1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
  26 #define SHARE_VM_OOPS_OOP_INLINE_HPP
  27 
  28 #include "gc/shared/ageTable.hpp"
  29 #include "gc/shared/barrierSet.inline.hpp"
  30 #include "gc/shared/cardTableModRefBS.hpp"
  31 #include "gc/shared/collectedHeap.inline.hpp"
  32 #include "gc/shared/genCollectedHeap.hpp"
  33 #include "gc/shared/generation.hpp"
  34 #include "memory/vtBuffer.hpp"
  35 #include "oops/arrayKlass.hpp"
  36 #include "oops/arrayOop.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "oops/markOop.inline.hpp"
  39 #include "oops/oop.hpp"
  40 #include "runtime/atomic.hpp"
  41 #include "runtime/orderAccess.inline.hpp"
  42 #include "runtime/os.hpp"
  43 #include "utilities/macros.hpp"
  44 
  45 inline void update_barrier_set(void* p, oop v, bool release = false) {
  46   assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
  47   oopDesc::bs()->write_ref_field(p, v, release);
  48 }
  49 
  50 template <class T> inline void update_barrier_set_pre(T* p, oop v) {
  51   oopDesc::bs()->write_ref_field_pre(p, v);
  52 }
  53 
  54 template <class T> void oop_store(T* p, oop v) {
  55   if (always_do_update_barrier) {
  56     oop_store((volatile T*)p, v);
  57   } else {
  58     update_barrier_set_pre(p, v);
  59     oopDesc::encode_store_heap_oop(p, v);
  60     // always_do_update_barrier == false =>
  61     // Either we are at a safepoint (in GC) or CMS is not used. In both
  62     // cases it's unnecessary to mark the card as dirty with release sematics.
  63     update_barrier_set((void*)p, v, false /* release */);  // cast away type
  64   }
  65 }
  66 
  67 template <class T> void oop_store(volatile T* p, oop v) {
  68   update_barrier_set_pre((T*)p, v);   // cast away volatile
  69   // Used by release_obj_field_put, so use release_store_ptr.
  70   oopDesc::release_encode_store_heap_oop(p, v);
  71   // When using CMS we must mark the card corresponding to p as dirty
  72   // with release sematics to prevent that CMS sees the dirty card but
  73   // not the new value v at p due to reordering of the two
  74   // stores. Note that CMS has a concurrent precleaning phase, where
  75   // it reads the card table while the Java threads are running.
  76   update_barrier_set((void*)p, v, true /* release */);    // cast away type
  77 }
  78 
  79 // Should replace *addr = oop assignments where addr type depends on UseCompressedOops
  80 // (without having to remember the function name this calls).
  81 inline void oop_store_raw(HeapWord* addr, oop value) {
  82   if (UseCompressedOops) {
  83     oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
  84   } else {
  85     oopDesc::encode_store_heap_oop((oop*)addr, value);
  86   }
  87 }
  88 
  89 // Implementation of all inlined member functions defined in oop.hpp
  90 // We need a separate file to avoid circular references
  91 
  92 void oopDesc::release_set_mark(markOop m) {
  93   OrderAccess::release_store_ptr(&_mark, m);
  94 }
  95 
  96 markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
  97   return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
  98 }
  99 
 100 void oopDesc::init_mark() {
 101   set_mark(markOopDesc::prototype_for_object(this));
 102 }
 103 
 104 Klass* oopDesc::klass() const {
 105   if (UseCompressedClassPointers) {
 106     return Klass::decode_klass_not_null(_metadata._compressed_klass);
 107   } else {
 108     return _metadata._klass;
 109   }
 110 }
 111 
 112 Klass* oopDesc::klass_or_null() const volatile {
 113   if (UseCompressedClassPointers) {
 114     return Klass::decode_klass(_metadata._compressed_klass);
 115   } else {
 116     return _metadata._klass;
 117   }
 118 }
 119 
 120 Klass* oopDesc::klass_or_null_acquire() const volatile {
 121   if (UseCompressedClassPointers) {
 122     // Workaround for non-const load_acquire parameter.
 123     const volatile narrowKlass* addr = &_metadata._compressed_klass;
 124     volatile narrowKlass* xaddr = const_cast<volatile narrowKlass*>(addr);
 125     return Klass::decode_klass(OrderAccess::load_acquire(xaddr));
 126   } else {
 127     return (Klass*)OrderAccess::load_ptr_acquire(&_metadata._klass);
 128   }
 129 }
 130 
 131 Klass** oopDesc::klass_addr() {
 132   // Only used internally and with CMS and will not work with
 133   // UseCompressedOops
 134   assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
 135   return (Klass**) &_metadata._klass;
 136 }
 137 
 138 narrowKlass* oopDesc::compressed_klass_addr() {
 139   assert(UseCompressedClassPointers, "only called by compressed klass pointers");
 140   return &_metadata._compressed_klass;
 141 }
 142 
 143 #define CHECK_SET_KLASS(k)                                                \
 144   do {                                                                    \
 145     assert(Universe::is_bootstrapping() || k != NULL, "NULL Klass");      \
 146     assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass"); \
 147   } while (0)
 148 
 149 void oopDesc::set_klass(Klass* k) {
 150   CHECK_SET_KLASS(k);
 151   if (UseCompressedClassPointers) {
 152     *compressed_klass_addr() = Klass::encode_klass_not_null(k);
 153   } else {
 154     *klass_addr() = k;
 155   }
 156 }
 157 
 158 void oopDesc::release_set_klass(Klass* k) {
 159   CHECK_SET_KLASS(k);
 160   if (UseCompressedClassPointers) {
 161     OrderAccess::release_store(compressed_klass_addr(),
 162                                Klass::encode_klass_not_null(k));
 163   } else {
 164     OrderAccess::release_store_ptr(klass_addr(), k);
 165   }
 166 }
 167 
 168 #undef CHECK_SET_KLASS
 169 
 170 int oopDesc::klass_gap() const {
 171   return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
 172 }
 173 
 174 void oopDesc::set_klass_gap(int v) {
 175   if (UseCompressedClassPointers) {
 176     *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
 177   }
 178 }
 179 
 180 void oopDesc::set_klass_to_list_ptr(oop k) {
 181   // This is only to be used during GC, for from-space objects, so no
 182   // barrier is needed.
 183   if (UseCompressedClassPointers) {
 184     _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k);  // may be null (parnew overflow handling)
 185   } else {
 186     _metadata._klass = (Klass*)(address)k;
 187   }
 188 }
 189 
 190 oop oopDesc::list_ptr_from_klass() {
 191   // This is only to be used during GC, for from-space objects.
 192   if (UseCompressedClassPointers) {
 193     return decode_heap_oop((narrowOop)_metadata._compressed_klass);
 194   } else {
 195     // Special case for GC
 196     return (oop)(address)_metadata._klass;
 197   }
 198 }
 199 
 200 bool oopDesc::is_a(Klass* k) const {
 201   return klass()->is_subtype_of(k);
 202 }
 203 
 204 int oopDesc::size()  {
 205   return size_given_klass(klass());
 206 }
 207 
 208 int oopDesc::size_given_klass(Klass* klass)  {
 209   int lh = klass->layout_helper();
 210   int s;
 211 
 212   // lh is now a value computed at class initialization that may hint
 213   // at the size.  For instances, this is positive and equal to the
 214   // size.  For arrays, this is negative and provides log2 of the
 215   // array element size.  For other oops, it is zero and thus requires
 216   // a virtual call.
 217   //
 218   // We go to all this trouble because the size computation is at the
 219   // heart of phase 2 of mark-compaction, and called for every object,
 220   // alive or dead.  So the speed here is equal in importance to the
 221   // speed of allocation.
 222 
 223   if (lh > Klass::_lh_neutral_value) {
 224     if (!Klass::layout_helper_needs_slow_path(lh)) {
 225       s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
 226     } else {
 227       s = klass->oop_size(this);
 228     }
 229   } else if (lh <= Klass::_lh_neutral_value) {
 230     // The most common case is instances; fall through if so.
 231     if (lh < Klass::_lh_neutral_value) {
 232       // Second most common case is arrays.  We have to fetch the
 233       // length of the array, shift (multiply) it appropriately,
 234       // up to wordSize, add the header, and align to object size.
 235       size_t size_in_bytes;
 236 #ifdef _M_IA64
 237       // The Windows Itanium Aug 2002 SDK hoists this load above
 238       // the check for s < 0.  An oop at the end of the heap will
 239       // cause an access violation if this load is performed on a non
 240       // array oop.  Making the reference volatile prohibits this.
 241       // (%%% please explain by what magic the length is actually fetched!)
 242       volatile int *array_length;
 243       array_length = (volatile int *)( (intptr_t)this +
 244                           arrayOopDesc::length_offset_in_bytes() );
 245       assert(array_length > 0, "Integer arithmetic problem somewhere");
 246       // Put into size_t to avoid overflow.
 247       size_in_bytes = (size_t) array_length;
 248       size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
 249 #else
 250       size_t array_length = (size_t) ((arrayOop)this)->length();
 251       size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
 252 #endif
 253       size_in_bytes += Klass::layout_helper_header_size(lh);
 254 
 255       // This code could be simplified, but by keeping array_header_in_bytes
 256       // in units of bytes and doing it this way we can round up just once,
 257       // skipping the intermediate round to HeapWordSize.  Cast the result
 258       // of round_to to size_t to guarantee unsigned division == right shift.
 259       s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
 260         HeapWordSize);
 261 
 262       // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
 263       // of an "old copy" of an object array in the young gen so it indicates
 264       // the grey portion of an already copied array. This will cause the first
 265       // disjunct below to fail if the two comparands are computed across such
 266       // a concurrent change.
 267       // ParNew also runs with promotion labs (which look like int
 268       // filler arrays) which are subject to changing their declared size
 269       // when finally retiring a PLAB; this also can cause the first disjunct
 270       // to fail for another worker thread that is concurrently walking the block
 271       // offset table. Both these invariant failures are benign for their
 272       // current uses; we relax the assertion checking to cover these two cases below:
 273       //     is_objArray() && is_forwarded()   // covers first scenario above
 274       //  || is_typeArray()                    // covers second scenario above
 275       // If and when UseParallelGC uses the same obj array oop stealing/chunking
 276       // technique, we will need to suitably modify the assertion.
 277       assert((s == klass->oop_size(this)) ||
 278              (Universe::heap()->is_gc_active() &&
 279               ((is_typeArray() && UseConcMarkSweepGC) ||
 280                (is_objArray()  && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
 281              "wrong array object size");
 282     } else {
 283       // Must be zero, so bite the bullet and take the virtual call.
 284       s = klass->oop_size(this);
 285     }
 286   }
 287 
 288   assert(s % MinObjAlignment == 0, "Oop size is not properly aligned: %d", s);
 289   assert(s > 0, "Oop size must be greater than zero, not %d", s);
 290   return s;
 291 }
 292 
 293 bool oopDesc::is_instance()  const { return klass()->is_instance_klass();  }
 294 bool oopDesc::is_array()     const { return klass()->is_array_klass();     }
 295 bool oopDesc::is_objArray()  const { return klass()->is_objArray_klass();  }
 296 bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); }
 297 bool oopDesc::is_value()     const { return klass()->is_value(); }
 298 bool oopDesc::is_valueArray()  const { return klass()->is_valueArray_klass(); }
 299 
 300 void*      oopDesc::field_base(int offset)          const { return (void*)&((char*)this)[offset]; }
 301 
 302 jbyte*     oopDesc::byte_field_addr(int offset)     const { return (jbyte*)    field_base(offset); }
 303 jchar*     oopDesc::char_field_addr(int offset)     const { return (jchar*)    field_base(offset); }
 304 jboolean*  oopDesc::bool_field_addr(int offset)     const { return (jboolean*) field_base(offset); }
 305 jint*      oopDesc::int_field_addr(int offset)      const { return (jint*)     field_base(offset); }
 306 jshort*    oopDesc::short_field_addr(int offset)    const { return (jshort*)   field_base(offset); }
 307 jlong*     oopDesc::long_field_addr(int offset)     const { return (jlong*)    field_base(offset); }
 308 jfloat*    oopDesc::float_field_addr(int offset)    const { return (jfloat*)   field_base(offset); }
 309 jdouble*   oopDesc::double_field_addr(int offset)   const { return (jdouble*)  field_base(offset); }
 310 Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
 311 
 312 template <class T> T* oopDesc::obj_field_addr(int offset) const { return (T*)  field_base(offset); }
 313 address*   oopDesc::address_field_addr(int offset)  const { return (address*)  field_base(offset); }
 314 
 315 
 316 // Functions for getting and setting oops within instance objects.
 317 // If the oops are compressed, the type passed to these overloaded functions
 318 // is narrowOop.  All functions are overloaded so they can be called by
 319 // template functions without conditionals (the compiler instantiates via
 320 // the right type and inlines the appopriate code).
 321 
 322 // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
 323 // offset from the heap base.  Saving the check for null can save instructions
 324 // in inner GC loops so these are separated.
 325 
 326 inline bool check_obj_alignment(oop obj) {
 327   return (cast_from_oop<intptr_t>(obj) & MinObjAlignmentInBytesMask) == 0;
 328 }
 329 
 330 oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
 331   assert(!is_null(v), "narrow oop value can never be zero");
 332   address base = Universe::narrow_oop_base();
 333   int    shift = Universe::narrow_oop_shift();
 334   oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
 335   assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
 336   return result;
 337 }
 338 
 339 oop oopDesc::decode_heap_oop(narrowOop v) {
 340   return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
 341 }
 342 
 343 narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
 344   assert(!is_null(v), "oop value can never be zero");
 345   assert(check_obj_alignment(v), "Address not aligned");
 346   assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
 347   address base = Universe::narrow_oop_base();
 348   int    shift = Universe::narrow_oop_shift();
 349   uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
 350   assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
 351   uint64_t result = pd >> shift;
 352   assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
 353   assert(decode_heap_oop(result) == v, "reversibility");
 354   return (narrowOop)result;
 355 }
 356 
 357 narrowOop oopDesc::encode_heap_oop(oop v) {
 358   return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
 359 }
 360 
 361 // Load and decode an oop out of the Java heap into a wide oop.
 362 oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
 363   return decode_heap_oop_not_null(*p);
 364 }
 365 
 366 // Load and decode an oop out of the heap accepting null
 367 oop oopDesc::load_decode_heap_oop(narrowOop* p) {
 368   return decode_heap_oop(*p);
 369 }
 370 
 371 // Encode and store a heap oop.
 372 void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
 373   *p = encode_heap_oop_not_null(v);
 374 }
 375 
 376 // Encode and store a heap oop allowing for null.
 377 void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
 378   *p = encode_heap_oop(v);
 379 }
 380 
 381 // Store heap oop as is for volatile fields.
 382 void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
 383   OrderAccess::release_store_ptr(p, v);
 384 }
 385 void oopDesc::release_store_heap_oop(volatile narrowOop* p, narrowOop v) {
 386   OrderAccess::release_store(p, v);
 387 }
 388 
 389 void oopDesc::release_encode_store_heap_oop_not_null(volatile narrowOop* p, oop v) {
 390   // heap oop is not pointer sized.
 391   OrderAccess::release_store(p, encode_heap_oop_not_null(v));
 392 }
 393 void oopDesc::release_encode_store_heap_oop_not_null(volatile oop* p, oop v) {
 394   OrderAccess::release_store_ptr(p, v);
 395 }
 396 
 397 void oopDesc::release_encode_store_heap_oop(volatile oop* p, oop v) {
 398   OrderAccess::release_store_ptr(p, v);
 399 }
 400 void oopDesc::release_encode_store_heap_oop(volatile narrowOop* p, oop v) {
 401   OrderAccess::release_store(p, encode_heap_oop(v));
 402 }
 403 
 404 // These functions are only used to exchange oop fields in instances,
 405 // not headers.
 406 oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
 407   if (UseCompressedOops) {
 408     // encode exchange value from oop to T
 409     narrowOop val = encode_heap_oop(exchange_value);
 410     narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
 411     // decode old from T to oop
 412     return decode_heap_oop(old);
 413   } else {
 414     return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
 415   }
 416 }
 417 
 418 oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
 419                                          volatile HeapWord *dest,
 420                                          oop compare_value,
 421                                          bool prebarrier) {
 422   if (UseCompressedOops) {
 423     if (prebarrier) {
 424       update_barrier_set_pre((narrowOop*)dest, exchange_value);
 425     }
 426     // encode exchange and compare value from oop to T
 427     narrowOop val = encode_heap_oop(exchange_value);
 428     narrowOop cmp = encode_heap_oop(compare_value);
 429 
 430     narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
 431     // decode old from T to oop
 432     return decode_heap_oop(old);
 433   } else {
 434     if (prebarrier) {
 435       update_barrier_set_pre((oop*)dest, exchange_value);
 436     }
 437     return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
 438   }
 439 }
 440 
 441 // In order to put or get a field out of an instance, must first check
 442 // if the field has been compressed and uncompress it.
 443 oop oopDesc::obj_field(int offset) const {
 444   return UseCompressedOops ?
 445     load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
 446     load_decode_heap_oop(obj_field_addr<oop>(offset));
 447 }
 448 
 449 void oopDesc::obj_field_put(int offset, oop value) {
 450   UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
 451                       oop_store(obj_field_addr<oop>(offset),       value);
 452 }
 453 
 454 void oopDesc::obj_field_put_raw(int offset, oop value) {
 455   UseCompressedOops ?
 456     encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
 457     encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
 458 }
 459 void oopDesc::obj_field_put_volatile(int offset, oop value) {
 460   OrderAccess::release();
 461   obj_field_put(offset, value);
 462   OrderAccess::fence();
 463 }
 464 
 465 Metadata* oopDesc::metadata_field(int offset) const           { return *metadata_field_addr(offset);   }
 466 void oopDesc::metadata_field_put(int offset, Metadata* value) { *metadata_field_addr(offset) = value;  }
 467 
 468 jbyte oopDesc::byte_field(int offset) const                   { return (jbyte) *byte_field_addr(offset);    }
 469 void oopDesc::byte_field_put(int offset, jbyte contents)      { *byte_field_addr(offset) = (jint) contents; }
 470 
 471 jchar oopDesc::char_field(int offset) const                   { return (jchar) *char_field_addr(offset);    }
 472 void oopDesc::char_field_put(int offset, jchar contents)      { *char_field_addr(offset) = (jint) contents; }
 473 
 474 jboolean oopDesc::bool_field(int offset) const                { return (jboolean) *bool_field_addr(offset); }
 475 void oopDesc::bool_field_put(int offset, jboolean contents)   { *bool_field_addr(offset) = (((jint) contents) & 1); }
 476 
 477 jint oopDesc::int_field(int offset) const                     { return *int_field_addr(offset);        }
 478 void oopDesc::int_field_put(int offset, jint contents)        { *int_field_addr(offset) = contents;    }
 479 
 480 jshort oopDesc::short_field(int offset) const                 { return (jshort) *short_field_addr(offset);  }
 481 void oopDesc::short_field_put(int offset, jshort contents)    { *short_field_addr(offset) = (jint) contents;}
 482 
 483 jlong oopDesc::long_field(int offset) const                   { return *long_field_addr(offset);       }
 484 void oopDesc::long_field_put(int offset, jlong contents)      { *long_field_addr(offset) = contents;   }
 485 
 486 jfloat oopDesc::float_field(int offset) const                 { return *float_field_addr(offset);      }
 487 void oopDesc::float_field_put(int offset, jfloat contents)    { *float_field_addr(offset) = contents;  }
 488 
 489 jdouble oopDesc::double_field(int offset) const               { return *double_field_addr(offset);     }
 490 void oopDesc::double_field_put(int offset, jdouble contents)  { *double_field_addr(offset) = contents; }
 491 
 492 address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
 493 void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
 494 
 495 oop oopDesc::obj_field_acquire(int offset) const {
 496   return UseCompressedOops ?
 497              decode_heap_oop((narrowOop)
 498                OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
 499            : decode_heap_oop((oop)
 500                OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
 501 }
 502 void oopDesc::release_obj_field_put(int offset, oop value) {
 503   UseCompressedOops ?
 504     oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
 505     oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
 506 }
 507 
 508 jbyte oopDesc::byte_field_acquire(int offset) const                   { return OrderAccess::load_acquire(byte_field_addr(offset));     }
 509 void oopDesc::release_byte_field_put(int offset, jbyte contents)      { OrderAccess::release_store(byte_field_addr(offset), contents); }
 510 
 511 jchar oopDesc::char_field_acquire(int offset) const                   { return OrderAccess::load_acquire(char_field_addr(offset));     }
 512 void oopDesc::release_char_field_put(int offset, jchar contents)      { OrderAccess::release_store(char_field_addr(offset), contents); }
 513 
 514 jboolean oopDesc::bool_field_acquire(int offset) const                { return OrderAccess::load_acquire(bool_field_addr(offset));     }
 515 void oopDesc::release_bool_field_put(int offset, jboolean contents)   { OrderAccess::release_store(bool_field_addr(offset), (contents & 1)); }
 516 
 517 jint oopDesc::int_field_acquire(int offset) const                     { return OrderAccess::load_acquire(int_field_addr(offset));      }
 518 void oopDesc::release_int_field_put(int offset, jint contents)        { OrderAccess::release_store(int_field_addr(offset), contents);  }
 519 
 520 jshort oopDesc::short_field_acquire(int offset) const                 { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
 521 void oopDesc::release_short_field_put(int offset, jshort contents)    { OrderAccess::release_store(short_field_addr(offset), contents);     }
 522 
 523 jlong oopDesc::long_field_acquire(int offset) const                   { return OrderAccess::load_acquire(long_field_addr(offset));       }
 524 void oopDesc::release_long_field_put(int offset, jlong contents)      { OrderAccess::release_store(long_field_addr(offset), contents);   }
 525 
 526 jfloat oopDesc::float_field_acquire(int offset) const                 { return OrderAccess::load_acquire(float_field_addr(offset));      }
 527 void oopDesc::release_float_field_put(int offset, jfloat contents)    { OrderAccess::release_store(float_field_addr(offset), contents);  }
 528 
 529 jdouble oopDesc::double_field_acquire(int offset) const               { return OrderAccess::load_acquire(double_field_addr(offset));     }
 530 void oopDesc::release_double_field_put(int offset, jdouble contents)  { OrderAccess::release_store(double_field_addr(offset), contents); }
 531 
 532 address oopDesc::address_field_acquire(int offset) const              { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
 533 void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
 534 
 535 bool oopDesc::is_locked() const {
 536   return mark()->is_locked();
 537 }
 538 
 539 bool oopDesc::is_unlocked() const {
 540   return mark()->is_unlocked();
 541 }
 542 
 543 bool oopDesc::has_bias_pattern() const {
 544   return mark()->has_bias_pattern();
 545 }
 546 
 547 // used only for asserts
 548 bool oopDesc::is_oop(bool ignore_mark_word) const {
 549   oop obj = (oop) this;
 550   if (!check_obj_alignment(obj)) return false;
 551   if (!Universe::heap()->is_in_reserved(obj)) {
 552     assert(obj->klass()->is_value(), "Only value type can be outside of the Java heap");
 553     VTBufferChunk* chunk = VTBufferChunk::chunk(obj);
 554     assert(chunk->is_valid(), "if not in the heap, should a buffered VT");
 555     if (!VTBuffer::is_in_vt_buffer(obj)) return false;
 556   }
 557   // obj is aligned and accessible in heap
 558   if (Universe::heap()->is_in_reserved(obj->klass_or_null())) return false;
 559 
 560   // Header verification: the mark is typically non-NULL. If we're
 561   // at a safepoint, it must not be null.
 562   // Outside of a safepoint, the header could be changing (for example,
 563   // another thread could be inflating a lock on this object).
 564   if (ignore_mark_word) {
 565     return true;
 566   }
 567   if (mark() != NULL) {
 568     return true;
 569   }
 570   return !SafepointSynchronize::is_at_safepoint()
 571     || (obj->klass()->is_value() && !Universe::heap()->is_in_reserved(obj)) ;
 572 }
 573 
 574 
 575 // used only for asserts
 576 bool oopDesc::is_oop_or_null(bool ignore_mark_word) const {
 577   return this == NULL ? true : is_oop(ignore_mark_word);
 578 }
 579 
 580 #ifndef PRODUCT
 581 // used only for asserts
 582 bool oopDesc::is_unlocked_oop() const {
 583   if (!Universe::heap()->is_in_reserved(this)) return false;
 584   return mark()->is_unlocked();
 585 }
 586 #endif // PRODUCT
 587 
 588 // Used only for markSweep, scavenging
 589 bool oopDesc::is_gc_marked() const {
 590   return mark()->is_marked();
 591 }
 592 
 593 bool oopDesc::is_scavengable() const {
 594   return Universe::heap()->is_scavengable(this);
 595 }
 596 
 597 // Used by scavengers
 598 bool oopDesc::is_forwarded() const {
 599   // The extra heap check is needed since the obj might be locked, in which case the
 600   // mark would point to a stack location and have the sentinel bit cleared
 601   return mark()->is_marked();
 602 }
 603 
 604 // Used by scavengers
 605 void oopDesc::forward_to(oop p) {
 606   assert(check_obj_alignment(p),
 607          "forwarding to something not aligned");
 608   assert(Universe::heap()->is_in_reserved(p),
 609          "forwarding to something not in heap");
 610   markOop m = markOopDesc::encode_pointer_as_mark(p);
 611   assert(m->decode_pointer() == p, "encoding must be reversable");
 612   set_mark(m);
 613 }
 614 
 615 // Used by parallel scavengers
 616 bool oopDesc::cas_forward_to(oop p, markOop compare) {
 617   assert(check_obj_alignment(p),
 618          "forwarding to something not aligned");
 619   assert(Universe::heap()->is_in_reserved(p),
 620          "forwarding to something not in heap");
 621   markOop m = markOopDesc::encode_pointer_as_mark(p);
 622   assert(m->decode_pointer() == p, "encoding must be reversable");
 623   return cas_set_mark(m, compare) == compare;
 624 }
 625 
 626 #if INCLUDE_ALL_GCS
 627 oop oopDesc::forward_to_atomic(oop p) {
 628   markOop oldMark = mark();
 629   markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p);
 630   markOop curMark;
 631 
 632   assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable");
 633   assert(sizeof(markOop) == sizeof(intptr_t), "CAS below requires this.");
 634 
 635   while (!oldMark->is_marked()) {
 636     curMark = (markOop)Atomic::cmpxchg_ptr(forwardPtrMark, &_mark, oldMark);
 637     assert(is_forwarded(), "object should have been forwarded");
 638     if (curMark == oldMark) {
 639       return NULL;
 640     }
 641     // If the CAS was unsuccessful then curMark->is_marked()
 642     // should return true as another thread has CAS'd in another
 643     // forwarding pointer.
 644     oldMark = curMark;
 645   }
 646   return forwardee();
 647 }
 648 #endif
 649 
 650 // Note that the forwardee is not the same thing as the displaced_mark.
 651 // The forwardee is used when copying during scavenge and mark-sweep.
 652 // It does need to clear the low two locking- and GC-related bits.
 653 oop oopDesc::forwardee() const {
 654   return (oop) mark()->decode_pointer();
 655 }
 656 
 657 // The following method needs to be MT safe.
 658 uint oopDesc::age() const {
 659   assert(!is_forwarded(), "Attempt to read age from forwarded mark");
 660   if (has_displaced_mark()) {
 661     return displaced_mark()->age();
 662   } else {
 663     return mark()->age();
 664   }
 665 }
 666 
 667 void oopDesc::incr_age() {
 668   assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
 669   if (has_displaced_mark()) {
 670     set_displaced_mark(displaced_mark()->incr_age());
 671   } else {
 672     set_mark(mark()->incr_age());
 673   }
 674 }
 675 
 676 #if INCLUDE_ALL_GCS
 677 void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
 678   klass()->oop_pc_follow_contents(this, cm);
 679 }
 680 
 681 void oopDesc::pc_update_contents(ParCompactionManager* cm) {
 682   Klass* k = klass();
 683   if (!k->is_typeArray_klass()) {
 684     // It might contain oops beyond the header, so take the virtual call.
 685     k->oop_pc_update_pointers(this, cm);
 686   }
 687   // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
 688 }
 689 
 690 void oopDesc::ps_push_contents(PSPromotionManager* pm) {
 691   Klass* k = klass();
 692   if (!k->is_typeArray_klass()) {
 693     // It might contain oops beyond the header, so take the virtual call.
 694     k->oop_ps_push_contents(this, pm);
 695   }
 696   // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
 697 }
 698 #endif // INCLUDE_ALL_GCS
 699 
 700 #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                 \
 701                                                                     \
 702 void oopDesc::oop_iterate(OopClosureType* blk) {                    \
 703   klass()->oop_oop_iterate##nv_suffix(this, blk);                   \
 704 }                                                                   \
 705                                                                     \
 706 void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {      \
 707   klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);       \
 708 }
 709 
 710 #define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)            \
 711                                                                     \
 712 int oopDesc::oop_iterate_size(OopClosureType* blk) {                \
 713   Klass* k = klass();                                               \
 714   int size = size_given_klass(k);                                   \
 715   k->oop_oop_iterate##nv_suffix(this, blk);                         \
 716   return size;                                                      \
 717 }                                                                   \
 718                                                                     \
 719 int oopDesc::oop_iterate_size(OopClosureType* blk, MemRegion mr) {  \
 720   Klass* k = klass();                                               \
 721   int size = size_given_klass(k);                                   \
 722   k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);             \
 723   return size;                                                      \
 724 }
 725 
 726 int oopDesc::oop_iterate_no_header(OopClosure* blk) {
 727   // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
 728   // the do_oop calls, but turns off all other features in ExtendedOopClosure.
 729   NoHeaderExtendedOopClosure cl(blk);
 730   return oop_iterate_size(&cl);
 731 }
 732 
 733 int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
 734   NoHeaderExtendedOopClosure cl(blk);
 735   return oop_iterate_size(&cl, mr);
 736 }
 737 
 738 #if INCLUDE_ALL_GCS
 739 #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)       \
 740                                                                     \
 741 inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) {   \
 742   klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);         \
 743 }
 744 #else
 745 #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
 746 #endif // INCLUDE_ALL_GCS
 747 
 748 #define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix)  \
 749   OOP_ITERATE_DEFN(OopClosureType, nv_suffix)               \
 750   OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)          \
 751   OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
 752 
 753 ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE)
 754 ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE)
 755 
 756 intptr_t oopDesc::identity_hash() {
 757   // Fast case; if the object is unlocked and the hash value is set, no locking is needed
 758   // Note: The mark must be read into local variable to avoid concurrent updates.
 759   markOop mrk = mark();
 760   if (mrk->is_unlocked() && !mrk->has_no_hash()) {
 761     return mrk->hash();
 762   } else if (mrk->is_marked()) {
 763     return mrk->hash();
 764   } else {
 765     return slow_identity_hash();
 766   }
 767 }
 768 
 769 bool oopDesc::has_displaced_mark() const {
 770   return mark()->has_displaced_mark_helper();
 771 }
 772 
 773 markOop oopDesc::displaced_mark() const {
 774   return mark()->displaced_mark_helper();
 775 }
 776 
 777 void oopDesc::set_displaced_mark(markOop m) {
 778   mark()->set_displaced_mark_helper(m);
 779 }
 780 
 781 #endif // SHARE_VM_OOPS_OOP_INLINE_HPP