1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/vmreg.inline.hpp"
  28 #include "interpreter/bytecode.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.inline.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/monitorChunk.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/vframe.hpp"
  40 #include "runtime/vframeArray.hpp"
  41 #include "runtime/vframe_hp.hpp"
  42 #include "utilities/events.hpp"
  43 #ifdef COMPILER2
  44 #include "opto/runtime.hpp"
  45 #endif
  46 
  47 int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
  48 
  49 void vframeArrayElement::free_monitors(JavaThread* jt) {
  50   if (_monitors != NULL) {
  51      MonitorChunk* chunk = _monitors;
  52      _monitors = NULL;
  53      jt->remove_monitor_chunk(chunk);
  54      delete chunk;
  55   }
  56 }
  57 
  58 void vframeArrayElement::fill_in(compiledVFrame* vf, bool realloc_failures) {
  59 
  60 // Copy the information from the compiled vframe to the
  61 // interpreter frame we will be creating to replace vf
  62 
  63   _method = vf->method();
  64   _bci    = vf->raw_bci();
  65   _reexecute = vf->should_reexecute();
  66 #ifdef ASSERT
  67   _removed_monitors = false;
  68 #endif
  69 
  70   int index;
  71 
  72   // Get the monitors off-stack
  73 
  74   GrowableArray<MonitorInfo*>* list = vf->monitors();
  75   if (list->is_empty()) {
  76     _monitors = NULL;
  77   } else {
  78 
  79     // Allocate monitor chunk
  80     _monitors = new MonitorChunk(list->length());
  81     vf->thread()->add_monitor_chunk(_monitors);
  82 
  83     // Migrate the BasicLocks from the stack to the monitor chunk
  84     for (index = 0; index < list->length(); index++) {
  85       MonitorInfo* monitor = list->at(index);
  86       assert(!monitor->owner_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
  87       BasicObjectLock* dest = _monitors->at(index);
  88       if (monitor->owner_is_scalar_replaced()) {
  89         dest->set_obj(NULL);
  90       } else {
  91         assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
  92         dest->set_obj(monitor->owner());
  93         monitor->lock()->move_to(monitor->owner(), dest->lock());
  94       }
  95     }
  96   }
  97 
  98   // Convert the vframe locals and expressions to off stack
  99   // values. Because we will not gc all oops can be converted to
 100   // intptr_t (i.e. a stack slot) and we are fine. This is
 101   // good since we are inside a HandleMark and the oops in our
 102   // collection would go away between packing them here and
 103   // unpacking them in unpack_on_stack.
 104 
 105   // First the locals go off-stack
 106 
 107   // FIXME this seems silly it creates a StackValueCollection
 108   // in order to get the size to then copy them and
 109   // convert the types to intptr_t size slots. Seems like it
 110   // could do it in place... Still uses less memory than the
 111   // old way though
 112 
 113   StackValueCollection *locs = vf->locals();
 114   _locals = new StackValueCollection(locs->size());
 115   for(index = 0; index < locs->size(); index++) {
 116     StackValue* value = locs->at(index);
 117     switch(value->type()) {
 118       case T_OBJECT:
 119         assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
 120         // preserve object type
 121         _locals->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
 122         break;
 123       case T_CONFLICT:
 124         // A dead local.  Will be initialized to null/zero.
 125         _locals->add( new StackValue());
 126         break;
 127       case T_INT:
 128         _locals->add( new StackValue(value->get_int()));
 129         break;
 130       default:
 131         ShouldNotReachHere();
 132     }
 133   }
 134 
 135   // Now the expressions off-stack
 136   // Same silliness as above
 137 
 138   StackValueCollection *exprs = vf->expressions();
 139   _expressions = new StackValueCollection(exprs->size());
 140   for(index = 0; index < exprs->size(); index++) {
 141     StackValue* value = exprs->at(index);
 142     switch(value->type()) {
 143       case T_OBJECT:
 144         assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
 145         // preserve object type
 146         _expressions->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
 147         break;
 148       case T_CONFLICT:
 149         // A dead stack element.  Will be initialized to null/zero.
 150         // This can occur when the compiler emits a state in which stack
 151         // elements are known to be dead (because of an imminent exception).
 152         _expressions->add( new StackValue());
 153         break;
 154       case T_INT:
 155         _expressions->add( new StackValue(value->get_int()));
 156         break;
 157       default:
 158         ShouldNotReachHere();
 159     }
 160   }
 161 }
 162 
 163 int unpack_counter = 0;
 164 
 165 void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
 166                                          int callee_parameters,
 167                                          int callee_locals,
 168                                          frame* caller,
 169                                          bool is_top_frame,
 170                                          bool is_bottom_frame,
 171                                          int exec_mode) {
 172   JavaThread* thread = (JavaThread*) Thread::current();
 173 
 174   bool realloc_failure_exception = thread->frames_to_pop_failed_realloc() > 0;
 175 
 176   // Look at bci and decide on bcp and continuation pc
 177   address bcp;
 178   // C++ interpreter doesn't need a pc since it will figure out what to do when it
 179   // begins execution
 180   address pc;
 181   bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
 182                              // rather than the one associated with bcp
 183   if (raw_bci() == SynchronizationEntryBCI) {
 184     // We are deoptimizing while hanging in prologue code for synchronized method
 185     bcp = method()->bcp_from(0); // first byte code
 186     pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
 187   } else if (should_reexecute()) { //reexecute this bytecode
 188     assert(is_top_frame, "reexecute allowed only for the top frame");
 189     bcp = method()->bcp_from(bci());
 190     pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
 191   } else {
 192     bcp = method()->bcp_from(bci());
 193     pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
 194     use_next_mdp = true;
 195   }
 196   assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
 197 
 198   // Monitorenter and pending exceptions:
 199   //
 200   // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
 201   // because there is no safepoint at the null pointer check (it is either handled explicitly
 202   // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
 203   // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
 204   // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
 205   // the monitorenter to place it in the proper exception range.
 206   //
 207   // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
 208   // in which case bcp should point to the monitorenter since it is within the exception's range.
 209   //
 210   // For realloc failure exception we just pop frames, skip the guarantee.
 211 
 212   assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
 213   assert(thread->deopt_compiled_method() != NULL, "compiled method should be known");
 214   guarantee(realloc_failure_exception || !(thread->deopt_compiled_method()->is_compiled_by_c2() &&
 215               *bcp == Bytecodes::_monitorenter             &&
 216               exec_mode == Deoptimization::Unpack_exception),
 217             "shouldn't get exception during monitorenter");
 218 
 219   int popframe_preserved_args_size_in_bytes = 0;
 220   int popframe_preserved_args_size_in_words = 0;
 221   if (is_top_frame) {
 222     JvmtiThreadState *state = thread->jvmti_thread_state();
 223     if (JvmtiExport::can_pop_frame() &&
 224         (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
 225       if (thread->has_pending_popframe()) {
 226         // Pop top frame after deoptimization
 227 #ifndef CC_INTERP
 228         pc = Interpreter::remove_activation_preserving_args_entry();
 229 #else
 230         // Do an uncommon trap type entry. c++ interpreter will know
 231         // to pop frame and preserve the args
 232         pc = Interpreter::deopt_entry(vtos, 0);
 233         use_next_mdp = false;
 234 #endif
 235       } else {
 236         // Reexecute invoke in top frame
 237         pc = Interpreter::deopt_entry(vtos, 0);
 238         use_next_mdp = false;
 239         popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
 240         // Note: the PopFrame-related extension of the expression stack size is done in
 241         // Deoptimization::fetch_unroll_info_helper
 242         popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
 243       }
 244     } else if (!realloc_failure_exception && JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
 245       // Force early return from top frame after deoptimization
 246 #ifndef CC_INTERP
 247       pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
 248 #endif
 249     } else {
 250       if (realloc_failure_exception && JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
 251         state->clr_earlyret_pending();
 252         state->set_earlyret_oop(NULL);
 253         state->clr_earlyret_value();
 254       }
 255       // Possibly override the previous pc computation of the top (youngest) frame
 256       switch (exec_mode) {
 257       case Deoptimization::Unpack_deopt:
 258         // use what we've got
 259         break;
 260       case Deoptimization::Unpack_exception:
 261         // exception is pending
 262         pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
 263         // [phh] We're going to end up in some handler or other, so it doesn't
 264         // matter what mdp we point to.  See exception_handler_for_exception()
 265         // in interpreterRuntime.cpp.
 266         break;
 267       case Deoptimization::Unpack_uncommon_trap:
 268       case Deoptimization::Unpack_reexecute:
 269         // redo last byte code
 270         pc  = Interpreter::deopt_entry(vtos, 0);
 271         use_next_mdp = false;
 272         break;
 273       default:
 274         ShouldNotReachHere();
 275       }
 276     }
 277   }
 278 
 279   // Setup the interpreter frame
 280 
 281   assert(method() != NULL, "method must exist");
 282   int temps = expressions()->size();
 283 
 284   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 285 
 286   Interpreter::layout_activation(method(),
 287                                  temps + callee_parameters,
 288                                  popframe_preserved_args_size_in_words,
 289                                  locks,
 290                                  caller_actual_parameters,
 291                                  callee_parameters,
 292                                  callee_locals,
 293                                  caller,
 294                                  iframe(),
 295                                  is_top_frame,
 296                                  is_bottom_frame);
 297 
 298   // Update the pc in the frame object and overwrite the temporary pc
 299   // we placed in the skeletal frame now that we finally know the
 300   // exact interpreter address we should use.
 301 
 302   _frame.patch_pc(thread, pc);
 303 
 304   assert (!method()->is_synchronized() || locks > 0 || _removed_monitors || raw_bci() == SynchronizationEntryBCI, "synchronized methods must have monitors");
 305 
 306   BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
 307   for (int index = 0; index < locks; index++) {
 308     top = iframe()->previous_monitor_in_interpreter_frame(top);
 309     BasicObjectLock* src = _monitors->at(index);
 310     top->set_obj(src->obj());
 311     src->lock()->move_to(src->obj(), top->lock());
 312   }
 313   if (ProfileInterpreter) {
 314     iframe()->interpreter_frame_set_mdp(0); // clear out the mdp.
 315   }
 316   iframe()->interpreter_frame_set_bcp(bcp);
 317   if (ProfileInterpreter) {
 318     MethodData* mdo = method()->method_data();
 319     if (mdo != NULL) {
 320       int bci = iframe()->interpreter_frame_bci();
 321       if (use_next_mdp) ++bci;
 322       address mdp = mdo->bci_to_dp(bci);
 323       iframe()->interpreter_frame_set_mdp(mdp);
 324     }
 325   }
 326 
 327   if (PrintDeoptimizationDetails) {
 328     tty->print_cr("Expressions size: %d", expressions()->size());
 329   }
 330 
 331   // Unpack expression stack
 332   // If this is an intermediate frame (i.e. not top frame) then this
 333   // only unpacks the part of the expression stack not used by callee
 334   // as parameters. The callee parameters are unpacked as part of the
 335   // callee locals.
 336   int i;
 337   for(i = 0; i < expressions()->size(); i++) {
 338     StackValue *value = expressions()->at(i);
 339     intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
 340     switch(value->type()) {
 341       case T_INT:
 342         *addr = value->get_int();
 343 #ifndef PRODUCT
 344         if (PrintDeoptimizationDetails) {
 345           tty->print_cr("Reconstructed expression %d (INT): %d", i, (int)(*addr));
 346         }
 347 #endif
 348         break;
 349       case T_OBJECT:
 350         *addr = value->get_int(T_OBJECT);
 351 #ifndef PRODUCT
 352         if (PrintDeoptimizationDetails) {
 353           tty->print("Reconstructed expression %d (OBJECT): ", i);
 354           oop o = (oop)(address)(*addr);
 355           if (o == NULL) {
 356             tty->print_cr("NULL");
 357           } else {
 358             ResourceMark rm;
 359             tty->print_raw_cr(o->klass()->name()->as_C_string());
 360           }
 361         }
 362 #endif
 363         break;
 364       case T_CONFLICT:
 365         // A dead stack slot.  Initialize to null in case it is an oop.
 366         *addr = NULL_WORD;
 367         break;
 368       default:
 369         ShouldNotReachHere();
 370     }
 371   }
 372 
 373 
 374   // Unpack the locals
 375   for(i = 0; i < locals()->size(); i++) {
 376     StackValue *value = locals()->at(i);
 377     intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
 378     switch(value->type()) {
 379       case T_INT:
 380         *addr = value->get_int();
 381 #ifndef PRODUCT
 382         if (PrintDeoptimizationDetails) {
 383           tty->print_cr("Reconstructed local %d (INT): %d", i, (int)(*addr));
 384         }
 385 #endif
 386         break;
 387       case T_OBJECT:
 388         *addr = value->get_int(T_OBJECT);
 389 #ifndef PRODUCT
 390         if (PrintDeoptimizationDetails) {
 391           tty->print("Reconstructed local %d (OBJECT): ", i);
 392           oop o = (oop)(address)(*addr);
 393           if (o == NULL) {
 394             tty->print_cr("NULL");
 395           } else {
 396             ResourceMark rm;
 397             tty->print_raw_cr(o->klass()->name()->as_C_string());
 398           }
 399         }
 400 #endif
 401         break;
 402       case T_CONFLICT:
 403         // A dead location. If it is an oop then we need a NULL to prevent GC from following it
 404         *addr = NULL_WORD;
 405         break;
 406       default:
 407         ShouldNotReachHere();
 408     }
 409   }
 410 
 411   if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 412     // An interpreted frame was popped but it returns to a deoptimized
 413     // frame. The incoming arguments to the interpreted activation
 414     // were preserved in thread-local storage by the
 415     // remove_activation_preserving_args_entry in the interpreter; now
 416     // we put them back into the just-unpacked interpreter frame.
 417     // Note that this assumes that the locals arena grows toward lower
 418     // addresses.
 419     if (popframe_preserved_args_size_in_words != 0) {
 420       void* saved_args = thread->popframe_preserved_args();
 421       assert(saved_args != NULL, "must have been saved by interpreter");
 422 #ifdef ASSERT
 423       assert(popframe_preserved_args_size_in_words <=
 424              iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
 425              "expression stack size should have been extended");
 426 #endif // ASSERT
 427       int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
 428       intptr_t* base;
 429       if (frame::interpreter_frame_expression_stack_direction() < 0) {
 430         base = iframe()->interpreter_frame_expression_stack_at(top_element);
 431       } else {
 432         base = iframe()->interpreter_frame_expression_stack();
 433       }
 434       Copy::conjoint_jbytes(saved_args,
 435                             base,
 436                             popframe_preserved_args_size_in_bytes);
 437       thread->popframe_free_preserved_args();
 438     }
 439   }
 440 
 441 #ifndef PRODUCT
 442   if (PrintDeoptimizationDetails) {
 443     ttyLocker ttyl;
 444     tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
 445     iframe()->print_on(tty);
 446     RegisterMap map(thread);
 447     vframe* f = vframe::new_vframe(iframe(), &map, thread);
 448     f->print();
 449 
 450     tty->print_cr("locals size     %d", locals()->size());
 451     tty->print_cr("expression size %d", expressions()->size());
 452 
 453     method()->print_value();
 454     tty->cr();
 455     // method()->print_codes();
 456   } else if (TraceDeoptimization) {
 457     tty->print("     ");
 458     method()->print_value();
 459     Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
 460     int bci = method()->bci_from(bcp);
 461     tty->print(" - %s", Bytecodes::name(code));
 462     tty->print(" @ bci %d ", bci);
 463     tty->print_cr("sp = " PTR_FORMAT, p2i(iframe()->sp()));
 464   }
 465 #endif // PRODUCT
 466 
 467   // The expression stack and locals are in the resource area don't leave
 468   // a dangling pointer in the vframeArray we leave around for debug
 469   // purposes
 470 
 471   _locals = _expressions = NULL;
 472 
 473 }
 474 
 475 int vframeArrayElement::on_stack_size(int callee_parameters,
 476                                       int callee_locals,
 477                                       bool is_top_frame,
 478                                       int popframe_extra_stack_expression_els) const {
 479   assert(method()->max_locals() == locals()->size(), "just checking");
 480   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 481   int temps = expressions()->size();
 482   return Interpreter::size_activation(method()->max_stack(),
 483                                       temps + callee_parameters,
 484                                       popframe_extra_stack_expression_els,
 485                                       locks,
 486                                       callee_parameters,
 487                                       callee_locals,
 488                                       is_top_frame);
 489 }
 490 
 491 
 492 
 493 vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
 494                                    RegisterMap *reg_map, frame sender, frame caller, frame self,
 495                                    bool realloc_failures) {
 496 
 497   // Allocate the vframeArray
 498   vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
 499                                                      sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
 500                                                      mtCompiler);
 501   result->_frames = chunk->length();
 502   result->_owner_thread = thread;
 503   result->_sender = sender;
 504   result->_caller = caller;
 505   result->_original = self;
 506   result->set_unroll_block(NULL); // initialize it
 507   result->fill_in(thread, frame_size, chunk, reg_map, realloc_failures);
 508   return result;
 509 }
 510 
 511 void vframeArray::fill_in(JavaThread* thread,
 512                           int frame_size,
 513                           GrowableArray<compiledVFrame*>* chunk,
 514                           const RegisterMap *reg_map,
 515                           bool realloc_failures) {
 516   // Set owner first, it is used when adding monitor chunks
 517 
 518   _frame_size = frame_size;
 519   for(int i = 0; i < chunk->length(); i++) {
 520     element(i)->fill_in(chunk->at(i), realloc_failures);
 521   }
 522 
 523   // Copy registers for callee-saved registers
 524   if (reg_map != NULL) {
 525     for(int i = 0; i < RegisterMap::reg_count; i++) {
 526 #ifdef AMD64
 527       // The register map has one entry for every int (32-bit value), so
 528       // 64-bit physical registers have two entries in the map, one for
 529       // each half.  Ignore the high halves of 64-bit registers, just like
 530       // frame::oopmapreg_to_location does.
 531       //
 532       // [phh] FIXME: this is a temporary hack!  This code *should* work
 533       // correctly w/o this hack, possibly by changing RegisterMap::pd_location
 534       // in frame_amd64.cpp and the values of the phantom high half registers
 535       // in amd64.ad.
 536       //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
 537         intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
 538         _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 539         //      } else {
 540         //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
 541         //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 542         //      }
 543 #else
 544       jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
 545       _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 546 #endif
 547       if (src == NULL) {
 548         set_location_valid(i, false);
 549       } else {
 550         set_location_valid(i, true);
 551         jint* dst = (jint*) register_location(i);
 552         *dst = *src;
 553       }
 554     }
 555   }
 556 }
 557 
 558 void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) {
 559   // stack picture
 560   //   unpack_frame
 561   //   [new interpreter frames ] (frames are skeletal but walkable)
 562   //   caller_frame
 563   //
 564   //  This routine fills in the missing data for the skeletal interpreter frames
 565   //  in the above picture.
 566 
 567   // Find the skeletal interpreter frames to unpack into
 568   JavaThread* THREAD = JavaThread::current();
 569   RegisterMap map(THREAD, false);
 570   // Get the youngest frame we will unpack (last to be unpacked)
 571   frame me = unpack_frame.sender(&map);
 572   int index;
 573   for (index = 0; index < frames(); index++ ) {
 574     *element(index)->iframe() = me;
 575     // Get the caller frame (possibly skeletal)
 576     me = me.sender(&map);
 577   }
 578 
 579   // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
 580   // Unpack the frames from the oldest (frames() -1) to the youngest (0)
 581   frame* caller_frame = &me;
 582   for (index = frames() - 1; index >= 0 ; index--) {
 583     vframeArrayElement* elem = element(index);  // caller
 584     int callee_parameters, callee_locals;
 585     if (index == 0) {
 586       callee_parameters = callee_locals = 0;
 587     } else {
 588       methodHandle caller = elem->method();
 589       methodHandle callee = element(index - 1)->method();
 590       Bytecode_invoke inv(caller, elem->bci());
 591       // invokedynamic instructions don't have a class but obviously don't have a MemberName appendix.
 592       // NOTE:  Use machinery here that avoids resolving of any kind.
 593       const bool has_member_arg =
 594           !inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name());
 595       callee_parameters = callee->size_of_parameters() + (has_member_arg ? 1 : 0);
 596       callee_locals     = callee->max_locals();
 597     }
 598     elem->unpack_on_stack(caller_actual_parameters,
 599                           callee_parameters,
 600                           callee_locals,
 601                           caller_frame,
 602                           index == 0,
 603                           index == frames() - 1,
 604                           exec_mode);
 605     if (index == frames() - 1) {
 606       Deoptimization::unwind_callee_save_values(elem->iframe(), this);
 607     }
 608     caller_frame = elem->iframe();
 609     caller_actual_parameters = callee_parameters;
 610   }
 611   deallocate_monitor_chunks();
 612 }
 613 
 614 void vframeArray::deallocate_monitor_chunks() {
 615   JavaThread* jt = JavaThread::current();
 616   for (int index = 0; index < frames(); index++ ) {
 617      element(index)->free_monitors(jt);
 618   }
 619 }
 620 
 621 #ifndef PRODUCT
 622 
 623 bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
 624   if (owner_thread() != thread) return false;
 625   int index = 0;
 626 #if 0 // FIXME can't do this comparison
 627 
 628   // Compare only within vframe array.
 629   for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
 630     if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
 631     index++;
 632   }
 633   if (index != chunk->length()) return false;
 634 #endif
 635 
 636   return true;
 637 }
 638 
 639 #endif
 640 
 641 address vframeArray::register_location(int i) const {
 642   assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
 643   return (address) & _callee_registers[i];
 644 }
 645 
 646 
 647 #ifndef PRODUCT
 648 
 649 // Printing
 650 
 651 // Note: we cannot have print_on as const, as we allocate inside the method
 652 void vframeArray::print_on_2(outputStream* st)  {
 653   st->print_cr(" - sp: " INTPTR_FORMAT, p2i(sp()));
 654   st->print(" - thread: ");
 655   Thread::current()->print();
 656   st->print_cr(" - frame size: %d", frame_size());
 657   for (int index = 0; index < frames() ; index++ ) {
 658     element(index)->print(st);
 659   }
 660 }
 661 
 662 void vframeArrayElement::print(outputStream* st) {
 663   st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, p2i(iframe()->sp()));
 664 }
 665 
 666 void vframeArray::print_value_on(outputStream* st) const {
 667   st->print_cr("vframeArray [%d] ", frames());
 668 }
 669 
 670 
 671 #endif