1 /*
   2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_InstructionPrinter.hpp"
  27 #include "c1/c1_LIR.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciInstance.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 Register LIR_OprDesc::as_register() const {
  34   return FrameMap::cpu_rnr2reg(cpu_regnr());
  35 }
  36 
  37 Register LIR_OprDesc::as_register_lo() const {
  38   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  39 }
  40 
  41 Register LIR_OprDesc::as_register_hi() const {
  42   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  43 }
  44 
  45 #if defined(X86)
  46 
  47 XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
  48   return FrameMap::nr2xmmreg(xmm_regnr());
  49 }
  50 
  51 XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
  52   assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
  53   return FrameMap::nr2xmmreg(xmm_regnrLo());
  54 }
  55 
  56 #endif // X86
  57 
  58 #if defined(SPARC) || defined(PPC)
  59 
  60 FloatRegister LIR_OprDesc::as_float_reg() const {
  61   return FrameMap::nr2floatreg(fpu_regnr());
  62 }
  63 
  64 FloatRegister LIR_OprDesc::as_double_reg() const {
  65   return FrameMap::nr2floatreg(fpu_regnrHi());
  66 }
  67 
  68 #endif
  69 
  70 #ifdef ARM
  71 
  72 FloatRegister LIR_OprDesc::as_float_reg() const {
  73   return as_FloatRegister(fpu_regnr());
  74 }
  75 
  76 FloatRegister LIR_OprDesc::as_double_reg() const {
  77   return as_FloatRegister(fpu_regnrLo());
  78 }
  79 
  80 #endif
  81 
  82 
  83 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  84 
  85 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  86   ValueTag tag = type->tag();
  87   switch (tag) {
  88   case metaDataTag : {
  89     ClassConstant* c = type->as_ClassConstant();
  90     if (c != NULL && !c->value()->is_loaded()) {
  91       return LIR_OprFact::metadataConst(NULL);
  92     } else if (c != NULL) {
  93       return LIR_OprFact::metadataConst(c->value()->constant_encoding());
  94     } else {
  95       MethodConstant* m = type->as_MethodConstant();
  96       assert (m != NULL, "not a class or a method?");
  97       return LIR_OprFact::metadataConst(m->value()->constant_encoding());
  98     }
  99   }
 100   case objectTag : {
 101       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
 102     }
 103   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
 104   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
 105   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
 106   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
 107   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
 108   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 109   }
 110 }
 111 
 112 
 113 LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
 114   switch (type->tag()) {
 115     case objectTag: return LIR_OprFact::oopConst(NULL);
 116     case addressTag:return LIR_OprFact::addressConst(0);
 117     case intTag:    return LIR_OprFact::intConst(0);
 118     case floatTag:  return LIR_OprFact::floatConst(0.0);
 119     case longTag:   return LIR_OprFact::longConst(0);
 120     case doubleTag: return LIR_OprFact::doubleConst(0.0);
 121     default:        ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 122   }
 123   return illegalOpr;
 124 }
 125 
 126 
 127 
 128 //---------------------------------------------------
 129 
 130 
 131 LIR_Address::Scale LIR_Address::scale(BasicType type) {
 132   int elem_size = type2aelembytes(type);
 133   switch (elem_size) {
 134   case 1: return LIR_Address::times_1;
 135   case 2: return LIR_Address::times_2;
 136   case 4: return LIR_Address::times_4;
 137   case 8: return LIR_Address::times_8;
 138   }
 139   ShouldNotReachHere();
 140   return LIR_Address::times_1;
 141 }
 142 
 143 
 144 #ifndef PRODUCT
 145 void LIR_Address::verify() const {
 146 #if defined(SPARC) || defined(PPC)
 147   assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
 148   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 149 #endif
 150 #ifdef ARM
 151   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 152   // Note: offsets higher than 4096 must not be rejected here. They can
 153   // be handled by the back-end or will be rejected if not.
 154 #endif
 155 #ifdef _LP64
 156   assert(base()->is_cpu_register(), "wrong base operand");
 157   assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
 158   assert(base()->type() == T_OBJECT || base()->type() == T_LONG || base()->type() == T_METADATA,
 159          "wrong type for addresses");
 160 #else
 161   assert(base()->is_single_cpu(), "wrong base operand");
 162   assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
 163   assert(base()->type() == T_OBJECT || base()->type() == T_INT || base()->type() == T_METADATA,
 164          "wrong type for addresses");
 165 #endif
 166 }
 167 #endif
 168 
 169 
 170 //---------------------------------------------------
 171 
 172 char LIR_OprDesc::type_char(BasicType t) {
 173   switch (t) {
 174     case T_ARRAY:
 175       t = T_OBJECT;
 176     case T_BOOLEAN:
 177     case T_CHAR:
 178     case T_FLOAT:
 179     case T_DOUBLE:
 180     case T_BYTE:
 181     case T_SHORT:
 182     case T_INT:
 183     case T_LONG:
 184     case T_OBJECT:
 185     case T_ADDRESS:
 186     case T_VOID:
 187       return ::type2char(t);
 188     case T_METADATA:
 189       return 'M';
 190     case T_ILLEGAL:
 191       return '?';
 192 
 193     default:
 194       ShouldNotReachHere();
 195       return '?';
 196   }
 197 }
 198 
 199 #ifndef PRODUCT
 200 void LIR_OprDesc::validate_type() const {
 201 
 202 #ifdef ASSERT
 203   if (!is_pointer() && !is_illegal()) {
 204     OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160
 205     switch (as_BasicType(type_field())) {
 206     case T_LONG:
 207       assert((kindfield == cpu_register || kindfield == stack_value) &&
 208              size_field() == double_size, "must match");
 209       break;
 210     case T_FLOAT:
 211       // FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
 212       assert((kindfield == fpu_register || kindfield == stack_value
 213              ARM_ONLY(|| kindfield == cpu_register)
 214              PPC_ONLY(|| kindfield == cpu_register) ) &&
 215              size_field() == single_size, "must match");
 216       break;
 217     case T_DOUBLE:
 218       // FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
 219       assert((kindfield == fpu_register || kindfield == stack_value
 220              ARM_ONLY(|| kindfield == cpu_register)
 221              PPC_ONLY(|| kindfield == cpu_register) ) &&
 222              size_field() == double_size, "must match");
 223       break;
 224     case T_BOOLEAN:
 225     case T_CHAR:
 226     case T_BYTE:
 227     case T_SHORT:
 228     case T_INT:
 229     case T_ADDRESS:
 230     case T_OBJECT:
 231     case T_METADATA:
 232     case T_ARRAY:
 233       assert((kindfield == cpu_register || kindfield == stack_value) &&
 234              size_field() == single_size, "must match");
 235       break;
 236 
 237     case T_ILLEGAL:
 238       // XXX TKR also means unknown right now
 239       // assert(is_illegal(), "must match");
 240       break;
 241 
 242     default:
 243       ShouldNotReachHere();
 244     }
 245   }
 246 #endif
 247 
 248 }
 249 #endif // PRODUCT
 250 
 251 
 252 bool LIR_OprDesc::is_oop() const {
 253   if (is_pointer()) {
 254     return pointer()->is_oop_pointer();
 255   } else {
 256     OprType t= type_field();
 257     assert(t != unknown_type, "not set");
 258     return t == object_type;
 259   }
 260 }
 261 
 262 
 263 
 264 void LIR_Op2::verify() const {
 265 #ifdef ASSERT
 266   switch (code()) {
 267     case lir_cmove:
 268     case lir_xchg:
 269       break;
 270 
 271     default:
 272       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 273              "can't produce oops from arith");
 274   }
 275 
 276   if (TwoOperandLIRForm) {
 277     switch (code()) {
 278     case lir_add:
 279     case lir_sub:
 280     case lir_mul:
 281     case lir_mul_strictfp:
 282     case lir_div:
 283     case lir_div_strictfp:
 284     case lir_rem:
 285     case lir_logic_and:
 286     case lir_logic_or:
 287     case lir_logic_xor:
 288     case lir_shl:
 289     case lir_shr:
 290       assert(in_opr1() == result_opr(), "opr1 and result must match");
 291       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 292       break;
 293 
 294     // special handling for lir_ushr because of write barriers
 295     case lir_ushr:
 296       assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
 297       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 298       break;
 299 
 300     }
 301   }
 302 #endif
 303 }
 304 
 305 
 306 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
 307   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 308   , _cond(cond)
 309   , _type(type)
 310   , _label(block->label())
 311   , _block(block)
 312   , _ublock(NULL)
 313   , _stub(NULL) {
 314 }
 315 
 316 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
 317   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 318   , _cond(cond)
 319   , _type(type)
 320   , _label(stub->entry())
 321   , _block(NULL)
 322   , _ublock(NULL)
 323   , _stub(stub) {
 324 }
 325 
 326 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
 327   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 328   , _cond(cond)
 329   , _type(type)
 330   , _label(block->label())
 331   , _block(block)
 332   , _ublock(ublock)
 333   , _stub(NULL)
 334 {
 335 }
 336 
 337 void LIR_OpBranch::change_block(BlockBegin* b) {
 338   assert(_block != NULL, "must have old block");
 339   assert(_block->label() == label(), "must be equal");
 340 
 341   _block = b;
 342   _label = b->label();
 343 }
 344 
 345 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 346   assert(_ublock != NULL, "must have old block");
 347   _ublock = b;
 348 }
 349 
 350 void LIR_OpBranch::negate_cond() {
 351   switch (_cond) {
 352     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
 353     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
 354     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
 355     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
 356     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
 357     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
 358     default: ShouldNotReachHere();
 359   }
 360 }
 361 
 362 
 363 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 364                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 365                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
 366                                  CodeStub* stub)
 367 
 368   : LIR_Op(code, result, NULL)
 369   , _object(object)
 370   , _array(LIR_OprFact::illegalOpr)
 371   , _klass(klass)
 372   , _tmp1(tmp1)
 373   , _tmp2(tmp2)
 374   , _tmp3(tmp3)
 375   , _fast_check(fast_check)
 376   , _stub(stub)
 377   , _info_for_patch(info_for_patch)
 378   , _info_for_exception(info_for_exception)
 379   , _profiled_method(NULL)
 380   , _profiled_bci(-1)
 381   , _should_profile(false)
 382 {
 383   if (code == lir_checkcast) {
 384     assert(info_for_exception != NULL, "checkcast throws exceptions");
 385   } else if (code == lir_instanceof) {
 386     assert(info_for_exception == NULL, "instanceof throws no exceptions");
 387   } else {
 388     ShouldNotReachHere();
 389   }
 390 }
 391 
 392 
 393 
 394 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 395   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 396   , _object(object)
 397   , _array(array)
 398   , _klass(NULL)
 399   , _tmp1(tmp1)
 400   , _tmp2(tmp2)
 401   , _tmp3(tmp3)
 402   , _fast_check(false)
 403   , _stub(NULL)
 404   , _info_for_patch(NULL)
 405   , _info_for_exception(info_for_exception)
 406   , _profiled_method(NULL)
 407   , _profiled_bci(-1)
 408   , _should_profile(false)
 409 {
 410   if (code == lir_store_check) {
 411     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
 412     assert(info_for_exception != NULL, "store_check throws exceptions");
 413   } else {
 414     ShouldNotReachHere();
 415   }
 416 }
 417 
 418 
 419 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 420                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 421   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 422   , _tmp(tmp)
 423   , _src(src)
 424   , _src_pos(src_pos)
 425   , _dst(dst)
 426   , _dst_pos(dst_pos)
 427   , _flags(flags)
 428   , _expected_type(expected_type)
 429   , _length(length) {
 430   _stub = new ArrayCopyStub(this);
 431 }
 432 
 433 LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)
 434   : LIR_Op(lir_updatecrc32, res, NULL)
 435   , _crc(crc)
 436   , _val(val) {
 437 }
 438 
 439 //-------------------verify--------------------------
 440 
 441 void LIR_Op1::verify() const {
 442   switch(code()) {
 443   case lir_move:
 444     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 445     break;
 446   case lir_null_check:
 447     assert(in_opr()->is_register(), "must be");
 448     break;
 449   case lir_return:
 450     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 451     break;
 452   }
 453 }
 454 
 455 void LIR_OpRTCall::verify() const {
 456   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 457 }
 458 
 459 //-------------------visits--------------------------
 460 
 461 // complete rework of LIR instruction visitor.
 462 // The virtual calls for each instruction type is replaced by a big
 463 // switch that adds the operands for each instruction
 464 
 465 void LIR_OpVisitState::visit(LIR_Op* op) {
 466   // copy information from the LIR_Op
 467   reset();
 468   set_op(op);
 469 
 470   switch (op->code()) {
 471 
 472 // LIR_Op0
 473     case lir_word_align:               // result and info always invalid
 474     case lir_backwardbranch_target:    // result and info always invalid
 475     case lir_build_frame:              // result and info always invalid
 476     case lir_fpop_raw:                 // result and info always invalid
 477     case lir_24bit_FPU:                // result and info always invalid
 478     case lir_reset_FPU:                // result and info always invalid
 479     case lir_breakpoint:               // result and info always invalid
 480     case lir_membar:                   // result and info always invalid
 481     case lir_membar_acquire:           // result and info always invalid
 482     case lir_membar_release:           // result and info always invalid
 483     case lir_membar_loadload:          // result and info always invalid
 484     case lir_membar_storestore:        // result and info always invalid
 485     case lir_membar_loadstore:         // result and info always invalid
 486     case lir_membar_storeload:         // result and info always invalid
 487     {
 488       assert(op->as_Op0() != NULL, "must be");
 489       assert(op->_info == NULL, "info not used by this instruction");
 490       assert(op->_result->is_illegal(), "not used");
 491       break;
 492     }
 493 
 494     case lir_nop:                      // may have info, result always invalid
 495     case lir_std_entry:                // may have result, info always invalid
 496     case lir_osr_entry:                // may have result, info always invalid
 497     case lir_get_thread:               // may have result, info always invalid
 498     {
 499       assert(op->as_Op0() != NULL, "must be");
 500       if (op->_info != NULL)           do_info(op->_info);
 501       if (op->_result->is_valid())     do_output(op->_result);
 502       break;
 503     }
 504 
 505 
 506 // LIR_OpLabel
 507     case lir_label:                    // result and info always invalid
 508     {
 509       assert(op->as_OpLabel() != NULL, "must be");
 510       assert(op->_info == NULL, "info not used by this instruction");
 511       assert(op->_result->is_illegal(), "not used");
 512       break;
 513     }
 514 
 515 
 516 // LIR_Op1
 517     case lir_fxch:           // input always valid, result and info always invalid
 518     case lir_fld:            // input always valid, result and info always invalid
 519     case lir_ffree:          // input always valid, result and info always invalid
 520     case lir_push:           // input always valid, result and info always invalid
 521     case lir_pop:            // input always valid, result and info always invalid
 522     case lir_return:         // input always valid, result and info always invalid
 523     case lir_leal:           // input and result always valid, info always invalid
 524     case lir_neg:            // input and result always valid, info always invalid
 525     case lir_monaddr:        // input and result always valid, info always invalid
 526     case lir_null_check:     // input and info always valid, result always invalid
 527     case lir_move:           // input and result always valid, may have info
 528     case lir_pack64:         // input and result always valid
 529     case lir_unpack64:       // input and result always valid
 530     {
 531       assert(op->as_Op1() != NULL, "must be");
 532       LIR_Op1* op1 = (LIR_Op1*)op;
 533 
 534       if (op1->_info)                  do_info(op1->_info);
 535       if (op1->_opr->is_valid())       do_input(op1->_opr);
 536       if (op1->_result->is_valid())    do_output(op1->_result);
 537 
 538       break;
 539     }
 540 
 541     case lir_safepoint:
 542     {
 543       assert(op->as_Op1() != NULL, "must be");
 544       LIR_Op1* op1 = (LIR_Op1*)op;
 545 
 546       assert(op1->_info != NULL, "");  do_info(op1->_info);
 547       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 548       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 549 
 550       break;
 551     }
 552 
 553 // LIR_OpConvert;
 554     case lir_convert:        // input and result always valid, info always invalid
 555     {
 556       assert(op->as_OpConvert() != NULL, "must be");
 557       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 558 
 559       assert(opConvert->_info == NULL, "must be");
 560       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 561       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 562 #ifdef PPC
 563       if (opConvert->_tmp1->is_valid())      do_temp(opConvert->_tmp1);
 564       if (opConvert->_tmp2->is_valid())      do_temp(opConvert->_tmp2);
 565 #endif
 566       do_stub(opConvert->_stub);
 567 
 568       break;
 569     }
 570 
 571 // LIR_OpBranch;
 572     case lir_branch:                   // may have info, input and result register always invalid
 573     case lir_cond_float_branch:        // may have info, input and result register always invalid
 574     {
 575       assert(op->as_OpBranch() != NULL, "must be");
 576       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 577 
 578       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 579       assert(opBranch->_result->is_illegal(), "not used");
 580       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 581 
 582       break;
 583     }
 584 
 585 
 586 // LIR_OpAllocObj
 587     case lir_alloc_object:
 588     {
 589       assert(op->as_OpAllocObj() != NULL, "must be");
 590       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 591 
 592       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 593       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 594                                                  do_temp(opAllocObj->_opr);
 595                                         }
 596       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 597       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 598       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 599       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 600       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 601                                                  do_stub(opAllocObj->_stub);
 602       break;
 603     }
 604 
 605 
 606 // LIR_OpRoundFP;
 607     case lir_roundfp: {
 608       assert(op->as_OpRoundFP() != NULL, "must be");
 609       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 610 
 611       assert(op->_info == NULL, "info not used by this instruction");
 612       assert(opRoundFP->_tmp->is_illegal(), "not used");
 613       do_input(opRoundFP->_opr);
 614       do_output(opRoundFP->_result);
 615 
 616       break;
 617     }
 618 
 619 
 620 // LIR_Op2
 621     case lir_cmp:
 622     case lir_cmp_l2i:
 623     case lir_ucmp_fd2i:
 624     case lir_cmp_fd2i:
 625     case lir_add:
 626     case lir_sub:
 627     case lir_mul:
 628     case lir_div:
 629     case lir_rem:
 630     case lir_sqrt:
 631     case lir_abs:
 632     case lir_logic_and:
 633     case lir_logic_or:
 634     case lir_logic_xor:
 635     case lir_shl:
 636     case lir_shr:
 637     case lir_ushr:
 638     case lir_xadd:
 639     case lir_xchg:
 640     case lir_assert:
 641     {
 642       assert(op->as_Op2() != NULL, "must be");
 643       LIR_Op2* op2 = (LIR_Op2*)op;
 644       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 645              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 646 
 647       if (op2->_info)                     do_info(op2->_info);
 648       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 649       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 650       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 651       if (op2->_result->is_valid())       do_output(op2->_result);
 652       if (op->code() == lir_xchg || op->code() == lir_xadd) {
 653         // on ARM and PPC, return value is loaded first so could
 654         // destroy inputs. On other platforms that implement those
 655         // (x86, sparc), the extra constrainsts are harmless.
 656         if (op2->_opr1->is_valid())       do_temp(op2->_opr1);
 657         if (op2->_opr2->is_valid())       do_temp(op2->_opr2);
 658       }
 659 
 660       break;
 661     }
 662 
 663     // special handling for cmove: right input operand must not be equal
 664     // to the result operand, otherwise the backend fails
 665     case lir_cmove:
 666     {
 667       assert(op->as_Op2() != NULL, "must be");
 668       LIR_Op2* op2 = (LIR_Op2*)op;
 669 
 670       assert(op2->_info == NULL && op2->_tmp1->is_illegal() && op2->_tmp2->is_illegal() &&
 671              op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 672       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
 673 
 674       do_input(op2->_opr1);
 675       do_input(op2->_opr2);
 676       do_temp(op2->_opr2);
 677       do_output(op2->_result);
 678 
 679       break;
 680     }
 681 
 682     // vspecial handling for strict operations: register input operands
 683     // as temp to guarantee that they do not overlap with other
 684     // registers
 685     case lir_mul_strictfp:
 686     case lir_div_strictfp:
 687     {
 688       assert(op->as_Op2() != NULL, "must be");
 689       LIR_Op2* op2 = (LIR_Op2*)op;
 690 
 691       assert(op2->_info == NULL, "not used");
 692       assert(op2->_opr1->is_valid(), "used");
 693       assert(op2->_opr2->is_valid(), "used");
 694       assert(op2->_result->is_valid(), "used");
 695       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 696              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 697 
 698       do_input(op2->_opr1); do_temp(op2->_opr1);
 699       do_input(op2->_opr2); do_temp(op2->_opr2);
 700       if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
 701       do_output(op2->_result);
 702 
 703       break;
 704     }
 705 
 706     case lir_throw: {
 707       assert(op->as_Op2() != NULL, "must be");
 708       LIR_Op2* op2 = (LIR_Op2*)op;
 709 
 710       if (op2->_info)                     do_info(op2->_info);
 711       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 712       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 713       assert(op2->_result->is_illegal(), "no result");
 714       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 715              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 716 
 717       break;
 718     }
 719 
 720     case lir_unwind: {
 721       assert(op->as_Op1() != NULL, "must be");
 722       LIR_Op1* op1 = (LIR_Op1*)op;
 723 
 724       assert(op1->_info == NULL, "no info");
 725       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 726       assert(op1->_result->is_illegal(), "no result");
 727 
 728       break;
 729     }
 730 
 731 
 732     case lir_tan:
 733     case lir_sin:
 734     case lir_cos:
 735     case lir_log:
 736     case lir_log10:
 737     case lir_exp: {
 738       assert(op->as_Op2() != NULL, "must be");
 739       LIR_Op2* op2 = (LIR_Op2*)op;
 740 
 741       // On x86 tan/sin/cos need two temporary fpu stack slots and
 742       // log/log10 need one so handle opr2 and tmp as temp inputs.
 743       // Register input operand as temp to guarantee that it doesn't
 744       // overlap with the input.
 745       assert(op2->_info == NULL, "not used");
 746       assert(op2->_tmp5->is_illegal(), "not used");
 747       assert(op2->_tmp2->is_valid() == (op->code() == lir_exp), "not used");
 748       assert(op2->_tmp3->is_valid() == (op->code() == lir_exp), "not used");
 749       assert(op2->_tmp4->is_valid() == (op->code() == lir_exp), "not used");
 750       assert(op2->_opr1->is_valid(), "used");
 751       do_input(op2->_opr1); do_temp(op2->_opr1);
 752 
 753       if (op2->_opr2->is_valid())         do_temp(op2->_opr2);
 754       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 755       if (op2->_tmp2->is_valid())         do_temp(op2->_tmp2);
 756       if (op2->_tmp3->is_valid())         do_temp(op2->_tmp3);
 757       if (op2->_tmp4->is_valid())         do_temp(op2->_tmp4);
 758       if (op2->_result->is_valid())       do_output(op2->_result);
 759 
 760       break;
 761     }
 762 
 763     case lir_pow: {
 764       assert(op->as_Op2() != NULL, "must be");
 765       LIR_Op2* op2 = (LIR_Op2*)op;
 766 
 767       // On x86 pow needs two temporary fpu stack slots: tmp1 and
 768       // tmp2. Register input operands as temps to guarantee that it
 769       // doesn't overlap with the temporary slots.
 770       assert(op2->_info == NULL, "not used");
 771       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid(), "used");
 772       assert(op2->_tmp1->is_valid() && op2->_tmp2->is_valid() && op2->_tmp3->is_valid()
 773              && op2->_tmp4->is_valid() && op2->_tmp5->is_valid(), "used");
 774       assert(op2->_result->is_valid(), "used");
 775 
 776       do_input(op2->_opr1); do_temp(op2->_opr1);
 777       do_input(op2->_opr2); do_temp(op2->_opr2);
 778       do_temp(op2->_tmp1);
 779       do_temp(op2->_tmp2);
 780       do_temp(op2->_tmp3);
 781       do_temp(op2->_tmp4);
 782       do_temp(op2->_tmp5);
 783       do_output(op2->_result);
 784 
 785       break;
 786     }
 787 
 788 // LIR_Op3
 789     case lir_idiv:
 790     case lir_irem: {
 791       assert(op->as_Op3() != NULL, "must be");
 792       LIR_Op3* op3= (LIR_Op3*)op;
 793 
 794       if (op3->_info)                     do_info(op3->_info);
 795       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 796 
 797       // second operand is input and temp, so ensure that second operand
 798       // and third operand get not the same register
 799       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 800       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 801       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 802 
 803       if (op3->_result->is_valid())       do_output(op3->_result);
 804 
 805       break;
 806     }
 807 
 808 
 809 // LIR_OpJavaCall
 810     case lir_static_call:
 811     case lir_optvirtual_call:
 812     case lir_icvirtual_call:
 813     case lir_virtual_call:
 814     case lir_dynamic_call: {
 815       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 816       assert(opJavaCall != NULL, "must be");
 817 
 818       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 819 
 820       // only visit register parameters
 821       int n = opJavaCall->_arguments->length();
 822       for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) {
 823         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 824           do_input(*opJavaCall->_arguments->adr_at(i));
 825         }
 826       }
 827 
 828       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 829       if (opJavaCall->is_method_handle_invoke()) {
 830         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 831         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 832       }
 833       do_call();
 834       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 835 
 836       break;
 837     }
 838 
 839 
 840 // LIR_OpRTCall
 841     case lir_rtcall: {
 842       assert(op->as_OpRTCall() != NULL, "must be");
 843       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 844 
 845       // only visit register parameters
 846       int n = opRTCall->_arguments->length();
 847       for (int i = 0; i < n; i++) {
 848         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 849           do_input(*opRTCall->_arguments->adr_at(i));
 850         }
 851       }
 852       if (opRTCall->_info)                     do_info(opRTCall->_info);
 853       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 854       do_call();
 855       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 856 
 857       break;
 858     }
 859 
 860 
 861 // LIR_OpArrayCopy
 862     case lir_arraycopy: {
 863       assert(op->as_OpArrayCopy() != NULL, "must be");
 864       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 865 
 866       assert(opArrayCopy->_result->is_illegal(), "unused");
 867       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 868       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 869       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 870       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 871       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 872       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 873       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 874 
 875       // the implementation of arraycopy always has a call into the runtime
 876       do_call();
 877 
 878       break;
 879     }
 880 
 881 
 882 // LIR_OpUpdateCRC32
 883     case lir_updatecrc32: {
 884       assert(op->as_OpUpdateCRC32() != NULL, "must be");
 885       LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op;
 886 
 887       assert(opUp->_crc->is_valid(), "used");          do_input(opUp->_crc);     do_temp(opUp->_crc);
 888       assert(opUp->_val->is_valid(), "used");          do_input(opUp->_val);     do_temp(opUp->_val);
 889       assert(opUp->_result->is_valid(), "used");       do_output(opUp->_result);
 890       assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32");
 891 
 892       break;
 893     }
 894 
 895 
 896 // LIR_OpLock
 897     case lir_lock:
 898     case lir_unlock: {
 899       assert(op->as_OpLock() != NULL, "must be");
 900       LIR_OpLock* opLock = (LIR_OpLock*)op;
 901 
 902       if (opLock->_info)                          do_info(opLock->_info);
 903 
 904       // TODO: check if these operands really have to be temp
 905       // (or if input is sufficient). This may have influence on the oop map!
 906       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 907       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 908       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 909 
 910       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 911       assert(opLock->_result->is_illegal(), "unused");
 912 
 913       do_stub(opLock->_stub);
 914 
 915       break;
 916     }
 917 
 918 
 919 // LIR_OpDelay
 920     case lir_delay_slot: {
 921       assert(op->as_OpDelay() != NULL, "must be");
 922       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 923 
 924       visit(opDelay->delay_op());
 925       break;
 926     }
 927 
 928 // LIR_OpTypeCheck
 929     case lir_instanceof:
 930     case lir_checkcast:
 931     case lir_store_check: {
 932       assert(op->as_OpTypeCheck() != NULL, "must be");
 933       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 934 
 935       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 936       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 937       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 938       if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) {
 939         do_temp(opTypeCheck->_object);
 940       }
 941       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 942       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 943       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 944       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 945       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 946                                                   do_stub(opTypeCheck->_stub);
 947       break;
 948     }
 949 
 950 // LIR_OpCompareAndSwap
 951     case lir_cas_long:
 952     case lir_cas_obj:
 953     case lir_cas_int: {
 954       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 955       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
 956 
 957       assert(opCompareAndSwap->_addr->is_valid(),      "used");
 958       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
 959       assert(opCompareAndSwap->_new_value->is_valid(), "used");
 960       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
 961                                                       do_input(opCompareAndSwap->_addr);
 962                                                       do_temp(opCompareAndSwap->_addr);
 963                                                       do_input(opCompareAndSwap->_cmp_value);
 964                                                       do_temp(opCompareAndSwap->_cmp_value);
 965                                                       do_input(opCompareAndSwap->_new_value);
 966                                                       do_temp(opCompareAndSwap->_new_value);
 967       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
 968       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
 969       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
 970 
 971       break;
 972     }
 973 
 974 
 975 // LIR_OpAllocArray;
 976     case lir_alloc_array: {
 977       assert(op->as_OpAllocArray() != NULL, "must be");
 978       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 979 
 980       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 981       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
 982       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
 983       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 984       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 985       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 986       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 987       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 988                                                       do_stub(opAllocArray->_stub);
 989       break;
 990     }
 991 
 992 // LIR_OpProfileCall:
 993     case lir_profile_call: {
 994       assert(op->as_OpProfileCall() != NULL, "must be");
 995       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 996 
 997       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
 998       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
 999       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
1000       break;
1001     }
1002 
1003 // LIR_OpProfileType:
1004     case lir_profile_type: {
1005       assert(op->as_OpProfileType() != NULL, "must be");
1006       LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op;
1007 
1008       do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp);
1009       do_input(opProfileType->_obj);
1010       do_temp(opProfileType->_tmp);
1011       break;
1012     }
1013   default:
1014     ShouldNotReachHere();
1015   }
1016 }
1017 
1018 
1019 void LIR_OpVisitState::do_stub(CodeStub* stub) {
1020   if (stub != NULL) {
1021     stub->visit(this);
1022   }
1023 }
1024 
1025 XHandlers* LIR_OpVisitState::all_xhandler() {
1026   XHandlers* result = NULL;
1027 
1028   int i;
1029   for (i = 0; i < info_count(); i++) {
1030     if (info_at(i)->exception_handlers() != NULL) {
1031       result = info_at(i)->exception_handlers();
1032       break;
1033     }
1034   }
1035 
1036 #ifdef ASSERT
1037   for (i = 0; i < info_count(); i++) {
1038     assert(info_at(i)->exception_handlers() == NULL ||
1039            info_at(i)->exception_handlers() == result,
1040            "only one xhandler list allowed per LIR-operation");
1041   }
1042 #endif
1043 
1044   if (result != NULL) {
1045     return result;
1046   } else {
1047     return new XHandlers();
1048   }
1049 
1050   return result;
1051 }
1052 
1053 
1054 #ifdef ASSERT
1055 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
1056   visit(op);
1057 
1058   return opr_count(inputMode) == 0 &&
1059          opr_count(outputMode) == 0 &&
1060          opr_count(tempMode) == 0 &&
1061          info_count() == 0 &&
1062          !has_call() &&
1063          !has_slow_case();
1064 }
1065 #endif
1066 
1067 //---------------------------------------------------
1068 
1069 
1070 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
1071   masm->emit_call(this);
1072 }
1073 
1074 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
1075   masm->emit_rtcall(this);
1076 }
1077 
1078 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
1079   masm->emit_opLabel(this);
1080 }
1081 
1082 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
1083   masm->emit_arraycopy(this);
1084   masm->append_code_stub(stub());
1085 }
1086 
1087 void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) {
1088   masm->emit_updatecrc32(this);
1089 }
1090 
1091 void LIR_Op0::emit_code(LIR_Assembler* masm) {
1092   masm->emit_op0(this);
1093 }
1094 
1095 void LIR_Op1::emit_code(LIR_Assembler* masm) {
1096   masm->emit_op1(this);
1097 }
1098 
1099 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1100   masm->emit_alloc_obj(this);
1101   masm->append_code_stub(stub());
1102 }
1103 
1104 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1105   masm->emit_opBranch(this);
1106   if (stub()) {
1107     masm->append_code_stub(stub());
1108   }
1109 }
1110 
1111 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1112   masm->emit_opConvert(this);
1113   if (stub() != NULL) {
1114     masm->append_code_stub(stub());
1115   }
1116 }
1117 
1118 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1119   masm->emit_op2(this);
1120 }
1121 
1122 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1123   masm->emit_alloc_array(this);
1124   masm->append_code_stub(stub());
1125 }
1126 
1127 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1128   masm->emit_opTypeCheck(this);
1129   if (stub()) {
1130     masm->append_code_stub(stub());
1131   }
1132 }
1133 
1134 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1135   masm->emit_compare_and_swap(this);
1136 }
1137 
1138 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1139   masm->emit_op3(this);
1140 }
1141 
1142 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1143   masm->emit_lock(this);
1144   if (stub()) {
1145     masm->append_code_stub(stub());
1146   }
1147 }
1148 
1149 #ifdef ASSERT
1150 void LIR_OpAssert::emit_code(LIR_Assembler* masm) {
1151   masm->emit_assert(this);
1152 }
1153 #endif
1154 
1155 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1156   masm->emit_delay(this);
1157 }
1158 
1159 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1160   masm->emit_profile_call(this);
1161 }
1162 
1163 void LIR_OpProfileType::emit_code(LIR_Assembler* masm) {
1164   masm->emit_profile_type(this);
1165 }
1166 
1167 // LIR_List
1168 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1169   : _operations(8)
1170   , _compilation(compilation)
1171 #ifndef PRODUCT
1172   , _block(block)
1173 #endif
1174 #ifdef ASSERT
1175   , _file(NULL)
1176   , _line(0)
1177 #endif
1178 { }
1179 
1180 
1181 #ifdef ASSERT
1182 void LIR_List::set_file_and_line(const char * file, int line) {
1183   const char * f = strrchr(file, '/');
1184   if (f == NULL) f = strrchr(file, '\\');
1185   if (f == NULL) {
1186     f = file;
1187   } else {
1188     f++;
1189   }
1190   _file = f;
1191   _line = line;
1192 }
1193 #endif
1194 
1195 
1196 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1197   assert(this == buffer->lir_list(), "wrong lir list");
1198   const int n = _operations.length();
1199 
1200   if (buffer->number_of_ops() > 0) {
1201     // increase size of instructions list
1202     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1203     // insert ops from buffer into instructions list
1204     int op_index = buffer->number_of_ops() - 1;
1205     int ip_index = buffer->number_of_insertion_points() - 1;
1206     int from_index = n - 1;
1207     int to_index = _operations.length() - 1;
1208     for (; ip_index >= 0; ip_index --) {
1209       int index = buffer->index_at(ip_index);
1210       // make room after insertion point
1211       while (index < from_index) {
1212         _operations.at_put(to_index --, _operations.at(from_index --));
1213       }
1214       // insert ops from buffer
1215       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1216         _operations.at_put(to_index --, buffer->op_at(op_index --));
1217       }
1218     }
1219   }
1220 
1221   buffer->finish();
1222 }
1223 
1224 
1225 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1226   assert(reg->type() == T_OBJECT, "bad reg");
1227   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1228 }
1229 
1230 void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) {
1231   assert(reg->type() == T_METADATA, "bad reg");
1232   append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info));
1233 }
1234 
1235 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1236   append(new LIR_Op1(
1237             lir_move,
1238             LIR_OprFact::address(addr),
1239             src,
1240             addr->type(),
1241             patch_code,
1242             info));
1243 }
1244 
1245 
1246 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1247   append(new LIR_Op1(
1248             lir_move,
1249             LIR_OprFact::address(address),
1250             dst,
1251             address->type(),
1252             patch_code,
1253             info, lir_move_volatile));
1254 }
1255 
1256 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1257   append(new LIR_Op1(
1258             lir_move,
1259             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1260             dst,
1261             type,
1262             patch_code,
1263             info, lir_move_volatile));
1264 }
1265 
1266 
1267 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1268   append(new LIR_Op1(
1269             lir_move,
1270             LIR_OprFact::intConst(v),
1271             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1272             type,
1273             patch_code,
1274             info));
1275 }
1276 
1277 
1278 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1279   append(new LIR_Op1(
1280             lir_move,
1281             LIR_OprFact::oopConst(o),
1282             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1283             type,
1284             patch_code,
1285             info));
1286 }
1287 
1288 
1289 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1290   append(new LIR_Op1(
1291             lir_move,
1292             src,
1293             LIR_OprFact::address(addr),
1294             addr->type(),
1295             patch_code,
1296             info));
1297 }
1298 
1299 
1300 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1301   append(new LIR_Op1(
1302             lir_move,
1303             src,
1304             LIR_OprFact::address(addr),
1305             addr->type(),
1306             patch_code,
1307             info,
1308             lir_move_volatile));
1309 }
1310 
1311 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1312   append(new LIR_Op1(
1313             lir_move,
1314             src,
1315             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1316             type,
1317             patch_code,
1318             info, lir_move_volatile));
1319 }
1320 
1321 
1322 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1323   append(new LIR_Op3(
1324                     lir_idiv,
1325                     left,
1326                     right,
1327                     tmp,
1328                     res,
1329                     info));
1330 }
1331 
1332 
1333 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1334   append(new LIR_Op3(
1335                     lir_idiv,
1336                     left,
1337                     LIR_OprFact::intConst(right),
1338                     tmp,
1339                     res,
1340                     info));
1341 }
1342 
1343 
1344 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1345   append(new LIR_Op3(
1346                     lir_irem,
1347                     left,
1348                     right,
1349                     tmp,
1350                     res,
1351                     info));
1352 }
1353 
1354 
1355 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1356   append(new LIR_Op3(
1357                     lir_irem,
1358                     left,
1359                     LIR_OprFact::intConst(right),
1360                     tmp,
1361                     res,
1362                     info));
1363 }
1364 
1365 
1366 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1367   append(new LIR_Op2(
1368                     lir_cmp,
1369                     condition,
1370                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1371                     LIR_OprFact::intConst(c),
1372                     info));
1373 }
1374 
1375 
1376 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1377   append(new LIR_Op2(
1378                     lir_cmp,
1379                     condition,
1380                     reg,
1381                     LIR_OprFact::address(addr),
1382                     info));
1383 }
1384 
1385 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1386                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1387   append(new LIR_OpAllocObj(
1388                            klass,
1389                            dst,
1390                            t1,
1391                            t2,
1392                            t3,
1393                            t4,
1394                            header_size,
1395                            object_size,
1396                            init_check,
1397                            stub));
1398 }
1399 
1400 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1401   append(new LIR_OpAllocArray(
1402                            klass,
1403                            len,
1404                            dst,
1405                            t1,
1406                            t2,
1407                            t3,
1408                            t4,
1409                            type,
1410                            stub));
1411 }
1412 
1413 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1414  append(new LIR_Op2(
1415                     lir_shl,
1416                     value,
1417                     count,
1418                     dst,
1419                     tmp));
1420 }
1421 
1422 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1423  append(new LIR_Op2(
1424                     lir_shr,
1425                     value,
1426                     count,
1427                     dst,
1428                     tmp));
1429 }
1430 
1431 
1432 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1433  append(new LIR_Op2(
1434                     lir_ushr,
1435                     value,
1436                     count,
1437                     dst,
1438                     tmp));
1439 }
1440 
1441 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1442   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1443                      left,
1444                      right,
1445                      dst));
1446 }
1447 
1448 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1449   append(new LIR_OpLock(
1450                     lir_lock,
1451                     hdr,
1452                     obj,
1453                     lock,
1454                     scratch,
1455                     stub,
1456                     info));
1457 }
1458 
1459 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1460   append(new LIR_OpLock(
1461                     lir_unlock,
1462                     hdr,
1463                     obj,
1464                     lock,
1465                     scratch,
1466                     stub,
1467                     NULL));
1468 }
1469 
1470 
1471 void check_LIR() {
1472   // cannot do the proper checking as PRODUCT and other modes return different results
1473   // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1474 }
1475 
1476 
1477 
1478 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1479                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1480                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1481                           ciMethod* profiled_method, int profiled_bci) {
1482   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1483                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1484   if (profiled_method != NULL) {
1485     c->set_profiled_method(profiled_method);
1486     c->set_profiled_bci(profiled_bci);
1487     c->set_should_profile(true);
1488   }
1489   append(c);
1490 }
1491 
1492 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1493   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1494   if (profiled_method != NULL) {
1495     c->set_profiled_method(profiled_method);
1496     c->set_profiled_bci(profiled_bci);
1497     c->set_should_profile(true);
1498   }
1499   append(c);
1500 }
1501 
1502 
1503 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1504                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1505   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1506   if (profiled_method != NULL) {
1507     c->set_profiled_method(profiled_method);
1508     c->set_profiled_bci(profiled_bci);
1509     c->set_should_profile(true);
1510   }
1511   append(c);
1512 }
1513 
1514 
1515 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1516                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1517   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1518 }
1519 
1520 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1521                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1522   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1523 }
1524 
1525 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1526                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1527   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1528 }
1529 
1530 
1531 #ifdef PRODUCT
1532 
1533 void print_LIR(BlockList* blocks) {
1534 }
1535 
1536 #else
1537 // LIR_OprDesc
1538 void LIR_OprDesc::print() const {
1539   print(tty);
1540 }
1541 
1542 void LIR_OprDesc::print(outputStream* out) const {
1543   if (is_illegal()) {
1544     return;
1545   }
1546 
1547   out->print("[");
1548   if (is_pointer()) {
1549     pointer()->print_value_on(out);
1550   } else if (is_single_stack()) {
1551     out->print("stack:%d", single_stack_ix());
1552   } else if (is_double_stack()) {
1553     out->print("dbl_stack:%d",double_stack_ix());
1554   } else if (is_virtual()) {
1555     out->print("R%d", vreg_number());
1556   } else if (is_single_cpu()) {
1557     out->print("%s", as_register()->name());
1558   } else if (is_double_cpu()) {
1559     out->print("%s", as_register_hi()->name());
1560     out->print("%s", as_register_lo()->name());
1561 #if defined(X86)
1562   } else if (is_single_xmm()) {
1563     out->print("%s", as_xmm_float_reg()->name());
1564   } else if (is_double_xmm()) {
1565     out->print("%s", as_xmm_double_reg()->name());
1566   } else if (is_single_fpu()) {
1567     out->print("fpu%d", fpu_regnr());
1568   } else if (is_double_fpu()) {
1569     out->print("fpu%d", fpu_regnrLo());
1570 #elif defined(ARM)
1571   } else if (is_single_fpu()) {
1572     out->print("s%d", fpu_regnr());
1573   } else if (is_double_fpu()) {
1574     out->print("d%d", fpu_regnrLo() >> 1);
1575 #else
1576   } else if (is_single_fpu()) {
1577     out->print("%s", as_float_reg()->name());
1578   } else if (is_double_fpu()) {
1579     out->print("%s", as_double_reg()->name());
1580 #endif
1581 
1582   } else if (is_illegal()) {
1583     out->print("-");
1584   } else {
1585     out->print("Unknown Operand");
1586   }
1587   if (!is_illegal()) {
1588     out->print("|%c", type_char());
1589   }
1590   if (is_register() && is_last_use()) {
1591     out->print("(last_use)");
1592   }
1593   out->print("]");
1594 }
1595 
1596 
1597 // LIR_Address
1598 void LIR_Const::print_value_on(outputStream* out) const {
1599   switch (type()) {
1600     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1601     case T_INT:    out->print("int:%d",   as_jint());           break;
1602     case T_LONG:   out->print("lng:" JLONG_FORMAT, as_jlong()); break;
1603     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1604     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1605     case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject()));        break;
1606     case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break;
1607     default:       out->print("%3d:0x" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break;
1608   }
1609 }
1610 
1611 // LIR_Address
1612 void LIR_Address::print_value_on(outputStream* out) const {
1613   out->print("Base:"); _base->print(out);
1614   if (!_index->is_illegal()) {
1615     out->print(" Index:"); _index->print(out);
1616     switch (scale()) {
1617     case times_1: break;
1618     case times_2: out->print(" * 2"); break;
1619     case times_4: out->print(" * 4"); break;
1620     case times_8: out->print(" * 8"); break;
1621     }
1622   }
1623   out->print(" Disp: " INTX_FORMAT, _disp);
1624 }
1625 
1626 // debug output of block header without InstructionPrinter
1627 //       (because phi functions are not necessary for LIR)
1628 static void print_block(BlockBegin* x) {
1629   // print block id
1630   BlockEnd* end = x->end();
1631   tty->print("B%d ", x->block_id());
1632 
1633   // print flags
1634   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1635   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1636   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1637   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1638   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1639   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1640   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1641 
1642   // print block bci range
1643   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1644 
1645   // print predecessors and successors
1646   if (x->number_of_preds() > 0) {
1647     tty->print("preds: ");
1648     for (int i = 0; i < x->number_of_preds(); i ++) {
1649       tty->print("B%d ", x->pred_at(i)->block_id());
1650     }
1651   }
1652 
1653   if (x->number_of_sux() > 0) {
1654     tty->print("sux: ");
1655     for (int i = 0; i < x->number_of_sux(); i ++) {
1656       tty->print("B%d ", x->sux_at(i)->block_id());
1657     }
1658   }
1659 
1660   // print exception handlers
1661   if (x->number_of_exception_handlers() > 0) {
1662     tty->print("xhandler: ");
1663     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1664       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1665     }
1666   }
1667 
1668   tty->cr();
1669 }
1670 
1671 void print_LIR(BlockList* blocks) {
1672   tty->print_cr("LIR:");
1673   int i;
1674   for (i = 0; i < blocks->length(); i++) {
1675     BlockBegin* bb = blocks->at(i);
1676     print_block(bb);
1677     tty->print("__id_Instruction___________________________________________"); tty->cr();
1678     bb->lir()->print_instructions();
1679   }
1680 }
1681 
1682 void LIR_List::print_instructions() {
1683   for (int i = 0; i < _operations.length(); i++) {
1684     _operations.at(i)->print(); tty->cr();
1685   }
1686   tty->cr();
1687 }
1688 
1689 // LIR_Ops printing routines
1690 // LIR_Op
1691 void LIR_Op::print_on(outputStream* out) const {
1692   if (id() != -1 || PrintCFGToFile) {
1693     out->print("%4d ", id());
1694   } else {
1695     out->print("     ");
1696   }
1697   out->print("%s ", name());
1698   print_instr(out);
1699   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1700 #ifdef ASSERT
1701   if (Verbose && _file != NULL) {
1702     out->print(" (%s:%d)", _file, _line);
1703   }
1704 #endif
1705 }
1706 
1707 const char * LIR_Op::name() const {
1708   const char* s = NULL;
1709   switch(code()) {
1710      // LIR_Op0
1711      case lir_membar:                s = "membar";        break;
1712      case lir_membar_acquire:        s = "membar_acquire"; break;
1713      case lir_membar_release:        s = "membar_release"; break;
1714      case lir_membar_loadload:       s = "membar_loadload";   break;
1715      case lir_membar_storestore:     s = "membar_storestore"; break;
1716      case lir_membar_loadstore:      s = "membar_loadstore";  break;
1717      case lir_membar_storeload:      s = "membar_storeload";  break;
1718      case lir_word_align:            s = "word_align";    break;
1719      case lir_label:                 s = "label";         break;
1720      case lir_nop:                   s = "nop";           break;
1721      case lir_backwardbranch_target: s = "backbranch";    break;
1722      case lir_std_entry:             s = "std_entry";     break;
1723      case lir_osr_entry:             s = "osr_entry";     break;
1724      case lir_build_frame:           s = "build_frm";     break;
1725      case lir_fpop_raw:              s = "fpop_raw";      break;
1726      case lir_24bit_FPU:             s = "24bit_FPU";     break;
1727      case lir_reset_FPU:             s = "reset_FPU";     break;
1728      case lir_breakpoint:            s = "breakpoint";    break;
1729      case lir_get_thread:            s = "get_thread";    break;
1730      // LIR_Op1
1731      case lir_fxch:                  s = "fxch";          break;
1732      case lir_fld:                   s = "fld";           break;
1733      case lir_ffree:                 s = "ffree";         break;
1734      case lir_push:                  s = "push";          break;
1735      case lir_pop:                   s = "pop";           break;
1736      case lir_null_check:            s = "null_check";    break;
1737      case lir_return:                s = "return";        break;
1738      case lir_safepoint:             s = "safepoint";     break;
1739      case lir_neg:                   s = "neg";           break;
1740      case lir_leal:                  s = "leal";          break;
1741      case lir_branch:                s = "branch";        break;
1742      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1743      case lir_move:                  s = "move";          break;
1744      case lir_roundfp:               s = "roundfp";       break;
1745      case lir_rtcall:                s = "rtcall";        break;
1746      case lir_throw:                 s = "throw";         break;
1747      case lir_unwind:                s = "unwind";        break;
1748      case lir_convert:               s = "convert";       break;
1749      case lir_alloc_object:          s = "alloc_obj";     break;
1750      case lir_monaddr:               s = "mon_addr";      break;
1751      case lir_pack64:                s = "pack64";        break;
1752      case lir_unpack64:              s = "unpack64";      break;
1753      // LIR_Op2
1754      case lir_cmp:                   s = "cmp";           break;
1755      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1756      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1757      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1758      case lir_cmove:                 s = "cmove";         break;
1759      case lir_add:                   s = "add";           break;
1760      case lir_sub:                   s = "sub";           break;
1761      case lir_mul:                   s = "mul";           break;
1762      case lir_mul_strictfp:          s = "mul_strictfp";  break;
1763      case lir_div:                   s = "div";           break;
1764      case lir_div_strictfp:          s = "div_strictfp";  break;
1765      case lir_rem:                   s = "rem";           break;
1766      case lir_abs:                   s = "abs";           break;
1767      case lir_sqrt:                  s = "sqrt";          break;
1768      case lir_sin:                   s = "sin";           break;
1769      case lir_cos:                   s = "cos";           break;
1770      case lir_tan:                   s = "tan";           break;
1771      case lir_log:                   s = "log";           break;
1772      case lir_log10:                 s = "log10";         break;
1773      case lir_exp:                   s = "exp";           break;
1774      case lir_pow:                   s = "pow";           break;
1775      case lir_logic_and:             s = "logic_and";     break;
1776      case lir_logic_or:              s = "logic_or";      break;
1777      case lir_logic_xor:             s = "logic_xor";     break;
1778      case lir_shl:                   s = "shift_left";    break;
1779      case lir_shr:                   s = "shift_right";   break;
1780      case lir_ushr:                  s = "ushift_right";  break;
1781      case lir_alloc_array:           s = "alloc_array";   break;
1782      case lir_xadd:                  s = "xadd";          break;
1783      case lir_xchg:                  s = "xchg";          break;
1784      // LIR_Op3
1785      case lir_idiv:                  s = "idiv";          break;
1786      case lir_irem:                  s = "irem";          break;
1787      // LIR_OpJavaCall
1788      case lir_static_call:           s = "static";        break;
1789      case lir_optvirtual_call:       s = "optvirtual";    break;
1790      case lir_icvirtual_call:        s = "icvirtual";     break;
1791      case lir_virtual_call:          s = "virtual";       break;
1792      case lir_dynamic_call:          s = "dynamic";       break;
1793      // LIR_OpArrayCopy
1794      case lir_arraycopy:             s = "arraycopy";     break;
1795      // LIR_OpUpdateCRC32
1796      case lir_updatecrc32:           s = "updatecrc32";   break;
1797      // LIR_OpLock
1798      case lir_lock:                  s = "lock";          break;
1799      case lir_unlock:                s = "unlock";        break;
1800      // LIR_OpDelay
1801      case lir_delay_slot:            s = "delay";         break;
1802      // LIR_OpTypeCheck
1803      case lir_instanceof:            s = "instanceof";    break;
1804      case lir_checkcast:             s = "checkcast";     break;
1805      case lir_store_check:           s = "store_check";   break;
1806      // LIR_OpCompareAndSwap
1807      case lir_cas_long:              s = "cas_long";      break;
1808      case lir_cas_obj:               s = "cas_obj";      break;
1809      case lir_cas_int:               s = "cas_int";      break;
1810      // LIR_OpProfileCall
1811      case lir_profile_call:          s = "profile_call";  break;
1812      // LIR_OpProfileType
1813      case lir_profile_type:          s = "profile_type";  break;
1814      // LIR_OpAssert
1815 #ifdef ASSERT
1816      case lir_assert:                s = "assert";        break;
1817 #endif
1818      case lir_none:                  ShouldNotReachHere();break;
1819     default:                         s = "illegal_op";    break;
1820   }
1821   return s;
1822 }
1823 
1824 // LIR_OpJavaCall
1825 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1826   out->print("call: ");
1827   out->print("[addr: " INTPTR_FORMAT "]", p2i(address()));
1828   if (receiver()->is_valid()) {
1829     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1830   }
1831   if (result_opr()->is_valid()) {
1832     out->print(" [result: "); result_opr()->print(out); out->print("]");
1833   }
1834 }
1835 
1836 // LIR_OpLabel
1837 void LIR_OpLabel::print_instr(outputStream* out) const {
1838   out->print("[label:" INTPTR_FORMAT "]", p2i(_label));
1839 }
1840 
1841 // LIR_OpArrayCopy
1842 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1843   src()->print(out);     out->print(" ");
1844   src_pos()->print(out); out->print(" ");
1845   dst()->print(out);     out->print(" ");
1846   dst_pos()->print(out); out->print(" ");
1847   length()->print(out);  out->print(" ");
1848   tmp()->print(out);     out->print(" ");
1849 }
1850 
1851 // LIR_OpUpdateCRC32
1852 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const {
1853   crc()->print(out);     out->print(" ");
1854   val()->print(out);     out->print(" ");
1855   result_opr()->print(out); out->print(" ");
1856 }
1857 
1858 // LIR_OpCompareAndSwap
1859 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1860   addr()->print(out);      out->print(" ");
1861   cmp_value()->print(out); out->print(" ");
1862   new_value()->print(out); out->print(" ");
1863   tmp1()->print(out);      out->print(" ");
1864   tmp2()->print(out);      out->print(" ");
1865 
1866 }
1867 
1868 // LIR_Op0
1869 void LIR_Op0::print_instr(outputStream* out) const {
1870   result_opr()->print(out);
1871 }
1872 
1873 // LIR_Op1
1874 const char * LIR_Op1::name() const {
1875   if (code() == lir_move) {
1876     switch (move_kind()) {
1877     case lir_move_normal:
1878       return "move";
1879     case lir_move_unaligned:
1880       return "unaligned move";
1881     case lir_move_volatile:
1882       return "volatile_move";
1883     case lir_move_wide:
1884       return "wide_move";
1885     default:
1886       ShouldNotReachHere();
1887     return "illegal_op";
1888     }
1889   } else {
1890     return LIR_Op::name();
1891   }
1892 }
1893 
1894 
1895 void LIR_Op1::print_instr(outputStream* out) const {
1896   _opr->print(out);         out->print(" ");
1897   result_opr()->print(out); out->print(" ");
1898   print_patch_code(out, patch_code());
1899 }
1900 
1901 
1902 // LIR_Op1
1903 void LIR_OpRTCall::print_instr(outputStream* out) const {
1904   intx a = (intx)addr();
1905   out->print("%s", Runtime1::name_for_address(addr()));
1906   out->print(" ");
1907   tmp()->print(out);
1908 }
1909 
1910 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1911   switch(code) {
1912     case lir_patch_none:                                 break;
1913     case lir_patch_low:    out->print("[patch_low]");    break;
1914     case lir_patch_high:   out->print("[patch_high]");   break;
1915     case lir_patch_normal: out->print("[patch_normal]"); break;
1916     default: ShouldNotReachHere();
1917   }
1918 }
1919 
1920 // LIR_OpBranch
1921 void LIR_OpBranch::print_instr(outputStream* out) const {
1922   print_condition(out, cond());             out->print(" ");
1923   if (block() != NULL) {
1924     out->print("[B%d] ", block()->block_id());
1925   } else if (stub() != NULL) {
1926     out->print("[");
1927     stub()->print_name(out);
1928     out->print(": " INTPTR_FORMAT "]", p2i(stub()));
1929     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1930   } else {
1931     out->print("[label:" INTPTR_FORMAT "] ", p2i(label()));
1932   }
1933   if (ublock() != NULL) {
1934     out->print("unordered: [B%d] ", ublock()->block_id());
1935   }
1936 }
1937 
1938 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1939   switch(cond) {
1940     case lir_cond_equal:           out->print("[EQ]");      break;
1941     case lir_cond_notEqual:        out->print("[NE]");      break;
1942     case lir_cond_less:            out->print("[LT]");      break;
1943     case lir_cond_lessEqual:       out->print("[LE]");      break;
1944     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1945     case lir_cond_greater:         out->print("[GT]");      break;
1946     case lir_cond_belowEqual:      out->print("[BE]");      break;
1947     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1948     case lir_cond_always:          out->print("[AL]");      break;
1949     default:                       out->print("[%d]",cond); break;
1950   }
1951 }
1952 
1953 // LIR_OpConvert
1954 void LIR_OpConvert::print_instr(outputStream* out) const {
1955   print_bytecode(out, bytecode());
1956   in_opr()->print(out);                  out->print(" ");
1957   result_opr()->print(out);              out->print(" ");
1958 #ifdef PPC
1959   if(tmp1()->is_valid()) {
1960     tmp1()->print(out); out->print(" ");
1961     tmp2()->print(out); out->print(" ");
1962   }
1963 #endif
1964 }
1965 
1966 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1967   switch(code) {
1968     case Bytecodes::_d2f: out->print("[d2f] "); break;
1969     case Bytecodes::_d2i: out->print("[d2i] "); break;
1970     case Bytecodes::_d2l: out->print("[d2l] "); break;
1971     case Bytecodes::_f2d: out->print("[f2d] "); break;
1972     case Bytecodes::_f2i: out->print("[f2i] "); break;
1973     case Bytecodes::_f2l: out->print("[f2l] "); break;
1974     case Bytecodes::_i2b: out->print("[i2b] "); break;
1975     case Bytecodes::_i2c: out->print("[i2c] "); break;
1976     case Bytecodes::_i2d: out->print("[i2d] "); break;
1977     case Bytecodes::_i2f: out->print("[i2f] "); break;
1978     case Bytecodes::_i2l: out->print("[i2l] "); break;
1979     case Bytecodes::_i2s: out->print("[i2s] "); break;
1980     case Bytecodes::_l2i: out->print("[l2i] "); break;
1981     case Bytecodes::_l2f: out->print("[l2f] "); break;
1982     case Bytecodes::_l2d: out->print("[l2d] "); break;
1983     default:
1984       out->print("[?%d]",code);
1985     break;
1986   }
1987 }
1988 
1989 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1990   klass()->print(out);                      out->print(" ");
1991   obj()->print(out);                        out->print(" ");
1992   tmp1()->print(out);                       out->print(" ");
1993   tmp2()->print(out);                       out->print(" ");
1994   tmp3()->print(out);                       out->print(" ");
1995   tmp4()->print(out);                       out->print(" ");
1996   out->print("[hdr:%d]", header_size()); out->print(" ");
1997   out->print("[obj:%d]", object_size()); out->print(" ");
1998   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1999 }
2000 
2001 void LIR_OpRoundFP::print_instr(outputStream* out) const {
2002   _opr->print(out);         out->print(" ");
2003   tmp()->print(out);        out->print(" ");
2004   result_opr()->print(out); out->print(" ");
2005 }
2006 
2007 // LIR_Op2
2008 void LIR_Op2::print_instr(outputStream* out) const {
2009   if (code() == lir_cmove) {
2010     print_condition(out, condition());         out->print(" ");
2011   }
2012   in_opr1()->print(out);    out->print(" ");
2013   in_opr2()->print(out);    out->print(" ");
2014   if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out);    out->print(" "); }
2015   if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out);    out->print(" "); }
2016   if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out);    out->print(" "); }
2017   if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out);    out->print(" "); }
2018   if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out);    out->print(" "); }
2019   result_opr()->print(out);
2020 }
2021 
2022 void LIR_OpAllocArray::print_instr(outputStream* out) const {
2023   klass()->print(out);                   out->print(" ");
2024   len()->print(out);                     out->print(" ");
2025   obj()->print(out);                     out->print(" ");
2026   tmp1()->print(out);                    out->print(" ");
2027   tmp2()->print(out);                    out->print(" ");
2028   tmp3()->print(out);                    out->print(" ");
2029   tmp4()->print(out);                    out->print(" ");
2030   out->print("[type:0x%x]", type());     out->print(" ");
2031   out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2032 }
2033 
2034 
2035 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
2036   object()->print(out);                  out->print(" ");
2037   if (code() == lir_store_check) {
2038     array()->print(out);                 out->print(" ");
2039   }
2040   if (code() != lir_store_check) {
2041     klass()->print_name_on(out);         out->print(" ");
2042     if (fast_check())                 out->print("fast_check ");
2043   }
2044   tmp1()->print(out);                    out->print(" ");
2045   tmp2()->print(out);                    out->print(" ");
2046   tmp3()->print(out);                    out->print(" ");
2047   result_opr()->print(out);              out->print(" ");
2048   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
2049 }
2050 
2051 
2052 // LIR_Op3
2053 void LIR_Op3::print_instr(outputStream* out) const {
2054   in_opr1()->print(out);    out->print(" ");
2055   in_opr2()->print(out);    out->print(" ");
2056   in_opr3()->print(out);    out->print(" ");
2057   result_opr()->print(out);
2058 }
2059 
2060 
2061 void LIR_OpLock::print_instr(outputStream* out) const {
2062   hdr_opr()->print(out);   out->print(" ");
2063   obj_opr()->print(out);   out->print(" ");
2064   lock_opr()->print(out);  out->print(" ");
2065   if (_scratch->is_valid()) {
2066     _scratch->print(out);  out->print(" ");
2067   }
2068   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2069 }
2070 
2071 #ifdef ASSERT
2072 void LIR_OpAssert::print_instr(outputStream* out) const {
2073   print_condition(out, condition()); out->print(" ");
2074   in_opr1()->print(out);             out->print(" ");
2075   in_opr2()->print(out);             out->print(", \"");
2076   out->print("%s", msg());          out->print("\"");
2077 }
2078 #endif
2079 
2080 
2081 void LIR_OpDelay::print_instr(outputStream* out) const {
2082   _op->print_on(out);
2083 }
2084 
2085 
2086 // LIR_OpProfileCall
2087 void LIR_OpProfileCall::print_instr(outputStream* out) const {
2088   profiled_method()->name()->print_symbol_on(out);
2089   out->print(".");
2090   profiled_method()->holder()->name()->print_symbol_on(out);
2091   out->print(" @ %d ", profiled_bci());
2092   mdo()->print(out);           out->print(" ");
2093   recv()->print(out);          out->print(" ");
2094   tmp1()->print(out);          out->print(" ");
2095 }
2096 
2097 // LIR_OpProfileType
2098 void LIR_OpProfileType::print_instr(outputStream* out) const {
2099   out->print("exact = "); exact_klass()->print_name_on(out);
2100   out->print("current = "); ciTypeEntries::print_ciklass(out, current_klass());
2101   mdp()->print(out);          out->print(" ");
2102   obj()->print(out);          out->print(" ");
2103   tmp()->print(out);          out->print(" ");
2104 }
2105 
2106 #endif // PRODUCT
2107 
2108 // Implementation of LIR_InsertionBuffer
2109 
2110 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
2111   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
2112 
2113   int i = number_of_insertion_points() - 1;
2114   if (i < 0 || index_at(i) < index) {
2115     append_new(index, 1);
2116   } else {
2117     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
2118     assert(count_at(i) > 0, "check");
2119     set_count_at(i, count_at(i) + 1);
2120   }
2121   _ops.push(op);
2122 
2123   DEBUG_ONLY(verify());
2124 }
2125 
2126 #ifdef ASSERT
2127 void LIR_InsertionBuffer::verify() {
2128   int sum = 0;
2129   int prev_idx = -1;
2130 
2131   for (int i = 0; i < number_of_insertion_points(); i++) {
2132     assert(prev_idx < index_at(i), "index must be ordered ascending");
2133     sum += count_at(i);
2134   }
2135   assert(sum == number_of_ops(), "wrong total sum");
2136 }
2137 #endif