/* * Copyright (c) 2002, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/classLoaderData.inline.hpp" #include "classfile/classLoaderDataGraph.hpp" #include "classfile/moduleEntry.hpp" #include "classfile/systemDictionary.hpp" #include "gc/shared/collectedHeap.hpp" #include "memory/heapInspection.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/oop.inline.hpp" #include "oops/reflectionAccessorImplKlassHelper.hpp" #include "oops/valueKlass.hpp" #include "runtime/os.hpp" #include "runtime/fieldDescriptor.inline.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/macros.hpp" #include "utilities/stack.inline.hpp" // HeapInspection int KlassSizeStats::count(oop x) { return (HeapWordSize * (((x) != NULL) ? (x)->size() : 0)); } int KlassSizeStats::count_array(objArrayOop x) { return (HeapWordSize * (((x) != NULL) ? (x)->size() : 0)); } inline KlassInfoEntry::~KlassInfoEntry() { if (_subclasses != NULL) { delete _subclasses; } } inline void KlassInfoEntry::add_subclass(KlassInfoEntry* cie) { if (_subclasses == NULL) { _subclasses = new (ResourceObj::C_HEAP, mtInternal) GrowableArray(4, true); } _subclasses->append(cie); } int KlassInfoEntry::compare(KlassInfoEntry* e1, KlassInfoEntry* e2) { if(e1->_instance_words > e2->_instance_words) { return -1; } else if(e1->_instance_words < e2->_instance_words) { return 1; } // Sort alphabetically, note 'Z' < '[' < 'a', but it's better to group // the array classes before all the instance classes. ResourceMark rm; const char* name1 = e1->klass()->external_name(); const char* name2 = e2->klass()->external_name(); bool d1 = (name1[0] == '['); bool d2 = (name2[0] == '['); if (d1 && !d2) { return -1; } else if (d2 && !d1) { return 1; } else { return strcmp(name1, name2); } } const char* KlassInfoEntry::name() const { const char* name; if (_klass->name() != NULL) { name = _klass->external_name(); } else { if (_klass == Universe::boolArrayKlassObj()) name = ""; else if (_klass == Universe::charArrayKlassObj()) name = ""; else if (_klass == Universe::floatArrayKlassObj()) name = ""; else if (_klass == Universe::doubleArrayKlassObj()) name = ""; else if (_klass == Universe::byteArrayKlassObj()) name = ""; else if (_klass == Universe::shortArrayKlassObj()) name = ""; else if (_klass == Universe::intArrayKlassObj()) name = ""; else if (_klass == Universe::longArrayKlassObj()) name = ""; else name = ""; } return name; } void KlassInfoEntry::print_on(outputStream* st) const { ResourceMark rm; // simplify the formatting (ILP32 vs LP64) - always cast the numbers to 64-bit ModuleEntry* module = _klass->module(); if (module->is_named()) { st->print_cr(INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13) " %s (%s@%s)", (int64_t)_instance_count, (uint64_t)_instance_words * HeapWordSize, name(), module->name()->as_C_string(), module->version() != NULL ? module->version()->as_C_string() : ""); } else { st->print_cr(INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13) " %s", (int64_t)_instance_count, (uint64_t)_instance_words * HeapWordSize, name()); } } KlassInfoEntry* KlassInfoBucket::lookup(Klass* const k) { // Can happen if k is an archived class that we haven't loaded yet. if (k->java_mirror() == NULL) { return NULL; } KlassInfoEntry* elt = _list; while (elt != NULL) { if (elt->is_equal(k)) { return elt; } elt = elt->next(); } elt = new (std::nothrow) KlassInfoEntry(k, list()); // We may be out of space to allocate the new entry. if (elt != NULL) { set_list(elt); } return elt; } void KlassInfoBucket::iterate(KlassInfoClosure* cic) { KlassInfoEntry* elt = _list; while (elt != NULL) { cic->do_cinfo(elt); elt = elt->next(); } } void KlassInfoBucket::empty() { KlassInfoEntry* elt = _list; _list = NULL; while (elt != NULL) { KlassInfoEntry* next = elt->next(); delete elt; elt = next; } } class KlassInfoTable::AllClassesFinder : public LockedClassesDo { KlassInfoTable *_table; public: AllClassesFinder(KlassInfoTable* table) : _table(table) {} virtual void do_klass(Klass* k) { // This has the SIDE EFFECT of creating a KlassInfoEntry // for , if one doesn't exist yet. _table->lookup(k); } }; KlassInfoTable::KlassInfoTable(bool add_all_classes) { _size_of_instances_in_words = 0; _ref = (HeapWord*) Universe::boolArrayKlassObj(); _buckets = (KlassInfoBucket*) AllocateHeap(sizeof(KlassInfoBucket) * _num_buckets, mtInternal, CURRENT_PC, AllocFailStrategy::RETURN_NULL); if (_buckets != NULL) { for (int index = 0; index < _num_buckets; index++) { _buckets[index].initialize(); } if (add_all_classes) { AllClassesFinder finder(this); ClassLoaderDataGraph::classes_do(&finder); } } } KlassInfoTable::~KlassInfoTable() { if (_buckets != NULL) { for (int index = 0; index < _num_buckets; index++) { _buckets[index].empty(); } FREE_C_HEAP_ARRAY(KlassInfoBucket, _buckets); _buckets = NULL; } } uint KlassInfoTable::hash(const Klass* p) { return (uint)(((uintptr_t)p - (uintptr_t)_ref) >> 2); } KlassInfoEntry* KlassInfoTable::lookup(Klass* k) { uint idx = hash(k) % _num_buckets; assert(_buckets != NULL, "Allocation failure should have been caught"); KlassInfoEntry* e = _buckets[idx].lookup(k); // Lookup may fail if this is a new klass for which we // could not allocate space for an new entry, or if it's // an archived class that we haven't loaded yet. assert(e == NULL || k == e->klass(), "must be equal"); return e; } // Return false if the entry could not be recorded on account // of running out of space required to create a new entry. bool KlassInfoTable::record_instance(const oop obj) { Klass* k = obj->klass(); KlassInfoEntry* elt = lookup(k); // elt may be NULL if it's a new klass for which we // could not allocate space for a new entry in the hashtable. if (elt != NULL) { elt->set_count(elt->count() + 1); elt->set_words(elt->words() + obj->size()); _size_of_instances_in_words += obj->size(); return true; } else { return false; } } void KlassInfoTable::iterate(KlassInfoClosure* cic) { assert(_buckets != NULL, "Allocation failure should have been caught"); for (int index = 0; index < _num_buckets; index++) { _buckets[index].iterate(cic); } } size_t KlassInfoTable::size_of_instances_in_words() const { return _size_of_instances_in_words; } int KlassInfoHisto::sort_helper(KlassInfoEntry** e1, KlassInfoEntry** e2) { return (*e1)->compare(*e1,*e2); } KlassInfoHisto::KlassInfoHisto(KlassInfoTable* cit) : _cit(cit) { _elements = new (ResourceObj::C_HEAP, mtInternal) GrowableArray(_histo_initial_size, true); } KlassInfoHisto::~KlassInfoHisto() { delete _elements; } void KlassInfoHisto::add(KlassInfoEntry* cie) { elements()->append(cie); } void KlassInfoHisto::sort() { elements()->sort(KlassInfoHisto::sort_helper); } void KlassInfoHisto::print_elements(outputStream* st) const { // simplify the formatting (ILP32 vs LP64) - store the sum in 64-bit int64_t total = 0; uint64_t totalw = 0; for(int i=0; i < elements()->length(); i++) { st->print("%4d: ", i+1); elements()->at(i)->print_on(st); total += elements()->at(i)->count(); totalw += elements()->at(i)->words(); } st->print_cr("Total " INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13), total, totalw * HeapWordSize); } #define MAKE_COL_NAME(field, name, help) #name, #define MAKE_COL_HELP(field, name, help) help, static const char *name_table[] = { HEAP_INSPECTION_COLUMNS_DO(MAKE_COL_NAME) }; static const char *help_table[] = { HEAP_INSPECTION_COLUMNS_DO(MAKE_COL_HELP) }; bool KlassInfoHisto::is_selected(const char *col_name) { if (_selected_columns == NULL) { return true; } if (strcmp(_selected_columns, col_name) == 0) { return true; } const char *start = strstr(_selected_columns, col_name); if (start == NULL) { return false; } // The following must be true, because _selected_columns != col_name if (start > _selected_columns && start[-1] != ',') { return false; } char x = start[strlen(col_name)]; if (x != ',' && x != '\0') { return false; } return true; } void KlassInfoHisto::print_title(outputStream* st, bool csv_format, bool selected[], int width_table[], const char *name_table[]) { if (csv_format) { st->print("Index,Super"); for (int c=0; cprint(",%s", name_table[c]);} } st->print(",ClassName"); } else { st->print("Index Super"); for (int c = 0; c < KlassSizeStats::_num_columns; c++) { if (selected[c]) { st->print("%*s", width_table[c], name_table[c]); } } st->print(" ClassName"); } if (is_selected("ClassLoader")) { st->print(",ClassLoader"); } st->cr(); } class HierarchyClosure : public KlassInfoClosure { private: GrowableArray *_elements; public: HierarchyClosure(GrowableArray *_elements) : _elements(_elements) {} void do_cinfo(KlassInfoEntry* cie) { // ignore array classes if (cie->klass()->is_instance_klass()) { _elements->append(cie); } } }; void KlassHierarchy::print_class_hierarchy(outputStream* st, bool print_interfaces, bool print_subclasses, char* classname) { ResourceMark rm; Stack class_stack; GrowableArray elements; // Add all classes to the KlassInfoTable, which allows for quick lookup. // A KlassInfoEntry will be created for each class. KlassInfoTable cit(true); if (cit.allocation_failed()) { st->print_cr("ERROR: Ran out of C-heap; hierarchy not generated"); return; } // Add all created KlassInfoEntry instances to the elements array for easy // iteration, and to allow each KlassInfoEntry instance to have a unique index. HierarchyClosure hc(&elements); cit.iterate(&hc); for(int i = 0; i < elements.length(); i++) { KlassInfoEntry* cie = elements.at(i); Klass* super = cie->klass()->super(); // Set the index for the class. cie->set_index(i + 1); // Add the class to the subclass array of its superclass. if (super != NULL) { KlassInfoEntry* super_cie = cit.lookup(super); assert(super_cie != NULL, "could not lookup superclass"); super_cie->add_subclass(cie); } } // Set the do_print flag for each class that should be printed. for(int i = 0; i < elements.length(); i++) { KlassInfoEntry* cie = elements.at(i); if (classname == NULL) { // We are printing all classes. cie->set_do_print(true); } else { // We are only printing the hierarchy of a specific class. if (strcmp(classname, cie->klass()->external_name()) == 0) { KlassHierarchy::set_do_print_for_class_hierarchy(cie, &cit, print_subclasses); } } } // Now we do a depth first traversal of the class hierachry. The class_stack will // maintain the list of classes we still need to process. Start things off // by priming it with java.lang.Object. KlassInfoEntry* jlo_cie = cit.lookup(SystemDictionary::Object_klass()); assert(jlo_cie != NULL, "could not lookup java.lang.Object"); class_stack.push(jlo_cie); // Repeatedly pop the top item off the stack, print its class info, // and push all of its subclasses on to the stack. Do this until there // are no classes left on the stack. while (!class_stack.is_empty()) { KlassInfoEntry* curr_cie = class_stack.pop(); if (curr_cie->do_print()) { print_class(st, curr_cie, print_interfaces); if (curr_cie->subclasses() != NULL) { // Current class has subclasses, so push all of them onto the stack. for (int i = 0; i < curr_cie->subclasses()->length(); i++) { KlassInfoEntry* cie = curr_cie->subclasses()->at(i); if (cie->do_print()) { class_stack.push(cie); } } } } } st->flush(); } // Sets the do_print flag for every superclass and subclass of the specified class. void KlassHierarchy::set_do_print_for_class_hierarchy(KlassInfoEntry* cie, KlassInfoTable* cit, bool print_subclasses) { // Set do_print for all superclasses of this class. Klass* super = ((InstanceKlass*)cie->klass())->java_super(); while (super != NULL) { KlassInfoEntry* super_cie = cit->lookup(super); super_cie->set_do_print(true); super = super->super(); } // Set do_print for this class and all of its subclasses. Stack class_stack; class_stack.push(cie); while (!class_stack.is_empty()) { KlassInfoEntry* curr_cie = class_stack.pop(); curr_cie->set_do_print(true); if (print_subclasses && curr_cie->subclasses() != NULL) { // Current class has subclasses, so push all of them onto the stack. for (int i = 0; i < curr_cie->subclasses()->length(); i++) { KlassInfoEntry* cie = curr_cie->subclasses()->at(i); class_stack.push(cie); } } } } static void print_indent(outputStream* st, int indent) { while (indent != 0) { st->print("|"); indent--; if (indent != 0) { st->print(" "); } } } // Print the class name and its unique ClassLoader identifer. static void print_classname(outputStream* st, Klass* klass) { oop loader_oop = klass->class_loader_data()->class_loader(); st->print("%s/", klass->external_name()); if (loader_oop == NULL) { st->print("null"); } else { st->print(INTPTR_FORMAT, p2i(klass->class_loader_data())); } } static void print_interface(outputStream* st, InstanceKlass* intf_klass, const char* intf_type, int indent) { print_indent(st, indent); st->print(" implements "); print_classname(st, intf_klass); st->print(" (%s intf)\n", intf_type); } void KlassHierarchy::print_class(outputStream* st, KlassInfoEntry* cie, bool print_interfaces) { ResourceMark rm; InstanceKlass* klass = (InstanceKlass*)cie->klass(); int indent = 0; // Print indentation with proper indicators of superclass. Klass* super = klass->super(); while (super != NULL) { super = super->super(); indent++; } print_indent(st, indent); if (indent != 0) st->print("--"); // Print the class name, its unique ClassLoader identifer, and if it is an interface. print_classname(st, klass); if (klass->is_interface()) { st->print(" (intf)"); } // Special treatment for generated core reflection accessor classes: print invocation target. if (ReflectionAccessorImplKlassHelper::is_generated_accessor(klass)) { st->print(" (invokes: "); ReflectionAccessorImplKlassHelper::print_invocation_target(st, klass); st->print(")"); } st->print("\n"); // Print any interfaces the class has. if (print_interfaces) { Array* local_intfs = klass->local_interfaces(); Array* trans_intfs = klass->transitive_interfaces(); for (int i = 0; i < local_intfs->length(); i++) { print_interface(st, local_intfs->at(i), "declared", indent); } for (int i = 0; i < trans_intfs->length(); i++) { InstanceKlass* trans_interface = trans_intfs->at(i); // Only print transitive interfaces if they are not also declared. if (!local_intfs->contains(trans_interface)) { print_interface(st, trans_interface, "inherited", indent); } } } } void KlassInfoHisto::print_class_stats(outputStream* st, bool csv_format, const char *columns) { ResourceMark rm; KlassSizeStats sz, sz_sum; int i; julong *col_table = (julong*)(&sz); julong *colsum_table = (julong*)(&sz_sum); int width_table[KlassSizeStats::_num_columns]; bool selected[KlassSizeStats::_num_columns]; _selected_columns = columns; memset(&sz_sum, 0, sizeof(sz_sum)); for (int c=0; clength(); i++) { elements()->at(i)->set_index(i+1); } // First iteration is for accumulating stats totals in colsum_table[]. // Second iteration is for printing stats for each class. for (int pass=1; pass<=2; pass++) { if (pass == 2) { print_title(st, csv_format, selected, width_table, name_table); } for(i=0; i < elements()->length(); i++) { KlassInfoEntry* e = (KlassInfoEntry*)elements()->at(i); const Klass* k = e->klass(); // Get the stats for this class. memset(&sz, 0, sizeof(sz)); sz._inst_count = e->count(); sz._inst_bytes = HeapWordSize * e->words(); k->collect_statistics(&sz); sz._total_bytes = sz._ro_bytes + sz._rw_bytes; if (pass == 1) { // Add the stats for this class to the overall totals. for (int c=0; cis_instance_klass()) { Klass* super = k->super(); if (super) { KlassInfoEntry* super_e = _cit->lookup(super); if (super_e) { super_index = super_e->index(); } } } if (csv_format) { st->print("%ld,%d", e->index(), super_index); for (int c=0; cprint("," JULONG_FORMAT, col_table[c]);} } st->print(",%s",e->name()); } else { st->print("%5ld %5d", e->index(), super_index); for (int c=0; cprint(" %s", e->name()); } if (is_selected("ClassLoader")) { ClassLoaderData* loader_data = k->class_loader_data(); st->print(","); loader_data->print_value_on(st); } st->cr(); } } if (pass == 1) { // Calculate the minimum width needed for the column by accounting for the // column header width and the width of the largest value in the column. for (int c=0; cprint(","); for (int c=0; cprint("," JULONG_FORMAT, colsum_table[c]);} } } else { st->print(" "); for (int c=0; cprint(" Total"); if (sz_sum._total_bytes > 0) { st->cr(); st->print(" "); for (int c=0; cprint("%*s", width_table[c], "-"); break; default: { double perc = (double)(100) * (double)(colsum_table[c]) / (double)sz_sum._total_bytes; st->print("%*.1f%%", width_table[c]-1, perc); } } } } } } st->cr(); if (!csv_format) { print_title(st, csv_format, selected, width_table, name_table); } } julong KlassInfoHisto::annotations_bytes(Array* p) const { julong bytes = 0; if (p != NULL) { for (int i = 0; i < p->length(); i++) { bytes += count_bytes_array(p->at(i)); } bytes += count_bytes_array(p); } return bytes; } void KlassInfoHisto::print_histo_on(outputStream* st, bool print_stats, bool csv_format, const char *columns) { if (print_stats) { print_class_stats(st, csv_format, columns); } else { st->print_cr(" num #instances #bytes class name (module)"); st->print_cr("-------------------------------------------------------"); print_elements(st); } } class HistoClosure : public KlassInfoClosure { private: KlassInfoHisto* _cih; public: HistoClosure(KlassInfoHisto* cih) : _cih(cih) {} void do_cinfo(KlassInfoEntry* cie) { _cih->add(cie); } }; class FindClassByNameClosure : public KlassInfoClosure { private: GrowableArray* _klasses; Symbol* _classname; public: FindClassByNameClosure(GrowableArray* klasses, Symbol* classname) : _klasses(klasses), _classname(classname) { } void do_cinfo(KlassInfoEntry* cie) { if (cie->klass()->name() == _classname) { _klasses->append(cie->klass()); } } }; class FieldDesc { private: Symbol* _name; Symbol* _signature; int _offset; int _index; InstanceKlass* _holder; AccessFlags _access_flags; public: FieldDesc() { _name = NULL; _signature = NULL; _offset = -1; _index = -1; _holder = NULL; _access_flags = AccessFlags(); } FieldDesc(fieldDescriptor& fd) { _name = fd.name(); _signature = fd.signature(); _offset = fd.offset(); _index = fd.index(); _holder = fd.field_holder(); _access_flags = fd.access_flags(); } const Symbol* name() { return _name;} const Symbol* signature() { return _signature; } const int offset() { return _offset; } const int index() { return _index; } const InstanceKlass* holder() { return _holder; } const AccessFlags& access_flags() { return _access_flags; } const bool is_flattenable() { return _access_flags.is_flattenable(); } }; static int compare_offset(FieldDesc* f1, FieldDesc* f2) { return f1->offset() > f2->offset() ? 1 : -1; } static void print_field(outputStream* st, int level, int offset, FieldDesc& fd, bool flattenable, bool flattened ) { const char* flattened_msg = ""; if (flattenable) { flattened_msg = flattened ? "and flattened" : "not flattened"; } st->print_cr(" @ %d %*s \"%s\" %s %s %s", offset, level * 3, "", fd.name()->as_C_string(), fd.signature()->as_C_string(), flattenable ? " // flattenable" : "", flattened_msg); } static void print_flattened_field(outputStream* st, int level, int offset, InstanceKlass* klass) { assert(klass->is_value(), "Only value classes can be flattened"); ValueKlass* vklass = ValueKlass::cast(klass); GrowableArray* fields = new (ResourceObj::C_HEAP, mtInternal) GrowableArray(100, true); for (FieldStream fd(klass, false, false); !fd.eos(); fd.next()) { if (!fd.access_flags().is_static()) { fields->append(FieldDesc(fd.field_descriptor())); } } fields->sort(compare_offset); for(int i = 0; i < fields->length(); i++) { FieldDesc fd = fields->at(i); int offset2 = offset + fd.offset() - vklass->first_field_offset(); print_field(st, level, offset2, fd, fd.is_flattenable(), fd.holder()->field_is_flattened(fd.index())); if (fd.holder()->field_is_flattened(fd.index())) { print_flattened_field(st, level + 1, offset2 , InstanceKlass::cast(fd.holder()->get_value_field_klass(fd.index()))); } } } void PrintClassLayout::print_class_layout(outputStream* st, char* class_name) { KlassInfoTable cit(true); if (cit.allocation_failed()) { st->print_cr("ERROR: Ran out of C-heap; hierarchy not generated"); return; } Thread* THREAD = Thread::current(); Symbol* classname = SymbolTable::probe(class_name, strlen(class_name)); GrowableArray* klasses = new (ResourceObj::C_HEAP, mtInternal) GrowableArray(100, true); FindClassByNameClosure fbnc(klasses, classname); cit.iterate(&fbnc); for(int i = 0; i < klasses->length(); i++) { Klass* klass = klasses->at(i); if (!klass->is_instance_klass()) continue; // Skip InstanceKlass* ik = InstanceKlass::cast(klass); int tab = 1; st->print_cr("Class %s [@%s]:", klass->name()->as_C_string(), klass->class_loader_data()->name()->as_C_string()); ResourceMark rm; GrowableArray* fields = new (ResourceObj::C_HEAP, mtInternal) GrowableArray(100, true); for (FieldStream fd(ik, false, false); !fd.eos(); fd.next()) { if (!fd.access_flags().is_static()) { fields->append(FieldDesc(fd.field_descriptor())); } } fields->sort(compare_offset); for(int i = 0; i < fields->length(); i++) { FieldDesc fd = fields->at(i); print_field(st, 0, fd.offset(), fd, fd.is_flattenable(), fd.holder()->field_is_flattened(fd.index())); if (fd.holder()->field_is_flattened(fd.index())) { print_flattened_field(st, 1, fd.offset(), InstanceKlass::cast(fd.holder()->get_value_field_klass(fd.index()))); } } } st->cr(); } class RecordInstanceClosure : public ObjectClosure { private: KlassInfoTable* _cit; size_t _missed_count; BoolObjectClosure* _filter; public: RecordInstanceClosure(KlassInfoTable* cit, BoolObjectClosure* filter) : _cit(cit), _missed_count(0), _filter(filter) {} void do_object(oop obj) { if (should_visit(obj)) { if (!_cit->record_instance(obj)) { _missed_count++; } } } size_t missed_count() { return _missed_count; } private: bool should_visit(oop obj) { return _filter == NULL || _filter->do_object_b(obj); } }; size_t HeapInspection::populate_table(KlassInfoTable* cit, BoolObjectClosure *filter) { ResourceMark rm; RecordInstanceClosure ric(cit, filter); Universe::heap()->object_iterate(&ric); return ric.missed_count(); } void HeapInspection::heap_inspection(outputStream* st) { ResourceMark rm; if (_print_help) { for (int c=0; cprint("%s:\n\t", name_table[c]); const int max_col = 60; int col = 0; for (const char *p = help_table[c]; *p; p++,col++) { if (col >= max_col && *p == ' ') { st->print("\n\t"); col = 0; } else { st->print("%c", *p); } } st->print_cr(".\n"); } return; } KlassInfoTable cit(_print_class_stats); if (!cit.allocation_failed()) { // populate table with object allocation info size_t missed_count = populate_table(&cit); if (missed_count != 0) { st->print_cr("WARNING: Ran out of C-heap; undercounted " SIZE_FORMAT " total instances in data below", missed_count); } // Sort and print klass instance info KlassInfoHisto histo(&cit); HistoClosure hc(&histo); cit.iterate(&hc); histo.sort(); histo.print_histo_on(st, _print_class_stats, _csv_format, _columns); } else { st->print_cr("ERROR: Ran out of C-heap; histogram not generated"); } st->flush(); } class FindInstanceClosure : public ObjectClosure { private: Klass* _klass; GrowableArray* _result; public: FindInstanceClosure(Klass* k, GrowableArray* result) : _klass(k), _result(result) {}; void do_object(oop obj) { if (obj->is_a(_klass)) { _result->append(obj); } } }; void HeapInspection::find_instances_at_safepoint(Klass* k, GrowableArray* result) { assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped"); assert(Heap_lock->is_locked(), "should have the Heap_lock"); // Ensure that the heap is parsable Universe::heap()->ensure_parsability(false); // no need to retire TALBs // Iterate over objects in the heap FindInstanceClosure fic(k, result); // If this operation encounters a bad object when using CMS, // consider using safe_object_iterate() which avoids metadata // objects that may contain bad references. Universe::heap()->object_iterate(&fic); }