1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_IR.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_LinearScan.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "code/vmreg.inline.hpp"
  35 #include "utilities/bitMap.inline.hpp"
  36 
  37 #ifndef PRODUCT
  38 
  39   static LinearScanStatistic _stat_before_alloc;
  40   static LinearScanStatistic _stat_after_asign;
  41   static LinearScanStatistic _stat_final;
  42 
  43   static LinearScanTimers _total_timer;
  44 
  45   // helper macro for short definition of timer
  46   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  47 
  48   // helper macro for short definition of trace-output inside code
  49   #define TRACE_LINEAR_SCAN(level, code)       \
  50     if (TraceLinearScanLevel >= level) {       \
  51       code;                                    \
  52     }
  53 
  54 #else
  55 
  56   #define TIME_LINEAR_SCAN(timer_name)
  57   #define TRACE_LINEAR_SCAN(level, code)
  58 
  59 #endif
  60 
  61 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  62 #ifdef _LP64
  63 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
  64 #else
  65 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
  66 #endif
  67 
  68 
  69 // Implementation of LinearScan
  70 
  71 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  72  : _compilation(ir->compilation())
  73  , _ir(ir)
  74  , _gen(gen)
  75  , _frame_map(frame_map)
  76  , _num_virtual_regs(gen->max_virtual_register_number())
  77  , _has_fpu_registers(false)
  78  , _num_calls(-1)
  79  , _max_spills(0)
  80  , _unused_spill_slot(-1)
  81  , _intervals(0)   // initialized later with correct length
  82  , _new_intervals_from_allocation(new IntervalList())
  83  , _sorted_intervals(NULL)
  84  , _needs_full_resort(false)
  85  , _lir_ops(0)     // initialized later with correct length
  86  , _block_of_op(0) // initialized later with correct length
  87  , _has_info(0)
  88  , _has_call(0)
  89  , _scope_value_cache(0) // initialized later with correct length
  90  , _interval_in_loop(0, 0) // initialized later with correct length
  91  , _cached_blocks(*ir->linear_scan_order())
  92 #ifdef X86
  93  , _fpu_stack_allocator(NULL)
  94 #endif
  95 {
  96   assert(this->ir() != NULL,          "check if valid");
  97   assert(this->compilation() != NULL, "check if valid");
  98   assert(this->gen() != NULL,         "check if valid");
  99   assert(this->frame_map() != NULL,   "check if valid");
 100 }
 101 
 102 
 103 // ********** functions for converting LIR-Operands to register numbers
 104 //
 105 // Emulate a flat register file comprising physical integer registers,
 106 // physical floating-point registers and virtual registers, in that order.
 107 // Virtual registers already have appropriate numbers, since V0 is
 108 // the number of physical registers.
 109 // Returns -1 for hi word if opr is a single word operand.
 110 //
 111 // Note: the inverse operation (calculating an operand for register numbers)
 112 //       is done in calc_operand_for_interval()
 113 
 114 int LinearScan::reg_num(LIR_Opr opr) {
 115   assert(opr->is_register(), "should not call this otherwise");
 116 
 117   if (opr->is_virtual_register()) {
 118     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 119     return opr->vreg_number();
 120   } else if (opr->is_single_cpu()) {
 121     return opr->cpu_regnr();
 122   } else if (opr->is_double_cpu()) {
 123     return opr->cpu_regnrLo();
 124 #ifdef X86
 125   } else if (opr->is_single_xmm()) {
 126     return opr->fpu_regnr() + pd_first_xmm_reg;
 127   } else if (opr->is_double_xmm()) {
 128     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 129 #endif
 130   } else if (opr->is_single_fpu()) {
 131     return opr->fpu_regnr() + pd_first_fpu_reg;
 132   } else if (opr->is_double_fpu()) {
 133     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 134   } else {
 135     ShouldNotReachHere();
 136     return -1;
 137   }
 138 }
 139 
 140 int LinearScan::reg_numHi(LIR_Opr opr) {
 141   assert(opr->is_register(), "should not call this otherwise");
 142 
 143   if (opr->is_virtual_register()) {
 144     return -1;
 145   } else if (opr->is_single_cpu()) {
 146     return -1;
 147   } else if (opr->is_double_cpu()) {
 148     return opr->cpu_regnrHi();
 149 #ifdef X86
 150   } else if (opr->is_single_xmm()) {
 151     return -1;
 152   } else if (opr->is_double_xmm()) {
 153     return -1;
 154 #endif
 155   } else if (opr->is_single_fpu()) {
 156     return -1;
 157   } else if (opr->is_double_fpu()) {
 158     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 159   } else {
 160     ShouldNotReachHere();
 161     return -1;
 162   }
 163 }
 164 
 165 
 166 // ********** functions for classification of intervals
 167 
 168 bool LinearScan::is_precolored_interval(const Interval* i) {
 169   return i->reg_num() < LinearScan::nof_regs;
 170 }
 171 
 172 bool LinearScan::is_virtual_interval(const Interval* i) {
 173   return i->reg_num() >= LIR_OprDesc::vreg_base;
 174 }
 175 
 176 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 177   return i->reg_num() < LinearScan::nof_cpu_regs;
 178 }
 179 
 180 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 181 #if defined(__SOFTFP__) || defined(E500V2)
 182   return i->reg_num() >= LIR_OprDesc::vreg_base;
 183 #else
 184   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 185 #endif // __SOFTFP__ or E500V2
 186 }
 187 
 188 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 189   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 190 }
 191 
 192 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 193 #if defined(__SOFTFP__) || defined(E500V2)
 194   return false;
 195 #else
 196   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 197 #endif // __SOFTFP__ or E500V2
 198 }
 199 
 200 bool LinearScan::is_in_fpu_register(const Interval* i) {
 201   // fixed intervals not needed for FPU stack allocation
 202   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 203 }
 204 
 205 bool LinearScan::is_oop_interval(const Interval* i) {
 206   // fixed intervals never contain oops
 207   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 208 }
 209 
 210 
 211 // ********** General helper functions
 212 
 213 // compute next unused stack index that can be used for spilling
 214 int LinearScan::allocate_spill_slot(bool double_word) {
 215   int spill_slot;
 216   if (double_word) {
 217     if ((_max_spills & 1) == 1) {
 218       // alignment of double-word values
 219       // the hole because of the alignment is filled with the next single-word value
 220       assert(_unused_spill_slot == -1, "wasting a spill slot");
 221       _unused_spill_slot = _max_spills;
 222       _max_spills++;
 223     }
 224     spill_slot = _max_spills;
 225     _max_spills += 2;
 226 
 227   } else if (_unused_spill_slot != -1) {
 228     // re-use hole that was the result of a previous double-word alignment
 229     spill_slot = _unused_spill_slot;
 230     _unused_spill_slot = -1;
 231 
 232   } else {
 233     spill_slot = _max_spills;
 234     _max_spills++;
 235   }
 236 
 237   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 238 
 239   // the class OopMapValue uses only 11 bits for storing the name of the
 240   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 241   // that is not reported in product builds. Prevent this by checking the
 242   // spill slot here (altough this value and the later used location name
 243   // are slightly different)
 244   if (result > 2000) {
 245     bailout("too many stack slots used");
 246   }
 247 
 248   return result;
 249 }
 250 
 251 void LinearScan::assign_spill_slot(Interval* it) {
 252   // assign the canonical spill slot of the parent (if a part of the interval
 253   // is already spilled) or allocate a new spill slot
 254   if (it->canonical_spill_slot() >= 0) {
 255     it->assign_reg(it->canonical_spill_slot());
 256   } else {
 257     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 258     it->set_canonical_spill_slot(spill);
 259     it->assign_reg(spill);
 260   }
 261 }
 262 
 263 void LinearScan::propagate_spill_slots() {
 264   if (!frame_map()->finalize_frame(max_spills())) {
 265     bailout("frame too large");
 266   }
 267 }
 268 
 269 // create a new interval with a predefined reg_num
 270 // (only used for parent intervals that are created during the building phase)
 271 Interval* LinearScan::create_interval(int reg_num) {
 272   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 273 
 274   Interval* interval = new Interval(reg_num);
 275   _intervals.at_put(reg_num, interval);
 276 
 277   // assign register number for precolored intervals
 278   if (reg_num < LIR_OprDesc::vreg_base) {
 279     interval->assign_reg(reg_num);
 280   }
 281   return interval;
 282 }
 283 
 284 // assign a new reg_num to the interval and append it to the list of intervals
 285 // (only used for child intervals that are created during register allocation)
 286 void LinearScan::append_interval(Interval* it) {
 287   it->set_reg_num(_intervals.length());
 288   _intervals.append(it);
 289   _new_intervals_from_allocation->append(it);
 290 }
 291 
 292 // copy the vreg-flags if an interval is split
 293 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 294   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 295     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 296   }
 297   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 298     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 299   }
 300 
 301   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 302   //       intervals (only the very beginning of the interval must be in memory)
 303 }
 304 
 305 
 306 // ********** spill move optimization
 307 // eliminate moves from register to stack if stack slot is known to be correct
 308 
 309 // called during building of intervals
 310 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 311   assert(interval->is_split_parent(), "can only be called for split parents");
 312 
 313   switch (interval->spill_state()) {
 314     case noDefinitionFound:
 315       assert(interval->spill_definition_pos() == -1, "must no be set before");
 316       interval->set_spill_definition_pos(def_pos);
 317       interval->set_spill_state(oneDefinitionFound);
 318       break;
 319 
 320     case oneDefinitionFound:
 321       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 322       if (def_pos < interval->spill_definition_pos() - 2) {
 323         // second definition found, so no spill optimization possible for this interval
 324         interval->set_spill_state(noOptimization);
 325       } else {
 326         // two consecutive definitions (because of two-operand LIR form)
 327         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 328       }
 329       break;
 330 
 331     case noOptimization:
 332       // nothing to do
 333       break;
 334 
 335     default:
 336       assert(false, "other states not allowed at this time");
 337   }
 338 }
 339 
 340 // called during register allocation
 341 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 342   switch (interval->spill_state()) {
 343     case oneDefinitionFound: {
 344       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 345       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 346 
 347       if (def_loop_depth < spill_loop_depth) {
 348         // the loop depth of the spilling position is higher then the loop depth
 349         // at the definition of the interval -> move write to memory out of loop
 350         // by storing at definitin of the interval
 351         interval->set_spill_state(storeAtDefinition);
 352       } else {
 353         // the interval is currently spilled only once, so for now there is no
 354         // reason to store the interval at the definition
 355         interval->set_spill_state(oneMoveInserted);
 356       }
 357       break;
 358     }
 359 
 360     case oneMoveInserted: {
 361       // the interval is spilled more then once, so it is better to store it to
 362       // memory at the definition
 363       interval->set_spill_state(storeAtDefinition);
 364       break;
 365     }
 366 
 367     case storeAtDefinition:
 368     case startInMemory:
 369     case noOptimization:
 370     case noDefinitionFound:
 371       // nothing to do
 372       break;
 373 
 374     default:
 375       assert(false, "other states not allowed at this time");
 376   }
 377 }
 378 
 379 
 380 bool LinearScan::must_store_at_definition(const Interval* i) {
 381   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 382 }
 383 
 384 // called once before asignment of register numbers
 385 void LinearScan::eliminate_spill_moves() {
 386   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 387   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 388 
 389   // collect all intervals that must be stored after their definion.
 390   // the list is sorted by Interval::spill_definition_pos
 391   Interval* interval;
 392   Interval* temp_list;
 393   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 394 
 395 #ifdef ASSERT
 396   Interval* prev = NULL;
 397   Interval* temp = interval;
 398   while (temp != Interval::end()) {
 399     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 400     if (prev != NULL) {
 401       assert(temp->from() >= prev->from(), "intervals not sorted");
 402       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 403     }
 404 
 405     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 406     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 407     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 408 
 409     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 410 
 411     temp = temp->next();
 412   }
 413 #endif
 414 
 415   LIR_InsertionBuffer insertion_buffer;
 416   int num_blocks = block_count();
 417   for (int i = 0; i < num_blocks; i++) {
 418     BlockBegin* block = block_at(i);
 419     LIR_OpList* instructions = block->lir()->instructions_list();
 420     int         num_inst = instructions->length();
 421     bool        has_new = false;
 422 
 423     // iterate all instructions of the block. skip the first because it is always a label
 424     for (int j = 1; j < num_inst; j++) {
 425       LIR_Op* op = instructions->at(j);
 426       int op_id = op->id();
 427 
 428       if (op_id == -1) {
 429         // remove move from register to stack if the stack slot is guaranteed to be correct.
 430         // only moves that have been inserted by LinearScan can be removed.
 431         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 432         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 433         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 434 
 435         LIR_Op1* op1 = (LIR_Op1*)op;
 436         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 437 
 438         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 439           // move target is a stack slot that is always correct, so eliminate instruction
 440           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 441           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 442         }
 443 
 444       } else {
 445         // insert move from register to stack just after the beginning of the interval
 446         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 447         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 448 
 449         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 450           if (!has_new) {
 451             // prepare insertion buffer (appended when all instructions of the block are processed)
 452             insertion_buffer.init(block->lir());
 453             has_new = true;
 454           }
 455 
 456           LIR_Opr from_opr = operand_for_interval(interval);
 457           LIR_Opr to_opr = canonical_spill_opr(interval);
 458           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 459           assert(to_opr->is_stack(), "to operand must be a stack slot");
 460 
 461           insertion_buffer.move(j, from_opr, to_opr);
 462           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 463 
 464           interval = interval->next();
 465         }
 466       }
 467     } // end of instruction iteration
 468 
 469     if (has_new) {
 470       block->lir()->append(&insertion_buffer);
 471     }
 472   } // end of block iteration
 473 
 474   assert(interval == Interval::end(), "missed an interval");
 475 }
 476 
 477 
 478 // ********** Phase 1: number all instructions in all blocks
 479 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 480 
 481 void LinearScan::number_instructions() {
 482   {
 483     // dummy-timer to measure the cost of the timer itself
 484     // (this time is then subtracted from all other timers to get the real value)
 485     TIME_LINEAR_SCAN(timer_do_nothing);
 486   }
 487   TIME_LINEAR_SCAN(timer_number_instructions);
 488 
 489   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 490   int num_blocks = block_count();
 491   int num_instructions = 0;
 492   int i;
 493   for (i = 0; i < num_blocks; i++) {
 494     num_instructions += block_at(i)->lir()->instructions_list()->length();
 495   }
 496 
 497   // initialize with correct length
 498   _lir_ops = LIR_OpArray(num_instructions);
 499   _block_of_op = BlockBeginArray(num_instructions);
 500 
 501   int op_id = 0;
 502   int idx = 0;
 503 
 504   for (i = 0; i < num_blocks; i++) {
 505     BlockBegin* block = block_at(i);
 506     block->set_first_lir_instruction_id(op_id);
 507     LIR_OpList* instructions = block->lir()->instructions_list();
 508 
 509     int num_inst = instructions->length();
 510     for (int j = 0; j < num_inst; j++) {
 511       LIR_Op* op = instructions->at(j);
 512       op->set_id(op_id);
 513 
 514       _lir_ops.at_put(idx, op);
 515       _block_of_op.at_put(idx, block);
 516       assert(lir_op_with_id(op_id) == op, "must match");
 517 
 518       idx++;
 519       op_id += 2; // numbering of lir_ops by two
 520     }
 521     block->set_last_lir_instruction_id(op_id - 2);
 522   }
 523   assert(idx == num_instructions, "must match");
 524   assert(idx * 2 == op_id, "must match");
 525 
 526   _has_call = BitMap(num_instructions); _has_call.clear();
 527   _has_info = BitMap(num_instructions); _has_info.clear();
 528 }
 529 
 530 
 531 // ********** Phase 2: compute local live sets separately for each block
 532 // (sets live_gen and live_kill for each block)
 533 
 534 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 535   LIR_Opr opr = value->operand();
 536   Constant* con = value->as_Constant();
 537 
 538   // check some asumptions about debug information
 539   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 540   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 541   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 542 
 543   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 544     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 545     int reg = opr->vreg_number();
 546     if (!live_kill.at(reg)) {
 547       live_gen.set_bit(reg);
 548       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 549     }
 550   }
 551 }
 552 
 553 
 554 void LinearScan::compute_local_live_sets() {
 555   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 556 
 557   int  num_blocks = block_count();
 558   int  live_size = live_set_size();
 559   bool local_has_fpu_registers = false;
 560   int  local_num_calls = 0;
 561   LIR_OpVisitState visitor;
 562 
 563   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 564   local_interval_in_loop.clear();
 565 
 566   // iterate all blocks
 567   for (int i = 0; i < num_blocks; i++) {
 568     BlockBegin* block = block_at(i);
 569 
 570     BitMap live_gen(live_size);  live_gen.clear();
 571     BitMap live_kill(live_size); live_kill.clear();
 572 
 573     if (block->is_set(BlockBegin::exception_entry_flag)) {
 574       // Phi functions at the begin of an exception handler are
 575       // implicitly defined (= killed) at the beginning of the block.
 576       for_each_phi_fun(block, phi,
 577         live_kill.set_bit(phi->operand()->vreg_number())
 578       );
 579     }
 580 
 581     LIR_OpList* instructions = block->lir()->instructions_list();
 582     int num_inst = instructions->length();
 583 
 584     // iterate all instructions of the block. skip the first because it is always a label
 585     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 586     for (int j = 1; j < num_inst; j++) {
 587       LIR_Op* op = instructions->at(j);
 588 
 589       // visit operation to collect all operands
 590       visitor.visit(op);
 591 
 592       if (visitor.has_call()) {
 593         _has_call.set_bit(op->id() >> 1);
 594         local_num_calls++;
 595       }
 596       if (visitor.info_count() > 0) {
 597         _has_info.set_bit(op->id() >> 1);
 598       }
 599 
 600       // iterate input operands of instruction
 601       int k, n, reg;
 602       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 603       for (k = 0; k < n; k++) {
 604         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 605         assert(opr->is_register(), "visitor should only return register operands");
 606 
 607         if (opr->is_virtual_register()) {
 608           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 609           reg = opr->vreg_number();
 610           if (!live_kill.at(reg)) {
 611             live_gen.set_bit(reg);
 612             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 613           }
 614           if (block->loop_index() >= 0) {
 615             local_interval_in_loop.set_bit(reg, block->loop_index());
 616           }
 617           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 618         }
 619 
 620 #ifdef ASSERT
 621         // fixed intervals are never live at block boundaries, so
 622         // they need not be processed in live sets.
 623         // this is checked by these assertions to be sure about it.
 624         // the entry block may have incoming values in registers, which is ok.
 625         if (!opr->is_virtual_register() && block != ir()->start()) {
 626           reg = reg_num(opr);
 627           if (is_processed_reg_num(reg)) {
 628             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 629           }
 630           reg = reg_numHi(opr);
 631           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 632             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 633           }
 634         }
 635 #endif
 636       }
 637 
 638       // Add uses of live locals from interpreter's point of view for proper debug information generation
 639       n = visitor.info_count();
 640       for (k = 0; k < n; k++) {
 641         CodeEmitInfo* info = visitor.info_at(k);
 642         ValueStack* stack = info->stack();
 643         for_each_state_value(stack, value,
 644           set_live_gen_kill(value, op, live_gen, live_kill)
 645         );
 646       }
 647 
 648       // iterate temp operands of instruction
 649       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 650       for (k = 0; k < n; k++) {
 651         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 652         assert(opr->is_register(), "visitor should only return register operands");
 653 
 654         if (opr->is_virtual_register()) {
 655           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 656           reg = opr->vreg_number();
 657           live_kill.set_bit(reg);
 658           if (block->loop_index() >= 0) {
 659             local_interval_in_loop.set_bit(reg, block->loop_index());
 660           }
 661           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 662         }
 663 
 664 #ifdef ASSERT
 665         // fixed intervals are never live at block boundaries, so
 666         // they need not be processed in live sets
 667         // process them only in debug mode so that this can be checked
 668         if (!opr->is_virtual_register()) {
 669           reg = reg_num(opr);
 670           if (is_processed_reg_num(reg)) {
 671             live_kill.set_bit(reg_num(opr));
 672           }
 673           reg = reg_numHi(opr);
 674           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 675             live_kill.set_bit(reg);
 676           }
 677         }
 678 #endif
 679       }
 680 
 681       // iterate output operands of instruction
 682       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 683       for (k = 0; k < n; k++) {
 684         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 685         assert(opr->is_register(), "visitor should only return register operands");
 686 
 687         if (opr->is_virtual_register()) {
 688           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 689           reg = opr->vreg_number();
 690           live_kill.set_bit(reg);
 691           if (block->loop_index() >= 0) {
 692             local_interval_in_loop.set_bit(reg, block->loop_index());
 693           }
 694           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 695         }
 696 
 697 #ifdef ASSERT
 698         // fixed intervals are never live at block boundaries, so
 699         // they need not be processed in live sets
 700         // process them only in debug mode so that this can be checked
 701         if (!opr->is_virtual_register()) {
 702           reg = reg_num(opr);
 703           if (is_processed_reg_num(reg)) {
 704             live_kill.set_bit(reg_num(opr));
 705           }
 706           reg = reg_numHi(opr);
 707           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 708             live_kill.set_bit(reg);
 709           }
 710         }
 711 #endif
 712       }
 713     } // end of instruction iteration
 714 
 715     block->set_live_gen (live_gen);
 716     block->set_live_kill(live_kill);
 717     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
 718     block->set_live_out (BitMap(live_size)); block->live_out().clear();
 719 
 720     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 721     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 722   } // end of block iteration
 723 
 724   // propagate local calculated information into LinearScan object
 725   _has_fpu_registers = local_has_fpu_registers;
 726   compilation()->set_has_fpu_code(local_has_fpu_registers);
 727 
 728   _num_calls = local_num_calls;
 729   _interval_in_loop = local_interval_in_loop;
 730 }
 731 
 732 
 733 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 734 // (sets live_in and live_out for each block)
 735 
 736 void LinearScan::compute_global_live_sets() {
 737   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 738 
 739   int  num_blocks = block_count();
 740   bool change_occurred;
 741   bool change_occurred_in_block;
 742   int  iteration_count = 0;
 743   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
 744 
 745   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 746   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 747   // Exception handlers must be processed because not all live values are
 748   // present in the state array, e.g. because of global value numbering
 749   do {
 750     change_occurred = false;
 751 
 752     // iterate all blocks in reverse order
 753     for (int i = num_blocks - 1; i >= 0; i--) {
 754       BlockBegin* block = block_at(i);
 755 
 756       change_occurred_in_block = false;
 757 
 758       // live_out(block) is the union of live_in(sux), for successors sux of block
 759       int n = block->number_of_sux();
 760       int e = block->number_of_exception_handlers();
 761       if (n + e > 0) {
 762         // block has successors
 763         if (n > 0) {
 764           live_out.set_from(block->sux_at(0)->live_in());
 765           for (int j = 1; j < n; j++) {
 766             live_out.set_union(block->sux_at(j)->live_in());
 767           }
 768         } else {
 769           live_out.clear();
 770         }
 771         for (int j = 0; j < e; j++) {
 772           live_out.set_union(block->exception_handler_at(j)->live_in());
 773         }
 774 
 775         if (!block->live_out().is_same(live_out)) {
 776           // A change occurred.  Swap the old and new live out sets to avoid copying.
 777           BitMap temp = block->live_out();
 778           block->set_live_out(live_out);
 779           live_out = temp;
 780 
 781           change_occurred = true;
 782           change_occurred_in_block = true;
 783         }
 784       }
 785 
 786       if (iteration_count == 0 || change_occurred_in_block) {
 787         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 788         // note: live_in has to be computed only in first iteration or if live_out has changed!
 789         BitMap live_in = block->live_in();
 790         live_in.set_from(block->live_out());
 791         live_in.set_difference(block->live_kill());
 792         live_in.set_union(block->live_gen());
 793       }
 794 
 795 #ifndef PRODUCT
 796       if (TraceLinearScanLevel >= 4) {
 797         char c = ' ';
 798         if (iteration_count == 0 || change_occurred_in_block) {
 799           c = '*';
 800         }
 801         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 802         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 803       }
 804 #endif
 805     }
 806     iteration_count++;
 807 
 808     if (change_occurred && iteration_count > 50) {
 809       BAILOUT("too many iterations in compute_global_live_sets");
 810     }
 811   } while (change_occurred);
 812 
 813 
 814 #ifdef ASSERT
 815   // check that fixed intervals are not live at block boundaries
 816   // (live set must be empty at fixed intervals)
 817   for (int i = 0; i < num_blocks; i++) {
 818     BlockBegin* block = block_at(i);
 819     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 820       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 821       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 822       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 823     }
 824   }
 825 #endif
 826 
 827   // check that the live_in set of the first block is empty
 828   BitMap live_in_args(ir()->start()->live_in().size());
 829   live_in_args.clear();
 830   if (!ir()->start()->live_in().is_same(live_in_args)) {
 831 #ifdef ASSERT
 832     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 833     tty->print_cr("affected registers:");
 834     print_bitmap(ir()->start()->live_in());
 835 
 836     // print some additional information to simplify debugging
 837     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 838       if (ir()->start()->live_in().at(i)) {
 839         Instruction* instr = gen()->instruction_for_vreg(i);
 840         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 841 
 842         for (int j = 0; j < num_blocks; j++) {
 843           BlockBegin* block = block_at(j);
 844           if (block->live_gen().at(i)) {
 845             tty->print_cr("  used in block B%d", block->block_id());
 846           }
 847           if (block->live_kill().at(i)) {
 848             tty->print_cr("  defined in block B%d", block->block_id());
 849           }
 850         }
 851       }
 852     }
 853 
 854 #endif
 855     // when this fails, virtual registers are used before they are defined.
 856     assert(false, "live_in set of first block must be empty");
 857     // bailout of if this occurs in product mode.
 858     bailout("live_in set of first block not empty");
 859   }
 860 }
 861 
 862 
 863 // ********** Phase 4: build intervals
 864 // (fills the list _intervals)
 865 
 866 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 867   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 868   LIR_Opr opr = value->operand();
 869   Constant* con = value->as_Constant();
 870 
 871   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 872     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 873     add_use(opr, from, to, use_kind);
 874   }
 875 }
 876 
 877 
 878 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 879   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 880   assert(opr->is_register(), "should not be called otherwise");
 881 
 882   if (opr->is_virtual_register()) {
 883     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 884     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 885 
 886   } else {
 887     int reg = reg_num(opr);
 888     if (is_processed_reg_num(reg)) {
 889       add_def(reg, def_pos, use_kind, opr->type_register());
 890     }
 891     reg = reg_numHi(opr);
 892     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 893       add_def(reg, def_pos, use_kind, opr->type_register());
 894     }
 895   }
 896 }
 897 
 898 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 899   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 900   assert(opr->is_register(), "should not be called otherwise");
 901 
 902   if (opr->is_virtual_register()) {
 903     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 904     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 905 
 906   } else {
 907     int reg = reg_num(opr);
 908     if (is_processed_reg_num(reg)) {
 909       add_use(reg, from, to, use_kind, opr->type_register());
 910     }
 911     reg = reg_numHi(opr);
 912     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 913       add_use(reg, from, to, use_kind, opr->type_register());
 914     }
 915   }
 916 }
 917 
 918 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 919   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 920   assert(opr->is_register(), "should not be called otherwise");
 921 
 922   if (opr->is_virtual_register()) {
 923     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 924     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 925 
 926   } else {
 927     int reg = reg_num(opr);
 928     if (is_processed_reg_num(reg)) {
 929       add_temp(reg, temp_pos, use_kind, opr->type_register());
 930     }
 931     reg = reg_numHi(opr);
 932     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 933       add_temp(reg, temp_pos, use_kind, opr->type_register());
 934     }
 935   }
 936 }
 937 
 938 
 939 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 940   Interval* interval = interval_at(reg_num);
 941   if (interval != NULL) {
 942     assert(interval->reg_num() == reg_num, "wrong interval");
 943 
 944     if (type != T_ILLEGAL) {
 945       interval->set_type(type);
 946     }
 947 
 948     Range* r = interval->first();
 949     if (r->from() <= def_pos) {
 950       // Update the starting point (when a range is first created for a use, its
 951       // start is the beginning of the current block until a def is encountered.)
 952       r->set_from(def_pos);
 953       interval->add_use_pos(def_pos, use_kind);
 954 
 955     } else {
 956       // Dead value - make vacuous interval
 957       // also add use_kind for dead intervals
 958       interval->add_range(def_pos, def_pos + 1);
 959       interval->add_use_pos(def_pos, use_kind);
 960       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 961     }
 962 
 963   } else {
 964     // Dead value - make vacuous interval
 965     // also add use_kind for dead intervals
 966     interval = create_interval(reg_num);
 967     if (type != T_ILLEGAL) {
 968       interval->set_type(type);
 969     }
 970 
 971     interval->add_range(def_pos, def_pos + 1);
 972     interval->add_use_pos(def_pos, use_kind);
 973     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 974   }
 975 
 976   change_spill_definition_pos(interval, def_pos);
 977   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 978         // detection of method-parameters and roundfp-results
 979         // TODO: move this directly to position where use-kind is computed
 980     interval->set_spill_state(startInMemory);
 981   }
 982 }
 983 
 984 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
 985   Interval* interval = interval_at(reg_num);
 986   if (interval == NULL) {
 987     interval = create_interval(reg_num);
 988   }
 989   assert(interval->reg_num() == reg_num, "wrong interval");
 990 
 991   if (type != T_ILLEGAL) {
 992     interval->set_type(type);
 993   }
 994 
 995   interval->add_range(from, to);
 996   interval->add_use_pos(to, use_kind);
 997 }
 998 
 999 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1000   Interval* interval = interval_at(reg_num);
1001   if (interval == NULL) {
1002     interval = create_interval(reg_num);
1003   }
1004   assert(interval->reg_num() == reg_num, "wrong interval");
1005 
1006   if (type != T_ILLEGAL) {
1007     interval->set_type(type);
1008   }
1009 
1010   interval->add_range(temp_pos, temp_pos + 1);
1011   interval->add_use_pos(temp_pos, use_kind);
1012 }
1013 
1014 
1015 // the results of this functions are used for optimizing spilling and reloading
1016 // if the functions return shouldHaveRegister and the interval is spilled,
1017 // it is not reloaded to a register.
1018 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1019   if (op->code() == lir_move) {
1020     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1021     LIR_Op1* move = (LIR_Op1*)op;
1022     LIR_Opr res = move->result_opr();
1023     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1024 
1025     if (result_in_memory) {
1026       // Begin of an interval with must_start_in_memory set.
1027       // This interval will always get a stack slot first, so return noUse.
1028       return noUse;
1029 
1030     } else if (move->in_opr()->is_stack()) {
1031       // method argument (condition must be equal to handle_method_arguments)
1032       return noUse;
1033 
1034     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1035       // Move from register to register
1036       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1037         // special handling of phi-function moves inside osr-entry blocks
1038         // input operand must have a register instead of output operand (leads to better register allocation)
1039         return shouldHaveRegister;
1040       }
1041     }
1042   }
1043 
1044   if (opr->is_virtual() &&
1045       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1046     // result is a stack-slot, so prevent immediate reloading
1047     return noUse;
1048   }
1049 
1050   // all other operands require a register
1051   return mustHaveRegister;
1052 }
1053 
1054 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1055   if (op->code() == lir_move) {
1056     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1057     LIR_Op1* move = (LIR_Op1*)op;
1058     LIR_Opr res = move->result_opr();
1059     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1060 
1061     if (result_in_memory) {
1062       // Move to an interval with must_start_in_memory set.
1063       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1064       return mustHaveRegister;
1065 
1066     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1067       // Move from register to register
1068       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1069         // special handling of phi-function moves inside osr-entry blocks
1070         // input operand must have a register instead of output operand (leads to better register allocation)
1071         return mustHaveRegister;
1072       }
1073 
1074       // The input operand is not forced to a register (moves from stack to register are allowed),
1075       // but it is faster if the input operand is in a register
1076       return shouldHaveRegister;
1077     }
1078   }
1079 
1080 
1081 #ifdef X86
1082   if (op->code() == lir_cmove) {
1083     // conditional moves can handle stack operands
1084     assert(op->result_opr()->is_register(), "result must always be in a register");
1085     return shouldHaveRegister;
1086   }
1087 
1088   // optimizations for second input operand of arithmehtic operations on Intel
1089   // this operand is allowed to be on the stack in some cases
1090   BasicType opr_type = opr->type_register();
1091   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1092     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1093       // SSE float instruction (T_DOUBLE only supported with SSE2)
1094       switch (op->code()) {
1095         case lir_cmp:
1096         case lir_add:
1097         case lir_sub:
1098         case lir_mul:
1099         case lir_div:
1100         {
1101           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1102           LIR_Op2* op2 = (LIR_Op2*)op;
1103           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1104             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1105             return shouldHaveRegister;
1106           }
1107         }
1108       }
1109     } else {
1110       // FPU stack float instruction
1111       switch (op->code()) {
1112         case lir_add:
1113         case lir_sub:
1114         case lir_mul:
1115         case lir_div:
1116         {
1117           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1118           LIR_Op2* op2 = (LIR_Op2*)op;
1119           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1120             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1121             return shouldHaveRegister;
1122           }
1123         }
1124       }
1125     }
1126     // We want to sometimes use logical operations on pointers, in particular in GC barriers.
1127     // Since 64bit logical operations do not current support operands on stack, we have to make sure
1128     // T_OBJECT doesn't get spilled along with T_LONG.
1129   } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
1130     // integer instruction (note: long operands must always be in register)
1131     switch (op->code()) {
1132       case lir_cmp:
1133       case lir_add:
1134       case lir_sub:
1135       case lir_logic_and:
1136       case lir_logic_or:
1137       case lir_logic_xor:
1138       {
1139         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1140         LIR_Op2* op2 = (LIR_Op2*)op;
1141         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1142           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1143           return shouldHaveRegister;
1144         }
1145       }
1146     }
1147   }
1148 #endif // X86
1149 
1150   // all other operands require a register
1151   return mustHaveRegister;
1152 }
1153 
1154 
1155 void LinearScan::handle_method_arguments(LIR_Op* op) {
1156   // special handling for method arguments (moves from stack to virtual register):
1157   // the interval gets no register assigned, but the stack slot.
1158   // it is split before the first use by the register allocator.
1159 
1160   if (op->code() == lir_move) {
1161     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1162     LIR_Op1* move = (LIR_Op1*)op;
1163 
1164     if (move->in_opr()->is_stack()) {
1165 #ifdef ASSERT
1166       int arg_size = compilation()->method()->arg_size();
1167       LIR_Opr o = move->in_opr();
1168       if (o->is_single_stack()) {
1169         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1170       } else if (o->is_double_stack()) {
1171         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1172       } else {
1173         ShouldNotReachHere();
1174       }
1175 
1176       assert(move->id() > 0, "invalid id");
1177       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1178       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1179 
1180       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1181 #endif
1182 
1183       Interval* interval = interval_at(reg_num(move->result_opr()));
1184 
1185       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1186       interval->set_canonical_spill_slot(stack_slot);
1187       interval->assign_reg(stack_slot);
1188     }
1189   }
1190 }
1191 
1192 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1193   // special handling for doubleword move from memory to register:
1194   // in this case the registers of the input address and the result
1195   // registers must not overlap -> add a temp range for the input registers
1196   if (op->code() == lir_move) {
1197     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1198     LIR_Op1* move = (LIR_Op1*)op;
1199 
1200     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1201       LIR_Address* address = move->in_opr()->as_address_ptr();
1202       if (address != NULL) {
1203         if (address->base()->is_valid()) {
1204           add_temp(address->base(), op->id(), noUse);
1205         }
1206         if (address->index()->is_valid()) {
1207           add_temp(address->index(), op->id(), noUse);
1208         }
1209       }
1210     }
1211   }
1212 }
1213 
1214 void LinearScan::add_register_hints(LIR_Op* op) {
1215   switch (op->code()) {
1216     case lir_move:      // fall through
1217     case lir_convert: {
1218       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1219       LIR_Op1* move = (LIR_Op1*)op;
1220 
1221       LIR_Opr move_from = move->in_opr();
1222       LIR_Opr move_to = move->result_opr();
1223 
1224       if (move_to->is_register() && move_from->is_register()) {
1225         Interval* from = interval_at(reg_num(move_from));
1226         Interval* to = interval_at(reg_num(move_to));
1227         if (from != NULL && to != NULL) {
1228           to->set_register_hint(from);
1229           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1230         }
1231       }
1232       break;
1233     }
1234     case lir_cmove: {
1235       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1236       LIR_Op2* cmove = (LIR_Op2*)op;
1237 
1238       LIR_Opr move_from = cmove->in_opr1();
1239       LIR_Opr move_to = cmove->result_opr();
1240 
1241       if (move_to->is_register() && move_from->is_register()) {
1242         Interval* from = interval_at(reg_num(move_from));
1243         Interval* to = interval_at(reg_num(move_to));
1244         if (from != NULL && to != NULL) {
1245           to->set_register_hint(from);
1246           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1247         }
1248       }
1249       break;
1250     }
1251   }
1252 }
1253 
1254 
1255 void LinearScan::build_intervals() {
1256   TIME_LINEAR_SCAN(timer_build_intervals);
1257 
1258   // initialize interval list with expected number of intervals
1259   // (32 is added to have some space for split children without having to resize the list)
1260   _intervals = IntervalList(num_virtual_regs() + 32);
1261   // initialize all slots that are used by build_intervals
1262   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1263 
1264   // create a list with all caller-save registers (cpu, fpu, xmm)
1265   // when an instruction is a call, a temp range is created for all these registers
1266   int num_caller_save_registers = 0;
1267   int caller_save_registers[LinearScan::nof_regs];
1268 
1269   int i;
1270   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1271     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1272     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1273     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1274     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1275   }
1276 
1277   // temp ranges for fpu registers are only created when the method has
1278   // virtual fpu operands. Otherwise no allocation for fpu registers is
1279   // perfomed and so the temp ranges would be useless
1280   if (has_fpu_registers()) {
1281 #ifdef X86
1282     if (UseSSE < 2) {
1283 #endif
1284       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1285         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1286         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1287         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1288         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1289       }
1290 #ifdef X86
1291     }
1292     if (UseSSE > 0) {
1293       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1294         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1295         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1296         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1297         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1298       }
1299     }
1300 #endif
1301   }
1302   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1303 
1304 
1305   LIR_OpVisitState visitor;
1306 
1307   // iterate all blocks in reverse order
1308   for (i = block_count() - 1; i >= 0; i--) {
1309     BlockBegin* block = block_at(i);
1310     LIR_OpList* instructions = block->lir()->instructions_list();
1311     int         block_from =   block->first_lir_instruction_id();
1312     int         block_to =     block->last_lir_instruction_id();
1313 
1314     assert(block_from == instructions->at(0)->id(), "must be");
1315     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1316 
1317     // Update intervals for registers live at the end of this block;
1318     BitMap live = block->live_out();
1319     int size = (int)live.size();
1320     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1321       assert(live.at(number), "should not stop here otherwise");
1322       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1323       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1324 
1325       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1326 
1327       // add special use positions for loop-end blocks when the
1328       // interval is used anywhere inside this loop.  It's possible
1329       // that the block was part of a non-natural loop, so it might
1330       // have an invalid loop index.
1331       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1332           block->loop_index() != -1 &&
1333           is_interval_in_loop(number, block->loop_index())) {
1334         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1335       }
1336     }
1337 
1338     // iterate all instructions of the block in reverse order.
1339     // skip the first instruction because it is always a label
1340     // definitions of intervals are processed before uses
1341     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1342     for (int j = instructions->length() - 1; j >= 1; j--) {
1343       LIR_Op* op = instructions->at(j);
1344       int op_id = op->id();
1345 
1346       // visit operation to collect all operands
1347       visitor.visit(op);
1348 
1349       // add a temp range for each register if operation destroys caller-save registers
1350       if (visitor.has_call()) {
1351         for (int k = 0; k < num_caller_save_registers; k++) {
1352           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1353         }
1354         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1355       }
1356 
1357       // Add any platform dependent temps
1358       pd_add_temps(op);
1359 
1360       // visit definitions (output and temp operands)
1361       int k, n;
1362       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1363       for (k = 0; k < n; k++) {
1364         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1365         assert(opr->is_register(), "visitor should only return register operands");
1366         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1367       }
1368 
1369       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1370       for (k = 0; k < n; k++) {
1371         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1372         assert(opr->is_register(), "visitor should only return register operands");
1373         add_temp(opr, op_id, mustHaveRegister);
1374       }
1375 
1376       // visit uses (input operands)
1377       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1378       for (k = 0; k < n; k++) {
1379         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1380         assert(opr->is_register(), "visitor should only return register operands");
1381         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1382       }
1383 
1384       // Add uses of live locals from interpreter's point of view for proper
1385       // debug information generation
1386       // Treat these operands as temp values (if the life range is extended
1387       // to a call site, the value would be in a register at the call otherwise)
1388       n = visitor.info_count();
1389       for (k = 0; k < n; k++) {
1390         CodeEmitInfo* info = visitor.info_at(k);
1391         ValueStack* stack = info->stack();
1392         for_each_state_value(stack, value,
1393           add_use(value, block_from, op_id + 1, noUse);
1394         );
1395       }
1396 
1397       // special steps for some instructions (especially moves)
1398       handle_method_arguments(op);
1399       handle_doubleword_moves(op);
1400       add_register_hints(op);
1401 
1402     } // end of instruction iteration
1403   } // end of block iteration
1404 
1405 
1406   // add the range [0, 1[ to all fixed intervals
1407   // -> the register allocator need not handle unhandled fixed intervals
1408   for (int n = 0; n < LinearScan::nof_regs; n++) {
1409     Interval* interval = interval_at(n);
1410     if (interval != NULL) {
1411       interval->add_range(0, 1);
1412     }
1413   }
1414 }
1415 
1416 
1417 // ********** Phase 5: actual register allocation
1418 
1419 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1420   if (*a != NULL) {
1421     if (*b != NULL) {
1422       return (*a)->from() - (*b)->from();
1423     } else {
1424       return -1;
1425     }
1426   } else {
1427     if (*b != NULL) {
1428       return 1;
1429     } else {
1430       return 0;
1431     }
1432   }
1433 }
1434 
1435 #ifndef PRODUCT
1436 bool binary_search(IntervalArray* intervals, Interval* interval) {
1437   int begin = 0;
1438   int end = intervals->length();
1439 
1440   while (end - begin > 0) {
1441     int idx = begin + (end - begin) / 2;
1442 
1443     if (intervals->at(idx) == interval) {
1444       return true;
1445     }
1446 
1447     int cmp = interval->from() - intervals->at(idx)->from();
1448     if (cmp < 0) {
1449       end = idx;
1450       continue;
1451     } else if (cmp > 0) {
1452       begin = idx + 1;
1453       continue;
1454     }
1455 
1456     // We found an interval that is defined in the same place as
1457     // an interval that we were looking for. Let's try to find it
1458     // somewhere around.
1459     for (int i = idx - 1; i >= 0; i--) {
1460       if (intervals->at(i) == interval) {
1461         return true;
1462       }
1463       if (intervals->at(i)->from() != interval->from()) {
1464         break;
1465       }
1466     }
1467 
1468     for (int i = idx + 1; i < intervals->length(); i++) {
1469       if (intervals->at(i) == interval) {
1470         return true;
1471       }
1472       if (intervals->at(i)->from() != interval->from()) {
1473         break;
1474       }
1475     }
1476     // We didn't find the interval in intervals that share
1477     // the same def point with it, so it's time to bailout.
1478     return false;
1479   }
1480   return false;
1481 }
1482 
1483 bool LinearScan::is_sorted(IntervalArray* intervals) {
1484   int from = -1;
1485   int i, j;
1486 
1487   int null_count = 0;
1488   for (i = 0; i < intervals->length(); i ++) {
1489     Interval* it = intervals->at(i);
1490     if (it != NULL) {
1491       if (from > it->from()) {
1492         assert(false, "");
1493         return false;
1494       }
1495       from = it->from();
1496     } else {
1497       null_count++;
1498     }
1499   }
1500 
1501   assert(null_count == 0, "Sorted intervals should not contain nulls");
1502 
1503   null_count = 0;
1504   // check that sorted list contains all non-NULL intervals from unsorted list
1505   for (i = 0; i < interval_count(); i++) {
1506     if (interval_at(i) != NULL) {
1507       assert(binary_search(intervals, interval_at(i)),
1508           "lists do not contain same intervals");
1509     } else {
1510       null_count++;
1511     }
1512   }
1513 
1514   assert(interval_count() - null_count == intervals->length(),
1515       "sorted list should contain the same amount of non-NULL intervals"
1516       " as unsorted list");
1517 
1518   return true;
1519 }
1520 #endif
1521 
1522 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1523   if (*prev != NULL) {
1524     (*prev)->set_next(interval);
1525   } else {
1526     *first = interval;
1527   }
1528   *prev = interval;
1529 }
1530 
1531 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1532   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1533 
1534   *list1 = *list2 = Interval::end();
1535 
1536   Interval* list1_prev = NULL;
1537   Interval* list2_prev = NULL;
1538   Interval* v;
1539 
1540   const int n = _sorted_intervals->length();
1541   for (int i = 0; i < n; i++) {
1542     v = _sorted_intervals->at(i);
1543     if (v == NULL) continue;
1544 
1545     if (is_list1(v)) {
1546       add_to_list(list1, &list1_prev, v);
1547     } else if (is_list2 == NULL || is_list2(v)) {
1548       add_to_list(list2, &list2_prev, v);
1549     }
1550   }
1551 
1552   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1553   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1554 
1555   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1556   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1557 }
1558 
1559 
1560 void LinearScan::sort_intervals_before_allocation() {
1561   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1562 
1563   if (_needs_full_resort) {
1564     // There is no known reason why this should occur but just in case...
1565     assert(false, "should never occur");
1566     // Re-sort existing interval list because an Interval::from() has changed
1567     _sorted_intervals->sort(interval_cmp);
1568     _needs_full_resort = false;
1569   }
1570 
1571   IntervalList* unsorted_list = &_intervals;
1572   int unsorted_len = unsorted_list->length();
1573   int sorted_len = 0;
1574   int unsorted_idx;
1575   int sorted_idx = 0;
1576   int sorted_from_max = -1;
1577 
1578   // calc number of items for sorted list (sorted list must not contain NULL values)
1579   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1580     if (unsorted_list->at(unsorted_idx) != NULL) {
1581       sorted_len++;
1582     }
1583   }
1584   IntervalArray* sorted_list = new IntervalArray(sorted_len);
1585 
1586   // special sorting algorithm: the original interval-list is almost sorted,
1587   // only some intervals are swapped. So this is much faster than a complete QuickSort
1588   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1589     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1590 
1591     if (cur_interval != NULL) {
1592       int cur_from = cur_interval->from();
1593 
1594       if (sorted_from_max <= cur_from) {
1595         sorted_list->at_put(sorted_idx++, cur_interval);
1596         sorted_from_max = cur_interval->from();
1597       } else {
1598         // the asumption that the intervals are already sorted failed,
1599         // so this interval must be sorted in manually
1600         int j;
1601         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1602           sorted_list->at_put(j + 1, sorted_list->at(j));
1603         }
1604         sorted_list->at_put(j + 1, cur_interval);
1605         sorted_idx++;
1606       }
1607     }
1608   }
1609   _sorted_intervals = sorted_list;
1610   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1611 }
1612 
1613 void LinearScan::sort_intervals_after_allocation() {
1614   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1615 
1616   if (_needs_full_resort) {
1617     // Re-sort existing interval list because an Interval::from() has changed
1618     _sorted_intervals->sort(interval_cmp);
1619     _needs_full_resort = false;
1620   }
1621 
1622   IntervalArray* old_list      = _sorted_intervals;
1623   IntervalList*  new_list      = _new_intervals_from_allocation;
1624   int old_len = old_list->length();
1625   int new_len = new_list->length();
1626 
1627   if (new_len == 0) {
1628     // no intervals have been added during allocation, so sorted list is already up to date
1629     assert(is_sorted(_sorted_intervals), "intervals unsorted");
1630     return;
1631   }
1632 
1633   // conventional sort-algorithm for new intervals
1634   new_list->sort(interval_cmp);
1635 
1636   // merge old and new list (both already sorted) into one combined list
1637   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1638   int old_idx = 0;
1639   int new_idx = 0;
1640 
1641   while (old_idx + new_idx < old_len + new_len) {
1642     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1643       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1644       old_idx++;
1645     } else {
1646       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1647       new_idx++;
1648     }
1649   }
1650 
1651   _sorted_intervals = combined_list;
1652   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1653 }
1654 
1655 
1656 void LinearScan::allocate_registers() {
1657   TIME_LINEAR_SCAN(timer_allocate_registers);
1658 
1659   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1660   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1661 
1662   // allocate cpu registers
1663   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals,
1664                          is_precolored_cpu_interval, is_virtual_cpu_interval);
1665 
1666   // allocate fpu registers
1667   create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals,
1668                          is_precolored_fpu_interval, is_virtual_fpu_interval);
1669 
1670   // the fpu interval allocation cannot be moved down below with the fpu section as
1671   // the cpu_lsw.walk() changes interval positions.
1672 
1673   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1674   cpu_lsw.walk();
1675   cpu_lsw.finish_allocation();
1676 
1677   if (has_fpu_registers()) {
1678     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1679     fpu_lsw.walk();
1680     fpu_lsw.finish_allocation();
1681   }
1682 }
1683 
1684 
1685 // ********** Phase 6: resolve data flow
1686 // (insert moves at edges between blocks if intervals have been split)
1687 
1688 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1689 // instead of returning NULL
1690 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1691   Interval* result = interval->split_child_at_op_id(op_id, mode);
1692   if (result != NULL) {
1693     return result;
1694   }
1695 
1696   assert(false, "must find an interval, but do a clean bailout in product mode");
1697   result = new Interval(LIR_OprDesc::vreg_base);
1698   result->assign_reg(0);
1699   result->set_type(T_INT);
1700   BAILOUT_("LinearScan: interval is NULL", result);
1701 }
1702 
1703 
1704 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1705   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1706   assert(interval_at(reg_num) != NULL, "no interval found");
1707 
1708   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1709 }
1710 
1711 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1712   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1713   assert(interval_at(reg_num) != NULL, "no interval found");
1714 
1715   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1716 }
1717 
1718 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1719   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1720   assert(interval_at(reg_num) != NULL, "no interval found");
1721 
1722   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1723 }
1724 
1725 
1726 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1727   DEBUG_ONLY(move_resolver.check_empty());
1728 
1729   const int num_regs = num_virtual_regs();
1730   const int size = live_set_size();
1731   const BitMap live_at_edge = to_block->live_in();
1732 
1733   // visit all registers where the live_at_edge bit is set
1734   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1735     assert(r < num_regs, "live information set for not exisiting interval");
1736     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1737 
1738     Interval* from_interval = interval_at_block_end(from_block, r);
1739     Interval* to_interval = interval_at_block_begin(to_block, r);
1740 
1741     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1742       // need to insert move instruction
1743       move_resolver.add_mapping(from_interval, to_interval);
1744     }
1745   }
1746 }
1747 
1748 
1749 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1750   if (from_block->number_of_sux() <= 1) {
1751     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1752 
1753     LIR_OpList* instructions = from_block->lir()->instructions_list();
1754     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1755     if (branch != NULL) {
1756       // insert moves before branch
1757       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1758       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1759     } else {
1760       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1761     }
1762 
1763   } else {
1764     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1765 #ifdef ASSERT
1766     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1767 
1768     // because the number of predecessor edges matches the number of
1769     // successor edges, blocks which are reached by switch statements
1770     // may have be more than one predecessor but it will be guaranteed
1771     // that all predecessors will be the same.
1772     for (int i = 0; i < to_block->number_of_preds(); i++) {
1773       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1774     }
1775 #endif
1776 
1777     move_resolver.set_insert_position(to_block->lir(), 0);
1778   }
1779 }
1780 
1781 
1782 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1783 void LinearScan::resolve_data_flow() {
1784   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1785 
1786   int num_blocks = block_count();
1787   MoveResolver move_resolver(this);
1788   BitMap block_completed(num_blocks);  block_completed.clear();
1789   BitMap already_resolved(num_blocks); already_resolved.clear();
1790 
1791   int i;
1792   for (i = 0; i < num_blocks; i++) {
1793     BlockBegin* block = block_at(i);
1794 
1795     // check if block has only one predecessor and only one successor
1796     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1797       LIR_OpList* instructions = block->lir()->instructions_list();
1798       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1799       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1800       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1801 
1802       // check if block is empty (only label and branch)
1803       if (instructions->length() == 2) {
1804         BlockBegin* pred = block->pred_at(0);
1805         BlockBegin* sux = block->sux_at(0);
1806 
1807         // prevent optimization of two consecutive blocks
1808         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1809           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1810           block_completed.set_bit(block->linear_scan_number());
1811 
1812           // directly resolve between pred and sux (without looking at the empty block between)
1813           resolve_collect_mappings(pred, sux, move_resolver);
1814           if (move_resolver.has_mappings()) {
1815             move_resolver.set_insert_position(block->lir(), 0);
1816             move_resolver.resolve_and_append_moves();
1817           }
1818         }
1819       }
1820     }
1821   }
1822 
1823 
1824   for (i = 0; i < num_blocks; i++) {
1825     if (!block_completed.at(i)) {
1826       BlockBegin* from_block = block_at(i);
1827       already_resolved.set_from(block_completed);
1828 
1829       int num_sux = from_block->number_of_sux();
1830       for (int s = 0; s < num_sux; s++) {
1831         BlockBegin* to_block = from_block->sux_at(s);
1832 
1833         // check for duplicate edges between the same blocks (can happen with switch blocks)
1834         if (!already_resolved.at(to_block->linear_scan_number())) {
1835           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1836           already_resolved.set_bit(to_block->linear_scan_number());
1837 
1838           // collect all intervals that have been split between from_block and to_block
1839           resolve_collect_mappings(from_block, to_block, move_resolver);
1840           if (move_resolver.has_mappings()) {
1841             resolve_find_insert_pos(from_block, to_block, move_resolver);
1842             move_resolver.resolve_and_append_moves();
1843           }
1844         }
1845       }
1846     }
1847   }
1848 }
1849 
1850 
1851 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1852   if (interval_at(reg_num) == NULL) {
1853     // if a phi function is never used, no interval is created -> ignore this
1854     return;
1855   }
1856 
1857   Interval* interval = interval_at_block_begin(block, reg_num);
1858   int reg = interval->assigned_reg();
1859   int regHi = interval->assigned_regHi();
1860 
1861   if ((reg < nof_regs && interval->always_in_memory()) ||
1862       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1863     // the interval is split to get a short range that is located on the stack
1864     // in the following two cases:
1865     // * the interval started in memory (e.g. method parameter), but is currently in a register
1866     //   this is an optimization for exception handling that reduces the number of moves that
1867     //   are necessary for resolving the states when an exception uses this exception handler
1868     // * the interval would be on the fpu stack at the begin of the exception handler
1869     //   this is not allowed because of the complicated fpu stack handling on Intel
1870 
1871     // range that will be spilled to memory
1872     int from_op_id = block->first_lir_instruction_id();
1873     int to_op_id = from_op_id + 1;  // short live range of length 1
1874     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1875            "no split allowed between exception entry and first instruction");
1876 
1877     if (interval->from() != from_op_id) {
1878       // the part before from_op_id is unchanged
1879       interval = interval->split(from_op_id);
1880       interval->assign_reg(reg, regHi);
1881       append_interval(interval);
1882     } else {
1883       _needs_full_resort = true;
1884     }
1885     assert(interval->from() == from_op_id, "must be true now");
1886 
1887     Interval* spilled_part = interval;
1888     if (interval->to() != to_op_id) {
1889       // the part after to_op_id is unchanged
1890       spilled_part = interval->split_from_start(to_op_id);
1891       append_interval(spilled_part);
1892       move_resolver.add_mapping(spilled_part, interval);
1893     }
1894     assign_spill_slot(spilled_part);
1895 
1896     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1897   }
1898 }
1899 
1900 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1901   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1902   DEBUG_ONLY(move_resolver.check_empty());
1903 
1904   // visit all registers where the live_in bit is set
1905   int size = live_set_size();
1906   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1907     resolve_exception_entry(block, r, move_resolver);
1908   }
1909 
1910   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1911   for_each_phi_fun(block, phi,
1912     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1913   );
1914 
1915   if (move_resolver.has_mappings()) {
1916     // insert moves after first instruction
1917     move_resolver.set_insert_position(block->lir(), 0);
1918     move_resolver.resolve_and_append_moves();
1919   }
1920 }
1921 
1922 
1923 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1924   if (interval_at(reg_num) == NULL) {
1925     // if a phi function is never used, no interval is created -> ignore this
1926     return;
1927   }
1928 
1929   // the computation of to_interval is equal to resolve_collect_mappings,
1930   // but from_interval is more complicated because of phi functions
1931   BlockBegin* to_block = handler->entry_block();
1932   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1933 
1934   if (phi != NULL) {
1935     // phi function of the exception entry block
1936     // no moves are created for this phi function in the LIR_Generator, so the
1937     // interval at the throwing instruction must be searched using the operands
1938     // of the phi function
1939     Value from_value = phi->operand_at(handler->phi_operand());
1940 
1941     // with phi functions it can happen that the same from_value is used in
1942     // multiple mappings, so notify move-resolver that this is allowed
1943     move_resolver.set_multiple_reads_allowed();
1944 
1945     Constant* con = from_value->as_Constant();
1946     if (con != NULL && !con->is_pinned()) {
1947       // unpinned constants may have no register, so add mapping from constant to interval
1948       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1949     } else {
1950       // search split child at the throwing op_id
1951       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1952       move_resolver.add_mapping(from_interval, to_interval);
1953     }
1954 
1955   } else {
1956     // no phi function, so use reg_num also for from_interval
1957     // search split child at the throwing op_id
1958     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1959     if (from_interval != to_interval) {
1960       // optimization to reduce number of moves: when to_interval is on stack and
1961       // the stack slot is known to be always correct, then no move is necessary
1962       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1963         move_resolver.add_mapping(from_interval, to_interval);
1964       }
1965     }
1966   }
1967 }
1968 
1969 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1970   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1971 
1972   DEBUG_ONLY(move_resolver.check_empty());
1973   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1974   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1975   assert(handler->entry_code() == NULL, "code already present");
1976 
1977   // visit all registers where the live_in bit is set
1978   BlockBegin* block = handler->entry_block();
1979   int size = live_set_size();
1980   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1981     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1982   }
1983 
1984   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1985   for_each_phi_fun(block, phi,
1986     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1987   );
1988 
1989   if (move_resolver.has_mappings()) {
1990     LIR_List* entry_code = new LIR_List(compilation());
1991     move_resolver.set_insert_position(entry_code, 0);
1992     move_resolver.resolve_and_append_moves();
1993 
1994     entry_code->jump(handler->entry_block());
1995     handler->set_entry_code(entry_code);
1996   }
1997 }
1998 
1999 
2000 void LinearScan::resolve_exception_handlers() {
2001   MoveResolver move_resolver(this);
2002   LIR_OpVisitState visitor;
2003   int num_blocks = block_count();
2004 
2005   int i;
2006   for (i = 0; i < num_blocks; i++) {
2007     BlockBegin* block = block_at(i);
2008     if (block->is_set(BlockBegin::exception_entry_flag)) {
2009       resolve_exception_entry(block, move_resolver);
2010     }
2011   }
2012 
2013   for (i = 0; i < num_blocks; i++) {
2014     BlockBegin* block = block_at(i);
2015     LIR_List* ops = block->lir();
2016     int num_ops = ops->length();
2017 
2018     // iterate all instructions of the block. skip the first because it is always a label
2019     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
2020     for (int j = 1; j < num_ops; j++) {
2021       LIR_Op* op = ops->at(j);
2022       int op_id = op->id();
2023 
2024       if (op_id != -1 && has_info(op_id)) {
2025         // visit operation to collect all operands
2026         visitor.visit(op);
2027         assert(visitor.info_count() > 0, "should not visit otherwise");
2028 
2029         XHandlers* xhandlers = visitor.all_xhandler();
2030         int n = xhandlers->length();
2031         for (int k = 0; k < n; k++) {
2032           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2033         }
2034 
2035 #ifdef ASSERT
2036       } else {
2037         visitor.visit(op);
2038         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2039 #endif
2040       }
2041     }
2042   }
2043 }
2044 
2045 
2046 // ********** Phase 7: assign register numbers back to LIR
2047 // (includes computation of debug information and oop maps)
2048 
2049 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2050   VMReg reg = interval->cached_vm_reg();
2051   if (!reg->is_valid() ) {
2052     reg = vm_reg_for_operand(operand_for_interval(interval));
2053     interval->set_cached_vm_reg(reg);
2054   }
2055   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2056   return reg;
2057 }
2058 
2059 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2060   assert(opr->is_oop(), "currently only implemented for oop operands");
2061   return frame_map()->regname(opr);
2062 }
2063 
2064 
2065 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2066   LIR_Opr opr = interval->cached_opr();
2067   if (opr->is_illegal()) {
2068     opr = calc_operand_for_interval(interval);
2069     interval->set_cached_opr(opr);
2070   }
2071 
2072   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2073   return opr;
2074 }
2075 
2076 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2077   int assigned_reg = interval->assigned_reg();
2078   BasicType type = interval->type();
2079 
2080   if (assigned_reg >= nof_regs) {
2081     // stack slot
2082     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2083     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2084 
2085   } else {
2086     // register
2087     switch (type) {
2088       case T_OBJECT: {
2089         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2090         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2091         return LIR_OprFact::single_cpu_oop(assigned_reg);
2092       }
2093 
2094       case T_ADDRESS: {
2095         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2096         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2097         return LIR_OprFact::single_cpu_address(assigned_reg);
2098       }
2099 
2100       case T_METADATA: {
2101         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2102         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2103         return LIR_OprFact::single_cpu_metadata(assigned_reg);
2104       }
2105 
2106 #ifdef __SOFTFP__
2107       case T_FLOAT:  // fall through
2108 #endif // __SOFTFP__
2109       case T_INT: {
2110         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2111         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2112         return LIR_OprFact::single_cpu(assigned_reg);
2113       }
2114 
2115 #ifdef __SOFTFP__
2116       case T_DOUBLE:  // fall through
2117 #endif // __SOFTFP__
2118       case T_LONG: {
2119         int assigned_regHi = interval->assigned_regHi();
2120         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2121         assert(num_physical_regs(T_LONG) == 1 ||
2122                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2123 
2124         assert(assigned_reg != assigned_regHi, "invalid allocation");
2125         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2126                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2127         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2128         if (requires_adjacent_regs(T_LONG)) {
2129           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2130         }
2131 
2132 #ifdef _LP64
2133         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2134 #else
2135 #if defined(SPARC) || defined(PPC)
2136         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2137 #else
2138         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2139 #endif // SPARC
2140 #endif // LP64
2141       }
2142 
2143 #ifndef __SOFTFP__
2144       case T_FLOAT: {
2145 #ifdef X86
2146         if (UseSSE >= 1) {
2147           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2148           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2149           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2150         }
2151 #endif
2152 
2153         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2154         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2155         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2156       }
2157 
2158       case T_DOUBLE: {
2159 #ifdef X86
2160         if (UseSSE >= 2) {
2161           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2162           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2163           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2164         }
2165 #endif
2166 
2167 #ifdef SPARC
2168         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2169         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2170         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2171         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2172 #elif defined(ARM)
2173         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2174         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2175         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2176         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2177 #else
2178         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2179         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2180         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2181 #endif
2182         return result;
2183       }
2184 #endif // __SOFTFP__
2185 
2186       default: {
2187         ShouldNotReachHere();
2188         return LIR_OprFact::illegalOpr;
2189       }
2190     }
2191   }
2192 }
2193 
2194 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2195   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2196   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2197 }
2198 
2199 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2200   assert(opr->is_virtual(), "should not call this otherwise");
2201 
2202   Interval* interval = interval_at(opr->vreg_number());
2203   assert(interval != NULL, "interval must exist");
2204 
2205   if (op_id != -1) {
2206 #ifdef ASSERT
2207     BlockBegin* block = block_of_op_with_id(op_id);
2208     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2209       // check if spill moves could have been appended at the end of this block, but
2210       // before the branch instruction. So the split child information for this branch would
2211       // be incorrect.
2212       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2213       if (branch != NULL) {
2214         if (block->live_out().at(opr->vreg_number())) {
2215           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2216           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2217         }
2218       }
2219     }
2220 #endif
2221 
2222     // operands are not changed when an interval is split during allocation,
2223     // so search the right interval here
2224     interval = split_child_at_op_id(interval, op_id, mode);
2225   }
2226 
2227   LIR_Opr res = operand_for_interval(interval);
2228 
2229 #ifdef X86
2230   // new semantic for is_last_use: not only set on definite end of interval,
2231   // but also before hole
2232   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2233   // last use information is completely correct
2234   // information is only needed for fpu stack allocation
2235   if (res->is_fpu_register()) {
2236     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2237       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2238       res = res->make_last_use();
2239     }
2240   }
2241 #endif
2242 
2243   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2244 
2245   return res;
2246 }
2247 
2248 
2249 #ifdef ASSERT
2250 // some methods used to check correctness of debug information
2251 
2252 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2253   if (values == NULL) {
2254     return;
2255   }
2256 
2257   for (int i = 0; i < values->length(); i++) {
2258     ScopeValue* value = values->at(i);
2259 
2260     if (value->is_location()) {
2261       Location location = ((LocationValue*)value)->location();
2262       assert(location.where() == Location::on_stack, "value is in register");
2263     }
2264   }
2265 }
2266 
2267 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2268   if (values == NULL) {
2269     return;
2270   }
2271 
2272   for (int i = 0; i < values->length(); i++) {
2273     MonitorValue* value = values->at(i);
2274 
2275     if (value->owner()->is_location()) {
2276       Location location = ((LocationValue*)value->owner())->location();
2277       assert(location.where() == Location::on_stack, "owner is in register");
2278     }
2279     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2280   }
2281 }
2282 
2283 void assert_equal(Location l1, Location l2) {
2284   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2285 }
2286 
2287 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2288   if (v1->is_location()) {
2289     assert(v2->is_location(), "");
2290     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2291   } else if (v1->is_constant_int()) {
2292     assert(v2->is_constant_int(), "");
2293     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2294   } else if (v1->is_constant_double()) {
2295     assert(v2->is_constant_double(), "");
2296     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2297   } else if (v1->is_constant_long()) {
2298     assert(v2->is_constant_long(), "");
2299     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2300   } else if (v1->is_constant_oop()) {
2301     assert(v2->is_constant_oop(), "");
2302     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2303   } else {
2304     ShouldNotReachHere();
2305   }
2306 }
2307 
2308 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2309   assert_equal(m1->owner(), m2->owner());
2310   assert_equal(m1->basic_lock(), m2->basic_lock());
2311 }
2312 
2313 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2314   assert(d1->scope() == d2->scope(), "not equal");
2315   assert(d1->bci() == d2->bci(), "not equal");
2316 
2317   if (d1->locals() != NULL) {
2318     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2319     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2320     for (int i = 0; i < d1->locals()->length(); i++) {
2321       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2322     }
2323   } else {
2324     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2325   }
2326 
2327   if (d1->expressions() != NULL) {
2328     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2329     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2330     for (int i = 0; i < d1->expressions()->length(); i++) {
2331       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2332     }
2333   } else {
2334     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2335   }
2336 
2337   if (d1->monitors() != NULL) {
2338     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2339     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2340     for (int i = 0; i < d1->monitors()->length(); i++) {
2341       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2342     }
2343   } else {
2344     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2345   }
2346 
2347   if (d1->caller() != NULL) {
2348     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2349     assert_equal(d1->caller(), d2->caller());
2350   } else {
2351     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2352   }
2353 }
2354 
2355 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2356   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2357     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2358     switch (code) {
2359       case Bytecodes::_ifnull    : // fall through
2360       case Bytecodes::_ifnonnull : // fall through
2361       case Bytecodes::_ifeq      : // fall through
2362       case Bytecodes::_ifne      : // fall through
2363       case Bytecodes::_iflt      : // fall through
2364       case Bytecodes::_ifge      : // fall through
2365       case Bytecodes::_ifgt      : // fall through
2366       case Bytecodes::_ifle      : // fall through
2367       case Bytecodes::_if_icmpeq : // fall through
2368       case Bytecodes::_if_icmpne : // fall through
2369       case Bytecodes::_if_icmplt : // fall through
2370       case Bytecodes::_if_icmpge : // fall through
2371       case Bytecodes::_if_icmpgt : // fall through
2372       case Bytecodes::_if_icmple : // fall through
2373       case Bytecodes::_if_acmpeq : // fall through
2374       case Bytecodes::_if_acmpne :
2375         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2376         break;
2377     }
2378   }
2379 }
2380 
2381 #endif // ASSERT
2382 
2383 
2384 IntervalWalker* LinearScan::init_compute_oop_maps() {
2385   // setup lists of potential oops for walking
2386   Interval* oop_intervals;
2387   Interval* non_oop_intervals;
2388 
2389   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2390 
2391   // intervals that have no oops inside need not to be processed
2392   // to ensure a walking until the last instruction id, add a dummy interval
2393   // with a high operation id
2394   non_oop_intervals = new Interval(any_reg);
2395   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2396 
2397   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2398 }
2399 
2400 
2401 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2402   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2403 
2404   // walk before the current operation -> intervals that start at
2405   // the operation (= output operands of the operation) are not
2406   // included in the oop map
2407   iw->walk_before(op->id());
2408 
2409   int frame_size = frame_map()->framesize();
2410   int arg_count = frame_map()->oop_map_arg_count();
2411   OopMap* map = new OopMap(frame_size, arg_count);
2412 
2413   // Iterate through active intervals
2414   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2415     int assigned_reg = interval->assigned_reg();
2416 
2417     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2418     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2419     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2420 
2421     // Check if this range covers the instruction. Intervals that
2422     // start or end at the current operation are not included in the
2423     // oop map, except in the case of patching moves.  For patching
2424     // moves, any intervals which end at this instruction are included
2425     // in the oop map since we may safepoint while doing the patch
2426     // before we've consumed the inputs.
2427     if (op->is_patching() || op->id() < interval->current_to()) {
2428 
2429       // caller-save registers must not be included into oop-maps at calls
2430       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2431 
2432       VMReg name = vm_reg_for_interval(interval);
2433       set_oop(map, name);
2434 
2435       // Spill optimization: when the stack value is guaranteed to be always correct,
2436       // then it must be added to the oop map even if the interval is currently in a register
2437       if (interval->always_in_memory() &&
2438           op->id() > interval->spill_definition_pos() &&
2439           interval->assigned_reg() != interval->canonical_spill_slot()) {
2440         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2441         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2442         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2443 
2444         set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2445       }
2446     }
2447   }
2448 
2449   // add oops from lock stack
2450   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2451   int locks_count = info->stack()->total_locks_size();
2452   for (int i = 0; i < locks_count; i++) {
2453     set_oop(map, frame_map()->monitor_object_regname(i));
2454   }
2455 
2456   return map;
2457 }
2458 
2459 
2460 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2461   assert(visitor.info_count() > 0, "no oop map needed");
2462 
2463   // compute oop_map only for first CodeEmitInfo
2464   // because it is (in most cases) equal for all other infos of the same operation
2465   CodeEmitInfo* first_info = visitor.info_at(0);
2466   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2467 
2468   for (int i = 0; i < visitor.info_count(); i++) {
2469     CodeEmitInfo* info = visitor.info_at(i);
2470     OopMap* oop_map = first_oop_map;
2471 
2472     // compute worst case interpreter size in case of a deoptimization
2473     _compilation->update_interpreter_frame_size(info->interpreter_frame_size());
2474 
2475     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2476       // this info has a different number of locks then the precomputed oop map
2477       // (possible for lock and unlock instructions) -> compute oop map with
2478       // correct lock information
2479       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2480     }
2481 
2482     if (info->_oop_map == NULL) {
2483       info->_oop_map = oop_map;
2484     } else {
2485       // a CodeEmitInfo can not be shared between different LIR-instructions
2486       // because interval splitting can occur anywhere between two instructions
2487       // and so the oop maps must be different
2488       // -> check if the already set oop_map is exactly the one calculated for this operation
2489       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2490     }
2491   }
2492 }
2493 
2494 
2495 // frequently used constants
2496 // Allocate them with new so they are never destroyed (otherwise, a
2497 // forced exit could destroy these objects while they are still in
2498 // use).
2499 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2500 ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2501 ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
2502 ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2503 ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2504 LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2505 
2506 void LinearScan::init_compute_debug_info() {
2507   // cache for frequently used scope values
2508   // (cpu registers and stack slots)
2509   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2510 }
2511 
2512 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2513   Location loc;
2514   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2515     bailout("too large frame");
2516   }
2517   ScopeValue* object_scope_value = new LocationValue(loc);
2518 
2519   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2520     bailout("too large frame");
2521   }
2522   return new MonitorValue(object_scope_value, loc);
2523 }
2524 
2525 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2526   Location loc;
2527   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2528     bailout("too large frame");
2529   }
2530   return new LocationValue(loc);
2531 }
2532 
2533 
2534 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2535   assert(opr->is_constant(), "should not be called otherwise");
2536 
2537   LIR_Const* c = opr->as_constant_ptr();
2538   BasicType t = c->type();
2539   switch (t) {
2540     case T_OBJECT: {
2541       jobject value = c->as_jobject();
2542       if (value == NULL) {
2543         scope_values->append(_oop_null_scope_value);
2544       } else {
2545         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2546       }
2547       return 1;
2548     }
2549 
2550     case T_INT: // fall through
2551     case T_FLOAT: {
2552       int value = c->as_jint_bits();
2553       switch (value) {
2554         case -1: scope_values->append(_int_m1_scope_value); break;
2555         case 0:  scope_values->append(_int_0_scope_value); break;
2556         case 1:  scope_values->append(_int_1_scope_value); break;
2557         case 2:  scope_values->append(_int_2_scope_value); break;
2558         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2559       }
2560       return 1;
2561     }
2562 
2563     case T_LONG: // fall through
2564     case T_DOUBLE: {
2565 #ifdef _LP64
2566       scope_values->append(_int_0_scope_value);
2567       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2568 #else
2569       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2570         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2571         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2572       } else {
2573         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2574         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2575       }
2576 #endif
2577       return 2;
2578     }
2579 
2580     case T_ADDRESS: {
2581 #ifdef _LP64
2582       scope_values->append(new ConstantLongValue(c->as_jint()));
2583 #else
2584       scope_values->append(new ConstantIntValue(c->as_jint()));
2585 #endif
2586       return 1;
2587     }
2588 
2589     default:
2590       ShouldNotReachHere();
2591       return -1;
2592   }
2593 }
2594 
2595 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2596   if (opr->is_single_stack()) {
2597     int stack_idx = opr->single_stack_ix();
2598     bool is_oop = opr->is_oop_register();
2599     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2600 
2601     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2602     if (sv == NULL) {
2603       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2604       sv = location_for_name(stack_idx, loc_type);
2605       _scope_value_cache.at_put(cache_idx, sv);
2606     }
2607 
2608     // check if cached value is correct
2609     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2610 
2611     scope_values->append(sv);
2612     return 1;
2613 
2614   } else if (opr->is_single_cpu()) {
2615     bool is_oop = opr->is_oop_register();
2616     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2617     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2618 
2619     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2620     if (sv == NULL) {
2621       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2622       VMReg rname = frame_map()->regname(opr);
2623       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2624       _scope_value_cache.at_put(cache_idx, sv);
2625     }
2626 
2627     // check if cached value is correct
2628     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2629 
2630     scope_values->append(sv);
2631     return 1;
2632 
2633 #ifdef X86
2634   } else if (opr->is_single_xmm()) {
2635     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2636     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2637 
2638     scope_values->append(sv);
2639     return 1;
2640 #endif
2641 
2642   } else if (opr->is_single_fpu()) {
2643 #ifdef X86
2644     // the exact location of fpu stack values is only known
2645     // during fpu stack allocation, so the stack allocator object
2646     // must be present
2647     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2648     assert(_fpu_stack_allocator != NULL, "must be present");
2649     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2650 #endif
2651 
2652     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2653     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2654 #ifndef __SOFTFP__
2655 #ifndef VM_LITTLE_ENDIAN
2656     if (! float_saved_as_double) {
2657       // On big endian system, we may have an issue if float registers use only
2658       // the low half of the (same) double registers.
2659       // Both the float and the double could have the same regnr but would correspond
2660       // to two different addresses once saved.
2661 
2662       // get next safely (no assertion checks)
2663       VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2664       if (next->is_reg() &&
2665           (next->as_FloatRegister() == rname->as_FloatRegister())) {
2666         // the back-end does use the same numbering for the double and the float
2667         rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2668       }
2669     }
2670 #endif
2671 #endif
2672     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2673 
2674     scope_values->append(sv);
2675     return 1;
2676 
2677   } else {
2678     // double-size operands
2679 
2680     ScopeValue* first;
2681     ScopeValue* second;
2682 
2683     if (opr->is_double_stack()) {
2684 #ifdef _LP64
2685       Location loc1;
2686       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2687       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2688         bailout("too large frame");
2689       }
2690       // Does this reverse on x86 vs. sparc?
2691       first =  new LocationValue(loc1);
2692       second = _int_0_scope_value;
2693 #else
2694       Location loc1, loc2;
2695       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2696         bailout("too large frame");
2697       }
2698       first =  new LocationValue(loc1);
2699       second = new LocationValue(loc2);
2700 #endif // _LP64
2701 
2702     } else if (opr->is_double_cpu()) {
2703 #ifdef _LP64
2704       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2705       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2706       second = _int_0_scope_value;
2707 #else
2708       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2709       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2710 
2711       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2712         // lo/hi and swapped relative to first and second, so swap them
2713         VMReg tmp = rname_first;
2714         rname_first = rname_second;
2715         rname_second = tmp;
2716       }
2717 
2718       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2719       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2720 #endif //_LP64
2721 
2722 
2723 #ifdef X86
2724     } else if (opr->is_double_xmm()) {
2725       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2726       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2727 #  ifdef _LP64
2728       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2729       second = _int_0_scope_value;
2730 #  else
2731       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2732       // %%% This is probably a waste but we'll keep things as they were for now
2733       if (true) {
2734         VMReg rname_second = rname_first->next();
2735         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2736       }
2737 #  endif
2738 #endif
2739 
2740     } else if (opr->is_double_fpu()) {
2741       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2742       // the double as float registers in the native ordering. On X86,
2743       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2744       // the low-order word of the double and fpu_regnrLo + 1 is the
2745       // name for the other half.  *first and *second must represent the
2746       // least and most significant words, respectively.
2747 
2748 #ifdef X86
2749       // the exact location of fpu stack values is only known
2750       // during fpu stack allocation, so the stack allocator object
2751       // must be present
2752       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2753       assert(_fpu_stack_allocator != NULL, "must be present");
2754       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2755 
2756       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2757 #endif
2758 #ifdef SPARC
2759       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2760 #endif
2761 #ifdef ARM
2762       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2763 #endif
2764 #ifdef PPC
2765       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2766 #endif
2767 
2768 #ifdef VM_LITTLE_ENDIAN
2769       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2770 #else
2771       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2772 #endif
2773 
2774 #ifdef _LP64
2775       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2776       second = _int_0_scope_value;
2777 #else
2778       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2779       // %%% This is probably a waste but we'll keep things as they were for now
2780       if (true) {
2781         VMReg rname_second = rname_first->next();
2782         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2783       }
2784 #endif
2785 
2786     } else {
2787       ShouldNotReachHere();
2788       first = NULL;
2789       second = NULL;
2790     }
2791 
2792     assert(first != NULL && second != NULL, "must be set");
2793     // The convention the interpreter uses is that the second local
2794     // holds the first raw word of the native double representation.
2795     // This is actually reasonable, since locals and stack arrays
2796     // grow downwards in all implementations.
2797     // (If, on some machine, the interpreter's Java locals or stack
2798     // were to grow upwards, the embedded doubles would be word-swapped.)
2799     scope_values->append(second);
2800     scope_values->append(first);
2801     return 2;
2802   }
2803 }
2804 
2805 
2806 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2807   if (value != NULL) {
2808     LIR_Opr opr = value->operand();
2809     Constant* con = value->as_Constant();
2810 
2811     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2812     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2813 
2814     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2815       // Unpinned constants may have a virtual operand for a part of the lifetime
2816       // or may be illegal when it was optimized away,
2817       // so always use a constant operand
2818       opr = LIR_OprFact::value_type(con->type());
2819     }
2820     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2821 
2822     if (opr->is_virtual()) {
2823       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2824 
2825       BlockBegin* block = block_of_op_with_id(op_id);
2826       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2827         // generating debug information for the last instruction of a block.
2828         // if this instruction is a branch, spill moves are inserted before this branch
2829         // and so the wrong operand would be returned (spill moves at block boundaries are not
2830         // considered in the live ranges of intervals)
2831         // Solution: use the first op_id of the branch target block instead.
2832         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2833           if (block->live_out().at(opr->vreg_number())) {
2834             op_id = block->sux_at(0)->first_lir_instruction_id();
2835             mode = LIR_OpVisitState::outputMode;
2836           }
2837         }
2838       }
2839 
2840       // Get current location of operand
2841       // The operand must be live because debug information is considered when building the intervals
2842       // if the interval is not live, color_lir_opr will cause an assertion failure
2843       opr = color_lir_opr(opr, op_id, mode);
2844       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2845 
2846       // Append to ScopeValue array
2847       return append_scope_value_for_operand(opr, scope_values);
2848 
2849     } else {
2850       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2851       assert(opr->is_constant(), "operand must be constant");
2852 
2853       return append_scope_value_for_constant(opr, scope_values);
2854     }
2855   } else {
2856     // append a dummy value because real value not needed
2857     scope_values->append(_illegal_value);
2858     return 1;
2859   }
2860 }
2861 
2862 
2863 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2864   IRScopeDebugInfo* caller_debug_info = NULL;
2865 
2866   ValueStack* caller_state = cur_state->caller_state();
2867   if (caller_state != NULL) {
2868     // process recursively to compute outermost scope first
2869     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2870   }
2871 
2872   // initialize these to null.
2873   // If we don't need deopt info or there are no locals, expressions or monitors,
2874   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2875   GrowableArray<ScopeValue*>*   locals      = NULL;
2876   GrowableArray<ScopeValue*>*   expressions = NULL;
2877   GrowableArray<MonitorValue*>* monitors    = NULL;
2878 
2879   // describe local variable values
2880   int nof_locals = cur_state->locals_size();
2881   if (nof_locals > 0) {
2882     locals = new GrowableArray<ScopeValue*>(nof_locals);
2883 
2884     int pos = 0;
2885     while (pos < nof_locals) {
2886       assert(pos < cur_state->locals_size(), "why not?");
2887 
2888       Value local = cur_state->local_at(pos);
2889       pos += append_scope_value(op_id, local, locals);
2890 
2891       assert(locals->length() == pos, "must match");
2892     }
2893     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2894     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2895   } else if (cur_scope->method()->max_locals() > 0) {
2896     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2897     nof_locals = cur_scope->method()->max_locals();
2898     locals = new GrowableArray<ScopeValue*>(nof_locals);
2899     for(int i = 0; i < nof_locals; i++) {
2900       locals->append(_illegal_value);
2901     }
2902   }
2903 
2904   // describe expression stack
2905   int nof_stack = cur_state->stack_size();
2906   if (nof_stack > 0) {
2907     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2908 
2909     int pos = 0;
2910     while (pos < nof_stack) {
2911       Value expression = cur_state->stack_at_inc(pos);
2912       append_scope_value(op_id, expression, expressions);
2913 
2914       assert(expressions->length() == pos, "must match");
2915     }
2916     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2917   }
2918 
2919   // describe monitors
2920   int nof_locks = cur_state->locks_size();
2921   if (nof_locks > 0) {
2922     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2923     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2924     for (int i = 0; i < nof_locks; i++) {
2925       monitors->append(location_for_monitor_index(lock_offset + i));
2926     }
2927   }
2928 
2929   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2930 }
2931 
2932 
2933 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2934   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2935 
2936   IRScope* innermost_scope = info->scope();
2937   ValueStack* innermost_state = info->stack();
2938 
2939   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2940 
2941   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2942 
2943   if (info->_scope_debug_info == NULL) {
2944     // compute debug information
2945     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2946   } else {
2947     // debug information already set. Check that it is correct from the current point of view
2948     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2949   }
2950 }
2951 
2952 
2953 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2954   LIR_OpVisitState visitor;
2955   int num_inst = instructions->length();
2956   bool has_dead = false;
2957 
2958   for (int j = 0; j < num_inst; j++) {
2959     LIR_Op* op = instructions->at(j);
2960     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2961       has_dead = true;
2962       continue;
2963     }
2964     int op_id = op->id();
2965 
2966     // visit instruction to get list of operands
2967     visitor.visit(op);
2968 
2969     // iterate all modes of the visitor and process all virtual operands
2970     for_each_visitor_mode(mode) {
2971       int n = visitor.opr_count(mode);
2972       for (int k = 0; k < n; k++) {
2973         LIR_Opr opr = visitor.opr_at(mode, k);
2974         if (opr->is_virtual_register()) {
2975           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2976         }
2977       }
2978     }
2979 
2980     if (visitor.info_count() > 0) {
2981       // exception handling
2982       if (compilation()->has_exception_handlers()) {
2983         XHandlers* xhandlers = visitor.all_xhandler();
2984         int n = xhandlers->length();
2985         for (int k = 0; k < n; k++) {
2986           XHandler* handler = xhandlers->handler_at(k);
2987           if (handler->entry_code() != NULL) {
2988             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2989           }
2990         }
2991       } else {
2992         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2993       }
2994 
2995       // compute oop map
2996       assert(iw != NULL, "needed for compute_oop_map");
2997       compute_oop_map(iw, visitor, op);
2998 
2999       // compute debug information
3000       if (!use_fpu_stack_allocation()) {
3001         // compute debug information if fpu stack allocation is not needed.
3002         // when fpu stack allocation is needed, the debug information can not
3003         // be computed here because the exact location of fpu operands is not known
3004         // -> debug information is created inside the fpu stack allocator
3005         int n = visitor.info_count();
3006         for (int k = 0; k < n; k++) {
3007           compute_debug_info(visitor.info_at(k), op_id);
3008         }
3009       }
3010     }
3011 
3012 #ifdef ASSERT
3013     // make sure we haven't made the op invalid.
3014     op->verify();
3015 #endif
3016 
3017     // remove useless moves
3018     if (op->code() == lir_move) {
3019       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
3020       LIR_Op1* move = (LIR_Op1*)op;
3021       LIR_Opr src = move->in_opr();
3022       LIR_Opr dst = move->result_opr();
3023       if (dst == src ||
3024           !dst->is_pointer() && !src->is_pointer() &&
3025           src->is_same_register(dst)) {
3026         instructions->at_put(j, NULL);
3027         has_dead = true;
3028       }
3029     }
3030   }
3031 
3032   if (has_dead) {
3033     // iterate all instructions of the block and remove all null-values.
3034     int insert_point = 0;
3035     for (int j = 0; j < num_inst; j++) {
3036       LIR_Op* op = instructions->at(j);
3037       if (op != NULL) {
3038         if (insert_point != j) {
3039           instructions->at_put(insert_point, op);
3040         }
3041         insert_point++;
3042       }
3043     }
3044     instructions->truncate(insert_point);
3045   }
3046 }
3047 
3048 void LinearScan::assign_reg_num() {
3049   TIME_LINEAR_SCAN(timer_assign_reg_num);
3050 
3051   init_compute_debug_info();
3052   IntervalWalker* iw = init_compute_oop_maps();
3053 
3054   int num_blocks = block_count();
3055   for (int i = 0; i < num_blocks; i++) {
3056     BlockBegin* block = block_at(i);
3057     assign_reg_num(block->lir()->instructions_list(), iw);
3058   }
3059 }
3060 
3061 
3062 void LinearScan::do_linear_scan() {
3063   NOT_PRODUCT(_total_timer.begin_method());
3064 
3065   number_instructions();
3066 
3067   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3068 
3069   compute_local_live_sets();
3070   compute_global_live_sets();
3071   CHECK_BAILOUT();
3072 
3073   build_intervals();
3074   CHECK_BAILOUT();
3075   sort_intervals_before_allocation();
3076 
3077   NOT_PRODUCT(print_intervals("Before Register Allocation"));
3078   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3079 
3080   allocate_registers();
3081   CHECK_BAILOUT();
3082 
3083   resolve_data_flow();
3084   if (compilation()->has_exception_handlers()) {
3085     resolve_exception_handlers();
3086   }
3087   // fill in number of spill slots into frame_map
3088   propagate_spill_slots();
3089   CHECK_BAILOUT();
3090 
3091   NOT_PRODUCT(print_intervals("After Register Allocation"));
3092   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3093 
3094   sort_intervals_after_allocation();
3095 
3096   DEBUG_ONLY(verify());
3097 
3098   eliminate_spill_moves();
3099   assign_reg_num();
3100   CHECK_BAILOUT();
3101 
3102   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3103   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3104 
3105   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3106 
3107     if (use_fpu_stack_allocation()) {
3108       allocate_fpu_stack(); // Only has effect on Intel
3109       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3110     }
3111   }
3112 
3113   { TIME_LINEAR_SCAN(timer_optimize_lir);
3114 
3115     EdgeMoveOptimizer::optimize(ir()->code());
3116     ControlFlowOptimizer::optimize(ir()->code());
3117     // check that cfg is still correct after optimizations
3118     ir()->verify();
3119   }
3120 
3121   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3122   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3123   NOT_PRODUCT(_total_timer.end_method(this));
3124 }
3125 
3126 
3127 // ********** Printing functions
3128 
3129 #ifndef PRODUCT
3130 
3131 void LinearScan::print_timers(double total) {
3132   _total_timer.print(total);
3133 }
3134 
3135 void LinearScan::print_statistics() {
3136   _stat_before_alloc.print("before allocation");
3137   _stat_after_asign.print("after assignment of register");
3138   _stat_final.print("after optimization");
3139 }
3140 
3141 void LinearScan::print_bitmap(BitMap& b) {
3142   for (unsigned int i = 0; i < b.size(); i++) {
3143     if (b.at(i)) tty->print("%d ", i);
3144   }
3145   tty->cr();
3146 }
3147 
3148 void LinearScan::print_intervals(const char* label) {
3149   if (TraceLinearScanLevel >= 1) {
3150     int i;
3151     tty->cr();
3152     tty->print_cr("%s", label);
3153 
3154     for (i = 0; i < interval_count(); i++) {
3155       Interval* interval = interval_at(i);
3156       if (interval != NULL) {
3157         interval->print();
3158       }
3159     }
3160 
3161     tty->cr();
3162     tty->print_cr("--- Basic Blocks ---");
3163     for (i = 0; i < block_count(); i++) {
3164       BlockBegin* block = block_at(i);
3165       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3166     }
3167     tty->cr();
3168     tty->cr();
3169   }
3170 
3171   if (PrintCFGToFile) {
3172     CFGPrinter::print_intervals(&_intervals, label);
3173   }
3174 }
3175 
3176 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3177   if (TraceLinearScanLevel >= level) {
3178     tty->cr();
3179     tty->print_cr("%s", label);
3180     print_LIR(ir()->linear_scan_order());
3181     tty->cr();
3182   }
3183 
3184   if (level == 1 && PrintCFGToFile) {
3185     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3186   }
3187 }
3188 
3189 #endif //PRODUCT
3190 
3191 
3192 // ********** verification functions for allocation
3193 // (check that all intervals have a correct register and that no registers are overwritten)
3194 #ifdef ASSERT
3195 
3196 void LinearScan::verify() {
3197   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3198   verify_intervals();
3199 
3200   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3201   verify_no_oops_in_fixed_intervals();
3202 
3203   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3204   verify_constants();
3205 
3206   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3207   verify_registers();
3208 
3209   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3210 }
3211 
3212 void LinearScan::verify_intervals() {
3213   int len = interval_count();
3214   bool has_error = false;
3215 
3216   for (int i = 0; i < len; i++) {
3217     Interval* i1 = interval_at(i);
3218     if (i1 == NULL) continue;
3219 
3220     i1->check_split_children();
3221 
3222     if (i1->reg_num() != i) {
3223       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3224       has_error = true;
3225     }
3226 
3227     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3228       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3229       has_error = true;
3230     }
3231 
3232     if (i1->assigned_reg() == any_reg) {
3233       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3234       has_error = true;
3235     }
3236 
3237     if (i1->assigned_reg() == i1->assigned_regHi()) {
3238       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3239       has_error = true;
3240     }
3241 
3242     if (!is_processed_reg_num(i1->assigned_reg())) {
3243       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3244       has_error = true;
3245     }
3246 
3247     if (i1->first() == Range::end()) {
3248       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3249       has_error = true;
3250     }
3251 
3252     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3253       if (r->from() >= r->to()) {
3254         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3255         has_error = true;
3256       }
3257     }
3258 
3259     for (int j = i + 1; j < len; j++) {
3260       Interval* i2 = interval_at(j);
3261       if (i2 == NULL) continue;
3262 
3263       // special intervals that are created in MoveResolver
3264       // -> ignore them because the range information has no meaning there
3265       if (i1->from() == 1 && i1->to() == 2) continue;
3266       if (i2->from() == 1 && i2->to() == 2) continue;
3267 
3268       int r1 = i1->assigned_reg();
3269       int r1Hi = i1->assigned_regHi();
3270       int r2 = i2->assigned_reg();
3271       int r2Hi = i2->assigned_regHi();
3272       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3273         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3274         i1->print(); tty->cr();
3275         i2->print(); tty->cr();
3276         has_error = true;
3277       }
3278     }
3279   }
3280 
3281   assert(has_error == false, "register allocation invalid");
3282 }
3283 
3284 
3285 void LinearScan::verify_no_oops_in_fixed_intervals() {
3286   Interval* fixed_intervals;
3287   Interval* other_intervals;
3288   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3289 
3290   // to ensure a walking until the last instruction id, add a dummy interval
3291   // with a high operation id
3292   other_intervals = new Interval(any_reg);
3293   other_intervals->add_range(max_jint - 2, max_jint - 1);
3294   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3295 
3296   LIR_OpVisitState visitor;
3297   for (int i = 0; i < block_count(); i++) {
3298     BlockBegin* block = block_at(i);
3299 
3300     LIR_OpList* instructions = block->lir()->instructions_list();
3301 
3302     for (int j = 0; j < instructions->length(); j++) {
3303       LIR_Op* op = instructions->at(j);
3304       int op_id = op->id();
3305 
3306       visitor.visit(op);
3307 
3308       if (visitor.info_count() > 0) {
3309         iw->walk_before(op->id());
3310         bool check_live = true;
3311         if (op->code() == lir_move) {
3312           LIR_Op1* move = (LIR_Op1*)op;
3313           check_live = (move->patch_code() == lir_patch_none);
3314         }
3315         LIR_OpBranch* branch = op->as_OpBranch();
3316         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3317           // Don't bother checking the stub in this case since the
3318           // exception stub will never return to normal control flow.
3319           check_live = false;
3320         }
3321 
3322         // Make sure none of the fixed registers is live across an
3323         // oopmap since we can't handle that correctly.
3324         if (check_live) {
3325           for (Interval* interval = iw->active_first(fixedKind);
3326                interval != Interval::end();
3327                interval = interval->next()) {
3328             if (interval->current_to() > op->id() + 1) {
3329               // This interval is live out of this op so make sure
3330               // that this interval represents some value that's
3331               // referenced by this op either as an input or output.
3332               bool ok = false;
3333               for_each_visitor_mode(mode) {
3334                 int n = visitor.opr_count(mode);
3335                 for (int k = 0; k < n; k++) {
3336                   LIR_Opr opr = visitor.opr_at(mode, k);
3337                   if (opr->is_fixed_cpu()) {
3338                     if (interval_at(reg_num(opr)) == interval) {
3339                       ok = true;
3340                       break;
3341                     }
3342                     int hi = reg_numHi(opr);
3343                     if (hi != -1 && interval_at(hi) == interval) {
3344                       ok = true;
3345                       break;
3346                     }
3347                   }
3348                 }
3349               }
3350               assert(ok, "fixed intervals should never be live across an oopmap point");
3351             }
3352           }
3353         }
3354       }
3355 
3356       // oop-maps at calls do not contain registers, so check is not needed
3357       if (!visitor.has_call()) {
3358 
3359         for_each_visitor_mode(mode) {
3360           int n = visitor.opr_count(mode);
3361           for (int k = 0; k < n; k++) {
3362             LIR_Opr opr = visitor.opr_at(mode, k);
3363 
3364             if (opr->is_fixed_cpu() && opr->is_oop()) {
3365               // operand is a non-virtual cpu register and contains an oop
3366               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3367 
3368               Interval* interval = interval_at(reg_num(opr));
3369               assert(interval != NULL, "no interval");
3370 
3371               if (mode == LIR_OpVisitState::inputMode) {
3372                 if (interval->to() >= op_id + 1) {
3373                   assert(interval->to() < op_id + 2 ||
3374                          interval->has_hole_between(op_id, op_id + 2),
3375                          "oop input operand live after instruction");
3376                 }
3377               } else if (mode == LIR_OpVisitState::outputMode) {
3378                 if (interval->from() <= op_id - 1) {
3379                   assert(interval->has_hole_between(op_id - 1, op_id),
3380                          "oop input operand live after instruction");
3381                 }
3382               }
3383             }
3384           }
3385         }
3386       }
3387     }
3388   }
3389 }
3390 
3391 
3392 void LinearScan::verify_constants() {
3393   int num_regs = num_virtual_regs();
3394   int size = live_set_size();
3395   int num_blocks = block_count();
3396 
3397   for (int i = 0; i < num_blocks; i++) {
3398     BlockBegin* block = block_at(i);
3399     BitMap live_at_edge = block->live_in();
3400 
3401     // visit all registers where the live_at_edge bit is set
3402     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3403       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3404 
3405       Value value = gen()->instruction_for_vreg(r);
3406 
3407       assert(value != NULL, "all intervals live across block boundaries must have Value");
3408       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3409       assert(value->operand()->vreg_number() == r, "register number must match");
3410       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3411     }
3412   }
3413 }
3414 
3415 
3416 class RegisterVerifier: public StackObj {
3417  private:
3418   LinearScan*   _allocator;
3419   BlockList     _work_list;      // all blocks that must be processed
3420   IntervalsList _saved_states;   // saved information of previous check
3421 
3422   // simplified access to methods of LinearScan
3423   Compilation*  compilation() const              { return _allocator->compilation(); }
3424   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3425   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3426 
3427   // currently, only registers are processed
3428   int           state_size()                     { return LinearScan::nof_regs; }
3429 
3430   // accessors
3431   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3432   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3433   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3434 
3435   // helper functions
3436   IntervalList* copy(IntervalList* input_state);
3437   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3438   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3439 
3440   void process_block(BlockBegin* block);
3441   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3442   void process_successor(BlockBegin* block, IntervalList* input_state);
3443   void process_operations(LIR_List* ops, IntervalList* input_state);
3444 
3445  public:
3446   RegisterVerifier(LinearScan* allocator)
3447     : _allocator(allocator)
3448     , _work_list(16)
3449     , _saved_states(BlockBegin::number_of_blocks(), NULL)
3450   { }
3451 
3452   void verify(BlockBegin* start);
3453 };
3454 
3455 
3456 // entry function from LinearScan that starts the verification
3457 void LinearScan::verify_registers() {
3458   RegisterVerifier verifier(this);
3459   verifier.verify(block_at(0));
3460 }
3461 
3462 
3463 void RegisterVerifier::verify(BlockBegin* start) {
3464   // setup input registers (method arguments) for first block
3465   IntervalList* input_state = new IntervalList(state_size(), NULL);
3466   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3467   for (int n = 0; n < args->length(); n++) {
3468     LIR_Opr opr = args->at(n);
3469     if (opr->is_register()) {
3470       Interval* interval = interval_at(reg_num(opr));
3471 
3472       if (interval->assigned_reg() < state_size()) {
3473         input_state->at_put(interval->assigned_reg(), interval);
3474       }
3475       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3476         input_state->at_put(interval->assigned_regHi(), interval);
3477       }
3478     }
3479   }
3480 
3481   set_state_for_block(start, input_state);
3482   add_to_work_list(start);
3483 
3484   // main loop for verification
3485   do {
3486     BlockBegin* block = _work_list.at(0);
3487     _work_list.remove_at(0);
3488 
3489     process_block(block);
3490   } while (!_work_list.is_empty());
3491 }
3492 
3493 void RegisterVerifier::process_block(BlockBegin* block) {
3494   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3495 
3496   // must copy state because it is modified
3497   IntervalList* input_state = copy(state_for_block(block));
3498 
3499   if (TraceLinearScanLevel >= 4) {
3500     tty->print_cr("Input-State of intervals:");
3501     tty->print("    ");
3502     for (int i = 0; i < state_size(); i++) {
3503       if (input_state->at(i) != NULL) {
3504         tty->print(" %4d", input_state->at(i)->reg_num());
3505       } else {
3506         tty->print("   __");
3507       }
3508     }
3509     tty->cr();
3510     tty->cr();
3511   }
3512 
3513   // process all operations of the block
3514   process_operations(block->lir(), input_state);
3515 
3516   // iterate all successors
3517   for (int i = 0; i < block->number_of_sux(); i++) {
3518     process_successor(block->sux_at(i), input_state);
3519   }
3520 }
3521 
3522 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3523   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3524 
3525   // must copy state because it is modified
3526   input_state = copy(input_state);
3527 
3528   if (xhandler->entry_code() != NULL) {
3529     process_operations(xhandler->entry_code(), input_state);
3530   }
3531   process_successor(xhandler->entry_block(), input_state);
3532 }
3533 
3534 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3535   IntervalList* saved_state = state_for_block(block);
3536 
3537   if (saved_state != NULL) {
3538     // this block was already processed before.
3539     // check if new input_state is consistent with saved_state
3540 
3541     bool saved_state_correct = true;
3542     for (int i = 0; i < state_size(); i++) {
3543       if (input_state->at(i) != saved_state->at(i)) {
3544         // current input_state and previous saved_state assume a different
3545         // interval in this register -> assume that this register is invalid
3546         if (saved_state->at(i) != NULL) {
3547           // invalidate old calculation only if it assumed that
3548           // register was valid. when the register was already invalid,
3549           // then the old calculation was correct.
3550           saved_state_correct = false;
3551           saved_state->at_put(i, NULL);
3552 
3553           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3554         }
3555       }
3556     }
3557 
3558     if (saved_state_correct) {
3559       // already processed block with correct input_state
3560       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3561     } else {
3562       // must re-visit this block
3563       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3564       add_to_work_list(block);
3565     }
3566 
3567   } else {
3568     // block was not processed before, so set initial input_state
3569     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3570 
3571     set_state_for_block(block, copy(input_state));
3572     add_to_work_list(block);
3573   }
3574 }
3575 
3576 
3577 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3578   IntervalList* copy_state = new IntervalList(input_state->length());
3579   copy_state->push_all(input_state);
3580   return copy_state;
3581 }
3582 
3583 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3584   if (reg != LinearScan::any_reg && reg < state_size()) {
3585     if (interval != NULL) {
3586       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3587     } else if (input_state->at(reg) != NULL) {
3588       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3589     }
3590 
3591     input_state->at_put(reg, interval);
3592   }
3593 }
3594 
3595 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3596   if (reg != LinearScan::any_reg && reg < state_size()) {
3597     if (input_state->at(reg) != interval) {
3598       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3599       return true;
3600     }
3601   }
3602   return false;
3603 }
3604 
3605 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3606   // visit all instructions of the block
3607   LIR_OpVisitState visitor;
3608   bool has_error = false;
3609 
3610   for (int i = 0; i < ops->length(); i++) {
3611     LIR_Op* op = ops->at(i);
3612     visitor.visit(op);
3613 
3614     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3615 
3616     // check if input operands are correct
3617     int j;
3618     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3619     for (j = 0; j < n; j++) {
3620       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3621       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3622         Interval* interval = interval_at(reg_num(opr));
3623         if (op->id() != -1) {
3624           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3625         }
3626 
3627         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3628         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3629 
3630         // When an operand is marked with is_last_use, then the fpu stack allocator
3631         // removes the register from the fpu stack -> the register contains no value
3632         if (opr->is_last_use()) {
3633           state_put(input_state, interval->assigned_reg(),   NULL);
3634           state_put(input_state, interval->assigned_regHi(), NULL);
3635         }
3636       }
3637     }
3638 
3639     // invalidate all caller save registers at calls
3640     if (visitor.has_call()) {
3641       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3642         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3643       }
3644       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3645         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3646       }
3647 
3648 #ifdef X86
3649       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3650         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3651       }
3652 #endif
3653     }
3654 
3655     // process xhandler before output and temp operands
3656     XHandlers* xhandlers = visitor.all_xhandler();
3657     n = xhandlers->length();
3658     for (int k = 0; k < n; k++) {
3659       process_xhandler(xhandlers->handler_at(k), input_state);
3660     }
3661 
3662     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3663     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3664     for (j = 0; j < n; j++) {
3665       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3666       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3667         Interval* interval = interval_at(reg_num(opr));
3668         if (op->id() != -1) {
3669           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3670         }
3671 
3672         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3673         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3674       }
3675     }
3676 
3677     // set output operands
3678     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3679     for (j = 0; j < n; j++) {
3680       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3681       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3682         Interval* interval = interval_at(reg_num(opr));
3683         if (op->id() != -1) {
3684           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3685         }
3686 
3687         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3688         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3689       }
3690     }
3691   }
3692   assert(has_error == false, "Error in register allocation");
3693 }
3694 
3695 #endif // ASSERT
3696 
3697 
3698 
3699 // **** Implementation of MoveResolver ******************************
3700 
3701 MoveResolver::MoveResolver(LinearScan* allocator) :
3702   _allocator(allocator),
3703   _multiple_reads_allowed(false),
3704   _mapping_from(8),
3705   _mapping_from_opr(8),
3706   _mapping_to(8),
3707   _insert_list(NULL),
3708   _insert_idx(-1),
3709   _insertion_buffer()
3710 {
3711   for (int i = 0; i < LinearScan::nof_regs; i++) {
3712     _register_blocked[i] = 0;
3713   }
3714   DEBUG_ONLY(check_empty());
3715 }
3716 
3717 
3718 #ifdef ASSERT
3719 
3720 void MoveResolver::check_empty() {
3721   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3722   for (int i = 0; i < LinearScan::nof_regs; i++) {
3723     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3724   }
3725   assert(_multiple_reads_allowed == false, "must have default value");
3726 }
3727 
3728 void MoveResolver::verify_before_resolve() {
3729   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3730   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3731   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3732 
3733   int i, j;
3734   if (!_multiple_reads_allowed) {
3735     for (i = 0; i < _mapping_from.length(); i++) {
3736       for (j = i + 1; j < _mapping_from.length(); j++) {
3737         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3738       }
3739     }
3740   }
3741 
3742   for (i = 0; i < _mapping_to.length(); i++) {
3743     for (j = i + 1; j < _mapping_to.length(); j++) {
3744       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3745     }
3746   }
3747 
3748 
3749   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3750   used_regs.clear();
3751   if (!_multiple_reads_allowed) {
3752     for (i = 0; i < _mapping_from.length(); i++) {
3753       Interval* it = _mapping_from.at(i);
3754       if (it != NULL) {
3755         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3756         used_regs.set_bit(it->assigned_reg());
3757 
3758         if (it->assigned_regHi() != LinearScan::any_reg) {
3759           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3760           used_regs.set_bit(it->assigned_regHi());
3761         }
3762       }
3763     }
3764   }
3765 
3766   used_regs.clear();
3767   for (i = 0; i < _mapping_to.length(); i++) {
3768     Interval* it = _mapping_to.at(i);
3769     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3770     used_regs.set_bit(it->assigned_reg());
3771 
3772     if (it->assigned_regHi() != LinearScan::any_reg) {
3773       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3774       used_regs.set_bit(it->assigned_regHi());
3775     }
3776   }
3777 
3778   used_regs.clear();
3779   for (i = 0; i < _mapping_from.length(); i++) {
3780     Interval* it = _mapping_from.at(i);
3781     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3782       used_regs.set_bit(it->assigned_reg());
3783     }
3784   }
3785   for (i = 0; i < _mapping_to.length(); i++) {
3786     Interval* it = _mapping_to.at(i);
3787     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3788   }
3789 }
3790 
3791 #endif // ASSERT
3792 
3793 
3794 // mark assigned_reg and assigned_regHi of the interval as blocked
3795 void MoveResolver::block_registers(Interval* it) {
3796   int reg = it->assigned_reg();
3797   if (reg < LinearScan::nof_regs) {
3798     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3799     set_register_blocked(reg, 1);
3800   }
3801   reg = it->assigned_regHi();
3802   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3803     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3804     set_register_blocked(reg, 1);
3805   }
3806 }
3807 
3808 // mark assigned_reg and assigned_regHi of the interval as unblocked
3809 void MoveResolver::unblock_registers(Interval* it) {
3810   int reg = it->assigned_reg();
3811   if (reg < LinearScan::nof_regs) {
3812     assert(register_blocked(reg) > 0, "register already marked as unused");
3813     set_register_blocked(reg, -1);
3814   }
3815   reg = it->assigned_regHi();
3816   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3817     assert(register_blocked(reg) > 0, "register already marked as unused");
3818     set_register_blocked(reg, -1);
3819   }
3820 }
3821 
3822 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3823 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3824   int from_reg = -1;
3825   int from_regHi = -1;
3826   if (from != NULL) {
3827     from_reg = from->assigned_reg();
3828     from_regHi = from->assigned_regHi();
3829   }
3830 
3831   int reg = to->assigned_reg();
3832   if (reg < LinearScan::nof_regs) {
3833     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3834       return false;
3835     }
3836   }
3837   reg = to->assigned_regHi();
3838   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3839     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3840       return false;
3841     }
3842   }
3843 
3844   return true;
3845 }
3846 
3847 
3848 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3849   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3850   _insertion_buffer.init(list);
3851 }
3852 
3853 void MoveResolver::append_insertion_buffer() {
3854   if (_insertion_buffer.initialized()) {
3855     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3856   }
3857   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3858 
3859   _insert_list = NULL;
3860   _insert_idx = -1;
3861 }
3862 
3863 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3864   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3865   assert(from_interval->type() == to_interval->type(), "move between different types");
3866   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3867   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3868 
3869   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3870   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3871 
3872   if (!_multiple_reads_allowed) {
3873     // the last_use flag is an optimization for FPU stack allocation. When the same
3874     // input interval is used in more than one move, then it is too difficult to determine
3875     // if this move is really the last use.
3876     from_opr = from_opr->make_last_use();
3877   }
3878   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3879 
3880   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3881 }
3882 
3883 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3884   assert(from_opr->type() == to_interval->type(), "move between different types");
3885   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3886   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3887 
3888   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3889   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3890 
3891   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3892 }
3893 
3894 
3895 void MoveResolver::resolve_mappings() {
3896   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3897   DEBUG_ONLY(verify_before_resolve());
3898 
3899   // Block all registers that are used as input operands of a move.
3900   // When a register is blocked, no move to this register is emitted.
3901   // This is necessary for detecting cycles in moves.
3902   int i;
3903   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3904     Interval* from_interval = _mapping_from.at(i);
3905     if (from_interval != NULL) {
3906       block_registers(from_interval);
3907     }
3908   }
3909 
3910   int spill_candidate = -1;
3911   while (_mapping_from.length() > 0) {
3912     bool processed_interval = false;
3913 
3914     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3915       Interval* from_interval = _mapping_from.at(i);
3916       Interval* to_interval = _mapping_to.at(i);
3917 
3918       if (save_to_process_move(from_interval, to_interval)) {
3919         // this inverval can be processed because target is free
3920         if (from_interval != NULL) {
3921           insert_move(from_interval, to_interval);
3922           unblock_registers(from_interval);
3923         } else {
3924           insert_move(_mapping_from_opr.at(i), to_interval);
3925         }
3926         _mapping_from.remove_at(i);
3927         _mapping_from_opr.remove_at(i);
3928         _mapping_to.remove_at(i);
3929 
3930         processed_interval = true;
3931       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3932         // this interval cannot be processed now because target is not free
3933         // it starts in a register, so it is a possible candidate for spilling
3934         spill_candidate = i;
3935       }
3936     }
3937 
3938     if (!processed_interval) {
3939       // no move could be processed because there is a cycle in the move list
3940       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3941       assert(spill_candidate != -1, "no interval in register for spilling found");
3942 
3943       // create a new spill interval and assign a stack slot to it
3944       Interval* from_interval = _mapping_from.at(spill_candidate);
3945       Interval* spill_interval = new Interval(-1);
3946       spill_interval->set_type(from_interval->type());
3947 
3948       // add a dummy range because real position is difficult to calculate
3949       // Note: this range is a special case when the integrity of the allocation is checked
3950       spill_interval->add_range(1, 2);
3951 
3952       //       do not allocate a new spill slot for temporary interval, but
3953       //       use spill slot assigned to from_interval. Otherwise moves from
3954       //       one stack slot to another can happen (not allowed by LIR_Assembler
3955       int spill_slot = from_interval->canonical_spill_slot();
3956       if (spill_slot < 0) {
3957         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3958         from_interval->set_canonical_spill_slot(spill_slot);
3959       }
3960       spill_interval->assign_reg(spill_slot);
3961       allocator()->append_interval(spill_interval);
3962 
3963       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3964 
3965       // insert a move from register to stack and update the mapping
3966       insert_move(from_interval, spill_interval);
3967       _mapping_from.at_put(spill_candidate, spill_interval);
3968       unblock_registers(from_interval);
3969     }
3970   }
3971 
3972   // reset to default value
3973   _multiple_reads_allowed = false;
3974 
3975   // check that all intervals have been processed
3976   DEBUG_ONLY(check_empty());
3977 }
3978 
3979 
3980 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3981   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3982   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3983 
3984   create_insertion_buffer(insert_list);
3985   _insert_list = insert_list;
3986   _insert_idx = insert_idx;
3987 }
3988 
3989 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3990   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3991 
3992   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3993     // insert position changed -> resolve current mappings
3994     resolve_mappings();
3995   }
3996 
3997   if (insert_list != _insert_list) {
3998     // block changed -> append insertion_buffer because it is
3999     // bound to a specific block and create a new insertion_buffer
4000     append_insertion_buffer();
4001     create_insertion_buffer(insert_list);
4002   }
4003 
4004   _insert_list = insert_list;
4005   _insert_idx = insert_idx;
4006 }
4007 
4008 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
4009   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4010 
4011   _mapping_from.append(from_interval);
4012   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
4013   _mapping_to.append(to_interval);
4014 }
4015 
4016 
4017 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
4018   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4019   assert(from_opr->is_constant(), "only for constants");
4020 
4021   _mapping_from.append(NULL);
4022   _mapping_from_opr.append(from_opr);
4023   _mapping_to.append(to_interval);
4024 }
4025 
4026 void MoveResolver::resolve_and_append_moves() {
4027   if (has_mappings()) {
4028     resolve_mappings();
4029   }
4030   append_insertion_buffer();
4031 }
4032 
4033 
4034 
4035 // **** Implementation of Range *************************************
4036 
4037 Range::Range(int from, int to, Range* next) :
4038   _from(from),
4039   _to(to),
4040   _next(next)
4041 {
4042 }
4043 
4044 // initialize sentinel
4045 Range* Range::_end = NULL;
4046 void Range::initialize(Arena* arena) {
4047   _end = new (arena) Range(max_jint, max_jint, NULL);
4048 }
4049 
4050 int Range::intersects_at(Range* r2) const {
4051   const Range* r1 = this;
4052 
4053   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4054   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4055 
4056   do {
4057     if (r1->from() < r2->from()) {
4058       if (r1->to() <= r2->from()) {
4059         r1 = r1->next(); if (r1 == _end) return -1;
4060       } else {
4061         return r2->from();
4062       }
4063     } else if (r2->from() < r1->from()) {
4064       if (r2->to() <= r1->from()) {
4065         r2 = r2->next(); if (r2 == _end) return -1;
4066       } else {
4067         return r1->from();
4068       }
4069     } else { // r1->from() == r2->from()
4070       if (r1->from() == r1->to()) {
4071         r1 = r1->next(); if (r1 == _end) return -1;
4072       } else if (r2->from() == r2->to()) {
4073         r2 = r2->next(); if (r2 == _end) return -1;
4074       } else {
4075         return r1->from();
4076       }
4077     }
4078   } while (true);
4079 }
4080 
4081 #ifndef PRODUCT
4082 void Range::print(outputStream* out) const {
4083   out->print("[%d, %d[ ", _from, _to);
4084 }
4085 #endif
4086 
4087 
4088 
4089 // **** Implementation of Interval **********************************
4090 
4091 // initialize sentinel
4092 Interval* Interval::_end = NULL;
4093 void Interval::initialize(Arena* arena) {
4094   Range::initialize(arena);
4095   _end = new (arena) Interval(-1);
4096 }
4097 
4098 Interval::Interval(int reg_num) :
4099   _reg_num(reg_num),
4100   _type(T_ILLEGAL),
4101   _first(Range::end()),
4102   _use_pos_and_kinds(12),
4103   _current(Range::end()),
4104   _next(_end),
4105   _state(invalidState),
4106   _assigned_reg(LinearScan::any_reg),
4107   _assigned_regHi(LinearScan::any_reg),
4108   _cached_to(-1),
4109   _cached_opr(LIR_OprFact::illegalOpr),
4110   _cached_vm_reg(VMRegImpl::Bad()),
4111   _split_children(0),
4112   _canonical_spill_slot(-1),
4113   _insert_move_when_activated(false),
4114   _register_hint(NULL),
4115   _spill_state(noDefinitionFound),
4116   _spill_definition_pos(-1)
4117 {
4118   _split_parent = this;
4119   _current_split_child = this;
4120 }
4121 
4122 int Interval::calc_to() {
4123   assert(_first != Range::end(), "interval has no range");
4124 
4125   Range* r = _first;
4126   while (r->next() != Range::end()) {
4127     r = r->next();
4128   }
4129   return r->to();
4130 }
4131 
4132 
4133 #ifdef ASSERT
4134 // consistency check of split-children
4135 void Interval::check_split_children() {
4136   if (_split_children.length() > 0) {
4137     assert(is_split_parent(), "only split parents can have children");
4138 
4139     for (int i = 0; i < _split_children.length(); i++) {
4140       Interval* i1 = _split_children.at(i);
4141 
4142       assert(i1->split_parent() == this, "not a split child of this interval");
4143       assert(i1->type() == type(), "must be equal for all split children");
4144       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4145 
4146       for (int j = i + 1; j < _split_children.length(); j++) {
4147         Interval* i2 = _split_children.at(j);
4148 
4149         assert(i1->reg_num() != i2->reg_num(), "same register number");
4150 
4151         if (i1->from() < i2->from()) {
4152           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4153         } else {
4154           assert(i2->from() < i1->from(), "intervals start at same op_id");
4155           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4156         }
4157       }
4158     }
4159   }
4160 }
4161 #endif // ASSERT
4162 
4163 Interval* Interval::register_hint(bool search_split_child) const {
4164   if (!search_split_child) {
4165     return _register_hint;
4166   }
4167 
4168   if (_register_hint != NULL) {
4169     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4170 
4171     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4172       return _register_hint;
4173 
4174     } else if (_register_hint->_split_children.length() > 0) {
4175       // search the first split child that has a register assigned
4176       int len = _register_hint->_split_children.length();
4177       for (int i = 0; i < len; i++) {
4178         Interval* cur = _register_hint->_split_children.at(i);
4179 
4180         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4181           return cur;
4182         }
4183       }
4184     }
4185   }
4186 
4187   // no hint interval found that has a register assigned
4188   return NULL;
4189 }
4190 
4191 
4192 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4193   assert(is_split_parent(), "can only be called for split parents");
4194   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4195 
4196   Interval* result;
4197   if (_split_children.length() == 0) {
4198     result = this;
4199   } else {
4200     result = NULL;
4201     int len = _split_children.length();
4202 
4203     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4204     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4205 
4206     int i;
4207     for (i = 0; i < len; i++) {
4208       Interval* cur = _split_children.at(i);
4209       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4210         if (i > 0) {
4211           // exchange current split child to start of list (faster access for next call)
4212           _split_children.at_put(i, _split_children.at(0));
4213           _split_children.at_put(0, cur);
4214         }
4215 
4216         // interval found
4217         result = cur;
4218         break;
4219       }
4220     }
4221 
4222 #ifdef ASSERT
4223     for (i = 0; i < len; i++) {
4224       Interval* tmp = _split_children.at(i);
4225       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4226         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4227         result->print();
4228         tmp->print();
4229         assert(false, "two valid result intervals found");
4230       }
4231     }
4232 #endif
4233   }
4234 
4235   assert(result != NULL, "no matching interval found");
4236   assert(result->covers(op_id, mode), "op_id not covered by interval");
4237 
4238   return result;
4239 }
4240 
4241 
4242 // returns the last split child that ends before the given op_id
4243 Interval* Interval::split_child_before_op_id(int op_id) {
4244   assert(op_id >= 0, "invalid op_id");
4245 
4246   Interval* parent = split_parent();
4247   Interval* result = NULL;
4248 
4249   int len = parent->_split_children.length();
4250   assert(len > 0, "no split children available");
4251 
4252   for (int i = len - 1; i >= 0; i--) {
4253     Interval* cur = parent->_split_children.at(i);
4254     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4255       result = cur;
4256     }
4257   }
4258 
4259   assert(result != NULL, "no split child found");
4260   return result;
4261 }
4262 
4263 
4264 // checks if op_id is covered by any split child
4265 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4266   assert(is_split_parent(), "can only be called for split parents");
4267   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4268 
4269   if (_split_children.length() == 0) {
4270     // simple case if interval was not split
4271     return covers(op_id, mode);
4272 
4273   } else {
4274     // extended case: check all split children
4275     int len = _split_children.length();
4276     for (int i = 0; i < len; i++) {
4277       Interval* cur = _split_children.at(i);
4278       if (cur->covers(op_id, mode)) {
4279         return true;
4280       }
4281     }
4282     return false;
4283   }
4284 }
4285 
4286 
4287 // Note: use positions are sorted descending -> first use has highest index
4288 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4289   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4290 
4291   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4292     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4293       return _use_pos_and_kinds.at(i);
4294     }
4295   }
4296   return max_jint;
4297 }
4298 
4299 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4300   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4301 
4302   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4303     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4304       return _use_pos_and_kinds.at(i);
4305     }
4306   }
4307   return max_jint;
4308 }
4309 
4310 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4311   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4312 
4313   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4314     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4315       return _use_pos_and_kinds.at(i);
4316     }
4317   }
4318   return max_jint;
4319 }
4320 
4321 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4322   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4323 
4324   int prev = 0;
4325   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4326     if (_use_pos_and_kinds.at(i) > from) {
4327       return prev;
4328     }
4329     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4330       prev = _use_pos_and_kinds.at(i);
4331     }
4332   }
4333   return prev;
4334 }
4335 
4336 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4337   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4338 
4339   // do not add use positions for precolored intervals because
4340   // they are never used
4341   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4342 #ifdef ASSERT
4343     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4344     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4345       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4346       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4347       if (i > 0) {
4348         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4349       }
4350     }
4351 #endif
4352 
4353     // Note: add_use is called in descending order, so list gets sorted
4354     //       automatically by just appending new use positions
4355     int len = _use_pos_and_kinds.length();
4356     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4357       _use_pos_and_kinds.append(pos);
4358       _use_pos_and_kinds.append(use_kind);
4359     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4360       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4361       _use_pos_and_kinds.at_put(len - 1, use_kind);
4362     }
4363   }
4364 }
4365 
4366 void Interval::add_range(int from, int to) {
4367   assert(from < to, "invalid range");
4368   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4369   assert(from <= first()->to(), "not inserting at begin of interval");
4370 
4371   if (first()->from() <= to) {
4372     // join intersecting ranges
4373     first()->set_from(MIN2(from, first()->from()));
4374     first()->set_to  (MAX2(to,   first()->to()));
4375   } else {
4376     // insert new range
4377     _first = new Range(from, to, first());
4378   }
4379 }
4380 
4381 Interval* Interval::new_split_child() {
4382   // allocate new interval
4383   Interval* result = new Interval(-1);
4384   result->set_type(type());
4385 
4386   Interval* parent = split_parent();
4387   result->_split_parent = parent;
4388   result->set_register_hint(parent);
4389 
4390   // insert new interval in children-list of parent
4391   if (parent->_split_children.length() == 0) {
4392     assert(is_split_parent(), "list must be initialized at first split");
4393 
4394     parent->_split_children = IntervalList(4);
4395     parent->_split_children.append(this);
4396   }
4397   parent->_split_children.append(result);
4398 
4399   return result;
4400 }
4401 
4402 // split this interval at the specified position and return
4403 // the remainder as a new interval.
4404 //
4405 // when an interval is split, a bi-directional link is established between the original interval
4406 // (the split parent) and the intervals that are split off this interval (the split children)
4407 // When a split child is split again, the new created interval is also a direct child
4408 // of the original parent (there is no tree of split children stored, but a flat list)
4409 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4410 //
4411 // Note: The new interval has no valid reg_num
4412 Interval* Interval::split(int split_pos) {
4413   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4414 
4415   // allocate new interval
4416   Interval* result = new_split_child();
4417 
4418   // split the ranges
4419   Range* prev = NULL;
4420   Range* cur = _first;
4421   while (cur != Range::end() && cur->to() <= split_pos) {
4422     prev = cur;
4423     cur = cur->next();
4424   }
4425   assert(cur != Range::end(), "split interval after end of last range");
4426 
4427   if (cur->from() < split_pos) {
4428     result->_first = new Range(split_pos, cur->to(), cur->next());
4429     cur->set_to(split_pos);
4430     cur->set_next(Range::end());
4431 
4432   } else {
4433     assert(prev != NULL, "split before start of first range");
4434     result->_first = cur;
4435     prev->set_next(Range::end());
4436   }
4437   result->_current = result->_first;
4438   _cached_to = -1; // clear cached value
4439 
4440   // split list of use positions
4441   int total_len = _use_pos_and_kinds.length();
4442   int start_idx = total_len - 2;
4443   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4444     start_idx -= 2;
4445   }
4446 
4447   intStack new_use_pos_and_kinds(total_len - start_idx);
4448   int i;
4449   for (i = start_idx + 2; i < total_len; i++) {
4450     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4451   }
4452 
4453   _use_pos_and_kinds.truncate(start_idx + 2);
4454   result->_use_pos_and_kinds = _use_pos_and_kinds;
4455   _use_pos_and_kinds = new_use_pos_and_kinds;
4456 
4457 #ifdef ASSERT
4458   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4459   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4460   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4461 
4462   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4463     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4464     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4465   }
4466   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4467     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4468     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4469   }
4470 #endif
4471 
4472   return result;
4473 }
4474 
4475 // split this interval at the specified position and return
4476 // the head as a new interval (the original interval is the tail)
4477 //
4478 // Currently, only the first range can be split, and the new interval
4479 // must not have split positions
4480 Interval* Interval::split_from_start(int split_pos) {
4481   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4482   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4483   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4484   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4485 
4486   // allocate new interval
4487   Interval* result = new_split_child();
4488 
4489   // the new created interval has only one range (checked by assertion above),
4490   // so the splitting of the ranges is very simple
4491   result->add_range(_first->from(), split_pos);
4492 
4493   if (split_pos == _first->to()) {
4494     assert(_first->next() != Range::end(), "must not be at end");
4495     _first = _first->next();
4496   } else {
4497     _first->set_from(split_pos);
4498   }
4499 
4500   return result;
4501 }
4502 
4503 
4504 // returns true if the op_id is inside the interval
4505 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4506   Range* cur  = _first;
4507 
4508   while (cur != Range::end() && cur->to() < op_id) {
4509     cur = cur->next();
4510   }
4511   if (cur != Range::end()) {
4512     assert(cur->to() != cur->next()->from(), "ranges not separated");
4513 
4514     if (mode == LIR_OpVisitState::outputMode) {
4515       return cur->from() <= op_id && op_id < cur->to();
4516     } else {
4517       return cur->from() <= op_id && op_id <= cur->to();
4518     }
4519   }
4520   return false;
4521 }
4522 
4523 // returns true if the interval has any hole between hole_from and hole_to
4524 // (even if the hole has only the length 1)
4525 bool Interval::has_hole_between(int hole_from, int hole_to) {
4526   assert(hole_from < hole_to, "check");
4527   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4528 
4529   Range* cur  = _first;
4530   while (cur != Range::end()) {
4531     assert(cur->to() < cur->next()->from(), "no space between ranges");
4532 
4533     // hole-range starts before this range -> hole
4534     if (hole_from < cur->from()) {
4535       return true;
4536 
4537     // hole-range completely inside this range -> no hole
4538     } else if (hole_to <= cur->to()) {
4539       return false;
4540 
4541     // overlapping of hole-range with this range -> hole
4542     } else if (hole_from <= cur->to()) {
4543       return true;
4544     }
4545 
4546     cur = cur->next();
4547   }
4548 
4549   return false;
4550 }
4551 
4552 
4553 #ifndef PRODUCT
4554 void Interval::print(outputStream* out) const {
4555   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4556   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4557 
4558   const char* type_name;
4559   LIR_Opr opr = LIR_OprFact::illegal();
4560   if (reg_num() < LIR_OprDesc::vreg_base) {
4561     type_name = "fixed";
4562     // need a temporary operand for fixed intervals because type() cannot be called
4563     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4564       opr = LIR_OprFact::single_cpu(assigned_reg());
4565     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4566       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4567 #ifdef X86
4568     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4569       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4570 #endif
4571     } else {
4572       ShouldNotReachHere();
4573     }
4574   } else {
4575     type_name = type2name(type());
4576     if (assigned_reg() != -1 &&
4577         (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4578       opr = LinearScan::calc_operand_for_interval(this);
4579     }
4580   }
4581 
4582   out->print("%d %s ", reg_num(), type_name);
4583   if (opr->is_valid()) {
4584     out->print("\"");
4585     opr->print(out);
4586     out->print("\" ");
4587   }
4588   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4589 
4590   // print ranges
4591   Range* cur = _first;
4592   while (cur != Range::end()) {
4593     cur->print(out);
4594     cur = cur->next();
4595     assert(cur != NULL, "range list not closed with range sentinel");
4596   }
4597 
4598   // print use positions
4599   int prev = 0;
4600   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4601   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4602     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4603     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4604 
4605     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4606     prev = _use_pos_and_kinds.at(i);
4607   }
4608 
4609   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4610   out->cr();
4611 }
4612 #endif
4613 
4614 
4615 
4616 // **** Implementation of IntervalWalker ****************************
4617 
4618 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4619  : _compilation(allocator->compilation())
4620  , _allocator(allocator)
4621 {
4622   _unhandled_first[fixedKind] = unhandled_fixed_first;
4623   _unhandled_first[anyKind]   = unhandled_any_first;
4624   _active_first[fixedKind]    = Interval::end();
4625   _inactive_first[fixedKind]  = Interval::end();
4626   _active_first[anyKind]      = Interval::end();
4627   _inactive_first[anyKind]    = Interval::end();
4628   _current_position = -1;
4629   _current = NULL;
4630   next_interval();
4631 }
4632 
4633 
4634 // append interval at top of list
4635 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4636   interval->set_next(*list); *list = interval;
4637 }
4638 
4639 
4640 // append interval in order of current range from()
4641 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4642   Interval* prev = NULL;
4643   Interval* cur  = *list;
4644   while (cur->current_from() < interval->current_from()) {
4645     prev = cur; cur = cur->next();
4646   }
4647   if (prev == NULL) {
4648     *list = interval;
4649   } else {
4650     prev->set_next(interval);
4651   }
4652   interval->set_next(cur);
4653 }
4654 
4655 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4656   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4657 
4658   Interval* prev = NULL;
4659   Interval* cur  = *list;
4660   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4661     prev = cur; cur = cur->next();
4662   }
4663   if (prev == NULL) {
4664     *list = interval;
4665   } else {
4666     prev->set_next(interval);
4667   }
4668   interval->set_next(cur);
4669 }
4670 
4671 
4672 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4673   while (*list != Interval::end() && *list != i) {
4674     list = (*list)->next_addr();
4675   }
4676   if (*list != Interval::end()) {
4677     assert(*list == i, "check");
4678     *list = (*list)->next();
4679     return true;
4680   } else {
4681     return false;
4682   }
4683 }
4684 
4685 void IntervalWalker::remove_from_list(Interval* i) {
4686   bool deleted;
4687 
4688   if (i->state() == activeState) {
4689     deleted = remove_from_list(active_first_addr(anyKind), i);
4690   } else {
4691     assert(i->state() == inactiveState, "invalid state");
4692     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4693   }
4694 
4695   assert(deleted, "interval has not been found in list");
4696 }
4697 
4698 
4699 void IntervalWalker::walk_to(IntervalState state, int from) {
4700   assert (state == activeState || state == inactiveState, "wrong state");
4701   for_each_interval_kind(kind) {
4702     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4703     Interval* next   = *prev;
4704     while (next->current_from() <= from) {
4705       Interval* cur = next;
4706       next = cur->next();
4707 
4708       bool range_has_changed = false;
4709       while (cur->current_to() <= from) {
4710         cur->next_range();
4711         range_has_changed = true;
4712       }
4713 
4714       // also handle move from inactive list to active list
4715       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4716 
4717       if (range_has_changed) {
4718         // remove cur from list
4719         *prev = next;
4720         if (cur->current_at_end()) {
4721           // move to handled state (not maintained as a list)
4722           cur->set_state(handledState);
4723           interval_moved(cur, kind, state, handledState);
4724         } else if (cur->current_from() <= from){
4725           // sort into active list
4726           append_sorted(active_first_addr(kind), cur);
4727           cur->set_state(activeState);
4728           if (*prev == cur) {
4729             assert(state == activeState, "check");
4730             prev = cur->next_addr();
4731           }
4732           interval_moved(cur, kind, state, activeState);
4733         } else {
4734           // sort into inactive list
4735           append_sorted(inactive_first_addr(kind), cur);
4736           cur->set_state(inactiveState);
4737           if (*prev == cur) {
4738             assert(state == inactiveState, "check");
4739             prev = cur->next_addr();
4740           }
4741           interval_moved(cur, kind, state, inactiveState);
4742         }
4743       } else {
4744         prev = cur->next_addr();
4745         continue;
4746       }
4747     }
4748   }
4749 }
4750 
4751 
4752 void IntervalWalker::next_interval() {
4753   IntervalKind kind;
4754   Interval* any   = _unhandled_first[anyKind];
4755   Interval* fixed = _unhandled_first[fixedKind];
4756 
4757   if (any != Interval::end()) {
4758     // intervals may start at same position -> prefer fixed interval
4759     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4760 
4761     assert (kind == fixedKind && fixed->from() <= any->from() ||
4762             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4763     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4764 
4765   } else if (fixed != Interval::end()) {
4766     kind = fixedKind;
4767   } else {
4768     _current = NULL; return;
4769   }
4770   _current_kind = kind;
4771   _current = _unhandled_first[kind];
4772   _unhandled_first[kind] = _current->next();
4773   _current->set_next(Interval::end());
4774   _current->rewind_range();
4775 }
4776 
4777 
4778 void IntervalWalker::walk_to(int lir_op_id) {
4779   assert(_current_position <= lir_op_id, "can not walk backwards");
4780   while (current() != NULL) {
4781     bool is_active = current()->from() <= lir_op_id;
4782     int id = is_active ? current()->from() : lir_op_id;
4783 
4784     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4785 
4786     // set _current_position prior to call of walk_to
4787     _current_position = id;
4788 
4789     // call walk_to even if _current_position == id
4790     walk_to(activeState, id);
4791     walk_to(inactiveState, id);
4792 
4793     if (is_active) {
4794       current()->set_state(activeState);
4795       if (activate_current()) {
4796         append_sorted(active_first_addr(current_kind()), current());
4797         interval_moved(current(), current_kind(), unhandledState, activeState);
4798       }
4799 
4800       next_interval();
4801     } else {
4802       return;
4803     }
4804   }
4805 }
4806 
4807 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4808 #ifndef PRODUCT
4809   if (TraceLinearScanLevel >= 4) {
4810     #define print_state(state) \
4811     switch(state) {\
4812       case unhandledState: tty->print("unhandled"); break;\
4813       case activeState: tty->print("active"); break;\
4814       case inactiveState: tty->print("inactive"); break;\
4815       case handledState: tty->print("handled"); break;\
4816       default: ShouldNotReachHere(); \
4817     }
4818 
4819     print_state(from); tty->print(" to "); print_state(to);
4820     tty->fill_to(23);
4821     interval->print();
4822 
4823     #undef print_state
4824   }
4825 #endif
4826 }
4827 
4828 
4829 
4830 // **** Implementation of LinearScanWalker **************************
4831 
4832 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4833   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4834   , _move_resolver(allocator)
4835 {
4836   for (int i = 0; i < LinearScan::nof_regs; i++) {
4837     _spill_intervals[i] = new IntervalList(2);
4838   }
4839 }
4840 
4841 
4842 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4843   for (int i = _first_reg; i <= _last_reg; i++) {
4844     _use_pos[i] = max_jint;
4845 
4846     if (!only_process_use_pos) {
4847       _block_pos[i] = max_jint;
4848       _spill_intervals[i]->clear();
4849     }
4850   }
4851 }
4852 
4853 inline void LinearScanWalker::exclude_from_use(int reg) {
4854   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4855   if (reg >= _first_reg && reg <= _last_reg) {
4856     _use_pos[reg] = 0;
4857   }
4858 }
4859 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4860   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4861 
4862   exclude_from_use(i->assigned_reg());
4863   exclude_from_use(i->assigned_regHi());
4864 }
4865 
4866 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4867   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4868 
4869   if (reg >= _first_reg && reg <= _last_reg) {
4870     if (_use_pos[reg] > use_pos) {
4871       _use_pos[reg] = use_pos;
4872     }
4873     if (!only_process_use_pos) {
4874       _spill_intervals[reg]->append(i);
4875     }
4876   }
4877 }
4878 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4879   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4880   if (use_pos != -1) {
4881     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4882     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4883   }
4884 }
4885 
4886 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4887   if (reg >= _first_reg && reg <= _last_reg) {
4888     if (_block_pos[reg] > block_pos) {
4889       _block_pos[reg] = block_pos;
4890     }
4891     if (_use_pos[reg] > block_pos) {
4892       _use_pos[reg] = block_pos;
4893     }
4894   }
4895 }
4896 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4897   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4898   if (block_pos != -1) {
4899     set_block_pos(i->assigned_reg(), i, block_pos);
4900     set_block_pos(i->assigned_regHi(), i, block_pos);
4901   }
4902 }
4903 
4904 
4905 void LinearScanWalker::free_exclude_active_fixed() {
4906   Interval* list = active_first(fixedKind);
4907   while (list != Interval::end()) {
4908     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4909     exclude_from_use(list);
4910     list = list->next();
4911   }
4912 }
4913 
4914 void LinearScanWalker::free_exclude_active_any() {
4915   Interval* list = active_first(anyKind);
4916   while (list != Interval::end()) {
4917     exclude_from_use(list);
4918     list = list->next();
4919   }
4920 }
4921 
4922 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4923   Interval* list = inactive_first(fixedKind);
4924   while (list != Interval::end()) {
4925     if (cur->to() <= list->current_from()) {
4926       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4927       set_use_pos(list, list->current_from(), true);
4928     } else {
4929       set_use_pos(list, list->current_intersects_at(cur), true);
4930     }
4931     list = list->next();
4932   }
4933 }
4934 
4935 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4936   Interval* list = inactive_first(anyKind);
4937   while (list != Interval::end()) {
4938     set_use_pos(list, list->current_intersects_at(cur), true);
4939     list = list->next();
4940   }
4941 }
4942 
4943 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4944   Interval* list = unhandled_first(kind);
4945   while (list != Interval::end()) {
4946     set_use_pos(list, list->intersects_at(cur), true);
4947     if (kind == fixedKind && cur->to() <= list->from()) {
4948       set_use_pos(list, list->from(), true);
4949     }
4950     list = list->next();
4951   }
4952 }
4953 
4954 void LinearScanWalker::spill_exclude_active_fixed() {
4955   Interval* list = active_first(fixedKind);
4956   while (list != Interval::end()) {
4957     exclude_from_use(list);
4958     list = list->next();
4959   }
4960 }
4961 
4962 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4963   Interval* list = unhandled_first(fixedKind);
4964   while (list != Interval::end()) {
4965     set_block_pos(list, list->intersects_at(cur));
4966     list = list->next();
4967   }
4968 }
4969 
4970 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4971   Interval* list = inactive_first(fixedKind);
4972   while (list != Interval::end()) {
4973     if (cur->to() > list->current_from()) {
4974       set_block_pos(list, list->current_intersects_at(cur));
4975     } else {
4976       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4977     }
4978 
4979     list = list->next();
4980   }
4981 }
4982 
4983 void LinearScanWalker::spill_collect_active_any() {
4984   Interval* list = active_first(anyKind);
4985   while (list != Interval::end()) {
4986     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4987     list = list->next();
4988   }
4989 }
4990 
4991 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4992   Interval* list = inactive_first(anyKind);
4993   while (list != Interval::end()) {
4994     if (list->current_intersects(cur)) {
4995       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4996     }
4997     list = list->next();
4998   }
4999 }
5000 
5001 
5002 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
5003   // output all moves here. When source and target are equal, the move is
5004   // optimized away later in assign_reg_nums
5005 
5006   op_id = (op_id + 1) & ~1;
5007   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
5008   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
5009 
5010   // calculate index of instruction inside instruction list of current block
5011   // the minimal index (for a block with no spill moves) can be calculated because the
5012   // numbering of instructions is known.
5013   // When the block already contains spill moves, the index must be increased until the
5014   // correct index is reached.
5015   LIR_OpList* list = op_block->lir()->instructions_list();
5016   int index = (op_id - list->at(0)->id()) / 2;
5017   assert(list->at(index)->id() <= op_id, "error in calculation");
5018 
5019   while (list->at(index)->id() != op_id) {
5020     index++;
5021     assert(0 <= index && index < list->length(), "index out of bounds");
5022   }
5023   assert(1 <= index && index < list->length(), "index out of bounds");
5024   assert(list->at(index)->id() == op_id, "error in calculation");
5025 
5026   // insert new instruction before instruction at position index
5027   _move_resolver.move_insert_position(op_block->lir(), index - 1);
5028   _move_resolver.add_mapping(src_it, dst_it);
5029 }
5030 
5031 
5032 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5033   int from_block_nr = min_block->linear_scan_number();
5034   int to_block_nr = max_block->linear_scan_number();
5035 
5036   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5037   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5038   assert(from_block_nr < to_block_nr, "must cross block boundary");
5039 
5040   // Try to split at end of max_block. If this would be after
5041   // max_split_pos, then use the begin of max_block
5042   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5043   if (optimal_split_pos > max_split_pos) {
5044     optimal_split_pos = max_block->first_lir_instruction_id();
5045   }
5046 
5047   int min_loop_depth = max_block->loop_depth();
5048   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5049     BlockBegin* cur = block_at(i);
5050 
5051     if (cur->loop_depth() < min_loop_depth) {
5052       // block with lower loop-depth found -> split at the end of this block
5053       min_loop_depth = cur->loop_depth();
5054       optimal_split_pos = cur->last_lir_instruction_id() + 2;
5055     }
5056   }
5057   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5058 
5059   return optimal_split_pos;
5060 }
5061 
5062 
5063 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5064   int optimal_split_pos = -1;
5065   if (min_split_pos == max_split_pos) {
5066     // trivial case, no optimization of split position possible
5067     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
5068     optimal_split_pos = min_split_pos;
5069 
5070   } else {
5071     assert(min_split_pos < max_split_pos, "must be true then");
5072     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5073 
5074     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5075     // beginning of a block, then min_split_pos is also a possible split position.
5076     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5077     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5078 
5079     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5080     // when an interval ends at the end of the last block of the method
5081     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5082     // block at this op_id)
5083     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5084 
5085     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5086     if (min_block == max_block) {
5087       // split position cannot be moved to block boundary, so split as late as possible
5088       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5089       optimal_split_pos = max_split_pos;
5090 
5091     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5092       // Do not move split position if the interval has a hole before max_split_pos.
5093       // Intervals resulting from Phi-Functions have more than one definition (marked
5094       // as mustHaveRegister) with a hole before each definition. When the register is needed
5095       // for the second definition, an earlier reloading is unnecessary.
5096       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5097       optimal_split_pos = max_split_pos;
5098 
5099     } else {
5100       // seach optimal block boundary between min_split_pos and max_split_pos
5101       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5102 
5103       if (do_loop_optimization) {
5104         // Loop optimization: if a loop-end marker is found between min- and max-position,
5105         // then split before this loop
5106         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5107         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5108 
5109         assert(loop_end_pos > min_split_pos, "invalid order");
5110         if (loop_end_pos < max_split_pos) {
5111           // loop-end marker found between min- and max-position
5112           // if it is not the end marker for the same loop as the min-position, then move
5113           // the max-position to this loop block.
5114           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5115           // of the interval (normally, only mustHaveRegister causes a reloading)
5116           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5117 
5118           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5119           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5120 
5121           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5122           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5123             optimal_split_pos = -1;
5124             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5125           } else {
5126             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5127           }
5128         }
5129       }
5130 
5131       if (optimal_split_pos == -1) {
5132         // not calculated by loop optimization
5133         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5134       }
5135     }
5136   }
5137   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5138 
5139   return optimal_split_pos;
5140 }
5141 
5142 
5143 /*
5144   split an interval at the optimal position between min_split_pos and
5145   max_split_pos in two parts:
5146   1) the left part has already a location assigned
5147   2) the right part is sorted into to the unhandled-list
5148 */
5149 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5150   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5151   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5152 
5153   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5154   assert(current_position() < min_split_pos, "cannot split before current position");
5155   assert(min_split_pos <= max_split_pos,     "invalid order");
5156   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5157 
5158   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5159 
5160   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5161   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5162   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5163 
5164   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5165     // the split position would be just before the end of the interval
5166     // -> no split at all necessary
5167     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5168     return;
5169   }
5170 
5171   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5172   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5173 
5174   if (!allocator()->is_block_begin(optimal_split_pos)) {
5175     // move position before actual instruction (odd op_id)
5176     optimal_split_pos = (optimal_split_pos - 1) | 1;
5177   }
5178 
5179   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5180   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5181   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5182 
5183   Interval* split_part = it->split(optimal_split_pos);
5184 
5185   allocator()->append_interval(split_part);
5186   allocator()->copy_register_flags(it, split_part);
5187   split_part->set_insert_move_when_activated(move_necessary);
5188   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5189 
5190   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5191   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5192   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5193 }
5194 
5195 /*
5196   split an interval at the optimal position between min_split_pos and
5197   max_split_pos in two parts:
5198   1) the left part has already a location assigned
5199   2) the right part is always on the stack and therefore ignored in further processing
5200 */
5201 void LinearScanWalker::split_for_spilling(Interval* it) {
5202   // calculate allowed range of splitting position
5203   int max_split_pos = current_position();
5204   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5205 
5206   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5207   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5208 
5209   assert(it->state() == activeState,     "why spill interval that is not active?");
5210   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5211   assert(min_split_pos <= max_split_pos, "invalid order");
5212   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5213   assert(current_position() < it->to(),  "interval must not end before current position");
5214 
5215   if (min_split_pos == it->from()) {
5216     // the whole interval is never used, so spill it entirely to memory
5217     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5218     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5219 
5220     allocator()->assign_spill_slot(it);
5221     allocator()->change_spill_state(it, min_split_pos);
5222 
5223     // Also kick parent intervals out of register to memory when they have no use
5224     // position. This avoids short interval in register surrounded by intervals in
5225     // memory -> avoid useless moves from memory to register and back
5226     Interval* parent = it;
5227     while (parent != NULL && parent->is_split_child()) {
5228       parent = parent->split_child_before_op_id(parent->from());
5229 
5230       if (parent->assigned_reg() < LinearScan::nof_regs) {
5231         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5232           // parent is never used, so kick it out of its assigned register
5233           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5234           allocator()->assign_spill_slot(parent);
5235         } else {
5236           // do not go further back because the register is actually used by the interval
5237           parent = NULL;
5238         }
5239       }
5240     }
5241 
5242   } else {
5243     // search optimal split pos, split interval and spill only the right hand part
5244     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5245 
5246     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5247     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5248     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5249 
5250     if (!allocator()->is_block_begin(optimal_split_pos)) {
5251       // move position before actual instruction (odd op_id)
5252       optimal_split_pos = (optimal_split_pos - 1) | 1;
5253     }
5254 
5255     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5256     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5257     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5258 
5259     Interval* spilled_part = it->split(optimal_split_pos);
5260     allocator()->append_interval(spilled_part);
5261     allocator()->assign_spill_slot(spilled_part);
5262     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5263 
5264     if (!allocator()->is_block_begin(optimal_split_pos)) {
5265       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5266       insert_move(optimal_split_pos, it, spilled_part);
5267     }
5268 
5269     // the current_split_child is needed later when moves are inserted for reloading
5270     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5271     spilled_part->make_current_split_child();
5272 
5273     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5274     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5275     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5276   }
5277 }
5278 
5279 
5280 void LinearScanWalker::split_stack_interval(Interval* it) {
5281   int min_split_pos = current_position() + 1;
5282   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5283 
5284   split_before_usage(it, min_split_pos, max_split_pos);
5285 }
5286 
5287 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5288   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5289   int max_split_pos = register_available_until;
5290 
5291   split_before_usage(it, min_split_pos, max_split_pos);
5292 }
5293 
5294 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5295   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5296 
5297   int current_pos = current_position();
5298   if (it->state() == inactiveState) {
5299     // the interval is currently inactive, so no spill slot is needed for now.
5300     // when the split part is activated, the interval has a new chance to get a register,
5301     // so in the best case no stack slot is necessary
5302     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5303     split_before_usage(it, current_pos + 1, current_pos + 1);
5304 
5305   } else {
5306     // search the position where the interval must have a register and split
5307     // at the optimal position before.
5308     // The new created part is added to the unhandled list and will get a register
5309     // when it is activated
5310     int min_split_pos = current_pos + 1;
5311     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5312 
5313     split_before_usage(it, min_split_pos, max_split_pos);
5314 
5315     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5316     split_for_spilling(it);
5317   }
5318 }
5319 
5320 
5321 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5322   int min_full_reg = any_reg;
5323   int max_partial_reg = any_reg;
5324 
5325   for (int i = _first_reg; i <= _last_reg; i++) {
5326     if (i == ignore_reg) {
5327       // this register must be ignored
5328 
5329     } else if (_use_pos[i] >= interval_to) {
5330       // this register is free for the full interval
5331       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5332         min_full_reg = i;
5333       }
5334     } else if (_use_pos[i] > reg_needed_until) {
5335       // this register is at least free until reg_needed_until
5336       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5337         max_partial_reg = i;
5338       }
5339     }
5340   }
5341 
5342   if (min_full_reg != any_reg) {
5343     return min_full_reg;
5344   } else if (max_partial_reg != any_reg) {
5345     *need_split = true;
5346     return max_partial_reg;
5347   } else {
5348     return any_reg;
5349   }
5350 }
5351 
5352 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5353   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5354 
5355   int min_full_reg = any_reg;
5356   int max_partial_reg = any_reg;
5357 
5358   for (int i = _first_reg; i < _last_reg; i+=2) {
5359     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5360       // this register is free for the full interval
5361       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5362         min_full_reg = i;
5363       }
5364     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5365       // this register is at least free until reg_needed_until
5366       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5367         max_partial_reg = i;
5368       }
5369     }
5370   }
5371 
5372   if (min_full_reg != any_reg) {
5373     return min_full_reg;
5374   } else if (max_partial_reg != any_reg) {
5375     *need_split = true;
5376     return max_partial_reg;
5377   } else {
5378     return any_reg;
5379   }
5380 }
5381 
5382 
5383 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5384   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5385 
5386   init_use_lists(true);
5387   free_exclude_active_fixed();
5388   free_exclude_active_any();
5389   free_collect_inactive_fixed(cur);
5390   free_collect_inactive_any(cur);
5391 //  free_collect_unhandled(fixedKind, cur);
5392   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5393 
5394   // _use_pos contains the start of the next interval that has this register assigned
5395   // (either as a fixed register or a normal allocated register in the past)
5396   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5397   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5398   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5399 
5400   int hint_reg, hint_regHi;
5401   Interval* register_hint = cur->register_hint();
5402   if (register_hint != NULL) {
5403     hint_reg = register_hint->assigned_reg();
5404     hint_regHi = register_hint->assigned_regHi();
5405 
5406     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5407       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5408       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5409     }
5410     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5411 
5412   } else {
5413     hint_reg = any_reg;
5414     hint_regHi = any_reg;
5415   }
5416   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5417   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5418 
5419   // the register must be free at least until this position
5420   int reg_needed_until = cur->from() + 1;
5421   int interval_to = cur->to();
5422 
5423   bool need_split = false;
5424   int split_pos = -1;
5425   int reg = any_reg;
5426   int regHi = any_reg;
5427 
5428   if (_adjacent_regs) {
5429     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5430     regHi = reg + 1;
5431     if (reg == any_reg) {
5432       return false;
5433     }
5434     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5435 
5436   } else {
5437     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5438     if (reg == any_reg) {
5439       return false;
5440     }
5441     split_pos = _use_pos[reg];
5442 
5443     if (_num_phys_regs == 2) {
5444       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5445 
5446       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5447         // do not split interval if only one register can be assigned until the split pos
5448         // (when one register is found for the whole interval, split&spill is only
5449         // performed for the hi register)
5450         return false;
5451 
5452       } else if (regHi != any_reg) {
5453         split_pos = MIN2(split_pos, _use_pos[regHi]);
5454 
5455         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5456         if (reg > regHi) {
5457           int temp = reg;
5458           reg = regHi;
5459           regHi = temp;
5460         }
5461       }
5462     }
5463   }
5464 
5465   cur->assign_reg(reg, regHi);
5466   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5467 
5468   assert(split_pos > 0, "invalid split_pos");
5469   if (need_split) {
5470     // register not available for full interval, so split it
5471     split_when_partial_register_available(cur, split_pos);
5472   }
5473 
5474   // only return true if interval is completely assigned
5475   return _num_phys_regs == 1 || regHi != any_reg;
5476 }
5477 
5478 
5479 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5480   int max_reg = any_reg;
5481 
5482   for (int i = _first_reg; i <= _last_reg; i++) {
5483     if (i == ignore_reg) {
5484       // this register must be ignored
5485 
5486     } else if (_use_pos[i] > reg_needed_until) {
5487       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5488         max_reg = i;
5489       }
5490     }
5491   }
5492 
5493   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5494     *need_split = true;
5495   }
5496 
5497   return max_reg;
5498 }
5499 
5500 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5501   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5502 
5503   int max_reg = any_reg;
5504 
5505   for (int i = _first_reg; i < _last_reg; i+=2) {
5506     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5507       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5508         max_reg = i;
5509       }
5510     }
5511   }
5512 
5513   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5514     *need_split = true;
5515   }
5516 
5517   return max_reg;
5518 }
5519 
5520 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5521   assert(reg != any_reg, "no register assigned");
5522 
5523   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5524     Interval* it = _spill_intervals[reg]->at(i);
5525     remove_from_list(it);
5526     split_and_spill_interval(it);
5527   }
5528 
5529   if (regHi != any_reg) {
5530     IntervalList* processed = _spill_intervals[reg];
5531     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5532       Interval* it = _spill_intervals[regHi]->at(i);
5533       if (processed->index_of(it) == -1) {
5534         remove_from_list(it);
5535         split_and_spill_interval(it);
5536       }
5537     }
5538   }
5539 }
5540 
5541 
5542 // Split an Interval and spill it to memory so that cur can be placed in a register
5543 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5544   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5545 
5546   // collect current usage of registers
5547   init_use_lists(false);
5548   spill_exclude_active_fixed();
5549 //  spill_block_unhandled_fixed(cur);
5550   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5551   spill_block_inactive_fixed(cur);
5552   spill_collect_active_any();
5553   spill_collect_inactive_any(cur);
5554 
5555 #ifndef PRODUCT
5556   if (TraceLinearScanLevel >= 4) {
5557     tty->print_cr("      state of registers:");
5558     for (int i = _first_reg; i <= _last_reg; i++) {
5559       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5560       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5561         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5562       }
5563       tty->cr();
5564     }
5565   }
5566 #endif
5567 
5568   // the register must be free at least until this position
5569   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5570   int interval_to = cur->to();
5571   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5572 
5573   int split_pos = 0;
5574   int use_pos = 0;
5575   bool need_split = false;
5576   int reg, regHi;
5577 
5578   if (_adjacent_regs) {
5579     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5580     regHi = reg + 1;
5581 
5582     if (reg != any_reg) {
5583       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5584       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5585     }
5586   } else {
5587     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5588     regHi = any_reg;
5589 
5590     if (reg != any_reg) {
5591       use_pos = _use_pos[reg];
5592       split_pos = _block_pos[reg];
5593 
5594       if (_num_phys_regs == 2) {
5595         if (cur->assigned_reg() != any_reg) {
5596           regHi = reg;
5597           reg = cur->assigned_reg();
5598         } else {
5599           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5600           if (regHi != any_reg) {
5601             use_pos = MIN2(use_pos, _use_pos[regHi]);
5602             split_pos = MIN2(split_pos, _block_pos[regHi]);
5603           }
5604         }
5605 
5606         if (regHi != any_reg && reg > regHi) {
5607           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5608           int temp = reg;
5609           reg = regHi;
5610           regHi = temp;
5611         }
5612       }
5613     }
5614   }
5615 
5616   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5617     // the first use of cur is later than the spilling position -> spill cur
5618     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5619 
5620     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5621       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5622       // assign a reasonable register and do a bailout in product mode to avoid errors
5623       allocator()->assign_spill_slot(cur);
5624       BAILOUT("LinearScan: no register found");
5625     }
5626 
5627     split_and_spill_interval(cur);
5628   } else {
5629     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5630     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5631     assert(split_pos > 0, "invalid split_pos");
5632     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5633 
5634     cur->assign_reg(reg, regHi);
5635     if (need_split) {
5636       // register not available for full interval, so split it
5637       split_when_partial_register_available(cur, split_pos);
5638     }
5639 
5640     // perform splitting and spilling for all affected intervalls
5641     split_and_spill_intersecting_intervals(reg, regHi);
5642   }
5643 }
5644 
5645 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5646 #ifdef X86
5647   // fast calculation of intervals that can never get a register because the
5648   // the next instruction is a call that blocks all registers
5649   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5650 
5651   // check if this interval is the result of a split operation
5652   // (an interval got a register until this position)
5653   int pos = cur->from();
5654   if ((pos & 1) == 1) {
5655     // the current instruction is a call that blocks all registers
5656     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5657       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5658 
5659       // safety check that there is really no register available
5660       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5661       return true;
5662     }
5663 
5664   }
5665 #endif
5666   return false;
5667 }
5668 
5669 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5670   BasicType type = cur->type();
5671   _num_phys_regs = LinearScan::num_physical_regs(type);
5672   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5673 
5674   if (pd_init_regs_for_alloc(cur)) {
5675     // the appropriate register range was selected.
5676   } else if (type == T_FLOAT || type == T_DOUBLE) {
5677     _first_reg = pd_first_fpu_reg;
5678     _last_reg = pd_last_fpu_reg;
5679   } else {
5680     _first_reg = pd_first_cpu_reg;
5681     _last_reg = FrameMap::last_cpu_reg();
5682   }
5683 
5684   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5685   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5686 }
5687 
5688 
5689 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5690   if (op->code() != lir_move) {
5691     return false;
5692   }
5693   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5694 
5695   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5696   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5697   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5698 }
5699 
5700 // optimization (especially for phi functions of nested loops):
5701 // assign same spill slot to non-intersecting intervals
5702 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5703   if (cur->is_split_child()) {
5704     // optimization is only suitable for split parents
5705     return;
5706   }
5707 
5708   Interval* register_hint = cur->register_hint(false);
5709   if (register_hint == NULL) {
5710     // cur is not the target of a move, otherwise register_hint would be set
5711     return;
5712   }
5713   assert(register_hint->is_split_parent(), "register hint must be split parent");
5714 
5715   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5716     // combining the stack slots for intervals where spill move optimization is applied
5717     // is not benefitial and would cause problems
5718     return;
5719   }
5720 
5721   int begin_pos = cur->from();
5722   int end_pos = cur->to();
5723   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5724     // safety check that lir_op_with_id is allowed
5725     return;
5726   }
5727 
5728   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5729     // cur and register_hint are not connected with two moves
5730     return;
5731   }
5732 
5733   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5734   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5735   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5736     // register_hint must be split, otherwise the re-writing of use positions does not work
5737     return;
5738   }
5739 
5740   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5741   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5742   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5743   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5744 
5745   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5746     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5747     return;
5748   }
5749   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5750 
5751   // modify intervals such that cur gets the same stack slot as register_hint
5752   // delete use positions to prevent the intervals to get a register at beginning
5753   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5754   cur->remove_first_use_pos();
5755   end_hint->remove_first_use_pos();
5756 }
5757 
5758 
5759 // allocate a physical register or memory location to an interval
5760 bool LinearScanWalker::activate_current() {
5761   Interval* cur = current();
5762   bool result = true;
5763 
5764   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5765   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5766 
5767   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5768     // activating an interval that has a stack slot assigned -> split it at first use position
5769     // used for method parameters
5770     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5771 
5772     split_stack_interval(cur);
5773     result = false;
5774 
5775   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5776     // activating an interval that must start in a stack slot, but may get a register later
5777     // used for lir_roundfp: rounding is done by store to stack and reload later
5778     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5779     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5780 
5781     allocator()->assign_spill_slot(cur);
5782     split_stack_interval(cur);
5783     result = false;
5784 
5785   } else if (cur->assigned_reg() == any_reg) {
5786     // interval has not assigned register -> normal allocation
5787     // (this is the normal case for most intervals)
5788     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5789 
5790     // assign same spill slot to non-intersecting intervals
5791     combine_spilled_intervals(cur);
5792 
5793     init_vars_for_alloc(cur);
5794     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5795       // no empty register available.
5796       // split and spill another interval so that this interval gets a register
5797       alloc_locked_reg(cur);
5798     }
5799 
5800     // spilled intervals need not be move to active-list
5801     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5802       result = false;
5803     }
5804   }
5805 
5806   // load spilled values that become active from stack slot to register
5807   if (cur->insert_move_when_activated()) {
5808     assert(cur->is_split_child(), "must be");
5809     assert(cur->current_split_child() != NULL, "must be");
5810     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5811     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5812 
5813     insert_move(cur->from(), cur->current_split_child(), cur);
5814   }
5815   cur->make_current_split_child();
5816 
5817   return result; // true = interval is moved to active list
5818 }
5819 
5820 
5821 // Implementation of EdgeMoveOptimizer
5822 
5823 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5824   _edge_instructions(4),
5825   _edge_instructions_idx(4)
5826 {
5827 }
5828 
5829 void EdgeMoveOptimizer::optimize(BlockList* code) {
5830   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5831 
5832   // ignore the first block in the list (index 0 is not processed)
5833   for (int i = code->length() - 1; i >= 1; i--) {
5834     BlockBegin* block = code->at(i);
5835 
5836     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5837       optimizer.optimize_moves_at_block_end(block);
5838     }
5839     if (block->number_of_sux() == 2) {
5840       optimizer.optimize_moves_at_block_begin(block);
5841     }
5842   }
5843 }
5844 
5845 
5846 // clear all internal data structures
5847 void EdgeMoveOptimizer::init_instructions() {
5848   _edge_instructions.clear();
5849   _edge_instructions_idx.clear();
5850 }
5851 
5852 // append a lir-instruction-list and the index of the current operation in to the list
5853 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5854   _edge_instructions.append(instructions);
5855   _edge_instructions_idx.append(instructions_idx);
5856 }
5857 
5858 // return the current operation of the given edge (predecessor or successor)
5859 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5860   LIR_OpList* instructions = _edge_instructions.at(edge);
5861   int idx = _edge_instructions_idx.at(edge);
5862 
5863   if (idx < instructions->length()) {
5864     return instructions->at(idx);
5865   } else {
5866     return NULL;
5867   }
5868 }
5869 
5870 // removes the current operation of the given edge (predecessor or successor)
5871 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5872   LIR_OpList* instructions = _edge_instructions.at(edge);
5873   int idx = _edge_instructions_idx.at(edge);
5874   instructions->remove_at(idx);
5875 
5876   if (decrement_index) {
5877     _edge_instructions_idx.at_put(edge, idx - 1);
5878   }
5879 }
5880 
5881 
5882 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5883   if (op1 == NULL || op2 == NULL) {
5884     // at least one block is already empty -> no optimization possible
5885     return true;
5886   }
5887 
5888   if (op1->code() == lir_move && op2->code() == lir_move) {
5889     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5890     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5891     LIR_Op1* move1 = (LIR_Op1*)op1;
5892     LIR_Op1* move2 = (LIR_Op1*)op2;
5893     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5894       // these moves are exactly equal and can be optimized
5895       return false;
5896     }
5897 
5898   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5899     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5900     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5901     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5902     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5903     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5904       // equal FPU stack operations can be optimized
5905       return false;
5906     }
5907 
5908   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5909     // equal FPU stack operations can be optimized
5910     return false;
5911   }
5912 
5913   // no optimization possible
5914   return true;
5915 }
5916 
5917 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5918   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5919 
5920   if (block->is_predecessor(block)) {
5921     // currently we can't handle this correctly.
5922     return;
5923   }
5924 
5925   init_instructions();
5926   int num_preds = block->number_of_preds();
5927   assert(num_preds > 1, "do not call otherwise");
5928   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5929 
5930   // setup a list with the lir-instructions of all predecessors
5931   int i;
5932   for (i = 0; i < num_preds; i++) {
5933     BlockBegin* pred = block->pred_at(i);
5934     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5935 
5936     if (pred->number_of_sux() != 1) {
5937       // this can happen with switch-statements where multiple edges are between
5938       // the same blocks.
5939       return;
5940     }
5941 
5942     assert(pred->number_of_sux() == 1, "can handle only one successor");
5943     assert(pred->sux_at(0) == block, "invalid control flow");
5944     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5945     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5946     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5947 
5948     if (pred_instructions->last()->info() != NULL) {
5949       // can not optimize instructions when debug info is needed
5950       return;
5951     }
5952 
5953     // ignore the unconditional branch at the end of the block
5954     append_instructions(pred_instructions, pred_instructions->length() - 2);
5955   }
5956 
5957 
5958   // process lir-instructions while all predecessors end with the same instruction
5959   while (true) {
5960     LIR_Op* op = instruction_at(0);
5961     for (i = 1; i < num_preds; i++) {
5962       if (operations_different(op, instruction_at(i))) {
5963         // these instructions are different and cannot be optimized ->
5964         // no further optimization possible
5965         return;
5966       }
5967     }
5968 
5969     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5970 
5971     // insert the instruction at the beginning of the current block
5972     block->lir()->insert_before(1, op);
5973 
5974     // delete the instruction at the end of all predecessors
5975     for (i = 0; i < num_preds; i++) {
5976       remove_cur_instruction(i, true);
5977     }
5978   }
5979 }
5980 
5981 
5982 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5983   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5984 
5985   init_instructions();
5986   int num_sux = block->number_of_sux();
5987 
5988   LIR_OpList* cur_instructions = block->lir()->instructions_list();
5989 
5990   assert(num_sux == 2, "method should not be called otherwise");
5991   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5992   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5993   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5994 
5995   if (cur_instructions->last()->info() != NULL) {
5996     // can no optimize instructions when debug info is needed
5997     return;
5998   }
5999 
6000   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
6001   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
6002     // not a valid case for optimization
6003     // currently, only blocks that end with two branches (conditional branch followed
6004     // by unconditional branch) are optimized
6005     return;
6006   }
6007 
6008   // now it is guaranteed that the block ends with two branch instructions.
6009   // the instructions are inserted at the end of the block before these two branches
6010   int insert_idx = cur_instructions->length() - 2;
6011 
6012   int i;
6013 #ifdef ASSERT
6014   for (i = insert_idx - 1; i >= 0; i--) {
6015     LIR_Op* op = cur_instructions->at(i);
6016     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
6017       assert(false, "block with two successors can have only two branch instructions");
6018     }
6019   }
6020 #endif
6021 
6022   // setup a list with the lir-instructions of all successors
6023   for (i = 0; i < num_sux; i++) {
6024     BlockBegin* sux = block->sux_at(i);
6025     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
6026 
6027     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
6028 
6029     if (sux->number_of_preds() != 1) {
6030       // this can happen with switch-statements where multiple edges are between
6031       // the same blocks.
6032       return;
6033     }
6034     assert(sux->pred_at(0) == block, "invalid control flow");
6035     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6036 
6037     // ignore the label at the beginning of the block
6038     append_instructions(sux_instructions, 1);
6039   }
6040 
6041   // process lir-instructions while all successors begin with the same instruction
6042   while (true) {
6043     LIR_Op* op = instruction_at(0);
6044     for (i = 1; i < num_sux; i++) {
6045       if (operations_different(op, instruction_at(i))) {
6046         // these instructions are different and cannot be optimized ->
6047         // no further optimization possible
6048         return;
6049       }
6050     }
6051 
6052     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6053 
6054     // insert instruction at end of current block
6055     block->lir()->insert_before(insert_idx, op);
6056     insert_idx++;
6057 
6058     // delete the instructions at the beginning of all successors
6059     for (i = 0; i < num_sux; i++) {
6060       remove_cur_instruction(i, false);
6061     }
6062   }
6063 }
6064 
6065 
6066 // Implementation of ControlFlowOptimizer
6067 
6068 ControlFlowOptimizer::ControlFlowOptimizer() :
6069   _original_preds(4)
6070 {
6071 }
6072 
6073 void ControlFlowOptimizer::optimize(BlockList* code) {
6074   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6075 
6076   // push the OSR entry block to the end so that we're not jumping over it.
6077   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6078   if (osr_entry) {
6079     int index = osr_entry->linear_scan_number();
6080     assert(code->at(index) == osr_entry, "wrong index");
6081     code->remove_at(index);
6082     code->append(osr_entry);
6083   }
6084 
6085   optimizer.reorder_short_loops(code);
6086   optimizer.delete_empty_blocks(code);
6087   optimizer.delete_unnecessary_jumps(code);
6088   optimizer.delete_jumps_to_return(code);
6089 }
6090 
6091 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6092   int i = header_idx + 1;
6093   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6094   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6095     i++;
6096   }
6097 
6098   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6099     int end_idx = i - 1;
6100     BlockBegin* end_block = code->at(end_idx);
6101 
6102     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6103       // short loop from header_idx to end_idx found -> reorder blocks such that
6104       // the header_block is the last block instead of the first block of the loop
6105       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6106                                          end_idx - header_idx + 1,
6107                                          header_block->block_id(), end_block->block_id()));
6108 
6109       for (int j = header_idx; j < end_idx; j++) {
6110         code->at_put(j, code->at(j + 1));
6111       }
6112       code->at_put(end_idx, header_block);
6113 
6114       // correct the flags so that any loop alignment occurs in the right place.
6115       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6116       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6117       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6118     }
6119   }
6120 }
6121 
6122 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6123   for (int i = code->length() - 1; i >= 0; i--) {
6124     BlockBegin* block = code->at(i);
6125 
6126     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6127       reorder_short_loop(code, block, i);
6128     }
6129   }
6130 
6131   DEBUG_ONLY(verify(code));
6132 }
6133 
6134 // only blocks with exactly one successor can be deleted. Such blocks
6135 // must always end with an unconditional branch to this successor
6136 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6137   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6138     return false;
6139   }
6140 
6141   LIR_OpList* instructions = block->lir()->instructions_list();
6142 
6143   assert(instructions->length() >= 2, "block must have label and branch");
6144   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6145   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6146   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6147   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6148 
6149   // block must have exactly one successor
6150 
6151   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6152     return true;
6153   }
6154   return false;
6155 }
6156 
6157 // substitute branch targets in all branch-instructions of this blocks
6158 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6159   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6160 
6161   LIR_OpList* instructions = block->lir()->instructions_list();
6162 
6163   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6164   for (int i = instructions->length() - 1; i >= 1; i--) {
6165     LIR_Op* op = instructions->at(i);
6166 
6167     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6168       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6169       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6170 
6171       if (branch->block() == target_from) {
6172         branch->change_block(target_to);
6173       }
6174       if (branch->ublock() == target_from) {
6175         branch->change_ublock(target_to);
6176       }
6177     }
6178   }
6179 }
6180 
6181 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6182   int old_pos = 0;
6183   int new_pos = 0;
6184   int num_blocks = code->length();
6185 
6186   while (old_pos < num_blocks) {
6187     BlockBegin* block = code->at(old_pos);
6188 
6189     if (can_delete_block(block)) {
6190       BlockBegin* new_target = block->sux_at(0);
6191 
6192       // propagate backward branch target flag for correct code alignment
6193       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6194         new_target->set(BlockBegin::backward_branch_target_flag);
6195       }
6196 
6197       // collect a list with all predecessors that contains each predecessor only once
6198       // the predecessors of cur are changed during the substitution, so a copy of the
6199       // predecessor list is necessary
6200       int j;
6201       _original_preds.clear();
6202       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6203         BlockBegin* pred = block->pred_at(j);
6204         if (_original_preds.index_of(pred) == -1) {
6205           _original_preds.append(pred);
6206         }
6207       }
6208 
6209       for (j = _original_preds.length() - 1; j >= 0; j--) {
6210         BlockBegin* pred = _original_preds.at(j);
6211         substitute_branch_target(pred, block, new_target);
6212         pred->substitute_sux(block, new_target);
6213       }
6214     } else {
6215       // adjust position of this block in the block list if blocks before
6216       // have been deleted
6217       if (new_pos != old_pos) {
6218         code->at_put(new_pos, code->at(old_pos));
6219       }
6220       new_pos++;
6221     }
6222     old_pos++;
6223   }
6224   code->truncate(new_pos);
6225 
6226   DEBUG_ONLY(verify(code));
6227 }
6228 
6229 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6230   // skip the last block because there a branch is always necessary
6231   for (int i = code->length() - 2; i >= 0; i--) {
6232     BlockBegin* block = code->at(i);
6233     LIR_OpList* instructions = block->lir()->instructions_list();
6234 
6235     LIR_Op* last_op = instructions->last();
6236     if (last_op->code() == lir_branch) {
6237       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6238       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6239 
6240       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6241       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6242 
6243       if (last_branch->info() == NULL) {
6244         if (last_branch->block() == code->at(i + 1)) {
6245 
6246           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6247 
6248           // delete last branch instruction
6249           instructions->truncate(instructions->length() - 1);
6250 
6251         } else {
6252           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6253           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6254             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6255             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6256 
6257             if (prev_branch->stub() == NULL) {
6258 
6259               LIR_Op2* prev_cmp = NULL;
6260 
6261               for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6262                 prev_op = instructions->at(j);
6263                 if (prev_op->code() == lir_cmp) {
6264                   assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6265                   prev_cmp = (LIR_Op2*)prev_op;
6266                   assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6267                 }
6268               }
6269               assert(prev_cmp != NULL, "should have found comp instruction for branch");
6270               if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6271 
6272                 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6273 
6274                 // eliminate a conditional branch to the immediate successor
6275                 prev_branch->change_block(last_branch->block());
6276                 prev_branch->negate_cond();
6277                 prev_cmp->set_condition(prev_branch->cond());
6278                 instructions->truncate(instructions->length() - 1);
6279               }
6280             }
6281           }
6282         }
6283       }
6284     }
6285   }
6286 
6287   DEBUG_ONLY(verify(code));
6288 }
6289 
6290 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6291 #ifdef ASSERT
6292   BitMap return_converted(BlockBegin::number_of_blocks());
6293   return_converted.clear();
6294 #endif
6295 
6296   for (int i = code->length() - 1; i >= 0; i--) {
6297     BlockBegin* block = code->at(i);
6298     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6299     LIR_Op*     cur_last_op = cur_instructions->last();
6300 
6301     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6302     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6303       // the block contains only a label and a return
6304       // if a predecessor ends with an unconditional jump to this block, then the jump
6305       // can be replaced with a return instruction
6306       //
6307       // Note: the original block with only a return statement cannot be deleted completely
6308       //       because the predecessors might have other (conditional) jumps to this block
6309       //       -> this may lead to unnecesary return instructions in the final code
6310 
6311       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6312       assert(block->number_of_sux() == 0 ||
6313              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6314              "blocks that end with return must not have successors");
6315 
6316       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6317       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6318 
6319       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6320         BlockBegin* pred = block->pred_at(j);
6321         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6322         LIR_Op*     pred_last_op = pred_instructions->last();
6323 
6324         if (pred_last_op->code() == lir_branch) {
6325           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6326           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6327 
6328           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6329             // replace the jump to a return with a direct return
6330             // Note: currently the edge between the blocks is not deleted
6331             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6332 #ifdef ASSERT
6333             return_converted.set_bit(pred->block_id());
6334 #endif
6335           }
6336         }
6337       }
6338     }
6339   }
6340 }
6341 
6342 
6343 #ifdef ASSERT
6344 void ControlFlowOptimizer::verify(BlockList* code) {
6345   for (int i = 0; i < code->length(); i++) {
6346     BlockBegin* block = code->at(i);
6347     LIR_OpList* instructions = block->lir()->instructions_list();
6348 
6349     int j;
6350     for (j = 0; j < instructions->length(); j++) {
6351       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6352 
6353       if (op_branch != NULL) {
6354         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6355         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6356       }
6357     }
6358 
6359     for (j = 0; j < block->number_of_sux() - 1; j++) {
6360       BlockBegin* sux = block->sux_at(j);
6361       assert(code->index_of(sux) != -1, "successor not valid");
6362     }
6363 
6364     for (j = 0; j < block->number_of_preds() - 1; j++) {
6365       BlockBegin* pred = block->pred_at(j);
6366       assert(code->index_of(pred) != -1, "successor not valid");
6367     }
6368   }
6369 }
6370 #endif
6371 
6372 
6373 #ifndef PRODUCT
6374 
6375 // Implementation of LinearStatistic
6376 
6377 const char* LinearScanStatistic::counter_name(int counter_idx) {
6378   switch (counter_idx) {
6379     case counter_method:          return "compiled methods";
6380     case counter_fpu_method:      return "methods using fpu";
6381     case counter_loop_method:     return "methods with loops";
6382     case counter_exception_method:return "methods with xhandler";
6383 
6384     case counter_loop:            return "loops";
6385     case counter_block:           return "blocks";
6386     case counter_loop_block:      return "blocks inside loop";
6387     case counter_exception_block: return "exception handler entries";
6388     case counter_interval:        return "intervals";
6389     case counter_fixed_interval:  return "fixed intervals";
6390     case counter_range:           return "ranges";
6391     case counter_fixed_range:     return "fixed ranges";
6392     case counter_use_pos:         return "use positions";
6393     case counter_fixed_use_pos:   return "fixed use positions";
6394     case counter_spill_slots:     return "spill slots";
6395 
6396     // counter for classes of lir instructions
6397     case counter_instruction:     return "total instructions";
6398     case counter_label:           return "labels";
6399     case counter_entry:           return "method entries";
6400     case counter_return:          return "method returns";
6401     case counter_call:            return "method calls";
6402     case counter_move:            return "moves";
6403     case counter_cmp:             return "compare";
6404     case counter_cond_branch:     return "conditional branches";
6405     case counter_uncond_branch:   return "unconditional branches";
6406     case counter_stub_branch:     return "branches to stub";
6407     case counter_alu:             return "artithmetic + logic";
6408     case counter_alloc:           return "allocations";
6409     case counter_sync:            return "synchronisation";
6410     case counter_throw:           return "throw";
6411     case counter_unwind:          return "unwind";
6412     case counter_typecheck:       return "type+null-checks";
6413     case counter_fpu_stack:       return "fpu-stack";
6414     case counter_misc_inst:       return "other instructions";
6415     case counter_other_inst:      return "misc. instructions";
6416 
6417     // counter for different types of moves
6418     case counter_move_total:      return "total moves";
6419     case counter_move_reg_reg:    return "register->register";
6420     case counter_move_reg_stack:  return "register->stack";
6421     case counter_move_stack_reg:  return "stack->register";
6422     case counter_move_stack_stack:return "stack->stack";
6423     case counter_move_reg_mem:    return "register->memory";
6424     case counter_move_mem_reg:    return "memory->register";
6425     case counter_move_const_any:  return "constant->any";
6426 
6427     case blank_line_1:            return "";
6428     case blank_line_2:            return "";
6429 
6430     default: ShouldNotReachHere(); return "";
6431   }
6432 }
6433 
6434 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6435   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6436     return counter_method;
6437   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6438     return counter_block;
6439   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6440     return counter_instruction;
6441   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6442     return counter_move_total;
6443   }
6444   return invalid_counter;
6445 }
6446 
6447 LinearScanStatistic::LinearScanStatistic() {
6448   for (int i = 0; i < number_of_counters; i++) {
6449     _counters_sum[i] = 0;
6450     _counters_max[i] = -1;
6451   }
6452 
6453 }
6454 
6455 // add the method-local numbers to the total sum
6456 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6457   for (int i = 0; i < number_of_counters; i++) {
6458     _counters_sum[i] += method_statistic._counters_sum[i];
6459     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6460   }
6461 }
6462 
6463 void LinearScanStatistic::print(const char* title) {
6464   if (CountLinearScan || TraceLinearScanLevel > 0) {
6465     tty->cr();
6466     tty->print_cr("***** LinearScan statistic - %s *****", title);
6467 
6468     for (int i = 0; i < number_of_counters; i++) {
6469       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6470         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6471 
6472         if (base_counter(i) != invalid_counter) {
6473           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6474         } else {
6475           tty->print("           ");
6476         }
6477 
6478         if (_counters_max[i] >= 0) {
6479           tty->print("%8d", _counters_max[i]);
6480         }
6481       }
6482       tty->cr();
6483     }
6484   }
6485 }
6486 
6487 void LinearScanStatistic::collect(LinearScan* allocator) {
6488   inc_counter(counter_method);
6489   if (allocator->has_fpu_registers()) {
6490     inc_counter(counter_fpu_method);
6491   }
6492   if (allocator->num_loops() > 0) {
6493     inc_counter(counter_loop_method);
6494   }
6495   inc_counter(counter_loop, allocator->num_loops());
6496   inc_counter(counter_spill_slots, allocator->max_spills());
6497 
6498   int i;
6499   for (i = 0; i < allocator->interval_count(); i++) {
6500     Interval* cur = allocator->interval_at(i);
6501 
6502     if (cur != NULL) {
6503       inc_counter(counter_interval);
6504       inc_counter(counter_use_pos, cur->num_use_positions());
6505       if (LinearScan::is_precolored_interval(cur)) {
6506         inc_counter(counter_fixed_interval);
6507         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6508       }
6509 
6510       Range* range = cur->first();
6511       while (range != Range::end()) {
6512         inc_counter(counter_range);
6513         if (LinearScan::is_precolored_interval(cur)) {
6514           inc_counter(counter_fixed_range);
6515         }
6516         range = range->next();
6517       }
6518     }
6519   }
6520 
6521   bool has_xhandlers = false;
6522   // Note: only count blocks that are in code-emit order
6523   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6524     BlockBegin* cur = allocator->ir()->code()->at(i);
6525 
6526     inc_counter(counter_block);
6527     if (cur->loop_depth() > 0) {
6528       inc_counter(counter_loop_block);
6529     }
6530     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6531       inc_counter(counter_exception_block);
6532       has_xhandlers = true;
6533     }
6534 
6535     LIR_OpList* instructions = cur->lir()->instructions_list();
6536     for (int j = 0; j < instructions->length(); j++) {
6537       LIR_Op* op = instructions->at(j);
6538 
6539       inc_counter(counter_instruction);
6540 
6541       switch (op->code()) {
6542         case lir_label:           inc_counter(counter_label); break;
6543         case lir_std_entry:
6544         case lir_osr_entry:       inc_counter(counter_entry); break;
6545         case lir_return:          inc_counter(counter_return); break;
6546 
6547         case lir_rtcall:
6548         case lir_static_call:
6549         case lir_optvirtual_call:
6550         case lir_virtual_call:    inc_counter(counter_call); break;
6551 
6552         case lir_move: {
6553           inc_counter(counter_move);
6554           inc_counter(counter_move_total);
6555 
6556           LIR_Opr in = op->as_Op1()->in_opr();
6557           LIR_Opr res = op->as_Op1()->result_opr();
6558           if (in->is_register()) {
6559             if (res->is_register()) {
6560               inc_counter(counter_move_reg_reg);
6561             } else if (res->is_stack()) {
6562               inc_counter(counter_move_reg_stack);
6563             } else if (res->is_address()) {
6564               inc_counter(counter_move_reg_mem);
6565             } else {
6566               ShouldNotReachHere();
6567             }
6568           } else if (in->is_stack()) {
6569             if (res->is_register()) {
6570               inc_counter(counter_move_stack_reg);
6571             } else {
6572               inc_counter(counter_move_stack_stack);
6573             }
6574           } else if (in->is_address()) {
6575             assert(res->is_register(), "must be");
6576             inc_counter(counter_move_mem_reg);
6577           } else if (in->is_constant()) {
6578             inc_counter(counter_move_const_any);
6579           } else {
6580             ShouldNotReachHere();
6581           }
6582           break;
6583         }
6584 
6585         case lir_cmp:             inc_counter(counter_cmp); break;
6586 
6587         case lir_branch:
6588         case lir_cond_float_branch: {
6589           LIR_OpBranch* branch = op->as_OpBranch();
6590           if (branch->block() == NULL) {
6591             inc_counter(counter_stub_branch);
6592           } else if (branch->cond() == lir_cond_always) {
6593             inc_counter(counter_uncond_branch);
6594           } else {
6595             inc_counter(counter_cond_branch);
6596           }
6597           break;
6598         }
6599 
6600         case lir_neg:
6601         case lir_add:
6602         case lir_sub:
6603         case lir_mul:
6604         case lir_mul_strictfp:
6605         case lir_div:
6606         case lir_div_strictfp:
6607         case lir_rem:
6608         case lir_sqrt:
6609         case lir_sin:
6610         case lir_cos:
6611         case lir_abs:
6612         case lir_log10:
6613         case lir_log:
6614         case lir_pow:
6615         case lir_exp:
6616         case lir_logic_and:
6617         case lir_logic_or:
6618         case lir_logic_xor:
6619         case lir_shl:
6620         case lir_shr:
6621         case lir_ushr:            inc_counter(counter_alu); break;
6622 
6623         case lir_alloc_object:
6624         case lir_alloc_array:     inc_counter(counter_alloc); break;
6625 
6626         case lir_monaddr:
6627         case lir_lock:
6628         case lir_unlock:          inc_counter(counter_sync); break;
6629 
6630         case lir_throw:           inc_counter(counter_throw); break;
6631 
6632         case lir_unwind:          inc_counter(counter_unwind); break;
6633 
6634         case lir_null_check:
6635         case lir_leal:
6636         case lir_instanceof:
6637         case lir_checkcast:
6638         case lir_store_check:     inc_counter(counter_typecheck); break;
6639 
6640         case lir_fpop_raw:
6641         case lir_fxch:
6642         case lir_fld:             inc_counter(counter_fpu_stack); break;
6643 
6644         case lir_nop:
6645         case lir_push:
6646         case lir_pop:
6647         case lir_convert:
6648         case lir_roundfp:
6649         case lir_cmove:           inc_counter(counter_misc_inst); break;
6650 
6651         default:                  inc_counter(counter_other_inst); break;
6652       }
6653     }
6654   }
6655 
6656   if (has_xhandlers) {
6657     inc_counter(counter_exception_method);
6658   }
6659 }
6660 
6661 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6662   if (CountLinearScan || TraceLinearScanLevel > 0) {
6663 
6664     LinearScanStatistic local_statistic = LinearScanStatistic();
6665 
6666     local_statistic.collect(allocator);
6667     global_statistic.sum_up(local_statistic);
6668 
6669     if (TraceLinearScanLevel > 2) {
6670       local_statistic.print("current local statistic");
6671     }
6672   }
6673 }
6674 
6675 
6676 // Implementation of LinearTimers
6677 
6678 LinearScanTimers::LinearScanTimers() {
6679   for (int i = 0; i < number_of_timers; i++) {
6680     timer(i)->reset();
6681   }
6682 }
6683 
6684 const char* LinearScanTimers::timer_name(int idx) {
6685   switch (idx) {
6686     case timer_do_nothing:               return "Nothing (Time Check)";
6687     case timer_number_instructions:      return "Number Instructions";
6688     case timer_compute_local_live_sets:  return "Local Live Sets";
6689     case timer_compute_global_live_sets: return "Global Live Sets";
6690     case timer_build_intervals:          return "Build Intervals";
6691     case timer_sort_intervals_before:    return "Sort Intervals Before";
6692     case timer_allocate_registers:       return "Allocate Registers";
6693     case timer_resolve_data_flow:        return "Resolve Data Flow";
6694     case timer_sort_intervals_after:     return "Sort Intervals After";
6695     case timer_eliminate_spill_moves:    return "Spill optimization";
6696     case timer_assign_reg_num:           return "Assign Reg Num";
6697     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6698     case timer_optimize_lir:             return "Optimize LIR";
6699     default: ShouldNotReachHere();       return "";
6700   }
6701 }
6702 
6703 void LinearScanTimers::begin_method() {
6704   if (TimeEachLinearScan) {
6705     // reset all timers to measure only current method
6706     for (int i = 0; i < number_of_timers; i++) {
6707       timer(i)->reset();
6708     }
6709   }
6710 }
6711 
6712 void LinearScanTimers::end_method(LinearScan* allocator) {
6713   if (TimeEachLinearScan) {
6714 
6715     double c = timer(timer_do_nothing)->seconds();
6716     double total = 0;
6717     for (int i = 1; i < number_of_timers; i++) {
6718       total += timer(i)->seconds() - c;
6719     }
6720 
6721     if (total >= 0.0005) {
6722       // print all information in one line for automatic processing
6723       tty->print("@"); allocator->compilation()->method()->print_name();
6724 
6725       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6726       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6727       tty->print("@ %d ", allocator->block_count());
6728       tty->print("@ %d ", allocator->num_virtual_regs());
6729       tty->print("@ %d ", allocator->interval_count());
6730       tty->print("@ %d ", allocator->_num_calls);
6731       tty->print("@ %d ", allocator->num_loops());
6732 
6733       tty->print("@ %6.6f ", total);
6734       for (int i = 1; i < number_of_timers; i++) {
6735         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6736       }
6737       tty->cr();
6738     }
6739   }
6740 }
6741 
6742 void LinearScanTimers::print(double total_time) {
6743   if (TimeLinearScan) {
6744     // correction value: sum of dummy-timer that only measures the time that
6745     // is necesary to start and stop itself
6746     double c = timer(timer_do_nothing)->seconds();
6747 
6748     for (int i = 0; i < number_of_timers; i++) {
6749       double t = timer(i)->seconds();
6750       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6751     }
6752   }
6753 }
6754 
6755 #endif // #ifndef PRODUCT