1 /*
   2  * Copyright (c) 2012, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_ValueStack.hpp"
  27 #include "c1/c1_RangeCheckElimination.hpp"
  28 #include "c1/c1_IR.hpp"
  29 #include "c1/c1_Canonicalizer.hpp"
  30 #include "c1/c1_ValueMap.hpp"
  31 #include "ci/ciMethodData.hpp"
  32 #include "runtime/deoptimization.hpp"
  33 
  34 // Macros for the Trace and the Assertion flag
  35 #ifdef ASSERT
  36 #define TRACE_RANGE_CHECK_ELIMINATION(code) if (TraceRangeCheckElimination) { code; }
  37 #define ASSERT_RANGE_CHECK_ELIMINATION(code) if (AssertRangeCheckElimination) { code; }
  38 #define TRACE_OR_ASSERT_RANGE_CHECK_ELIMINATION(code) if (TraceRangeCheckElimination || AssertRangeCheckElimination) { code; }
  39 #else
  40 #define TRACE_RANGE_CHECK_ELIMINATION(code)
  41 #define ASSERT_RANGE_CHECK_ELIMINATION(code)
  42 #define TRACE_OR_ASSERT_RANGE_CHECK_ELIMINATION(code)
  43 #endif
  44 
  45 // Entry point for the optimization
  46 void RangeCheckElimination::eliminate(IR *ir) {
  47   bool do_elimination = ir->compilation()->has_access_indexed();
  48   ASSERT_RANGE_CHECK_ELIMINATION(do_elimination = true);
  49   if (do_elimination) {
  50     RangeCheckEliminator rce(ir);
  51   }
  52 }
  53 
  54 // Constructor
  55 RangeCheckEliminator::RangeCheckEliminator(IR *ir) :
  56   _bounds(Instruction::number_of_instructions(), NULL),
  57   _access_indexed_info(Instruction::number_of_instructions(), NULL)
  58 {
  59   _visitor.set_range_check_eliminator(this);
  60   _ir = ir;
  61   _number_of_instructions = Instruction::number_of_instructions();
  62   _optimistic = ir->compilation()->is_optimistic();
  63 
  64   TRACE_RANGE_CHECK_ELIMINATION(
  65     tty->cr();
  66     tty->print_cr("Range check elimination");
  67     ir->method()->print_name(tty);
  68     tty->cr();
  69   );
  70 
  71   TRACE_RANGE_CHECK_ELIMINATION(
  72     tty->print_cr("optimistic=%d", (int)_optimistic);
  73   );
  74 
  75 #ifdef ASSERT
  76   // Verifies several conditions that must be true on the IR-input. Only used for debugging purposes.
  77   TRACE_RANGE_CHECK_ELIMINATION(
  78     tty->print_cr("Verification of IR . . .");
  79   );
  80   Verification verification(ir);
  81 #endif
  82 
  83   // Set process block flags
  84   // Optimization so a blocks is only processed if it contains an access indexed instruction or if
  85   // one of its children in the dominator tree contains an access indexed instruction.
  86   set_process_block_flags(ir->start());
  87 
  88   // Pass over instructions in the dominator tree
  89   TRACE_RANGE_CHECK_ELIMINATION(
  90     tty->print_cr("Starting pass over dominator tree . . .")
  91   );
  92   calc_bounds(ir->start(), NULL);
  93 
  94   TRACE_RANGE_CHECK_ELIMINATION(
  95     tty->print_cr("Finished!")
  96   );
  97 }
  98 
  99 // Instruction specific work for some instructions
 100 // Constant
 101 void RangeCheckEliminator::Visitor::do_Constant(Constant *c) {
 102   IntConstant *ic = c->type()->as_IntConstant();
 103   if (ic != NULL) {
 104     int value = ic->value();
 105     _bound = new Bound(value, NULL, value, NULL);
 106   }
 107 }
 108 
 109 // LogicOp
 110 void RangeCheckEliminator::Visitor::do_LogicOp(LogicOp *lo) {
 111   if (lo->type()->as_IntType() && lo->op() == Bytecodes::_iand && (lo->x()->as_Constant() || lo->y()->as_Constant())) {
 112     int constant = 0;
 113     Constant *c = lo->x()->as_Constant();
 114     if (c != NULL) {
 115       constant = c->type()->as_IntConstant()->value();
 116     } else {
 117       constant = lo->y()->as_Constant()->type()->as_IntConstant()->value();
 118     }
 119     if (constant >= 0) {
 120       _bound = new Bound(0, NULL, constant, NULL);
 121     }
 122   }
 123 }
 124 
 125 // Phi
 126 void RangeCheckEliminator::Visitor::do_Phi(Phi *phi) {
 127   if (!phi->type()->as_IntType() && !phi->type()->as_ObjectType()) return;
 128 
 129   BlockBegin *block = phi->block();
 130   int op_count = phi->operand_count();
 131   bool has_upper = true;
 132   bool has_lower = true;
 133   assert(phi, "Phi must not be null");
 134   Bound *bound = NULL;
 135 
 136   // TODO: support more difficult phis
 137   for (int i=0; i<op_count; i++) {
 138     Value v = phi->operand_at(i);
 139 
 140     if (v == phi) continue;
 141 
 142     // Check if instruction is connected with phi itself
 143     Op2 *op2 = v->as_Op2();
 144     if (op2 != NULL) {
 145       Value x = op2->x();
 146       Value y = op2->y();
 147       if ((x == phi || y == phi)) {
 148         Value other = x;
 149         if (other == phi) {
 150           other = y;
 151         }
 152         ArithmeticOp *ao = v->as_ArithmeticOp();
 153         if (ao != NULL && ao->op() == Bytecodes::_iadd) {
 154           assert(ao->op() == Bytecodes::_iadd, "Has to be add!");
 155           if (ao->type()->as_IntType()) {
 156             Constant *c = other->as_Constant();
 157             if (c != NULL) {
 158               assert(c->type()->as_IntConstant(), "Constant has to be of type integer");
 159               int value = c->type()->as_IntConstant()->value();
 160               if (value == 1) {
 161                 has_upper = false;
 162               } else if (value > 1) {
 163                 // Overflow not guaranteed
 164                 has_upper = false;
 165                 has_lower = false;
 166               } else if (value < 0) {
 167                 has_lower = false;
 168               }
 169               continue;
 170             }
 171           }
 172         }
 173       }
 174     }
 175 
 176     // No connection -> new bound
 177     Bound *v_bound = _rce->get_bound(v);
 178     Bound *cur_bound;
 179     int cur_constant = 0;
 180     Value cur_value = v;
 181 
 182     if (v->type()->as_IntConstant()) {
 183       cur_constant = v->type()->as_IntConstant()->value();
 184       cur_value = NULL;
 185     }
 186     if (!v_bound->has_upper() || !v_bound->has_lower()) {
 187       cur_bound = new Bound(cur_constant, cur_value, cur_constant, cur_value);
 188     } else {
 189       cur_bound = v_bound;
 190     }
 191     if (cur_bound) {
 192       if (!bound) {
 193         bound = cur_bound->copy();
 194       } else {
 195         bound->or_op(cur_bound);
 196       }
 197     } else {
 198       // No bound!
 199       bound = NULL;
 200       break;
 201     }
 202   }
 203 
 204   if (bound) {
 205     if (!has_upper) {
 206       bound->remove_upper();
 207     }
 208     if (!has_lower) {
 209       bound->remove_lower();
 210     }
 211     _bound = bound;
 212   } else {
 213     _bound = new Bound();
 214   }
 215 }
 216 
 217 
 218 // ArithmeticOp
 219 void RangeCheckEliminator::Visitor::do_ArithmeticOp(ArithmeticOp *ao) {
 220   Value x = ao->x();
 221   Value y = ao->y();
 222 
 223   if (ao->op() == Bytecodes::_irem) {
 224     Bound* x_bound = _rce->get_bound(x);
 225     Bound* y_bound = _rce->get_bound(y);
 226     if (x_bound->lower() >= 0 && x_bound->lower_instr() == NULL && y->as_ArrayLength() != NULL) {
 227       _bound = new Bound(0, NULL, -1, y);
 228     } else {
 229       _bound = new Bound();
 230     }
 231   } else if (!x->as_Constant() || !y->as_Constant()) {
 232     assert(!x->as_Constant() || !y->as_Constant(), "One of the operands must be non-constant!");
 233     if (((x->as_Constant() || y->as_Constant()) && (ao->op() == Bytecodes::_iadd)) || (y->as_Constant() && ao->op() == Bytecodes::_isub)) {
 234       assert(ao->op() == Bytecodes::_iadd || ao->op() == Bytecodes::_isub, "Operand must be iadd or isub");
 235 
 236       if (y->as_Constant()) {
 237         Value tmp = x;
 238         x = y;
 239         y = tmp;
 240       }
 241       assert(x->as_Constant()->type()->as_IntConstant(), "Constant must be int constant!");
 242 
 243       // Constant now in x
 244       int const_value = x->as_Constant()->type()->as_IntConstant()->value();
 245       if (ao->op() == Bytecodes::_iadd || const_value != min_jint) {
 246         if (ao->op() == Bytecodes::_isub) {
 247           const_value = -const_value;
 248         }
 249 
 250         Bound * bound = _rce->get_bound(y);
 251         if (bound->has_upper() && bound->has_lower()) {
 252           int new_lower = bound->lower() + const_value;
 253           jlong new_lowerl = ((jlong)bound->lower()) + const_value;
 254           int new_upper = bound->upper() + const_value;
 255           jlong new_upperl = ((jlong)bound->upper()) + const_value;
 256 
 257           if (((jlong)new_lower) == new_lowerl && ((jlong)new_upper == new_upperl)) {
 258             Bound *newBound = new Bound(new_lower, bound->lower_instr(), new_upper, bound->upper_instr());
 259             _bound = newBound;
 260           } else {
 261             // overflow
 262             _bound = new Bound();
 263           }
 264         } else {
 265           _bound = new Bound();
 266         }
 267       } else {
 268         _bound = new Bound();
 269       }
 270     } else {
 271       Bound *bound = _rce->get_bound(x);
 272       if (ao->op() == Bytecodes::_isub) {
 273         if (bound->lower_instr() == y) {
 274           _bound = new Bound(Instruction::geq, NULL, bound->lower());
 275         } else {
 276           _bound = new Bound();
 277         }
 278       } else {
 279         _bound = new Bound();
 280       }
 281     }
 282   }
 283 }
 284 
 285 // IfOp
 286 void RangeCheckEliminator::Visitor::do_IfOp(IfOp *ifOp)
 287 {
 288   if (ifOp->tval()->type()->as_IntConstant() && ifOp->fval()->type()->as_IntConstant()) {
 289     int min = ifOp->tval()->type()->as_IntConstant()->value();
 290     int max = ifOp->fval()->type()->as_IntConstant()->value();
 291     if (min > max) {
 292       // min ^= max ^= min ^= max;
 293       int tmp = min;
 294       min = max;
 295       max = tmp;
 296     }
 297     _bound = new Bound(min, NULL, max, NULL);
 298   }
 299 }
 300 
 301 // Get bound. Returns the current bound on Value v. Normally this is the topmost element on the bound stack.
 302 RangeCheckEliminator::Bound *RangeCheckEliminator::get_bound(Value v) {
 303   // Wrong type or NULL -> No bound
 304   if (!v || (!v->type()->as_IntType() && !v->type()->as_ObjectType())) return NULL;
 305 
 306   if (!_bounds[v->id()]) {
 307     // First (default) bound is calculated
 308     // Create BoundStack
 309     _bounds[v->id()] = new BoundStack();
 310     _visitor.clear_bound();
 311     Value visit_value = v;
 312     visit_value->visit(&_visitor);
 313     Bound *bound = _visitor.bound();
 314     if (bound) {
 315       _bounds[v->id()]->push(bound);
 316     }
 317     if (_bounds[v->id()]->length() == 0) {
 318       assert(!(v->as_Constant() && v->type()->as_IntConstant()), "constants not handled here");
 319       _bounds[v->id()]->push(new Bound());
 320     }
 321   } else if (_bounds[v->id()]->length() == 0) {
 322     // To avoid endless loops, bound is currently in calculation -> nothing known about it
 323     return new Bound();
 324   }
 325 
 326   // Return bound
 327   return _bounds[v->id()]->top();
 328 }
 329 
 330 // Update bound
 331 void RangeCheckEliminator::update_bound(IntegerStack &pushed, Value v, Instruction::Condition cond, Value value, int constant) {
 332   if (cond == Instruction::gtr) {
 333     cond = Instruction::geq;
 334     constant++;
 335   } else if (cond == Instruction::lss) {
 336     cond = Instruction::leq;
 337     constant--;
 338   }
 339   Bound *bound = new Bound(cond, value, constant);
 340   update_bound(pushed, v, bound);
 341 }
 342 
 343 // Checks for loop invariance. Returns true if the instruction is outside of the loop which is identified by loop_header.
 344 bool RangeCheckEliminator::loop_invariant(BlockBegin *loop_header, Instruction *instruction) {
 345   assert(loop_header, "Loop header must not be null!");
 346   if (!instruction) return true;
 347   return instruction->dominator_depth() < loop_header->dominator_depth();
 348 }
 349 
 350 // Update bound. Pushes a new bound onto the stack. Tries to do a conjunction with the current bound.
 351 void RangeCheckEliminator::update_bound(IntegerStack &pushed, Value v, Bound *bound) {
 352   if (v->as_Constant()) {
 353     // No bound update for constants
 354     return;
 355   }
 356   if (!_bounds[v->id()]) {
 357     get_bound(v);
 358     assert(_bounds[v->id()], "Now Stack must exist");
 359   }
 360   Bound *top = NULL;
 361   if (_bounds[v->id()]->length() > 0) {
 362     top = _bounds[v->id()]->top();
 363   }
 364   if (top) {
 365     bound->and_op(top);
 366   }
 367   _bounds[v->id()]->push(bound);
 368   pushed.append(v->id());
 369 }
 370 
 371 // Add instruction + idx for in block motion
 372 void RangeCheckEliminator::add_access_indexed_info(InstructionList &indices, int idx, Value instruction, AccessIndexed *ai) {
 373   int id = instruction->id();
 374   AccessIndexedInfo *aii = _access_indexed_info[id];
 375   if (aii == NULL) {
 376     aii = new AccessIndexedInfo();
 377     _access_indexed_info[id] = aii;
 378     indices.append(instruction);
 379     aii->_min = idx;
 380     aii->_max = idx;
 381     aii->_list = new AccessIndexedList();
 382   } else if (idx >= aii->_min && idx <= aii->_max) {
 383     remove_range_check(ai);
 384     return;
 385   }
 386   aii->_min = MIN2(aii->_min, idx);
 387   aii->_max = MAX2(aii->_max, idx);
 388   aii->_list->append(ai);
 389 }
 390 
 391 // In block motion. Tries to reorder checks in order to reduce some of them.
 392 // Example:
 393 // a[i] = 0;
 394 // a[i+2] = 0;
 395 // a[i+1] = 0;
 396 // In this example the check for a[i+1] would be considered as unnecessary during the first iteration.
 397 // After this i is only checked once for i >= 0 and i+2 < a.length before the first array access. If this
 398 // check fails, deoptimization is called.
 399 void RangeCheckEliminator::in_block_motion(BlockBegin *block, AccessIndexedList &accessIndexed, InstructionList &arrays) {
 400   InstructionList indices;
 401 
 402   // Now iterate over all arrays
 403   for (int i=0; i<arrays.length(); i++) {
 404     int max_constant = -1;
 405     AccessIndexedList list_constant;
 406     Value array = arrays.at(i);
 407 
 408     // For all AccessIndexed-instructions in this block concerning the current array.
 409     for(int j=0; j<accessIndexed.length(); j++) {
 410       AccessIndexed *ai = accessIndexed.at(j);
 411       if (ai->array() != array || !ai->check_flag(Instruction::NeedsRangeCheckFlag)) continue;
 412 
 413       Value index = ai->index();
 414       Constant *c = index->as_Constant();
 415       if (c != NULL) {
 416         int constant_value = c->type()->as_IntConstant()->value();
 417         if (constant_value >= 0) {
 418           if (constant_value <= max_constant) {
 419             // No range check needed for this
 420             remove_range_check(ai);
 421           } else {
 422             max_constant = constant_value;
 423             list_constant.append(ai);
 424           }
 425         }
 426       } else {
 427         int last_integer = 0;
 428         Instruction *last_instruction = index;
 429         int base = 0;
 430         ArithmeticOp *ao = index->as_ArithmeticOp();
 431 
 432         while (ao != NULL && (ao->x()->as_Constant() || ao->y()->as_Constant()) && (ao->op() == Bytecodes::_iadd || ao->op() == Bytecodes::_isub)) {
 433           c = ao->y()->as_Constant();
 434           Instruction *other = ao->x();
 435           if (!c && ao->op() == Bytecodes::_iadd) {
 436             c = ao->x()->as_Constant();
 437             other = ao->y();
 438           }
 439 
 440           if (c) {
 441             int value = c->type()->as_IntConstant()->value();
 442             if (value != min_jint) {
 443               if (ao->op() == Bytecodes::_isub) {
 444                 value = -value;
 445               }
 446               base += value;
 447               last_integer = base;
 448               last_instruction = other;
 449             }
 450             index = other;
 451           } else {
 452             break;
 453           }
 454           ao = index->as_ArithmeticOp();
 455         }
 456         add_access_indexed_info(indices, last_integer, last_instruction, ai);
 457       }
 458     }
 459 
 460     // Iterate over all different indices
 461     if (_optimistic) {
 462       for (int i = 0; i < indices.length(); i++) {
 463         Instruction *index_instruction = indices.at(i);
 464         AccessIndexedInfo *info = _access_indexed_info[index_instruction->id()];
 465         assert(info != NULL, "Info must not be null");
 466 
 467         // if idx < 0, max > 0, max + idx may fall between 0 and
 468         // length-1 and if min < 0, min + idx may overflow and be >=
 469         // 0. The predicate wouldn't trigger but some accesses could
 470         // be with a negative index. This test guarantees that for the
 471         // min and max value that are kept the predicate can't let
 472         // some incorrect accesses happen.
 473         bool range_cond = (info->_max < 0 || info->_max + min_jint <= info->_min);
 474 
 475         // Generate code only if more than 2 range checks can be eliminated because of that.
 476         // 2 because at least 2 comparisons are done
 477         if (info->_list->length() > 2 && range_cond) {
 478           AccessIndexed *first = info->_list->at(0);
 479           Instruction *insert_position = first->prev();
 480           assert(insert_position->next() == first, "prev was calculated");
 481           ValueStack *state = first->state_before();
 482 
 483           // Load min Constant
 484           Constant *min_constant = NULL;
 485           if (info->_min != 0) {
 486             min_constant = new Constant(new IntConstant(info->_min));
 487             NOT_PRODUCT(min_constant->set_printable_bci(first->printable_bci()));
 488             insert_position = insert_position->insert_after(min_constant);
 489           }
 490 
 491           // Load max Constant
 492           Constant *max_constant = NULL;
 493           if (info->_max != 0) {
 494             max_constant = new Constant(new IntConstant(info->_max));
 495             NOT_PRODUCT(max_constant->set_printable_bci(first->printable_bci()));
 496             insert_position = insert_position->insert_after(max_constant);
 497           }
 498 
 499           // Load array length
 500           Value length_instr = first->length();
 501           if (!length_instr) {
 502             ArrayLength *length = new ArrayLength(array, first->state_before()->copy());
 503             length->set_exception_state(length->state_before());
 504             length->set_flag(Instruction::DeoptimizeOnException, true);
 505             insert_position = insert_position->insert_after_same_bci(length);
 506             length_instr = length;
 507           }
 508 
 509           // Calculate lower bound
 510           Instruction *lower_compare = index_instruction;
 511           if (min_constant) {
 512             ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, min_constant, lower_compare, false, NULL);
 513             insert_position = insert_position->insert_after_same_bci(ao);
 514             lower_compare = ao;
 515           }
 516 
 517           // Calculate upper bound
 518           Instruction *upper_compare = index_instruction;
 519           if (max_constant) {
 520             ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, max_constant, upper_compare, false, NULL);
 521             insert_position = insert_position->insert_after_same_bci(ao);
 522             upper_compare = ao;
 523           }
 524 
 525           // Trick with unsigned compare is done
 526           int bci = NOT_PRODUCT(first->printable_bci()) PRODUCT_ONLY(-1);
 527           insert_position = predicate(upper_compare, Instruction::aeq, length_instr, state, insert_position, bci);
 528           insert_position = predicate_cmp_with_const(lower_compare, Instruction::leq, -1, state, insert_position);
 529           for (int j = 0; j<info->_list->length(); j++) {
 530             AccessIndexed *ai = info->_list->at(j);
 531             remove_range_check(ai);
 532           }
 533         }
 534       }
 535 
 536       if (list_constant.length() > 1) {
 537         AccessIndexed *first = list_constant.at(0);
 538         Instruction *insert_position = first->prev();
 539         ValueStack *state = first->state_before();
 540         // Load max Constant
 541         Constant *constant = new Constant(new IntConstant(max_constant));
 542         NOT_PRODUCT(constant->set_printable_bci(first->printable_bci()));
 543         insert_position = insert_position->insert_after(constant);
 544         Instruction *compare_instr = constant;
 545         Value length_instr = first->length();
 546         if (!length_instr) {
 547           ArrayLength *length = new ArrayLength(array, state->copy());
 548           length->set_exception_state(length->state_before());
 549           length->set_flag(Instruction::DeoptimizeOnException, true);
 550           insert_position = insert_position->insert_after_same_bci(length);
 551           length_instr = length;
 552         }
 553         // Compare for greater or equal to array length
 554         insert_position = predicate(compare_instr, Instruction::geq, length_instr, state, insert_position);
 555         for (int j = 0; j<list_constant.length(); j++) {
 556           AccessIndexed *ai = list_constant.at(j);
 557           remove_range_check(ai);
 558         }
 559       }
 560     }
 561 
 562     // Clear data structures for next array
 563     for (int i = 0; i < indices.length(); i++) {
 564       Instruction *index_instruction = indices.at(i);
 565       _access_indexed_info[index_instruction->id()] = NULL;
 566     }
 567     indices.clear();
 568   }
 569 }
 570 
 571 bool RangeCheckEliminator::set_process_block_flags(BlockBegin *block) {
 572   Instruction *cur = block;
 573   bool process = false;
 574 
 575   while (cur) {
 576     process |= (cur->as_AccessIndexed() != NULL);
 577     cur = cur->next();
 578   }
 579 
 580   BlockList *dominates = block->dominates();
 581   for (int i=0; i<dominates->length(); i++) {
 582     BlockBegin *next = dominates->at(i);
 583     process |= set_process_block_flags(next);
 584   }
 585 
 586   if (!process) {
 587     block->set(BlockBegin::donot_eliminate_range_checks);
 588   }
 589   return process;
 590 }
 591 
 592 bool RangeCheckEliminator::is_ok_for_deoptimization(Instruction *insert_position, Instruction *array_instr, Instruction *length_instr, Instruction *lower_instr, int lower, Instruction *upper_instr, int upper) {
 593   bool upper_check = true;
 594   assert(lower_instr || lower >= 0, "If no lower_instr present, lower must be greater 0");
 595   assert(!lower_instr || lower_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
 596   assert(!upper_instr || upper_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
 597   assert(array_instr, "Array instruction must exist");
 598   assert(array_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
 599   assert(!length_instr || length_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
 600 
 601   if (upper_instr && upper_instr->as_ArrayLength() && upper_instr->as_ArrayLength()->array() == array_instr) {
 602     // static check
 603     if (upper >= 0) return false; // would always trigger a deopt:
 604                                   // array_length + x >= array_length, x >= 0 is always true
 605     upper_check = false;
 606   }
 607   if (lower_instr && lower_instr->as_ArrayLength() && lower_instr->as_ArrayLength()->array() == array_instr) {
 608     if (lower > 0) return false;
 609   }
 610   // No upper check required -> skip
 611   if (upper_check && upper_instr && upper_instr->type()->as_ObjectType() && upper_instr == array_instr) {
 612     // upper_instr is object means that the upper bound is the length
 613     // of the upper_instr.
 614     return false;
 615   }
 616   return true;
 617 }
 618 
 619 Instruction* RangeCheckEliminator::insert_after(Instruction* insert_position, Instruction* instr, int bci) {
 620   if (bci != -1) {
 621     NOT_PRODUCT(instr->set_printable_bci(bci));
 622     return insert_position->insert_after(instr);
 623   } else {
 624     return insert_position->insert_after_same_bci(instr);
 625   }
 626 }
 627 
 628 Instruction* RangeCheckEliminator::predicate(Instruction* left, Instruction::Condition cond, Instruction* right, ValueStack* state, Instruction *insert_position, int bci) {
 629   RangeCheckPredicate *deoptimize = new RangeCheckPredicate(left, cond, true, right, state->copy());
 630   return insert_after(insert_position, deoptimize, bci);
 631 }
 632 
 633 Instruction* RangeCheckEliminator::predicate_cmp_with_const(Instruction* instr, Instruction::Condition cond, int constant, ValueStack* state, Instruction *insert_position, int bci) {
 634   Constant *const_instr = new Constant(new IntConstant(constant));
 635   insert_position = insert_after(insert_position, const_instr, bci);
 636   return predicate(instr, cond, const_instr, state, insert_position);
 637 }
 638 
 639 Instruction* RangeCheckEliminator::predicate_add(Instruction* left, int left_const, Instruction::Condition cond, Instruction* right, ValueStack* state, Instruction *insert_position, int bci) {
 640   Constant *constant = new Constant(new IntConstant(left_const));
 641   insert_position = insert_after(insert_position, constant, bci);
 642   ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, constant, left, false, NULL);
 643   insert_position = insert_position->insert_after_same_bci(ao);
 644   return predicate(ao, cond, right, state, insert_position);
 645 }
 646 
 647 Instruction* RangeCheckEliminator::predicate_add_cmp_with_const(Instruction* left, int left_const, Instruction::Condition cond, int constant, ValueStack* state, Instruction *insert_position, int bci) {
 648   Constant *const_instr = new Constant(new IntConstant(constant));
 649   insert_position = insert_after(insert_position, const_instr, bci);
 650   return predicate_add(left, left_const, cond, const_instr, state, insert_position);
 651 }
 652 
 653 // Insert deoptimization
 654 void RangeCheckEliminator::insert_deoptimization(ValueStack *state, Instruction *insert_position, Instruction *array_instr, Instruction *length_instr, Instruction *lower_instr, int lower, Instruction *upper_instr, int upper, AccessIndexed *ai) {
 655   assert(is_ok_for_deoptimization(insert_position, array_instr, length_instr, lower_instr, lower, upper_instr, upper), "should have been tested before");
 656   bool upper_check = !(upper_instr && upper_instr->as_ArrayLength() && upper_instr->as_ArrayLength()->array() == array_instr);
 657 
 658   int bci = NOT_PRODUCT(ai->printable_bci()) PRODUCT_ONLY(-1);
 659   if (lower_instr) {
 660     assert(!lower_instr->type()->as_ObjectType(), "Must not be object type");
 661     if (lower == 0) {
 662       // Compare for less than 0
 663       insert_position = predicate_cmp_with_const(lower_instr, Instruction::lss, 0, state, insert_position, bci);
 664     } else if (lower > 0) {
 665       // Compare for smaller 0
 666       insert_position = predicate_add_cmp_with_const(lower_instr, lower, Instruction::lss, 0, state, insert_position, bci);
 667     } else {
 668       assert(lower < 0, "");
 669       // Add 1
 670       lower++;
 671       lower = -lower;
 672       // Compare for smaller or equal 0
 673       insert_position = predicate_cmp_with_const(lower_instr, Instruction::leq, lower, state, insert_position, bci);
 674     }
 675   }
 676 
 677   // No upper check required -> skip
 678   if (!upper_check) return;
 679 
 680   // We need to know length of array
 681   if (!length_instr) {
 682     // Load length if necessary
 683     ArrayLength *length = new ArrayLength(array_instr, state->copy());
 684     NOT_PRODUCT(length->set_printable_bci(ai->printable_bci()));
 685     length->set_exception_state(length->state_before());
 686     length->set_flag(Instruction::DeoptimizeOnException, true);
 687     insert_position = insert_position->insert_after(length);
 688     length_instr = length;
 689   }
 690 
 691   if (!upper_instr) {
 692     // Compare for geq array.length
 693     insert_position = predicate_cmp_with_const(length_instr, Instruction::leq, upper, state, insert_position, bci);
 694   } else {
 695     if (upper_instr->type()->as_ObjectType()) {
 696       assert(state, "must not be null");
 697       assert(upper_instr != array_instr, "should be");
 698       ArrayLength *length = new ArrayLength(upper_instr, state->copy());
 699       NOT_PRODUCT(length->set_printable_bci(ai->printable_bci()));
 700       length->set_flag(Instruction::DeoptimizeOnException, true);
 701       length->set_exception_state(length->state_before());
 702       insert_position = insert_position->insert_after(length);
 703       upper_instr = length;
 704     }
 705     assert(upper_instr->type()->as_IntType(), "Must not be object type!");
 706 
 707     if (upper == 0) {
 708       // Compare for geq array.length
 709       insert_position = predicate(upper_instr, Instruction::geq, length_instr, state, insert_position, bci);
 710     } else if (upper < 0) {
 711       // Compare for geq array.length
 712       insert_position = predicate_add(upper_instr, upper, Instruction::geq, length_instr, state, insert_position, bci);
 713     } else {
 714       assert(upper > 0, "");
 715       upper = -upper;
 716       // Compare for geq array.length
 717       insert_position = predicate_add(length_instr, upper, Instruction::leq, upper_instr, state, insert_position, bci);
 718     }
 719   }
 720 }
 721 
 722 // Add if condition
 723 void RangeCheckEliminator::add_if_condition(IntegerStack &pushed, Value x, Value y, Instruction::Condition condition) {
 724   if (y->as_Constant()) return;
 725 
 726   int const_value = 0;
 727   Value instr_value = x;
 728   Constant *c = x->as_Constant();
 729   ArithmeticOp *ao = x->as_ArithmeticOp();
 730 
 731   if (c != NULL) {
 732     const_value = c->type()->as_IntConstant()->value();
 733     instr_value = NULL;
 734   } else if (ao != NULL &&  (!ao->x()->as_Constant() || !ao->y()->as_Constant()) && ((ao->op() == Bytecodes::_isub && ao->y()->as_Constant()) || ao->op() == Bytecodes::_iadd)) {
 735     assert(!ao->x()->as_Constant() || !ao->y()->as_Constant(), "At least one operator must be non-constant!");
 736     assert(ao->op() == Bytecodes::_isub || ao->op() == Bytecodes::_iadd, "Operation has to be add or sub!");
 737     c = ao->x()->as_Constant();
 738     if (c != NULL) {
 739       const_value = c->type()->as_IntConstant()->value();
 740       instr_value = ao->y();
 741     } else {
 742       c = ao->y()->as_Constant();
 743       if (c != NULL) {
 744         const_value = c->type()->as_IntConstant()->value();
 745         instr_value = ao->x();
 746       }
 747     }
 748     if (ao->op() == Bytecodes::_isub) {
 749       assert(ao->y()->as_Constant(), "1 - x not supported, only x - 1 is valid!");
 750       if (const_value > min_jint) {
 751         const_value = -const_value;
 752       } else {
 753         const_value = 0;
 754         instr_value = x;
 755       }
 756     }
 757   }
 758 
 759   update_bound(pushed, y, condition, instr_value, const_value);
 760 }
 761 
 762 // Process If
 763 void RangeCheckEliminator::process_if(IntegerStack &pushed, BlockBegin *block, If *cond) {
 764   // Only if we are direct true / false successor and NOT both ! (even this may occur)
 765   if ((cond->tsux() == block || cond->fsux() == block) && cond->tsux() != cond->fsux()) {
 766     Instruction::Condition condition = cond->cond();
 767     if (cond->fsux() == block) {
 768       condition = Instruction::negate(condition);
 769     }
 770     Value x = cond->x();
 771     Value y = cond->y();
 772     if (x->type()->as_IntType() && y->type()->as_IntType()) {
 773       add_if_condition(pushed, y, x, condition);
 774       add_if_condition(pushed, x, y, Instruction::mirror(condition));
 775     }
 776   }
 777 }
 778 
 779 // Process access indexed
 780 void RangeCheckEliminator::process_access_indexed(BlockBegin *loop_header, BlockBegin *block, AccessIndexed *ai) {
 781   TRACE_RANGE_CHECK_ELIMINATION(
 782     tty->fill_to(block->dominator_depth()*2)
 783   );
 784   TRACE_RANGE_CHECK_ELIMINATION(
 785     tty->print_cr("Access indexed: index=%d length=%d", ai->index()->id(), (ai->length() != NULL ? ai->length()->id() :-1 ))
 786   );
 787 
 788   if (ai->check_flag(Instruction::NeedsRangeCheckFlag)) {
 789     Bound *index_bound = get_bound(ai->index());
 790     if (!index_bound->has_lower() || !index_bound->has_upper()) {
 791       TRACE_RANGE_CHECK_ELIMINATION(
 792         tty->fill_to(block->dominator_depth()*2);
 793         tty->print_cr("Index instruction %d has no lower and/or no upper bound!", ai->index()->id())
 794       );
 795       return;
 796     }
 797 
 798     Bound *array_bound;
 799     if (ai->length()) {
 800       array_bound = get_bound(ai->length());
 801     } else {
 802       array_bound = get_bound(ai->array());
 803     }
 804 
 805     if (in_array_bound(index_bound, ai->array()) ||
 806       (index_bound && array_bound && index_bound->is_smaller(array_bound) && !index_bound->lower_instr() && index_bound->lower() >= 0)) {
 807         TRACE_RANGE_CHECK_ELIMINATION(
 808           tty->fill_to(block->dominator_depth()*2);
 809           tty->print_cr("Bounds check for instruction %d in block B%d can be fully eliminated!", ai->id(), ai->block()->block_id())
 810         );
 811 
 812         remove_range_check(ai);
 813     } else if (_optimistic && loop_header) {
 814       assert(ai->array(), "Array must not be null!");
 815       assert(ai->index(), "Index must not be null!");
 816 
 817       // Array instruction
 818       Instruction *array_instr = ai->array();
 819       if (!loop_invariant(loop_header, array_instr)) {
 820         TRACE_RANGE_CHECK_ELIMINATION(
 821           tty->fill_to(block->dominator_depth()*2);
 822           tty->print_cr("Array %d is not loop invariant to header B%d", ai->array()->id(), loop_header->block_id())
 823         );
 824         return;
 825       }
 826 
 827       // Lower instruction
 828       Value index_instr = ai->index();
 829       Value lower_instr = index_bound->lower_instr();
 830       if (!loop_invariant(loop_header, lower_instr)) {
 831         TRACE_RANGE_CHECK_ELIMINATION(
 832           tty->fill_to(block->dominator_depth()*2);
 833           tty->print_cr("Lower instruction %d not loop invariant!", lower_instr->id())
 834         );
 835         return;
 836       }
 837       if (!lower_instr && index_bound->lower() < 0) {
 838         TRACE_RANGE_CHECK_ELIMINATION(
 839           tty->fill_to(block->dominator_depth()*2);
 840           tty->print_cr("Lower bound smaller than 0 (%d)!", index_bound->lower())
 841         );
 842         return;
 843       }
 844 
 845       // Upper instruction
 846       Value upper_instr = index_bound->upper_instr();
 847       if (!loop_invariant(loop_header, upper_instr)) {
 848         TRACE_RANGE_CHECK_ELIMINATION(
 849           tty->fill_to(block->dominator_depth()*2);
 850           tty->print_cr("Upper instruction %d not loop invariant!", upper_instr->id())
 851         );
 852         return;
 853       }
 854 
 855       // Length instruction
 856       Value length_instr = ai->length();
 857       if (!loop_invariant(loop_header, length_instr)) {
 858         // Generate length instruction yourself!
 859         length_instr = NULL;
 860       }
 861 
 862       TRACE_RANGE_CHECK_ELIMINATION(
 863         tty->fill_to(block->dominator_depth()*2);
 864         tty->print_cr("LOOP INVARIANT access indexed %d found in block B%d!", ai->id(), ai->block()->block_id())
 865       );
 866 
 867       BlockBegin *pred_block = loop_header->dominator();
 868       assert(pred_block != NULL, "Every loop header has a dominator!");
 869       BlockEnd *pred_block_end = pred_block->end();
 870       Instruction *insert_position = pred_block_end->prev();
 871       ValueStack *state = pred_block_end->state_before();
 872       if (pred_block_end->as_Goto() && state == NULL) state = pred_block_end->state();
 873       assert(state, "State must not be null");
 874 
 875       // Add deoptimization to dominator of loop header
 876       TRACE_RANGE_CHECK_ELIMINATION(
 877         tty->fill_to(block->dominator_depth()*2);
 878         tty->print_cr("Inserting deopt at bci %d in block B%d!", state->bci(), insert_position->block()->block_id())
 879       );
 880 
 881       if (!is_ok_for_deoptimization(insert_position, array_instr, length_instr, lower_instr, index_bound->lower(), upper_instr, index_bound->upper())) {
 882         TRACE_RANGE_CHECK_ELIMINATION(
 883           tty->fill_to(block->dominator_depth()*2);
 884           tty->print_cr("Could not eliminate because of static analysis!")
 885         );
 886         return;
 887       }
 888 
 889       insert_deoptimization(state, insert_position, array_instr, length_instr, lower_instr, index_bound->lower(), upper_instr, index_bound->upper(), ai);
 890 
 891       // Finally remove the range check!
 892       remove_range_check(ai);
 893     }
 894   }
 895 }
 896 
 897 void RangeCheckEliminator::remove_range_check(AccessIndexed *ai) {
 898   ai->set_flag(Instruction::NeedsRangeCheckFlag, false);
 899   // no range check, no need for the length instruction anymore
 900   ai->clear_length();
 901 
 902   TRACE_RANGE_CHECK_ELIMINATION(
 903     tty->fill_to(ai->dominator_depth()*2);
 904     tty->print_cr("Range check for instruction %d eliminated!", ai->id());
 905   );
 906 
 907   ASSERT_RANGE_CHECK_ELIMINATION(
 908     Value array_length = ai->length();
 909     if (!array_length) {
 910       array_length = ai->array();
 911       assert(array_length->type()->as_ObjectType(), "Has to be object type!");
 912     }
 913     int cur_constant = -1;
 914     Value cur_value = array_length;
 915     if (cur_value->type()->as_IntConstant()) {
 916       cur_constant += cur_value->type()->as_IntConstant()->value();
 917       cur_value = NULL;
 918     }
 919     Bound *new_index_bound = new Bound(0, NULL, cur_constant, cur_value);
 920     add_assertions(new_index_bound, ai->index(), ai);
 921   );
 922 }
 923 
 924 // Calculate bounds for instruction in this block and children blocks in the dominator tree
 925 void RangeCheckEliminator::calc_bounds(BlockBegin *block, BlockBegin *loop_header) {
 926   // Ensures a valid loop_header
 927   assert(!loop_header || loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Loop header has to be real !");
 928 
 929   // Tracing output
 930   TRACE_RANGE_CHECK_ELIMINATION(
 931     tty->fill_to(block->dominator_depth()*2);
 932     tty->print_cr("Block B%d", block->block_id());
 933   );
 934 
 935   // Pushed stack for conditions
 936   IntegerStack pushed;
 937   // Process If
 938   BlockBegin *parent = block->dominator();
 939   if (parent != NULL) {
 940     If *cond = parent->end()->as_If();
 941     if (cond != NULL) {
 942       process_if(pushed, block, cond);
 943     }
 944   }
 945 
 946   // Interate over current block
 947   InstructionList arrays;
 948   AccessIndexedList accessIndexed;
 949   Instruction *cur = block;
 950 
 951   while (cur) {
 952     // Ensure cur wasn't inserted during the elimination
 953     if (cur->id() < this->_bounds.length()) {
 954       // Process only if it is an access indexed instruction
 955       AccessIndexed *ai = cur->as_AccessIndexed();
 956       if (ai != NULL) {
 957         process_access_indexed(loop_header, block, ai);
 958         accessIndexed.append(ai);
 959         if (!arrays.contains(ai->array())) {
 960           arrays.append(ai->array());
 961         }
 962         Bound *b = get_bound(ai->index());
 963         if (!b->lower_instr()) {
 964           // Lower bound is constant
 965           update_bound(pushed, ai->index(), Instruction::geq, NULL, 0);
 966         }
 967         if (!b->has_upper()) {
 968           if (ai->length() && ai->length()->type()->as_IntConstant()) {
 969             int value = ai->length()->type()->as_IntConstant()->value();
 970             update_bound(pushed, ai->index(), Instruction::lss, NULL, value);
 971           } else {
 972             // Has no upper bound
 973             Instruction *instr = ai->length();
 974             if (instr != NULL) instr = ai->array();
 975             update_bound(pushed, ai->index(), Instruction::lss, instr, 0);
 976           }
 977         }
 978       }
 979     }
 980     cur = cur->next();
 981   }
 982 
 983   // Output current condition stack
 984   TRACE_RANGE_CHECK_ELIMINATION(dump_condition_stack(block));
 985 
 986   // Do in block motion of range checks
 987   in_block_motion(block, accessIndexed, arrays);
 988 
 989   // Call all dominated blocks
 990   for (int i=0; i<block->dominates()->length(); i++) {
 991     BlockBegin *next = block->dominates()->at(i);
 992     if (!next->is_set(BlockBegin::donot_eliminate_range_checks)) {
 993       // if current block is a loop header and:
 994       // - next block belongs to the same loop
 995       // or
 996       // - next block belongs to an inner loop
 997       // then current block is the loop header for next block
 998       if (block->is_set(BlockBegin::linear_scan_loop_header_flag) && (block->loop_index() == next->loop_index() || next->loop_depth() > block->loop_depth())) {
 999         calc_bounds(next, block);
1000       } else {
1001         calc_bounds(next, loop_header);
1002       }
1003     }
1004   }
1005 
1006   // Reset stack
1007   for (int i=0; i<pushed.length(); i++) {
1008     _bounds[pushed[i]]->pop();
1009   }
1010 }
1011 
1012 #ifndef PRODUCT
1013 // Dump condition stack
1014 void RangeCheckEliminator::dump_condition_stack(BlockBegin *block) {
1015   for (int i=0; i<_ir->linear_scan_order()->length(); i++) {
1016     BlockBegin *cur_block = _ir->linear_scan_order()->at(i);
1017     Instruction *instr = cur_block;
1018     for_each_phi_fun(cur_block, phi,
1019                      BoundStack *bound_stack = _bounds.at(phi->id());
1020                      if (bound_stack && bound_stack->length() > 0) {
1021                        Bound *bound = bound_stack->top();
1022                        if ((bound->has_lower() || bound->has_upper()) && (bound->lower_instr() != phi || bound->upper_instr() != phi || bound->lower() != 0 || bound->upper() != 0)) {
1023                            TRACE_RANGE_CHECK_ELIMINATION(tty->fill_to(2*block->dominator_depth());
1024                                                          tty->print("i%d", phi->id());
1025                                                          tty->print(": ");
1026                                                          bound->print();
1027                                                          tty->cr();
1028                            );
1029                          }
1030                      });
1031 
1032     while (!instr->as_BlockEnd()) {
1033       if (instr->id() < _bounds.length()) {
1034         BoundStack *bound_stack = _bounds.at(instr->id());
1035         if (bound_stack && bound_stack->length() > 0) {
1036           Bound *bound = bound_stack->top();
1037           if ((bound->has_lower() || bound->has_upper()) && (bound->lower_instr() != instr || bound->upper_instr() != instr || bound->lower() != 0 || bound->upper() != 0)) {
1038               TRACE_RANGE_CHECK_ELIMINATION(tty->fill_to(2*block->dominator_depth());
1039                                             tty->print("i%d", instr->id());
1040                                             tty->print(": ");
1041                                             bound->print();
1042                                             tty->cr();
1043               );
1044           }
1045         }
1046       }
1047       instr = instr->next();
1048     }
1049   }
1050 }
1051 #endif
1052 
1053 // Verification or the IR
1054 RangeCheckEliminator::Verification::Verification(IR *ir) : _used(BlockBegin::number_of_blocks(), false) {
1055   this->_ir = ir;
1056   ir->iterate_linear_scan_order(this);
1057 }
1058 
1059 // Verify this block
1060 void RangeCheckEliminator::Verification::block_do(BlockBegin *block) {
1061   If *cond = block->end()->as_If();
1062   // Watch out: tsux and fsux can be the same!
1063   if (block->number_of_sux() > 1) {
1064     for (int i=0; i<block->number_of_sux(); i++) {
1065       BlockBegin *sux = block->sux_at(i);
1066       BlockBegin *pred = NULL;
1067       for (int j=0; j<sux->number_of_preds(); j++) {
1068         BlockBegin *cur = sux->pred_at(j);
1069         assert(cur != NULL, "Predecessor must not be null");
1070         if (!pred) {
1071           pred = cur;
1072         }
1073         assert(cur == pred, "Block must not have more than one predecessor if its predecessor has more than one successor");
1074       }
1075       assert(sux->number_of_preds() >= 1, "Block must have at least one predecessor");
1076       assert(sux->pred_at(0) == block, "Wrong successor");
1077     }
1078   }
1079 
1080   BlockBegin *dominator = block->dominator();
1081   if (dominator) {
1082     assert(block != _ir->start(), "Start block must not have a dominator!");
1083     assert(can_reach(dominator, block), "Dominator can't reach his block !");
1084     assert(can_reach(_ir->start(), dominator), "Dominator is unreachable !");
1085     assert(!can_reach(_ir->start(), block, dominator), "Wrong dominator ! Block can be reached anyway !");
1086     BlockList *all_blocks = _ir->linear_scan_order();
1087     for (int i=0; i<all_blocks->length(); i++) {
1088       BlockBegin *cur = all_blocks->at(i);
1089       if (cur != dominator && cur != block) {
1090         assert(can_reach(dominator, block, cur), "There has to be another dominator!");
1091       }
1092     }
1093   } else {
1094     assert(block == _ir->start(), "Only start block must not have a dominator");
1095   }
1096 
1097   if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
1098     int loop_index = block->loop_index();
1099     BlockList *all_blocks = _ir->linear_scan_order();
1100     assert(block->number_of_preds() >= 1, "Block must have at least one predecessor");
1101     assert(!block->is_set(BlockBegin::exception_entry_flag), "Loop header must not be exception handler!");
1102     // Sometimes, the backbranch comes from an exception handler. In
1103     // this case, loop indexes/loop depths may not appear correct.
1104     bool loop_through_xhandler = false;
1105     for (int i = 0; i < block->number_of_exception_handlers(); i++) {
1106       BlockBegin *xhandler = block->exception_handler_at(i);
1107       for (int j = 0; j < block->number_of_preds(); j++) {
1108         if (dominates(xhandler, block->pred_at(j)) || xhandler == block->pred_at(j)) {
1109           loop_through_xhandler = true;
1110         }
1111       }
1112     }
1113 
1114     for (int i=0; i<block->number_of_sux(); i++) {
1115       BlockBegin *sux = block->sux_at(i);
1116       assert(sux->loop_depth() != block->loop_depth() || sux->loop_index() == block->loop_index() || loop_through_xhandler, "Loop index has to be same");
1117       assert(sux->loop_depth() == block->loop_depth() || sux->loop_index() != block->loop_index(), "Loop index has to be different");
1118     }
1119 
1120     for (int i=0; i<all_blocks->length(); i++) {
1121       BlockBegin *cur = all_blocks->at(i);
1122       if (cur->loop_index() == loop_index && cur != block) {
1123         assert(dominates(block->dominator(), cur), "Dominator of loop header must dominate all loop blocks");
1124       }
1125     }
1126   }
1127 
1128   Instruction *cur = block;
1129   while (cur) {
1130     assert(cur->block() == block, "Block begin has to be set correctly!");
1131     cur = cur->next();
1132   }
1133 }
1134 
1135 // Loop header must dominate all loop blocks
1136 bool RangeCheckEliminator::Verification::dominates(BlockBegin *dominator, BlockBegin *block) {
1137   BlockBegin *cur = block->dominator();
1138   while (cur && cur != dominator) {
1139     cur = cur->dominator();
1140   }
1141   return cur == dominator;
1142 }
1143 
1144 // Try to reach Block end beginning in Block start and not using Block dont_use
1145 bool RangeCheckEliminator::Verification::can_reach(BlockBegin *start, BlockBegin *end, BlockBegin *dont_use /* = NULL */) {
1146   if (start == end) return start != dont_use;
1147   // Simple BSF from start to end
1148   //  BlockBeginList _current;
1149   for (int i=0; i<_used.length(); i++) {
1150     _used[i] = false;
1151   }
1152   _current.truncate(0);
1153   _successors.truncate(0);
1154   if (start != dont_use) {
1155     _current.push(start);
1156     _used[start->block_id()] = true;
1157   }
1158 
1159   //  BlockBeginList _successors;
1160   while (_current.length() > 0) {
1161     BlockBegin *cur = _current.pop();
1162     // Add exception handlers to list
1163     for (int i=0; i<cur->number_of_exception_handlers(); i++) {
1164       BlockBegin *xhandler = cur->exception_handler_at(i);
1165       _successors.push(xhandler);
1166       // Add exception handlers of _successors to list
1167       for (int j=0; j<xhandler->number_of_exception_handlers(); j++) {
1168         BlockBegin *sux_xhandler = xhandler->exception_handler_at(j);
1169         _successors.push(sux_xhandler);
1170       }
1171     }
1172     // Add normal _successors to list
1173     for (int i=0; i<cur->number_of_sux(); i++) {
1174       BlockBegin *sux = cur->sux_at(i);
1175       _successors.push(sux);
1176       // Add exception handlers of _successors to list
1177       for (int j=0; j<sux->number_of_exception_handlers(); j++) {
1178         BlockBegin *xhandler = sux->exception_handler_at(j);
1179         _successors.push(xhandler);
1180       }
1181     }
1182     for (int i=0; i<_successors.length(); i++) {
1183       BlockBegin *sux = _successors[i];
1184       assert(sux != NULL, "Successor must not be NULL!");
1185       if (sux == end) {
1186         return true;
1187       }
1188       if (sux != dont_use && !_used[sux->block_id()]) {
1189         _used[sux->block_id()] = true;
1190         _current.push(sux);
1191       }
1192     }
1193     _successors.truncate(0);
1194   }
1195 
1196   return false;
1197 }
1198 
1199 // Bound
1200 RangeCheckEliminator::Bound::~Bound() {
1201 }
1202 
1203 // Bound constructor
1204 RangeCheckEliminator::Bound::Bound() {
1205   init();
1206   this->_lower = min_jint;
1207   this->_upper = max_jint;
1208   this->_lower_instr = NULL;
1209   this->_upper_instr = NULL;
1210 }
1211 
1212 // Bound constructor
1213 RangeCheckEliminator::Bound::Bound(int lower, Value lower_instr, int upper, Value upper_instr) {
1214   init();
1215   assert(!lower_instr || !lower_instr->as_Constant() || !lower_instr->type()->as_IntConstant(), "Must not be constant!");
1216   assert(!upper_instr || !upper_instr->as_Constant() || !upper_instr->type()->as_IntConstant(), "Must not be constant!");
1217   this->_lower = lower;
1218   this->_upper = upper;
1219   this->_lower_instr = lower_instr;
1220   this->_upper_instr = upper_instr;
1221 }
1222 
1223 // Bound constructor
1224 RangeCheckEliminator::Bound::Bound(Instruction::Condition cond, Value v, int constant) {
1225   assert(!v || (v->type() && (v->type()->as_IntType() || v->type()->as_ObjectType())), "Type must be array or integer!");
1226   assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
1227 
1228   init();
1229   if (cond == Instruction::eql) {
1230     _lower = constant;
1231     _lower_instr = v;
1232     _upper = constant;
1233     _upper_instr = v;
1234   } else if (cond == Instruction::neq) {
1235     _lower = min_jint;
1236     _upper = max_jint;
1237     _lower_instr = NULL;
1238     _upper_instr = NULL;
1239     if (v == NULL) {
1240       if (constant == min_jint) {
1241         _lower++;
1242       }
1243       if (constant == max_jint) {
1244         _upper--;
1245       }
1246     }
1247   } else if (cond == Instruction::geq) {
1248     _lower = constant;
1249     _lower_instr = v;
1250     _upper = max_jint;
1251     _upper_instr = NULL;
1252   } else if (cond == Instruction::leq) {
1253     _lower = min_jint;
1254     _lower_instr = NULL;
1255     _upper = constant;
1256     _upper_instr = v;
1257   } else {
1258     ShouldNotReachHere();
1259   }
1260 }
1261 
1262 // Set lower
1263 void RangeCheckEliminator::Bound::set_lower(int value, Value v) {
1264   assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
1265   this->_lower = value;
1266   this->_lower_instr = v;
1267 }
1268 
1269 // Set upper
1270 void RangeCheckEliminator::Bound::set_upper(int value, Value v) {
1271   assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
1272   this->_upper = value;
1273   this->_upper_instr = v;
1274 }
1275 
1276 // Add constant -> no overflow may occur
1277 void RangeCheckEliminator::Bound::add_constant(int value) {
1278   this->_lower += value;
1279   this->_upper += value;
1280 }
1281 
1282 // Init
1283 void RangeCheckEliminator::Bound::init() {
1284 }
1285 
1286 // or
1287 void RangeCheckEliminator::Bound::or_op(Bound *b) {
1288   // Watch out, bound is not guaranteed not to overflow!
1289   // Update lower bound
1290   if (_lower_instr != b->_lower_instr || (_lower_instr && _lower != b->_lower)) {
1291     _lower_instr = NULL;
1292     _lower = min_jint;
1293   } else {
1294     _lower = MIN2(_lower, b->_lower);
1295   }
1296   // Update upper bound
1297   if (_upper_instr != b->_upper_instr || (_upper_instr && _upper != b->_upper)) {
1298     _upper_instr = NULL;
1299     _upper = max_jint;
1300   } else {
1301     _upper = MAX2(_upper, b->_upper);
1302   }
1303 }
1304 
1305 // and
1306 void RangeCheckEliminator::Bound::and_op(Bound *b) {
1307   // Update lower bound
1308   if (_lower_instr == b->_lower_instr) {
1309     _lower = MAX2(_lower, b->_lower);
1310   }
1311   if (b->has_lower()) {
1312     bool set = true;
1313     if (_lower_instr != NULL && b->_lower_instr != NULL) {
1314       set = (_lower_instr->dominator_depth() > b->_lower_instr->dominator_depth());
1315     }
1316     if (set) {
1317       _lower = b->_lower;
1318       _lower_instr = b->_lower_instr;
1319     }
1320   }
1321   // Update upper bound
1322   if (_upper_instr == b->_upper_instr) {
1323     _upper = MIN2(_upper, b->_upper);
1324   }
1325   if (b->has_upper()) {
1326     bool set = true;
1327     if (_upper_instr != NULL && b->_upper_instr != NULL) {
1328       set = (_upper_instr->dominator_depth() > b->_upper_instr->dominator_depth());
1329     }
1330     if (set) {
1331       _upper = b->_upper;
1332       _upper_instr = b->_upper_instr;
1333     }
1334   }
1335 }
1336 
1337 // has_upper
1338 bool RangeCheckEliminator::Bound::has_upper() {
1339   return _upper_instr != NULL || _upper < max_jint;
1340 }
1341 
1342 // is_smaller
1343 bool RangeCheckEliminator::Bound::is_smaller(Bound *b) {
1344   if (b->_lower_instr != _upper_instr) {
1345     return false;
1346   }
1347   return _upper < b->_lower;
1348 }
1349 
1350 // has_lower
1351 bool RangeCheckEliminator::Bound::has_lower() {
1352   return _lower_instr != NULL || _lower > min_jint;
1353 }
1354 
1355 // in_array_bound
1356 bool RangeCheckEliminator::in_array_bound(Bound *bound, Value array){
1357   if (!bound) return false;
1358   assert(array != NULL, "Must not be null!");
1359   assert(bound != NULL, "Must not be null!");
1360   if (bound->lower() >=0 && bound->lower_instr() == NULL && bound->upper() < 0 && bound->upper_instr() != NULL) {
1361     ArrayLength *len = bound->upper_instr()->as_ArrayLength();
1362     if (bound->upper_instr() == array || (len != NULL && len->array() == array)) {
1363       return true;
1364     }
1365   }
1366   return false;
1367 }
1368 
1369 // remove_lower
1370 void RangeCheckEliminator::Bound::remove_lower() {
1371   _lower = min_jint;
1372   _lower_instr = NULL;
1373 }
1374 
1375 // remove_upper
1376 void RangeCheckEliminator::Bound::remove_upper() {
1377   _upper = max_jint;
1378   _upper_instr = NULL;
1379 }
1380 
1381 // upper
1382 int RangeCheckEliminator::Bound::upper() {
1383   return _upper;
1384 }
1385 
1386 // lower
1387 int RangeCheckEliminator::Bound::lower() {
1388   return _lower;
1389 }
1390 
1391 // upper_instr
1392 Value RangeCheckEliminator::Bound::upper_instr() {
1393   return _upper_instr;
1394 }
1395 
1396 // lower_instr
1397 Value RangeCheckEliminator::Bound::lower_instr() {
1398   return _lower_instr;
1399 }
1400 
1401 // print
1402 void RangeCheckEliminator::Bound::print() {
1403   tty->print("%s", "");
1404   if (this->_lower_instr || this->_lower != min_jint) {
1405     if (this->_lower_instr) {
1406       tty->print("i%d", this->_lower_instr->id());
1407       if (this->_lower > 0) {
1408         tty->print("+%d", _lower);
1409       }
1410       if (this->_lower < 0) {
1411         tty->print("%d", _lower);
1412       }
1413     } else {
1414       tty->print("%d", _lower);
1415     }
1416     tty->print(" <= ");
1417   }
1418   tty->print("x");
1419   if (this->_upper_instr || this->_upper != max_jint) {
1420     tty->print(" <= ");
1421     if (this->_upper_instr) {
1422       tty->print("i%d", this->_upper_instr->id());
1423       if (this->_upper > 0) {
1424         tty->print("+%d", _upper);
1425       }
1426       if (this->_upper < 0) {
1427         tty->print("%d", _upper);
1428       }
1429     } else {
1430       tty->print("%d", _upper);
1431     }
1432   }
1433 }
1434 
1435 // Copy
1436 RangeCheckEliminator::Bound *RangeCheckEliminator::Bound::copy() {
1437   Bound *b = new Bound();
1438   b->_lower = _lower;
1439   b->_lower_instr = _lower_instr;
1440   b->_upper = _upper;
1441   b->_upper_instr = _upper_instr;
1442   return b;
1443 }
1444 
1445 #ifdef ASSERT
1446 // Add assertion
1447 void RangeCheckEliminator::Bound::add_assertion(Instruction *instruction, Instruction *position, int i, Value instr, Instruction::Condition cond) {
1448   Instruction *result = position;
1449   Instruction *compare_with = NULL;
1450   ValueStack *state = position->state_before();
1451   if (position->as_BlockEnd() && !position->as_Goto()) {
1452     state = position->as_BlockEnd()->state_before();
1453   }
1454   Instruction *instruction_before = position->prev();
1455   if (position->as_Return() && Compilation::current()->method()->is_synchronized() && instruction_before->as_MonitorExit()) {
1456     instruction_before = instruction_before->prev();
1457   }
1458   result = instruction_before;
1459   // Load constant only if needed
1460   Constant *constant = NULL;
1461   if (i != 0 || !instr) {
1462     constant = new Constant(new IntConstant(i));
1463     NOT_PRODUCT(constant->set_printable_bci(position->printable_bci()));
1464     result = result->insert_after(constant);
1465     compare_with = constant;
1466   }
1467 
1468   if (instr) {
1469     assert(instr->type()->as_ObjectType() || instr->type()->as_IntType(), "Type must be array or integer!");
1470     compare_with = instr;
1471     // Load array length if necessary
1472     Instruction *op = instr;
1473     if (instr->type()->as_ObjectType()) {
1474       assert(state, "must not be null");
1475       ArrayLength *length = new ArrayLength(instr, state->copy());
1476       NOT_PRODUCT(length->set_printable_bci(position->printable_bci()));
1477       length->set_exception_state(length->state_before());
1478       result = result->insert_after(length);
1479       op = length;
1480       compare_with = length;
1481     }
1482     // Add operation only if necessary
1483     if (constant) {
1484       ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, constant, op, false, NULL);
1485       NOT_PRODUCT(ao->set_printable_bci(position->printable_bci()));
1486       result = result->insert_after(ao);
1487       compare_with = ao;
1488       // TODO: Check that add operation does not overflow!
1489     }
1490   }
1491   assert(compare_with != NULL, "You have to compare with something!");
1492   assert(instruction != NULL, "Instruction must not be null!");
1493 
1494   if (instruction->type()->as_ObjectType()) {
1495     // Load array length if necessary
1496     Instruction *op = instruction;
1497     assert(state, "must not be null");
1498     ArrayLength *length = new ArrayLength(instruction, state->copy());
1499     length->set_exception_state(length->state_before());
1500     NOT_PRODUCT(length->set_printable_bci(position->printable_bci()));
1501     result = result->insert_after(length);
1502     instruction = length;
1503   }
1504 
1505   Assert *assert = new Assert(instruction, cond, false, compare_with);
1506   NOT_PRODUCT(assert->set_printable_bci(position->printable_bci()));
1507   result->insert_after(assert);
1508 }
1509 
1510 // Add assertions
1511 void RangeCheckEliminator::add_assertions(Bound *bound, Instruction *instruction, Instruction *position) {
1512   // Add lower bound assertion
1513   if (bound->has_lower()) {
1514     bound->add_assertion(instruction, position, bound->lower(), bound->lower_instr(), Instruction::geq);
1515   }
1516   // Add upper bound assertion
1517   if (bound->has_upper()) {
1518     bound->add_assertion(instruction, position, bound->upper(), bound->upper_instr(), Instruction::leq);
1519   }
1520 }
1521 #endif
1522