1 /*
  2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OOPS_SYMBOL_HPP
 26 #define SHARE_OOPS_SYMBOL_HPP
 27 
 28 #include "memory/allocation.hpp"
 29 #include "utilities/exceptions.hpp"
 30 #include "utilities/macros.hpp"
 31 
 32 // A Symbol is a canonicalized string.
 33 // All Symbols reside in global SymbolTable and are reference counted.
 34 
 35 // Reference counting
 36 //
 37 // All Symbols are allocated and added to the SymbolTable.
 38 // When a class is unloaded, the reference counts of the Symbol pointers in
 39 // the ConstantPool and in InstanceKlass (see release_C_heap_structures) are
 40 // decremented.  When the reference count for a Symbol goes to 0, the garbage
 41 // collector can free the Symbol and remove it from the SymbolTable.
 42 //
 43 // 0) Symbols need to be reference counted when a pointer to the Symbol is
 44 // saved in persistent storage.  This does not include the pointer
 45 // in the SymbolTable bucket (the _literal field in HashtableEntry)
 46 // that points to the Symbol.  All other stores of a Symbol*
 47 // to a field of a persistent variable (e.g., the _name filed in
 48 // fieldDescriptor or _ptr in a CPSlot) is reference counted.
 49 //
 50 // 1) The lookup of a "name" in the SymbolTable either creates a Symbol F for
 51 // "name" and returns a pointer to F or finds a pre-existing Symbol F for
 52 // "name" and returns a pointer to it. In both cases the reference count for F
 53 // is incremented under the assumption that a pointer to F will be created from
 54 // the return value. Thus the increment of the reference count is on the lookup
 55 // and not on the assignment to the new Symbol*.  That is
 56 //    Symbol* G = lookup()
 57 //                ^ increment on lookup()
 58 // and not
 59 //    Symbol* G = lookup()
 60 //              ^ increment on assignmnet
 61 // The reference count must be decremented manually when the copy of the
 62 // pointer G is destroyed.
 63 //
 64 // 2) For a local Symbol* A that is a copy of an existing Symbol* B, the
 65 // reference counting is elided when the scope of B is greater than the scope
 66 // of A.  For example, in the code fragment
 67 // below "klass" is passed as a parameter to the method.  Symbol* "kn"
 68 // is a copy of the name in "klass".
 69 //
 70 //   Symbol*  kn = klass->name();
 71 //   unsigned int d_hash = dictionary()->compute_hash(kn, class_loader);
 72 //
 73 // The scope of "klass" is greater than the scope of "kn" so the reference
 74 // counting for "kn" is elided.
 75 //
 76 // Symbol* copied from ConstantPool entries are good candidates for reference
 77 // counting elision.  The ConstantPool entries for a class C exist until C is
 78 // unloaded.  If a Symbol* is copied out of the ConstantPool into Symbol* X,
 79 // the Symbol* in the ConstantPool will in general out live X so the reference
 80 // counting on X can be elided.
 81 //
 82 // For cases where the scope of A is not greater than the scope of B,
 83 // the reference counting is explicitly done.  See ciSymbol,
 84 // ResolutionErrorEntry and ClassVerifier for examples.
 85 //
 86 // 3) When a Symbol K is created for temporary use, generally for substrings of
 87 // an existing symbol or to create a new symbol, assign it to a
 88 // TempNewSymbol. The SymbolTable methods new_symbol(), lookup()
 89 // and probe() all potentially return a pointer to a new Symbol.
 90 // The allocation (or lookup) of K increments the reference count for K
 91 // and the destructor decrements the reference count.
 92 //
 93 // This cannot be inherited from ResourceObj because it cannot have a vtable.
 94 // Since sometimes this is allocated from Metadata, pick a base allocation
 95 // type without virtual functions.
 96 class ClassLoaderData;
 97 
 98 // Set _refcount to PERM_REFCOUNT to prevent the Symbol from being freed.
 99 #ifndef PERM_REFCOUNT
100 #define PERM_REFCOUNT 0xffff
101 #endif
102 
103 class Symbol : public MetaspaceObj {
104   friend class VMStructs;
105   friend class SymbolTable;
106 
107  private:
108 
109   // This is an int because it needs atomic operation on the refcount.  Mask hash
110   // in high half word. length is the number of UTF8 characters in the symbol
111   volatile uint32_t _hash_and_refcount;
112   u2 _length;
113   u1 _body[2];
114 
115   enum {
116     max_symbol_length = 0xffff
117   };
118 
119   static int byte_size(int length) {
120     // minimum number of natural words needed to hold these bits (no non-heap version)
121     return (int)(sizeof(Symbol) + (length > 2 ? length - 2 : 0));
122   }
123   static int size(int length) {
124     // minimum number of natural words needed to hold these bits (no non-heap version)
125     return (int)heap_word_size(byte_size(length));
126   }
127 
128   void byte_at_put(int index, u1 value) {
129     assert(index >=0 && index < length(), "symbol index overflow");
130     _body[index] = value;
131   }
132 
133   Symbol(const u1* name, int length, int refcount);
134   void* operator new(size_t size, int len) throw();
135   void* operator new(size_t size, int len, Arena* arena) throw();
136 
137   void  operator delete(void* p);
138 
139   static short extract_hash(uint32_t value)   { return (short)(value >> 16); }
140   static int extract_refcount(uint32_t value) { return value & 0xffff; }
141   static uint32_t pack_hash_and_refcount(short hash, int refcount);
142 
143   int length() const   { return _length; }
144 
145  public:
146   // Low-level access (used with care, since not GC-safe)
147   const u1* base() const { return &_body[0]; }
148 
149   int size()                { return size(utf8_length()); }
150   int byte_size()           { return byte_size(utf8_length()); }
151 
152   // Symbols should be stored in the read-only region of CDS archive.
153   static bool is_read_only_by_default() { return true; }
154 
155   // Returns the largest size symbol we can safely hold.
156   static int max_length() { return max_symbol_length; }
157   unsigned identity_hash() const {
158     unsigned addr_bits = (unsigned)((uintptr_t)this >> (LogMinObjAlignmentInBytes + 3));
159     return ((unsigned)extract_hash(_hash_and_refcount) & 0xffff) |
160            ((addr_bits ^ (length() << 8) ^ (( _body[0] << 8) | _body[1])) << 16);
161   }
162 
163   // Reference counting.  See comments above this class for when to use.
164   int refcount() const { return extract_refcount(_hash_and_refcount); }
165   bool try_increment_refcount();
166   void increment_refcount();
167   void decrement_refcount();
168   bool is_permanent() const {
169     return (refcount() == PERM_REFCOUNT);
170   }
171   void set_permanent();
172   void make_permanent();
173 
174   // Function char_at() returns the Symbol's selected u1 byte as a char type.
175   //
176   // Note that all multi-byte chars have the sign bit set on all their bytes.
177   // No single byte chars have their sign bit set.
178   char char_at(int index) const {
179     assert(index >=0 && index < length(), "symbol index overflow");
180     return (char)base()[index];
181   }
182 
183   const u1* bytes() const { return base(); }
184 
185   int utf8_length() const { return length(); }
186 
187   // Compares the symbol with a string.
188   bool equals(const char* str, int len) const {
189     int l = utf8_length();
190     if (l != len) return false;
191     return contains_utf8_at(0, str, len);
192   }
193   bool equals(const char* str) const { return equals(str, (int) strlen(str)); }
194 
195   // Tests if the symbol starts with the given prefix.
196   bool starts_with(const char* prefix, int len) const {
197     return contains_utf8_at(0, prefix, len);
198   }
199   bool starts_with(const char* prefix) const {
200     return starts_with(prefix, (int) strlen(prefix));
201   }
202   bool starts_with(char prefix_char) const {
203     return contains_byte_at(0, prefix_char);
204   }
205   // Tests if the symbol ends with the given suffix.
206   bool ends_with(const char* suffix, int len) const {
207     return contains_utf8_at(utf8_length() - len, suffix, len);
208   }
209   bool ends_with(const char* suffix) const {
210     return ends_with(suffix, (int) strlen(suffix));
211   }
212   bool ends_with(int suffix_char) const {
213     return contains_byte_at(utf8_length() - 1, suffix_char);
214   }
215 
216   // Tests if the symbol contains the given utf8 substring
217   // at the given byte position.
218   bool contains_utf8_at(int position, const char* substring, int len) const {
219     assert(len >= 0 && substring != NULL, "substring must be valid");
220     if (position < 0)  return false;  // can happen with ends_with
221     if (position + len > utf8_length()) return false;
222     return (memcmp((char*)base() + position, substring, len) == 0);
223   }
224 
225   // Tests if the symbol contains the given byte at the given position.
226   bool contains_byte_at(int position, char code_byte) const {
227     if (position < 0)  return false;  // can happen with ends_with
228     if (position >= utf8_length()) return false;
229     return code_byte == char_at(position);
230   }
231 
232   // True if this is a descriptor for a method with void return.
233   // (Assumes it is a valid descriptor.)
234   bool is_void_method_signature() const {
235     return starts_with('(') && ends_with('V');
236   }
237 
238   bool is_Q_signature() const;
239   bool is_L_signature() const;
240   bool is_Q_array_signature() const;
241   bool is_Q_method_signature() const;
242   bool is_Q_singledim_array_signature() const;
243   Symbol* fundamental_name(TRAPS);
244   bool is_same_fundamental_type(Symbol*) const;
245 
246   // Tests if the symbol starts with the given prefix.
247   int index_of_at(int i, const char* str, int len) const;
248 
249   // Three-way compare for sorting; returns -1/0/1 if receiver is </==/> than arg
250   // note that the ordering is not alfabetical
251   inline int fast_compare(const Symbol* other) const;
252 
253   // Returns receiver converted to null-terminated UTF-8 string; string is
254   // allocated in resource area, or in the char buffer provided by caller.
255   char* as_C_string() const;
256   char* as_C_string(char* buf, int size) const;
257 
258   // Returns an escaped form of a Java string.
259   char* as_quoted_ascii() const;
260 
261   // Returns a null terminated utf8 string in a resource array
262   char* as_utf8() const { return as_C_string(); }
263 
264   jchar* as_unicode(int& length) const;
265 
266   // Treating this symbol as a class name, returns the Java name for the class.
267   // String is allocated in resource area if buffer is not provided.
268   // See Klass::external_name()
269   const char* as_klass_external_name() const;
270   const char* as_klass_external_name(char* buf, int size) const;
271 
272   // Treating the symbol as a signature, print the return
273   // type to the outputStream. Prints external names as 'double' or
274   // 'java.lang.Object[][]'.
275   void print_as_signature_external_return_type(outputStream *os);
276   // Treating the symbol as a signature, print the parameter types
277   // seperated by ', ' to the outputStream.  Prints external names as
278   //  'double' or 'java.lang.Object[][]'.
279   void print_as_signature_external_parameters(outputStream *os);
280 
281   void metaspace_pointers_do(MetaspaceClosure* it);
282   MetaspaceObj::Type type() const { return SymbolType; }
283 
284   // Printing
285   void print_symbol_on(outputStream* st = NULL) const;
286   void print_utf8_on(outputStream* st) const;
287   void print_on(outputStream* st) const;         // First level print
288   void print_value_on(outputStream* st) const;   // Second level print.
289   void print_Qvalue_on(outputStream* st) const;  // Second level print for Q-types.
290 
291   // printing on default output stream
292   void print() const;
293   void print_value() const;
294 
295   static bool is_valid(Symbol* s);
296 
297 #ifndef PRODUCT
298   // Empty constructor to create a dummy symbol object on stack
299   // only for getting its vtable pointer.
300   Symbol() { }
301 
302   static size_t _total_count;
303 #endif
304 };
305 
306 // Note: this comparison is used for vtable sorting only; it doesn't matter
307 // what order it defines, as long as it is a total, time-invariant order
308 // Since Symbol*s are in C_HEAP, their relative order in memory never changes,
309 // so use address comparison for speed
310 int Symbol::fast_compare(const Symbol* other) const {
311  return (((uintptr_t)this < (uintptr_t)other) ? -1
312    : ((uintptr_t)this == (uintptr_t) other) ? 0 : 1);
313 }
314 #endif // SHARE_OOPS_SYMBOL_HPP