptr, klass(), klass_is_exact(),
3931                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3932     }
3933     case NotNull:
3934     case BotPTR: {
3935       int instance_id = meet_instance_id(tp->instance_id());
3936       const TypePtr* speculative = xmeet_speculative(tp);
3937       int depth = meet_inline_depth(tp->inline_depth());
3938       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3939     }
3940     default: typerr(t);
3941     }
3942   }
3943 
3944   case AnyPtr: {                // Meeting to AnyPtrs
3945     // Found an AnyPtr type vs self-InstPtr type
3946     const TypePtr *tp = t->is_ptr();
3947     Offset offset = meet_offset(tp->offset());
3948     PTR ptr = meet_ptr(tp->ptr());
3949     int instance_id = meet_instance_id(InstanceTop);
3950     const TypePtr* speculative = xmeet_speculative(tp);
3951     int depth = meet_inline_depth(tp->inline_depth());
3952     switch (tp->ptr()) {
3953     case Null:
3954       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3955       // else fall through to AnyNull
3956     case TopPTR:
3957     case AnyNull: {
3958       return make(ptr, klass(), klass_is_exact(),
3959                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3960     }
3961     case NotNull:
3962     case BotPTR:
3963       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3964     default: typerr(t);
3965     }
3966   }
3967 
3968   /*
3969                  A-top         }
3970                /   |   \       }  Tops
3971            B-top A-any C-top   }
3972               | /  |  \ |      }  Any-nulls
3973            B-any   |   C-any   }
3974               |    |    |
3975            B-con A-con C-con   } constants; not comparable across classes
3976               |    |    |
3977            B-not   |   C-not   }
3978               | \  |  / |      }  not-nulls
3979            B-bot A-not C-bot   }
3980                \   |   /       }  Bottoms
3981                  A-bot         }
3982   */
3983 
3984   case InstPtr: {                // Meeting 2 Oops?
3985     // Found an InstPtr sub-type vs self-InstPtr type
3986     const TypeInstPtr *tinst = t->is_instptr();
3987     Offset off = meet_offset( tinst->offset() );
3988     PTR ptr = meet_ptr( tinst->ptr() );
3989     int instance_id = meet_instance_id(tinst->instance_id());
3990     const TypePtr* speculative = xmeet_speculative(tinst);
3991     int depth = meet_inline_depth(tinst->inline_depth());
3992 
3993     // Check for easy case; klasses are equal (and perhaps not loaded!)
3994     // If we have constants, then we created oops so classes are loaded
3995     // and we can handle the constants further down.  This case handles
3996     // both-not-loaded or both-loaded classes
3997     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3998       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3999     }
4000 
4001     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4002     ciKlass* tinst_klass = tinst->klass();
4003     ciKlass* this_klass  = this->klass();
4004     bool tinst_xk = tinst->klass_is_exact();
4005     bool this_xk  = this->klass_is_exact();
4006     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
4007       // One of these classes has not been loaded
4008       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
4009 #ifndef PRODUCT
4010       if( PrintOpto && Verbose ) {
4011         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
4012         tty->print("  this == "); this->dump(); tty->cr();
4013         tty->print(" tinst == "); tinst->dump(); tty->cr();
4014       }
4015 #endif
4016       return unloaded_meet;
4017     }
4018 
4019     // Handle mixing oops and interfaces first.
4020     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4021                                         tinst_klass == ciEnv::current()->Object_klass())) {
4022       ciKlass *tmp = tinst_klass; // Swap interface around
4023       tinst_klass = this_klass;
4024       this_klass = tmp;
4025       bool tmp2 = tinst_xk;
4026       tinst_xk = this_xk;
4027       this_xk = tmp2;
4028     }
4029     if (tinst_klass->is_interface() &&
4030         !(this_klass->is_interface() ||
4031           // Treat java/lang/Object as an honorary interface,
4032           // because we need a bottom for the interface hierarchy.
4033           this_klass == ciEnv::current()->Object_klass())) {
4034       // Oop meets interface!
4035 
4036       // See if the oop subtypes (implements) interface.
4037       ciKlass *k;
4038       bool xk;
4039       if( this_klass->is_subtype_of( tinst_klass ) ) {
4040         // Oop indeed subtypes.  Now keep oop or interface depending
4041         // on whether we are both above the centerline or either is
4042         // below the centerline.  If we are on the centerline
4043         // (e.g., Constant vs. AnyNull interface), use the constant.
4044         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4045         // If we are keeping this_klass, keep its exactness too.
4046         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4047       } else {                  // Does not implement, fall to Object
4048         // Oop does not implement interface, so mixing falls to Object
4049         // just like the verifier does (if both are above the
4050         // centerline fall to interface)
4051         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4052         xk = above_centerline(ptr) ? tinst_xk : false;
4053         // Watch out for Constant vs. AnyNull interface.
4054         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4055         instance_id = InstanceBot;
4056       }
4057       ciObject* o = NULL;  // the Constant value, if any
4058       if (ptr == Constant) {
4059         // Find out which constant.
4060         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4061       }
4062       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4063     }
4064 
4065     // Either oop vs oop or interface vs interface or interface vs Object
4066 
4067     // !!! Here's how the symmetry requirement breaks down into invariants:
4068     // If we split one up & one down AND they subtype, take the down man.
4069     // If we split one up & one down AND they do NOT subtype, "fall hard".
4070     // If both are up and they subtype, take the subtype class.
4071     // If both are up and they do NOT subtype, "fall hard".
4072     // If both are down and they subtype, take the supertype class.
4073     // If both are down and they do NOT subtype, "fall hard".
4074     // Constants treated as down.
4075 
4076     // Now, reorder the above list; observe that both-down+subtype is also
4077     // "fall hard"; "fall hard" becomes the default case:
4078     // If we split one up & one down AND they subtype, take the down man.
4079     // If both are up and they subtype, take the subtype class.
4080 
4081     // If both are down and they subtype, "fall hard".
4082     // If both are down and they do NOT subtype, "fall hard".
4083     // If both are up and they do NOT subtype, "fall hard".
4084     // If we split one up & one down AND they do NOT subtype, "fall hard".
4085 
4086     // If a proper subtype is exact, and we return it, we return it exactly.
4087     // If a proper supertype is exact, there can be no subtyping relationship!
4088     // If both types are equal to the subtype, exactness is and-ed below the
4089     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4090 
4091     // Check for subtyping:
4092     ciKlass *subtype = NULL;
4093     bool subtype_exact = false;
4094     if( tinst_klass->equals(this_klass) ) {
4095       subtype = this_klass;
4096       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4097     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4098       subtype = this_klass;     // Pick subtyping class
4099       subtype_exact = this_xk;
4100     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4101       subtype = tinst_klass;    // Pick subtyping class
4102       subtype_exact = tinst_xk;
4103     }
4104 
4105     if( subtype ) {
4106       if( above_centerline(ptr) ) { // both are up?
4107         this_klass = tinst_klass = subtype;
4108         this_xk = tinst_xk = subtype_exact;
4109       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4110         this_klass = tinst_klass; // tinst is down; keep down man
4111         this_xk = tinst_xk;
4112       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4113         tinst_klass = this_klass; // this is down; keep down man
4114         tinst_xk = this_xk;
4115       } else {
4116         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4117       }
4118     }
4119 
4120     // Check for classes now being equal
4121     if (tinst_klass->equals(this_klass)) {
4122       // If the klasses are equal, the constants may still differ.  Fall to
4123       // NotNull if they do (neither constant is NULL; that is a special case
4124       // handled elsewhere).
4125       ciObject* o = NULL;             // Assume not constant when done
4126       ciObject* this_oop  = const_oop();
4127       ciObject* tinst_oop = tinst->const_oop();
4128       if( ptr == Constant ) {
4129         if (this_oop != NULL && tinst_oop != NULL &&
4130             this_oop->equals(tinst_oop) )
4131           o = this_oop;
4132         else if (above_centerline(this ->_ptr))
4133           o = tinst_oop;
4134         else if (above_centerline(tinst ->_ptr))
4135           o = this_oop;
4136         else
4137           ptr = NotNull;
4138       }
4139       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4140     } // Else classes are not equal
4141 
4142     // Since klasses are different, we require a LCA in the Java
4143     // class hierarchy - which means we have to fall to at least NotNull.
4144     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4145       ptr = NotNull;
4146 
4147     instance_id = InstanceBot;
4148 
4149     // Now we find the LCA of Java classes
4150     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4151     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4152   } // End of case InstPtr
4153 
4154   } // End of switch
4155   return this;                  // Return the double constant
4156 }
4157 
4158 
4159 //------------------------java_mirror_type--------------------------------------
4160 ciType* TypeInstPtr::java_mirror_type() const {
4161   // must be a singleton type
4162   if( const_oop() == NULL )  return NULL;
4163 
4164   // must be of type java.lang.Class
4165   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4166 
4167   return const_oop()->as_instance()->java_mirror_type();
4168 }
4169 
4170 
4171 //------------------------------xdual------------------------------------------
4172 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4173 // inheritance mechanism.
4174 const Type *TypeInstPtr::xdual() const {
4175   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4176 }
4177 
4178 //------------------------------eq---------------------------------------------
4179 // Structural equality check for Type representations
4180 bool TypeInstPtr::eq( const Type *t ) const {
4181   const TypeInstPtr *p = t->is_instptr();
4182   return
4183     klass()->equals(p->klass()) &&
4184     TypeOopPtr::eq(p);          // Check sub-type stuff
4185 }
4186 
4187 //------------------------------hash-------------------------------------------
4188 // Type-specific hashing function.
4189 int TypeInstPtr::hash(void) const {
4190   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4191   return hash;
4192 }
4193 
4194 //------------------------------dump2------------------------------------------
4195 // Dump oop Type
4196 #ifndef PRODUCT
4197 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4198   // Print the name of the klass.
4199   klass()->print_name_on(st);
4200 
4201   switch( _ptr ) {
4202   case Constant:
4203     // TO DO: Make CI print the hex address of the underlying oop.
4204     if (WizardMode || Verbose) {
4205       const_oop()->print_oop(st);
4206     }
4207   case BotPTR:
4208     if (!WizardMode && !Verbose) {
4209       if( _klass_is_exact ) st->print(":exact");
4210       break;
4211     }
4212   case TopPTR:
4213   case AnyNull:
4214   case NotNull:
4215     st->print(":%s", ptr_msg[_ptr]);
4216     if( _klass_is_exact ) st->print(":exact");
4217     break;
4218   default:
4219     break;
4220   }
4221 
4222   _offset.dump2(st);
4223 
4224   st->print(" *");
4225   if (_instance_id == InstanceTop)
4226     st->print(",iid=top");
4227   else if (_instance_id != InstanceBot)
4228     st->print(",iid=%d",_instance_id);
4229 
4230   dump_inline_depth(st);
4231   dump_speculative(st);
4232 }
4233 #endif
4234 
4235 //------------------------------add_offset-------------------------------------
4236 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4237   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4238               _instance_id, add_offset_speculative(offset), _inline_depth);
4239 }
4240 
4241 const Type *TypeInstPtr::remove_speculative() const {
4242   if (_speculative == NULL) {
4243     return this;
4244   }
4245   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4246   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4247               _instance_id, NULL, _inline_depth);
4248 }
4249 
4250 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4251   if (!UseInlineDepthForSpeculativeTypes) {
4252     return this;
4253   }
4254   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4255 }
4256 
4257 //=============================================================================
4258 // Convenience common pre-built types.
4259 const TypeAryPtr *TypeAryPtr::RANGE;
4260 const TypeAryPtr *TypeAryPtr::OOPS;
4261 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4262 const TypeAryPtr *TypeAryPtr::BYTES;
4263 const TypeAryPtr *TypeAryPtr::SHORTS;
4264 const TypeAryPtr *TypeAryPtr::CHARS;
4265 const TypeAryPtr *TypeAryPtr::INTS;
4266 const TypeAryPtr *TypeAryPtr::LONGS;
4267 const TypeAryPtr *TypeAryPtr::FLOATS;
4268 const TypeAryPtr *TypeAryPtr::DOUBLES;
4269 
4270 //------------------------------make-------------------------------------------
4271 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4272                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4273   assert(!(k == NULL && ary->_elem->isa_int()),
4274          "integral arrays must be pre-equipped with a class");
4275   if (!xk)  xk = ary->ary_must_be_exact();
4276   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4277   if (!UseExactTypes)  xk = (ptr == Constant);
4278   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4279 }
4280 
4281 //------------------------------make-------------------------------------------
4282 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4283                                    int instance_id, const TypePtr* speculative, int inline_depth,
4284                                    bool is_autobox_cache) {
4285   assert(!(k == NULL && ary->_elem->isa_int()),
4286          "integral arrays must be pre-equipped with a class");
4287   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4288   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4289   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4290   if (!UseExactTypes)  xk = (ptr == Constant);
4291   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4292 }
4293 
4294 //------------------------------cast_to_ptr_type-------------------------------
4295 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4296   if( ptr == _ptr ) return this;
4297   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4298 }
4299 
4300 
4301 //-----------------------------cast_to_exactness-------------------------------
4302 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4303   if( klass_is_exact == _klass_is_exact ) return this;
4304   if (!UseExactTypes)  return this;
4305   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4306   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4307 }
4308 
4309 //-----------------------------cast_to_instance_id----------------------------
4310 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4311   if( instance_id == _instance_id ) return this;
4312   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4313 }
4314 
4315 //-----------------------------narrow_size_type-------------------------------
4316 // Local cache for arrayOopDesc::max_array_length(etype),
4317 // which is kind of slow (and cached elsewhere by other users).
4318 static jint max_array_length_cache[T_CONFLICT+1];
4319 static jint max_array_length(BasicType etype) {
4320   jint& cache = max_array_length_cache[etype];
4321   jint res = cache;
4322   if (res == 0) {
4323     switch (etype) {
4324     case T_NARROWOOP:
4325       etype = T_OBJECT;
4326       break;
4327     case T_NARROWKLASS:
4328     case T_CONFLICT:
4329     case T_ILLEGAL:
4330     case T_VOID:
4331       etype = T_BYTE;           // will produce conservatively high value
4332       break;
4333     default:
4334       break;
4335     }
4336     cache = res = arrayOopDesc::max_array_length(etype);
4337   }
4338   return res;
4339 }
4340 
4341 // Narrow the given size type to the index range for the given array base type.
4342 // Return NULL if the resulting int type becomes empty.
4343 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4344   jint hi = size->_hi;
4345   jint lo = size->_lo;
4346   jint min_lo = 0;
4347   jint max_hi = max_array_length(elem()->basic_type());
4348   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4349   bool chg = false;
4350   if (lo < min_lo) {
4351     lo = min_lo;
4352     if (size->is_con()) {
4353       hi = lo;
4354     }
4355     chg = true;
4356   }
4357   if (hi > max_hi) {
4358     hi = max_hi;
4359     if (size->is_con()) {
4360       lo = hi;
4361     }
4362     chg = true;
4363   }
4364   // Negative length arrays will produce weird intermediate dead fast-path code
4365   if (lo > hi)
4366     return TypeInt::ZERO;
4367   if (!chg)
4368     return size;
4369   return TypeInt::make(lo, hi, Type::WidenMin);
4370 }
4371 
4372 //-------------------------------cast_to_size----------------------------------
4373 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4374   assert(new_size != NULL, "");
4375   new_size = narrow_size_type(new_size);
4376   if (new_size == size())  return this;
4377   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4378   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4379 }
4380 
4381 //------------------------------cast_to_stable---------------------------------
4382 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4383   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4384     return this;
4385 
4386   const Type* elem = this->elem();
4387   const TypePtr* elem_ptr = elem->make_ptr();
4388 
4389   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4390     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4391     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4392   }
4393 
4394   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4395 
4396   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4397 }
4398 
4399 //-----------------------------stable_dimension--------------------------------
4400 int TypeAryPtr::stable_dimension() const {
4401   if (!is_stable())  return 0;
4402   int dim = 1;
4403   const TypePtr* elem_ptr = elem()->make_ptr();
4404   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4405     dim += elem_ptr->is_aryptr()->stable_dimension();
4406   return dim;
4407 }
4408 
4409 //----------------------cast_to_autobox_cache-----------------------------------
4410 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4411   if (is_autobox_cache() == cache)  return this;
4412   const TypeOopPtr* etype = elem()->make_oopptr();
4413   if (etype == NULL)  return this;
4414   // The pointers in the autobox arrays are always non-null.
4415   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4416   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4417   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4418   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4419 }
4420 
4421 //------------------------------eq---------------------------------------------
4422 // Structural equality check for Type representations
4423 bool TypeAryPtr::eq( const Type *t ) const {
4424   const TypeAryPtr *p = t->is_aryptr();
4425   return
4426     _ary == p->_ary &&  // Check array
4427     TypeOopPtr::eq(p) &&// Check sub-parts
4428     _field_offset == p->_field_offset;
4429 }
4430 
4431 //------------------------------hash-------------------------------------------
4432 // Type-specific hashing function.
4433 int TypeAryPtr::hash(void) const {
4434   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4435 }
4436 
4437 //------------------------------meet-------------------------------------------
4438 // Compute the MEET of two types.  It returns a new Type object.
4439 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4440   // Perform a fast test for common case; meeting the same types together.
4441   if( this == t ) return this;  // Meeting same type-rep?
4442   // Current "this->_base" is Pointer
4443   switch (t->base()) {          // switch on original type
4444 
4445   // Mixing ints & oops happens when javac reuses local variables
4446   case Int:
4447   case Long:
4448   case FloatTop:
4449   case FloatCon:
4450   case FloatBot:
4451   case DoubleTop:
4452   case DoubleCon:
4453   case DoubleBot:
4454   case NarrowOop:
4455   case NarrowKlass:
4456   case Bottom:                  // Ye Olde Default
4457     return Type::BOTTOM;
4458   case Top:
4459     return this;
4460 
4461   default:                      // All else is a mistake
4462     typerr(t);
4463 
4464   case OopPtr: {                // Meeting to OopPtrs
4465     // Found a OopPtr type vs self-AryPtr type
4466     const TypeOopPtr *tp = t->is_oopptr();
4467     Offset offset = meet_offset(tp->offset());
4468     PTR ptr = meet_ptr(tp->ptr());
4469     int depth = meet_inline_depth(tp->inline_depth());
4470     const TypePtr* speculative = xmeet_speculative(tp);
4471     switch (tp->ptr()) {
4472     case TopPTR:
4473     case AnyNull: {
4474       int instance_id = meet_instance_id(InstanceTop);
4475       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4476                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4477     }
4478     case BotPTR:
4479     case NotNull: {
4480       int instance_id = meet_instance_id(tp->instance_id());
4481       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4482     }
4483     default: ShouldNotReachHere();
4484     }
4485   }
4486 
4487   case AnyPtr: {                // Meeting two AnyPtrs
4488     // Found an AnyPtr type vs self-AryPtr type
4489     const TypePtr *tp = t->is_ptr();
4490     Offset offset = meet_offset(tp->offset());
4491     PTR ptr = meet_ptr(tp->ptr());
4492     const TypePtr* speculative = xmeet_speculative(tp);
4493     int depth = meet_inline_depth(tp->inline_depth());
4494     switch (tp->ptr()) {
4495     case TopPTR:
4496       return this;
4497     case BotPTR:
4498     case NotNull:
4499       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4500     case Null:
4501       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4502       // else fall through to AnyNull
4503     case AnyNull: {
4504       int instance_id = meet_instance_id(InstanceTop);
4505       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4506                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4507     }
4508     default: ShouldNotReachHere();
4509     }
4510   }
4511 
4512   case MetadataPtr:
4513   case KlassPtr:
4514   case RawPtr: return TypePtr::BOTTOM;
4515 
4516   case AryPtr: {                // Meeting 2 references?
4517     const TypeAryPtr *tap = t->is_aryptr();
4518     Offset off = meet_offset(tap->offset());
4519     Offset field_off = meet_field_offset(tap->field_offset());
4520     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4521     PTR ptr = meet_ptr(tap->ptr());
4522     int instance_id = meet_instance_id(tap->instance_id());
4523     const TypePtr* speculative = xmeet_speculative(tap);
4524     int depth = meet_inline_depth(tap->inline_depth());
4525     ciKlass* lazy_klass = NULL;
4526     if (tary->_elem->isa_int()) {
4527       // Integral array element types have irrelevant lattice relations.
4528       // It is the klass that determines array layout, not the element type.
4529       if (_klass == NULL)
4530         lazy_klass = tap->_klass;
4531       else if (tap->_klass == NULL || tap->_klass == _klass) {
4532         lazy_klass = _klass;
4533       } else {
4534         // Something like byte[int+] meets char[int+].
4535         // This must fall to bottom, not (int[-128..65535])[int+].
4536         instance_id = InstanceBot;
4537         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4538       }
4539     } else // Non integral arrays.
4540       // Must fall to bottom if exact klasses in upper lattice
4541       // are not equal or super klass is exact.
4542       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4543           // meet with top[] and bottom[] are processed further down:
4544           tap->_klass != NULL  && this->_klass != NULL   &&
4545           // both are exact and not equal:
4546           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4547            // 'tap'  is exact and super or unrelated:
4548            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4549            // 'this' is exact and super or unrelated:
4550            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4551       if (above_centerline(ptr)) {
4552         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4553       }
4554       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4555     }
4556 
4557     bool xk = false;
4558     switch (tap->ptr()) {
4559     case AnyNull:
4560     case TopPTR:
4561       // Compute new klass on demand, do not use tap->_klass
4562       if (below_centerline(this->_ptr)) {
4563         xk = this->_klass_is_exact;
4564       } else {
4565         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4566       }
4567       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4568     case Constant: {
4569       ciObject* o = const_oop();
4570       if( _ptr == Constant ) {
4571         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4572           xk = (klass() == tap->klass());
4573           ptr = NotNull;
4574           o = NULL;
4575           instance_id = InstanceBot;
4576         } else {
4577           xk = true;
4578         }
4579       } else if(above_centerline(_ptr)) {
4580         o = tap->const_oop();
4581         xk = true;
4582       } else {
4583         // Only precise for identical arrays
4584         xk = this->_klass_is_exact && (klass() == tap->klass());
4585       }
4586       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4587     }
4588     case NotNull:
4589     case BotPTR:
4590       // Compute new klass on demand, do not use tap->_klass
4591       if (above_centerline(this->_ptr))
4592             xk = tap->_klass_is_exact;
4593       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4594               (klass() == tap->klass()); // Only precise for identical arrays
4595       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4596     default: ShouldNotReachHere();
4597     }
4598   }
4599 
4600   // All arrays inherit from Object class
4601   case InstPtr: {
4602     const TypeInstPtr *tp = t->is_instptr();
4603     Offset offset = meet_offset(tp->offset());
4604     PTR ptr = meet_ptr(tp->ptr());
4605     int instance_id = meet_instance_id(tp->instance_id());
4606     const TypePtr* speculative = xmeet_speculative(tp);
4607     int depth = meet_inline_depth(tp->inline_depth());
4608     switch (ptr) {
4609     case TopPTR:
4610     case AnyNull:                // Fall 'down' to dual of object klass
4611       // For instances when a subclass meets a superclass we fall
4612       // below the centerline when the superclass is exact. We need to
4613       // do the same here.
4614       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4615         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4616       } else {
4617         // cannot subclass, so the meet has to fall badly below the centerline
4618         ptr = NotNull;
4619         instance_id = InstanceBot;
4620         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4621       }
4622     case Constant:
4623     case NotNull:
4624     case BotPTR:                // Fall down to object klass
4625       // LCA is object_klass, but if we subclass from the top we can do better
4626       if (above_centerline(tp->ptr())) {
4627         // If 'tp'  is above the centerline and it is Object class
4628         // then we can subclass in the Java class hierarchy.
4629         // For instances when a subclass meets a superclass we fall
4630         // below the centerline when the superclass is exact. We need
4631         // to do the same here.
4632         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4633           // that is, my array type is a subtype of 'tp' klass
4634           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4635                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4636         }
4637       }
4638       // The other case cannot happen, since t cannot be a subtype of an array.
4639       // The meet falls down to Object class below centerline.
4640       if( ptr == Constant )
4641          ptr = NotNull;
4642       instance_id = InstanceBot;
4643       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4644     default: typerr(t);
4645     }
4646   }
4647   }
4648   return this;                  // Lint noise
4649 }
4650 
4651 //------------------------------xdual------------------------------------------
4652 // Dual: compute field-by-field dual
4653 const Type *TypeAryPtr::xdual() const {
4654   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4655 }
4656 
4657 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4658   return _field_offset.meet(offset);
4659 }
4660 
4661 //------------------------------dual_offset------------------------------------
4662 Type::Offset TypeAryPtr::dual_field_offset() const {
4663   return _field_offset.dual();
4664 }
4665 
4666 //----------------------interface_vs_oop---------------------------------------
4667 #ifdef ASSERT
4668 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4669   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4670   if (t_aryptr) {
4671     return _ary->interface_vs_oop(t_aryptr->_ary);
4672   }
4673   return false;
4674 }
4675 #endif
4676 
4677 //------------------------------dump2------------------------------------------
4678 #ifndef PRODUCT
4679 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4680   _ary->dump2(d,depth,st);
4681   switch( _ptr ) {
4682   case Constant:
4683     const_oop()->print(st);
4684     break;
4685   case BotPTR:
4686     if (!WizardMode && !Verbose) {
4687       if( _klass_is_exact ) st->print(":exact");
4688       break;
4689     }
4690   case TopPTR:
4691   case AnyNull:
4692   case NotNull:
4693     st->print(":%s", ptr_msg[_ptr]);
4694     if( _klass_is_exact ) st->print(":exact");
4695     break;
4696   default:
4697     break;
4698   }
4699 
4700   if (elem()->isa_valuetype()) {
4701     st->print("(");
4702     _field_offset.dump2(st);
4703     st->print(")");
4704   }
4705   if (offset() != 0) {
4706     int header_size = objArrayOopDesc::header_size() * wordSize;
4707     if( _offset == Offset::top )       st->print("+undefined");
4708     else if( _offset == Offset::bottom )  st->print("+any");
4709     else if( offset() < header_size ) st->print("+%d", offset());
4710     else {
4711       BasicType basic_elem_type = elem()->basic_type();
4712       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4713       int elem_size = type2aelembytes(basic_elem_type);
4714       st->print("[%d]", (offset() - array_base)/elem_size);
4715     }
4716   }
4717   st->print(" *");
4718   if (_instance_id == InstanceTop)
4719     st->print(",iid=top");
4720   else if (_instance_id != InstanceBot)
4721     st->print(",iid=%d",_instance_id);
4722 
4723   dump_inline_depth(st);
4724   dump_speculative(st);
4725 }
4726 #endif
4727 
4728 bool TypeAryPtr::empty(void) const {
4729   if (_ary->empty())       return true;
4730   return TypeOopPtr::empty();
4731 }
4732 
4733 //------------------------------add_offset-------------------------------------
4734 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4735   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4736 }
4737 
4738 const Type *TypeAryPtr::remove_speculative() const {
4739   if (_speculative == NULL) {
4740     return this;
4741   }
4742   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4743   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4744 }
4745 
4746 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4747   if (!UseInlineDepthForSpeculativeTypes) {
4748     return this;
4749   }
4750   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4751 }
4752 
4753 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4754   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4755 }
4756 
4757 const TypePtr* TypeAryPtr::with_field_offset_and_offset(intptr_t offset) const {
4758   int adj = 0;
4759   if (offset != Type::OffsetBot && offset != Type::OffsetTop) {
4760     const Type* elemtype = elem();
4761     if (elemtype->isa_valuetype()) {
4762       if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
4763         adj = _offset.get();
4764         offset += _offset.get();
4765       }
4766       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4767       if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
4768         offset += _field_offset.get();
4769         if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
4770           offset += header;
4771         }
4772       }
4773       if (offset >= (intptr_t)header || offset < 0) {
4774         // Try to get the field of the value type array element we are pointing to
4775         ciKlass* arytype_klass = klass();
4776         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4777         ciValueKlass* vk = vak->element_klass()->as_value_klass();
4778         int shift = vak->log2_element_size();
4779         int mask = (1 << shift) - 1;
4780         intptr_t field_offset = ((offset - header) & mask);
4781         ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
4782         if (field == NULL) {
4783           // This may happen with nested AddP(base, AddP(base, base, offset), longcon(16))
4784           return add_offset(offset);
4785         } else {
4786           return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
4787         }
4788       }
4789     }
4790   }
4791   return add_offset(offset - adj);
4792 }
4793 
4794 //=============================================================================
4795 
4796 
4797 //=============================================================================
4798 
4799 const TypeValueTypePtr* TypeValueTypePtr::NOTNULL;
4800 //------------------------------make-------------------------------------------
4801 const TypeValueTypePtr* TypeValueTypePtr::make(PTR ptr, ciValueKlass* vk, ciObject* o, Offset offset, int instance_id, const TypePtr* speculative, int inline_depth, bool narrow) {
4802   return (TypeValueTypePtr*)(new TypeValueTypePtr(ptr, vk, o, offset, instance_id, speculative, inline_depth))->hashcons();
4803 }
4804 
4805 const TypePtr* TypeValueTypePtr::add_offset(intptr_t offset) const {
4806   return make(_ptr, value_klass(), _const_oop, Offset(offset), _instance_id, _speculative, _inline_depth);
4807 }
4808 
4809 //------------------------------cast_to_ptr_type-------------------------------
4810 const Type* TypeValueTypePtr::cast_to_ptr_type(PTR ptr) const {
4811   if (ptr == _ptr) return this;
4812   return make(ptr, value_klass(), _const_oop, _offset, _instance_id, _speculative, _inline_depth);
4813 }
4814 
4815 //-----------------------------cast_to_instance_id----------------------------
4816 const TypeOopPtr* TypeValueTypePtr::cast_to_instance_id(int instance_id) const {
4817   if (instance_id == _instance_id) return this;
4818   return make(_ptr, value_klass(), _const_oop, _offset, instance_id, _speculative, _inline_depth);
4819 }
4820 
4821 //------------------------------meet-------------------------------------------
4822 // Compute the MEET of two types.  It returns a new Type object.
4823 const Type* TypeValueTypePtr::xmeet_helper(const Type* t) const {
4824   // Perform a fast test for common case; meeting the same types together.
4825   if (this == t) return this;  // Meeting same type-rep?
4826 
4827   switch (t->base()) {          // switch on original type
4828     case Int:                     // Mixing ints & oops happens when javac
4829     case Long:                    // reuses local variables
4830     case FloatTop:
4831     case FloatCon:
4832     case FloatBot:
4833     case DoubleTop:
4834     case DoubleCon:
4835     case DoubleBot:
4836     case NarrowOop:
4837     case NarrowKlass:
4838     case Bottom:                  // Ye Olde Default
4839       return Type::BOTTOM;
4840 
4841     case MetadataPtr:
4842     case KlassPtr:
4843     case RawPtr:
4844     case AryPtr:
4845     case InstPtr:
4846       return TypePtr::BOTTOM;
4847 
4848     case Top:
4849       return this;
4850 
4851     default:                      // All else is a mistake
4852       typerr(t);
4853 
4854     case OopPtr: {
4855       // Found a OopPtr type vs self-ValueTypePtr type
4856       const TypeOopPtr* tp = t->is_oopptr();
4857       Offset offset = meet_offset(tp->offset());
4858       PTR ptr = meet_ptr(tp->ptr());
4859       int instance_id = meet_instance_id(tp->instance_id());
4860       const TypePtr* speculative = xmeet_speculative(tp);
4861       int depth = meet_inline_depth(tp->inline_depth());
4862       switch (tp->ptr()) {
4863       case TopPTR:
4864       case AnyNull: {
4865         return make(ptr, value_klass(), NULL, offset, instance_id, speculative, depth);
4866       }
4867       case NotNull:
4868       case BotPTR: {
4869         return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4870       }
4871       default: typerr(t);
4872       }
4873     }
4874 
4875     case AnyPtr: {
4876       // Found an AnyPtr type vs self-ValueTypePtr type
4877       const TypePtr* tp = t->is_ptr();
4878       Offset offset = meet_offset(tp->offset());
4879       PTR ptr = meet_ptr(tp->ptr());
4880       int instance_id = meet_instance_id(InstanceTop);
4881       const TypePtr* speculative = xmeet_speculative(tp);
4882       int depth = meet_inline_depth(tp->inline_depth());
4883       switch (tp->ptr()) {
4884       case Null:
4885         if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4886         // else fall through to AnyNull
4887       case TopPTR:
4888       case AnyNull: {
4889         return make(ptr, value_klass(), NULL, offset, instance_id, speculative, depth);
4890       }
4891       case NotNull:
4892       case BotPTR:
4893         return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4894       default: typerr(t);
4895       }
4896     }
4897 
4898     case ValueTypePtr: {
4899       // Found an ValueTypePtr type vs self-ValueTypePtr type
4900       const TypeValueTypePtr* tp = t->is_valuetypeptr();
4901       Offset offset = meet_offset(tp->offset());
4902       PTR ptr = meet_ptr(tp->ptr());
4903       int instance_id = meet_instance_id(InstanceTop);
4904       const TypePtr* speculative = xmeet_speculative(tp);
4905       int depth = meet_inline_depth(tp->inline_depth());
4906       // Compute constant oop
4907       ciObject* o = NULL;
4908       ciObject* this_oop  = const_oop();
4909       ciObject* tp_oop = tp->const_oop();
4910       ciKlass* klass = NULL;
4911       if (_klass != tp->_klass) {
4912         assert(is__Value() || tp->is__Value(), "impossible meet");
4913         if (above_centerline(ptr)) {
4914           klass = is__Value() ? tp->_klass : _klass;
4915         } else if (above_centerline(this->_ptr) && !above_centerline(tp->_ptr)) {
4916           klass = tp->_klass;
4917         } else if (above_centerline(tp->_ptr) && !above_centerline(this->_ptr)) {
4918           klass = _klass;
4919         } else {
4920           klass = is__Value() ? _klass : tp->_klass;
4921         }
4922       } else {
4923         klass = _klass;
4924       }
4925       if (ptr == Constant) {
4926         if (this_oop != NULL && tp_oop != NULL &&
4927             this_oop->equals(tp_oop) ) {
4928           o = this_oop;
4929         } else if (above_centerline(this ->_ptr)) {
4930           o = tp_oop;
4931         } else if (above_centerline(tp ->_ptr)) {
4932           o = this_oop;
4933         } else {
4934           ptr = NotNull;
4935         }
4936       }
4937       return make(ptr, klass->as_value_klass(), o, offset, instance_id, speculative, depth);
4938     }
4939     }
4940 }
4941 
4942 // Dual: compute field-by-field dual
4943 const Type* TypeValueTypePtr::xdual() const {
4944   return new TypeValueTypePtr(dual_ptr(), value_klass(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4945 }
4946 
4947 //------------------------------eq---------------------------------------------
4948 // Structural equality check for Type representations
4949 bool TypeValueTypePtr::eq(const Type* t) const {
4950   const TypeValueTypePtr* p = t->is_valuetypeptr();
4951   return klass()->equals(p->klass()) && TypeOopPtr::eq(p);
4952 }
4953 
4954 //------------------------------hash-------------------------------------------
4955 // Type-specific hashing function.
4956 int TypeValueTypePtr::hash(void) const {
4957   return java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4958 }
4959 
4960 //------------------------------is__Value--------------------------------------
4961 bool TypeValueTypePtr::is__Value() const {
4962   return klass()->equals(TypeKlassPtr::VALUE->klass());
4963 }
4964 
4965 //------------------------------dump2------------------------------------------
4966 #ifndef PRODUCT
4967 void TypeValueTypePtr::dump2(Dict &d, uint depth, outputStream *st) const {
4968   st->print("valuetype* ");
4969   klass()->print_name_on(st);
4970   st->print(":%s", ptr_msg[_ptr]);
4971   _offset.dump2(st);
4972 }
4973 #endif
4974 
4975 //=============================================================================
4976 
4977 //------------------------------hash-------------------------------------------
4978 // Type-specific hashing function.
4979 int TypeNarrowPtr::hash(void) const {
4980   return _ptrtype->hash() + 7;
4981 }
4982 
4983 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4984   return _ptrtype->singleton();
4985 }
4986 
4987 bool TypeNarrowPtr::empty(void) const {
4988   return _ptrtype->empty();
4989 }
4990 
4991 intptr_t TypeNarrowPtr::get_con() const {
4992   return _ptrtype->get_con();
4993 }
4994 
4995 bool TypeNarrowPtr::eq( const Type *t ) const {
4996   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4997   if (tc != NULL) {
4998     if (_ptrtype->base() != tc->_ptrtype->base()) {
4999       return false;
5000     }
5001     return tc->_ptrtype->eq(_ptrtype);
5002   }
5003   return false;
5004 }
5005 
5006 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
5007   const TypePtr* odual = _ptrtype->dual()->is_ptr();
5008   return make_same_narrowptr(odual);
5009 }
5010 
5011 
5012 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
5013   if (isa_same_narrowptr(kills)) {
5014     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5015     if (ft->empty())
5016       return Type::TOP;           // Canonical empty value
5017     if (ft->isa_ptr()) {
5018       return make_hash_same_narrowptr(ft->isa_ptr());
5019     }
5020     return ft;
5021   } else if (kills->isa_ptr()) {
5022     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5023     if (ft->empty())
5024       return Type::TOP;           // Canonical empty value
5025     return ft;
5026   } else {
5027     return Type::TOP;
5028   }
5029 }
5030 
5031 //------------------------------xmeet------------------------------------------
5032 // Compute the MEET of two types.  It returns a new Type object.
5033 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5034   // Perform a fast test for common case; meeting the same types together.
5035   if( this == t ) return this;  // Meeting same type-rep?
5036 
5037   if (t->base() == base()) {
5038     const Type* result = _ptrtype->xmeet(t->make_ptr());
5039     if (result->isa_ptr()) {
5040       return make_hash_same_narrowptr(result->is_ptr());
5041     }
5042     return result;
5043   }
5044 
5045   // Current "this->_base" is NarrowKlass or NarrowOop
5046   switch (t->base()) {          // switch on original type
5047 
5048   case Int:                     // Mixing ints & oops happens when javac
5049   case Long:                    // reuses local variables
5050   case FloatTop:
5051   case FloatCon:
5052   case FloatBot:
5053   case DoubleTop:
5054   case DoubleCon:
5055   case DoubleBot:
5056   case AnyPtr:
5057   case RawPtr:
5058   case OopPtr:
5059   case InstPtr:
5060   case ValueTypePtr:
5061   case AryPtr:
5062   case MetadataPtr:
5063   case KlassPtr:
5064   case NarrowOop:
5065   case NarrowKlass:
5066 
5067   case Bottom:                  // Ye Olde Default
5068     return Type::BOTTOM;
5069   case Top:
5070     return this;
5071 
5072   default:                      // All else is a mistake
5073     typerr(t);
5074 
5075   } // End of switch
5076 
5077   return this;
5078 }
5079 
5080 #ifndef PRODUCT
5081 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5082   _ptrtype->dump2(d, depth, st);
5083 }
5084 #endif
5085 
5086 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5087 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5088 
5089 
5090 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5091   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5092 }
5093 
5094 const Type* TypeNarrowOop::remove_speculative() const {
5095   return make(_ptrtype->remove_speculative()->is_ptr());
5096 }
5097 
5098 const Type* TypeNarrowOop::cleanup_speculative() const {
5099   return make(_ptrtype->cleanup_speculative()->is_ptr());
5100 }
5101 
5102 #ifndef PRODUCT
5103 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5104   st->print("narrowoop: ");
5105   TypeNarrowPtr::dump2(d, depth, st);
5106 }
5107 #endif
5108 
5109 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5110 
5111 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5112   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5113 }
5114 
5115 #ifndef PRODUCT
5116 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5117   st->print("narrowklass: ");
5118   TypeNarrowPtr::dump2(d, depth, st);
5119 }
5120 #endif
5121 
5122 
5123 //------------------------------eq---------------------------------------------
5124 // Structural equality check for Type representations
5125 bool TypeMetadataPtr::eq( const Type *t ) const {
5126   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5127   ciMetadata* one = metadata();
5128   ciMetadata* two = a->metadata();
5129   if (one == NULL || two == NULL) {
5130     return (one == two) && TypePtr::eq(t);
5131   } else {
5132     return one->equals(two) && TypePtr::eq(t);
5133   }
5134 }
5135 
5136 //------------------------------hash-------------------------------------------
5137 // Type-specific hashing function.
5138 int TypeMetadataPtr::hash(void) const {
5139   return
5140     (metadata() ? metadata()->hash() : 0) +
5141     TypePtr::hash();
5142 }
5143 
5144 //------------------------------singleton--------------------------------------
5145 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5146 // constants
5147 bool TypeMetadataPtr::singleton(void) const {
5148   // detune optimizer to not generate constant metadata + constant offset as a constant!
5149   // TopPTR, Null, AnyNull, Constant are all singletons
5150   return (offset() == 0) && !below_centerline(_ptr);
5151 }
5152 
5153 //------------------------------add_offset-------------------------------------
5154 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5155   return make( _ptr, _metadata, xadd_offset(offset));
5156 }
5157 
5158 //-----------------------------filter------------------------------------------
5159 // Do not allow interface-vs.-noninterface joins to collapse to top.
5160 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5161   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5162   if (ft == NULL || ft->empty())
5163     return Type::TOP;           // Canonical empty value
5164   return ft;
5165 }
5166 
5167  //------------------------------get_con----------------------------------------
5168 intptr_t TypeMetadataPtr::get_con() const {
5169   assert( _ptr == Null || _ptr == Constant, "" );
5170   assert(offset() >= 0, "");
5171 
5172   if (offset() != 0) {
5173     // After being ported to the compiler interface, the compiler no longer
5174     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5175     // to a handle at compile time.  This handle is embedded in the generated
5176     // code and dereferenced at the time the nmethod is made.  Until that time,
5177     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5178     // have access to the addresses!).  This does not seem to currently happen,
5179     // but this assertion here is to help prevent its occurence.
5180     tty->print_cr("Found oop constant with non-zero offset");
5181     ShouldNotReachHere();
5182   }
5183 
5184   return (intptr_t)metadata()->constant_encoding();
5185 }
5186 
5187 //------------------------------cast_to_ptr_type-------------------------------
5188 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5189   if( ptr == _ptr ) return this;
5190   return make(ptr, metadata(), _offset);
5191 }
5192 
5193 //------------------------------meet-------------------------------------------
5194 // Compute the MEET of two types.  It returns a new Type object.
5195 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5196   // Perform a fast test for common case; meeting the same types together.
5197   if( this == t ) return this;  // Meeting same type-rep?
5198 
5199   // Current "this->_base" is OopPtr
5200   switch (t->base()) {          // switch on original type
5201 
5202   case Int:                     // Mixing ints & oops happens when javac
5203   case Long:                    // reuses local variables
5204   case FloatTop:
5205   case FloatCon:
5206   case FloatBot:
5207   case DoubleTop:
5208   case DoubleCon:
5209   case DoubleBot:
5210   case NarrowOop:
5211   case NarrowKlass:
5212   case Bottom:                  // Ye Olde Default
5213     return Type::BOTTOM;
5214   case Top:
5215     return this;
5216 
5217   default:                      // All else is a mistake
5218     typerr(t);
5219 
5220   case AnyPtr: {
5221     // Found an AnyPtr type vs self-OopPtr type
5222     const TypePtr *tp = t->is_ptr();
5223     Offset offset = meet_offset(tp->offset());
5224     PTR ptr = meet_ptr(tp->ptr());
5225     switch (tp->ptr()) {
5226     case Null:
5227       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5228       // else fall through:
5229     case TopPTR:
5230     case AnyNull: {
5231       return make(ptr, _metadata, offset);
5232     }
5233     case BotPTR:
5234     case NotNull:
5235       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5236     default: typerr(t);
5237     }
5238   }
5239 
5240   case RawPtr:
5241   case KlassPtr:
5242   case OopPtr:
5243   case InstPtr:
5244   case ValueTypePtr:
5245   case AryPtr:
5246     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5247 
5248   case MetadataPtr: {
5249     const TypeMetadataPtr *tp = t->is_metadataptr();
5250     Offset offset = meet_offset(tp->offset());
5251     PTR tptr = tp->ptr();
5252     PTR ptr = meet_ptr(tptr);
5253     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5254     if (tptr == TopPTR || _ptr == TopPTR ||
5255         metadata()->equals(tp->metadata())) {
5256       return make(ptr, md, offset);
5257     }
5258     // metadata is different
5259     if( ptr == Constant ) {  // Cannot be equal constants, so...
5260       if( tptr == Constant && _ptr != Constant)  return t;
5261       if( _ptr == Constant && tptr != Constant)  return this;
5262       ptr = NotNull;            // Fall down in lattice
5263     }
5264     return make(ptr, NULL, offset);
5265     break;
5266   }
5267   } // End of switch
5268   return this;                  // Return the double constant
5269 }
5270 
5271 
5272 //------------------------------xdual------------------------------------------
5273 // Dual of a pure metadata pointer.
5274 const Type *TypeMetadataPtr::xdual() const {
5275   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5276 }
5277 
5278 //------------------------------dump2------------------------------------------
5279 #ifndef PRODUCT
5280 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5281   st->print("metadataptr:%s", ptr_msg[_ptr]);
5282   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5283   switch (offset()) {
5284   case OffsetTop: st->print("+top"); break;
5285   case OffsetBot: st->print("+any"); break;
5286   case         0: break;
5287   default:        st->print("+%d",offset()); break;
5288   }
5289 }
5290 #endif
5291 
5292 
5293 //=============================================================================
5294 // Convenience common pre-built type.
5295 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5296 
5297 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5298   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5299 }
5300 
5301 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5302   return make(Constant, m, Offset(0));
5303 }
5304 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5305   return make(Constant, m, Offset(0));
5306 }
5307 
5308 //------------------------------make-------------------------------------------
5309 // Create a meta data constant
5310 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5311   assert(m == NULL || !m->is_klass(), "wrong type");
5312   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5313 }
5314 
5315 
5316 //=============================================================================
5317 // Convenience common pre-built types.
5318 
5319 // Not-null object klass or below
5320 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5321 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5322 const TypeKlassPtr* TypeKlassPtr::BOTTOM;
5323 const TypeKlassPtr *TypeKlassPtr::VALUE;
5324 
5325 //------------------------------TypeKlassPtr-----------------------------------
5326 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5327   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5328 }
5329 
5330 //------------------------------make-------------------------------------------
5331 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5332 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5333   assert(k == NULL || k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5334   return (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5335 }
5336 
5337 //------------------------------eq---------------------------------------------
5338 // Structural equality check for Type representations
5339 bool TypeKlassPtr::eq( const Type *t ) const {
5340   const TypeKlassPtr *p = t->is_klassptr();
5341   return klass() == p->klass() && TypePtr::eq(p);
5342 }
5343 
5344 //------------------------------hash-------------------------------------------
5345 // Type-specific hashing function.
5346 int TypeKlassPtr::hash(void) const {
5347   return java_add(klass() != NULL ? klass()->hash() : (jint)0, (jint)TypePtr::hash());
5348 }
5349 
5350 //------------------------------singleton--------------------------------------
5351 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5352 // constants
5353 bool TypeKlassPtr::singleton(void) const {
5354   // detune optimizer to not generate constant klass + constant offset as a constant!
5355   // TopPTR, Null, AnyNull, Constant are all singletons
5356   return (offset() == 0) && !below_centerline(_ptr);
5357 }
5358 
5359 // Do not allow interface-vs.-noninterface joins to collapse to top.
5360 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5361   // logic here mirrors the one from TypeOopPtr::filter. See comments
5362   // there.
5363   const Type* ft = join_helper(kills, include_speculative);
5364   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5365   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5366 
5367   if (ft->empty()) {
5368     if (!empty() && ktkp != NULL && ktkp->is_loaded() && ktkp->klass()->is_interface())
5369       return kills;             // Uplift to interface
5370 
5371     return Type::TOP;           // Canonical empty value
5372   }
5373 
5374   // Interface klass type could be exact in opposite to interface type,
5375   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5376   if (ftkp != NULL && ktkp != NULL &&
5377       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5378       !ftkp->klass_is_exact() && // Keep exact interface klass
5379       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5380     return ktkp->cast_to_ptr_type(ftkp->ptr());
5381   }
5382 
5383   return ft;
5384 }
5385 
5386 //----------------------compute_klass------------------------------------------
5387 // Compute the defining klass for this class
5388 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5389   // Compute _klass based on element type.
5390   ciKlass* k_ary = NULL;
5391   const TypeAryPtr *tary;
5392   const Type* el = elem();
5393   if (el->isa_narrowoop()) {
5394     el = el->make_ptr();
5395   }
5396 
5397   // Get element klass
5398   if (el->isa_instptr() || el->isa_valuetypeptr()) {
5399     // Compute object array klass from element klass
5400     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5401   } else if (el->isa_valuetype()) {
5402     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5403   } else if ((tary = el->isa_aryptr()) != NULL) {
5404     // Compute array klass from element klass
5405     ciKlass* k_elem = tary->klass();
5406     // If element type is something like bottom[], k_elem will be null.
5407     if (k_elem != NULL)
5408       k_ary = ciObjArrayKlass::make(k_elem);
5409   } else if ((el->base() == Type::Top) ||
5410              (el->base() == Type::Bottom)) {
5411     // element type of Bottom occurs from meet of basic type
5412     // and object; Top occurs when doing join on Bottom.
5413     // Leave k_ary at NULL.
5414   } else {
5415     // Cannot compute array klass directly from basic type,
5416     // since subtypes of TypeInt all have basic type T_INT.
5417 #ifdef ASSERT
5418     if (verify && el->isa_int()) {
5419       // Check simple cases when verifying klass.
5420       BasicType bt = T_ILLEGAL;
5421       if (el == TypeInt::BYTE) {
5422         bt = T_BYTE;
5423       } else if (el == TypeInt::SHORT) {
5424         bt = T_SHORT;
5425       } else if (el == TypeInt::CHAR) {
5426         bt = T_CHAR;
5427       } else if (el == TypeInt::INT) {
5428         bt = T_INT;
5429       } else {
5430         return _klass; // just return specified klass
5431       }
5432       return ciTypeArrayKlass::make(bt);
5433     }
5434 #endif
5435     assert(!el->isa_int(),
5436            "integral arrays must be pre-equipped with a class");
5437     // Compute array klass directly from basic type
5438     k_ary = ciTypeArrayKlass::make(el->basic_type());
5439   }
5440   return k_ary;
5441 }
5442 
5443 //------------------------------klass------------------------------------------
5444 // Return the defining klass for this class
5445 ciKlass* TypeAryPtr::klass() const {
5446   if( _klass ) return _klass;   // Return cached value, if possible
5447 
5448   // Oops, need to compute _klass and cache it
5449   ciKlass* k_ary = compute_klass();
5450 
5451   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5452     // The _klass field acts as a cache of the underlying
5453     // ciKlass for this array type.  In order to set the field,
5454     // we need to cast away const-ness.
5455     //
5456     // IMPORTANT NOTE: we *never* set the _klass field for the
5457     // type TypeAryPtr::OOPS.  This Type is shared between all
5458     // active compilations.  However, the ciKlass which represents
5459     // this Type is *not* shared between compilations, so caching
5460     // this value would result in fetching a dangling pointer.
5461     //
5462     // Recomputing the underlying ciKlass for each request is
5463     // a bit less efficient than caching, but calls to
5464     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5465     ((TypeAryPtr*)this)->_klass = k_ary;
5466     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5467         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5468       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5469     }
5470   }
5471   return k_ary;
5472 }
5473 
5474 
5475 //------------------------------add_offset-------------------------------------
5476 // Access internals of klass object
5477 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5478   return make( _ptr, klass(), xadd_offset(offset) );
5479 }
5480 
5481 //------------------------------cast_to_ptr_type-------------------------------
5482 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5483   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5484   if( ptr == _ptr ) return this;
5485   return make(ptr, _klass, _offset);
5486 }
5487 
5488 
5489 //-----------------------------cast_to_exactness-------------------------------
5490 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5491   if( klass_is_exact == _klass_is_exact ) return this;
5492   if (!UseExactTypes)  return this;
5493   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5494 }
5495 
5496 
5497 //-----------------------------as_instance_type--------------------------------
5498 // Corresponding type for an instance of the given class.
5499 // It will be NotNull, and exact if and only if the klass type is exact.
5500 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5501   ciKlass* k = klass();
5502   assert(k != NULL, "klass should not be NULL");
5503   bool    xk = klass_is_exact();
5504   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5505   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5506   guarantee(toop != NULL, "need type for given klass");
5507   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5508   return toop->cast_to_exactness(xk)->is_oopptr();
5509 }
5510 
5511 
5512 //------------------------------xmeet------------------------------------------
5513 // Compute the MEET of two types, return a new Type object.
5514 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5515   // Perform a fast test for common case; meeting the same types together.
5516   if( this == t ) return this;  // Meeting same type-rep?
5517 
5518   // Current "this->_base" is Pointer
5519   switch (t->base()) {          // switch on original type
5520 
5521   case Int:                     // Mixing ints & oops happens when javac
5522   case Long:                    // reuses local variables
5523   case FloatTop:
5524   case FloatCon:
5525   case FloatBot:
5526   case DoubleTop:
5527   case DoubleCon:
5528   case DoubleBot:
5529   case NarrowOop:
5530   case NarrowKlass:
5531   case Bottom:                  // Ye Olde Default
5532     return Type::BOTTOM;
5533   case Top:
5534     return this;
5535 
5536   default:                      // All else is a mistake
5537     typerr(t);
5538 
5539   case AnyPtr: {                // Meeting to AnyPtrs
5540     // Found an AnyPtr type vs self-KlassPtr type
5541     const TypePtr *tp = t->is_ptr();
5542     Offset offset = meet_offset(tp->offset());
5543     PTR ptr = meet_ptr(tp->ptr());
5544     switch (tp->ptr()) {
5545     case TopPTR:
5546       return this;
5547     case Null:
5548       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5549     case AnyNull:
5550       return make( ptr, klass(), offset );
5551     case BotPTR:
5552     case NotNull:
5553       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5554     default: typerr(t);
5555     }
5556   }
5557 
5558   case RawPtr:
5559   case MetadataPtr:
5560   case OopPtr:
5561   case AryPtr:                  // Meet with AryPtr
5562   case InstPtr:                 // Meet with InstPtr
5563   case ValueTypePtr:
5564     return TypePtr::BOTTOM;
5565 
5566   //
5567   //             A-top         }
5568   //           /   |   \       }  Tops
5569   //       B-top A-any C-top   }
5570   //          | /  |  \ |      }  Any-nulls
5571   //       B-any   |   C-any   }
5572   //          |    |    |
5573   //       B-con A-con C-con   } constants; not comparable across classes
5574   //          |    |    |
5575   //       B-not   |   C-not   }
5576   //          | \  |  / |      }  not-nulls
5577   //       B-bot A-not C-bot   }
5578   //           \   |   /       }  Bottoms
5579   //             A-bot         }
5580   //
5581 
5582   case KlassPtr: {  // Meet two KlassPtr types
5583     const TypeKlassPtr *tkls = t->is_klassptr();
5584     Offset  off  = meet_offset(tkls->offset());
5585     PTR  ptr     = meet_ptr(tkls->ptr());
5586 
5587     if (klass() == NULL || tkls->klass() == NULL) {
5588       ciKlass* k = NULL;
5589       if (ptr == Constant) {
5590         k = (klass() == NULL) ? tkls->klass() : klass();
5591       }
5592       return make(ptr, k, off);
5593     }
5594 
5595     // Check for easy case; klasses are equal (and perhaps not loaded!)
5596     // If we have constants, then we created oops so classes are loaded
5597     // and we can handle the constants further down.  This case handles
5598     // not-loaded classes
5599     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5600       return make( ptr, klass(), off );
5601     }
5602 
5603     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5604     ciKlass* tkls_klass = tkls->klass();
5605     ciKlass* this_klass = this->klass();
5606     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5607     assert( this_klass->is_loaded(), "This class should have been loaded.");
5608 
5609     // If 'this' type is above the centerline and is a superclass of the
5610     // other, we can treat 'this' as having the same type as the other.
5611     if ((above_centerline(this->ptr())) &&
5612         tkls_klass->is_subtype_of(this_klass)) {
5613       this_klass = tkls_klass;
5614     }
5615     // If 'tinst' type is above the centerline and is a superclass of the
5616     // other, we can treat 'tinst' as having the same type as the other.
5617     if ((above_centerline(tkls->ptr())) &&
5618         this_klass->is_subtype_of(tkls_klass)) {
5619       tkls_klass = this_klass;
5620     }
5621 
5622     // Check for classes now being equal
5623     if (tkls_klass->equals(this_klass)) {
5624       // If the klasses are equal, the constants may still differ.  Fall to
5625       // NotNull if they do (neither constant is NULL; that is a special case
5626       // handled elsewhere).
5627       if( ptr == Constant ) {
5628         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5629             this->klass()->equals(tkls->klass()));
5630         else if (above_centerline(this->ptr()));
5631         else if (above_centerline(tkls->ptr()));
5632         else
5633           ptr = NotNull;
5634       }
5635       return make( ptr, this_klass, off );
5636     } // Else classes are not equal
5637 
5638     // Since klasses are different, we require the LCA in the Java
5639     // class hierarchy - which means we have to fall to at least NotNull.
5640     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5641       ptr = NotNull;
5642     // Now we find the LCA of Java classes
5643     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5644     return   make( ptr, k, off );
5645   } // End of case KlassPtr
5646 
5647   } // End of switch
5648   return this;                  // Return the double constant
5649 }
5650 
5651 //------------------------------xdual------------------------------------------
5652 // Dual: compute field-by-field dual
5653 const Type    *TypeKlassPtr::xdual() const {
5654   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5655 }
5656 
5657 //------------------------------get_con----------------------------------------
5658 intptr_t TypeKlassPtr::get_con() const {
5659   assert( _ptr == Null || _ptr == Constant, "" );
5660   assert(offset() >= 0, "");
5661 
5662   if (offset() != 0) {
5663     // After being ported to the compiler interface, the compiler no longer
5664     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5665     // to a handle at compile time.  This handle is embedded in the generated
5666     // code and dereferenced at the time the nmethod is made.  Until that time,
5667     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5668     // have access to the addresses!).  This does not seem to currently happen,
5669     // but this assertion here is to help prevent its occurence.
5670     tty->print_cr("Found oop constant with non-zero offset");
5671     ShouldNotReachHere();
5672   }
5673 
5674   return (intptr_t)klass()->constant_encoding();
5675 }
5676 //------------------------------dump2------------------------------------------
5677 // Dump Klass Type
5678 #ifndef PRODUCT
5679 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5680   switch( _ptr ) {
5681   case Constant:
5682     st->print("precise ");
5683   case NotNull:
5684     {
5685       if (klass() != NULL) {
5686         const char* name = klass()->name()->as_utf8();
5687         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5688       } else {
5689         st->print("klass BOTTOM");
5690       }
5691     }
5692   case BotPTR:
5693     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5694   case TopPTR:
5695   case AnyNull:
5696     st->print(":%s", ptr_msg[_ptr]);
5697     if( _klass_is_exact ) st->print(":exact");
5698     break;
5699   default:
5700     break;
5701   }
5702 
5703   _offset.dump2(st);
5704 
5705   st->print(" *");
5706 }
5707 #endif
5708 
5709 
5710 
5711 //=============================================================================
5712 // Convenience common pre-built types.
5713 
5714 //------------------------------make-------------------------------------------
5715 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5716                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5717   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5718 }
5719 
5720 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5721   return make(domain, domain, range, range);
5722 }
5723 
5724 //------------------------------make-------------------------------------------
5725 const TypeFunc *TypeFunc::make(ciMethod* method) {
5726   Compile* C = Compile::current();
5727   const TypeFunc* tf = C->last_tf(method); // check cache
5728   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5729   const TypeTuple *domain_sig, *domain_cc;
5730   // Value type arguments are not passed by reference, instead each
5731   // field of the value type is passed as an argument. We maintain 2
5732   // views of the argument list here: one based on the signature (with
5733   // a value type argument as a single slot), one based on the actual
5734   // calling convention (with a value type argument as a list of its
5735   // fields).
5736   if (method->is_static()) {
5737     domain_sig = TypeTuple::make_domain(NULL, method->signature(), false);
5738     domain_cc = TypeTuple::make_domain(NULL, method->signature(), ValueTypePassFieldsAsArgs);
5739   } else {
5740     domain_sig = TypeTuple::make_domain(method->holder(), method->signature(), false);
5741     domain_cc = TypeTuple::make_domain(method->holder(), method->signature(), ValueTypePassFieldsAsArgs);
5742   }
5743   const TypeTuple *range_sig = TypeTuple::make_range(method->signature(), false);
5744   const TypeTuple *range_cc = TypeTuple::make_range(method->signature(), ValueTypeReturnedAsFields);
5745   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5746   C->set_last_tf(method, tf);  // fill cache
5747   return tf;
5748 }
5749 
5750 //------------------------------meet-------------------------------------------
5751 // Compute the MEET of two types.  It returns a new Type object.
5752 const Type *TypeFunc::xmeet( const Type *t ) const {
5753   // Perform a fast test for common case; meeting the same types together.
5754   if( this == t ) return this;  // Meeting same type-rep?
5755 
5756   // Current "this->_base" is Func
5757   switch (t->base()) {          // switch on original type
5758 
5759   case Bottom:                  // Ye Olde Default
5760     return t;
5761 
5762   default:                      // All else is a mistake
5763     typerr(t);
5764 
5765   case Top:
5766     break;
5767   }
5768   return this;                  // Return the double constant
5769 }
5770 
5771 //------------------------------xdual------------------------------------------
5772 // Dual: compute field-by-field dual
5773 const Type *TypeFunc::xdual() const {
5774   return this;
5775 }
5776 
5777 //------------------------------eq---------------------------------------------
5778 // Structural equality check for Type representations
5779 bool TypeFunc::eq( const Type *t ) const {
5780   const TypeFunc *a = (const TypeFunc*)t;
5781   return _domain_sig == a->_domain_sig &&
5782     _domain_cc == a->_domain_cc &&
5783     _range_sig == a->_range_sig &&
5784     _range_cc == a->_range_cc;
5785 }
5786 
5787 //------------------------------hash-------------------------------------------
5788 // Type-specific hashing function.
5789 int TypeFunc::hash(void) const {
5790   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5791 }
5792 
5793 //------------------------------dump2------------------------------------------
5794 // Dump Function Type
5795 #ifndef PRODUCT
5796 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5797   if( _range_sig->cnt() <= Parms )
5798     st->print("void");
5799   else {
5800     uint i;
5801     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5802       _range_sig->field_at(i)->dump2(d,depth,st);
5803       st->print("/");
5804     }
5805     _range_sig->field_at(i)->dump2(d,depth,st);
5806   }
5807   st->print(" ");
5808   st->print("( ");
5809   if( !depth || d[this] ) {     // Check for recursive dump
5810     st->print("...)");
5811     return;
5812   }
5813   d.Insert((void*)this,(void*)this);    // Stop recursion
5814   if (Parms < _domain_sig->cnt())
5815     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5816   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5817     st->print(", ");
5818     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5819   }
5820   st->print(" )");
5821 }
5822 #endif
5823 
5824 //------------------------------singleton--------------------------------------
5825 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5826 // constants (Ldi nodes).  Singletons are integer, float or double constants
5827 // or a single symbol.
5828 bool TypeFunc::singleton(void) const {
5829   return false;                 // Never a singleton
5830 }
5831 
5832 bool TypeFunc::empty(void) const {
5833   return false;                 // Never empty
5834 }
5835 
5836 
5837 BasicType TypeFunc::return_type() const{
5838   if (range_sig()->cnt() == TypeFunc::Parms) {
5839     return T_VOID;
5840   }
5841   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5842 }