1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/abstractCompiler.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/interpreterRuntime.hpp"
  42 #include "logging/log.hpp"
  43 #include "memory/metaspaceShared.hpp"
  44 #include "memory/oopFactory.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "memory/universe.inline.hpp"
  47 #include "oops/fieldStreams.hpp"
  48 #include "oops/klass.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/objArrayOop.inline.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/valueKlass.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/compilationPolicy.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/init.hpp"
  63 #include "runtime/interfaceSupport.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/vframe.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "trace/tracing.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/dtrace.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/hashtable.inline.hpp"
  75 #include "utilities/macros.hpp"
  76 #include "utilities/xmlstream.hpp"
  77 #ifdef COMPILER1
  78 #include "c1/c1_Runtime1.hpp"
  79 #endif
  80 
  81 // Shared stub locations
  82 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  83 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  84 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  88 address             SharedRuntime::_resolve_static_call_entry;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  94 
  95 #ifdef COMPILER2
  96 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  97 #endif // COMPILER2
  98 
  99 
 100 //----------------------------generate_stubs-----------------------------------
 101 void SharedRuntime::generate_stubs() {
 102   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 103   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 108   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 109 
 110 #if COMPILER2_OR_JVMCI
 111   // Vectors are generated only by C2 and JVMCI.
 112   bool support_wide = is_wide_vector(MaxVectorSize);
 113   if (support_wide) {
 114     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 115   }
 116 #endif // COMPILER2_OR_JVMCI
 117   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 118   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 119 
 120   generate_deopt_blob();
 121 
 122 #ifdef COMPILER2
 123   generate_uncommon_trap_blob();
 124 #endif // COMPILER2
 125 }
 126 
 127 #include <math.h>
 128 
 129 // Implementation of SharedRuntime
 130 
 131 #ifndef PRODUCT
 132 // For statistics
 133 int SharedRuntime::_ic_miss_ctr = 0;
 134 int SharedRuntime::_wrong_method_ctr = 0;
 135 int SharedRuntime::_resolve_static_ctr = 0;
 136 int SharedRuntime::_resolve_virtual_ctr = 0;
 137 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 138 int SharedRuntime::_implicit_null_throws = 0;
 139 int SharedRuntime::_implicit_div0_throws = 0;
 140 int SharedRuntime::_throw_null_ctr = 0;
 141 
 142 int SharedRuntime::_nof_normal_calls = 0;
 143 int SharedRuntime::_nof_optimized_calls = 0;
 144 int SharedRuntime::_nof_inlined_calls = 0;
 145 int SharedRuntime::_nof_megamorphic_calls = 0;
 146 int SharedRuntime::_nof_static_calls = 0;
 147 int SharedRuntime::_nof_inlined_static_calls = 0;
 148 int SharedRuntime::_nof_interface_calls = 0;
 149 int SharedRuntime::_nof_optimized_interface_calls = 0;
 150 int SharedRuntime::_nof_inlined_interface_calls = 0;
 151 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 152 int SharedRuntime::_nof_removable_exceptions = 0;
 153 
 154 int SharedRuntime::_new_instance_ctr=0;
 155 int SharedRuntime::_new_array_ctr=0;
 156 int SharedRuntime::_multi1_ctr=0;
 157 int SharedRuntime::_multi2_ctr=0;
 158 int SharedRuntime::_multi3_ctr=0;
 159 int SharedRuntime::_multi4_ctr=0;
 160 int SharedRuntime::_multi5_ctr=0;
 161 int SharedRuntime::_mon_enter_stub_ctr=0;
 162 int SharedRuntime::_mon_exit_stub_ctr=0;
 163 int SharedRuntime::_mon_enter_ctr=0;
 164 int SharedRuntime::_mon_exit_ctr=0;
 165 int SharedRuntime::_partial_subtype_ctr=0;
 166 int SharedRuntime::_jbyte_array_copy_ctr=0;
 167 int SharedRuntime::_jshort_array_copy_ctr=0;
 168 int SharedRuntime::_jint_array_copy_ctr=0;
 169 int SharedRuntime::_jlong_array_copy_ctr=0;
 170 int SharedRuntime::_oop_array_copy_ctr=0;
 171 int SharedRuntime::_checkcast_array_copy_ctr=0;
 172 int SharedRuntime::_unsafe_array_copy_ctr=0;
 173 int SharedRuntime::_generic_array_copy_ctr=0;
 174 int SharedRuntime::_slow_array_copy_ctr=0;
 175 int SharedRuntime::_find_handler_ctr=0;
 176 int SharedRuntime::_rethrow_ctr=0;
 177 
 178 int     SharedRuntime::_ICmiss_index                    = 0;
 179 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 180 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 181 
 182 
 183 void SharedRuntime::trace_ic_miss(address at) {
 184   for (int i = 0; i < _ICmiss_index; i++) {
 185     if (_ICmiss_at[i] == at) {
 186       _ICmiss_count[i]++;
 187       return;
 188     }
 189   }
 190   int index = _ICmiss_index++;
 191   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 192   _ICmiss_at[index] = at;
 193   _ICmiss_count[index] = 1;
 194 }
 195 
 196 void SharedRuntime::print_ic_miss_histogram() {
 197   if (ICMissHistogram) {
 198     tty->print_cr("IC Miss Histogram:");
 199     int tot_misses = 0;
 200     for (int i = 0; i < _ICmiss_index; i++) {
 201       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 202       tot_misses += _ICmiss_count[i];
 203     }
 204     tty->print_cr("Total IC misses: %7d", tot_misses);
 205   }
 206 }
 207 #endif // PRODUCT
 208 
 209 #if INCLUDE_ALL_GCS
 210 
 211 // G1 write-barrier pre: executed before a pointer store.
 212 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 213   if (orig == NULL) {
 214     assert(false, "should be optimized out");
 215     return;
 216   }
 217   assert(oopDesc::is_oop(orig, true /* ignore mark word */), "Error");
 218   // store the original value that was in the field reference
 219   thread->satb_mark_queue().enqueue(orig);
 220 JRT_END
 221 
 222 // G1 write-barrier post: executed after a pointer store.
 223 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 224   thread->dirty_card_queue().enqueue(card_addr);
 225 JRT_END
 226 
 227 #endif // INCLUDE_ALL_GCS
 228 
 229 
 230 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 231   return x * y;
 232 JRT_END
 233 
 234 
 235 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 236   if (x == min_jlong && y == CONST64(-1)) {
 237     return x;
 238   } else {
 239     return x / y;
 240   }
 241 JRT_END
 242 
 243 
 244 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 245   if (x == min_jlong && y == CONST64(-1)) {
 246     return 0;
 247   } else {
 248     return x % y;
 249   }
 250 JRT_END
 251 
 252 
 253 const juint  float_sign_mask  = 0x7FFFFFFF;
 254 const juint  float_infinity   = 0x7F800000;
 255 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 256 const julong double_infinity  = CONST64(0x7FF0000000000000);
 257 
 258 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 259 #ifdef _WIN64
 260   // 64-bit Windows on amd64 returns the wrong values for
 261   // infinity operands.
 262   union { jfloat f; juint i; } xbits, ybits;
 263   xbits.f = x;
 264   ybits.f = y;
 265   // x Mod Infinity == x unless x is infinity
 266   if (((xbits.i & float_sign_mask) != float_infinity) &&
 267        ((ybits.i & float_sign_mask) == float_infinity) ) {
 268     return x;
 269   }
 270   return ((jfloat)fmod_winx64((double)x, (double)y));
 271 #else
 272   return ((jfloat)fmod((double)x,(double)y));
 273 #endif
 274 JRT_END
 275 
 276 
 277 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 278 #ifdef _WIN64
 279   union { jdouble d; julong l; } xbits, ybits;
 280   xbits.d = x;
 281   ybits.d = y;
 282   // x Mod Infinity == x unless x is infinity
 283   if (((xbits.l & double_sign_mask) != double_infinity) &&
 284        ((ybits.l & double_sign_mask) == double_infinity) ) {
 285     return x;
 286   }
 287   return ((jdouble)fmod_winx64((double)x, (double)y));
 288 #else
 289   return ((jdouble)fmod((double)x,(double)y));
 290 #endif
 291 JRT_END
 292 
 293 #ifdef __SOFTFP__
 294 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 295   return x + y;
 296 JRT_END
 297 
 298 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 299   return x - y;
 300 JRT_END
 301 
 302 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 303   return x * y;
 304 JRT_END
 305 
 306 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 307   return x / y;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 311   return x + y;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 315   return x - y;
 316 JRT_END
 317 
 318 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 319   return x * y;
 320 JRT_END
 321 
 322 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 323   return x / y;
 324 JRT_END
 325 
 326 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 327   return (jfloat)x;
 328 JRT_END
 329 
 330 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 331   return (jdouble)x;
 332 JRT_END
 333 
 334 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 335   return (jdouble)x;
 336 JRT_END
 337 
 338 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 339   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 340 JRT_END
 341 
 342 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 343   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 344 JRT_END
 345 
 346 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 347   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 348 JRT_END
 349 
 350 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 351   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 352 JRT_END
 353 
 354 // Functions to return the opposite of the aeabi functions for nan.
 355 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 356   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 360   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 364   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 368   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 369 JRT_END
 370 
 371 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 372   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 373 JRT_END
 374 
 375 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 376   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 377 JRT_END
 378 
 379 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 380   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 381 JRT_END
 382 
 383 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 384   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 385 JRT_END
 386 
 387 // Intrinsics make gcc generate code for these.
 388 float  SharedRuntime::fneg(float f)   {
 389   return -f;
 390 }
 391 
 392 double SharedRuntime::dneg(double f)  {
 393   return -f;
 394 }
 395 
 396 #endif // __SOFTFP__
 397 
 398 #if defined(__SOFTFP__) || defined(E500V2)
 399 // Intrinsics make gcc generate code for these.
 400 double SharedRuntime::dabs(double f)  {
 401   return (f <= (double)0.0) ? (double)0.0 - f : f;
 402 }
 403 
 404 #endif
 405 
 406 #if defined(__SOFTFP__) || defined(PPC)
 407 double SharedRuntime::dsqrt(double f) {
 408   return sqrt(f);
 409 }
 410 #endif
 411 
 412 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 413   if (g_isnan(x))
 414     return 0;
 415   if (x >= (jfloat) max_jint)
 416     return max_jint;
 417   if (x <= (jfloat) min_jint)
 418     return min_jint;
 419   return (jint) x;
 420 JRT_END
 421 
 422 
 423 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 424   if (g_isnan(x))
 425     return 0;
 426   if (x >= (jfloat) max_jlong)
 427     return max_jlong;
 428   if (x <= (jfloat) min_jlong)
 429     return min_jlong;
 430   return (jlong) x;
 431 JRT_END
 432 
 433 
 434 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 435   if (g_isnan(x))
 436     return 0;
 437   if (x >= (jdouble) max_jint)
 438     return max_jint;
 439   if (x <= (jdouble) min_jint)
 440     return min_jint;
 441   return (jint) x;
 442 JRT_END
 443 
 444 
 445 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 446   if (g_isnan(x))
 447     return 0;
 448   if (x >= (jdouble) max_jlong)
 449     return max_jlong;
 450   if (x <= (jdouble) min_jlong)
 451     return min_jlong;
 452   return (jlong) x;
 453 JRT_END
 454 
 455 
 456 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 457   return (jfloat)x;
 458 JRT_END
 459 
 460 
 461 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 462   return (jfloat)x;
 463 JRT_END
 464 
 465 
 466 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 467   return (jdouble)x;
 468 JRT_END
 469 
 470 // Exception handling across interpreter/compiler boundaries
 471 //
 472 // exception_handler_for_return_address(...) returns the continuation address.
 473 // The continuation address is the entry point of the exception handler of the
 474 // previous frame depending on the return address.
 475 
 476 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 477   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 478   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 479 
 480   // Reset method handle flag.
 481   thread->set_is_method_handle_return(false);
 482 
 483 #if INCLUDE_JVMCI
 484   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 485   // and other exception handler continuations do not read it
 486   thread->set_exception_pc(NULL);
 487 #endif // INCLUDE_JVMCI
 488 
 489   // The fastest case first
 490   CodeBlob* blob = CodeCache::find_blob(return_address);
 491   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 492   if (nm != NULL) {
 493     // Set flag if return address is a method handle call site.
 494     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 495     // native nmethods don't have exception handlers
 496     assert(!nm->is_native_method(), "no exception handler");
 497     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 498     if (nm->is_deopt_pc(return_address)) {
 499       // If we come here because of a stack overflow, the stack may be
 500       // unguarded. Reguard the stack otherwise if we return to the
 501       // deopt blob and the stack bang causes a stack overflow we
 502       // crash.
 503       bool guard_pages_enabled = thread->stack_guards_enabled();
 504       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 505       if (thread->reserved_stack_activation() != thread->stack_base()) {
 506         thread->set_reserved_stack_activation(thread->stack_base());
 507       }
 508       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 509       return SharedRuntime::deopt_blob()->unpack_with_exception();
 510     } else {
 511       return nm->exception_begin();
 512     }
 513   }
 514 
 515   // Entry code
 516   if (StubRoutines::returns_to_call_stub(return_address)) {
 517     return StubRoutines::catch_exception_entry();
 518   }
 519   // Interpreted code
 520   if (Interpreter::contains(return_address)) {
 521     return Interpreter::rethrow_exception_entry();
 522   }
 523 
 524   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 525   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 526 
 527 #ifndef PRODUCT
 528   { ResourceMark rm;
 529     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 530     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 531     tty->print_cr("b) other problem");
 532   }
 533 #endif // PRODUCT
 534 
 535   ShouldNotReachHere();
 536   return NULL;
 537 }
 538 
 539 
 540 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 541   return raw_exception_handler_for_return_address(thread, return_address);
 542 JRT_END
 543 
 544 
 545 address SharedRuntime::get_poll_stub(address pc) {
 546   address stub;
 547   // Look up the code blob
 548   CodeBlob *cb = CodeCache::find_blob(pc);
 549 
 550   // Should be an nmethod
 551   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 552 
 553   // Look up the relocation information
 554   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 555     "safepoint polling: type must be poll");
 556 
 557 #ifdef ASSERT
 558   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 559     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 560     Disassembler::decode(cb);
 561     fatal("Only polling locations are used for safepoint");
 562   }
 563 #endif
 564 
 565   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 566   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 567   if (at_poll_return) {
 568     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 569            "polling page return stub not created yet");
 570     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 571   } else if (has_wide_vectors) {
 572     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 573            "polling page vectors safepoint stub not created yet");
 574     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 575   } else {
 576     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 577            "polling page safepoint stub not created yet");
 578     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 579   }
 580   log_debug(safepoint)("... found polling page %s exception at pc = "
 581                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 582                        at_poll_return ? "return" : "loop",
 583                        (intptr_t)pc, (intptr_t)stub);
 584   return stub;
 585 }
 586 
 587 
 588 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 589   assert(caller.is_interpreted_frame(), "");
 590   int args_size = ArgumentSizeComputer(sig).size() + 1;
 591   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 592   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 593   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 594   return result;
 595 }
 596 
 597 
 598 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 599   if (JvmtiExport::can_post_on_exceptions()) {
 600     vframeStream vfst(thread, true);
 601     methodHandle method = methodHandle(thread, vfst.method());
 602     address bcp = method()->bcp_from(vfst.bci());
 603     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 604   }
 605   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 606 }
 607 
 608 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 609   Handle h_exception = Exceptions::new_exception(thread, name, message);
 610   throw_and_post_jvmti_exception(thread, h_exception);
 611 }
 612 
 613 // The interpreter code to call this tracing function is only
 614 // called/generated when UL is on for redefine, class and has the right level
 615 // and tags. Since obsolete methods are never compiled, we don't have
 616 // to modify the compilers to generate calls to this function.
 617 //
 618 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 619     JavaThread* thread, Method* method))
 620   if (method->is_obsolete()) {
 621     // We are calling an obsolete method, but this is not necessarily
 622     // an error. Our method could have been redefined just after we
 623     // fetched the Method* from the constant pool.
 624     ResourceMark rm;
 625     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 626   }
 627   return 0;
 628 JRT_END
 629 
 630 // ret_pc points into caller; we are returning caller's exception handler
 631 // for given exception
 632 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 633                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 634   assert(cm != NULL, "must exist");
 635   ResourceMark rm;
 636 
 637 #if INCLUDE_JVMCI
 638   if (cm->is_compiled_by_jvmci()) {
 639     // lookup exception handler for this pc
 640     int catch_pco = ret_pc - cm->code_begin();
 641     ExceptionHandlerTable table(cm);
 642     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 643     if (t != NULL) {
 644       return cm->code_begin() + t->pco();
 645     } else {
 646       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 647     }
 648   }
 649 #endif // INCLUDE_JVMCI
 650 
 651   nmethod* nm = cm->as_nmethod();
 652   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 653   // determine handler bci, if any
 654   EXCEPTION_MARK;
 655 
 656   int handler_bci = -1;
 657   int scope_depth = 0;
 658   if (!force_unwind) {
 659     int bci = sd->bci();
 660     bool recursive_exception = false;
 661     do {
 662       bool skip_scope_increment = false;
 663       // exception handler lookup
 664       Klass* ek = exception->klass();
 665       methodHandle mh(THREAD, sd->method());
 666       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 667       if (HAS_PENDING_EXCEPTION) {
 668         recursive_exception = true;
 669         // We threw an exception while trying to find the exception handler.
 670         // Transfer the new exception to the exception handle which will
 671         // be set into thread local storage, and do another lookup for an
 672         // exception handler for this exception, this time starting at the
 673         // BCI of the exception handler which caused the exception to be
 674         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 675         // argument to ensure that the correct exception is thrown (4870175).
 676         recursive_exception_occurred = true;
 677         exception = Handle(THREAD, PENDING_EXCEPTION);
 678         CLEAR_PENDING_EXCEPTION;
 679         if (handler_bci >= 0) {
 680           bci = handler_bci;
 681           handler_bci = -1;
 682           skip_scope_increment = true;
 683         }
 684       }
 685       else {
 686         recursive_exception = false;
 687       }
 688       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 689         sd = sd->sender();
 690         if (sd != NULL) {
 691           bci = sd->bci();
 692         }
 693         ++scope_depth;
 694       }
 695     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 696   }
 697 
 698   // found handling method => lookup exception handler
 699   int catch_pco = ret_pc - nm->code_begin();
 700 
 701   ExceptionHandlerTable table(nm);
 702   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 703   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 704     // Allow abbreviated catch tables.  The idea is to allow a method
 705     // to materialize its exceptions without committing to the exact
 706     // routing of exceptions.  In particular this is needed for adding
 707     // a synthetic handler to unlock monitors when inlining
 708     // synchronized methods since the unlock path isn't represented in
 709     // the bytecodes.
 710     t = table.entry_for(catch_pco, -1, 0);
 711   }
 712 
 713 #ifdef COMPILER1
 714   if (t == NULL && nm->is_compiled_by_c1()) {
 715     assert(nm->unwind_handler_begin() != NULL, "");
 716     return nm->unwind_handler_begin();
 717   }
 718 #endif
 719 
 720   if (t == NULL) {
 721     ttyLocker ttyl;
 722     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 723     tty->print_cr("   Exception:");
 724     exception->print();
 725     tty->cr();
 726     tty->print_cr(" Compiled exception table :");
 727     table.print();
 728     nm->print_code();
 729     guarantee(false, "missing exception handler");
 730     return NULL;
 731   }
 732 
 733   return nm->code_begin() + t->pco();
 734 }
 735 
 736 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 737   // These errors occur only at call sites
 738   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 739 JRT_END
 740 
 741 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 742   // These errors occur only at call sites
 743   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 747   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 748 JRT_END
 749 
 750 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 751   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 752 JRT_END
 753 
 754 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 755   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 756   // cache sites (when the callee activation is not yet set up) so we are at a call site
 757   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 758 JRT_END
 759 
 760 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 761   throw_StackOverflowError_common(thread, false);
 762 JRT_END
 763 
 764 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 765   throw_StackOverflowError_common(thread, true);
 766 JRT_END
 767 
 768 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 769   // We avoid using the normal exception construction in this case because
 770   // it performs an upcall to Java, and we're already out of stack space.
 771   Thread* THREAD = thread;
 772   Klass* k = SystemDictionary::StackOverflowError_klass();
 773   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 774   if (delayed) {
 775     java_lang_Throwable::set_message(exception_oop,
 776                                      Universe::delayed_stack_overflow_error_message());
 777   }
 778   Handle exception (thread, exception_oop);
 779   if (StackTraceInThrowable) {
 780     java_lang_Throwable::fill_in_stack_trace(exception);
 781   }
 782   // Increment counter for hs_err file reporting
 783   Atomic::inc(&Exceptions::_stack_overflow_errors);
 784   throw_and_post_jvmti_exception(thread, exception);
 785 }
 786 
 787 #if INCLUDE_JVMCI
 788 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 789   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 790   thread->set_jvmci_implicit_exception_pc(pc);
 791   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 792   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 793 }
 794 #endif // INCLUDE_JVMCI
 795 
 796 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 797                                                            address pc,
 798                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 799 {
 800   address target_pc = NULL;
 801 
 802   if (Interpreter::contains(pc)) {
 803 #ifdef CC_INTERP
 804     // C++ interpreter doesn't throw implicit exceptions
 805     ShouldNotReachHere();
 806 #else
 807     switch (exception_kind) {
 808       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 809       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 810       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 811       default:                      ShouldNotReachHere();
 812     }
 813 #endif // !CC_INTERP
 814   } else {
 815     switch (exception_kind) {
 816       case STACK_OVERFLOW: {
 817         // Stack overflow only occurs upon frame setup; the callee is
 818         // going to be unwound. Dispatch to a shared runtime stub
 819         // which will cause the StackOverflowError to be fabricated
 820         // and processed.
 821         // Stack overflow should never occur during deoptimization:
 822         // the compiled method bangs the stack by as much as the
 823         // interpreter would need in case of a deoptimization. The
 824         // deoptimization blob and uncommon trap blob bang the stack
 825         // in a debug VM to verify the correctness of the compiled
 826         // method stack banging.
 827         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 828         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 829         return StubRoutines::throw_StackOverflowError_entry();
 830       }
 831 
 832       case IMPLICIT_NULL: {
 833         if (VtableStubs::contains(pc)) {
 834           // We haven't yet entered the callee frame. Fabricate an
 835           // exception and begin dispatching it in the caller. Since
 836           // the caller was at a call site, it's safe to destroy all
 837           // caller-saved registers, as these entry points do.
 838           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 839 
 840           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 841           if (vt_stub == NULL) return NULL;
 842 
 843           if (vt_stub->is_abstract_method_error(pc)) {
 844             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 845             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 846             return StubRoutines::throw_AbstractMethodError_entry();
 847           } else {
 848             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 849             return StubRoutines::throw_NullPointerException_at_call_entry();
 850           }
 851         } else {
 852           CodeBlob* cb = CodeCache::find_blob(pc);
 853 
 854           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 855           if (cb == NULL) return NULL;
 856 
 857           // Exception happened in CodeCache. Must be either:
 858           // 1. Inline-cache check in C2I handler blob,
 859           // 2. Inline-cache check in nmethod, or
 860           // 3. Implicit null exception in nmethod
 861 
 862           if (!cb->is_compiled()) {
 863             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 864             if (!is_in_blob) {
 865               // Allow normal crash reporting to handle this
 866               return NULL;
 867             }
 868             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 869             // There is no handler here, so we will simply unwind.
 870             return StubRoutines::throw_NullPointerException_at_call_entry();
 871           }
 872 
 873           // Otherwise, it's a compiled method.  Consult its exception handlers.
 874           CompiledMethod* cm = (CompiledMethod*)cb;
 875           if (cm->inlinecache_check_contains(pc)) {
 876             // exception happened inside inline-cache check code
 877             // => the nmethod is not yet active (i.e., the frame
 878             // is not set up yet) => use return address pushed by
 879             // caller => don't push another return address
 880             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 881             return StubRoutines::throw_NullPointerException_at_call_entry();
 882           }
 883 
 884           if (cm->method()->is_method_handle_intrinsic()) {
 885             // exception happened inside MH dispatch code, similar to a vtable stub
 886             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 887             return StubRoutines::throw_NullPointerException_at_call_entry();
 888           }
 889 
 890 #ifndef PRODUCT
 891           _implicit_null_throws++;
 892 #endif
 893 #if INCLUDE_JVMCI
 894           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 895             // If there's no PcDesc then we'll die way down inside of
 896             // deopt instead of just getting normal error reporting,
 897             // so only go there if it will succeed.
 898             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 899           } else {
 900 #endif // INCLUDE_JVMCI
 901           assert (cm->is_nmethod(), "Expect nmethod");
 902           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 903 #if INCLUDE_JVMCI
 904           }
 905 #endif // INCLUDE_JVMCI
 906           // If there's an unexpected fault, target_pc might be NULL,
 907           // in which case we want to fall through into the normal
 908           // error handling code.
 909         }
 910 
 911         break; // fall through
 912       }
 913 
 914 
 915       case IMPLICIT_DIVIDE_BY_ZERO: {
 916         CompiledMethod* cm = CodeCache::find_compiled(pc);
 917         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 918 #ifndef PRODUCT
 919         _implicit_div0_throws++;
 920 #endif
 921 #if INCLUDE_JVMCI
 922         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 923           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 924         } else {
 925 #endif // INCLUDE_JVMCI
 926         target_pc = cm->continuation_for_implicit_exception(pc);
 927 #if INCLUDE_JVMCI
 928         }
 929 #endif // INCLUDE_JVMCI
 930         // If there's an unexpected fault, target_pc might be NULL,
 931         // in which case we want to fall through into the normal
 932         // error handling code.
 933         break; // fall through
 934       }
 935 
 936       default: ShouldNotReachHere();
 937     }
 938 
 939     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 940 
 941     if (exception_kind == IMPLICIT_NULL) {
 942 #ifndef PRODUCT
 943       // for AbortVMOnException flag
 944       Exceptions::debug_check_abort("java.lang.NullPointerException");
 945 #endif //PRODUCT
 946       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 947     } else {
 948 #ifndef PRODUCT
 949       // for AbortVMOnException flag
 950       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 951 #endif //PRODUCT
 952       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 953     }
 954     return target_pc;
 955   }
 956 
 957   ShouldNotReachHere();
 958   return NULL;
 959 }
 960 
 961 
 962 /**
 963  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 964  * installed in the native function entry of all native Java methods before
 965  * they get linked to their actual native methods.
 966  *
 967  * \note
 968  * This method actually never gets called!  The reason is because
 969  * the interpreter's native entries call NativeLookup::lookup() which
 970  * throws the exception when the lookup fails.  The exception is then
 971  * caught and forwarded on the return from NativeLookup::lookup() call
 972  * before the call to the native function.  This might change in the future.
 973  */
 974 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 975 {
 976   // We return a bad value here to make sure that the exception is
 977   // forwarded before we look at the return value.
 978   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 979 }
 980 JNI_END
 981 
 982 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 983   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 984 }
 985 
 986 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 987 #if INCLUDE_JVMCI
 988   if (!obj->klass()->has_finalizer()) {
 989     return;
 990   }
 991 #endif // INCLUDE_JVMCI
 992   assert(oopDesc::is_oop(obj), "must be a valid oop");
 993   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 994   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 995 JRT_END
 996 
 997 
 998 jlong SharedRuntime::get_java_tid(Thread* thread) {
 999   if (thread != NULL) {
1000     if (thread->is_Java_thread()) {
1001       oop obj = ((JavaThread*)thread)->threadObj();
1002       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1003     }
1004   }
1005   return 0;
1006 }
1007 
1008 /**
1009  * This function ought to be a void function, but cannot be because
1010  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1011  * 6254741.  Once that is fixed we can remove the dummy return value.
1012  */
1013 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1014   return dtrace_object_alloc_base(Thread::current(), o, size);
1015 }
1016 
1017 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1018   assert(DTraceAllocProbes, "wrong call");
1019   Klass* klass = o->klass();
1020   Symbol* name = klass->name();
1021   HOTSPOT_OBJECT_ALLOC(
1022                    get_java_tid(thread),
1023                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1024   return 0;
1025 }
1026 
1027 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1028     JavaThread* thread, Method* method))
1029   assert(DTraceMethodProbes, "wrong call");
1030   Symbol* kname = method->klass_name();
1031   Symbol* name = method->name();
1032   Symbol* sig = method->signature();
1033   HOTSPOT_METHOD_ENTRY(
1034       get_java_tid(thread),
1035       (char *) kname->bytes(), kname->utf8_length(),
1036       (char *) name->bytes(), name->utf8_length(),
1037       (char *) sig->bytes(), sig->utf8_length());
1038   return 0;
1039 JRT_END
1040 
1041 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1042     JavaThread* thread, Method* method))
1043   assert(DTraceMethodProbes, "wrong call");
1044   Symbol* kname = method->klass_name();
1045   Symbol* name = method->name();
1046   Symbol* sig = method->signature();
1047   HOTSPOT_METHOD_RETURN(
1048       get_java_tid(thread),
1049       (char *) kname->bytes(), kname->utf8_length(),
1050       (char *) name->bytes(), name->utf8_length(),
1051       (char *) sig->bytes(), sig->utf8_length());
1052   return 0;
1053 JRT_END
1054 
1055 
1056 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1057 // for a call current in progress, i.e., arguments has been pushed on stack
1058 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1059 // vtable updates, etc.  Caller frame must be compiled.
1060 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1061   ResourceMark rm(THREAD);
1062 
1063   // last java frame on stack (which includes native call frames)
1064   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1065 
1066   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1067 }
1068 
1069 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1070   CompiledMethod* caller = vfst.nm();
1071 
1072   nmethodLocker caller_lock(caller);
1073 
1074   address pc = vfst.frame_pc();
1075   { // Get call instruction under lock because another thread may be busy patching it.
1076     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1077     return caller->attached_method_before_pc(pc);
1078   }
1079   return NULL;
1080 }
1081 
1082 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1083 // for a call current in progress, i.e., arguments has been pushed on stack
1084 // but callee has not been invoked yet.  Caller frame must be compiled.
1085 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1086                                               vframeStream& vfst,
1087                                               Bytecodes::Code& bc,
1088                                               CallInfo& callinfo, TRAPS) {
1089   Handle receiver;
1090   Handle nullHandle;  //create a handy null handle for exception returns
1091 
1092   assert(!vfst.at_end(), "Java frame must exist");
1093 
1094   // Find caller and bci from vframe
1095   methodHandle caller(THREAD, vfst.method());
1096   int          bci   = vfst.bci();
1097 
1098   Bytecode_invoke bytecode(caller, bci);
1099   int bytecode_index = bytecode.index();
1100   bc = bytecode.invoke_code();
1101 
1102   methodHandle attached_method = extract_attached_method(vfst);
1103   if (attached_method.not_null()) {
1104     methodHandle callee = bytecode.static_target(CHECK_NH);
1105     vmIntrinsics::ID id = callee->intrinsic_id();
1106     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1107     // it attaches statically resolved method to the call site.
1108     if (MethodHandles::is_signature_polymorphic(id) &&
1109         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1110       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1111 
1112       // Adjust invocation mode according to the attached method.
1113       switch (bc) {
1114         case Bytecodes::_invokeinterface:
1115           if (!attached_method->method_holder()->is_interface()) {
1116             bc = Bytecodes::_invokevirtual;
1117           }
1118           break;
1119         case Bytecodes::_invokehandle:
1120           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1121             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1122                                               : Bytecodes::_invokevirtual;
1123           }
1124           break;
1125         default:
1126           break;
1127       }
1128     } else {
1129       assert(ValueTypePassFieldsAsArgs, "invalid use of attached methods");
1130       if (bc != Bytecodes::_invokevirtual) {
1131         // Ignore the attached method in this case to not confuse below code
1132         attached_method = NULL;
1133       }
1134     }
1135   }
1136 
1137   bool has_receiver = bc != Bytecodes::_invokestatic &&
1138                       bc != Bytecodes::_invokedynamic &&
1139                       bc != Bytecodes::_invokehandle;
1140 
1141   // Find receiver for non-static call
1142   if (has_receiver) {
1143     // This register map must be update since we need to find the receiver for
1144     // compiled frames. The receiver might be in a register.
1145     RegisterMap reg_map2(thread);
1146     frame stubFrame   = thread->last_frame();
1147     // Caller-frame is a compiled frame
1148     frame callerFrame = stubFrame.sender(&reg_map2);
1149 
1150     methodHandle callee = attached_method;
1151     if (callee.is_null()) {
1152       callee = bytecode.static_target(CHECK_NH);
1153       if (callee.is_null()) {
1154         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1155       }
1156     }
1157     if (ValueTypePassFieldsAsArgs && callee->method_holder()->is_value()) {
1158       // If the receiver is a value type that is passed as fields, no oop is available.
1159       // Resolve the call without receiver null checking.
1160       assert(bc == Bytecodes::_invokevirtual, "only allowed with invokevirtual");
1161       assert(!attached_method.is_null(), "must have attached method");
1162       constantPoolHandle constants(THREAD, caller->constants());
1163       LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature());
1164       LinkResolver::resolve_virtual_call(callinfo, receiver, NULL, link_info, /*check_null_or_abstract*/ false, CHECK_NH);
1165       return receiver; // is null
1166     } else {
1167       // Retrieve from a compiled argument list
1168       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1169 
1170       if (receiver.is_null()) {
1171         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1172       }
1173     }
1174   }
1175 
1176   // Resolve method
1177   if (attached_method.not_null()) {
1178     // Parameterized by attached method.
1179     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1180   } else {
1181     // Parameterized by bytecode.
1182     constantPoolHandle constants(THREAD, caller->constants());
1183     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1184   }
1185 
1186 #ifdef ASSERT
1187   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1188   if (has_receiver) {
1189     assert(receiver.not_null(), "should have thrown exception");
1190     Klass* receiver_klass = receiver->klass();
1191     Klass* rk = NULL;
1192     if (attached_method.not_null()) {
1193       // In case there's resolved method attached, use its holder during the check.
1194       rk = attached_method->method_holder();
1195     } else {
1196       // Klass is already loaded.
1197       constantPoolHandle constants(THREAD, caller->constants());
1198       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1199     }
1200     Klass* static_receiver_klass = rk;
1201     methodHandle callee = callinfo.selected_method();
1202     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1203            "actual receiver must be subclass of static receiver klass");
1204     if (receiver_klass->is_instance_klass()) {
1205       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1206         tty->print_cr("ERROR: Klass not yet initialized!!");
1207         receiver_klass->print();
1208       }
1209       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1210     }
1211   }
1212 #endif
1213 
1214   return receiver;
1215 }
1216 
1217 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1218   ResourceMark rm(THREAD);
1219   // We need first to check if any Java activations (compiled, interpreted)
1220   // exist on the stack since last JavaCall.  If not, we need
1221   // to get the target method from the JavaCall wrapper.
1222   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1223   methodHandle callee_method;
1224   if (vfst.at_end()) {
1225     // No Java frames were found on stack since we did the JavaCall.
1226     // Hence the stack can only contain an entry_frame.  We need to
1227     // find the target method from the stub frame.
1228     RegisterMap reg_map(thread, false);
1229     frame fr = thread->last_frame();
1230     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1231     fr = fr.sender(&reg_map);
1232     assert(fr.is_entry_frame(), "must be");
1233     // fr is now pointing to the entry frame.
1234     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1235   } else {
1236     Bytecodes::Code bc;
1237     CallInfo callinfo;
1238     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1239     callee_method = callinfo.selected_method();
1240   }
1241   assert(callee_method()->is_method(), "must be");
1242   return callee_method;
1243 }
1244 
1245 // Resolves a call.
1246 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1247                                            bool is_virtual,
1248                                            bool is_optimized, TRAPS) {
1249   methodHandle callee_method;
1250   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1251   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1252     int retry_count = 0;
1253     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1254            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1255       // If has a pending exception then there is no need to re-try to
1256       // resolve this method.
1257       // If the method has been redefined, we need to try again.
1258       // Hack: we have no way to update the vtables of arrays, so don't
1259       // require that java.lang.Object has been updated.
1260 
1261       // It is very unlikely that method is redefined more than 100 times
1262       // in the middle of resolve. If it is looping here more than 100 times
1263       // means then there could be a bug here.
1264       guarantee((retry_count++ < 100),
1265                 "Could not resolve to latest version of redefined method");
1266       // method is redefined in the middle of resolve so re-try.
1267       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1268     }
1269   }
1270   return callee_method;
1271 }
1272 
1273 // Resolves a call.  The compilers generate code for calls that go here
1274 // and are patched with the real destination of the call.
1275 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1276                                            bool is_virtual,
1277                                            bool is_optimized, TRAPS) {
1278 
1279   ResourceMark rm(thread);
1280   RegisterMap cbl_map(thread, false);
1281   frame caller_frame = thread->last_frame().sender(&cbl_map);
1282 
1283   CodeBlob* caller_cb = caller_frame.cb();
1284   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1285   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1286 
1287   // make sure caller is not getting deoptimized
1288   // and removed before we are done with it.
1289   // CLEANUP - with lazy deopt shouldn't need this lock
1290   nmethodLocker caller_lock(caller_nm);
1291 
1292   // determine call info & receiver
1293   // note: a) receiver is NULL for static calls
1294   //       b) an exception is thrown if receiver is NULL for non-static calls
1295   CallInfo call_info;
1296   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1297   Handle receiver = find_callee_info(thread, invoke_code,
1298                                      call_info, CHECK_(methodHandle()));
1299   methodHandle callee_method = call_info.selected_method();
1300 
1301   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1302          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1303          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1304          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1305          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1306 
1307   assert(caller_nm->is_alive(), "It should be alive");
1308 
1309 #ifndef PRODUCT
1310   // tracing/debugging/statistics
1311   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1312                 (is_virtual) ? (&_resolve_virtual_ctr) :
1313                                (&_resolve_static_ctr);
1314   Atomic::inc(addr);
1315 
1316   if (TraceCallFixup) {
1317     ResourceMark rm(thread);
1318     tty->print("resolving %s%s (%s) call to",
1319       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1320       Bytecodes::name(invoke_code));
1321     callee_method->print_short_name(tty);
1322     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1323                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1324   }
1325 #endif
1326 
1327   // JSR 292 key invariant:
1328   // If the resolved method is a MethodHandle invoke target, the call
1329   // site must be a MethodHandle call site, because the lambda form might tail-call
1330   // leaving the stack in a state unknown to either caller or callee
1331   // TODO detune for now but we might need it again
1332 //  assert(!callee_method->is_compiled_lambda_form() ||
1333 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1334 
1335   // Compute entry points. This might require generation of C2I converter
1336   // frames, so we cannot be holding any locks here. Furthermore, the
1337   // computation of the entry points is independent of patching the call.  We
1338   // always return the entry-point, but we only patch the stub if the call has
1339   // not been deoptimized.  Return values: For a virtual call this is an
1340   // (cached_oop, destination address) pair. For a static call/optimized
1341   // virtual this is just a destination address.
1342 
1343   StaticCallInfo static_call_info;
1344   CompiledICInfo virtual_call_info;
1345 
1346   // Make sure the callee nmethod does not get deoptimized and removed before
1347   // we are done patching the code.
1348   CompiledMethod* callee = callee_method->code();
1349 
1350   if (callee != NULL) {
1351     assert(callee->is_compiled(), "must be nmethod for patching");
1352   }
1353 
1354   if (callee != NULL && !callee->is_in_use()) {
1355     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1356     callee = NULL;
1357   }
1358   nmethodLocker nl_callee(callee);
1359 #ifdef ASSERT
1360   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1361 #endif
1362 
1363   bool is_nmethod = caller_nm->is_nmethod();
1364 
1365   if (is_virtual) {
1366     Klass* receiver_klass = NULL;
1367     if (ValueTypePassFieldsAsArgs && callee_method->method_holder()->is_value()) {
1368       // If the receiver is a value type that is passed as fields, no oop is available
1369       receiver_klass = callee_method->method_holder();
1370     } else {
1371       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1372       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1373     }
1374     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1375     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1376                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1377                      CHECK_(methodHandle()));
1378   } else {
1379     // static call
1380     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1381   }
1382 
1383   // grab lock, check for deoptimization and potentially patch caller
1384   {
1385     MutexLocker ml_patch(CompiledIC_lock);
1386 
1387     // Lock blocks for safepoint during which both nmethods can change state.
1388 
1389     // Now that we are ready to patch if the Method* was redefined then
1390     // don't update call site and let the caller retry.
1391     // Don't update call site if callee nmethod was unloaded or deoptimized.
1392     // Don't update call site if callee nmethod was replaced by an other nmethod
1393     // which may happen when multiply alive nmethod (tiered compilation)
1394     // will be supported.
1395     if (!callee_method->is_old() &&
1396         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1397 #ifdef ASSERT
1398       // We must not try to patch to jump to an already unloaded method.
1399       if (dest_entry_point != 0) {
1400         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1401         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1402                "should not call unloaded nmethod");
1403       }
1404 #endif
1405       if (is_virtual) {
1406         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1407         if (inline_cache->is_clean()) {
1408           inline_cache->set_to_monomorphic(virtual_call_info);
1409         }
1410       } else {
1411         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1412         if (ssc->is_clean()) ssc->set(static_call_info);
1413       }
1414     }
1415 
1416   } // unlock CompiledIC_lock
1417 
1418   return callee_method;
1419 }
1420 
1421 
1422 // Inline caches exist only in compiled code
1423 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1424 #ifdef ASSERT
1425   RegisterMap reg_map(thread, false);
1426   frame stub_frame = thread->last_frame();
1427   assert(stub_frame.is_runtime_frame(), "sanity check");
1428   frame caller_frame = stub_frame.sender(&reg_map);
1429   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1430 #endif /* ASSERT */
1431 
1432   methodHandle callee_method;
1433   JRT_BLOCK
1434     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1435     // Return Method* through TLS
1436     thread->set_vm_result_2(callee_method());
1437   JRT_BLOCK_END
1438   // return compiled code entry point after potential safepoints
1439   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1440   return callee_method->verified_code_entry();
1441 JRT_END
1442 
1443 
1444 // Handle call site that has been made non-entrant
1445 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1446   // 6243940 We might end up in here if the callee is deoptimized
1447   // as we race to call it.  We don't want to take a safepoint if
1448   // the caller was interpreted because the caller frame will look
1449   // interpreted to the stack walkers and arguments are now
1450   // "compiled" so it is much better to make this transition
1451   // invisible to the stack walking code. The i2c path will
1452   // place the callee method in the callee_target. It is stashed
1453   // there because if we try and find the callee by normal means a
1454   // safepoint is possible and have trouble gc'ing the compiled args.
1455   RegisterMap reg_map(thread, false);
1456   frame stub_frame = thread->last_frame();
1457   assert(stub_frame.is_runtime_frame(), "sanity check");
1458   frame caller_frame = stub_frame.sender(&reg_map);
1459 
1460   if (caller_frame.is_interpreted_frame() ||
1461       caller_frame.is_entry_frame()) {
1462     Method* callee = thread->callee_target();
1463     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1464     thread->set_vm_result_2(callee);
1465     thread->set_callee_target(NULL);
1466     return callee->get_c2i_entry();
1467   }
1468 
1469   // Must be compiled to compiled path which is safe to stackwalk
1470   methodHandle callee_method;
1471   JRT_BLOCK
1472     // Force resolving of caller (if we called from compiled frame)
1473     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1474     thread->set_vm_result_2(callee_method());
1475   JRT_BLOCK_END
1476   // return compiled code entry point after potential safepoints
1477   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1478   return callee_method->verified_code_entry();
1479 JRT_END
1480 
1481 // Handle abstract method call
1482 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1483   return StubRoutines::throw_AbstractMethodError_entry();
1484 JRT_END
1485 
1486 
1487 // resolve a static call and patch code
1488 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1489   methodHandle callee_method;
1490   JRT_BLOCK
1491     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1492     thread->set_vm_result_2(callee_method());
1493   JRT_BLOCK_END
1494   // return compiled code entry point after potential safepoints
1495   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1496   return callee_method->verified_code_entry();
1497 JRT_END
1498 
1499 
1500 // resolve virtual call and update inline cache to monomorphic
1501 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1502   methodHandle callee_method;
1503   JRT_BLOCK
1504     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1505     thread->set_vm_result_2(callee_method());
1506   JRT_BLOCK_END
1507   // return compiled code entry point after potential safepoints
1508   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1509   return callee_method->verified_code_entry();
1510 JRT_END
1511 
1512 
1513 // Resolve a virtual call that can be statically bound (e.g., always
1514 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1515 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1516   methodHandle callee_method;
1517   JRT_BLOCK
1518     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1519     thread->set_vm_result_2(callee_method());
1520   JRT_BLOCK_END
1521   // return compiled code entry point after potential safepoints
1522   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1523   return callee_method->verified_code_entry();
1524 JRT_END
1525 
1526 
1527 
1528 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1529   ResourceMark rm(thread);
1530   CallInfo call_info;
1531   Bytecodes::Code bc;
1532 
1533   // receiver is NULL for static calls. An exception is thrown for NULL
1534   // receivers for non-static calls
1535   Handle receiver = find_callee_info(thread, bc, call_info,
1536                                      CHECK_(methodHandle()));
1537   // Compiler1 can produce virtual call sites that can actually be statically bound
1538   // If we fell thru to below we would think that the site was going megamorphic
1539   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1540   // we'd try and do a vtable dispatch however methods that can be statically bound
1541   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1542   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1543   // plain ic_miss) and the site will be converted to an optimized virtual call site
1544   // never to miss again. I don't believe C2 will produce code like this but if it
1545   // did this would still be the correct thing to do for it too, hence no ifdef.
1546   //
1547   if (call_info.resolved_method()->can_be_statically_bound()) {
1548     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1549     if (TraceCallFixup) {
1550       RegisterMap reg_map(thread, false);
1551       frame caller_frame = thread->last_frame().sender(&reg_map);
1552       ResourceMark rm(thread);
1553       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1554       callee_method->print_short_name(tty);
1555       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1556       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1557     }
1558     return callee_method;
1559   }
1560 
1561   methodHandle callee_method = call_info.selected_method();
1562 
1563   bool should_be_mono = false;
1564 
1565 #ifndef PRODUCT
1566   Atomic::inc(&_ic_miss_ctr);
1567 
1568   // Statistics & Tracing
1569   if (TraceCallFixup) {
1570     ResourceMark rm(thread);
1571     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1572     callee_method->print_short_name(tty);
1573     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1574   }
1575 
1576   if (ICMissHistogram) {
1577     MutexLocker m(VMStatistic_lock);
1578     RegisterMap reg_map(thread, false);
1579     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1580     // produce statistics under the lock
1581     trace_ic_miss(f.pc());
1582   }
1583 #endif
1584 
1585   // install an event collector so that when a vtable stub is created the
1586   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1587   // event can't be posted when the stub is created as locks are held
1588   // - instead the event will be deferred until the event collector goes
1589   // out of scope.
1590   JvmtiDynamicCodeEventCollector event_collector;
1591 
1592   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1593   { MutexLocker ml_patch (CompiledIC_lock);
1594     RegisterMap reg_map(thread, false);
1595     frame caller_frame = thread->last_frame().sender(&reg_map);
1596     CodeBlob* cb = caller_frame.cb();
1597     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1598     if (cb->is_compiled()) {
1599       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1600       bool should_be_mono = false;
1601       if (inline_cache->is_optimized()) {
1602         if (TraceCallFixup) {
1603           ResourceMark rm(thread);
1604           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1605           callee_method->print_short_name(tty);
1606           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1607         }
1608         should_be_mono = true;
1609       } else if (inline_cache->is_icholder_call()) {
1610         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1611         if (ic_oop != NULL) {
1612 
1613           if (receiver()->klass() == ic_oop->holder_klass()) {
1614             // This isn't a real miss. We must have seen that compiled code
1615             // is now available and we want the call site converted to a
1616             // monomorphic compiled call site.
1617             // We can't assert for callee_method->code() != NULL because it
1618             // could have been deoptimized in the meantime
1619             if (TraceCallFixup) {
1620               ResourceMark rm(thread);
1621               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1622               callee_method->print_short_name(tty);
1623               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1624             }
1625             should_be_mono = true;
1626           }
1627         }
1628       }
1629 
1630       if (should_be_mono) {
1631 
1632         // We have a path that was monomorphic but was going interpreted
1633         // and now we have (or had) a compiled entry. We correct the IC
1634         // by using a new icBuffer.
1635         CompiledICInfo info;
1636         Klass* receiver_klass = receiver()->klass();
1637         inline_cache->compute_monomorphic_entry(callee_method,
1638                                                 receiver_klass,
1639                                                 inline_cache->is_optimized(),
1640                                                 false, caller_nm->is_nmethod(),
1641                                                 info, CHECK_(methodHandle()));
1642         inline_cache->set_to_monomorphic(info);
1643       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1644         // Potential change to megamorphic
1645         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1646         if (!successful) {
1647           inline_cache->set_to_clean();
1648         }
1649       } else {
1650         // Either clean or megamorphic
1651       }
1652     } else {
1653       fatal("Unimplemented");
1654     }
1655   } // Release CompiledIC_lock
1656 
1657   return callee_method;
1658 }
1659 
1660 //
1661 // Resets a call-site in compiled code so it will get resolved again.
1662 // This routines handles both virtual call sites, optimized virtual call
1663 // sites, and static call sites. Typically used to change a call sites
1664 // destination from compiled to interpreted.
1665 //
1666 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1667   ResourceMark rm(thread);
1668   RegisterMap reg_map(thread, false);
1669   frame stub_frame = thread->last_frame();
1670   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1671   frame caller = stub_frame.sender(&reg_map);
1672 
1673   // Do nothing if the frame isn't a live compiled frame.
1674   // nmethod could be deoptimized by the time we get here
1675   // so no update to the caller is needed.
1676 
1677   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1678 
1679     address pc = caller.pc();
1680 
1681     // Check for static or virtual call
1682     bool is_static_call = false;
1683     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1684 
1685     // Default call_addr is the location of the "basic" call.
1686     // Determine the address of the call we a reresolving. With
1687     // Inline Caches we will always find a recognizable call.
1688     // With Inline Caches disabled we may or may not find a
1689     // recognizable call. We will always find a call for static
1690     // calls and for optimized virtual calls. For vanilla virtual
1691     // calls it depends on the state of the UseInlineCaches switch.
1692     //
1693     // With Inline Caches disabled we can get here for a virtual call
1694     // for two reasons:
1695     //   1 - calling an abstract method. The vtable for abstract methods
1696     //       will run us thru handle_wrong_method and we will eventually
1697     //       end up in the interpreter to throw the ame.
1698     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1699     //       call and between the time we fetch the entry address and
1700     //       we jump to it the target gets deoptimized. Similar to 1
1701     //       we will wind up in the interprter (thru a c2i with c2).
1702     //
1703     address call_addr = NULL;
1704     {
1705       // Get call instruction under lock because another thread may be
1706       // busy patching it.
1707       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1708       // Location of call instruction
1709       call_addr = caller_nm->call_instruction_address(pc);
1710     }
1711     // Make sure nmethod doesn't get deoptimized and removed until
1712     // this is done with it.
1713     // CLEANUP - with lazy deopt shouldn't need this lock
1714     nmethodLocker nmlock(caller_nm);
1715 
1716     if (call_addr != NULL) {
1717       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1718       int ret = iter.next(); // Get item
1719       if (ret) {
1720         assert(iter.addr() == call_addr, "must find call");
1721         if (iter.type() == relocInfo::static_call_type) {
1722           is_static_call = true;
1723         } else {
1724           assert(iter.type() == relocInfo::virtual_call_type ||
1725                  iter.type() == relocInfo::opt_virtual_call_type
1726                 , "unexpected relocInfo. type");
1727         }
1728       } else {
1729         assert(!UseInlineCaches, "relocation info. must exist for this address");
1730       }
1731 
1732       // Cleaning the inline cache will force a new resolve. This is more robust
1733       // than directly setting it to the new destination, since resolving of calls
1734       // is always done through the same code path. (experience shows that it
1735       // leads to very hard to track down bugs, if an inline cache gets updated
1736       // to a wrong method). It should not be performance critical, since the
1737       // resolve is only done once.
1738 
1739       bool is_nmethod = caller_nm->is_nmethod();
1740       MutexLocker ml(CompiledIC_lock);
1741       if (is_static_call) {
1742         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1743         ssc->set_to_clean();
1744       } else {
1745         // compiled, dispatched call (which used to call an interpreted method)
1746         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1747         inline_cache->set_to_clean();
1748       }
1749     }
1750   }
1751 
1752   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1753 
1754 
1755 #ifndef PRODUCT
1756   Atomic::inc(&_wrong_method_ctr);
1757 
1758   if (TraceCallFixup) {
1759     ResourceMark rm(thread);
1760     tty->print("handle_wrong_method reresolving call to");
1761     callee_method->print_short_name(tty);
1762     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1763   }
1764 #endif
1765 
1766   return callee_method;
1767 }
1768 
1769 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1770   // The faulting unsafe accesses should be changed to throw the error
1771   // synchronously instead. Meanwhile the faulting instruction will be
1772   // skipped over (effectively turning it into a no-op) and an
1773   // asynchronous exception will be raised which the thread will
1774   // handle at a later point. If the instruction is a load it will
1775   // return garbage.
1776 
1777   // Request an async exception.
1778   thread->set_pending_unsafe_access_error();
1779 
1780   // Return address of next instruction to execute.
1781   return next_pc;
1782 }
1783 
1784 #ifdef ASSERT
1785 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1786                                                                 const BasicType* sig_bt,
1787                                                                 const VMRegPair* regs) {
1788   ResourceMark rm;
1789   const int total_args_passed = method->size_of_parameters();
1790   const VMRegPair*    regs_with_member_name = regs;
1791         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1792 
1793   const int member_arg_pos = total_args_passed - 1;
1794   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1795   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1796 
1797   const bool is_outgoing = method->is_method_handle_intrinsic();
1798   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1799 
1800   for (int i = 0; i < member_arg_pos; i++) {
1801     VMReg a =    regs_with_member_name[i].first();
1802     VMReg b = regs_without_member_name[i].first();
1803     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1804   }
1805   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1806 }
1807 #endif
1808 
1809 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1810   if (destination != entry_point) {
1811     CodeBlob* callee = CodeCache::find_blob(destination);
1812     // callee == cb seems weird. It means calling interpreter thru stub.
1813     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1814       // static call or optimized virtual
1815       if (TraceCallFixup) {
1816         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1817         moop->print_short_name(tty);
1818         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1819       }
1820       return true;
1821     } else {
1822       if (TraceCallFixup) {
1823         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1824         moop->print_short_name(tty);
1825         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1826       }
1827       // assert is too strong could also be resolve destinations.
1828       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1829     }
1830   } else {
1831     if (TraceCallFixup) {
1832       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1833       moop->print_short_name(tty);
1834       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1835     }
1836   }
1837   return false;
1838 }
1839 
1840 // ---------------------------------------------------------------------------
1841 // We are calling the interpreter via a c2i. Normally this would mean that
1842 // we were called by a compiled method. However we could have lost a race
1843 // where we went int -> i2c -> c2i and so the caller could in fact be
1844 // interpreted. If the caller is compiled we attempt to patch the caller
1845 // so he no longer calls into the interpreter.
1846 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1847   Method* moop(method);
1848 
1849   address entry_point = moop->from_compiled_entry_no_trampoline();
1850 
1851   // It's possible that deoptimization can occur at a call site which hasn't
1852   // been resolved yet, in which case this function will be called from
1853   // an nmethod that has been patched for deopt and we can ignore the
1854   // request for a fixup.
1855   // Also it is possible that we lost a race in that from_compiled_entry
1856   // is now back to the i2c in that case we don't need to patch and if
1857   // we did we'd leap into space because the callsite needs to use
1858   // "to interpreter" stub in order to load up the Method*. Don't
1859   // ask me how I know this...
1860 
1861   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1862   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1863     return;
1864   }
1865 
1866   // The check above makes sure this is a nmethod.
1867   CompiledMethod* nm = cb->as_compiled_method_or_null();
1868   assert(nm, "must be");
1869 
1870   // Get the return PC for the passed caller PC.
1871   address return_pc = caller_pc + frame::pc_return_offset;
1872 
1873   // There is a benign race here. We could be attempting to patch to a compiled
1874   // entry point at the same time the callee is being deoptimized. If that is
1875   // the case then entry_point may in fact point to a c2i and we'd patch the
1876   // call site with the same old data. clear_code will set code() to NULL
1877   // at the end of it. If we happen to see that NULL then we can skip trying
1878   // to patch. If we hit the window where the callee has a c2i in the
1879   // from_compiled_entry and the NULL isn't present yet then we lose the race
1880   // and patch the code with the same old data. Asi es la vida.
1881 
1882   if (moop->code() == NULL) return;
1883 
1884   if (nm->is_in_use()) {
1885 
1886     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1887     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1888     if (NativeCall::is_call_before(return_pc)) {
1889       ResourceMark mark;
1890       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1891       //
1892       // bug 6281185. We might get here after resolving a call site to a vanilla
1893       // virtual call. Because the resolvee uses the verified entry it may then
1894       // see compiled code and attempt to patch the site by calling us. This would
1895       // then incorrectly convert the call site to optimized and its downhill from
1896       // there. If you're lucky you'll get the assert in the bugid, if not you've
1897       // just made a call site that could be megamorphic into a monomorphic site
1898       // for the rest of its life! Just another racing bug in the life of
1899       // fixup_callers_callsite ...
1900       //
1901       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1902       iter.next();
1903       assert(iter.has_current(), "must have a reloc at java call site");
1904       relocInfo::relocType typ = iter.reloc()->type();
1905       if (typ != relocInfo::static_call_type &&
1906            typ != relocInfo::opt_virtual_call_type &&
1907            typ != relocInfo::static_stub_type) {
1908         return;
1909       }
1910       address destination = call->destination();
1911       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1912         call->set_destination_mt_safe(entry_point);
1913       }
1914     }
1915   }
1916 IRT_END
1917 
1918 
1919 // same as JVM_Arraycopy, but called directly from compiled code
1920 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1921                                                 oopDesc* dest, jint dest_pos,
1922                                                 jint length,
1923                                                 JavaThread* thread)) {
1924 #ifndef PRODUCT
1925   _slow_array_copy_ctr++;
1926 #endif
1927   // Check if we have null pointers
1928   if (src == NULL || dest == NULL) {
1929     THROW(vmSymbols::java_lang_NullPointerException());
1930   }
1931   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1932   // even though the copy_array API also performs dynamic checks to ensure
1933   // that src and dest are truly arrays (and are conformable).
1934   // The copy_array mechanism is awkward and could be removed, but
1935   // the compilers don't call this function except as a last resort,
1936   // so it probably doesn't matter.
1937   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1938                                         (arrayOopDesc*)dest, dest_pos,
1939                                         length, thread);
1940 }
1941 JRT_END
1942 
1943 // The caller of generate_class_cast_message() (or one of its callers)
1944 // must use a ResourceMark in order to correctly free the result.
1945 char* SharedRuntime::generate_class_cast_message(
1946     JavaThread* thread, Klass* caster_klass) {
1947 
1948   // Get target class name from the checkcast instruction
1949   vframeStream vfst(thread, true);
1950   assert(!vfst.at_end(), "Java frame must exist");
1951   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1952   Klass* target_klass = vfst.method()->constants()->klass_at(
1953     cc.index(), thread);
1954   return generate_class_cast_message(caster_klass, target_klass);
1955 }
1956 
1957 // The caller of class_loader_and_module_name() (or one of its callers)
1958 // must use a ResourceMark in order to correctly free the result.
1959 const char* class_loader_and_module_name(Klass* klass) {
1960   const char* delim = "/";
1961   size_t delim_len = strlen(delim);
1962 
1963   const char* fqn = klass->external_name();
1964   // Length of message to return; always include FQN
1965   size_t msglen = strlen(fqn) + 1;
1966 
1967   bool has_cl_name = false;
1968   bool has_mod_name = false;
1969   bool has_version = false;
1970 
1971   // Use class loader name, if exists and not builtin
1972   const char* class_loader_name = "";
1973   ClassLoaderData* cld = klass->class_loader_data();
1974   assert(cld != NULL, "class_loader_data should not be NULL");
1975   if (!cld->is_builtin_class_loader_data()) {
1976     // If not builtin, look for name
1977     oop loader = klass->class_loader();
1978     if (loader != NULL) {
1979       oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1980       if (class_loader_name_oop != NULL) {
1981         class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1982         if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1983           has_cl_name = true;
1984           msglen += strlen(class_loader_name) + delim_len;
1985         }
1986       }
1987     }
1988   }
1989 
1990   const char* module_name = "";
1991   const char* version = "";
1992   Klass* bottom_klass = klass->is_objArray_klass() ?
1993     ObjArrayKlass::cast(klass)->bottom_klass() : klass;
1994   if (bottom_klass->is_instance_klass()) {
1995     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1996     // Use module name, if exists
1997     if (module->is_named()) {
1998       has_mod_name = true;
1999       module_name = module->name()->as_C_string();
2000       msglen += strlen(module_name);
2001       // Use version if exists and is not a jdk module
2002       if (module->is_non_jdk_module() && module->version() != NULL) {
2003         has_version = true;
2004         version = module->version()->as_C_string();
2005         msglen += strlen("@") + strlen(version);
2006       }
2007     }
2008   } else {
2009     // klass is an array of primitives, so its module is java.base
2010     module_name = JAVA_BASE_NAME;
2011   }
2012 
2013   if (has_cl_name || has_mod_name) {
2014     msglen += delim_len;
2015   }
2016 
2017   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2018 
2019   // Just return the FQN if error in allocating string
2020   if (message == NULL) {
2021     return fqn;
2022   }
2023 
2024   jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
2025                class_loader_name,
2026                (has_cl_name) ? delim : "",
2027                (has_mod_name) ? module_name : "",
2028                (has_version) ? "@" : "",
2029                (has_version) ? version : "",
2030                (has_cl_name || has_mod_name) ? delim : "",
2031                fqn);
2032   return message;
2033 }
2034 
2035 char* SharedRuntime::generate_class_cast_message(
2036     Klass* caster_klass, Klass* target_klass) {
2037 
2038   const char* caster_name = class_loader_and_module_name(caster_klass);
2039 
2040   const char* target_name = class_loader_and_module_name(target_klass);
2041 
2042   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2043 
2044   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2045   if (message == NULL) {
2046     // Shouldn't happen, but don't cause even more problems if it does
2047     message = const_cast<char*>(caster_klass->external_name());
2048   } else {
2049     jio_snprintf(message,
2050                  msglen,
2051                  "%s cannot be cast to %s",
2052                  caster_name,
2053                  target_name);
2054   }
2055   return message;
2056 }
2057 
2058 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2059   (void) JavaThread::current()->reguard_stack();
2060 JRT_END
2061 
2062 
2063 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2064 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2065   // Disable ObjectSynchronizer::quick_enter() in default config
2066   // on AARCH64 and ARM until JDK-8153107 is resolved.
2067   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2068       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2069       !SafepointSynchronize::is_synchronizing()) {
2070     // Only try quick_enter() if we're not trying to reach a safepoint
2071     // so that the calling thread reaches the safepoint more quickly.
2072     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2073   }
2074   // NO_ASYNC required because an async exception on the state transition destructor
2075   // would leave you with the lock held and it would never be released.
2076   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2077   // and the model is that an exception implies the method failed.
2078   JRT_BLOCK_NO_ASYNC
2079   oop obj(_obj);
2080   if (PrintBiasedLockingStatistics) {
2081     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2082   }
2083   Handle h_obj(THREAD, obj);
2084   if (UseBiasedLocking) {
2085     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2086     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2087   } else {
2088     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2089   }
2090   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2091   JRT_BLOCK_END
2092 JRT_END
2093 
2094 // Handles the uncommon cases of monitor unlocking in compiled code
2095 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2096    oop obj(_obj);
2097   assert(JavaThread::current() == THREAD, "invariant");
2098   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2099   // testing was unable to ever fire the assert that guarded it so I have removed it.
2100   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2101 #undef MIGHT_HAVE_PENDING
2102 #ifdef MIGHT_HAVE_PENDING
2103   // Save and restore any pending_exception around the exception mark.
2104   // While the slow_exit must not throw an exception, we could come into
2105   // this routine with one set.
2106   oop pending_excep = NULL;
2107   const char* pending_file;
2108   int pending_line;
2109   if (HAS_PENDING_EXCEPTION) {
2110     pending_excep = PENDING_EXCEPTION;
2111     pending_file  = THREAD->exception_file();
2112     pending_line  = THREAD->exception_line();
2113     CLEAR_PENDING_EXCEPTION;
2114   }
2115 #endif /* MIGHT_HAVE_PENDING */
2116 
2117   {
2118     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2119     EXCEPTION_MARK;
2120     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2121   }
2122 
2123 #ifdef MIGHT_HAVE_PENDING
2124   if (pending_excep != NULL) {
2125     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2126   }
2127 #endif /* MIGHT_HAVE_PENDING */
2128 JRT_END
2129 
2130 #ifndef PRODUCT
2131 
2132 void SharedRuntime::print_statistics() {
2133   ttyLocker ttyl;
2134   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2135 
2136   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2137 
2138   SharedRuntime::print_ic_miss_histogram();
2139 
2140   if (CountRemovableExceptions) {
2141     if (_nof_removable_exceptions > 0) {
2142       Unimplemented(); // this counter is not yet incremented
2143       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2144     }
2145   }
2146 
2147   // Dump the JRT_ENTRY counters
2148   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2149   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2150   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2151   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2152   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2153   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2154   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2155 
2156   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2157   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2158   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2159   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2160   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2161 
2162   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2163   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2164   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2165   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2166   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2167   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2168   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2169   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2170   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2171   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2172   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2173   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2174   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2175   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2176   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2177   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2178 
2179   AdapterHandlerLibrary::print_statistics();
2180 
2181   if (xtty != NULL)  xtty->tail("statistics");
2182 }
2183 
2184 inline double percent(int x, int y) {
2185   return 100.0 * x / MAX2(y, 1);
2186 }
2187 
2188 class MethodArityHistogram {
2189  public:
2190   enum { MAX_ARITY = 256 };
2191  private:
2192   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2193   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2194   static int _max_arity;                      // max. arity seen
2195   static int _max_size;                       // max. arg size seen
2196 
2197   static void add_method_to_histogram(nmethod* nm) {
2198     Method* m = nm->method();
2199     ArgumentCount args(m->signature());
2200     int arity   = args.size() + (m->is_static() ? 0 : 1);
2201     int argsize = m->size_of_parameters();
2202     arity   = MIN2(arity, MAX_ARITY-1);
2203     argsize = MIN2(argsize, MAX_ARITY-1);
2204     int count = nm->method()->compiled_invocation_count();
2205     _arity_histogram[arity]  += count;
2206     _size_histogram[argsize] += count;
2207     _max_arity = MAX2(_max_arity, arity);
2208     _max_size  = MAX2(_max_size, argsize);
2209   }
2210 
2211   void print_histogram_helper(int n, int* histo, const char* name) {
2212     const int N = MIN2(5, n);
2213     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2214     double sum = 0;
2215     double weighted_sum = 0;
2216     int i;
2217     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2218     double rest = sum;
2219     double percent = sum / 100;
2220     for (i = 0; i <= N; i++) {
2221       rest -= histo[i];
2222       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2223     }
2224     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2225     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2226   }
2227 
2228   void print_histogram() {
2229     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2230     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2231     tty->print_cr("\nSame for parameter size (in words):");
2232     print_histogram_helper(_max_size, _size_histogram, "size");
2233     tty->cr();
2234   }
2235 
2236  public:
2237   MethodArityHistogram() {
2238     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2239     _max_arity = _max_size = 0;
2240     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2241     CodeCache::nmethods_do(add_method_to_histogram);
2242     print_histogram();
2243   }
2244 };
2245 
2246 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2247 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2248 int MethodArityHistogram::_max_arity;
2249 int MethodArityHistogram::_max_size;
2250 
2251 void SharedRuntime::print_call_statistics(int comp_total) {
2252   tty->print_cr("Calls from compiled code:");
2253   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2254   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2255   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2256   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2257   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2258   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2259   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2260   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2261   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2262   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2263   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2264   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2265   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2266   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2267   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2268   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2269   tty->cr();
2270   tty->print_cr("Note 1: counter updates are not MT-safe.");
2271   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2272   tty->print_cr("        %% in nested categories are relative to their category");
2273   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2274   tty->cr();
2275 
2276   MethodArityHistogram h;
2277 }
2278 #endif
2279 
2280 
2281 // A simple wrapper class around the calling convention information
2282 // that allows sharing of adapters for the same calling convention.
2283 class AdapterFingerPrint : public CHeapObj<mtCode> {
2284  private:
2285   enum {
2286     _basic_type_bits = 4,
2287     _basic_type_mask = right_n_bits(_basic_type_bits),
2288     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2289     _compact_int_count = 3
2290   };
2291   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2292   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2293 
2294   union {
2295     int  _compact[_compact_int_count];
2296     int* _fingerprint;
2297   } _value;
2298   int _length; // A negative length indicates the fingerprint is in the compact form,
2299                // Otherwise _value._fingerprint is the array.
2300 
2301   // Remap BasicTypes that are handled equivalently by the adapters.
2302   // These are correct for the current system but someday it might be
2303   // necessary to make this mapping platform dependent.
2304   static int adapter_encoding(BasicType in, bool is_valuetype) {
2305     switch (in) {
2306       case T_BOOLEAN:
2307       case T_BYTE:
2308       case T_SHORT:
2309       case T_CHAR: {
2310         if (is_valuetype) {
2311           // Do not widen value type field types
2312           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2313           return in;
2314         } else {
2315           // They are all promoted to T_INT in the calling convention
2316           return T_INT;
2317         }
2318       }
2319 
2320       case T_VALUETYPE: {
2321         // If value types are passed as fields, return 'in' to differentiate
2322         // between a T_VALUETYPE and a T_OBJECT in the signature.
2323         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2324       }
2325       case T_VALUETYPEPTR:
2326       case T_OBJECT:
2327       case T_ARRAY:
2328         // In other words, we assume that any register good enough for
2329         // an int or long is good enough for a managed pointer.
2330 #ifdef _LP64
2331         return T_LONG;
2332 #else
2333         return T_INT;
2334 #endif
2335 
2336       case T_INT:
2337       case T_LONG:
2338       case T_FLOAT:
2339       case T_DOUBLE:
2340       case T_VOID:
2341         return in;
2342 
2343       default:
2344         ShouldNotReachHere();
2345         return T_CONFLICT;
2346     }
2347   }
2348 
2349  public:
2350   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2351     // The fingerprint is based on the BasicType signature encoded
2352     // into an array of ints with eight entries per int.
2353     int* ptr;
2354     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2355     if (len <= _compact_int_count) {
2356       assert(_compact_int_count == 3, "else change next line");
2357       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2358       // Storing the signature encoded as signed chars hits about 98%
2359       // of the time.
2360       _length = -len;
2361       ptr = _value._compact;
2362     } else {
2363       _length = len;
2364       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2365       ptr = _value._fingerprint;
2366     }
2367 
2368     // Now pack the BasicTypes with 8 per int
2369     int sig_index = 0;
2370     BasicType prev_sbt = T_ILLEGAL;
2371     int vt_count = 0;
2372     for (int index = 0; index < len; index++) {
2373       int value = 0;
2374       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2375         int bt = 0;
2376         if (sig_index < total_args_passed) {
2377           BasicType sbt = sig_bt[sig_index++];
2378           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2379             // Found start of value type in signature
2380             vt_count++;
2381           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2382                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2383             // Found end of value type in signature
2384             vt_count--;
2385             assert(vt_count >= 0, "invalid vt_count");
2386           }
2387           bt = adapter_encoding(sbt, vt_count > 0);
2388           prev_sbt = sbt;
2389         }
2390         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2391         value = (value << _basic_type_bits) | bt;
2392       }
2393       ptr[index] = value;
2394     }
2395     assert(vt_count == 0, "invalid vt_count");
2396   }
2397 
2398   ~AdapterFingerPrint() {
2399     if (_length > 0) {
2400       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2401     }
2402   }
2403 
2404   int value(int index) {
2405     if (_length < 0) {
2406       return _value._compact[index];
2407     }
2408     return _value._fingerprint[index];
2409   }
2410   int length() {
2411     if (_length < 0) return -_length;
2412     return _length;
2413   }
2414 
2415   bool is_compact() {
2416     return _length <= 0;
2417   }
2418 
2419   unsigned int compute_hash() {
2420     int hash = 0;
2421     for (int i = 0; i < length(); i++) {
2422       int v = value(i);
2423       hash = (hash << 8) ^ v ^ (hash >> 5);
2424     }
2425     return (unsigned int)hash;
2426   }
2427 
2428   const char* as_string() {
2429     stringStream st;
2430     st.print("0x");
2431     for (int i = 0; i < length(); i++) {
2432       st.print("%08x", value(i));
2433     }
2434     return st.as_string();
2435   }
2436 
2437   bool equals(AdapterFingerPrint* other) {
2438     if (other->_length != _length) {
2439       return false;
2440     }
2441     if (_length < 0) {
2442       assert(_compact_int_count == 3, "else change next line");
2443       return _value._compact[0] == other->_value._compact[0] &&
2444              _value._compact[1] == other->_value._compact[1] &&
2445              _value._compact[2] == other->_value._compact[2];
2446     } else {
2447       for (int i = 0; i < _length; i++) {
2448         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2449           return false;
2450         }
2451       }
2452     }
2453     return true;
2454   }
2455 };
2456 
2457 
2458 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2459 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2460   friend class AdapterHandlerTableIterator;
2461 
2462  private:
2463 
2464 #ifndef PRODUCT
2465   static int _lookups; // number of calls to lookup
2466   static int _buckets; // number of buckets checked
2467   static int _equals;  // number of buckets checked with matching hash
2468   static int _hits;    // number of successful lookups
2469   static int _compact; // number of equals calls with compact signature
2470 #endif
2471 
2472   AdapterHandlerEntry* bucket(int i) {
2473     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2474   }
2475 
2476  public:
2477   AdapterHandlerTable()
2478     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2479 
2480   // Create a new entry suitable for insertion in the table
2481   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, Symbol* sig_extended) {
2482     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2483     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2484     if (DumpSharedSpaces) {
2485       ((CDSAdapterHandlerEntry*)entry)->init();
2486     }
2487     return entry;
2488   }
2489 
2490   // Insert an entry into the table
2491   void add(AdapterHandlerEntry* entry) {
2492     int index = hash_to_index(entry->hash());
2493     add_entry(index, entry);
2494   }
2495 
2496   void free_entry(AdapterHandlerEntry* entry) {
2497     entry->deallocate();
2498     BasicHashtable<mtCode>::free_entry(entry);
2499   }
2500 
2501   // Find a entry with the same fingerprint if it exists
2502   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2503     NOT_PRODUCT(_lookups++);
2504     AdapterFingerPrint fp(total_args_passed, sig_bt);
2505     unsigned int hash = fp.compute_hash();
2506     int index = hash_to_index(hash);
2507     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2508       NOT_PRODUCT(_buckets++);
2509       if (e->hash() == hash) {
2510         NOT_PRODUCT(_equals++);
2511         if (fp.equals(e->fingerprint())) {
2512 #ifndef PRODUCT
2513           if (fp.is_compact()) _compact++;
2514           _hits++;
2515 #endif
2516           return e;
2517         }
2518       }
2519     }
2520     return NULL;
2521   }
2522 
2523 #ifndef PRODUCT
2524   void print_statistics() {
2525     ResourceMark rm;
2526     int longest = 0;
2527     int empty = 0;
2528     int total = 0;
2529     int nonempty = 0;
2530     for (int index = 0; index < table_size(); index++) {
2531       int count = 0;
2532       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2533         count++;
2534       }
2535       if (count != 0) nonempty++;
2536       if (count == 0) empty++;
2537       if (count > longest) longest = count;
2538       total += count;
2539     }
2540     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2541                   empty, longest, total, total / (double)nonempty);
2542     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2543                   _lookups, _buckets, _equals, _hits, _compact);
2544   }
2545 #endif
2546 };
2547 
2548 
2549 #ifndef PRODUCT
2550 
2551 int AdapterHandlerTable::_lookups;
2552 int AdapterHandlerTable::_buckets;
2553 int AdapterHandlerTable::_equals;
2554 int AdapterHandlerTable::_hits;
2555 int AdapterHandlerTable::_compact;
2556 
2557 #endif
2558 
2559 class AdapterHandlerTableIterator : public StackObj {
2560  private:
2561   AdapterHandlerTable* _table;
2562   int _index;
2563   AdapterHandlerEntry* _current;
2564 
2565   void scan() {
2566     while (_index < _table->table_size()) {
2567       AdapterHandlerEntry* a = _table->bucket(_index);
2568       _index++;
2569       if (a != NULL) {
2570         _current = a;
2571         return;
2572       }
2573     }
2574   }
2575 
2576  public:
2577   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2578     scan();
2579   }
2580   bool has_next() {
2581     return _current != NULL;
2582   }
2583   AdapterHandlerEntry* next() {
2584     if (_current != NULL) {
2585       AdapterHandlerEntry* result = _current;
2586       _current = _current->next();
2587       if (_current == NULL) scan();
2588       return result;
2589     } else {
2590       return NULL;
2591     }
2592   }
2593 };
2594 
2595 
2596 // ---------------------------------------------------------------------------
2597 // Implementation of AdapterHandlerLibrary
2598 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2599 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2600 const int AdapterHandlerLibrary_size = 16*K;
2601 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2602 
2603 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2604   // Should be called only when AdapterHandlerLibrary_lock is active.
2605   if (_buffer == NULL) // Initialize lazily
2606       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2607   return _buffer;
2608 }
2609 
2610 extern "C" void unexpected_adapter_call() {
2611   ShouldNotCallThis();
2612 }
2613 
2614 void AdapterHandlerLibrary::initialize() {
2615   if (_adapters != NULL) return;
2616   _adapters = new AdapterHandlerTable();
2617 
2618   // Create a special handler for abstract methods.  Abstract methods
2619   // are never compiled so an i2c entry is somewhat meaningless, but
2620   // throw AbstractMethodError just in case.
2621   // Pass wrong_method_abstract for the c2i transitions to return
2622   // AbstractMethodError for invalid invocations.
2623   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2624   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2625                                                               StubRoutines::throw_AbstractMethodError_entry(),
2626                                                               wrong_method_abstract, wrong_method_abstract);
2627 }
2628 
2629 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2630                                                       address i2c_entry,
2631                                                       address c2i_entry,
2632                                                       address c2i_unverified_entry,
2633                                                       Symbol* sig_extended) {
2634   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2635 }
2636 
2637 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method, TRAPS) {
2638   AdapterHandlerEntry* entry = get_adapter0(method, CHECK_NULL);
2639   if (method->is_shared()) {
2640     // See comments around Method::link_method()
2641     MutexLocker mu(AdapterHandlerLibrary_lock);
2642     if (method->adapter() == NULL) {
2643       method->update_adapter_trampoline(entry);
2644     }
2645     address trampoline = method->from_compiled_entry();
2646     if (*(int*)trampoline == 0) {
2647       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2648       MacroAssembler _masm(&buffer);
2649       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2650       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2651 
2652       if (PrintInterpreter) {
2653         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2654       }
2655     }
2656   }
2657 
2658   return entry;
2659 }
2660 
2661 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method, TRAPS) {
2662   // Use customized signature handler.  Need to lock around updates to
2663   // the AdapterHandlerTable (it is not safe for concurrent readers
2664   // and a single writer: this could be fixed if it becomes a
2665   // problem).
2666 
2667   ResourceMark rm;
2668 
2669   NOT_PRODUCT(int insts_size = 0);
2670   AdapterBlob* new_adapter = NULL;
2671   AdapterHandlerEntry* entry = NULL;
2672   AdapterFingerPrint* fingerprint = NULL;
2673   {
2674     MutexLocker mu(AdapterHandlerLibrary_lock);
2675     // make sure data structure is initialized
2676     initialize();
2677 
2678     if (method->is_abstract()) {
2679       return _abstract_method_handler;
2680     }
2681 
2682     // Fill in the signature array, for the calling-convention call.
2683     GrowableArray<SigEntry> sig_extended;
2684     {
2685       MutexUnlocker mul(AdapterHandlerLibrary_lock);
2686       Thread* THREAD = Thread::current();
2687       Klass* holder = method->method_holder();
2688       GrowableArray<BasicType> sig_bt_tmp;
2689 
2690       int i = 0;
2691       if (!method->is_static()) {  // Pass in receiver first
2692         if (holder->is_value()) {
2693           ValueKlass* vk = ValueKlass::cast(holder);
2694           if (!ValueTypePassFieldsAsArgs) {
2695             // If we don't pass value types as arguments or if the holder of
2696             // the method is __Value, we must pass a reference.
2697             sig_extended.push(SigEntry(T_VALUETYPEPTR));
2698           } else {
2699             const Array<SigEntry>* sig_vk = vk->extended_sig();
2700             sig_extended.appendAll(sig_vk);
2701           }
2702         } else {
2703           sig_extended.push(SigEntry(T_OBJECT));
2704         }
2705       }
2706       for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2707         if (ss.type() == T_VALUETYPE) {
2708           Symbol* name = ss.as_symbol(CHECK_NULL);
2709           if (!ValueTypePassFieldsAsArgs) {
2710             sig_extended.push(SigEntry(T_VALUETYPEPTR));
2711           } else {
2712             // Method handle intrinsics with a __Value argument may be created during
2713             // compilation. Only do a full system dictionary lookup if the argument name
2714             // is not __Value, to avoid lookups from the compiler thread.
2715             Klass* k = ss.as_klass(Handle(THREAD, holder->class_loader()),
2716                                    Handle(THREAD, holder->protection_domain()),
2717                                    SignatureStream::ReturnNull, CHECK_NULL);
2718             const Array<SigEntry>* sig_vk = ValueKlass::cast(k)->extended_sig();
2719             sig_extended.appendAll(sig_vk);
2720           }
2721         } else {
2722           sig_extended.push(SigEntry(ss.type()));
2723           if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
2724             sig_extended.push(SigEntry(T_VOID));
2725           }
2726         }
2727       }
2728     }
2729 
2730     int total_args_passed_cc = ValueTypePassFieldsAsArgs ? SigEntry::count_fields(sig_extended) : sig_extended.length();
2731     BasicType* sig_bt_cc = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_cc);
2732     SigEntry::fill_sig_bt(sig_extended, sig_bt_cc, total_args_passed_cc, ValueTypePassFieldsAsArgs);
2733 
2734     int total_args_passed_fp = sig_extended.length();
2735     BasicType* sig_bt_fp = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_fp);
2736     for (int i = 0; i < sig_extended.length(); i++) {
2737       sig_bt_fp[i] = sig_extended.at(i)._bt;
2738     }
2739 
2740     VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed_cc);
2741 
2742     // Lookup method signature's fingerprint
2743     entry = _adapters->lookup(total_args_passed_fp, sig_bt_fp);
2744 
2745 #ifdef ASSERT
2746     AdapterHandlerEntry* shared_entry = NULL;
2747     // Start adapter sharing verification only after the VM is booted.
2748     if (VerifyAdapterSharing && (entry != NULL)) {
2749       shared_entry = entry;
2750       entry = NULL;
2751     }
2752 #endif
2753 
2754     if (entry != NULL) {
2755       return entry;
2756     }
2757 
2758     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2759     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt_cc, regs, total_args_passed_cc, false);
2760 
2761     // Make a C heap allocated version of the fingerprint to store in the adapter
2762     fingerprint = new AdapterFingerPrint(total_args_passed_fp, sig_bt_fp);
2763 
2764     // StubRoutines::code2() is initialized after this function can be called. As a result,
2765     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2766     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2767     // stub that ensure that an I2C stub is called from an interpreter frame.
2768     bool contains_all_checks = StubRoutines::code2() != NULL;
2769 
2770     // Create I2C & C2I handlers
2771     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2772     if (buf != NULL) {
2773       CodeBuffer buffer(buf);
2774       short buffer_locs[20];
2775       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2776                                              sizeof(buffer_locs)/sizeof(relocInfo));
2777 
2778       MacroAssembler _masm(&buffer);
2779       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2780                                                      comp_args_on_stack,
2781                                                      sig_extended,
2782                                                      regs,
2783                                                      fingerprint,
2784                                                      new_adapter);
2785 #ifdef ASSERT
2786       if (VerifyAdapterSharing) {
2787         if (shared_entry != NULL) {
2788           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2789           // Release the one just created and return the original
2790           _adapters->free_entry(entry);
2791           return shared_entry;
2792         } else  {
2793           entry->save_code(buf->code_begin(), buffer.insts_size());
2794         }
2795       }
2796 #endif
2797 
2798       NOT_PRODUCT(insts_size = buffer.insts_size());
2799     }
2800     if (new_adapter == NULL) {
2801       // CodeCache is full, disable compilation
2802       // Ought to log this but compile log is only per compile thread
2803       // and we're some non descript Java thread.
2804       return NULL; // Out of CodeCache space
2805     }
2806     entry->relocate(new_adapter->content_begin());
2807 #ifndef PRODUCT
2808     // debugging suppport
2809     if (PrintAdapterHandlers || PrintStubCode) {
2810       ttyLocker ttyl;
2811       entry->print_adapter_on(tty);
2812       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2813                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2814                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2815       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2816       if (Verbose || PrintStubCode) {
2817         address first_pc = entry->base_address();
2818         if (first_pc != NULL) {
2819           Disassembler::decode(first_pc, first_pc + insts_size);
2820           tty->cr();
2821         }
2822       }
2823     }
2824 #endif
2825     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2826     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2827     if (contains_all_checks || !VerifyAdapterCalls) {
2828       _adapters->add(entry);
2829     }
2830   }
2831   // Outside of the lock
2832   if (new_adapter != NULL) {
2833     char blob_id[256];
2834     jio_snprintf(blob_id,
2835                  sizeof(blob_id),
2836                  "%s(%s)@" PTR_FORMAT,
2837                  new_adapter->name(),
2838                  fingerprint->as_string(),
2839                  new_adapter->content_begin());
2840     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2841 
2842     if (JvmtiExport::should_post_dynamic_code_generated()) {
2843       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2844     }
2845   }
2846   return entry;
2847 }
2848 
2849 address AdapterHandlerEntry::base_address() {
2850   address base = _i2c_entry;
2851   if (base == NULL)  base = _c2i_entry;
2852   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2853   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2854   return base;
2855 }
2856 
2857 void AdapterHandlerEntry::relocate(address new_base) {
2858   address old_base = base_address();
2859   assert(old_base != NULL, "");
2860   ptrdiff_t delta = new_base - old_base;
2861   if (_i2c_entry != NULL)
2862     _i2c_entry += delta;
2863   if (_c2i_entry != NULL)
2864     _c2i_entry += delta;
2865   if (_c2i_unverified_entry != NULL)
2866     _c2i_unverified_entry += delta;
2867   assert(base_address() == new_base, "");
2868 }
2869 
2870 
2871 void AdapterHandlerEntry::deallocate() {
2872   delete _fingerprint;
2873 #ifdef ASSERT
2874   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2875 #endif
2876 }
2877 
2878 
2879 #ifdef ASSERT
2880 // Capture the code before relocation so that it can be compared
2881 // against other versions.  If the code is captured after relocation
2882 // then relative instructions won't be equivalent.
2883 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2884   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2885   _saved_code_length = length;
2886   memcpy(_saved_code, buffer, length);
2887 }
2888 
2889 
2890 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2891   if (length != _saved_code_length) {
2892     return false;
2893   }
2894 
2895   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2896 }
2897 #endif
2898 
2899 
2900 /**
2901  * Create a native wrapper for this native method.  The wrapper converts the
2902  * Java-compiled calling convention to the native convention, handles
2903  * arguments, and transitions to native.  On return from the native we transition
2904  * back to java blocking if a safepoint is in progress.
2905  */
2906 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2907   ResourceMark rm;
2908   nmethod* nm = NULL;
2909 
2910   assert(method->is_native(), "must be native");
2911   assert(method->is_method_handle_intrinsic() ||
2912          method->has_native_function(), "must have something valid to call!");
2913 
2914   {
2915     // Perform the work while holding the lock, but perform any printing outside the lock
2916     MutexLocker mu(AdapterHandlerLibrary_lock);
2917     // See if somebody beat us to it
2918     if (method->code() != NULL) {
2919       return;
2920     }
2921 
2922     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2923     assert(compile_id > 0, "Must generate native wrapper");
2924 
2925 
2926     ResourceMark rm;
2927     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2928     if (buf != NULL) {
2929       CodeBuffer buffer(buf);
2930       double locs_buf[20];
2931       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2932       MacroAssembler _masm(&buffer);
2933 
2934       // Fill in the signature array, for the calling-convention call.
2935       const int total_args_passed = method->size_of_parameters();
2936 
2937       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2938       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2939       int i=0;
2940       if (!method->is_static())  // Pass in receiver first
2941         sig_bt[i++] = T_OBJECT;
2942       SignatureStream ss(method->signature());
2943       for (; !ss.at_return_type(); ss.next()) {
2944         BasicType bt = ss.type();
2945         if (bt == T_VALUETYPE) {
2946 #ifdef ASSERT
2947           Thread* THREAD = Thread::current();
2948           // Avoid class loading from compiler thread
2949           if (THREAD->can_call_java()) {
2950             Handle class_loader(THREAD, method->method_holder()->class_loader());
2951             Handle protection_domain(THREAD, method->method_holder()->protection_domain());
2952             Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
2953             assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
2954           }
2955 #endif
2956           bt = T_VALUETYPEPTR;
2957         }
2958         sig_bt[i++] = bt;  // Collect remaining bits of signature
2959         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2960           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2961       }
2962       assert(i == total_args_passed, "");
2963       BasicType ret_type = ss.type();
2964 
2965       // Now get the compiled-Java layout as input (or output) arguments.
2966       // NOTE: Stubs for compiled entry points of method handle intrinsics
2967       // are just trampolines so the argument registers must be outgoing ones.
2968       const bool is_outgoing = method->is_method_handle_intrinsic();
2969       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2970 
2971       // Generate the compiled-to-native wrapper code
2972       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2973 
2974       if (nm != NULL) {
2975         method->set_code(method, nm);
2976 
2977         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2978         if (directive->PrintAssemblyOption) {
2979           nm->print_code();
2980         }
2981         DirectivesStack::release(directive);
2982       }
2983     }
2984   } // Unlock AdapterHandlerLibrary_lock
2985 
2986 
2987   // Install the generated code.
2988   if (nm != NULL) {
2989     const char *msg = method->is_static() ? "(static)" : "";
2990     CompileTask::print_ul(nm, msg);
2991     if (PrintCompilation) {
2992       ttyLocker ttyl;
2993       CompileTask::print(tty, nm, msg);
2994     }
2995     nm->post_compiled_method_load_event();
2996   }
2997 }
2998 
2999 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3000   assert(thread == JavaThread::current(), "must be");
3001   // The code is about to enter a JNI lazy critical native method and
3002   // _needs_gc is true, so if this thread is already in a critical
3003   // section then just return, otherwise this thread should block
3004   // until needs_gc has been cleared.
3005   if (thread->in_critical()) {
3006     return;
3007   }
3008   // Lock and unlock a critical section to give the system a chance to block
3009   GCLocker::lock_critical(thread);
3010   GCLocker::unlock_critical(thread);
3011 JRT_END
3012 
3013 // -------------------------------------------------------------------------
3014 // Java-Java calling convention
3015 // (what you use when Java calls Java)
3016 
3017 //------------------------------name_for_receiver----------------------------------
3018 // For a given signature, return the VMReg for parameter 0.
3019 VMReg SharedRuntime::name_for_receiver() {
3020   VMRegPair regs;
3021   BasicType sig_bt = T_OBJECT;
3022   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3023   // Return argument 0 register.  In the LP64 build pointers
3024   // take 2 registers, but the VM wants only the 'main' name.
3025   return regs.first();
3026 }
3027 
3028 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3029   // This method is returning a data structure allocating as a
3030   // ResourceObject, so do not put any ResourceMarks in here.
3031   char *s = sig->as_C_string();
3032   int len = (int)strlen(s);
3033   s++; len--;                   // Skip opening paren
3034 
3035   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3036   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3037   int cnt = 0;
3038   if (has_receiver) {
3039     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3040   }
3041 
3042   while (*s != ')') {          // Find closing right paren
3043     switch (*s++) {            // Switch on signature character
3044     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3045     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3046     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3047     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3048     case 'I': sig_bt[cnt++] = T_INT;     break;
3049     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3050     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3051     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3052     case 'V': sig_bt[cnt++] = T_VOID;    break;
3053     case 'L':                   // Oop
3054       while (*s++ != ';');   // Skip signature
3055       sig_bt[cnt++] = T_OBJECT;
3056       break;
3057     case '[': {                 // Array
3058       do {                      // Skip optional size
3059         while (*s >= '0' && *s <= '9') s++;
3060       } while (*s++ == '[');   // Nested arrays?
3061       // Skip element type
3062       if (s[-1] == 'L')
3063         while (*s++ != ';'); // Skip signature
3064       sig_bt[cnt++] = T_ARRAY;
3065       break;
3066     }
3067     default : ShouldNotReachHere();
3068     }
3069   }
3070 
3071   if (has_appendix) {
3072     sig_bt[cnt++] = T_OBJECT;
3073   }
3074 
3075   assert(cnt < 256, "grow table size");
3076 
3077   int comp_args_on_stack;
3078   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3079 
3080   // the calling convention doesn't count out_preserve_stack_slots so
3081   // we must add that in to get "true" stack offsets.
3082 
3083   if (comp_args_on_stack) {
3084     for (int i = 0; i < cnt; i++) {
3085       VMReg reg1 = regs[i].first();
3086       if (reg1->is_stack()) {
3087         // Yuck
3088         reg1 = reg1->bias(out_preserve_stack_slots());
3089       }
3090       VMReg reg2 = regs[i].second();
3091       if (reg2->is_stack()) {
3092         // Yuck
3093         reg2 = reg2->bias(out_preserve_stack_slots());
3094       }
3095       regs[i].set_pair(reg2, reg1);
3096     }
3097   }
3098 
3099   // results
3100   *arg_size = cnt;
3101   return regs;
3102 }
3103 
3104 // OSR Migration Code
3105 //
3106 // This code is used convert interpreter frames into compiled frames.  It is
3107 // called from very start of a compiled OSR nmethod.  A temp array is
3108 // allocated to hold the interesting bits of the interpreter frame.  All
3109 // active locks are inflated to allow them to move.  The displaced headers and
3110 // active interpreter locals are copied into the temp buffer.  Then we return
3111 // back to the compiled code.  The compiled code then pops the current
3112 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3113 // copies the interpreter locals and displaced headers where it wants.
3114 // Finally it calls back to free the temp buffer.
3115 //
3116 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3117 
3118 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3119 
3120   //
3121   // This code is dependent on the memory layout of the interpreter local
3122   // array and the monitors. On all of our platforms the layout is identical
3123   // so this code is shared. If some platform lays the their arrays out
3124   // differently then this code could move to platform specific code or
3125   // the code here could be modified to copy items one at a time using
3126   // frame accessor methods and be platform independent.
3127 
3128   frame fr = thread->last_frame();
3129   assert(fr.is_interpreted_frame(), "");
3130   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3131 
3132   // Figure out how many monitors are active.
3133   int active_monitor_count = 0;
3134   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3135        kptr < fr.interpreter_frame_monitor_begin();
3136        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3137     if (kptr->obj() != NULL) active_monitor_count++;
3138   }
3139 
3140   // QQQ we could place number of active monitors in the array so that compiled code
3141   // could double check it.
3142 
3143   Method* moop = fr.interpreter_frame_method();
3144   int max_locals = moop->max_locals();
3145   // Allocate temp buffer, 1 word per local & 2 per active monitor
3146   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3147   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3148 
3149   // Copy the locals.  Order is preserved so that loading of longs works.
3150   // Since there's no GC I can copy the oops blindly.
3151   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3152   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3153                        (HeapWord*)&buf[0],
3154                        max_locals);
3155 
3156   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3157   int i = max_locals;
3158   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3159        kptr2 < fr.interpreter_frame_monitor_begin();
3160        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3161     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3162       BasicLock *lock = kptr2->lock();
3163       // Inflate so the displaced header becomes position-independent
3164       if (lock->displaced_header()->is_unlocked())
3165         ObjectSynchronizer::inflate_helper(kptr2->obj());
3166       // Now the displaced header is free to move
3167       buf[i++] = (intptr_t)lock->displaced_header();
3168       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3169     }
3170   }
3171   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3172 
3173   return buf;
3174 JRT_END
3175 
3176 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3177   FREE_C_HEAP_ARRAY(intptr_t, buf);
3178 JRT_END
3179 
3180 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3181   AdapterHandlerTableIterator iter(_adapters);
3182   while (iter.has_next()) {
3183     AdapterHandlerEntry* a = iter.next();
3184     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3185   }
3186   return false;
3187 }
3188 
3189 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3190   AdapterHandlerTableIterator iter(_adapters);
3191   while (iter.has_next()) {
3192     AdapterHandlerEntry* a = iter.next();
3193     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3194       st->print("Adapter for signature: ");
3195       a->print_adapter_on(tty);
3196       return;
3197     }
3198   }
3199   assert(false, "Should have found handler");
3200 }
3201 
3202 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3203   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3204                p2i(this), fingerprint()->as_string(),
3205                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3206 
3207 }
3208 
3209 #if INCLUDE_CDS
3210 
3211 void CDSAdapterHandlerEntry::init() {
3212   assert(DumpSharedSpaces, "used during dump time only");
3213   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3214   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3215 };
3216 
3217 #endif // INCLUDE_CDS
3218 
3219 
3220 #ifndef PRODUCT
3221 
3222 void AdapterHandlerLibrary::print_statistics() {
3223   _adapters->print_statistics();
3224 }
3225 
3226 #endif /* PRODUCT */
3227 
3228 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3229   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3230   if (thread->stack_reserved_zone_disabled()) {
3231   thread->enable_stack_reserved_zone();
3232   }
3233   thread->set_reserved_stack_activation(thread->stack_base());
3234 JRT_END
3235 
3236 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3237   ResourceMark rm(thread);
3238   frame activation;
3239   CompiledMethod* nm = NULL;
3240   int count = 1;
3241 
3242   assert(fr.is_java_frame(), "Must start on Java frame");
3243 
3244   while (true) {
3245     Method* method = NULL;
3246     bool found = false;
3247     if (fr.is_interpreted_frame()) {
3248       method = fr.interpreter_frame_method();
3249       if (method != NULL && method->has_reserved_stack_access()) {
3250         found = true;
3251       }
3252     } else {
3253       CodeBlob* cb = fr.cb();
3254       if (cb != NULL && cb->is_compiled()) {
3255         nm = cb->as_compiled_method();
3256         method = nm->method();
3257         // scope_desc_near() must be used, instead of scope_desc_at() because on
3258         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3259         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3260           method = sd->method();
3261           if (method != NULL && method->has_reserved_stack_access()) {
3262             found = true;
3263       }
3264     }
3265       }
3266     }
3267     if (found) {
3268       activation = fr;
3269       warning("Potentially dangerous stack overflow in "
3270               "ReservedStackAccess annotated method %s [%d]",
3271               method->name_and_sig_as_C_string(), count++);
3272       EventReservedStackActivation event;
3273       if (event.should_commit()) {
3274         event.set_method(method);
3275         event.commit();
3276       }
3277     }
3278     if (fr.is_first_java_frame()) {
3279       break;
3280     } else {
3281       fr = fr.java_sender();
3282     }
3283   }
3284   return activation;
3285 }
3286 
3287 // We are at a compiled code to interpreter call. We need backing
3288 // buffers for all value type arguments. Allocate an object array to
3289 // hold them (convenient because once we're done with it we don't have
3290 // to worry about freeing it).
3291 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method))
3292 {
3293   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3294   ResourceMark rm;
3295   JavaThread* THREAD = thread;
3296   methodHandle callee(callee_method);
3297 
3298   int nb_slots = 0;
3299   bool has_value_receiver = !callee->is_static() && callee->method_holder()->is_value();
3300   if (has_value_receiver) {
3301     nb_slots++;
3302   }
3303   Handle class_loader(THREAD, callee->method_holder()->class_loader());
3304   Handle protection_domain(THREAD, callee->method_holder()->protection_domain());
3305   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3306     if (ss.type() == T_VALUETYPE) {
3307       nb_slots++;
3308     }
3309   }
3310   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK);
3311   objArrayHandle array(THREAD, array_oop);
3312   int i = 0;
3313   if (has_value_receiver) {
3314     ValueKlass* vk = ValueKlass::cast(callee->method_holder());
3315     oop res = vk->allocate_instance(CHECK);
3316     array->obj_at_put(i, res);
3317     i++;
3318   }
3319   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3320     if (ss.type() == T_VALUETYPE) {
3321       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3322       assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
3323       ValueKlass* vk = ValueKlass::cast(k);
3324       oop res = vk->allocate_instance(CHECK);
3325       array->obj_at_put(i, res);
3326       i++;
3327     }
3328   }
3329   thread->set_vm_result(array());
3330   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3331 }
3332 JRT_END
3333 
3334 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3335 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3336 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3337 {
3338   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3339   assert(oopDesc::is_oop(array), "should be oop");
3340   for (int i = 0; i < array->length(); ++i) {
3341     instanceOop valueOop = (instanceOop)array->obj_at(i);
3342     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3343     if (vk->contains_oops()) {
3344       const address dst_oop_addr = ((address) (void*) valueOop);
3345       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3346       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3347       while (map != end) {
3348         address doop_address = dst_oop_addr + map->offset();
3349         BarrierSet::barrier_set()->write_ref_array((HeapWord*) doop_address, map->count());
3350         map++;
3351       }
3352     }
3353   }
3354 }
3355 JRT_END
3356 
3357 // We're returning from an interpreted method: load each field into a
3358 // register following the calling convention
3359 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3360 {
3361   assert(res->klass()->is_value(), "only value types here");
3362   ResourceMark rm;
3363   RegisterMap reg_map(thread);
3364   frame stubFrame = thread->last_frame();
3365   frame callerFrame = stubFrame.sender(&reg_map);
3366   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3367 
3368   ValueKlass* vk = ValueKlass::cast(res->klass());
3369 
3370   const Array<SigEntry>* sig_vk = vk->extended_sig() ;
3371   const Array<VMRegPair>* regs = vk->return_regs();
3372 
3373   if (regs == NULL) {
3374     // The fields of the value klass don't fit in registers, bail out
3375     return;
3376   }
3377 
3378   int j = 1;
3379   for (int i = 0; i < sig_vk->length(); i++) {
3380     BasicType bt = sig_vk->at(i)._bt;
3381     if (bt == T_VALUETYPE) {
3382       continue;
3383     }
3384     if (bt == T_VOID) {
3385       if (sig_vk->at(i-1)._bt == T_LONG ||
3386           sig_vk->at(i-1)._bt == T_DOUBLE) {
3387         j++;
3388       }
3389       continue;
3390     }
3391     int off = sig_vk->at(i)._offset;
3392     VMRegPair pair = regs->at(j);
3393     address loc = reg_map.location(pair.first());
3394     switch(bt) {
3395     case T_BOOLEAN:
3396       *(intptr_t*)loc = *(jboolean*)((address)res + off);
3397       break;
3398     case T_CHAR:
3399       *(intptr_t*)loc = *(jchar*)((address)res + off);
3400       break;
3401     case T_BYTE:
3402       *(intptr_t*)loc = *(jbyte*)((address)res + off);
3403       break;
3404     case T_SHORT:
3405       *(intptr_t*)loc = *(jshort*)((address)res + off);
3406       break;
3407     case T_INT: {
3408       jint v = *(jint*)((address)res + off);
3409       *(intptr_t*)loc = v;
3410       break;
3411     }
3412     case T_LONG:
3413 #ifdef _LP64
3414       *(intptr_t*)loc = *(jlong*)((address)res + off);
3415 #else
3416       Unimplemented();
3417 #endif
3418       break;
3419     case T_OBJECT:
3420     case T_ARRAY: {
3421       oop v = NULL;
3422       if (!UseCompressedOops) {
3423         oop* p = (oop*)((address)res + off);
3424         v = oopDesc::load_heap_oop(p);
3425       } else {
3426         narrowOop* p = (narrowOop*)((address)res + off);
3427         v = oopDesc::load_decode_heap_oop(p);
3428       }
3429       *(oop*)loc = v;
3430       break;
3431     }
3432     case T_FLOAT:
3433       *(jfloat*)loc = *(jfloat*)((address)res + off);
3434       break;
3435     case T_DOUBLE:
3436       *(jdouble*)loc = *(jdouble*)((address)res + off);
3437       break;
3438     default:
3439       ShouldNotReachHere();
3440     }
3441     j++;
3442   }
3443   assert(j == regs->length(), "missed a field?");
3444 
3445 #ifdef ASSERT
3446   VMRegPair pair = regs->at(0);
3447   address loc = reg_map.location(pair.first());
3448   assert(*(oopDesc**)loc == res, "overwritten object");
3449 #endif
3450 
3451   thread->set_vm_result(res);
3452 }
3453 JRT_END
3454 
3455 // We've returned to an interpreted method, the interpreter needs a
3456 // reference to a value type instance. Allocate it and initialize it
3457 // from field's values in registers.
3458 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3459 {
3460   ResourceMark rm;
3461   RegisterMap reg_map(thread);
3462   frame stubFrame = thread->last_frame();
3463   frame callerFrame = stubFrame.sender(&reg_map);
3464 
3465 #ifdef ASSERT
3466   ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map);
3467 #endif
3468 
3469   if (!is_set_nth_bit(res, 0)) {
3470     // We're not returning with value type fields in registers (the
3471     // calling convention didn't allow it for this value klass)
3472     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3473     thread->set_vm_result((oopDesc*)res);
3474     assert(verif_vk == NULL, "broken calling convention");
3475     return;
3476   }
3477 
3478   clear_nth_bit(res, 0);
3479   ValueKlass* vk = (ValueKlass*)res;
3480   assert(verif_vk == vk, "broken calling convention");
3481   assert(Metaspace::contains((void*)res), "should be klass");
3482 
3483   // Allocate handles for every oop fields so they are safe in case of
3484   // a safepoint when allocating
3485   GrowableArray<Handle> handles;
3486   vk->save_oop_fields(reg_map, handles);
3487 
3488   // It's unsafe to safepoint until we are here
3489 
3490   Handle new_vt;
3491   JRT_BLOCK;
3492   {
3493     Thread* THREAD = thread;
3494     oop vt = vk->realloc_result(reg_map, handles, callerFrame.is_interpreted_frame(), CHECK);
3495     new_vt = Handle(thread, vt);
3496 
3497 #ifdef ASSERT
3498     javaVFrame* vf = javaVFrame::cast(vframe::new_vframe(&callerFrame, &reg_map, thread));
3499     Method* m = vf->method();
3500     int bci = vf->bci();
3501     Bytecode_invoke inv(m, bci);
3502 
3503     methodHandle callee = inv.static_target(thread);
3504     assert(!thread->has_pending_exception(), "call resolution should work");
3505     ValueKlass* verif_vk2 = callee->returned_value_type(thread);
3506     assert(verif_vk == verif_vk2, "Bad value klass");
3507 #endif
3508   }
3509   JRT_BLOCK_END;
3510 
3511   thread->set_vm_result(new_vt());
3512 }
3513 JRT_END
3514