1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/objArrayOop.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/symbol.hpp"
  52 #include "oops/verifyOopClosure.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/privilegedStack.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/commandLineFlagConstraintList.hpp"
  61 #include "runtime/commandLineFlagWriteableList.hpp"
  62 #include "runtime/commandLineFlagRangeList.hpp"
  63 #include "runtime/deoptimization.hpp"
  64 #include "runtime/fprofiler.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/globals.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/jniPeriodicChecker.hpp"
  72 #include "runtime/timerTrace.hpp"
  73 #include "runtime/memprofiler.hpp"
  74 #include "runtime/mutexLocker.hpp"
  75 #include "runtime/objectMonitor.hpp"
  76 #include "runtime/orderAccess.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepoint.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/statSampler.hpp"
  81 #include "runtime/stubRoutines.hpp"
  82 #include "runtime/sweeper.hpp"
  83 #include "runtime/task.hpp"
  84 #include "runtime/thread.inline.hpp"
  85 #include "runtime/threadCritical.hpp"
  86 #include "runtime/vframe.hpp"
  87 #include "runtime/vframeArray.hpp"
  88 #include "runtime/vframe_hp.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "runtime/vm_operations.hpp"
  91 #include "runtime/vm_version.hpp"
  92 #include "services/attachListener.hpp"
  93 #include "services/management.hpp"
  94 #include "services/memTracker.hpp"
  95 #include "services/threadService.hpp"
  96 #include "trace/traceMacros.hpp"
  97 #include "trace/tracing.hpp"
  98 #include "utilities/defaultStream.hpp"
  99 #include "utilities/dtrace.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/macros.hpp"
 102 #include "utilities/preserveException.hpp"
 103 #if INCLUDE_ALL_GCS
 104 #include "gc/cms/concurrentMarkSweepThread.hpp"
 105 #include "gc/g1/concurrentMarkThread.inline.hpp"
 106 #include "gc/parallel/pcTasks.hpp"
 107 #endif // INCLUDE_ALL_GCS
 108 #if INCLUDE_JVMCI
 109 #include "jvmci/jvmciCompiler.hpp"
 110 #include "jvmci/jvmciRuntime.hpp"
 111 #endif
 112 #ifdef COMPILER1
 113 #include "c1/c1_Compiler.hpp"
 114 #endif
 115 #ifdef COMPILER2
 116 #include "opto/c2compiler.hpp"
 117 #include "opto/idealGraphPrinter.hpp"
 118 #endif
 119 #if INCLUDE_RTM_OPT
 120 #include "runtime/rtmLocking.hpp"
 121 #endif
 122 
 123 // Initialization after module runtime initialization
 124 void universe_post_module_init();  // must happen after call_initPhase2
 125 
 126 #ifdef DTRACE_ENABLED
 127 
 128 // Only bother with this argument setup if dtrace is available
 129 
 130   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 131   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 132 
 133   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 134     {                                                                      \
 135       ResourceMark rm(this);                                               \
 136       int len = 0;                                                         \
 137       const char* name = (javathread)->get_thread_name();                  \
 138       len = strlen(name);                                                  \
 139       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 140         (char *) name, len,                                                \
 141         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 142         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 143         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 144     }
 145 
 146 #else //  ndef DTRACE_ENABLED
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)
 149 
 150 #endif // ndef DTRACE_ENABLED
 151 
 152 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 153 // Current thread is maintained as a thread-local variable
 154 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 155 #endif
 156 // Class hierarchy
 157 // - Thread
 158 //   - VMThread
 159 //   - WatcherThread
 160 //   - ConcurrentMarkSweepThread
 161 //   - JavaThread
 162 //     - CompilerThread
 163 
 164 // ======= Thread ========
 165 // Support for forcing alignment of thread objects for biased locking
 166 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 167   if (UseBiasedLocking) {
 168     const int alignment = markOopDesc::biased_lock_alignment;
 169     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 170     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 171                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 172                                                          AllocFailStrategy::RETURN_NULL);
 173     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 174     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 175            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 176            "JavaThread alignment code overflowed allocated storage");
 177     if (aligned_addr != real_malloc_addr) {
 178       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 179                               p2i(real_malloc_addr),
 180                               p2i(aligned_addr));
 181     }
 182     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 183     return aligned_addr;
 184   } else {
 185     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 186                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 187   }
 188 }
 189 
 190 void Thread::operator delete(void* p) {
 191   if (UseBiasedLocking) {
 192     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 193     FreeHeap(real_malloc_addr);
 194   } else {
 195     FreeHeap(p);
 196   }
 197 }
 198 
 199 
 200 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 201 // JavaThread
 202 
 203 
 204 Thread::Thread() {
 205   // stack and get_thread
 206   set_stack_base(NULL);
 207   set_stack_size(0);
 208   set_self_raw_id(0);
 209   set_lgrp_id(-1);
 210   DEBUG_ONLY(clear_suspendible_thread();)
 211 
 212   // allocated data structures
 213   set_osthread(NULL);
 214   set_resource_area(new (mtThread)ResourceArea());
 215   DEBUG_ONLY(_current_resource_mark = NULL;)
 216   set_handle_area(new (mtThread) HandleArea(NULL));
 217   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 218   set_active_handles(NULL);
 219   set_free_handle_block(NULL);
 220   set_last_handle_mark(NULL);
 221 
 222   // This initial value ==> never claimed.
 223   _oops_do_parity = 0;
 224 
 225   // the handle mark links itself to last_handle_mark
 226   new HandleMark(this);
 227 
 228   // plain initialization
 229   debug_only(_owned_locks = NULL;)
 230   debug_only(_allow_allocation_count = 0;)
 231   NOT_PRODUCT(_allow_safepoint_count = 0;)
 232   NOT_PRODUCT(_skip_gcalot = false;)
 233   _jvmti_env_iteration_count = 0;
 234   set_allocated_bytes(0);
 235   _vm_operation_started_count = 0;
 236   _vm_operation_completed_count = 0;
 237   _current_pending_monitor = NULL;
 238   _current_pending_monitor_is_from_java = true;
 239   _current_waiting_monitor = NULL;
 240   _num_nested_signal = 0;
 241   omFreeList = NULL;
 242   omFreeCount = 0;
 243   omFreeProvision = 32;
 244   omInUseList = NULL;
 245   omInUseCount = 0;
 246 
 247 #ifdef ASSERT
 248   _visited_for_critical_count = false;
 249 #endif
 250 
 251   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 252                          Monitor::_safepoint_check_sometimes);
 253   _suspend_flags = 0;
 254 
 255   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 256   _hashStateX = os::random();
 257   _hashStateY = 842502087;
 258   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 259   _hashStateW = 273326509;
 260 
 261   _OnTrap   = 0;
 262   _schedctl = NULL;
 263   _Stalled  = 0;
 264   _TypeTag  = 0x2BAD;
 265 
 266   // Many of the following fields are effectively final - immutable
 267   // Note that nascent threads can't use the Native Monitor-Mutex
 268   // construct until the _MutexEvent is initialized ...
 269   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 270   // we might instead use a stack of ParkEvents that we could provision on-demand.
 271   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 272   // and ::Release()
 273   _ParkEvent   = ParkEvent::Allocate(this);
 274   _SleepEvent  = ParkEvent::Allocate(this);
 275   _MutexEvent  = ParkEvent::Allocate(this);
 276   _MuxEvent    = ParkEvent::Allocate(this);
 277 
 278 #ifdef CHECK_UNHANDLED_OOPS
 279   if (CheckUnhandledOops) {
 280     _unhandled_oops = new UnhandledOops(this);
 281   }
 282 #endif // CHECK_UNHANDLED_OOPS
 283 #ifdef ASSERT
 284   if (UseBiasedLocking) {
 285     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 286     assert(this == _real_malloc_address ||
 287            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 288            "bug in forced alignment of thread objects");
 289   }
 290 #endif // ASSERT
 291 }
 292 
 293 void Thread::initialize_thread_current() {
 294 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 295   assert(_thr_current == NULL, "Thread::current already initialized");
 296   _thr_current = this;
 297 #endif
 298   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 299   ThreadLocalStorage::set_thread(this);
 300   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 301 }
 302 
 303 void Thread::clear_thread_current() {
 304   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 305 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 306   _thr_current = NULL;
 307 #endif
 308   ThreadLocalStorage::set_thread(NULL);
 309 }
 310 
 311 void Thread::record_stack_base_and_size() {
 312   set_stack_base(os::current_stack_base());
 313   set_stack_size(os::current_stack_size());
 314   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 315   // in initialize_thread(). Without the adjustment, stack size is
 316   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 317   // So far, only Solaris has real implementation of initialize_thread().
 318   //
 319   // set up any platform-specific state.
 320   os::initialize_thread(this);
 321 
 322   // Set stack limits after thread is initialized.
 323   if (is_Java_thread()) {
 324     ((JavaThread*) this)->set_stack_overflow_limit();
 325     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 326   }
 327 #if INCLUDE_NMT
 328   // record thread's native stack, stack grows downward
 329   MemTracker::record_thread_stack(stack_end(), stack_size());
 330 #endif // INCLUDE_NMT
 331   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 332     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 333     os::current_thread_id(), p2i(stack_base() - stack_size()),
 334     p2i(stack_base()), stack_size()/1024);
 335 }
 336 
 337 
 338 Thread::~Thread() {
 339   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 340   ObjectSynchronizer::omFlush(this);
 341 
 342   EVENT_THREAD_DESTRUCT(this);
 343 
 344   // stack_base can be NULL if the thread is never started or exited before
 345   // record_stack_base_and_size called. Although, we would like to ensure
 346   // that all started threads do call record_stack_base_and_size(), there is
 347   // not proper way to enforce that.
 348 #if INCLUDE_NMT
 349   if (_stack_base != NULL) {
 350     MemTracker::release_thread_stack(stack_end(), stack_size());
 351 #ifdef ASSERT
 352     set_stack_base(NULL);
 353 #endif
 354   }
 355 #endif // INCLUDE_NMT
 356 
 357   // deallocate data structures
 358   delete resource_area();
 359   // since the handle marks are using the handle area, we have to deallocated the root
 360   // handle mark before deallocating the thread's handle area,
 361   assert(last_handle_mark() != NULL, "check we have an element");
 362   delete last_handle_mark();
 363   assert(last_handle_mark() == NULL, "check we have reached the end");
 364 
 365   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 366   // We NULL out the fields for good hygiene.
 367   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 368   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 369   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 370   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 371 
 372   delete handle_area();
 373   delete metadata_handles();
 374 
 375   // SR_handler uses this as a termination indicator -
 376   // needs to happen before os::free_thread()
 377   delete _SR_lock;
 378   _SR_lock = NULL;
 379 
 380   // osthread() can be NULL, if creation of thread failed.
 381   if (osthread() != NULL) os::free_thread(osthread());
 382 
 383   // clear Thread::current if thread is deleting itself.
 384   // Needed to ensure JNI correctly detects non-attached threads.
 385   if (this == Thread::current()) {
 386     clear_thread_current();
 387   }
 388 
 389   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 390 }
 391 
 392 // NOTE: dummy function for assertion purpose.
 393 void Thread::run() {
 394   ShouldNotReachHere();
 395 }
 396 
 397 #ifdef ASSERT
 398 // Private method to check for dangling thread pointer
 399 void check_for_dangling_thread_pointer(Thread *thread) {
 400   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 401          "possibility of dangling Thread pointer");
 402 }
 403 #endif
 404 
 405 ThreadPriority Thread::get_priority(const Thread* const thread) {
 406   ThreadPriority priority;
 407   // Can return an error!
 408   (void)os::get_priority(thread, priority);
 409   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 410   return priority;
 411 }
 412 
 413 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 414   debug_only(check_for_dangling_thread_pointer(thread);)
 415   // Can return an error!
 416   (void)os::set_priority(thread, priority);
 417 }
 418 
 419 
 420 void Thread::start(Thread* thread) {
 421   // Start is different from resume in that its safety is guaranteed by context or
 422   // being called from a Java method synchronized on the Thread object.
 423   if (!DisableStartThread) {
 424     if (thread->is_Java_thread()) {
 425       // Initialize the thread state to RUNNABLE before starting this thread.
 426       // Can not set it after the thread started because we do not know the
 427       // exact thread state at that time. It could be in MONITOR_WAIT or
 428       // in SLEEPING or some other state.
 429       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 430                                           java_lang_Thread::RUNNABLE);
 431     }
 432     os::start_thread(thread);
 433   }
 434 }
 435 
 436 // Enqueue a VM_Operation to do the job for us - sometime later
 437 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 438   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 439   VMThread::execute(vm_stop);
 440 }
 441 
 442 
 443 // Check if an external suspend request has completed (or has been
 444 // cancelled). Returns true if the thread is externally suspended and
 445 // false otherwise.
 446 //
 447 // The bits parameter returns information about the code path through
 448 // the routine. Useful for debugging:
 449 //
 450 // set in is_ext_suspend_completed():
 451 // 0x00000001 - routine was entered
 452 // 0x00000010 - routine return false at end
 453 // 0x00000100 - thread exited (return false)
 454 // 0x00000200 - suspend request cancelled (return false)
 455 // 0x00000400 - thread suspended (return true)
 456 // 0x00001000 - thread is in a suspend equivalent state (return true)
 457 // 0x00002000 - thread is native and walkable (return true)
 458 // 0x00004000 - thread is native_trans and walkable (needed retry)
 459 //
 460 // set in wait_for_ext_suspend_completion():
 461 // 0x00010000 - routine was entered
 462 // 0x00020000 - suspend request cancelled before loop (return false)
 463 // 0x00040000 - thread suspended before loop (return true)
 464 // 0x00080000 - suspend request cancelled in loop (return false)
 465 // 0x00100000 - thread suspended in loop (return true)
 466 // 0x00200000 - suspend not completed during retry loop (return false)
 467 
 468 // Helper class for tracing suspend wait debug bits.
 469 //
 470 // 0x00000100 indicates that the target thread exited before it could
 471 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 472 // 0x00080000 each indicate a cancelled suspend request so they don't
 473 // count as wait failures either.
 474 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 475 
 476 class TraceSuspendDebugBits : public StackObj {
 477  private:
 478   JavaThread * jt;
 479   bool         is_wait;
 480   bool         called_by_wait;  // meaningful when !is_wait
 481   uint32_t *   bits;
 482 
 483  public:
 484   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 485                         uint32_t *_bits) {
 486     jt             = _jt;
 487     is_wait        = _is_wait;
 488     called_by_wait = _called_by_wait;
 489     bits           = _bits;
 490   }
 491 
 492   ~TraceSuspendDebugBits() {
 493     if (!is_wait) {
 494 #if 1
 495       // By default, don't trace bits for is_ext_suspend_completed() calls.
 496       // That trace is very chatty.
 497       return;
 498 #else
 499       if (!called_by_wait) {
 500         // If tracing for is_ext_suspend_completed() is enabled, then only
 501         // trace calls to it from wait_for_ext_suspend_completion()
 502         return;
 503       }
 504 #endif
 505     }
 506 
 507     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 508       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 509         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 510         ResourceMark rm;
 511 
 512         tty->print_cr(
 513                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 514                       jt->get_thread_name(), *bits);
 515 
 516         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 517       }
 518     }
 519   }
 520 };
 521 #undef DEBUG_FALSE_BITS
 522 
 523 
 524 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 525                                           uint32_t *bits) {
 526   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 527 
 528   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 529   bool do_trans_retry;           // flag to force the retry
 530 
 531   *bits |= 0x00000001;
 532 
 533   do {
 534     do_trans_retry = false;
 535 
 536     if (is_exiting()) {
 537       // Thread is in the process of exiting. This is always checked
 538       // first to reduce the risk of dereferencing a freed JavaThread.
 539       *bits |= 0x00000100;
 540       return false;
 541     }
 542 
 543     if (!is_external_suspend()) {
 544       // Suspend request is cancelled. This is always checked before
 545       // is_ext_suspended() to reduce the risk of a rogue resume
 546       // confusing the thread that made the suspend request.
 547       *bits |= 0x00000200;
 548       return false;
 549     }
 550 
 551     if (is_ext_suspended()) {
 552       // thread is suspended
 553       *bits |= 0x00000400;
 554       return true;
 555     }
 556 
 557     // Now that we no longer do hard suspends of threads running
 558     // native code, the target thread can be changing thread state
 559     // while we are in this routine:
 560     //
 561     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 562     //
 563     // We save a copy of the thread state as observed at this moment
 564     // and make our decision about suspend completeness based on the
 565     // copy. This closes the race where the thread state is seen as
 566     // _thread_in_native_trans in the if-thread_blocked check, but is
 567     // seen as _thread_blocked in if-thread_in_native_trans check.
 568     JavaThreadState save_state = thread_state();
 569 
 570     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 571       // If the thread's state is _thread_blocked and this blocking
 572       // condition is known to be equivalent to a suspend, then we can
 573       // consider the thread to be externally suspended. This means that
 574       // the code that sets _thread_blocked has been modified to do
 575       // self-suspension if the blocking condition releases. We also
 576       // used to check for CONDVAR_WAIT here, but that is now covered by
 577       // the _thread_blocked with self-suspension check.
 578       //
 579       // Return true since we wouldn't be here unless there was still an
 580       // external suspend request.
 581       *bits |= 0x00001000;
 582       return true;
 583     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 584       // Threads running native code will self-suspend on native==>VM/Java
 585       // transitions. If its stack is walkable (should always be the case
 586       // unless this function is called before the actual java_suspend()
 587       // call), then the wait is done.
 588       *bits |= 0x00002000;
 589       return true;
 590     } else if (!called_by_wait && !did_trans_retry &&
 591                save_state == _thread_in_native_trans &&
 592                frame_anchor()->walkable()) {
 593       // The thread is transitioning from thread_in_native to another
 594       // thread state. check_safepoint_and_suspend_for_native_trans()
 595       // will force the thread to self-suspend. If it hasn't gotten
 596       // there yet we may have caught the thread in-between the native
 597       // code check above and the self-suspend. Lucky us. If we were
 598       // called by wait_for_ext_suspend_completion(), then it
 599       // will be doing the retries so we don't have to.
 600       //
 601       // Since we use the saved thread state in the if-statement above,
 602       // there is a chance that the thread has already transitioned to
 603       // _thread_blocked by the time we get here. In that case, we will
 604       // make a single unnecessary pass through the logic below. This
 605       // doesn't hurt anything since we still do the trans retry.
 606 
 607       *bits |= 0x00004000;
 608 
 609       // Once the thread leaves thread_in_native_trans for another
 610       // thread state, we break out of this retry loop. We shouldn't
 611       // need this flag to prevent us from getting back here, but
 612       // sometimes paranoia is good.
 613       did_trans_retry = true;
 614 
 615       // We wait for the thread to transition to a more usable state.
 616       for (int i = 1; i <= SuspendRetryCount; i++) {
 617         // We used to do an "os::yield_all(i)" call here with the intention
 618         // that yielding would increase on each retry. However, the parameter
 619         // is ignored on Linux which means the yield didn't scale up. Waiting
 620         // on the SR_lock below provides a much more predictable scale up for
 621         // the delay. It also provides a simple/direct point to check for any
 622         // safepoint requests from the VMThread
 623 
 624         // temporarily drops SR_lock while doing wait with safepoint check
 625         // (if we're a JavaThread - the WatcherThread can also call this)
 626         // and increase delay with each retry
 627         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 628 
 629         // check the actual thread state instead of what we saved above
 630         if (thread_state() != _thread_in_native_trans) {
 631           // the thread has transitioned to another thread state so
 632           // try all the checks (except this one) one more time.
 633           do_trans_retry = true;
 634           break;
 635         }
 636       } // end retry loop
 637 
 638 
 639     }
 640   } while (do_trans_retry);
 641 
 642   *bits |= 0x00000010;
 643   return false;
 644 }
 645 
 646 // Wait for an external suspend request to complete (or be cancelled).
 647 // Returns true if the thread is externally suspended and false otherwise.
 648 //
 649 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 650                                                  uint32_t *bits) {
 651   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 652                              false /* !called_by_wait */, bits);
 653 
 654   // local flag copies to minimize SR_lock hold time
 655   bool is_suspended;
 656   bool pending;
 657   uint32_t reset_bits;
 658 
 659   // set a marker so is_ext_suspend_completed() knows we are the caller
 660   *bits |= 0x00010000;
 661 
 662   // We use reset_bits to reinitialize the bits value at the top of
 663   // each retry loop. This allows the caller to make use of any
 664   // unused bits for their own marking purposes.
 665   reset_bits = *bits;
 666 
 667   {
 668     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 669     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 670                                             delay, bits);
 671     pending = is_external_suspend();
 672   }
 673   // must release SR_lock to allow suspension to complete
 674 
 675   if (!pending) {
 676     // A cancelled suspend request is the only false return from
 677     // is_ext_suspend_completed() that keeps us from entering the
 678     // retry loop.
 679     *bits |= 0x00020000;
 680     return false;
 681   }
 682 
 683   if (is_suspended) {
 684     *bits |= 0x00040000;
 685     return true;
 686   }
 687 
 688   for (int i = 1; i <= retries; i++) {
 689     *bits = reset_bits;  // reinit to only track last retry
 690 
 691     // We used to do an "os::yield_all(i)" call here with the intention
 692     // that yielding would increase on each retry. However, the parameter
 693     // is ignored on Linux which means the yield didn't scale up. Waiting
 694     // on the SR_lock below provides a much more predictable scale up for
 695     // the delay. It also provides a simple/direct point to check for any
 696     // safepoint requests from the VMThread
 697 
 698     {
 699       MutexLocker ml(SR_lock());
 700       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 701       // can also call this)  and increase delay with each retry
 702       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 703 
 704       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 705                                               delay, bits);
 706 
 707       // It is possible for the external suspend request to be cancelled
 708       // (by a resume) before the actual suspend operation is completed.
 709       // Refresh our local copy to see if we still need to wait.
 710       pending = is_external_suspend();
 711     }
 712 
 713     if (!pending) {
 714       // A cancelled suspend request is the only false return from
 715       // is_ext_suspend_completed() that keeps us from staying in the
 716       // retry loop.
 717       *bits |= 0x00080000;
 718       return false;
 719     }
 720 
 721     if (is_suspended) {
 722       *bits |= 0x00100000;
 723       return true;
 724     }
 725   } // end retry loop
 726 
 727   // thread did not suspend after all our retries
 728   *bits |= 0x00200000;
 729   return false;
 730 }
 731 
 732 #ifndef PRODUCT
 733 void JavaThread::record_jump(address target, address instr, const char* file,
 734                              int line) {
 735 
 736   // This should not need to be atomic as the only way for simultaneous
 737   // updates is via interrupts. Even then this should be rare or non-existent
 738   // and we don't care that much anyway.
 739 
 740   int index = _jmp_ring_index;
 741   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 742   _jmp_ring[index]._target = (intptr_t) target;
 743   _jmp_ring[index]._instruction = (intptr_t) instr;
 744   _jmp_ring[index]._file = file;
 745   _jmp_ring[index]._line = line;
 746 }
 747 #endif // PRODUCT
 748 
 749 // Called by flat profiler
 750 // Callers have already called wait_for_ext_suspend_completion
 751 // The assertion for that is currently too complex to put here:
 752 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 753   bool gotframe = false;
 754   // self suspension saves needed state.
 755   if (has_last_Java_frame() && _anchor.walkable()) {
 756     *_fr = pd_last_frame();
 757     gotframe = true;
 758   }
 759   return gotframe;
 760 }
 761 
 762 void Thread::interrupt(Thread* thread) {
 763   debug_only(check_for_dangling_thread_pointer(thread);)
 764   os::interrupt(thread);
 765 }
 766 
 767 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 768   debug_only(check_for_dangling_thread_pointer(thread);)
 769   // Note:  If clear_interrupted==false, this simply fetches and
 770   // returns the value of the field osthread()->interrupted().
 771   return os::is_interrupted(thread, clear_interrupted);
 772 }
 773 
 774 
 775 // GC Support
 776 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 777   jint thread_parity = _oops_do_parity;
 778   if (thread_parity != strong_roots_parity) {
 779     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 780     if (res == thread_parity) {
 781       return true;
 782     } else {
 783       guarantee(res == strong_roots_parity, "Or else what?");
 784       return false;
 785     }
 786   }
 787   return false;
 788 }
 789 
 790 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 791   active_handles()->oops_do(f);
 792   // Do oop for ThreadShadow
 793   f->do_oop((oop*)&_pending_exception);
 794   handle_area()->oops_do(f);
 795 }
 796 
 797 void Thread::metadata_handles_do(void f(Metadata*)) {
 798   // Only walk the Handles in Thread.
 799   if (metadata_handles() != NULL) {
 800     for (int i = 0; i< metadata_handles()->length(); i++) {
 801       f(metadata_handles()->at(i));
 802     }
 803   }
 804 }
 805 
 806 void Thread::print_on(outputStream* st) const {
 807   // get_priority assumes osthread initialized
 808   if (osthread() != NULL) {
 809     int os_prio;
 810     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 811       st->print("os_prio=%d ", os_prio);
 812     }
 813     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 814     ext().print_on(st);
 815     osthread()->print_on(st);
 816   }
 817   debug_only(if (WizardMode) print_owned_locks_on(st);)
 818 }
 819 
 820 // Thread::print_on_error() is called by fatal error handler. Don't use
 821 // any lock or allocate memory.
 822 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 823   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 824 
 825   if (is_VM_thread())                 { st->print("VMThread"); }
 826   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 827   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 828   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 829   else                                { st->print("Thread"); }
 830 
 831   if (is_Named_thread()) {
 832     st->print(" \"%s\"", name());
 833   }
 834 
 835   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 836             p2i(stack_end()), p2i(stack_base()));
 837 
 838   if (osthread()) {
 839     st->print(" [id=%d]", osthread()->thread_id());
 840   }
 841 }
 842 
 843 void JavaThread::print_vt_buffer_stats_on(outputStream* st) const {
 844   st->print_cr("%s:", this->name());
 845   st->print_cr("\tChunks in use  : %d", vtchunk_in_use());
 846   st->print_cr("\tCached chunk   : %d", local_free_chunk() == NULL ? 0 : 1);
 847   st->print_cr("\tMax chunks     : %d", vtchunk_max());
 848   st->print_cr("\tReturned chunks: %d", vtchunk_total_returned());
 849   st->print_cr("\tMemory buffered: %ld", vtchunk_total_memory_buffered());
 850   st->print_cr("");
 851 }
 852 
 853 #ifdef ASSERT
 854 void Thread::print_owned_locks_on(outputStream* st) const {
 855   Monitor *cur = _owned_locks;
 856   if (cur == NULL) {
 857     st->print(" (no locks) ");
 858   } else {
 859     st->print_cr(" Locks owned:");
 860     while (cur) {
 861       cur->print_on(st);
 862       cur = cur->next();
 863     }
 864   }
 865 }
 866 
 867 static int ref_use_count  = 0;
 868 
 869 bool Thread::owns_locks_but_compiled_lock() const {
 870   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 871     if (cur != Compile_lock) return true;
 872   }
 873   return false;
 874 }
 875 
 876 
 877 #endif
 878 
 879 #ifndef PRODUCT
 880 
 881 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 882 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 883 // no threads which allow_vm_block's are held
 884 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 885   // Check if current thread is allowed to block at a safepoint
 886   if (!(_allow_safepoint_count == 0)) {
 887     fatal("Possible safepoint reached by thread that does not allow it");
 888   }
 889   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 890     fatal("LEAF method calling lock?");
 891   }
 892 
 893 #ifdef ASSERT
 894   if (potential_vm_operation && is_Java_thread()
 895       && !Universe::is_bootstrapping()) {
 896     // Make sure we do not hold any locks that the VM thread also uses.
 897     // This could potentially lead to deadlocks
 898     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 899       // Threads_lock is special, since the safepoint synchronization will not start before this is
 900       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 901       // since it is used to transfer control between JavaThreads and the VMThread
 902       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 903       if ((cur->allow_vm_block() &&
 904            cur != Threads_lock &&
 905            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 906            cur != VMOperationRequest_lock &&
 907            cur != VMOperationQueue_lock) ||
 908            cur->rank() == Mutex::special) {
 909         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 910       }
 911     }
 912   }
 913 
 914   if (GCALotAtAllSafepoints) {
 915     // We could enter a safepoint here and thus have a gc
 916     InterfaceSupport::check_gc_alot();
 917   }
 918 #endif
 919 }
 920 #endif
 921 
 922 bool Thread::is_in_stack(address adr) const {
 923   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 924   address end = os::current_stack_pointer();
 925   // Allow non Java threads to call this without stack_base
 926   if (_stack_base == NULL) return true;
 927   if (stack_base() >= adr && adr >= end) return true;
 928 
 929   return false;
 930 }
 931 
 932 bool Thread::is_in_usable_stack(address adr) const {
 933   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 934   size_t usable_stack_size = _stack_size - stack_guard_size;
 935 
 936   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 937 }
 938 
 939 
 940 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 941 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 942 // used for compilation in the future. If that change is made, the need for these methods
 943 // should be revisited, and they should be removed if possible.
 944 
 945 bool Thread::is_lock_owned(address adr) const {
 946   return on_local_stack(adr);
 947 }
 948 
 949 bool Thread::set_as_starting_thread() {
 950   // NOTE: this must be called inside the main thread.
 951   return os::create_main_thread((JavaThread*)this);
 952 }
 953 
 954 static void initialize_class(Symbol* class_name, TRAPS) {
 955   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 956   InstanceKlass::cast(klass)->initialize(CHECK);
 957 }
 958 
 959 
 960 // Creates the initial ThreadGroup
 961 static Handle create_initial_thread_group(TRAPS) {
 962   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 963   InstanceKlass* ik = InstanceKlass::cast(k);
 964 
 965   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
 966   {
 967     JavaValue result(T_VOID);
 968     JavaCalls::call_special(&result,
 969                             system_instance,
 970                             ik,
 971                             vmSymbols::object_initializer_name(),
 972                             vmSymbols::void_method_signature(),
 973                             CHECK_NH);
 974   }
 975   Universe::set_system_thread_group(system_instance());
 976 
 977   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
 978   {
 979     JavaValue result(T_VOID);
 980     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 981     JavaCalls::call_special(&result,
 982                             main_instance,
 983                             ik,
 984                             vmSymbols::object_initializer_name(),
 985                             vmSymbols::threadgroup_string_void_signature(),
 986                             system_instance,
 987                             string,
 988                             CHECK_NH);
 989   }
 990   return main_instance;
 991 }
 992 
 993 // Creates the initial Thread
 994 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 995                                  TRAPS) {
 996   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 997   InstanceKlass* ik = InstanceKlass::cast(k);
 998   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
 999 
1000   java_lang_Thread::set_thread(thread_oop(), thread);
1001   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1002   thread->set_threadObj(thread_oop());
1003 
1004   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1005 
1006   JavaValue result(T_VOID);
1007   JavaCalls::call_special(&result, thread_oop,
1008                           ik,
1009                           vmSymbols::object_initializer_name(),
1010                           vmSymbols::threadgroup_string_void_signature(),
1011                           thread_group,
1012                           string,
1013                           CHECK_NULL);
1014   return thread_oop();
1015 }
1016 
1017 char java_runtime_name[128] = "";
1018 char java_runtime_version[128] = "";
1019 
1020 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1021 static const char* get_java_runtime_name(TRAPS) {
1022   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1023                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1024   fieldDescriptor fd;
1025   bool found = k != NULL &&
1026                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1027                                                         vmSymbols::string_signature(), &fd);
1028   if (found) {
1029     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1030     if (name_oop == NULL) {
1031       return NULL;
1032     }
1033     const char* name = java_lang_String::as_utf8_string(name_oop,
1034                                                         java_runtime_name,
1035                                                         sizeof(java_runtime_name));
1036     return name;
1037   } else {
1038     return NULL;
1039   }
1040 }
1041 
1042 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1043 static const char* get_java_runtime_version(TRAPS) {
1044   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1045                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1046   fieldDescriptor fd;
1047   bool found = k != NULL &&
1048                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1049                                                         vmSymbols::string_signature(), &fd);
1050   if (found) {
1051     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1052     if (name_oop == NULL) {
1053       return NULL;
1054     }
1055     const char* name = java_lang_String::as_utf8_string(name_oop,
1056                                                         java_runtime_version,
1057                                                         sizeof(java_runtime_version));
1058     return name;
1059   } else {
1060     return NULL;
1061   }
1062 }
1063 
1064 // General purpose hook into Java code, run once when the VM is initialized.
1065 // The Java library method itself may be changed independently from the VM.
1066 static void call_postVMInitHook(TRAPS) {
1067   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1068   if (klass != NULL) {
1069     JavaValue result(T_VOID);
1070     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1071                            vmSymbols::void_method_signature(),
1072                            CHECK);
1073   }
1074 }
1075 
1076 static void reset_vm_info_property(TRAPS) {
1077   // the vm info string
1078   ResourceMark rm(THREAD);
1079   const char *vm_info = VM_Version::vm_info_string();
1080 
1081   // java.lang.System class
1082   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1083 
1084   // setProperty arguments
1085   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1086   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1087 
1088   // return value
1089   JavaValue r(T_OBJECT);
1090 
1091   // public static String setProperty(String key, String value);
1092   JavaCalls::call_static(&r,
1093                          klass,
1094                          vmSymbols::setProperty_name(),
1095                          vmSymbols::string_string_string_signature(),
1096                          key_str,
1097                          value_str,
1098                          CHECK);
1099 }
1100 
1101 
1102 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1103                                     bool daemon, TRAPS) {
1104   assert(thread_group.not_null(), "thread group should be specified");
1105   assert(threadObj() == NULL, "should only create Java thread object once");
1106 
1107   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1108   InstanceKlass* ik = InstanceKlass::cast(k);
1109   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1110 
1111   java_lang_Thread::set_thread(thread_oop(), this);
1112   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1113   set_threadObj(thread_oop());
1114 
1115   JavaValue result(T_VOID);
1116   if (thread_name != NULL) {
1117     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1118     // Thread gets assigned specified name and null target
1119     JavaCalls::call_special(&result,
1120                             thread_oop,
1121                             ik,
1122                             vmSymbols::object_initializer_name(),
1123                             vmSymbols::threadgroup_string_void_signature(),
1124                             thread_group, // Argument 1
1125                             name,         // Argument 2
1126                             THREAD);
1127   } else {
1128     // Thread gets assigned name "Thread-nnn" and null target
1129     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1130     JavaCalls::call_special(&result,
1131                             thread_oop,
1132                             ik,
1133                             vmSymbols::object_initializer_name(),
1134                             vmSymbols::threadgroup_runnable_void_signature(),
1135                             thread_group, // Argument 1
1136                             Handle(),     // Argument 2
1137                             THREAD);
1138   }
1139 
1140 
1141   if (daemon) {
1142     java_lang_Thread::set_daemon(thread_oop());
1143   }
1144 
1145   if (HAS_PENDING_EXCEPTION) {
1146     return;
1147   }
1148 
1149   Klass* group =  SystemDictionary::ThreadGroup_klass();
1150   Handle threadObj(THREAD, this->threadObj());
1151 
1152   JavaCalls::call_special(&result,
1153                           thread_group,
1154                           group,
1155                           vmSymbols::add_method_name(),
1156                           vmSymbols::thread_void_signature(),
1157                           threadObj,          // Arg 1
1158                           THREAD);
1159 }
1160 
1161 // NamedThread --  non-JavaThread subclasses with multiple
1162 // uniquely named instances should derive from this.
1163 NamedThread::NamedThread() : Thread() {
1164   _name = NULL;
1165   _processed_thread = NULL;
1166   _gc_id = GCId::undefined();
1167 }
1168 
1169 NamedThread::~NamedThread() {
1170   if (_name != NULL) {
1171     FREE_C_HEAP_ARRAY(char, _name);
1172     _name = NULL;
1173   }
1174 }
1175 
1176 void NamedThread::set_name(const char* format, ...) {
1177   guarantee(_name == NULL, "Only get to set name once.");
1178   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1179   guarantee(_name != NULL, "alloc failure");
1180   va_list ap;
1181   va_start(ap, format);
1182   jio_vsnprintf(_name, max_name_len, format, ap);
1183   va_end(ap);
1184 }
1185 
1186 void NamedThread::initialize_named_thread() {
1187   set_native_thread_name(name());
1188 }
1189 
1190 void NamedThread::print_on(outputStream* st) const {
1191   st->print("\"%s\" ", name());
1192   Thread::print_on(st);
1193   st->cr();
1194 }
1195 
1196 
1197 // ======= WatcherThread ========
1198 
1199 // The watcher thread exists to simulate timer interrupts.  It should
1200 // be replaced by an abstraction over whatever native support for
1201 // timer interrupts exists on the platform.
1202 
1203 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1204 bool WatcherThread::_startable = false;
1205 volatile bool  WatcherThread::_should_terminate = false;
1206 
1207 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1208   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1209   if (os::create_thread(this, os::watcher_thread)) {
1210     _watcher_thread = this;
1211 
1212     // Set the watcher thread to the highest OS priority which should not be
1213     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1214     // is created. The only normal thread using this priority is the reference
1215     // handler thread, which runs for very short intervals only.
1216     // If the VMThread's priority is not lower than the WatcherThread profiling
1217     // will be inaccurate.
1218     os::set_priority(this, MaxPriority);
1219     if (!DisableStartThread) {
1220       os::start_thread(this);
1221     }
1222   }
1223 }
1224 
1225 int WatcherThread::sleep() const {
1226   // The WatcherThread does not participate in the safepoint protocol
1227   // for the PeriodicTask_lock because it is not a JavaThread.
1228   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1229 
1230   if (_should_terminate) {
1231     // check for termination before we do any housekeeping or wait
1232     return 0;  // we did not sleep.
1233   }
1234 
1235   // remaining will be zero if there are no tasks,
1236   // causing the WatcherThread to sleep until a task is
1237   // enrolled
1238   int remaining = PeriodicTask::time_to_wait();
1239   int time_slept = 0;
1240 
1241   // we expect this to timeout - we only ever get unparked when
1242   // we should terminate or when a new task has been enrolled
1243   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1244 
1245   jlong time_before_loop = os::javaTimeNanos();
1246 
1247   while (true) {
1248     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1249                                             remaining);
1250     jlong now = os::javaTimeNanos();
1251 
1252     if (remaining == 0) {
1253       // if we didn't have any tasks we could have waited for a long time
1254       // consider the time_slept zero and reset time_before_loop
1255       time_slept = 0;
1256       time_before_loop = now;
1257     } else {
1258       // need to recalculate since we might have new tasks in _tasks
1259       time_slept = (int) ((now - time_before_loop) / 1000000);
1260     }
1261 
1262     // Change to task list or spurious wakeup of some kind
1263     if (timedout || _should_terminate) {
1264       break;
1265     }
1266 
1267     remaining = PeriodicTask::time_to_wait();
1268     if (remaining == 0) {
1269       // Last task was just disenrolled so loop around and wait until
1270       // another task gets enrolled
1271       continue;
1272     }
1273 
1274     remaining -= time_slept;
1275     if (remaining <= 0) {
1276       break;
1277     }
1278   }
1279 
1280   return time_slept;
1281 }
1282 
1283 void WatcherThread::run() {
1284   assert(this == watcher_thread(), "just checking");
1285 
1286   this->record_stack_base_and_size();
1287   this->set_native_thread_name(this->name());
1288   this->set_active_handles(JNIHandleBlock::allocate_block());
1289   while (true) {
1290     assert(watcher_thread() == Thread::current(), "thread consistency check");
1291     assert(watcher_thread() == this, "thread consistency check");
1292 
1293     // Calculate how long it'll be until the next PeriodicTask work
1294     // should be done, and sleep that amount of time.
1295     int time_waited = sleep();
1296 
1297     if (is_error_reported()) {
1298       // A fatal error has happened, the error handler(VMError::report_and_die)
1299       // should abort JVM after creating an error log file. However in some
1300       // rare cases, the error handler itself might deadlock. Here periodically
1301       // check for error reporting timeouts, and if it happens, just proceed to
1302       // abort the VM.
1303 
1304       // This code is in WatcherThread because WatcherThread wakes up
1305       // periodically so the fatal error handler doesn't need to do anything;
1306       // also because the WatcherThread is less likely to crash than other
1307       // threads.
1308 
1309       for (;;) {
1310         // Note: we use naked sleep in this loop because we want to avoid using
1311         // any kind of VM infrastructure which may be broken at this point.
1312         if (VMError::check_timeout()) {
1313           // We hit error reporting timeout. Error reporting was interrupted and
1314           // will be wrapping things up now (closing files etc). Give it some more
1315           // time, then quit the VM.
1316           os::naked_short_sleep(200);
1317           // Print a message to stderr.
1318           fdStream err(defaultStream::output_fd());
1319           err.print_raw_cr("# [ timer expired, abort... ]");
1320           // skip atexit/vm_exit/vm_abort hooks
1321           os::die();
1322         }
1323 
1324         // Wait a second, then recheck for timeout.
1325         os::naked_short_sleep(999);
1326       }
1327     }
1328 
1329     if (_should_terminate) {
1330       // check for termination before posting the next tick
1331       break;
1332     }
1333 
1334     PeriodicTask::real_time_tick(time_waited);
1335   }
1336 
1337   // Signal that it is terminated
1338   {
1339     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1340     _watcher_thread = NULL;
1341     Terminator_lock->notify();
1342   }
1343 }
1344 
1345 void WatcherThread::start() {
1346   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1347 
1348   if (watcher_thread() == NULL && _startable) {
1349     _should_terminate = false;
1350     // Create the single instance of WatcherThread
1351     new WatcherThread();
1352   }
1353 }
1354 
1355 void WatcherThread::make_startable() {
1356   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1357   _startable = true;
1358 }
1359 
1360 void WatcherThread::stop() {
1361   {
1362     // Follow normal safepoint aware lock enter protocol since the
1363     // WatcherThread is stopped by another JavaThread.
1364     MutexLocker ml(PeriodicTask_lock);
1365     _should_terminate = true;
1366 
1367     WatcherThread* watcher = watcher_thread();
1368     if (watcher != NULL) {
1369       // unpark the WatcherThread so it can see that it should terminate
1370       watcher->unpark();
1371     }
1372   }
1373 
1374   MutexLocker mu(Terminator_lock);
1375 
1376   while (watcher_thread() != NULL) {
1377     // This wait should make safepoint checks, wait without a timeout,
1378     // and wait as a suspend-equivalent condition.
1379     //
1380     // Note: If the FlatProfiler is running, then this thread is waiting
1381     // for the WatcherThread to terminate and the WatcherThread, via the
1382     // FlatProfiler task, is waiting for the external suspend request on
1383     // this thread to complete. wait_for_ext_suspend_completion() will
1384     // eventually timeout, but that takes time. Making this wait a
1385     // suspend-equivalent condition solves that timeout problem.
1386     //
1387     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1388                           Mutex::_as_suspend_equivalent_flag);
1389   }
1390 }
1391 
1392 void WatcherThread::unpark() {
1393   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1394   PeriodicTask_lock->notify();
1395 }
1396 
1397 void WatcherThread::print_on(outputStream* st) const {
1398   st->print("\"%s\" ", name());
1399   Thread::print_on(st);
1400   st->cr();
1401 }
1402 
1403 // ======= JavaThread ========
1404 
1405 #if INCLUDE_JVMCI
1406 
1407 jlong* JavaThread::_jvmci_old_thread_counters;
1408 
1409 bool jvmci_counters_include(JavaThread* thread) {
1410   oop threadObj = thread->threadObj();
1411   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1412 }
1413 
1414 void JavaThread::collect_counters(typeArrayOop array) {
1415   if (JVMCICounterSize > 0) {
1416     MutexLocker tl(Threads_lock);
1417     for (int i = 0; i < array->length(); i++) {
1418       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1419     }
1420     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1421       if (jvmci_counters_include(tp)) {
1422         for (int i = 0; i < array->length(); i++) {
1423           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1424         }
1425       }
1426     }
1427   }
1428 }
1429 
1430 #endif // INCLUDE_JVMCI
1431 
1432 // A JavaThread is a normal Java thread
1433 
1434 void JavaThread::initialize() {
1435   // Initialize fields
1436 
1437   set_saved_exception_pc(NULL);
1438   set_threadObj(NULL);
1439   _anchor.clear();
1440   set_entry_point(NULL);
1441   set_jni_functions(jni_functions());
1442   set_callee_target(NULL);
1443   set_vm_result(NULL);
1444   set_vm_result_2(NULL);
1445   set_vframe_array_head(NULL);
1446   set_vframe_array_last(NULL);
1447   set_deferred_locals(NULL);
1448   set_deopt_mark(NULL);
1449   set_deopt_compiled_method(NULL);
1450   clear_must_deopt_id();
1451   set_monitor_chunks(NULL);
1452   set_next(NULL);
1453   set_thread_state(_thread_new);
1454   _terminated = _not_terminated;
1455   _privileged_stack_top = NULL;
1456   _array_for_gc = NULL;
1457   _suspend_equivalent = false;
1458   _in_deopt_handler = 0;
1459   _doing_unsafe_access = false;
1460   _stack_guard_state = stack_guard_unused;
1461 #if INCLUDE_JVMCI
1462   _pending_monitorenter = false;
1463   _pending_deoptimization = -1;
1464   _pending_failed_speculation = NULL;
1465   _pending_transfer_to_interpreter = false;
1466   _adjusting_comp_level = false;
1467   _jvmci._alternate_call_target = NULL;
1468   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1469   if (JVMCICounterSize > 0) {
1470     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1471     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1472   } else {
1473     _jvmci_counters = NULL;
1474   }
1475 #endif // INCLUDE_JVMCI
1476   _reserved_stack_activation = NULL;  // stack base not known yet
1477   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1478   _exception_pc  = 0;
1479   _exception_handler_pc = 0;
1480   _is_method_handle_return = 0;
1481   _jvmti_thread_state= NULL;
1482   _should_post_on_exceptions_flag = JNI_FALSE;
1483   _jvmti_get_loaded_classes_closure = NULL;
1484   _interp_only_mode    = 0;
1485   _special_runtime_exit_condition = _no_async_condition;
1486   _pending_async_exception = NULL;
1487   _thread_stat = NULL;
1488   _thread_stat = new ThreadStatistics();
1489   _blocked_on_compilation = false;
1490   _jni_active_critical = 0;
1491   _pending_jni_exception_check_fn = NULL;
1492   _do_not_unlock_if_synchronized = false;
1493   _cached_monitor_info = NULL;
1494   _parker = Parker::Allocate(this);
1495 
1496 #ifndef PRODUCT
1497   _jmp_ring_index = 0;
1498   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1499     record_jump(NULL, NULL, NULL, 0);
1500   }
1501 #endif // PRODUCT
1502 
1503   set_thread_profiler(NULL);
1504   if (FlatProfiler::is_active()) {
1505     // This is where we would decide to either give each thread it's own profiler
1506     // or use one global one from FlatProfiler,
1507     // or up to some count of the number of profiled threads, etc.
1508     ThreadProfiler* pp = new ThreadProfiler();
1509     pp->engage();
1510     set_thread_profiler(pp);
1511   }
1512 
1513   // Setup safepoint state info for this thread
1514   ThreadSafepointState::create(this);
1515 
1516   debug_only(_java_call_counter = 0);
1517 
1518   // JVMTI PopFrame support
1519   _popframe_condition = popframe_inactive;
1520   _popframe_preserved_args = NULL;
1521   _popframe_preserved_args_size = 0;
1522   _frames_to_pop_failed_realloc = 0;
1523 
1524   // Buffered value types support
1525   _vt_alloc_ptr = NULL;
1526   _vt_alloc_limit = NULL;
1527   _local_free_chunk = NULL;
1528   // Buffered value types instrumentation support
1529   _vtchunk_in_use = 0;
1530   _vtchunk_max = 0;
1531   _vtchunk_total_returned = 0;
1532   _vtchunk_total_memory_buffered = 0;
1533 
1534   pd_initialize();
1535 }
1536 
1537 #if INCLUDE_ALL_GCS
1538 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1539 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1540 #endif // INCLUDE_ALL_GCS
1541 
1542 JavaThread::JavaThread(bool is_attaching_via_jni) :
1543                        Thread()
1544 #if INCLUDE_ALL_GCS
1545                        , _satb_mark_queue(&_satb_mark_queue_set),
1546                        _dirty_card_queue(&_dirty_card_queue_set)
1547 #endif // INCLUDE_ALL_GCS
1548 {
1549   initialize();
1550   if (is_attaching_via_jni) {
1551     _jni_attach_state = _attaching_via_jni;
1552   } else {
1553     _jni_attach_state = _not_attaching_via_jni;
1554   }
1555   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1556 }
1557 
1558 bool JavaThread::reguard_stack(address cur_sp) {
1559   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1560       && _stack_guard_state != stack_guard_reserved_disabled) {
1561     return true; // Stack already guarded or guard pages not needed.
1562   }
1563 
1564   if (register_stack_overflow()) {
1565     // For those architectures which have separate register and
1566     // memory stacks, we must check the register stack to see if
1567     // it has overflowed.
1568     return false;
1569   }
1570 
1571   // Java code never executes within the yellow zone: the latter is only
1572   // there to provoke an exception during stack banging.  If java code
1573   // is executing there, either StackShadowPages should be larger, or
1574   // some exception code in c1, c2 or the interpreter isn't unwinding
1575   // when it should.
1576   guarantee(cur_sp > stack_reserved_zone_base(),
1577             "not enough space to reguard - increase StackShadowPages");
1578   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1579     enable_stack_yellow_reserved_zone();
1580     if (reserved_stack_activation() != stack_base()) {
1581       set_reserved_stack_activation(stack_base());
1582     }
1583   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1584     set_reserved_stack_activation(stack_base());
1585     enable_stack_reserved_zone();
1586   }
1587   return true;
1588 }
1589 
1590 bool JavaThread::reguard_stack(void) {
1591   return reguard_stack(os::current_stack_pointer());
1592 }
1593 
1594 
1595 void JavaThread::block_if_vm_exited() {
1596   if (_terminated == _vm_exited) {
1597     // _vm_exited is set at safepoint, and Threads_lock is never released
1598     // we will block here forever
1599     Threads_lock->lock_without_safepoint_check();
1600     ShouldNotReachHere();
1601   }
1602 }
1603 
1604 
1605 // Remove this ifdef when C1 is ported to the compiler interface.
1606 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1607 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1608 
1609 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1610                        Thread()
1611 #if INCLUDE_ALL_GCS
1612                        , _satb_mark_queue(&_satb_mark_queue_set),
1613                        _dirty_card_queue(&_dirty_card_queue_set)
1614 #endif // INCLUDE_ALL_GCS
1615 {
1616   initialize();
1617   _jni_attach_state = _not_attaching_via_jni;
1618   set_entry_point(entry_point);
1619   // Create the native thread itself.
1620   // %note runtime_23
1621   os::ThreadType thr_type = os::java_thread;
1622   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1623                                                      os::java_thread;
1624   os::create_thread(this, thr_type, stack_sz);
1625   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1626   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1627   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1628   // the exception consists of creating the exception object & initializing it, initialization
1629   // will leave the VM via a JavaCall and then all locks must be unlocked).
1630   //
1631   // The thread is still suspended when we reach here. Thread must be explicit started
1632   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1633   // by calling Threads:add. The reason why this is not done here, is because the thread
1634   // object must be fully initialized (take a look at JVM_Start)
1635 }
1636 
1637 JavaThread::~JavaThread() {
1638 
1639   // JSR166 -- return the parker to the free list
1640   Parker::Release(_parker);
1641   _parker = NULL;
1642 
1643   // Free any remaining  previous UnrollBlock
1644   vframeArray* old_array = vframe_array_last();
1645 
1646   if (old_array != NULL) {
1647     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1648     old_array->set_unroll_block(NULL);
1649     delete old_info;
1650     delete old_array;
1651   }
1652 
1653   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1654   if (deferred != NULL) {
1655     // This can only happen if thread is destroyed before deoptimization occurs.
1656     assert(deferred->length() != 0, "empty array!");
1657     do {
1658       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1659       deferred->remove_at(0);
1660       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1661       delete dlv;
1662     } while (deferred->length() != 0);
1663     delete deferred;
1664   }
1665 
1666   // All Java related clean up happens in exit
1667   ThreadSafepointState::destroy(this);
1668   if (_thread_profiler != NULL) delete _thread_profiler;
1669   if (_thread_stat != NULL) delete _thread_stat;
1670 
1671 #if INCLUDE_JVMCI
1672   if (JVMCICounterSize > 0) {
1673     if (jvmci_counters_include(this)) {
1674       for (int i = 0; i < JVMCICounterSize; i++) {
1675         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1676       }
1677     }
1678     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1679   }
1680 #endif // INCLUDE_JVMCI
1681 }
1682 
1683 
1684 // The first routine called by a new Java thread
1685 void JavaThread::run() {
1686   // initialize thread-local alloc buffer related fields
1687   this->initialize_tlab();
1688 
1689   // used to test validity of stack trace backs
1690   this->record_base_of_stack_pointer();
1691 
1692   // Record real stack base and size.
1693   this->record_stack_base_and_size();
1694 
1695   this->create_stack_guard_pages();
1696 
1697   this->cache_global_variables();
1698 
1699   // Thread is now sufficient initialized to be handled by the safepoint code as being
1700   // in the VM. Change thread state from _thread_new to _thread_in_vm
1701   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1702 
1703   assert(JavaThread::current() == this, "sanity check");
1704   assert(!Thread::current()->owns_locks(), "sanity check");
1705 
1706   DTRACE_THREAD_PROBE(start, this);
1707 
1708   // This operation might block. We call that after all safepoint checks for a new thread has
1709   // been completed.
1710   this->set_active_handles(JNIHandleBlock::allocate_block());
1711 
1712   if (JvmtiExport::should_post_thread_life()) {
1713     JvmtiExport::post_thread_start(this);
1714   }
1715 
1716   EventThreadStart event;
1717   if (event.should_commit()) {
1718     event.set_thread(THREAD_TRACE_ID(this));
1719     event.commit();
1720   }
1721 
1722   // We call another function to do the rest so we are sure that the stack addresses used
1723   // from there will be lower than the stack base just computed
1724   thread_main_inner();
1725 
1726   // Note, thread is no longer valid at this point!
1727 }
1728 
1729 
1730 void JavaThread::thread_main_inner() {
1731   assert(JavaThread::current() == this, "sanity check");
1732   assert(this->threadObj() != NULL, "just checking");
1733 
1734   // Execute thread entry point unless this thread has a pending exception
1735   // or has been stopped before starting.
1736   // Note: Due to JVM_StopThread we can have pending exceptions already!
1737   if (!this->has_pending_exception() &&
1738       !java_lang_Thread::is_stillborn(this->threadObj())) {
1739     {
1740       ResourceMark rm(this);
1741       this->set_native_thread_name(this->get_thread_name());
1742     }
1743     HandleMark hm(this);
1744     this->entry_point()(this, this);
1745   }
1746 
1747   DTRACE_THREAD_PROBE(stop, this);
1748 
1749   this->exit(false);
1750   delete this;
1751 }
1752 
1753 
1754 static void ensure_join(JavaThread* thread) {
1755   // We do not need to grap the Threads_lock, since we are operating on ourself.
1756   Handle threadObj(thread, thread->threadObj());
1757   assert(threadObj.not_null(), "java thread object must exist");
1758   ObjectLocker lock(threadObj, thread);
1759   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1760   thread->clear_pending_exception();
1761   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1762   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1763   // Clear the native thread instance - this makes isAlive return false and allows the join()
1764   // to complete once we've done the notify_all below
1765   java_lang_Thread::set_thread(threadObj(), NULL);
1766   lock.notify_all(thread);
1767   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1768   thread->clear_pending_exception();
1769 }
1770 
1771 
1772 // For any new cleanup additions, please check to see if they need to be applied to
1773 // cleanup_failed_attach_current_thread as well.
1774 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1775   assert(this == JavaThread::current(), "thread consistency check");
1776 
1777   HandleMark hm(this);
1778   Handle uncaught_exception(this, this->pending_exception());
1779   this->clear_pending_exception();
1780   Handle threadObj(this, this->threadObj());
1781   assert(threadObj.not_null(), "Java thread object should be created");
1782 
1783   if (get_thread_profiler() != NULL) {
1784     get_thread_profiler()->disengage();
1785     ResourceMark rm;
1786     get_thread_profiler()->print(get_thread_name());
1787   }
1788 
1789 
1790   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1791   {
1792     EXCEPTION_MARK;
1793 
1794     CLEAR_PENDING_EXCEPTION;
1795   }
1796   if (!destroy_vm) {
1797     if (uncaught_exception.not_null()) {
1798       EXCEPTION_MARK;
1799       // Call method Thread.dispatchUncaughtException().
1800       Klass* thread_klass = SystemDictionary::Thread_klass();
1801       JavaValue result(T_VOID);
1802       JavaCalls::call_virtual(&result,
1803                               threadObj, thread_klass,
1804                               vmSymbols::dispatchUncaughtException_name(),
1805                               vmSymbols::throwable_void_signature(),
1806                               uncaught_exception,
1807                               THREAD);
1808       if (HAS_PENDING_EXCEPTION) {
1809         ResourceMark rm(this);
1810         jio_fprintf(defaultStream::error_stream(),
1811                     "\nException: %s thrown from the UncaughtExceptionHandler"
1812                     " in thread \"%s\"\n",
1813                     pending_exception()->klass()->external_name(),
1814                     get_thread_name());
1815         CLEAR_PENDING_EXCEPTION;
1816       }
1817     }
1818 
1819     // Called before the java thread exit since we want to read info
1820     // from java_lang_Thread object
1821     EventThreadEnd event;
1822     if (event.should_commit()) {
1823       event.set_thread(THREAD_TRACE_ID(this));
1824       event.commit();
1825     }
1826 
1827     // Call after last event on thread
1828     EVENT_THREAD_EXIT(this);
1829 
1830     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1831     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1832     // is deprecated anyhow.
1833     if (!is_Compiler_thread()) {
1834       int count = 3;
1835       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1836         EXCEPTION_MARK;
1837         JavaValue result(T_VOID);
1838         Klass* thread_klass = SystemDictionary::Thread_klass();
1839         JavaCalls::call_virtual(&result,
1840                                 threadObj, thread_klass,
1841                                 vmSymbols::exit_method_name(),
1842                                 vmSymbols::void_method_signature(),
1843                                 THREAD);
1844         CLEAR_PENDING_EXCEPTION;
1845       }
1846     }
1847     // notify JVMTI
1848     if (JvmtiExport::should_post_thread_life()) {
1849       JvmtiExport::post_thread_end(this);
1850     }
1851 
1852     // We have notified the agents that we are exiting, before we go on,
1853     // we must check for a pending external suspend request and honor it
1854     // in order to not surprise the thread that made the suspend request.
1855     while (true) {
1856       {
1857         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1858         if (!is_external_suspend()) {
1859           set_terminated(_thread_exiting);
1860           ThreadService::current_thread_exiting(this);
1861           break;
1862         }
1863         // Implied else:
1864         // Things get a little tricky here. We have a pending external
1865         // suspend request, but we are holding the SR_lock so we
1866         // can't just self-suspend. So we temporarily drop the lock
1867         // and then self-suspend.
1868       }
1869 
1870       ThreadBlockInVM tbivm(this);
1871       java_suspend_self();
1872 
1873       // We're done with this suspend request, but we have to loop around
1874       // and check again. Eventually we will get SR_lock without a pending
1875       // external suspend request and will be able to mark ourselves as
1876       // exiting.
1877     }
1878     // no more external suspends are allowed at this point
1879   } else {
1880     // before_exit() has already posted JVMTI THREAD_END events
1881   }
1882 
1883   // Notify waiters on thread object. This has to be done after exit() is called
1884   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1885   // group should have the destroyed bit set before waiters are notified).
1886   ensure_join(this);
1887   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1888 
1889   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1890   // held by this thread must be released. The spec does not distinguish
1891   // between JNI-acquired and regular Java monitors. We can only see
1892   // regular Java monitors here if monitor enter-exit matching is broken.
1893   //
1894   // Optionally release any monitors for regular JavaThread exits. This
1895   // is provided as a work around for any bugs in monitor enter-exit
1896   // matching. This can be expensive so it is not enabled by default.
1897   //
1898   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1899   // ObjectSynchronizer::release_monitors_owned_by_thread().
1900   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1901     // Sanity check even though JNI DetachCurrentThread() would have
1902     // returned JNI_ERR if there was a Java frame. JavaThread exit
1903     // should be done executing Java code by the time we get here.
1904     assert(!this->has_last_Java_frame(),
1905            "should not have a Java frame when detaching or exiting");
1906     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1907     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1908   }
1909 
1910   // These things needs to be done while we are still a Java Thread. Make sure that thread
1911   // is in a consistent state, in case GC happens
1912   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1913 
1914   if (active_handles() != NULL) {
1915     JNIHandleBlock* block = active_handles();
1916     set_active_handles(NULL);
1917     JNIHandleBlock::release_block(block);
1918   }
1919 
1920   if (free_handle_block() != NULL) {
1921     JNIHandleBlock* block = free_handle_block();
1922     set_free_handle_block(NULL);
1923     JNIHandleBlock::release_block(block);
1924   }
1925 
1926   // These have to be removed while this is still a valid thread.
1927   remove_stack_guard_pages();
1928 
1929   if (UseTLAB) {
1930     tlab().make_parsable(true);  // retire TLAB
1931   }
1932 
1933   if (JvmtiEnv::environments_might_exist()) {
1934     JvmtiExport::cleanup_thread(this);
1935   }
1936 
1937   // We must flush any deferred card marks before removing a thread from
1938   // the list of active threads.
1939   Universe::heap()->flush_deferred_store_barrier(this);
1940   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1941 
1942 #if INCLUDE_ALL_GCS
1943   // We must flush the G1-related buffers before removing a thread
1944   // from the list of active threads. We must do this after any deferred
1945   // card marks have been flushed (above) so that any entries that are
1946   // added to the thread's dirty card queue as a result are not lost.
1947   if (UseG1GC) {
1948     flush_barrier_queues();
1949   }
1950 #endif // INCLUDE_ALL_GCS
1951 
1952   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1953     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1954     os::current_thread_id());
1955 
1956   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1957   Threads::remove(this);
1958 }
1959 
1960 #if INCLUDE_ALL_GCS
1961 // Flush G1-related queues.
1962 void JavaThread::flush_barrier_queues() {
1963   satb_mark_queue().flush();
1964   dirty_card_queue().flush();
1965 }
1966 
1967 void JavaThread::initialize_queues() {
1968   assert(!SafepointSynchronize::is_at_safepoint(),
1969          "we should not be at a safepoint");
1970 
1971   SATBMarkQueue& satb_queue = satb_mark_queue();
1972   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1973   // The SATB queue should have been constructed with its active
1974   // field set to false.
1975   assert(!satb_queue.is_active(), "SATB queue should not be active");
1976   assert(satb_queue.is_empty(), "SATB queue should be empty");
1977   // If we are creating the thread during a marking cycle, we should
1978   // set the active field of the SATB queue to true.
1979   if (satb_queue_set.is_active()) {
1980     satb_queue.set_active(true);
1981   }
1982 
1983   DirtyCardQueue& dirty_queue = dirty_card_queue();
1984   // The dirty card queue should have been constructed with its
1985   // active field set to true.
1986   assert(dirty_queue.is_active(), "dirty card queue should be active");
1987 }
1988 #endif // INCLUDE_ALL_GCS
1989 
1990 void JavaThread::cleanup_failed_attach_current_thread() {
1991   if (get_thread_profiler() != NULL) {
1992     get_thread_profiler()->disengage();
1993     ResourceMark rm;
1994     get_thread_profiler()->print(get_thread_name());
1995   }
1996 
1997   if (active_handles() != NULL) {
1998     JNIHandleBlock* block = active_handles();
1999     set_active_handles(NULL);
2000     JNIHandleBlock::release_block(block);
2001   }
2002 
2003   if (free_handle_block() != NULL) {
2004     JNIHandleBlock* block = free_handle_block();
2005     set_free_handle_block(NULL);
2006     JNIHandleBlock::release_block(block);
2007   }
2008 
2009   // These have to be removed while this is still a valid thread.
2010   remove_stack_guard_pages();
2011 
2012   if (UseTLAB) {
2013     tlab().make_parsable(true);  // retire TLAB, if any
2014   }
2015 
2016 #if INCLUDE_ALL_GCS
2017   if (UseG1GC) {
2018     flush_barrier_queues();
2019   }
2020 #endif // INCLUDE_ALL_GCS
2021 
2022   Threads::remove(this);
2023   delete this;
2024 }
2025 
2026 
2027 
2028 
2029 JavaThread* JavaThread::active() {
2030   Thread* thread = Thread::current();
2031   if (thread->is_Java_thread()) {
2032     return (JavaThread*) thread;
2033   } else {
2034     assert(thread->is_VM_thread(), "this must be a vm thread");
2035     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2036     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2037     assert(ret->is_Java_thread(), "must be a Java thread");
2038     return ret;
2039   }
2040 }
2041 
2042 bool JavaThread::is_lock_owned(address adr) const {
2043   if (Thread::is_lock_owned(adr)) return true;
2044 
2045   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2046     if (chunk->contains(adr)) return true;
2047   }
2048 
2049   return false;
2050 }
2051 
2052 
2053 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2054   chunk->set_next(monitor_chunks());
2055   set_monitor_chunks(chunk);
2056 }
2057 
2058 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2059   guarantee(monitor_chunks() != NULL, "must be non empty");
2060   if (monitor_chunks() == chunk) {
2061     set_monitor_chunks(chunk->next());
2062   } else {
2063     MonitorChunk* prev = monitor_chunks();
2064     while (prev->next() != chunk) prev = prev->next();
2065     prev->set_next(chunk->next());
2066   }
2067 }
2068 
2069 // JVM support.
2070 
2071 // Note: this function shouldn't block if it's called in
2072 // _thread_in_native_trans state (such as from
2073 // check_special_condition_for_native_trans()).
2074 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2075 
2076   if (has_last_Java_frame() && has_async_condition()) {
2077     // If we are at a polling page safepoint (not a poll return)
2078     // then we must defer async exception because live registers
2079     // will be clobbered by the exception path. Poll return is
2080     // ok because the call we a returning from already collides
2081     // with exception handling registers and so there is no issue.
2082     // (The exception handling path kills call result registers but
2083     //  this is ok since the exception kills the result anyway).
2084 
2085     if (is_at_poll_safepoint()) {
2086       // if the code we are returning to has deoptimized we must defer
2087       // the exception otherwise live registers get clobbered on the
2088       // exception path before deoptimization is able to retrieve them.
2089       //
2090       RegisterMap map(this, false);
2091       frame caller_fr = last_frame().sender(&map);
2092       assert(caller_fr.is_compiled_frame(), "what?");
2093       if (caller_fr.is_deoptimized_frame()) {
2094         log_info(exceptions)("deferred async exception at compiled safepoint");
2095         return;
2096       }
2097     }
2098   }
2099 
2100   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2101   if (condition == _no_async_condition) {
2102     // Conditions have changed since has_special_runtime_exit_condition()
2103     // was called:
2104     // - if we were here only because of an external suspend request,
2105     //   then that was taken care of above (or cancelled) so we are done
2106     // - if we were here because of another async request, then it has
2107     //   been cleared between the has_special_runtime_exit_condition()
2108     //   and now so again we are done
2109     return;
2110   }
2111 
2112   // Check for pending async. exception
2113   if (_pending_async_exception != NULL) {
2114     // Only overwrite an already pending exception, if it is not a threadDeath.
2115     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2116 
2117       // We cannot call Exceptions::_throw(...) here because we cannot block
2118       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2119 
2120       if (log_is_enabled(Info, exceptions)) {
2121         ResourceMark rm;
2122         outputStream* logstream = Log(exceptions)::info_stream();
2123         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2124           if (has_last_Java_frame()) {
2125             frame f = last_frame();
2126            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2127           }
2128         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2129       }
2130       _pending_async_exception = NULL;
2131       clear_has_async_exception();
2132     }
2133   }
2134 
2135   if (check_unsafe_error &&
2136       condition == _async_unsafe_access_error && !has_pending_exception()) {
2137     condition = _no_async_condition;  // done
2138     switch (thread_state()) {
2139     case _thread_in_vm: {
2140       JavaThread* THREAD = this;
2141       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2142     }
2143     case _thread_in_native: {
2144       ThreadInVMfromNative tiv(this);
2145       JavaThread* THREAD = this;
2146       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2147     }
2148     case _thread_in_Java: {
2149       ThreadInVMfromJava tiv(this);
2150       JavaThread* THREAD = this;
2151       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2152     }
2153     default:
2154       ShouldNotReachHere();
2155     }
2156   }
2157 
2158   assert(condition == _no_async_condition || has_pending_exception() ||
2159          (!check_unsafe_error && condition == _async_unsafe_access_error),
2160          "must have handled the async condition, if no exception");
2161 }
2162 
2163 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2164   //
2165   // Check for pending external suspend. Internal suspend requests do
2166   // not use handle_special_runtime_exit_condition().
2167   // If JNIEnv proxies are allowed, don't self-suspend if the target
2168   // thread is not the current thread. In older versions of jdbx, jdbx
2169   // threads could call into the VM with another thread's JNIEnv so we
2170   // can be here operating on behalf of a suspended thread (4432884).
2171   bool do_self_suspend = is_external_suspend_with_lock();
2172   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2173     //
2174     // Because thread is external suspended the safepoint code will count
2175     // thread as at a safepoint. This can be odd because we can be here
2176     // as _thread_in_Java which would normally transition to _thread_blocked
2177     // at a safepoint. We would like to mark the thread as _thread_blocked
2178     // before calling java_suspend_self like all other callers of it but
2179     // we must then observe proper safepoint protocol. (We can't leave
2180     // _thread_blocked with a safepoint in progress). However we can be
2181     // here as _thread_in_native_trans so we can't use a normal transition
2182     // constructor/destructor pair because they assert on that type of
2183     // transition. We could do something like:
2184     //
2185     // JavaThreadState state = thread_state();
2186     // set_thread_state(_thread_in_vm);
2187     // {
2188     //   ThreadBlockInVM tbivm(this);
2189     //   java_suspend_self()
2190     // }
2191     // set_thread_state(_thread_in_vm_trans);
2192     // if (safepoint) block;
2193     // set_thread_state(state);
2194     //
2195     // but that is pretty messy. Instead we just go with the way the
2196     // code has worked before and note that this is the only path to
2197     // java_suspend_self that doesn't put the thread in _thread_blocked
2198     // mode.
2199 
2200     frame_anchor()->make_walkable(this);
2201     java_suspend_self();
2202 
2203     // We might be here for reasons in addition to the self-suspend request
2204     // so check for other async requests.
2205   }
2206 
2207   if (check_asyncs) {
2208     check_and_handle_async_exceptions();
2209   }
2210 }
2211 
2212 void JavaThread::send_thread_stop(oop java_throwable)  {
2213   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2214   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2215   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2216 
2217   // Do not throw asynchronous exceptions against the compiler thread
2218   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2219   if (!can_call_java()) return;
2220 
2221   {
2222     // Actually throw the Throwable against the target Thread - however
2223     // only if there is no thread death exception installed already.
2224     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2225       // If the topmost frame is a runtime stub, then we are calling into
2226       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2227       // must deoptimize the caller before continuing, as the compiled  exception handler table
2228       // may not be valid
2229       if (has_last_Java_frame()) {
2230         frame f = last_frame();
2231         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2232           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2233           RegisterMap reg_map(this, UseBiasedLocking);
2234           frame compiled_frame = f.sender(&reg_map);
2235           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2236             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2237           }
2238         }
2239       }
2240 
2241       // Set async. pending exception in thread.
2242       set_pending_async_exception(java_throwable);
2243 
2244       if (log_is_enabled(Info, exceptions)) {
2245          ResourceMark rm;
2246         log_info(exceptions)("Pending Async. exception installed of type: %s",
2247                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2248       }
2249       // for AbortVMOnException flag
2250       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2251     }
2252   }
2253 
2254 
2255   // Interrupt thread so it will wake up from a potential wait()
2256   Thread::interrupt(this);
2257 }
2258 
2259 // External suspension mechanism.
2260 //
2261 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2262 // to any VM_locks and it is at a transition
2263 // Self-suspension will happen on the transition out of the vm.
2264 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2265 //
2266 // Guarantees on return:
2267 //   + Target thread will not execute any new bytecode (that's why we need to
2268 //     force a safepoint)
2269 //   + Target thread will not enter any new monitors
2270 //
2271 void JavaThread::java_suspend() {
2272   { MutexLocker mu(Threads_lock);
2273     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2274       return;
2275     }
2276   }
2277 
2278   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2279     if (!is_external_suspend()) {
2280       // a racing resume has cancelled us; bail out now
2281       return;
2282     }
2283 
2284     // suspend is done
2285     uint32_t debug_bits = 0;
2286     // Warning: is_ext_suspend_completed() may temporarily drop the
2287     // SR_lock to allow the thread to reach a stable thread state if
2288     // it is currently in a transient thread state.
2289     if (is_ext_suspend_completed(false /* !called_by_wait */,
2290                                  SuspendRetryDelay, &debug_bits)) {
2291       return;
2292     }
2293   }
2294 
2295   VM_ForceSafepoint vm_suspend;
2296   VMThread::execute(&vm_suspend);
2297 }
2298 
2299 // Part II of external suspension.
2300 // A JavaThread self suspends when it detects a pending external suspend
2301 // request. This is usually on transitions. It is also done in places
2302 // where continuing to the next transition would surprise the caller,
2303 // e.g., monitor entry.
2304 //
2305 // Returns the number of times that the thread self-suspended.
2306 //
2307 // Note: DO NOT call java_suspend_self() when you just want to block current
2308 //       thread. java_suspend_self() is the second stage of cooperative
2309 //       suspension for external suspend requests and should only be used
2310 //       to complete an external suspend request.
2311 //
2312 int JavaThread::java_suspend_self() {
2313   int ret = 0;
2314 
2315   // we are in the process of exiting so don't suspend
2316   if (is_exiting()) {
2317     clear_external_suspend();
2318     return ret;
2319   }
2320 
2321   assert(_anchor.walkable() ||
2322          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2323          "must have walkable stack");
2324 
2325   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2326 
2327   assert(!this->is_ext_suspended(),
2328          "a thread trying to self-suspend should not already be suspended");
2329 
2330   if (this->is_suspend_equivalent()) {
2331     // If we are self-suspending as a result of the lifting of a
2332     // suspend equivalent condition, then the suspend_equivalent
2333     // flag is not cleared until we set the ext_suspended flag so
2334     // that wait_for_ext_suspend_completion() returns consistent
2335     // results.
2336     this->clear_suspend_equivalent();
2337   }
2338 
2339   // A racing resume may have cancelled us before we grabbed SR_lock
2340   // above. Or another external suspend request could be waiting for us
2341   // by the time we return from SR_lock()->wait(). The thread
2342   // that requested the suspension may already be trying to walk our
2343   // stack and if we return now, we can change the stack out from under
2344   // it. This would be a "bad thing (TM)" and cause the stack walker
2345   // to crash. We stay self-suspended until there are no more pending
2346   // external suspend requests.
2347   while (is_external_suspend()) {
2348     ret++;
2349     this->set_ext_suspended();
2350 
2351     // _ext_suspended flag is cleared by java_resume()
2352     while (is_ext_suspended()) {
2353       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2354     }
2355   }
2356 
2357   return ret;
2358 }
2359 
2360 #ifdef ASSERT
2361 // verify the JavaThread has not yet been published in the Threads::list, and
2362 // hence doesn't need protection from concurrent access at this stage
2363 void JavaThread::verify_not_published() {
2364   if (!Threads_lock->owned_by_self()) {
2365     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2366     assert(!Threads::includes(this),
2367            "java thread shouldn't have been published yet!");
2368   } else {
2369     assert(!Threads::includes(this),
2370            "java thread shouldn't have been published yet!");
2371   }
2372 }
2373 #endif
2374 
2375 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2376 // progress or when _suspend_flags is non-zero.
2377 // Current thread needs to self-suspend if there is a suspend request and/or
2378 // block if a safepoint is in progress.
2379 // Async exception ISN'T checked.
2380 // Note only the ThreadInVMfromNative transition can call this function
2381 // directly and when thread state is _thread_in_native_trans
2382 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2383   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2384 
2385   JavaThread *curJT = JavaThread::current();
2386   bool do_self_suspend = thread->is_external_suspend();
2387 
2388   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2389 
2390   // If JNIEnv proxies are allowed, don't self-suspend if the target
2391   // thread is not the current thread. In older versions of jdbx, jdbx
2392   // threads could call into the VM with another thread's JNIEnv so we
2393   // can be here operating on behalf of a suspended thread (4432884).
2394   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2395     JavaThreadState state = thread->thread_state();
2396 
2397     // We mark this thread_blocked state as a suspend-equivalent so
2398     // that a caller to is_ext_suspend_completed() won't be confused.
2399     // The suspend-equivalent state is cleared by java_suspend_self().
2400     thread->set_suspend_equivalent();
2401 
2402     // If the safepoint code sees the _thread_in_native_trans state, it will
2403     // wait until the thread changes to other thread state. There is no
2404     // guarantee on how soon we can obtain the SR_lock and complete the
2405     // self-suspend request. It would be a bad idea to let safepoint wait for
2406     // too long. Temporarily change the state to _thread_blocked to
2407     // let the VM thread know that this thread is ready for GC. The problem
2408     // of changing thread state is that safepoint could happen just after
2409     // java_suspend_self() returns after being resumed, and VM thread will
2410     // see the _thread_blocked state. We must check for safepoint
2411     // after restoring the state and make sure we won't leave while a safepoint
2412     // is in progress.
2413     thread->set_thread_state(_thread_blocked);
2414     thread->java_suspend_self();
2415     thread->set_thread_state(state);
2416     // Make sure new state is seen by VM thread
2417     if (os::is_MP()) {
2418       if (UseMembar) {
2419         // Force a fence between the write above and read below
2420         OrderAccess::fence();
2421       } else {
2422         // Must use this rather than serialization page in particular on Windows
2423         InterfaceSupport::serialize_memory(thread);
2424       }
2425     }
2426   }
2427 
2428   if (SafepointSynchronize::do_call_back()) {
2429     // If we are safepointing, then block the caller which may not be
2430     // the same as the target thread (see above).
2431     SafepointSynchronize::block(curJT);
2432   }
2433 
2434   if (thread->is_deopt_suspend()) {
2435     thread->clear_deopt_suspend();
2436     RegisterMap map(thread, false);
2437     frame f = thread->last_frame();
2438     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2439       f = f.sender(&map);
2440     }
2441     if (f.id() == thread->must_deopt_id()) {
2442       thread->clear_must_deopt_id();
2443       f.deoptimize(thread);
2444     } else {
2445       fatal("missed deoptimization!");
2446     }
2447   }
2448 }
2449 
2450 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2451 // progress or when _suspend_flags is non-zero.
2452 // Current thread needs to self-suspend if there is a suspend request and/or
2453 // block if a safepoint is in progress.
2454 // Also check for pending async exception (not including unsafe access error).
2455 // Note only the native==>VM/Java barriers can call this function and when
2456 // thread state is _thread_in_native_trans.
2457 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2458   check_safepoint_and_suspend_for_native_trans(thread);
2459 
2460   if (thread->has_async_exception()) {
2461     // We are in _thread_in_native_trans state, don't handle unsafe
2462     // access error since that may block.
2463     thread->check_and_handle_async_exceptions(false);
2464   }
2465 }
2466 
2467 // This is a variant of the normal
2468 // check_special_condition_for_native_trans with slightly different
2469 // semantics for use by critical native wrappers.  It does all the
2470 // normal checks but also performs the transition back into
2471 // thread_in_Java state.  This is required so that critical natives
2472 // can potentially block and perform a GC if they are the last thread
2473 // exiting the GCLocker.
2474 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2475   check_special_condition_for_native_trans(thread);
2476 
2477   // Finish the transition
2478   thread->set_thread_state(_thread_in_Java);
2479 
2480   if (thread->do_critical_native_unlock()) {
2481     ThreadInVMfromJavaNoAsyncException tiv(thread);
2482     GCLocker::unlock_critical(thread);
2483     thread->clear_critical_native_unlock();
2484   }
2485 }
2486 
2487 // We need to guarantee the Threads_lock here, since resumes are not
2488 // allowed during safepoint synchronization
2489 // Can only resume from an external suspension
2490 void JavaThread::java_resume() {
2491   assert_locked_or_safepoint(Threads_lock);
2492 
2493   // Sanity check: thread is gone, has started exiting or the thread
2494   // was not externally suspended.
2495   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2496     return;
2497   }
2498 
2499   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2500 
2501   clear_external_suspend();
2502 
2503   if (is_ext_suspended()) {
2504     clear_ext_suspended();
2505     SR_lock()->notify_all();
2506   }
2507 }
2508 
2509 size_t JavaThread::_stack_red_zone_size = 0;
2510 size_t JavaThread::_stack_yellow_zone_size = 0;
2511 size_t JavaThread::_stack_reserved_zone_size = 0;
2512 size_t JavaThread::_stack_shadow_zone_size = 0;
2513 
2514 void JavaThread::create_stack_guard_pages() {
2515   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2516   address low_addr = stack_end();
2517   size_t len = stack_guard_zone_size();
2518 
2519   int must_commit = os::must_commit_stack_guard_pages();
2520   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2521 
2522   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2523     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2524     return;
2525   }
2526 
2527   if (os::guard_memory((char *) low_addr, len)) {
2528     _stack_guard_state = stack_guard_enabled;
2529   } else {
2530     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2531       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2532     if (os::uncommit_memory((char *) low_addr, len)) {
2533       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2534     }
2535     return;
2536   }
2537 
2538   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2539     PTR_FORMAT "-" PTR_FORMAT ".",
2540     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2541 }
2542 
2543 void JavaThread::remove_stack_guard_pages() {
2544   assert(Thread::current() == this, "from different thread");
2545   if (_stack_guard_state == stack_guard_unused) return;
2546   address low_addr = stack_end();
2547   size_t len = stack_guard_zone_size();
2548 
2549   if (os::must_commit_stack_guard_pages()) {
2550     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2551       _stack_guard_state = stack_guard_unused;
2552     } else {
2553       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2554         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2555       return;
2556     }
2557   } else {
2558     if (_stack_guard_state == stack_guard_unused) return;
2559     if (os::unguard_memory((char *) low_addr, len)) {
2560       _stack_guard_state = stack_guard_unused;
2561     } else {
2562       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2563         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2564       return;
2565     }
2566   }
2567 
2568   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2569     PTR_FORMAT "-" PTR_FORMAT ".",
2570     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2571 }
2572 
2573 void JavaThread::enable_stack_reserved_zone() {
2574   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2575   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2576 
2577   // The base notation is from the stack's point of view, growing downward.
2578   // We need to adjust it to work correctly with guard_memory()
2579   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2580 
2581   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2582   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2583 
2584   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2585     _stack_guard_state = stack_guard_enabled;
2586   } else {
2587     warning("Attempt to guard stack reserved zone failed.");
2588   }
2589   enable_register_stack_guard();
2590 }
2591 
2592 void JavaThread::disable_stack_reserved_zone() {
2593   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2594   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2595 
2596   // Simply return if called for a thread that does not use guard pages.
2597   if (_stack_guard_state == stack_guard_unused) return;
2598 
2599   // The base notation is from the stack's point of view, growing downward.
2600   // We need to adjust it to work correctly with guard_memory()
2601   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2602 
2603   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2604     _stack_guard_state = stack_guard_reserved_disabled;
2605   } else {
2606     warning("Attempt to unguard stack reserved zone failed.");
2607   }
2608   disable_register_stack_guard();
2609 }
2610 
2611 void JavaThread::enable_stack_yellow_reserved_zone() {
2612   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2613   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2614 
2615   // The base notation is from the stacks point of view, growing downward.
2616   // We need to adjust it to work correctly with guard_memory()
2617   address base = stack_red_zone_base();
2618 
2619   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2620   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2621 
2622   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2623     _stack_guard_state = stack_guard_enabled;
2624   } else {
2625     warning("Attempt to guard stack yellow zone failed.");
2626   }
2627   enable_register_stack_guard();
2628 }
2629 
2630 void JavaThread::disable_stack_yellow_reserved_zone() {
2631   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2632   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2633 
2634   // Simply return if called for a thread that does not use guard pages.
2635   if (_stack_guard_state == stack_guard_unused) return;
2636 
2637   // The base notation is from the stacks point of view, growing downward.
2638   // We need to adjust it to work correctly with guard_memory()
2639   address base = stack_red_zone_base();
2640 
2641   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2642     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2643   } else {
2644     warning("Attempt to unguard stack yellow zone failed.");
2645   }
2646   disable_register_stack_guard();
2647 }
2648 
2649 void JavaThread::enable_stack_red_zone() {
2650   // The base notation is from the stacks point of view, growing downward.
2651   // We need to adjust it to work correctly with guard_memory()
2652   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2653   address base = stack_red_zone_base() - stack_red_zone_size();
2654 
2655   guarantee(base < stack_base(), "Error calculating stack red zone");
2656   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2657 
2658   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2659     warning("Attempt to guard stack red zone failed.");
2660   }
2661 }
2662 
2663 void JavaThread::disable_stack_red_zone() {
2664   // The base notation is from the stacks point of view, growing downward.
2665   // We need to adjust it to work correctly with guard_memory()
2666   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2667   address base = stack_red_zone_base() - stack_red_zone_size();
2668   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2669     warning("Attempt to unguard stack red zone failed.");
2670   }
2671 }
2672 
2673 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2674   // ignore is there is no stack
2675   if (!has_last_Java_frame()) return;
2676   // traverse the stack frames. Starts from top frame.
2677   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2678     frame* fr = fst.current();
2679     f(fr, fst.register_map());
2680   }
2681 }
2682 
2683 
2684 #ifndef PRODUCT
2685 // Deoptimization
2686 // Function for testing deoptimization
2687 void JavaThread::deoptimize() {
2688   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2689   StackFrameStream fst(this, UseBiasedLocking);
2690   bool deopt = false;           // Dump stack only if a deopt actually happens.
2691   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2692   // Iterate over all frames in the thread and deoptimize
2693   for (; !fst.is_done(); fst.next()) {
2694     if (fst.current()->can_be_deoptimized()) {
2695 
2696       if (only_at) {
2697         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2698         // consists of comma or carriage return separated numbers so
2699         // search for the current bci in that string.
2700         address pc = fst.current()->pc();
2701         nmethod* nm =  (nmethod*) fst.current()->cb();
2702         ScopeDesc* sd = nm->scope_desc_at(pc);
2703         char buffer[8];
2704         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2705         size_t len = strlen(buffer);
2706         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2707         while (found != NULL) {
2708           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2709               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2710             // Check that the bci found is bracketed by terminators.
2711             break;
2712           }
2713           found = strstr(found + 1, buffer);
2714         }
2715         if (!found) {
2716           continue;
2717         }
2718       }
2719 
2720       if (DebugDeoptimization && !deopt) {
2721         deopt = true; // One-time only print before deopt
2722         tty->print_cr("[BEFORE Deoptimization]");
2723         trace_frames();
2724         trace_stack();
2725       }
2726       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2727     }
2728   }
2729 
2730   if (DebugDeoptimization && deopt) {
2731     tty->print_cr("[AFTER Deoptimization]");
2732     trace_frames();
2733   }
2734 }
2735 
2736 
2737 // Make zombies
2738 void JavaThread::make_zombies() {
2739   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2740     if (fst.current()->can_be_deoptimized()) {
2741       // it is a Java nmethod
2742       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2743       nm->make_not_entrant();
2744     }
2745   }
2746 }
2747 #endif // PRODUCT
2748 
2749 
2750 void JavaThread::deoptimized_wrt_marked_nmethods() {
2751   if (!has_last_Java_frame()) return;
2752   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2753   StackFrameStream fst(this, UseBiasedLocking);
2754   for (; !fst.is_done(); fst.next()) {
2755     if (fst.current()->should_be_deoptimized()) {
2756       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2757     }
2758   }
2759 }
2760 
2761 
2762 // If the caller is a NamedThread, then remember, in the current scope,
2763 // the given JavaThread in its _processed_thread field.
2764 class RememberProcessedThread: public StackObj {
2765   NamedThread* _cur_thr;
2766  public:
2767   RememberProcessedThread(JavaThread* jthr) {
2768     Thread* thread = Thread::current();
2769     if (thread->is_Named_thread()) {
2770       _cur_thr = (NamedThread *)thread;
2771       _cur_thr->set_processed_thread(jthr);
2772     } else {
2773       _cur_thr = NULL;
2774     }
2775   }
2776 
2777   ~RememberProcessedThread() {
2778     if (_cur_thr) {
2779       _cur_thr->set_processed_thread(NULL);
2780     }
2781   }
2782 };
2783 
2784 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2785   // Verify that the deferred card marks have been flushed.
2786   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2787 
2788   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2789   // since there may be more than one thread using each ThreadProfiler.
2790 
2791   // Traverse the GCHandles
2792   Thread::oops_do(f, cf);
2793 
2794   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2795 
2796   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2797          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2798 
2799   if (has_last_Java_frame()) {
2800     // Record JavaThread to GC thread
2801     RememberProcessedThread rpt(this);
2802 
2803     // Traverse the privileged stack
2804     if (_privileged_stack_top != NULL) {
2805       _privileged_stack_top->oops_do(f);
2806     }
2807 
2808     // traverse the registered growable array
2809     if (_array_for_gc != NULL) {
2810       for (int index = 0; index < _array_for_gc->length(); index++) {
2811         f->do_oop(_array_for_gc->adr_at(index));
2812       }
2813     }
2814 
2815     // Traverse the monitor chunks
2816     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2817       chunk->oops_do(f);
2818     }
2819 
2820     // Traverse the execution stack
2821     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2822       fst.current()->oops_do(f, cf, fst.register_map());
2823     }
2824   }
2825 
2826   // callee_target is never live across a gc point so NULL it here should
2827   // it still contain a methdOop.
2828 
2829   set_callee_target(NULL);
2830 
2831   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2832   // If we have deferred set_locals there might be oops waiting to be
2833   // written
2834   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2835   if (list != NULL) {
2836     for (int i = 0; i < list->length(); i++) {
2837       list->at(i)->oops_do(f);
2838     }
2839   }
2840 
2841   // Traverse instance variables at the end since the GC may be moving things
2842   // around using this function
2843   f->do_oop((oop*) &_threadObj);
2844   // if (Universe::heap()->is_in_reserved_or_null((void*)_vm_result)) {
2845     if (!VTBufferChunk::check_buffered(&_vm_result)) {
2846     f->do_oop((oop*) &_vm_result);
2847   }
2848   f->do_oop((oop*) &_exception_oop);
2849   f->do_oop((oop*) &_pending_async_exception);
2850 
2851   if (jvmti_thread_state() != NULL) {
2852     jvmti_thread_state()->oops_do(f);
2853   }
2854 }
2855 
2856 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2857   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2858          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2859 
2860   if (has_last_Java_frame()) {
2861     // Traverse the execution stack
2862     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2863       fst.current()->nmethods_do(cf);
2864     }
2865   }
2866 }
2867 
2868 void JavaThread::metadata_do(void f(Metadata*)) {
2869   if (has_last_Java_frame()) {
2870     // Traverse the execution stack to call f() on the methods in the stack
2871     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2872       fst.current()->metadata_do(f);
2873     }
2874   } else if (is_Compiler_thread()) {
2875     // need to walk ciMetadata in current compile tasks to keep alive.
2876     CompilerThread* ct = (CompilerThread*)this;
2877     if (ct->env() != NULL) {
2878       ct->env()->metadata_do(f);
2879     }
2880     if (ct->task() != NULL) {
2881       ct->task()->metadata_do(f);
2882     }
2883   }
2884 }
2885 
2886 // Printing
2887 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2888   switch (_thread_state) {
2889   case _thread_uninitialized:     return "_thread_uninitialized";
2890   case _thread_new:               return "_thread_new";
2891   case _thread_new_trans:         return "_thread_new_trans";
2892   case _thread_in_native:         return "_thread_in_native";
2893   case _thread_in_native_trans:   return "_thread_in_native_trans";
2894   case _thread_in_vm:             return "_thread_in_vm";
2895   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2896   case _thread_in_Java:           return "_thread_in_Java";
2897   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2898   case _thread_blocked:           return "_thread_blocked";
2899   case _thread_blocked_trans:     return "_thread_blocked_trans";
2900   default:                        return "unknown thread state";
2901   }
2902 }
2903 
2904 #ifndef PRODUCT
2905 void JavaThread::print_thread_state_on(outputStream *st) const {
2906   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2907 };
2908 void JavaThread::print_thread_state() const {
2909   print_thread_state_on(tty);
2910 }
2911 #endif // PRODUCT
2912 
2913 // Called by Threads::print() for VM_PrintThreads operation
2914 void JavaThread::print_on(outputStream *st) const {
2915   st->print_raw("\"");
2916   st->print_raw(get_thread_name());
2917   st->print_raw("\" ");
2918   oop thread_oop = threadObj();
2919   if (thread_oop != NULL) {
2920     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2921     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2922     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2923   }
2924   Thread::print_on(st);
2925   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2926   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2927   if (thread_oop != NULL) {
2928     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2929   }
2930 #ifndef PRODUCT
2931   print_thread_state_on(st);
2932   _safepoint_state->print_on(st);
2933 #endif // PRODUCT
2934   if (is_Compiler_thread()) {
2935     CompilerThread* ct = (CompilerThread*)this;
2936     if (ct->task() != NULL) {
2937       st->print("   Compiling: ");
2938       ct->task()->print(st, NULL, true, false);
2939     } else {
2940       st->print("   No compile task");
2941     }
2942     st->cr();
2943   }
2944 }
2945 
2946 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2947   st->print("%s", get_thread_name_string(buf, buflen));
2948 }
2949 
2950 // Called by fatal error handler. The difference between this and
2951 // JavaThread::print() is that we can't grab lock or allocate memory.
2952 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2953   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2954   oop thread_obj = threadObj();
2955   if (thread_obj != NULL) {
2956     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2957   }
2958   st->print(" [");
2959   st->print("%s", _get_thread_state_name(_thread_state));
2960   if (osthread()) {
2961     st->print(", id=%d", osthread()->thread_id());
2962   }
2963   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2964             p2i(stack_end()), p2i(stack_base()));
2965   st->print("]");
2966   return;
2967 }
2968 
2969 // Verification
2970 
2971 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2972 
2973 void JavaThread::verify() {
2974   // Verify oops in the thread.
2975   oops_do(&VerifyOopClosure::verify_oop, NULL);
2976 
2977   // Verify the stack frames.
2978   frames_do(frame_verify);
2979 }
2980 
2981 // CR 6300358 (sub-CR 2137150)
2982 // Most callers of this method assume that it can't return NULL but a
2983 // thread may not have a name whilst it is in the process of attaching to
2984 // the VM - see CR 6412693, and there are places where a JavaThread can be
2985 // seen prior to having it's threadObj set (eg JNI attaching threads and
2986 // if vm exit occurs during initialization). These cases can all be accounted
2987 // for such that this method never returns NULL.
2988 const char* JavaThread::get_thread_name() const {
2989 #ifdef ASSERT
2990   // early safepoints can hit while current thread does not yet have TLS
2991   if (!SafepointSynchronize::is_at_safepoint()) {
2992     Thread *cur = Thread::current();
2993     if (!(cur->is_Java_thread() && cur == this)) {
2994       // Current JavaThreads are allowed to get their own name without
2995       // the Threads_lock.
2996       assert_locked_or_safepoint(Threads_lock);
2997     }
2998   }
2999 #endif // ASSERT
3000   return get_thread_name_string();
3001 }
3002 
3003 // Returns a non-NULL representation of this thread's name, or a suitable
3004 // descriptive string if there is no set name
3005 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3006   const char* name_str;
3007   oop thread_obj = threadObj();
3008   if (thread_obj != NULL) {
3009     oop name = java_lang_Thread::name(thread_obj);
3010     if (name != NULL) {
3011       if (buf == NULL) {
3012         name_str = java_lang_String::as_utf8_string(name);
3013       } else {
3014         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3015       }
3016     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3017       name_str = "<no-name - thread is attaching>";
3018     } else {
3019       name_str = Thread::name();
3020     }
3021   } else {
3022     name_str = Thread::name();
3023   }
3024   assert(name_str != NULL, "unexpected NULL thread name");
3025   return name_str;
3026 }
3027 
3028 
3029 const char* JavaThread::get_threadgroup_name() const {
3030   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3031   oop thread_obj = threadObj();
3032   if (thread_obj != NULL) {
3033     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3034     if (thread_group != NULL) {
3035       // ThreadGroup.name can be null
3036       return java_lang_ThreadGroup::name(thread_group);
3037     }
3038   }
3039   return NULL;
3040 }
3041 
3042 const char* JavaThread::get_parent_name() const {
3043   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3044   oop thread_obj = threadObj();
3045   if (thread_obj != NULL) {
3046     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3047     if (thread_group != NULL) {
3048       oop parent = java_lang_ThreadGroup::parent(thread_group);
3049       if (parent != NULL) {
3050         // ThreadGroup.name can be null
3051         return java_lang_ThreadGroup::name(parent);
3052       }
3053     }
3054   }
3055   return NULL;
3056 }
3057 
3058 ThreadPriority JavaThread::java_priority() const {
3059   oop thr_oop = threadObj();
3060   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3061   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3062   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3063   return priority;
3064 }
3065 
3066 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3067 
3068   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3069   // Link Java Thread object <-> C++ Thread
3070 
3071   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3072   // and put it into a new Handle.  The Handle "thread_oop" can then
3073   // be used to pass the C++ thread object to other methods.
3074 
3075   // Set the Java level thread object (jthread) field of the
3076   // new thread (a JavaThread *) to C++ thread object using the
3077   // "thread_oop" handle.
3078 
3079   // Set the thread field (a JavaThread *) of the
3080   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3081 
3082   Handle thread_oop(Thread::current(),
3083                     JNIHandles::resolve_non_null(jni_thread));
3084   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3085          "must be initialized");
3086   set_threadObj(thread_oop());
3087   java_lang_Thread::set_thread(thread_oop(), this);
3088 
3089   if (prio == NoPriority) {
3090     prio = java_lang_Thread::priority(thread_oop());
3091     assert(prio != NoPriority, "A valid priority should be present");
3092   }
3093 
3094   // Push the Java priority down to the native thread; needs Threads_lock
3095   Thread::set_priority(this, prio);
3096 
3097   prepare_ext();
3098 
3099   // Add the new thread to the Threads list and set it in motion.
3100   // We must have threads lock in order to call Threads::add.
3101   // It is crucial that we do not block before the thread is
3102   // added to the Threads list for if a GC happens, then the java_thread oop
3103   // will not be visited by GC.
3104   Threads::add(this);
3105 }
3106 
3107 oop JavaThread::current_park_blocker() {
3108   // Support for JSR-166 locks
3109   oop thread_oop = threadObj();
3110   if (thread_oop != NULL &&
3111       JDK_Version::current().supports_thread_park_blocker()) {
3112     return java_lang_Thread::park_blocker(thread_oop);
3113   }
3114   return NULL;
3115 }
3116 
3117 
3118 void JavaThread::print_stack_on(outputStream* st) {
3119   if (!has_last_Java_frame()) return;
3120   ResourceMark rm;
3121   HandleMark   hm;
3122 
3123   RegisterMap reg_map(this);
3124   vframe* start_vf = last_java_vframe(&reg_map);
3125   int count = 0;
3126   for (vframe* f = start_vf; f; f = f->sender()) {
3127     if (f->is_java_frame()) {
3128       javaVFrame* jvf = javaVFrame::cast(f);
3129       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3130 
3131       // Print out lock information
3132       if (JavaMonitorsInStackTrace) {
3133         jvf->print_lock_info_on(st, count);
3134       }
3135     } else {
3136       // Ignore non-Java frames
3137     }
3138 
3139     // Bail-out case for too deep stacks
3140     count++;
3141     if (MaxJavaStackTraceDepth == count) return;
3142   }
3143 }
3144 
3145 
3146 // JVMTI PopFrame support
3147 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3148   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3149   if (in_bytes(size_in_bytes) != 0) {
3150     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3151     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3152     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3153   }
3154 }
3155 
3156 void* JavaThread::popframe_preserved_args() {
3157   return _popframe_preserved_args;
3158 }
3159 
3160 ByteSize JavaThread::popframe_preserved_args_size() {
3161   return in_ByteSize(_popframe_preserved_args_size);
3162 }
3163 
3164 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3165   int sz = in_bytes(popframe_preserved_args_size());
3166   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3167   return in_WordSize(sz / wordSize);
3168 }
3169 
3170 void JavaThread::popframe_free_preserved_args() {
3171   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3172   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3173   _popframe_preserved_args = NULL;
3174   _popframe_preserved_args_size = 0;
3175 }
3176 
3177 #ifndef PRODUCT
3178 
3179 void JavaThread::trace_frames() {
3180   tty->print_cr("[Describe stack]");
3181   int frame_no = 1;
3182   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3183     tty->print("  %d. ", frame_no++);
3184     fst.current()->print_value_on(tty, this);
3185     tty->cr();
3186   }
3187 }
3188 
3189 class PrintAndVerifyOopClosure: public OopClosure {
3190  protected:
3191   template <class T> inline void do_oop_work(T* p) {
3192     oop obj = oopDesc::load_decode_heap_oop(p);
3193     if (obj == NULL) return;
3194     tty->print(INTPTR_FORMAT ": ", p2i(p));
3195     if (obj->is_oop_or_null()) {
3196       if (obj->is_objArray()) {
3197         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3198       } else {
3199         obj->print();
3200       }
3201     } else {
3202       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3203     }
3204     tty->cr();
3205   }
3206  public:
3207   virtual void do_oop(oop* p) { do_oop_work(p); }
3208   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3209 };
3210 
3211 
3212 static void oops_print(frame* f, const RegisterMap *map) {
3213   PrintAndVerifyOopClosure print;
3214   f->print_value();
3215   f->oops_do(&print, NULL, (RegisterMap*)map);
3216 }
3217 
3218 // Print our all the locations that contain oops and whether they are
3219 // valid or not.  This useful when trying to find the oldest frame
3220 // where an oop has gone bad since the frame walk is from youngest to
3221 // oldest.
3222 void JavaThread::trace_oops() {
3223   tty->print_cr("[Trace oops]");
3224   frames_do(oops_print);
3225 }
3226 
3227 
3228 #ifdef ASSERT
3229 // Print or validate the layout of stack frames
3230 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3231   ResourceMark rm;
3232   PRESERVE_EXCEPTION_MARK;
3233   FrameValues values;
3234   int frame_no = 0;
3235   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3236     fst.current()->describe(values, ++frame_no);
3237     if (depth == frame_no) break;
3238   }
3239   if (validate_only) {
3240     values.validate();
3241   } else {
3242     tty->print_cr("[Describe stack layout]");
3243     values.print(this);
3244   }
3245 }
3246 #endif
3247 
3248 void JavaThread::trace_stack_from(vframe* start_vf) {
3249   ResourceMark rm;
3250   int vframe_no = 1;
3251   for (vframe* f = start_vf; f; f = f->sender()) {
3252     if (f->is_java_frame()) {
3253       javaVFrame::cast(f)->print_activation(vframe_no++);
3254     } else {
3255       f->print();
3256     }
3257     if (vframe_no > StackPrintLimit) {
3258       tty->print_cr("...<more frames>...");
3259       return;
3260     }
3261   }
3262 }
3263 
3264 
3265 void JavaThread::trace_stack() {
3266   if (!has_last_Java_frame()) return;
3267   ResourceMark rm;
3268   HandleMark   hm;
3269   RegisterMap reg_map(this);
3270   trace_stack_from(last_java_vframe(&reg_map));
3271 }
3272 
3273 
3274 #endif // PRODUCT
3275 
3276 
3277 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3278   assert(reg_map != NULL, "a map must be given");
3279   frame f = last_frame();
3280   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3281     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3282   }
3283   return NULL;
3284 }
3285 
3286 
3287 Klass* JavaThread::security_get_caller_class(int depth) {
3288   vframeStream vfst(this);
3289   vfst.security_get_caller_frame(depth);
3290   if (!vfst.at_end()) {
3291     return vfst.method()->method_holder();
3292   }
3293   return NULL;
3294 }
3295 
3296 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3297   assert(thread->is_Compiler_thread(), "must be compiler thread");
3298   CompileBroker::compiler_thread_loop();
3299 }
3300 
3301 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3302   NMethodSweeper::sweeper_loop();
3303 }
3304 
3305 // Create a CompilerThread
3306 CompilerThread::CompilerThread(CompileQueue* queue,
3307                                CompilerCounters* counters)
3308                                : JavaThread(&compiler_thread_entry) {
3309   _env   = NULL;
3310   _log   = NULL;
3311   _task  = NULL;
3312   _queue = queue;
3313   _counters = counters;
3314   _buffer_blob = NULL;
3315   _compiler = NULL;
3316 
3317 #ifndef PRODUCT
3318   _ideal_graph_printer = NULL;
3319 #endif
3320 }
3321 
3322 bool CompilerThread::can_call_java() const {
3323   return _compiler != NULL && _compiler->is_jvmci();
3324 }
3325 
3326 // Create sweeper thread
3327 CodeCacheSweeperThread::CodeCacheSweeperThread()
3328 : JavaThread(&sweeper_thread_entry) {
3329   _scanned_compiled_method = NULL;
3330 }
3331 
3332 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3333   JavaThread::oops_do(f, cf);
3334   if (_scanned_compiled_method != NULL && cf != NULL) {
3335     // Safepoints can occur when the sweeper is scanning an nmethod so
3336     // process it here to make sure it isn't unloaded in the middle of
3337     // a scan.
3338     cf->do_code_blob(_scanned_compiled_method);
3339   }
3340 }
3341 
3342 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3343   JavaThread::nmethods_do(cf);
3344   if (_scanned_compiled_method != NULL && cf != NULL) {
3345     // Safepoints can occur when the sweeper is scanning an nmethod so
3346     // process it here to make sure it isn't unloaded in the middle of
3347     // a scan.
3348     cf->do_code_blob(_scanned_compiled_method);
3349   }
3350 }
3351 
3352 
3353 // ======= Threads ========
3354 
3355 // The Threads class links together all active threads, and provides
3356 // operations over all threads.  It is protected by its own Mutex
3357 // lock, which is also used in other contexts to protect thread
3358 // operations from having the thread being operated on from exiting
3359 // and going away unexpectedly (e.g., safepoint synchronization)
3360 
3361 JavaThread* Threads::_thread_list = NULL;
3362 int         Threads::_number_of_threads = 0;
3363 int         Threads::_number_of_non_daemon_threads = 0;
3364 int         Threads::_return_code = 0;
3365 int         Threads::_thread_claim_parity = 0;
3366 size_t      JavaThread::_stack_size_at_create = 0;
3367 #ifdef ASSERT
3368 bool        Threads::_vm_complete = false;
3369 #endif
3370 
3371 // All JavaThreads
3372 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3373 
3374 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3375 void Threads::threads_do(ThreadClosure* tc) {
3376   assert_locked_or_safepoint(Threads_lock);
3377   // ALL_JAVA_THREADS iterates through all JavaThreads
3378   ALL_JAVA_THREADS(p) {
3379     tc->do_thread(p);
3380   }
3381   // Someday we could have a table or list of all non-JavaThreads.
3382   // For now, just manually iterate through them.
3383   tc->do_thread(VMThread::vm_thread());
3384   Universe::heap()->gc_threads_do(tc);
3385   WatcherThread *wt = WatcherThread::watcher_thread();
3386   // Strictly speaking, the following NULL check isn't sufficient to make sure
3387   // the data for WatcherThread is still valid upon being examined. However,
3388   // considering that WatchThread terminates when the VM is on the way to
3389   // exit at safepoint, the chance of the above is extremely small. The right
3390   // way to prevent termination of WatcherThread would be to acquire
3391   // Terminator_lock, but we can't do that without violating the lock rank
3392   // checking in some cases.
3393   if (wt != NULL) {
3394     tc->do_thread(wt);
3395   }
3396 
3397   // If CompilerThreads ever become non-JavaThreads, add them here
3398 }
3399 
3400 // The system initialization in the library has three phases.
3401 //
3402 // Phase 1: java.lang.System class initialization
3403 //     java.lang.System is a primordial class loaded and initialized
3404 //     by the VM early during startup.  java.lang.System.<clinit>
3405 //     only does registerNatives and keeps the rest of the class
3406 //     initialization work later until thread initialization completes.
3407 //
3408 //     System.initPhase1 initializes the system properties, the static
3409 //     fields in, out, and err. Set up java signal handlers, OS-specific
3410 //     system settings, and thread group of the main thread.
3411 static void call_initPhase1(TRAPS) {
3412   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3413   JavaValue result(T_VOID);
3414   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3415                                          vmSymbols::void_method_signature(), CHECK);
3416 }
3417 
3418 // Phase 2. Module system initialization
3419 //     This will initialize the module system.  Only java.base classes
3420 //     can be loaded until phase 2 completes.
3421 //
3422 //     Call System.initPhase2 after the compiler initialization and jsr292
3423 //     classes get initialized because module initialization runs a lot of java
3424 //     code, that for performance reasons, should be compiled.  Also, this will
3425 //     enable the startup code to use lambda and other language features in this
3426 //     phase and onward.
3427 //
3428 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3429 static void call_initPhase2(TRAPS) {
3430   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, module, startuptime));
3431 
3432   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3433 
3434   JavaValue result(T_INT);
3435   JavaCallArguments args;
3436   args.push_int(DisplayVMOutputToStderr);
3437   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3438   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3439                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3440   if (result.get_jint() != JNI_OK) {
3441     vm_exit_during_initialization(); // no message or exception
3442   }
3443 
3444   universe_post_module_init();
3445 }
3446 
3447 // Phase 3. final setup - set security manager, system class loader and TCCL
3448 //
3449 //     This will instantiate and set the security manager, set the system class
3450 //     loader as well as the thread context class loader.  The security manager
3451 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3452 //     other modules or the application's classpath.
3453 static void call_initPhase3(TRAPS) {
3454   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3455   JavaValue result(T_VOID);
3456   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3457                                          vmSymbols::void_method_signature(), CHECK);
3458 }
3459 
3460 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3461   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3462 
3463   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3464     create_vm_init_libraries();
3465   }
3466 
3467   initialize_class(vmSymbols::java_lang_String(), CHECK);
3468 
3469   // Inject CompactStrings value after the static initializers for String ran.
3470   java_lang_String::set_compact_strings(CompactStrings);
3471 
3472   // Initialize java_lang.System (needed before creating the thread)
3473   initialize_class(vmSymbols::java_lang_System(), CHECK);
3474   // The VM creates & returns objects of this class. Make sure it's initialized.
3475   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3476   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3477   Handle thread_group = create_initial_thread_group(CHECK);
3478   Universe::set_main_thread_group(thread_group());
3479   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3480   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3481   main_thread->set_threadObj(thread_object);
3482   // Set thread status to running since main thread has
3483   // been started and running.
3484   java_lang_Thread::set_thread_status(thread_object,
3485                                       java_lang_Thread::RUNNABLE);
3486 
3487   // The VM creates objects of this class.
3488   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3489 
3490   // The VM preresolves methods to these classes. Make sure that they get initialized
3491   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3492   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3493 
3494   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3495   call_initPhase1(CHECK);
3496 
3497   // get the Java runtime name after java.lang.System is initialized
3498   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3499   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3500 
3501   // an instance of OutOfMemory exception has been allocated earlier
3502   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3503   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3504   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3505   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3506   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3507   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3508   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3509   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3510 }
3511 
3512 void Threads::initialize_jsr292_core_classes(TRAPS) {
3513   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3514 
3515   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3516   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3517   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3518 }
3519 
3520 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3521   extern void JDK_Version_init();
3522 
3523   // Preinitialize version info.
3524   VM_Version::early_initialize();
3525 
3526   // Check version
3527   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3528 
3529   // Initialize library-based TLS
3530   ThreadLocalStorage::init();
3531 
3532   // Initialize the output stream module
3533   ostream_init();
3534 
3535   // Process java launcher properties.
3536   Arguments::process_sun_java_launcher_properties(args);
3537 
3538   // Initialize the os module
3539   os::init();
3540 
3541   // Record VM creation timing statistics
3542   TraceVmCreationTime create_vm_timer;
3543   create_vm_timer.start();
3544 
3545   // Initialize system properties.
3546   Arguments::init_system_properties();
3547 
3548   // So that JDK version can be used as a discriminator when parsing arguments
3549   JDK_Version_init();
3550 
3551   // Update/Initialize System properties after JDK version number is known
3552   Arguments::init_version_specific_system_properties();
3553 
3554   // Make sure to initialize log configuration *before* parsing arguments
3555   LogConfiguration::initialize(create_vm_timer.begin_time());
3556 
3557   // Parse arguments
3558   jint parse_result = Arguments::parse(args);
3559   if (parse_result != JNI_OK) return parse_result;
3560 
3561   os::init_before_ergo();
3562 
3563   jint ergo_result = Arguments::apply_ergo();
3564   if (ergo_result != JNI_OK) return ergo_result;
3565 
3566   // Final check of all ranges after ergonomics which may change values.
3567   if (!CommandLineFlagRangeList::check_ranges()) {
3568     return JNI_EINVAL;
3569   }
3570 
3571   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3572   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3573   if (!constraint_result) {
3574     return JNI_EINVAL;
3575   }
3576 
3577   CommandLineFlagWriteableList::mark_startup();
3578 
3579   if (PauseAtStartup) {
3580     os::pause();
3581   }
3582 
3583   HOTSPOT_VM_INIT_BEGIN();
3584 
3585   // Timing (must come after argument parsing)
3586   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3587 
3588   // Initialize the os module after parsing the args
3589   jint os_init_2_result = os::init_2();
3590   if (os_init_2_result != JNI_OK) return os_init_2_result;
3591 
3592   jint adjust_after_os_result = Arguments::adjust_after_os();
3593   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3594 
3595   // Initialize output stream logging
3596   ostream_init_log();
3597 
3598   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3599   // Must be before create_vm_init_agents()
3600   if (Arguments::init_libraries_at_startup()) {
3601     convert_vm_init_libraries_to_agents();
3602   }
3603 
3604   // Launch -agentlib/-agentpath and converted -Xrun agents
3605   if (Arguments::init_agents_at_startup()) {
3606     create_vm_init_agents();
3607   }
3608 
3609   // Initialize Threads state
3610   _thread_list = NULL;
3611   _number_of_threads = 0;
3612   _number_of_non_daemon_threads = 0;
3613 
3614   // Initialize global data structures and create system classes in heap
3615   vm_init_globals();
3616 
3617 #if INCLUDE_JVMCI
3618   if (JVMCICounterSize > 0) {
3619     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3620     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3621   } else {
3622     JavaThread::_jvmci_old_thread_counters = NULL;
3623   }
3624 #endif // INCLUDE_JVMCI
3625 
3626   // Attach the main thread to this os thread
3627   JavaThread* main_thread = new JavaThread();
3628   main_thread->set_thread_state(_thread_in_vm);
3629   main_thread->initialize_thread_current();
3630   // must do this before set_active_handles
3631   main_thread->record_stack_base_and_size();
3632   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3633 
3634   if (!main_thread->set_as_starting_thread()) {
3635     vm_shutdown_during_initialization(
3636                                       "Failed necessary internal allocation. Out of swap space");
3637     delete main_thread;
3638     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3639     return JNI_ENOMEM;
3640   }
3641 
3642   // Enable guard page *after* os::create_main_thread(), otherwise it would
3643   // crash Linux VM, see notes in os_linux.cpp.
3644   main_thread->create_stack_guard_pages();
3645 
3646   // Initialize Java-Level synchronization subsystem
3647   ObjectMonitor::Initialize();
3648 
3649   // Initialize global modules
3650   jint status = init_globals();
3651   if (status != JNI_OK) {
3652     delete main_thread;
3653     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3654     return status;
3655   }
3656 
3657   if (TRACE_INITIALIZE() != JNI_OK) {
3658     vm_exit_during_initialization("Failed to initialize tracing backend");
3659   }
3660 
3661   // Should be done after the heap is fully created
3662   main_thread->cache_global_variables();
3663 
3664   HandleMark hm;
3665 
3666   { MutexLocker mu(Threads_lock);
3667     Threads::add(main_thread);
3668   }
3669 
3670   // Any JVMTI raw monitors entered in onload will transition into
3671   // real raw monitor. VM is setup enough here for raw monitor enter.
3672   JvmtiExport::transition_pending_onload_raw_monitors();
3673 
3674   // Create the VMThread
3675   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3676 
3677   VMThread::create();
3678     Thread* vmthread = VMThread::vm_thread();
3679 
3680     if (!os::create_thread(vmthread, os::vm_thread)) {
3681       vm_exit_during_initialization("Cannot create VM thread. "
3682                                     "Out of system resources.");
3683     }
3684 
3685     // Wait for the VM thread to become ready, and VMThread::run to initialize
3686     // Monitors can have spurious returns, must always check another state flag
3687     {
3688       MutexLocker ml(Notify_lock);
3689       os::start_thread(vmthread);
3690       while (vmthread->active_handles() == NULL) {
3691         Notify_lock->wait();
3692       }
3693     }
3694   }
3695 
3696   assert(Universe::is_fully_initialized(), "not initialized");
3697   if (VerifyDuringStartup) {
3698     // Make sure we're starting with a clean slate.
3699     VM_Verify verify_op;
3700     VMThread::execute(&verify_op);
3701   }
3702 
3703   Thread* THREAD = Thread::current();
3704 
3705   // At this point, the Universe is initialized, but we have not executed
3706   // any byte code.  Now is a good time (the only time) to dump out the
3707   // internal state of the JVM for sharing.
3708   if (DumpSharedSpaces) {
3709     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3710     ShouldNotReachHere();
3711   }
3712 
3713   // Always call even when there are not JVMTI environments yet, since environments
3714   // may be attached late and JVMTI must track phases of VM execution
3715   JvmtiExport::enter_early_start_phase();
3716 
3717   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3718   JvmtiExport::post_early_vm_start();
3719 
3720   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3721 
3722   // We need this for ClassDataSharing - the initial vm.info property is set
3723   // with the default value of CDS "sharing" which may be reset through
3724   // command line options.
3725   reset_vm_info_property(CHECK_JNI_ERR);
3726 
3727   quicken_jni_functions();
3728 
3729   // No more stub generation allowed after that point.
3730   StubCodeDesc::freeze();
3731 
3732   // Set flag that basic initialization has completed. Used by exceptions and various
3733   // debug stuff, that does not work until all basic classes have been initialized.
3734   set_init_completed();
3735 
3736   LogConfiguration::post_initialize();
3737   Metaspace::post_initialize();
3738 
3739   HOTSPOT_VM_INIT_END();
3740 
3741   // record VM initialization completion time
3742 #if INCLUDE_MANAGEMENT
3743   Management::record_vm_init_completed();
3744 #endif // INCLUDE_MANAGEMENT
3745 
3746   // Signal Dispatcher needs to be started before VMInit event is posted
3747   os::signal_init(CHECK_JNI_ERR);
3748 
3749   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3750   if (!DisableAttachMechanism) {
3751     AttachListener::vm_start();
3752     if (StartAttachListener || AttachListener::init_at_startup()) {
3753       AttachListener::init();
3754     }
3755   }
3756 
3757   // Launch -Xrun agents
3758   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3759   // back-end can launch with -Xdebug -Xrunjdwp.
3760   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3761     create_vm_init_libraries();
3762   }
3763 
3764   if (CleanChunkPoolAsync) {
3765     Chunk::start_chunk_pool_cleaner_task();
3766   }
3767 
3768   // initialize compiler(s)
3769 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3770   CompileBroker::compilation_init(CHECK_JNI_ERR);
3771 #endif
3772 
3773   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3774   // It is done after compilers are initialized, because otherwise compilations of
3775   // signature polymorphic MH intrinsics can be missed
3776   // (see SystemDictionary::find_method_handle_intrinsic).
3777   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3778 
3779   // This will initialize the module system.  Only java.base classes can be
3780   // loaded until phase 2 completes
3781   call_initPhase2(CHECK_JNI_ERR);
3782 
3783   // Always call even when there are not JVMTI environments yet, since environments
3784   // may be attached late and JVMTI must track phases of VM execution
3785   JvmtiExport::enter_start_phase();
3786 
3787   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3788   JvmtiExport::post_vm_start();
3789 
3790   // Final system initialization including security manager and system class loader
3791   call_initPhase3(CHECK_JNI_ERR);
3792 
3793   // cache the system class loader
3794   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3795 
3796 #if INCLUDE_JVMCI
3797   if (EnableJVMCI) {
3798     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3799     // The JVMCI Java initialization code will read this flag and
3800     // do the printing if it's set.
3801     bool init = JVMCIPrintProperties;
3802 
3803     if (!init) {
3804       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3805       // compilations via JVMCI will not actually block until JVMCI is initialized.
3806       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3807     }
3808 
3809     if (init) {
3810       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3811     }
3812   }
3813 #endif
3814 
3815   // Always call even when there are not JVMTI environments yet, since environments
3816   // may be attached late and JVMTI must track phases of VM execution
3817   JvmtiExport::enter_live_phase();
3818 
3819   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3820   JvmtiExport::post_vm_initialized();
3821 
3822   if (TRACE_START() != JNI_OK) {
3823     vm_exit_during_initialization("Failed to start tracing backend.");
3824   }
3825 
3826 #if INCLUDE_MANAGEMENT
3827   Management::initialize(THREAD);
3828 
3829   if (HAS_PENDING_EXCEPTION) {
3830     // management agent fails to start possibly due to
3831     // configuration problem and is responsible for printing
3832     // stack trace if appropriate. Simply exit VM.
3833     vm_exit(1);
3834   }
3835 #endif // INCLUDE_MANAGEMENT
3836 
3837   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3838   if (MemProfiling)                   MemProfiler::engage();
3839   StatSampler::engage();
3840   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3841 
3842   BiasedLocking::init();
3843 
3844 #if INCLUDE_RTM_OPT
3845   RTMLockingCounters::init();
3846 #endif
3847 
3848   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3849     call_postVMInitHook(THREAD);
3850     // The Java side of PostVMInitHook.run must deal with all
3851     // exceptions and provide means of diagnosis.
3852     if (HAS_PENDING_EXCEPTION) {
3853       CLEAR_PENDING_EXCEPTION;
3854     }
3855   }
3856 
3857   {
3858     MutexLocker ml(PeriodicTask_lock);
3859     // Make sure the WatcherThread can be started by WatcherThread::start()
3860     // or by dynamic enrollment.
3861     WatcherThread::make_startable();
3862     // Start up the WatcherThread if there are any periodic tasks
3863     // NOTE:  All PeriodicTasks should be registered by now. If they
3864     //   aren't, late joiners might appear to start slowly (we might
3865     //   take a while to process their first tick).
3866     if (PeriodicTask::num_tasks() > 0) {
3867       WatcherThread::start();
3868     }
3869   }
3870 
3871   create_vm_timer.end();
3872 #ifdef ASSERT
3873   _vm_complete = true;
3874 #endif
3875   return JNI_OK;
3876 }
3877 
3878 // type for the Agent_OnLoad and JVM_OnLoad entry points
3879 extern "C" {
3880   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3881 }
3882 // Find a command line agent library and return its entry point for
3883 //         -agentlib:  -agentpath:   -Xrun
3884 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3885 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3886                                     const char *on_load_symbols[],
3887                                     size_t num_symbol_entries) {
3888   OnLoadEntry_t on_load_entry = NULL;
3889   void *library = NULL;
3890 
3891   if (!agent->valid()) {
3892     char buffer[JVM_MAXPATHLEN];
3893     char ebuf[1024] = "";
3894     const char *name = agent->name();
3895     const char *msg = "Could not find agent library ";
3896 
3897     // First check to see if agent is statically linked into executable
3898     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3899       library = agent->os_lib();
3900     } else if (agent->is_absolute_path()) {
3901       library = os::dll_load(name, ebuf, sizeof ebuf);
3902       if (library == NULL) {
3903         const char *sub_msg = " in absolute path, with error: ";
3904         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3905         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3906         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3907         // If we can't find the agent, exit.
3908         vm_exit_during_initialization(buf, NULL);
3909         FREE_C_HEAP_ARRAY(char, buf);
3910       }
3911     } else {
3912       // Try to load the agent from the standard dll directory
3913       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3914                              name)) {
3915         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3916       }
3917       if (library == NULL) { // Try the local directory
3918         char ns[1] = {0};
3919         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3920           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3921         }
3922         if (library == NULL) {
3923           const char *sub_msg = " on the library path, with error: ";
3924           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3925           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3926           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3927           // If we can't find the agent, exit.
3928           vm_exit_during_initialization(buf, NULL);
3929           FREE_C_HEAP_ARRAY(char, buf);
3930         }
3931       }
3932     }
3933     agent->set_os_lib(library);
3934     agent->set_valid();
3935   }
3936 
3937   // Find the OnLoad function.
3938   on_load_entry =
3939     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3940                                                           false,
3941                                                           on_load_symbols,
3942                                                           num_symbol_entries));
3943   return on_load_entry;
3944 }
3945 
3946 // Find the JVM_OnLoad entry point
3947 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3948   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3949   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3950 }
3951 
3952 // Find the Agent_OnLoad entry point
3953 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3954   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3955   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3956 }
3957 
3958 // For backwards compatibility with -Xrun
3959 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3960 // treated like -agentpath:
3961 // Must be called before agent libraries are created
3962 void Threads::convert_vm_init_libraries_to_agents() {
3963   AgentLibrary* agent;
3964   AgentLibrary* next;
3965 
3966   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3967     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3968     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3969 
3970     // If there is an JVM_OnLoad function it will get called later,
3971     // otherwise see if there is an Agent_OnLoad
3972     if (on_load_entry == NULL) {
3973       on_load_entry = lookup_agent_on_load(agent);
3974       if (on_load_entry != NULL) {
3975         // switch it to the agent list -- so that Agent_OnLoad will be called,
3976         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3977         Arguments::convert_library_to_agent(agent);
3978       } else {
3979         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3980       }
3981     }
3982   }
3983 }
3984 
3985 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3986 // Invokes Agent_OnLoad
3987 // Called very early -- before JavaThreads exist
3988 void Threads::create_vm_init_agents() {
3989   extern struct JavaVM_ main_vm;
3990   AgentLibrary* agent;
3991 
3992   JvmtiExport::enter_onload_phase();
3993 
3994   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3995     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3996 
3997     if (on_load_entry != NULL) {
3998       // Invoke the Agent_OnLoad function
3999       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4000       if (err != JNI_OK) {
4001         vm_exit_during_initialization("agent library failed to init", agent->name());
4002       }
4003     } else {
4004       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4005     }
4006   }
4007   JvmtiExport::enter_primordial_phase();
4008 }
4009 
4010 extern "C" {
4011   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4012 }
4013 
4014 void Threads::shutdown_vm_agents() {
4015   // Send any Agent_OnUnload notifications
4016   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4017   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4018   extern struct JavaVM_ main_vm;
4019   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4020 
4021     // Find the Agent_OnUnload function.
4022     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4023                                                    os::find_agent_function(agent,
4024                                                    false,
4025                                                    on_unload_symbols,
4026                                                    num_symbol_entries));
4027 
4028     // Invoke the Agent_OnUnload function
4029     if (unload_entry != NULL) {
4030       JavaThread* thread = JavaThread::current();
4031       ThreadToNativeFromVM ttn(thread);
4032       HandleMark hm(thread);
4033       (*unload_entry)(&main_vm);
4034     }
4035   }
4036 }
4037 
4038 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4039 // Invokes JVM_OnLoad
4040 void Threads::create_vm_init_libraries() {
4041   extern struct JavaVM_ main_vm;
4042   AgentLibrary* agent;
4043 
4044   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4045     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4046 
4047     if (on_load_entry != NULL) {
4048       // Invoke the JVM_OnLoad function
4049       JavaThread* thread = JavaThread::current();
4050       ThreadToNativeFromVM ttn(thread);
4051       HandleMark hm(thread);
4052       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4053       if (err != JNI_OK) {
4054         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4055       }
4056     } else {
4057       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4058     }
4059   }
4060 }
4061 
4062 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4063   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4064 
4065   JavaThread* java_thread = NULL;
4066   // Sequential search for now.  Need to do better optimization later.
4067   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4068     oop tobj = thread->threadObj();
4069     if (!thread->is_exiting() &&
4070         tobj != NULL &&
4071         java_tid == java_lang_Thread::thread_id(tobj)) {
4072       java_thread = thread;
4073       break;
4074     }
4075   }
4076   return java_thread;
4077 }
4078 
4079 
4080 // Last thread running calls java.lang.Shutdown.shutdown()
4081 void JavaThread::invoke_shutdown_hooks() {
4082   HandleMark hm(this);
4083 
4084   // We could get here with a pending exception, if so clear it now.
4085   if (this->has_pending_exception()) {
4086     this->clear_pending_exception();
4087   }
4088 
4089   EXCEPTION_MARK;
4090   Klass* shutdown_klass =
4091     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4092                                       THREAD);
4093   if (shutdown_klass != NULL) {
4094     // SystemDictionary::resolve_or_null will return null if there was
4095     // an exception.  If we cannot load the Shutdown class, just don't
4096     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4097     // and finalizers (if runFinalizersOnExit is set) won't be run.
4098     // Note that if a shutdown hook was registered or runFinalizersOnExit
4099     // was called, the Shutdown class would have already been loaded
4100     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4101     JavaValue result(T_VOID);
4102     JavaCalls::call_static(&result,
4103                            shutdown_klass,
4104                            vmSymbols::shutdown_method_name(),
4105                            vmSymbols::void_method_signature(),
4106                            THREAD);
4107   }
4108   CLEAR_PENDING_EXCEPTION;
4109 }
4110 
4111 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4112 // the program falls off the end of main(). Another VM exit path is through
4113 // vm_exit() when the program calls System.exit() to return a value or when
4114 // there is a serious error in VM. The two shutdown paths are not exactly
4115 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4116 // and VM_Exit op at VM level.
4117 //
4118 // Shutdown sequence:
4119 //   + Shutdown native memory tracking if it is on
4120 //   + Wait until we are the last non-daemon thread to execute
4121 //     <-- every thing is still working at this moment -->
4122 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4123 //        shutdown hooks, run finalizers if finalization-on-exit
4124 //   + Call before_exit(), prepare for VM exit
4125 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4126 //        currently the only user of this mechanism is File.deleteOnExit())
4127 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4128 //        post thread end and vm death events to JVMTI,
4129 //        stop signal thread
4130 //   + Call JavaThread::exit(), it will:
4131 //      > release JNI handle blocks, remove stack guard pages
4132 //      > remove this thread from Threads list
4133 //     <-- no more Java code from this thread after this point -->
4134 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4135 //     the compiler threads at safepoint
4136 //     <-- do not use anything that could get blocked by Safepoint -->
4137 //   + Disable tracing at JNI/JVM barriers
4138 //   + Set _vm_exited flag for threads that are still running native code
4139 //   + Delete this thread
4140 //   + Call exit_globals()
4141 //      > deletes tty
4142 //      > deletes PerfMemory resources
4143 //   + Return to caller
4144 
4145 bool Threads::destroy_vm() {
4146   JavaThread* thread = JavaThread::current();
4147 
4148 #ifdef ASSERT
4149   _vm_complete = false;
4150 #endif
4151   // Wait until we are the last non-daemon thread to execute
4152   { MutexLocker nu(Threads_lock);
4153     while (Threads::number_of_non_daemon_threads() > 1)
4154       // This wait should make safepoint checks, wait without a timeout,
4155       // and wait as a suspend-equivalent condition.
4156       //
4157       // Note: If the FlatProfiler is running and this thread is waiting
4158       // for another non-daemon thread to finish, then the FlatProfiler
4159       // is waiting for the external suspend request on this thread to
4160       // complete. wait_for_ext_suspend_completion() will eventually
4161       // timeout, but that takes time. Making this wait a suspend-
4162       // equivalent condition solves that timeout problem.
4163       //
4164       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4165                          Mutex::_as_suspend_equivalent_flag);
4166   }
4167 
4168   // Hang forever on exit if we are reporting an error.
4169   if (ShowMessageBoxOnError && is_error_reported()) {
4170     os::infinite_sleep();
4171   }
4172   os::wait_for_keypress_at_exit();
4173 
4174   // run Java level shutdown hooks
4175   thread->invoke_shutdown_hooks();
4176 
4177   before_exit(thread);
4178 
4179   thread->exit(true);
4180 
4181   // Stop VM thread.
4182   {
4183     // 4945125 The vm thread comes to a safepoint during exit.
4184     // GC vm_operations can get caught at the safepoint, and the
4185     // heap is unparseable if they are caught. Grab the Heap_lock
4186     // to prevent this. The GC vm_operations will not be able to
4187     // queue until after the vm thread is dead. After this point,
4188     // we'll never emerge out of the safepoint before the VM exits.
4189 
4190     MutexLocker ml(Heap_lock);
4191 
4192     VMThread::wait_for_vm_thread_exit();
4193     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4194     VMThread::destroy();
4195   }
4196 
4197   // clean up ideal graph printers
4198 #if defined(COMPILER2) && !defined(PRODUCT)
4199   IdealGraphPrinter::clean_up();
4200 #endif
4201 
4202   // Now, all Java threads are gone except daemon threads. Daemon threads
4203   // running Java code or in VM are stopped by the Safepoint. However,
4204   // daemon threads executing native code are still running.  But they
4205   // will be stopped at native=>Java/VM barriers. Note that we can't
4206   // simply kill or suspend them, as it is inherently deadlock-prone.
4207 
4208   VM_Exit::set_vm_exited();
4209 
4210   notify_vm_shutdown();
4211 
4212   delete thread;
4213 
4214 #if INCLUDE_JVMCI
4215   if (JVMCICounterSize > 0) {
4216     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4217   }
4218 #endif
4219 
4220   // exit_globals() will delete tty
4221   exit_globals();
4222 
4223   LogConfiguration::finalize();
4224 
4225   return true;
4226 }
4227 
4228 
4229 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4230   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4231   return is_supported_jni_version(version);
4232 }
4233 
4234 
4235 jboolean Threads::is_supported_jni_version(jint version) {
4236   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4237   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4238   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4239   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4240   if (version == JNI_VERSION_9) return JNI_TRUE;
4241   return JNI_FALSE;
4242 }
4243 
4244 
4245 void Threads::add(JavaThread* p, bool force_daemon) {
4246   // The threads lock must be owned at this point
4247   assert_locked_or_safepoint(Threads_lock);
4248 
4249   // See the comment for this method in thread.hpp for its purpose and
4250   // why it is called here.
4251   p->initialize_queues();
4252   p->set_next(_thread_list);
4253   _thread_list = p;
4254   _number_of_threads++;
4255   oop threadObj = p->threadObj();
4256   bool daemon = true;
4257   // Bootstrapping problem: threadObj can be null for initial
4258   // JavaThread (or for threads attached via JNI)
4259   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4260     _number_of_non_daemon_threads++;
4261     daemon = false;
4262   }
4263 
4264   ThreadService::add_thread(p, daemon);
4265 
4266   // Possible GC point.
4267   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4268 }
4269 
4270 void Threads::remove(JavaThread* p) {
4271   // Extra scope needed for Thread_lock, so we can check
4272   // that we do not remove thread without safepoint code notice
4273   { MutexLocker ml(Threads_lock);
4274 
4275     assert(includes(p), "p must be present");
4276 
4277     JavaThread* current = _thread_list;
4278     JavaThread* prev    = NULL;
4279 
4280     while (current != p) {
4281       prev    = current;
4282       current = current->next();
4283     }
4284 
4285     if (prev) {
4286       prev->set_next(current->next());
4287     } else {
4288       _thread_list = p->next();
4289     }
4290     _number_of_threads--;
4291     oop threadObj = p->threadObj();
4292     bool daemon = true;
4293     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4294       _number_of_non_daemon_threads--;
4295       daemon = false;
4296 
4297       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4298       // on destroy_vm will wake up.
4299       if (number_of_non_daemon_threads() == 1) {
4300         Threads_lock->notify_all();
4301       }
4302     }
4303     ThreadService::remove_thread(p, daemon);
4304 
4305     // Make sure that safepoint code disregard this thread. This is needed since
4306     // the thread might mess around with locks after this point. This can cause it
4307     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4308     // of this thread since it is removed from the queue.
4309     p->set_terminated_value();
4310   } // unlock Threads_lock
4311 
4312   // Since Events::log uses a lock, we grab it outside the Threads_lock
4313   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4314 }
4315 
4316 // Threads_lock must be held when this is called (or must be called during a safepoint)
4317 bool Threads::includes(JavaThread* p) {
4318   assert(Threads_lock->is_locked(), "sanity check");
4319   ALL_JAVA_THREADS(q) {
4320     if (q == p) {
4321       return true;
4322     }
4323   }
4324   return false;
4325 }
4326 
4327 // Operations on the Threads list for GC.  These are not explicitly locked,
4328 // but the garbage collector must provide a safe context for them to run.
4329 // In particular, these things should never be called when the Threads_lock
4330 // is held by some other thread. (Note: the Safepoint abstraction also
4331 // uses the Threads_lock to guarantee this property. It also makes sure that
4332 // all threads gets blocked when exiting or starting).
4333 
4334 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4335   ALL_JAVA_THREADS(p) {
4336     p->oops_do(f, cf);
4337   }
4338   VMThread::vm_thread()->oops_do(f, cf);
4339 }
4340 
4341 void Threads::change_thread_claim_parity() {
4342   // Set the new claim parity.
4343   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4344          "Not in range.");
4345   _thread_claim_parity++;
4346   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4347   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4348          "Not in range.");
4349 }
4350 
4351 #ifdef ASSERT
4352 void Threads::assert_all_threads_claimed() {
4353   ALL_JAVA_THREADS(p) {
4354     const int thread_parity = p->oops_do_parity();
4355     assert((thread_parity == _thread_claim_parity),
4356            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4357   }
4358 }
4359 #endif // ASSERT
4360 
4361 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4362   int cp = Threads::thread_claim_parity();
4363   ALL_JAVA_THREADS(p) {
4364     if (p->claim_oops_do(is_par, cp)) {
4365       p->oops_do(f, cf);
4366     }
4367   }
4368   VMThread* vmt = VMThread::vm_thread();
4369   if (vmt->claim_oops_do(is_par, cp)) {
4370     vmt->oops_do(f, cf);
4371   }
4372 }
4373 
4374 #if INCLUDE_ALL_GCS
4375 // Used by ParallelScavenge
4376 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4377   ALL_JAVA_THREADS(p) {
4378     q->enqueue(new ThreadRootsTask(p));
4379   }
4380   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4381 }
4382 
4383 // Used by Parallel Old
4384 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4385   ALL_JAVA_THREADS(p) {
4386     q->enqueue(new ThreadRootsMarkingTask(p));
4387   }
4388   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4389 }
4390 #endif // INCLUDE_ALL_GCS
4391 
4392 void Threads::nmethods_do(CodeBlobClosure* cf) {
4393   ALL_JAVA_THREADS(p) {
4394     // This is used by the code cache sweeper to mark nmethods that are active
4395     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4396     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4397     if(!p->is_Code_cache_sweeper_thread()) {
4398       p->nmethods_do(cf);
4399     }
4400   }
4401 }
4402 
4403 void Threads::metadata_do(void f(Metadata*)) {
4404   ALL_JAVA_THREADS(p) {
4405     p->metadata_do(f);
4406   }
4407 }
4408 
4409 class ThreadHandlesClosure : public ThreadClosure {
4410   void (*_f)(Metadata*);
4411  public:
4412   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4413   virtual void do_thread(Thread* thread) {
4414     thread->metadata_handles_do(_f);
4415   }
4416 };
4417 
4418 void Threads::metadata_handles_do(void f(Metadata*)) {
4419   // Only walk the Handles in Thread.
4420   ThreadHandlesClosure handles_closure(f);
4421   threads_do(&handles_closure);
4422 }
4423 
4424 void Threads::deoptimized_wrt_marked_nmethods() {
4425   ALL_JAVA_THREADS(p) {
4426     p->deoptimized_wrt_marked_nmethods();
4427   }
4428 }
4429 
4430 
4431 // Get count Java threads that are waiting to enter the specified monitor.
4432 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4433                                                          address monitor,
4434                                                          bool doLock) {
4435   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4436          "must grab Threads_lock or be at safepoint");
4437   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4438 
4439   int i = 0;
4440   {
4441     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4442     ALL_JAVA_THREADS(p) {
4443       if (!p->can_call_java()) continue;
4444 
4445       address pending = (address)p->current_pending_monitor();
4446       if (pending == monitor) {             // found a match
4447         if (i < count) result->append(p);   // save the first count matches
4448         i++;
4449       }
4450     }
4451   }
4452   return result;
4453 }
4454 
4455 
4456 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4457                                                       bool doLock) {
4458   assert(doLock ||
4459          Threads_lock->owned_by_self() ||
4460          SafepointSynchronize::is_at_safepoint(),
4461          "must grab Threads_lock or be at safepoint");
4462 
4463   // NULL owner means not locked so we can skip the search
4464   if (owner == NULL) return NULL;
4465 
4466   {
4467     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4468     ALL_JAVA_THREADS(p) {
4469       // first, see if owner is the address of a Java thread
4470       if (owner == (address)p) return p;
4471     }
4472   }
4473   // Cannot assert on lack of success here since this function may be
4474   // used by code that is trying to report useful problem information
4475   // like deadlock detection.
4476   if (UseHeavyMonitors) return NULL;
4477 
4478   // If we didn't find a matching Java thread and we didn't force use of
4479   // heavyweight monitors, then the owner is the stack address of the
4480   // Lock Word in the owning Java thread's stack.
4481   //
4482   JavaThread* the_owner = NULL;
4483   {
4484     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4485     ALL_JAVA_THREADS(q) {
4486       if (q->is_lock_owned(owner)) {
4487         the_owner = q;
4488         break;
4489       }
4490     }
4491   }
4492   // cannot assert on lack of success here; see above comment
4493   return the_owner;
4494 }
4495 
4496 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4497 void Threads::print_on(outputStream* st, bool print_stacks,
4498                        bool internal_format, bool print_concurrent_locks) {
4499   char buf[32];
4500   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4501 
4502   st->print_cr("Full thread dump %s (%s %s):",
4503                Abstract_VM_Version::vm_name(),
4504                Abstract_VM_Version::vm_release(),
4505                Abstract_VM_Version::vm_info_string());
4506   st->cr();
4507 
4508 #if INCLUDE_SERVICES
4509   // Dump concurrent locks
4510   ConcurrentLocksDump concurrent_locks;
4511   if (print_concurrent_locks) {
4512     concurrent_locks.dump_at_safepoint();
4513   }
4514 #endif // INCLUDE_SERVICES
4515 
4516   ALL_JAVA_THREADS(p) {
4517     ResourceMark rm;
4518     p->print_on(st);
4519     if (print_stacks) {
4520       if (internal_format) {
4521         p->trace_stack();
4522       } else {
4523         p->print_stack_on(st);
4524       }
4525     }
4526     st->cr();
4527 #if INCLUDE_SERVICES
4528     if (print_concurrent_locks) {
4529       concurrent_locks.print_locks_on(p, st);
4530     }
4531 #endif // INCLUDE_SERVICES
4532   }
4533 
4534   VMThread::vm_thread()->print_on(st);
4535   st->cr();
4536   Universe::heap()->print_gc_threads_on(st);
4537   WatcherThread* wt = WatcherThread::watcher_thread();
4538   if (wt != NULL) {
4539     wt->print_on(st);
4540     st->cr();
4541   }
4542   st->flush();
4543 }
4544 
4545 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4546                              int buflen, bool* found_current) {
4547   if (this_thread != NULL) {
4548     bool is_current = (current == this_thread);
4549     *found_current = *found_current || is_current;
4550     st->print("%s", is_current ? "=>" : "  ");
4551 
4552     st->print(PTR_FORMAT, p2i(this_thread));
4553     st->print(" ");
4554     this_thread->print_on_error(st, buf, buflen);
4555     st->cr();
4556   }
4557 }
4558 
4559 class PrintOnErrorClosure : public ThreadClosure {
4560   outputStream* _st;
4561   Thread* _current;
4562   char* _buf;
4563   int _buflen;
4564   bool* _found_current;
4565  public:
4566   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4567                       int buflen, bool* found_current) :
4568    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4569 
4570   virtual void do_thread(Thread* thread) {
4571     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4572   }
4573 };
4574 
4575 // Threads::print_on_error() is called by fatal error handler. It's possible
4576 // that VM is not at safepoint and/or current thread is inside signal handler.
4577 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4578 // memory (even in resource area), it might deadlock the error handler.
4579 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4580                              int buflen) {
4581   bool found_current = false;
4582   st->print_cr("Java Threads: ( => current thread )");
4583   ALL_JAVA_THREADS(thread) {
4584     print_on_error(thread, st, current, buf, buflen, &found_current);
4585   }
4586   st->cr();
4587 
4588   st->print_cr("Other Threads:");
4589   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4590   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4591 
4592   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4593   Universe::heap()->gc_threads_do(&print_closure);
4594 
4595   if (!found_current) {
4596     st->cr();
4597     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4598     current->print_on_error(st, buf, buflen);
4599     st->cr();
4600   }
4601   st->cr();
4602   st->print_cr("Threads with active compile tasks:");
4603   print_threads_compiling(st, buf, buflen);
4604 }
4605 
4606 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4607   ALL_JAVA_THREADS(thread) {
4608     if (thread->is_Compiler_thread()) {
4609       CompilerThread* ct = (CompilerThread*) thread;
4610       if (ct->task() != NULL) {
4611         thread->print_name_on_error(st, buf, buflen);
4612         ct->task()->print(st, NULL, true, true);
4613       }
4614     }
4615   }
4616 }
4617 
4618 
4619 // Internal SpinLock and Mutex
4620 // Based on ParkEvent
4621 
4622 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4623 //
4624 // We employ SpinLocks _only for low-contention, fixed-length
4625 // short-duration critical sections where we're concerned
4626 // about native mutex_t or HotSpot Mutex:: latency.
4627 // The mux construct provides a spin-then-block mutual exclusion
4628 // mechanism.
4629 //
4630 // Testing has shown that contention on the ListLock guarding gFreeList
4631 // is common.  If we implement ListLock as a simple SpinLock it's common
4632 // for the JVM to devolve to yielding with little progress.  This is true
4633 // despite the fact that the critical sections protected by ListLock are
4634 // extremely short.
4635 //
4636 // TODO-FIXME: ListLock should be of type SpinLock.
4637 // We should make this a 1st-class type, integrated into the lock
4638 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4639 // should have sufficient padding to avoid false-sharing and excessive
4640 // cache-coherency traffic.
4641 
4642 
4643 typedef volatile int SpinLockT;
4644 
4645 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4646   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4647     return;   // normal fast-path return
4648   }
4649 
4650   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4651   TEVENT(SpinAcquire - ctx);
4652   int ctr = 0;
4653   int Yields = 0;
4654   for (;;) {
4655     while (*adr != 0) {
4656       ++ctr;
4657       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4658         if (Yields > 5) {
4659           os::naked_short_sleep(1);
4660         } else {
4661           os::naked_yield();
4662           ++Yields;
4663         }
4664       } else {
4665         SpinPause();
4666       }
4667     }
4668     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4669   }
4670 }
4671 
4672 void Thread::SpinRelease(volatile int * adr) {
4673   assert(*adr != 0, "invariant");
4674   OrderAccess::fence();      // guarantee at least release consistency.
4675   // Roach-motel semantics.
4676   // It's safe if subsequent LDs and STs float "up" into the critical section,
4677   // but prior LDs and STs within the critical section can't be allowed
4678   // to reorder or float past the ST that releases the lock.
4679   // Loads and stores in the critical section - which appear in program
4680   // order before the store that releases the lock - must also appear
4681   // before the store that releases the lock in memory visibility order.
4682   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4683   // the ST of 0 into the lock-word which releases the lock, so fence
4684   // more than covers this on all platforms.
4685   *adr = 0;
4686 }
4687 
4688 // muxAcquire and muxRelease:
4689 //
4690 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4691 //    The LSB of the word is set IFF the lock is held.
4692 //    The remainder of the word points to the head of a singly-linked list
4693 //    of threads blocked on the lock.
4694 //
4695 // *  The current implementation of muxAcquire-muxRelease uses its own
4696 //    dedicated Thread._MuxEvent instance.  If we're interested in
4697 //    minimizing the peak number of extant ParkEvent instances then
4698 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4699 //    as certain invariants were satisfied.  Specifically, care would need
4700 //    to be taken with regards to consuming unpark() "permits".
4701 //    A safe rule of thumb is that a thread would never call muxAcquire()
4702 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4703 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4704 //    consume an unpark() permit intended for monitorenter, for instance.
4705 //    One way around this would be to widen the restricted-range semaphore
4706 //    implemented in park().  Another alternative would be to provide
4707 //    multiple instances of the PlatformEvent() for each thread.  One
4708 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4709 //
4710 // *  Usage:
4711 //    -- Only as leaf locks
4712 //    -- for short-term locking only as muxAcquire does not perform
4713 //       thread state transitions.
4714 //
4715 // Alternatives:
4716 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4717 //    but with parking or spin-then-park instead of pure spinning.
4718 // *  Use Taura-Oyama-Yonenzawa locks.
4719 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4720 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4721 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4722 //    acquiring threads use timers (ParkTimed) to detect and recover from
4723 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4724 //    boundaries by using placement-new.
4725 // *  Augment MCS with advisory back-link fields maintained with CAS().
4726 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4727 //    The validity of the backlinks must be ratified before we trust the value.
4728 //    If the backlinks are invalid the exiting thread must back-track through the
4729 //    the forward links, which are always trustworthy.
4730 // *  Add a successor indication.  The LockWord is currently encoded as
4731 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4732 //    to provide the usual futile-wakeup optimization.
4733 //    See RTStt for details.
4734 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4735 //
4736 
4737 
4738 typedef volatile intptr_t MutexT;      // Mux Lock-word
4739 enum MuxBits { LOCKBIT = 1 };
4740 
4741 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4742   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4743   if (w == 0) return;
4744   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4745     return;
4746   }
4747 
4748   TEVENT(muxAcquire - Contention);
4749   ParkEvent * const Self = Thread::current()->_MuxEvent;
4750   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4751   for (;;) {
4752     int its = (os::is_MP() ? 100 : 0) + 1;
4753 
4754     // Optional spin phase: spin-then-park strategy
4755     while (--its >= 0) {
4756       w = *Lock;
4757       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4758         return;
4759       }
4760     }
4761 
4762     Self->reset();
4763     Self->OnList = intptr_t(Lock);
4764     // The following fence() isn't _strictly necessary as the subsequent
4765     // CAS() both serializes execution and ratifies the fetched *Lock value.
4766     OrderAccess::fence();
4767     for (;;) {
4768       w = *Lock;
4769       if ((w & LOCKBIT) == 0) {
4770         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4771           Self->OnList = 0;   // hygiene - allows stronger asserts
4772           return;
4773         }
4774         continue;      // Interference -- *Lock changed -- Just retry
4775       }
4776       assert(w & LOCKBIT, "invariant");
4777       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4778       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4779     }
4780 
4781     while (Self->OnList != 0) {
4782       Self->park();
4783     }
4784   }
4785 }
4786 
4787 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4788   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4789   if (w == 0) return;
4790   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4791     return;
4792   }
4793 
4794   TEVENT(muxAcquire - Contention);
4795   ParkEvent * ReleaseAfter = NULL;
4796   if (ev == NULL) {
4797     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4798   }
4799   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4800   for (;;) {
4801     guarantee(ev->OnList == 0, "invariant");
4802     int its = (os::is_MP() ? 100 : 0) + 1;
4803 
4804     // Optional spin phase: spin-then-park strategy
4805     while (--its >= 0) {
4806       w = *Lock;
4807       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4808         if (ReleaseAfter != NULL) {
4809           ParkEvent::Release(ReleaseAfter);
4810         }
4811         return;
4812       }
4813     }
4814 
4815     ev->reset();
4816     ev->OnList = intptr_t(Lock);
4817     // The following fence() isn't _strictly necessary as the subsequent
4818     // CAS() both serializes execution and ratifies the fetched *Lock value.
4819     OrderAccess::fence();
4820     for (;;) {
4821       w = *Lock;
4822       if ((w & LOCKBIT) == 0) {
4823         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4824           ev->OnList = 0;
4825           // We call ::Release while holding the outer lock, thus
4826           // artificially lengthening the critical section.
4827           // Consider deferring the ::Release() until the subsequent unlock(),
4828           // after we've dropped the outer lock.
4829           if (ReleaseAfter != NULL) {
4830             ParkEvent::Release(ReleaseAfter);
4831           }
4832           return;
4833         }
4834         continue;      // Interference -- *Lock changed -- Just retry
4835       }
4836       assert(w & LOCKBIT, "invariant");
4837       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4838       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4839     }
4840 
4841     while (ev->OnList != 0) {
4842       ev->park();
4843     }
4844   }
4845 }
4846 
4847 // Release() must extract a successor from the list and then wake that thread.
4848 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4849 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4850 // Release() would :
4851 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4852 // (B) Extract a successor from the private list "in-hand"
4853 // (C) attempt to CAS() the residual back into *Lock over null.
4854 //     If there were any newly arrived threads and the CAS() would fail.
4855 //     In that case Release() would detach the RATs, re-merge the list in-hand
4856 //     with the RATs and repeat as needed.  Alternately, Release() might
4857 //     detach and extract a successor, but then pass the residual list to the wakee.
4858 //     The wakee would be responsible for reattaching and remerging before it
4859 //     competed for the lock.
4860 //
4861 // Both "pop" and DMR are immune from ABA corruption -- there can be
4862 // multiple concurrent pushers, but only one popper or detacher.
4863 // This implementation pops from the head of the list.  This is unfair,
4864 // but tends to provide excellent throughput as hot threads remain hot.
4865 // (We wake recently run threads first).
4866 //
4867 // All paths through muxRelease() will execute a CAS.
4868 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4869 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4870 // executed within the critical section are complete and globally visible before the
4871 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4872 void Thread::muxRelease(volatile intptr_t * Lock)  {
4873   for (;;) {
4874     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4875     assert(w & LOCKBIT, "invariant");
4876     if (w == LOCKBIT) return;
4877     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4878     assert(List != NULL, "invariant");
4879     assert(List->OnList == intptr_t(Lock), "invariant");
4880     ParkEvent * const nxt = List->ListNext;
4881     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4882 
4883     // The following CAS() releases the lock and pops the head element.
4884     // The CAS() also ratifies the previously fetched lock-word value.
4885     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4886       continue;
4887     }
4888     List->OnList = 0;
4889     OrderAccess::fence();
4890     List->unpark();
4891     return;
4892   }
4893 }
4894 
4895 
4896 void Threads::verify() {
4897   ALL_JAVA_THREADS(p) {
4898     p->verify();
4899   }
4900   VMThread* thread = VMThread::vm_thread();
4901   if (thread != NULL) thread->verify();
4902 }
4903 
4904 void Threads::print_vt_buffer_stats_on(outputStream* st) {
4905   ALL_JAVA_THREADS(p) {
4906     p->print_vt_buffer_stats_on(st);
4907   }
4908 }