1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_IR.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_LinearScan.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "code/vmreg.inline.hpp"
  35 #include "utilities/bitMap.inline.hpp"
  36 
  37 #ifndef PRODUCT
  38 
  39   static LinearScanStatistic _stat_before_alloc;
  40   static LinearScanStatistic _stat_after_asign;
  41   static LinearScanStatistic _stat_final;
  42 
  43   static LinearScanTimers _total_timer;
  44 
  45   // helper macro for short definition of timer
  46   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  47 
  48   // helper macro for short definition of trace-output inside code
  49   #define TRACE_LINEAR_SCAN(level, code)       \
  50     if (TraceLinearScanLevel >= level) {       \
  51       code;                                    \
  52     }
  53 
  54 #else
  55 
  56   #define TIME_LINEAR_SCAN(timer_name)
  57   #define TRACE_LINEAR_SCAN(level, code)
  58 
  59 #endif
  60 
  61 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  62 #ifdef _LP64
  63 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
  64 #else
  65 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
  66 #endif
  67 
  68 
  69 // Implementation of LinearScan
  70 
  71 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  72  : _compilation(ir->compilation())
  73  , _ir(ir)
  74  , _gen(gen)
  75  , _frame_map(frame_map)
  76  , _num_virtual_regs(gen->max_virtual_register_number())
  77  , _has_fpu_registers(false)
  78  , _num_calls(-1)
  79  , _max_spills(0)
  80  , _unused_spill_slot(-1)
  81  , _intervals(0)   // initialized later with correct length
  82  , _new_intervals_from_allocation(new IntervalList())
  83  , _sorted_intervals(NULL)
  84  , _needs_full_resort(false)
  85  , _lir_ops(0)     // initialized later with correct length
  86  , _block_of_op(0) // initialized later with correct length
  87  , _has_info(0)
  88  , _has_call(0)
  89  , _scope_value_cache(0) // initialized later with correct length
  90  , _interval_in_loop(0, 0) // initialized later with correct length
  91  , _cached_blocks(*ir->linear_scan_order())
  92 #ifdef X86
  93  , _fpu_stack_allocator(NULL)
  94 #endif
  95 {
  96   assert(this->ir() != NULL,          "check if valid");
  97   assert(this->compilation() != NULL, "check if valid");
  98   assert(this->gen() != NULL,         "check if valid");
  99   assert(this->frame_map() != NULL,   "check if valid");
 100 }
 101 
 102 
 103 // ********** functions for converting LIR-Operands to register numbers
 104 //
 105 // Emulate a flat register file comprising physical integer registers,
 106 // physical floating-point registers and virtual registers, in that order.
 107 // Virtual registers already have appropriate numbers, since V0 is
 108 // the number of physical registers.
 109 // Returns -1 for hi word if opr is a single word operand.
 110 //
 111 // Note: the inverse operation (calculating an operand for register numbers)
 112 //       is done in calc_operand_for_interval()
 113 
 114 int LinearScan::reg_num(LIR_Opr opr) {
 115   assert(opr->is_register(), "should not call this otherwise");
 116 
 117   if (opr->is_virtual_register()) {
 118     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 119     return opr->vreg_number();
 120   } else if (opr->is_single_cpu()) {
 121     return opr->cpu_regnr();
 122   } else if (opr->is_double_cpu()) {
 123     return opr->cpu_regnrLo();
 124 #ifdef X86
 125   } else if (opr->is_single_xmm()) {
 126     return opr->fpu_regnr() + pd_first_xmm_reg;
 127   } else if (opr->is_double_xmm()) {
 128     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 129 #endif
 130   } else if (opr->is_single_fpu()) {
 131     return opr->fpu_regnr() + pd_first_fpu_reg;
 132   } else if (opr->is_double_fpu()) {
 133     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 134   } else {
 135     ShouldNotReachHere();
 136     return -1;
 137   }
 138 }
 139 
 140 int LinearScan::reg_numHi(LIR_Opr opr) {
 141   assert(opr->is_register(), "should not call this otherwise");
 142 
 143   if (opr->is_virtual_register()) {
 144     return -1;
 145   } else if (opr->is_single_cpu()) {
 146     return -1;
 147   } else if (opr->is_double_cpu()) {
 148     return opr->cpu_regnrHi();
 149 #ifdef X86
 150   } else if (opr->is_single_xmm()) {
 151     return -1;
 152   } else if (opr->is_double_xmm()) {
 153     return -1;
 154 #endif
 155   } else if (opr->is_single_fpu()) {
 156     return -1;
 157   } else if (opr->is_double_fpu()) {
 158     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 159   } else {
 160     ShouldNotReachHere();
 161     return -1;
 162   }
 163 }
 164 
 165 
 166 // ********** functions for classification of intervals
 167 
 168 bool LinearScan::is_precolored_interval(const Interval* i) {
 169   return i->reg_num() < LinearScan::nof_regs;
 170 }
 171 
 172 bool LinearScan::is_virtual_interval(const Interval* i) {
 173   return i->reg_num() >= LIR_OprDesc::vreg_base;
 174 }
 175 
 176 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 177   return i->reg_num() < LinearScan::nof_cpu_regs;
 178 }
 179 
 180 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 181 #if defined(__SOFTFP__) || defined(E500V2)
 182   return i->reg_num() >= LIR_OprDesc::vreg_base;
 183 #else
 184   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 185 #endif // __SOFTFP__ or E500V2
 186 }
 187 
 188 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 189   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 190 }
 191 
 192 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 193 #if defined(__SOFTFP__) || defined(E500V2)
 194   return false;
 195 #else
 196   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 197 #endif // __SOFTFP__ or E500V2
 198 }
 199 
 200 bool LinearScan::is_in_fpu_register(const Interval* i) {
 201   // fixed intervals not needed for FPU stack allocation
 202   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 203 }
 204 
 205 bool LinearScan::is_oop_interval(const Interval* i) {
 206   // fixed intervals never contain oops
 207   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 208 }
 209 
 210 
 211 // ********** General helper functions
 212 
 213 // compute next unused stack index that can be used for spilling
 214 int LinearScan::allocate_spill_slot(bool double_word) {
 215   int spill_slot;
 216   if (double_word) {
 217     if ((_max_spills & 1) == 1) {
 218       // alignment of double-word values
 219       // the hole because of the alignment is filled with the next single-word value
 220       assert(_unused_spill_slot == -1, "wasting a spill slot");
 221       _unused_spill_slot = _max_spills;
 222       _max_spills++;
 223     }
 224     spill_slot = _max_spills;
 225     _max_spills += 2;
 226 
 227   } else if (_unused_spill_slot != -1) {
 228     // re-use hole that was the result of a previous double-word alignment
 229     spill_slot = _unused_spill_slot;
 230     _unused_spill_slot = -1;
 231 
 232   } else {
 233     spill_slot = _max_spills;
 234     _max_spills++;
 235   }
 236 
 237   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 238 
 239   // the class OopMapValue uses only 11 bits for storing the name of the
 240   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 241   // that is not reported in product builds. Prevent this by checking the
 242   // spill slot here (altough this value and the later used location name
 243   // are slightly different)
 244   if (result > 2000) {
 245     bailout("too many stack slots used");
 246   }
 247 
 248   return result;
 249 }
 250 
 251 void LinearScan::assign_spill_slot(Interval* it) {
 252   // assign the canonical spill slot of the parent (if a part of the interval
 253   // is already spilled) or allocate a new spill slot
 254   if (it->canonical_spill_slot() >= 0) {
 255     it->assign_reg(it->canonical_spill_slot());
 256   } else {
 257     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 258     it->set_canonical_spill_slot(spill);
 259     it->assign_reg(spill);
 260   }
 261 }
 262 
 263 void LinearScan::propagate_spill_slots() {
 264   if (!frame_map()->finalize_frame(max_spills())) {
 265     bailout("frame too large");
 266   }
 267 }
 268 
 269 // create a new interval with a predefined reg_num
 270 // (only used for parent intervals that are created during the building phase)
 271 Interval* LinearScan::create_interval(int reg_num) {
 272   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 273 
 274   Interval* interval = new Interval(reg_num);
 275   _intervals.at_put(reg_num, interval);
 276 
 277   // assign register number for precolored intervals
 278   if (reg_num < LIR_OprDesc::vreg_base) {
 279     interval->assign_reg(reg_num);
 280   }
 281   return interval;
 282 }
 283 
 284 // assign a new reg_num to the interval and append it to the list of intervals
 285 // (only used for child intervals that are created during register allocation)
 286 void LinearScan::append_interval(Interval* it) {
 287   it->set_reg_num(_intervals.length());
 288   _intervals.append(it);
 289   _new_intervals_from_allocation->append(it);
 290 }
 291 
 292 // copy the vreg-flags if an interval is split
 293 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 294   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 295     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 296   }
 297   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 298     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 299   }
 300 
 301   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 302   //       intervals (only the very beginning of the interval must be in memory)
 303 }
 304 
 305 
 306 // ********** spill move optimization
 307 // eliminate moves from register to stack if stack slot is known to be correct
 308 
 309 // called during building of intervals
 310 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 311   assert(interval->is_split_parent(), "can only be called for split parents");
 312 
 313   switch (interval->spill_state()) {
 314     case noDefinitionFound:
 315       assert(interval->spill_definition_pos() == -1, "must no be set before");
 316       interval->set_spill_definition_pos(def_pos);
 317       interval->set_spill_state(oneDefinitionFound);
 318       break;
 319 
 320     case oneDefinitionFound:
 321       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 322       if (def_pos < interval->spill_definition_pos() - 2) {
 323         // second definition found, so no spill optimization possible for this interval
 324         interval->set_spill_state(noOptimization);
 325       } else {
 326         // two consecutive definitions (because of two-operand LIR form)
 327         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 328       }
 329       break;
 330 
 331     case noOptimization:
 332       // nothing to do
 333       break;
 334 
 335     default:
 336       assert(false, "other states not allowed at this time");
 337   }
 338 }
 339 
 340 // called during register allocation
 341 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 342   switch (interval->spill_state()) {
 343     case oneDefinitionFound: {
 344       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 345       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 346 
 347       if (def_loop_depth < spill_loop_depth) {
 348         // the loop depth of the spilling position is higher then the loop depth
 349         // at the definition of the interval -> move write to memory out of loop
 350         // by storing at definitin of the interval
 351         interval->set_spill_state(storeAtDefinition);
 352       } else {
 353         // the interval is currently spilled only once, so for now there is no
 354         // reason to store the interval at the definition
 355         interval->set_spill_state(oneMoveInserted);
 356       }
 357       break;
 358     }
 359 
 360     case oneMoveInserted: {
 361       // the interval is spilled more then once, so it is better to store it to
 362       // memory at the definition
 363       interval->set_spill_state(storeAtDefinition);
 364       break;
 365     }
 366 
 367     case storeAtDefinition:
 368     case startInMemory:
 369     case noOptimization:
 370     case noDefinitionFound:
 371       // nothing to do
 372       break;
 373 
 374     default:
 375       assert(false, "other states not allowed at this time");
 376   }
 377 }
 378 
 379 
 380 bool LinearScan::must_store_at_definition(const Interval* i) {
 381   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 382 }
 383 
 384 // called once before asignment of register numbers
 385 void LinearScan::eliminate_spill_moves() {
 386   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 387   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 388 
 389   // collect all intervals that must be stored after their definion.
 390   // the list is sorted by Interval::spill_definition_pos
 391   Interval* interval;
 392   Interval* temp_list;
 393   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 394 
 395 #ifdef ASSERT
 396   Interval* prev = NULL;
 397   Interval* temp = interval;
 398   while (temp != Interval::end()) {
 399     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 400     if (prev != NULL) {
 401       assert(temp->from() >= prev->from(), "intervals not sorted");
 402       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 403     }
 404 
 405     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 406     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 407     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 408 
 409     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 410 
 411     temp = temp->next();
 412   }
 413 #endif
 414 
 415   LIR_InsertionBuffer insertion_buffer;
 416   int num_blocks = block_count();
 417   for (int i = 0; i < num_blocks; i++) {
 418     BlockBegin* block = block_at(i);
 419     LIR_OpList* instructions = block->lir()->instructions_list();
 420     int         num_inst = instructions->length();
 421     bool        has_new = false;
 422 
 423     // iterate all instructions of the block. skip the first because it is always a label
 424     for (int j = 1; j < num_inst; j++) {
 425       LIR_Op* op = instructions->at(j);
 426       int op_id = op->id();
 427 
 428       if (op_id == -1) {
 429         // remove move from register to stack if the stack slot is guaranteed to be correct.
 430         // only moves that have been inserted by LinearScan can be removed.
 431         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 432         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 433         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 434 
 435         LIR_Op1* op1 = (LIR_Op1*)op;
 436         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 437 
 438         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 439           // move target is a stack slot that is always correct, so eliminate instruction
 440           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 441           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 442         }
 443 
 444       } else {
 445         // insert move from register to stack just after the beginning of the interval
 446         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 447         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 448 
 449         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 450           if (!has_new) {
 451             // prepare insertion buffer (appended when all instructions of the block are processed)
 452             insertion_buffer.init(block->lir());
 453             has_new = true;
 454           }
 455 
 456           LIR_Opr from_opr = operand_for_interval(interval);
 457           LIR_Opr to_opr = canonical_spill_opr(interval);
 458           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 459           assert(to_opr->is_stack(), "to operand must be a stack slot");
 460 
 461           insertion_buffer.move(j, from_opr, to_opr);
 462           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 463 
 464           interval = interval->next();
 465         }
 466       }
 467     } // end of instruction iteration
 468 
 469     if (has_new) {
 470       block->lir()->append(&insertion_buffer);
 471     }
 472   } // end of block iteration
 473 
 474   assert(interval == Interval::end(), "missed an interval");
 475 }
 476 
 477 
 478 // ********** Phase 1: number all instructions in all blocks
 479 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 480 
 481 void LinearScan::number_instructions() {
 482   {
 483     // dummy-timer to measure the cost of the timer itself
 484     // (this time is then subtracted from all other timers to get the real value)
 485     TIME_LINEAR_SCAN(timer_do_nothing);
 486   }
 487   TIME_LINEAR_SCAN(timer_number_instructions);
 488 
 489   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 490   int num_blocks = block_count();
 491   int num_instructions = 0;
 492   int i;
 493   for (i = 0; i < num_blocks; i++) {
 494     num_instructions += block_at(i)->lir()->instructions_list()->length();
 495   }
 496 
 497   // initialize with correct length
 498   _lir_ops = LIR_OpArray(num_instructions, num_instructions, NULL);
 499   _block_of_op = BlockBeginArray(num_instructions, num_instructions, NULL);
 500 
 501   int op_id = 0;
 502   int idx = 0;
 503 
 504   for (i = 0; i < num_blocks; i++) {
 505     BlockBegin* block = block_at(i);
 506     block->set_first_lir_instruction_id(op_id);
 507     LIR_OpList* instructions = block->lir()->instructions_list();
 508 
 509     int num_inst = instructions->length();
 510     for (int j = 0; j < num_inst; j++) {
 511       LIR_Op* op = instructions->at(j);
 512       op->set_id(op_id);
 513 
 514       _lir_ops.at_put(idx, op);
 515       _block_of_op.at_put(idx, block);
 516       assert(lir_op_with_id(op_id) == op, "must match");
 517 
 518       idx++;
 519       op_id += 2; // numbering of lir_ops by two
 520     }
 521     block->set_last_lir_instruction_id(op_id - 2);
 522   }
 523   assert(idx == num_instructions, "must match");
 524   assert(idx * 2 == op_id, "must match");
 525 
 526   _has_call = BitMap(num_instructions); _has_call.clear();
 527   _has_info = BitMap(num_instructions); _has_info.clear();
 528 }
 529 
 530 
 531 // ********** Phase 2: compute local live sets separately for each block
 532 // (sets live_gen and live_kill for each block)
 533 
 534 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 535   LIR_Opr opr = value->operand();
 536   Constant* con = value->as_Constant();
 537 
 538   // check some asumptions about debug information
 539   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 540   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 541   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 542 
 543   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 544     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 545     int reg = opr->vreg_number();
 546     if (!live_kill.at(reg)) {
 547       live_gen.set_bit(reg);
 548       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 549     }
 550   }
 551 }
 552 
 553 
 554 void LinearScan::compute_local_live_sets() {
 555   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 556 
 557   int  num_blocks = block_count();
 558   int  live_size = live_set_size();
 559   bool local_has_fpu_registers = false;
 560   int  local_num_calls = 0;
 561   LIR_OpVisitState visitor;
 562 
 563   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 564   local_interval_in_loop.clear();
 565 
 566   // iterate all blocks
 567   for (int i = 0; i < num_blocks; i++) {
 568     BlockBegin* block = block_at(i);
 569 
 570     BitMap live_gen(live_size);  live_gen.clear();
 571     BitMap live_kill(live_size); live_kill.clear();
 572 
 573     if (block->is_set(BlockBegin::exception_entry_flag)) {
 574       // Phi functions at the begin of an exception handler are
 575       // implicitly defined (= killed) at the beginning of the block.
 576       for_each_phi_fun(block, phi,
 577         live_kill.set_bit(phi->operand()->vreg_number())
 578       );
 579     }
 580 
 581     LIR_OpList* instructions = block->lir()->instructions_list();
 582     int num_inst = instructions->length();
 583 
 584     // iterate all instructions of the block. skip the first because it is always a label
 585     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 586     for (int j = 1; j < num_inst; j++) {
 587       LIR_Op* op = instructions->at(j);
 588 
 589       // visit operation to collect all operands
 590       visitor.visit(op);
 591 
 592       if (visitor.has_call()) {
 593         _has_call.set_bit(op->id() >> 1);
 594         local_num_calls++;
 595       }
 596       if (visitor.info_count() > 0) {
 597         _has_info.set_bit(op->id() >> 1);
 598       }
 599 
 600       // iterate input operands of instruction
 601       int k, n, reg;
 602       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 603       for (k = 0; k < n; k++) {
 604         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 605         assert(opr->is_register(), "visitor should only return register operands");
 606 
 607         if (opr->is_virtual_register()) {
 608           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 609           reg = opr->vreg_number();
 610           if (!live_kill.at(reg)) {
 611             live_gen.set_bit(reg);
 612             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 613           }
 614           if (block->loop_index() >= 0) {
 615             local_interval_in_loop.set_bit(reg, block->loop_index());
 616           }
 617           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 618         }
 619 
 620 #ifdef ASSERT
 621         // fixed intervals are never live at block boundaries, so
 622         // they need not be processed in live sets.
 623         // this is checked by these assertions to be sure about it.
 624         // the entry block may have incoming values in registers, which is ok.
 625         if (!opr->is_virtual_register() && block != ir()->start()) {
 626           reg = reg_num(opr);
 627           if (is_processed_reg_num(reg)) {
 628             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 629           }
 630           reg = reg_numHi(opr);
 631           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 632             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 633           }
 634         }
 635 #endif
 636       }
 637 
 638       // Add uses of live locals from interpreter's point of view for proper debug information generation
 639       n = visitor.info_count();
 640       for (k = 0; k < n; k++) {
 641         CodeEmitInfo* info = visitor.info_at(k);
 642         ValueStack* stack = info->stack();
 643         for_each_state_value(stack, value,
 644           set_live_gen_kill(value, op, live_gen, live_kill)
 645         );
 646       }
 647 
 648       // iterate temp operands of instruction
 649       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 650       for (k = 0; k < n; k++) {
 651         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 652         assert(opr->is_register(), "visitor should only return register operands");
 653 
 654         if (opr->is_virtual_register()) {
 655           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 656           reg = opr->vreg_number();
 657           live_kill.set_bit(reg);
 658           if (block->loop_index() >= 0) {
 659             local_interval_in_loop.set_bit(reg, block->loop_index());
 660           }
 661           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 662         }
 663 
 664 #ifdef ASSERT
 665         // fixed intervals are never live at block boundaries, so
 666         // they need not be processed in live sets
 667         // process them only in debug mode so that this can be checked
 668         if (!opr->is_virtual_register()) {
 669           reg = reg_num(opr);
 670           if (is_processed_reg_num(reg)) {
 671             live_kill.set_bit(reg_num(opr));
 672           }
 673           reg = reg_numHi(opr);
 674           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 675             live_kill.set_bit(reg);
 676           }
 677         }
 678 #endif
 679       }
 680 
 681       // iterate output operands of instruction
 682       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 683       for (k = 0; k < n; k++) {
 684         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 685         assert(opr->is_register(), "visitor should only return register operands");
 686 
 687         if (opr->is_virtual_register()) {
 688           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 689           reg = opr->vreg_number();
 690           live_kill.set_bit(reg);
 691           if (block->loop_index() >= 0) {
 692             local_interval_in_loop.set_bit(reg, block->loop_index());
 693           }
 694           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 695         }
 696 
 697 #ifdef ASSERT
 698         // fixed intervals are never live at block boundaries, so
 699         // they need not be processed in live sets
 700         // process them only in debug mode so that this can be checked
 701         if (!opr->is_virtual_register()) {
 702           reg = reg_num(opr);
 703           if (is_processed_reg_num(reg)) {
 704             live_kill.set_bit(reg_num(opr));
 705           }
 706           reg = reg_numHi(opr);
 707           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 708             live_kill.set_bit(reg);
 709           }
 710         }
 711 #endif
 712       }
 713     } // end of instruction iteration
 714 
 715     block->set_live_gen (live_gen);
 716     block->set_live_kill(live_kill);
 717     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
 718     block->set_live_out (BitMap(live_size)); block->live_out().clear();
 719 
 720     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 721     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 722   } // end of block iteration
 723 
 724   // propagate local calculated information into LinearScan object
 725   _has_fpu_registers = local_has_fpu_registers;
 726   compilation()->set_has_fpu_code(local_has_fpu_registers);
 727 
 728   _num_calls = local_num_calls;
 729   _interval_in_loop = local_interval_in_loop;
 730 }
 731 
 732 
 733 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 734 // (sets live_in and live_out for each block)
 735 
 736 void LinearScan::compute_global_live_sets() {
 737   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 738 
 739   int  num_blocks = block_count();
 740   bool change_occurred;
 741   bool change_occurred_in_block;
 742   int  iteration_count = 0;
 743   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
 744 
 745   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 746   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 747   // Exception handlers must be processed because not all live values are
 748   // present in the state array, e.g. because of global value numbering
 749   do {
 750     change_occurred = false;
 751 
 752     // iterate all blocks in reverse order
 753     for (int i = num_blocks - 1; i >= 0; i--) {
 754       BlockBegin* block = block_at(i);
 755 
 756       change_occurred_in_block = false;
 757 
 758       // live_out(block) is the union of live_in(sux), for successors sux of block
 759       int n = block->number_of_sux();
 760       int e = block->number_of_exception_handlers();
 761       if (n + e > 0) {
 762         // block has successors
 763         if (n > 0) {
 764           live_out.set_from(block->sux_at(0)->live_in());
 765           for (int j = 1; j < n; j++) {
 766             live_out.set_union(block->sux_at(j)->live_in());
 767           }
 768         } else {
 769           live_out.clear();
 770         }
 771         for (int j = 0; j < e; j++) {
 772           live_out.set_union(block->exception_handler_at(j)->live_in());
 773         }
 774 
 775         if (!block->live_out().is_same(live_out)) {
 776           // A change occurred.  Swap the old and new live out sets to avoid copying.
 777           BitMap temp = block->live_out();
 778           block->set_live_out(live_out);
 779           live_out = temp;
 780 
 781           change_occurred = true;
 782           change_occurred_in_block = true;
 783         }
 784       }
 785 
 786       if (iteration_count == 0 || change_occurred_in_block) {
 787         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 788         // note: live_in has to be computed only in first iteration or if live_out has changed!
 789         BitMap live_in = block->live_in();
 790         live_in.set_from(block->live_out());
 791         live_in.set_difference(block->live_kill());
 792         live_in.set_union(block->live_gen());
 793       }
 794 
 795 #ifndef PRODUCT
 796       if (TraceLinearScanLevel >= 4) {
 797         char c = ' ';
 798         if (iteration_count == 0 || change_occurred_in_block) {
 799           c = '*';
 800         }
 801         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 802         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 803       }
 804 #endif
 805     }
 806     iteration_count++;
 807 
 808     if (change_occurred && iteration_count > 50) {
 809       BAILOUT("too many iterations in compute_global_live_sets");
 810     }
 811   } while (change_occurred);
 812 
 813 
 814 #ifdef ASSERT
 815   // check that fixed intervals are not live at block boundaries
 816   // (live set must be empty at fixed intervals)
 817   for (int i = 0; i < num_blocks; i++) {
 818     BlockBegin* block = block_at(i);
 819     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 820       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 821       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 822       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 823     }
 824   }
 825 #endif
 826 
 827   // check that the live_in set of the first block is empty
 828   BitMap live_in_args(ir()->start()->live_in().size());
 829   live_in_args.clear();
 830   if (!ir()->start()->live_in().is_same(live_in_args)) {
 831 #ifdef ASSERT
 832     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 833     tty->print_cr("affected registers:");
 834     print_bitmap(ir()->start()->live_in());
 835 
 836     // print some additional information to simplify debugging
 837     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 838       if (ir()->start()->live_in().at(i)) {
 839         Instruction* instr = gen()->instruction_for_vreg(i);
 840         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 841 
 842         for (int j = 0; j < num_blocks; j++) {
 843           BlockBegin* block = block_at(j);
 844           if (block->live_gen().at(i)) {
 845             tty->print_cr("  used in block B%d", block->block_id());
 846           }
 847           if (block->live_kill().at(i)) {
 848             tty->print_cr("  defined in block B%d", block->block_id());
 849           }
 850         }
 851       }
 852     }
 853 
 854 #endif
 855     // when this fails, virtual registers are used before they are defined.
 856     assert(false, "live_in set of first block must be empty");
 857     // bailout of if this occurs in product mode.
 858     bailout("live_in set of first block not empty");
 859   }
 860 }
 861 
 862 
 863 // ********** Phase 4: build intervals
 864 // (fills the list _intervals)
 865 
 866 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 867   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 868   LIR_Opr opr = value->operand();
 869   Constant* con = value->as_Constant();
 870 
 871   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 872     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 873     add_use(opr, from, to, use_kind);
 874   }
 875 }
 876 
 877 
 878 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 879   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 880   assert(opr->is_register(), "should not be called otherwise");
 881 
 882   if (opr->is_virtual_register()) {
 883     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 884     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 885 
 886   } else {
 887     int reg = reg_num(opr);
 888     if (is_processed_reg_num(reg)) {
 889       add_def(reg, def_pos, use_kind, opr->type_register());
 890     }
 891     reg = reg_numHi(opr);
 892     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 893       add_def(reg, def_pos, use_kind, opr->type_register());
 894     }
 895   }
 896 }
 897 
 898 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 899   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 900   assert(opr->is_register(), "should not be called otherwise");
 901 
 902   if (opr->is_virtual_register()) {
 903     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 904     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 905 
 906   } else {
 907     int reg = reg_num(opr);
 908     if (is_processed_reg_num(reg)) {
 909       add_use(reg, from, to, use_kind, opr->type_register());
 910     }
 911     reg = reg_numHi(opr);
 912     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 913       add_use(reg, from, to, use_kind, opr->type_register());
 914     }
 915   }
 916 }
 917 
 918 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 919   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 920   assert(opr->is_register(), "should not be called otherwise");
 921 
 922   if (opr->is_virtual_register()) {
 923     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 924     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 925 
 926   } else {
 927     int reg = reg_num(opr);
 928     if (is_processed_reg_num(reg)) {
 929       add_temp(reg, temp_pos, use_kind, opr->type_register());
 930     }
 931     reg = reg_numHi(opr);
 932     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 933       add_temp(reg, temp_pos, use_kind, opr->type_register());
 934     }
 935   }
 936 }
 937 
 938 
 939 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 940   Interval* interval = interval_at(reg_num);
 941   if (interval != NULL) {
 942     assert(interval->reg_num() == reg_num, "wrong interval");
 943 
 944     if (type != T_ILLEGAL) {
 945       interval->set_type(type);
 946     }
 947 
 948     Range* r = interval->first();
 949     if (r->from() <= def_pos) {
 950       // Update the starting point (when a range is first created for a use, its
 951       // start is the beginning of the current block until a def is encountered.)
 952       r->set_from(def_pos);
 953       interval->add_use_pos(def_pos, use_kind);
 954 
 955     } else {
 956       // Dead value - make vacuous interval
 957       // also add use_kind for dead intervals
 958       interval->add_range(def_pos, def_pos + 1);
 959       interval->add_use_pos(def_pos, use_kind);
 960       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 961     }
 962 
 963   } else {
 964     // Dead value - make vacuous interval
 965     // also add use_kind for dead intervals
 966     interval = create_interval(reg_num);
 967     if (type != T_ILLEGAL) {
 968       interval->set_type(type);
 969     }
 970 
 971     interval->add_range(def_pos, def_pos + 1);
 972     interval->add_use_pos(def_pos, use_kind);
 973     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 974   }
 975 
 976   change_spill_definition_pos(interval, def_pos);
 977   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 978         // detection of method-parameters and roundfp-results
 979         // TODO: move this directly to position where use-kind is computed
 980     interval->set_spill_state(startInMemory);
 981   }
 982 }
 983 
 984 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
 985   Interval* interval = interval_at(reg_num);
 986   if (interval == NULL) {
 987     interval = create_interval(reg_num);
 988   }
 989   assert(interval->reg_num() == reg_num, "wrong interval");
 990 
 991   if (type != T_ILLEGAL) {
 992     interval->set_type(type);
 993   }
 994 
 995   interval->add_range(from, to);
 996   interval->add_use_pos(to, use_kind);
 997 }
 998 
 999 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1000   Interval* interval = interval_at(reg_num);
1001   if (interval == NULL) {
1002     interval = create_interval(reg_num);
1003   }
1004   assert(interval->reg_num() == reg_num, "wrong interval");
1005 
1006   if (type != T_ILLEGAL) {
1007     interval->set_type(type);
1008   }
1009 
1010   interval->add_range(temp_pos, temp_pos + 1);
1011   interval->add_use_pos(temp_pos, use_kind);
1012 }
1013 
1014 
1015 // the results of this functions are used for optimizing spilling and reloading
1016 // if the functions return shouldHaveRegister and the interval is spilled,
1017 // it is not reloaded to a register.
1018 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1019   if (op->code() == lir_move) {
1020     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1021     LIR_Op1* move = (LIR_Op1*)op;
1022     LIR_Opr res = move->result_opr();
1023     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1024 
1025     if (result_in_memory) {
1026       // Begin of an interval with must_start_in_memory set.
1027       // This interval will always get a stack slot first, so return noUse.
1028       return noUse;
1029 
1030     } else if (move->in_opr()->is_stack()) {
1031       // method argument (condition must be equal to handle_method_arguments)
1032       return noUse;
1033 
1034     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1035       // Move from register to register
1036       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1037         // special handling of phi-function moves inside osr-entry blocks
1038         // input operand must have a register instead of output operand (leads to better register allocation)
1039         return shouldHaveRegister;
1040       }
1041     }
1042   }
1043 
1044   if (opr->is_virtual() &&
1045       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1046     // result is a stack-slot, so prevent immediate reloading
1047     return noUse;
1048   }
1049 
1050   // all other operands require a register
1051   return mustHaveRegister;
1052 }
1053 
1054 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1055   if (op->code() == lir_move) {
1056     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1057     LIR_Op1* move = (LIR_Op1*)op;
1058     LIR_Opr res = move->result_opr();
1059     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1060 
1061     if (result_in_memory) {
1062       // Move to an interval with must_start_in_memory set.
1063       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1064       return mustHaveRegister;
1065 
1066     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1067       // Move from register to register
1068       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1069         // special handling of phi-function moves inside osr-entry blocks
1070         // input operand must have a register instead of output operand (leads to better register allocation)
1071         return mustHaveRegister;
1072       }
1073 
1074       // The input operand is not forced to a register (moves from stack to register are allowed),
1075       // but it is faster if the input operand is in a register
1076       return shouldHaveRegister;
1077     }
1078   }
1079 
1080 
1081 #ifdef X86
1082   if (op->code() == lir_cmove) {
1083     // conditional moves can handle stack operands
1084     assert(op->result_opr()->is_register(), "result must always be in a register");
1085     return shouldHaveRegister;
1086   }
1087 
1088   // optimizations for second input operand of arithmehtic operations on Intel
1089   // this operand is allowed to be on the stack in some cases
1090   BasicType opr_type = opr->type_register();
1091   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1092     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1093       // SSE float instruction (T_DOUBLE only supported with SSE2)
1094       switch (op->code()) {
1095         case lir_cmp:
1096         case lir_add:
1097         case lir_sub:
1098         case lir_mul:
1099         case lir_div:
1100         {
1101           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1102           LIR_Op2* op2 = (LIR_Op2*)op;
1103           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1104             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1105             return shouldHaveRegister;
1106           }
1107         }
1108       }
1109     } else {
1110       // FPU stack float instruction
1111       switch (op->code()) {
1112         case lir_add:
1113         case lir_sub:
1114         case lir_mul:
1115         case lir_div:
1116         {
1117           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1118           LIR_Op2* op2 = (LIR_Op2*)op;
1119           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1120             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1121             return shouldHaveRegister;
1122           }
1123         }
1124       }
1125     }
1126     // We want to sometimes use logical operations on pointers, in particular in GC barriers.
1127     // Since 64bit logical operations do not current support operands on stack, we have to make sure
1128     // T_OBJECT doesn't get spilled along with T_LONG.
1129   } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
1130     // integer instruction (note: long operands must always be in register)
1131     switch (op->code()) {
1132       case lir_cmp:
1133       case lir_add:
1134       case lir_sub:
1135       case lir_logic_and:
1136       case lir_logic_or:
1137       case lir_logic_xor:
1138       {
1139         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1140         LIR_Op2* op2 = (LIR_Op2*)op;
1141         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1142           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1143           return shouldHaveRegister;
1144         }
1145       }
1146     }
1147   }
1148 #endif // X86
1149 
1150   // all other operands require a register
1151   return mustHaveRegister;
1152 }
1153 
1154 
1155 void LinearScan::handle_method_arguments(LIR_Op* op) {
1156   // special handling for method arguments (moves from stack to virtual register):
1157   // the interval gets no register assigned, but the stack slot.
1158   // it is split before the first use by the register allocator.
1159 
1160   if (op->code() == lir_move) {
1161     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1162     LIR_Op1* move = (LIR_Op1*)op;
1163 
1164     if (move->in_opr()->is_stack()) {
1165 #ifdef ASSERT
1166       int arg_size = compilation()->method()->arg_size();
1167       LIR_Opr o = move->in_opr();
1168       if (o->is_single_stack()) {
1169         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1170       } else if (o->is_double_stack()) {
1171         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1172       } else {
1173         ShouldNotReachHere();
1174       }
1175 
1176       assert(move->id() > 0, "invalid id");
1177       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1178       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1179 
1180       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1181 #endif
1182 
1183       Interval* interval = interval_at(reg_num(move->result_opr()));
1184 
1185       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1186       interval->set_canonical_spill_slot(stack_slot);
1187       interval->assign_reg(stack_slot);
1188     }
1189   }
1190 }
1191 
1192 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1193   // special handling for doubleword move from memory to register:
1194   // in this case the registers of the input address and the result
1195   // registers must not overlap -> add a temp range for the input registers
1196   if (op->code() == lir_move) {
1197     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1198     LIR_Op1* move = (LIR_Op1*)op;
1199 
1200     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1201       LIR_Address* address = move->in_opr()->as_address_ptr();
1202       if (address != NULL) {
1203         if (address->base()->is_valid()) {
1204           add_temp(address->base(), op->id(), noUse);
1205         }
1206         if (address->index()->is_valid()) {
1207           add_temp(address->index(), op->id(), noUse);
1208         }
1209       }
1210     }
1211   }
1212 }
1213 
1214 void LinearScan::add_register_hints(LIR_Op* op) {
1215   switch (op->code()) {
1216     case lir_move:      // fall through
1217     case lir_convert: {
1218       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1219       LIR_Op1* move = (LIR_Op1*)op;
1220 
1221       LIR_Opr move_from = move->in_opr();
1222       LIR_Opr move_to = move->result_opr();
1223 
1224       if (move_to->is_register() && move_from->is_register()) {
1225         Interval* from = interval_at(reg_num(move_from));
1226         Interval* to = interval_at(reg_num(move_to));
1227         if (from != NULL && to != NULL) {
1228           to->set_register_hint(from);
1229           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1230         }
1231       }
1232       break;
1233     }
1234     case lir_cmove: {
1235       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1236       LIR_Op2* cmove = (LIR_Op2*)op;
1237 
1238       LIR_Opr move_from = cmove->in_opr1();
1239       LIR_Opr move_to = cmove->result_opr();
1240 
1241       if (move_to->is_register() && move_from->is_register()) {
1242         Interval* from = interval_at(reg_num(move_from));
1243         Interval* to = interval_at(reg_num(move_to));
1244         if (from != NULL && to != NULL) {
1245           to->set_register_hint(from);
1246           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1247         }
1248       }
1249       break;
1250     }
1251   }
1252 }
1253 
1254 
1255 void LinearScan::build_intervals() {
1256   TIME_LINEAR_SCAN(timer_build_intervals);
1257 
1258   // initialize interval list with expected number of intervals
1259   // (32 is added to have some space for split children without having to resize the list)
1260   _intervals = IntervalList(num_virtual_regs() + 32);
1261   // initialize all slots that are used by build_intervals
1262   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1263 
1264   // create a list with all caller-save registers (cpu, fpu, xmm)
1265   // when an instruction is a call, a temp range is created for all these registers
1266   int num_caller_save_registers = 0;
1267   int caller_save_registers[LinearScan::nof_regs];
1268 
1269   int i;
1270   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1271     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1272     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1273     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1274     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1275   }
1276 
1277   // temp ranges for fpu registers are only created when the method has
1278   // virtual fpu operands. Otherwise no allocation for fpu registers is
1279   // perfomed and so the temp ranges would be useless
1280   if (has_fpu_registers()) {
1281 #ifdef X86
1282     if (UseSSE < 2) {
1283 #endif
1284       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1285         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1286         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1287         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1288         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1289       }
1290 #ifdef X86
1291     }
1292     if (UseSSE > 0) {
1293       int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms();
1294       for (i = 0; i < num_caller_save_xmm_regs; i ++) {
1295         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1296         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1297         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1298         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1299       }
1300     }
1301 #endif
1302   }
1303   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1304 
1305 
1306   LIR_OpVisitState visitor;
1307 
1308   // iterate all blocks in reverse order
1309   for (i = block_count() - 1; i >= 0; i--) {
1310     BlockBegin* block = block_at(i);
1311     LIR_OpList* instructions = block->lir()->instructions_list();
1312     int         block_from =   block->first_lir_instruction_id();
1313     int         block_to =     block->last_lir_instruction_id();
1314 
1315     assert(block_from == instructions->at(0)->id(), "must be");
1316     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1317 
1318     // Update intervals for registers live at the end of this block;
1319     BitMap live = block->live_out();
1320     int size = (int)live.size();
1321     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1322       assert(live.at(number), "should not stop here otherwise");
1323       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1324       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1325 
1326       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1327 
1328       // add special use positions for loop-end blocks when the
1329       // interval is used anywhere inside this loop.  It's possible
1330       // that the block was part of a non-natural loop, so it might
1331       // have an invalid loop index.
1332       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1333           block->loop_index() != -1 &&
1334           is_interval_in_loop(number, block->loop_index())) {
1335         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1336       }
1337     }
1338 
1339     // iterate all instructions of the block in reverse order.
1340     // skip the first instruction because it is always a label
1341     // definitions of intervals are processed before uses
1342     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1343     for (int j = instructions->length() - 1; j >= 1; j--) {
1344       LIR_Op* op = instructions->at(j);
1345       int op_id = op->id();
1346 
1347       // visit operation to collect all operands
1348       visitor.visit(op);
1349 
1350       // add a temp range for each register if operation destroys caller-save registers
1351       if (visitor.has_call()) {
1352         for (int k = 0; k < num_caller_save_registers; k++) {
1353           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1354         }
1355         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1356       }
1357 
1358       // Add any platform dependent temps
1359       pd_add_temps(op);
1360 
1361       // visit definitions (output and temp operands)
1362       int k, n;
1363       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1364       for (k = 0; k < n; k++) {
1365         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1366         assert(opr->is_register(), "visitor should only return register operands");
1367         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1368       }
1369 
1370       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1371       for (k = 0; k < n; k++) {
1372         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1373         assert(opr->is_register(), "visitor should only return register operands");
1374         add_temp(opr, op_id, mustHaveRegister);
1375       }
1376 
1377       // visit uses (input operands)
1378       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1379       for (k = 0; k < n; k++) {
1380         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1381         assert(opr->is_register(), "visitor should only return register operands");
1382         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1383       }
1384 
1385       // Add uses of live locals from interpreter's point of view for proper
1386       // debug information generation
1387       // Treat these operands as temp values (if the life range is extended
1388       // to a call site, the value would be in a register at the call otherwise)
1389       n = visitor.info_count();
1390       for (k = 0; k < n; k++) {
1391         CodeEmitInfo* info = visitor.info_at(k);
1392         ValueStack* stack = info->stack();
1393         for_each_state_value(stack, value,
1394           add_use(value, block_from, op_id + 1, noUse);
1395         );
1396       }
1397 
1398       // special steps for some instructions (especially moves)
1399       handle_method_arguments(op);
1400       handle_doubleword_moves(op);
1401       add_register_hints(op);
1402 
1403     } // end of instruction iteration
1404   } // end of block iteration
1405 
1406 
1407   // add the range [0, 1[ to all fixed intervals
1408   // -> the register allocator need not handle unhandled fixed intervals
1409   for (int n = 0; n < LinearScan::nof_regs; n++) {
1410     Interval* interval = interval_at(n);
1411     if (interval != NULL) {
1412       interval->add_range(0, 1);
1413     }
1414   }
1415 }
1416 
1417 
1418 // ********** Phase 5: actual register allocation
1419 
1420 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1421   if (*a != NULL) {
1422     if (*b != NULL) {
1423       return (*a)->from() - (*b)->from();
1424     } else {
1425       return -1;
1426     }
1427   } else {
1428     if (*b != NULL) {
1429       return 1;
1430     } else {
1431       return 0;
1432     }
1433   }
1434 }
1435 
1436 #ifndef PRODUCT
1437 int interval_cmp(Interval* const& l, Interval* const& r) {
1438   return l->from() - r->from();
1439 }
1440 
1441 bool find_interval(Interval* interval, IntervalArray* intervals) {
1442   bool found;
1443   int idx = intervals->find_sorted<Interval*, interval_cmp>(interval, found);
1444 
1445   if (!found) {
1446     return false;
1447   }
1448 
1449   int from = interval->from();
1450 
1451   // The index we've found using binary search is pointing to an interval
1452   // that is defined in the same place as the interval we were looking for.
1453   // So now we have to look around that index and find exact interval.
1454   for (int i = idx; i >= 0; i--) {
1455     if (intervals->at(i) == interval) {
1456       return true;
1457     }
1458     if (intervals->at(i)->from() != from) {
1459       break;
1460     }
1461   }
1462 
1463   for (int i = idx + 1; i < intervals->length(); i++) {
1464     if (intervals->at(i) == interval) {
1465       return true;
1466     }
1467     if (intervals->at(i)->from() != from) {
1468       break;
1469     }
1470   }
1471 
1472   return false;
1473 }
1474 
1475 bool LinearScan::is_sorted(IntervalArray* intervals) {
1476   int from = -1;
1477   int null_count = 0;
1478 
1479   for (int i = 0; i < intervals->length(); i++) {
1480     Interval* it = intervals->at(i);
1481     if (it != NULL) {
1482       assert(from <= it->from(), "Intervals are unordered");
1483       from = it->from();
1484     } else {
1485       null_count++;
1486     }
1487   }
1488 
1489   assert(null_count == 0, "Sorted intervals should not contain nulls");
1490 
1491   null_count = 0;
1492 
1493   for (int i = 0; i < interval_count(); i++) {
1494     Interval* interval = interval_at(i);
1495     if (interval != NULL) {
1496       assert(find_interval(interval, intervals), "Lists do not contain same intervals");
1497     } else {
1498       null_count++;
1499     }
1500   }
1501 
1502   assert(interval_count() - null_count == intervals->length(),
1503       "Sorted list should contain the same amount of non-NULL intervals as unsorted list");
1504 
1505   return true;
1506 }
1507 #endif
1508 
1509 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1510   if (*prev != NULL) {
1511     (*prev)->set_next(interval);
1512   } else {
1513     *first = interval;
1514   }
1515   *prev = interval;
1516 }
1517 
1518 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1519   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1520 
1521   *list1 = *list2 = Interval::end();
1522 
1523   Interval* list1_prev = NULL;
1524   Interval* list2_prev = NULL;
1525   Interval* v;
1526 
1527   const int n = _sorted_intervals->length();
1528   for (int i = 0; i < n; i++) {
1529     v = _sorted_intervals->at(i);
1530     if (v == NULL) continue;
1531 
1532     if (is_list1(v)) {
1533       add_to_list(list1, &list1_prev, v);
1534     } else if (is_list2 == NULL || is_list2(v)) {
1535       add_to_list(list2, &list2_prev, v);
1536     }
1537   }
1538 
1539   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1540   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1541 
1542   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1543   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1544 }
1545 
1546 
1547 void LinearScan::sort_intervals_before_allocation() {
1548   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1549 
1550   if (_needs_full_resort) {
1551     // There is no known reason why this should occur but just in case...
1552     assert(false, "should never occur");
1553     // Re-sort existing interval list because an Interval::from() has changed
1554     _sorted_intervals->sort(interval_cmp);
1555     _needs_full_resort = false;
1556   }
1557 
1558   IntervalList* unsorted_list = &_intervals;
1559   int unsorted_len = unsorted_list->length();
1560   int sorted_len = 0;
1561   int unsorted_idx;
1562   int sorted_idx = 0;
1563   int sorted_from_max = -1;
1564 
1565   // calc number of items for sorted list (sorted list must not contain NULL values)
1566   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1567     if (unsorted_list->at(unsorted_idx) != NULL) {
1568       sorted_len++;
1569     }
1570   }
1571   IntervalArray* sorted_list = new IntervalArray(sorted_len, sorted_len, NULL);
1572 
1573   // special sorting algorithm: the original interval-list is almost sorted,
1574   // only some intervals are swapped. So this is much faster than a complete QuickSort
1575   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1576     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1577 
1578     if (cur_interval != NULL) {
1579       int cur_from = cur_interval->from();
1580 
1581       if (sorted_from_max <= cur_from) {
1582         sorted_list->at_put(sorted_idx++, cur_interval);
1583         sorted_from_max = cur_interval->from();
1584       } else {
1585         // the asumption that the intervals are already sorted failed,
1586         // so this interval must be sorted in manually
1587         int j;
1588         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1589           sorted_list->at_put(j + 1, sorted_list->at(j));
1590         }
1591         sorted_list->at_put(j + 1, cur_interval);
1592         sorted_idx++;
1593       }
1594     }
1595   }
1596   _sorted_intervals = sorted_list;
1597   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1598 }
1599 
1600 void LinearScan::sort_intervals_after_allocation() {
1601   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1602 
1603   if (_needs_full_resort) {
1604     // Re-sort existing interval list because an Interval::from() has changed
1605     _sorted_intervals->sort(interval_cmp);
1606     _needs_full_resort = false;
1607   }
1608 
1609   IntervalArray* old_list = _sorted_intervals;
1610   IntervalList* new_list = _new_intervals_from_allocation;
1611   int old_len = old_list->length();
1612   int new_len = new_list->length();
1613 
1614   if (new_len == 0) {
1615     // no intervals have been added during allocation, so sorted list is already up to date
1616     assert(is_sorted(_sorted_intervals), "intervals unsorted");
1617     return;
1618   }
1619 
1620   // conventional sort-algorithm for new intervals
1621   new_list->sort(interval_cmp);
1622 
1623   // merge old and new list (both already sorted) into one combined list
1624   int combined_list_len = old_len + new_len;
1625   IntervalArray* combined_list = new IntervalArray(combined_list_len, combined_list_len, NULL);
1626   int old_idx = 0;
1627   int new_idx = 0;
1628 
1629   while (old_idx + new_idx < old_len + new_len) {
1630     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1631       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1632       old_idx++;
1633     } else {
1634       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1635       new_idx++;
1636     }
1637   }
1638 
1639   _sorted_intervals = combined_list;
1640   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1641 }
1642 
1643 
1644 void LinearScan::allocate_registers() {
1645   TIME_LINEAR_SCAN(timer_allocate_registers);
1646 
1647   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1648   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1649 
1650   // allocate cpu registers
1651   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals,
1652                          is_precolored_cpu_interval, is_virtual_cpu_interval);
1653 
1654   // allocate fpu registers
1655   create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals,
1656                          is_precolored_fpu_interval, is_virtual_fpu_interval);
1657 
1658   // the fpu interval allocation cannot be moved down below with the fpu section as
1659   // the cpu_lsw.walk() changes interval positions.
1660 
1661   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1662   cpu_lsw.walk();
1663   cpu_lsw.finish_allocation();
1664 
1665   if (has_fpu_registers()) {
1666     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1667     fpu_lsw.walk();
1668     fpu_lsw.finish_allocation();
1669   }
1670 }
1671 
1672 
1673 // ********** Phase 6: resolve data flow
1674 // (insert moves at edges between blocks if intervals have been split)
1675 
1676 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1677 // instead of returning NULL
1678 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1679   Interval* result = interval->split_child_at_op_id(op_id, mode);
1680   if (result != NULL) {
1681     return result;
1682   }
1683 
1684   assert(false, "must find an interval, but do a clean bailout in product mode");
1685   result = new Interval(LIR_OprDesc::vreg_base);
1686   result->assign_reg(0);
1687   result->set_type(T_INT);
1688   BAILOUT_("LinearScan: interval is NULL", result);
1689 }
1690 
1691 
1692 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1693   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1694   assert(interval_at(reg_num) != NULL, "no interval found");
1695 
1696   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1697 }
1698 
1699 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1700   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1701   assert(interval_at(reg_num) != NULL, "no interval found");
1702 
1703   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1704 }
1705 
1706 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1707   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1708   assert(interval_at(reg_num) != NULL, "no interval found");
1709 
1710   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1711 }
1712 
1713 
1714 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1715   DEBUG_ONLY(move_resolver.check_empty());
1716 
1717   const int num_regs = num_virtual_regs();
1718   const int size = live_set_size();
1719   const BitMap live_at_edge = to_block->live_in();
1720 
1721   // visit all registers where the live_at_edge bit is set
1722   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1723     assert(r < num_regs, "live information set for not exisiting interval");
1724     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1725 
1726     Interval* from_interval = interval_at_block_end(from_block, r);
1727     Interval* to_interval = interval_at_block_begin(to_block, r);
1728 
1729     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1730       // need to insert move instruction
1731       move_resolver.add_mapping(from_interval, to_interval);
1732     }
1733   }
1734 }
1735 
1736 
1737 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1738   if (from_block->number_of_sux() <= 1) {
1739     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1740 
1741     LIR_OpList* instructions = from_block->lir()->instructions_list();
1742     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1743     if (branch != NULL) {
1744       // insert moves before branch
1745       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1746       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1747     } else {
1748       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1749     }
1750 
1751   } else {
1752     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1753 #ifdef ASSERT
1754     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1755 
1756     // because the number of predecessor edges matches the number of
1757     // successor edges, blocks which are reached by switch statements
1758     // may have be more than one predecessor but it will be guaranteed
1759     // that all predecessors will be the same.
1760     for (int i = 0; i < to_block->number_of_preds(); i++) {
1761       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1762     }
1763 #endif
1764 
1765     move_resolver.set_insert_position(to_block->lir(), 0);
1766   }
1767 }
1768 
1769 
1770 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1771 void LinearScan::resolve_data_flow() {
1772   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1773 
1774   int num_blocks = block_count();
1775   MoveResolver move_resolver(this);
1776   BitMap block_completed(num_blocks);  block_completed.clear();
1777   BitMap already_resolved(num_blocks); already_resolved.clear();
1778 
1779   int i;
1780   for (i = 0; i < num_blocks; i++) {
1781     BlockBegin* block = block_at(i);
1782 
1783     // check if block has only one predecessor and only one successor
1784     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1785       LIR_OpList* instructions = block->lir()->instructions_list();
1786       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1787       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1788       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1789 
1790       // check if block is empty (only label and branch)
1791       if (instructions->length() == 2) {
1792         BlockBegin* pred = block->pred_at(0);
1793         BlockBegin* sux = block->sux_at(0);
1794 
1795         // prevent optimization of two consecutive blocks
1796         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1797           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1798           block_completed.set_bit(block->linear_scan_number());
1799 
1800           // directly resolve between pred and sux (without looking at the empty block between)
1801           resolve_collect_mappings(pred, sux, move_resolver);
1802           if (move_resolver.has_mappings()) {
1803             move_resolver.set_insert_position(block->lir(), 0);
1804             move_resolver.resolve_and_append_moves();
1805           }
1806         }
1807       }
1808     }
1809   }
1810 
1811 
1812   for (i = 0; i < num_blocks; i++) {
1813     if (!block_completed.at(i)) {
1814       BlockBegin* from_block = block_at(i);
1815       already_resolved.set_from(block_completed);
1816 
1817       int num_sux = from_block->number_of_sux();
1818       for (int s = 0; s < num_sux; s++) {
1819         BlockBegin* to_block = from_block->sux_at(s);
1820 
1821         // check for duplicate edges between the same blocks (can happen with switch blocks)
1822         if (!already_resolved.at(to_block->linear_scan_number())) {
1823           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1824           already_resolved.set_bit(to_block->linear_scan_number());
1825 
1826           // collect all intervals that have been split between from_block and to_block
1827           resolve_collect_mappings(from_block, to_block, move_resolver);
1828           if (move_resolver.has_mappings()) {
1829             resolve_find_insert_pos(from_block, to_block, move_resolver);
1830             move_resolver.resolve_and_append_moves();
1831           }
1832         }
1833       }
1834     }
1835   }
1836 }
1837 
1838 
1839 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1840   if (interval_at(reg_num) == NULL) {
1841     // if a phi function is never used, no interval is created -> ignore this
1842     return;
1843   }
1844 
1845   Interval* interval = interval_at_block_begin(block, reg_num);
1846   int reg = interval->assigned_reg();
1847   int regHi = interval->assigned_regHi();
1848 
1849   if ((reg < nof_regs && interval->always_in_memory()) ||
1850       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1851     // the interval is split to get a short range that is located on the stack
1852     // in the following two cases:
1853     // * the interval started in memory (e.g. method parameter), but is currently in a register
1854     //   this is an optimization for exception handling that reduces the number of moves that
1855     //   are necessary for resolving the states when an exception uses this exception handler
1856     // * the interval would be on the fpu stack at the begin of the exception handler
1857     //   this is not allowed because of the complicated fpu stack handling on Intel
1858 
1859     // range that will be spilled to memory
1860     int from_op_id = block->first_lir_instruction_id();
1861     int to_op_id = from_op_id + 1;  // short live range of length 1
1862     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1863            "no split allowed between exception entry and first instruction");
1864 
1865     if (interval->from() != from_op_id) {
1866       // the part before from_op_id is unchanged
1867       interval = interval->split(from_op_id);
1868       interval->assign_reg(reg, regHi);
1869       append_interval(interval);
1870     } else {
1871       _needs_full_resort = true;
1872     }
1873     assert(interval->from() == from_op_id, "must be true now");
1874 
1875     Interval* spilled_part = interval;
1876     if (interval->to() != to_op_id) {
1877       // the part after to_op_id is unchanged
1878       spilled_part = interval->split_from_start(to_op_id);
1879       append_interval(spilled_part);
1880       move_resolver.add_mapping(spilled_part, interval);
1881     }
1882     assign_spill_slot(spilled_part);
1883 
1884     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1885   }
1886 }
1887 
1888 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1889   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1890   DEBUG_ONLY(move_resolver.check_empty());
1891 
1892   // visit all registers where the live_in bit is set
1893   int size = live_set_size();
1894   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1895     resolve_exception_entry(block, r, move_resolver);
1896   }
1897 
1898   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1899   for_each_phi_fun(block, phi,
1900     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1901   );
1902 
1903   if (move_resolver.has_mappings()) {
1904     // insert moves after first instruction
1905     move_resolver.set_insert_position(block->lir(), 0);
1906     move_resolver.resolve_and_append_moves();
1907   }
1908 }
1909 
1910 
1911 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1912   if (interval_at(reg_num) == NULL) {
1913     // if a phi function is never used, no interval is created -> ignore this
1914     return;
1915   }
1916 
1917   // the computation of to_interval is equal to resolve_collect_mappings,
1918   // but from_interval is more complicated because of phi functions
1919   BlockBegin* to_block = handler->entry_block();
1920   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1921 
1922   if (phi != NULL) {
1923     // phi function of the exception entry block
1924     // no moves are created for this phi function in the LIR_Generator, so the
1925     // interval at the throwing instruction must be searched using the operands
1926     // of the phi function
1927     Value from_value = phi->operand_at(handler->phi_operand());
1928 
1929     // with phi functions it can happen that the same from_value is used in
1930     // multiple mappings, so notify move-resolver that this is allowed
1931     move_resolver.set_multiple_reads_allowed();
1932 
1933     Constant* con = from_value->as_Constant();
1934     if (con != NULL && !con->is_pinned()) {
1935       // unpinned constants may have no register, so add mapping from constant to interval
1936       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1937     } else {
1938       // search split child at the throwing op_id
1939       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1940       move_resolver.add_mapping(from_interval, to_interval);
1941     }
1942 
1943   } else {
1944     // no phi function, so use reg_num also for from_interval
1945     // search split child at the throwing op_id
1946     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1947     if (from_interval != to_interval) {
1948       // optimization to reduce number of moves: when to_interval is on stack and
1949       // the stack slot is known to be always correct, then no move is necessary
1950       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1951         move_resolver.add_mapping(from_interval, to_interval);
1952       }
1953     }
1954   }
1955 }
1956 
1957 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1958   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1959 
1960   DEBUG_ONLY(move_resolver.check_empty());
1961   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1962   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1963   assert(handler->entry_code() == NULL, "code already present");
1964 
1965   // visit all registers where the live_in bit is set
1966   BlockBegin* block = handler->entry_block();
1967   int size = live_set_size();
1968   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1969     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1970   }
1971 
1972   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1973   for_each_phi_fun(block, phi,
1974     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1975   );
1976 
1977   if (move_resolver.has_mappings()) {
1978     LIR_List* entry_code = new LIR_List(compilation());
1979     move_resolver.set_insert_position(entry_code, 0);
1980     move_resolver.resolve_and_append_moves();
1981 
1982     entry_code->jump(handler->entry_block());
1983     handler->set_entry_code(entry_code);
1984   }
1985 }
1986 
1987 
1988 void LinearScan::resolve_exception_handlers() {
1989   MoveResolver move_resolver(this);
1990   LIR_OpVisitState visitor;
1991   int num_blocks = block_count();
1992 
1993   int i;
1994   for (i = 0; i < num_blocks; i++) {
1995     BlockBegin* block = block_at(i);
1996     if (block->is_set(BlockBegin::exception_entry_flag)) {
1997       resolve_exception_entry(block, move_resolver);
1998     }
1999   }
2000 
2001   for (i = 0; i < num_blocks; i++) {
2002     BlockBegin* block = block_at(i);
2003     LIR_List* ops = block->lir();
2004     int num_ops = ops->length();
2005 
2006     // iterate all instructions of the block. skip the first because it is always a label
2007     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
2008     for (int j = 1; j < num_ops; j++) {
2009       LIR_Op* op = ops->at(j);
2010       int op_id = op->id();
2011 
2012       if (op_id != -1 && has_info(op_id)) {
2013         // visit operation to collect all operands
2014         visitor.visit(op);
2015         assert(visitor.info_count() > 0, "should not visit otherwise");
2016 
2017         XHandlers* xhandlers = visitor.all_xhandler();
2018         int n = xhandlers->length();
2019         for (int k = 0; k < n; k++) {
2020           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2021         }
2022 
2023 #ifdef ASSERT
2024       } else {
2025         visitor.visit(op);
2026         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2027 #endif
2028       }
2029     }
2030   }
2031 }
2032 
2033 
2034 // ********** Phase 7: assign register numbers back to LIR
2035 // (includes computation of debug information and oop maps)
2036 
2037 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2038   VMReg reg = interval->cached_vm_reg();
2039   if (!reg->is_valid() ) {
2040     reg = vm_reg_for_operand(operand_for_interval(interval));
2041     interval->set_cached_vm_reg(reg);
2042   }
2043   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2044   return reg;
2045 }
2046 
2047 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2048   assert(opr->is_oop(), "currently only implemented for oop operands");
2049   return frame_map()->regname(opr);
2050 }
2051 
2052 
2053 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2054   LIR_Opr opr = interval->cached_opr();
2055   if (opr->is_illegal()) {
2056     opr = calc_operand_for_interval(interval);
2057     interval->set_cached_opr(opr);
2058   }
2059 
2060   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2061   return opr;
2062 }
2063 
2064 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2065   int assigned_reg = interval->assigned_reg();
2066   BasicType type = interval->type();
2067 
2068   if (assigned_reg >= nof_regs) {
2069     // stack slot
2070     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2071     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2072 
2073   } else {
2074     // register
2075     switch (type) {
2076       case T_OBJECT: {
2077         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2078         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2079         return LIR_OprFact::single_cpu_oop(assigned_reg);
2080       }
2081 
2082       case T_ADDRESS: {
2083         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2084         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2085         return LIR_OprFact::single_cpu_address(assigned_reg);
2086       }
2087 
2088       case T_METADATA: {
2089         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2090         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2091         return LIR_OprFact::single_cpu_metadata(assigned_reg);
2092       }
2093 
2094 #ifdef __SOFTFP__
2095       case T_FLOAT:  // fall through
2096 #endif // __SOFTFP__
2097       case T_INT: {
2098         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2099         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2100         return LIR_OprFact::single_cpu(assigned_reg);
2101       }
2102 
2103 #ifdef __SOFTFP__
2104       case T_DOUBLE:  // fall through
2105 #endif // __SOFTFP__
2106       case T_LONG: {
2107         int assigned_regHi = interval->assigned_regHi();
2108         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2109         assert(num_physical_regs(T_LONG) == 1 ||
2110                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2111 
2112         assert(assigned_reg != assigned_regHi, "invalid allocation");
2113         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2114                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2115         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2116         if (requires_adjacent_regs(T_LONG)) {
2117           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2118         }
2119 
2120 #ifdef _LP64
2121         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2122 #else
2123 #if defined(SPARC) || defined(PPC32)
2124         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2125 #else
2126         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2127 #endif // SPARC
2128 #endif // LP64
2129       }
2130 
2131 #ifndef __SOFTFP__
2132       case T_FLOAT: {
2133 #ifdef X86
2134         if (UseSSE >= 1) {
2135           int last_xmm_reg = pd_last_xmm_reg;
2136 #ifdef _LP64
2137           if (UseAVX < 3) {
2138             last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2139           }
2140 #endif
2141           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2142           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2143           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2144         }
2145 #endif
2146 
2147         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2148         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2149         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2150       }
2151 
2152       case T_DOUBLE: {
2153 #ifdef X86
2154         if (UseSSE >= 2) {
2155           int last_xmm_reg = pd_last_xmm_reg;
2156 #ifdef _LP64
2157           if (UseAVX < 3) {
2158             last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2159           }
2160 #endif
2161           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2162           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2163           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2164         }
2165 #endif
2166 
2167 #ifdef SPARC
2168         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2169         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2170         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2171         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2172 #elif defined(ARM32)
2173         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2174         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2175         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2176         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2177 #else
2178         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2179         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2180         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2181 #endif
2182         return result;
2183       }
2184 #endif // __SOFTFP__
2185 
2186       default: {
2187         ShouldNotReachHere();
2188         return LIR_OprFact::illegalOpr;
2189       }
2190     }
2191   }
2192 }
2193 
2194 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2195   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2196   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2197 }
2198 
2199 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2200   assert(opr->is_virtual(), "should not call this otherwise");
2201 
2202   Interval* interval = interval_at(opr->vreg_number());
2203   assert(interval != NULL, "interval must exist");
2204 
2205   if (op_id != -1) {
2206 #ifdef ASSERT
2207     BlockBegin* block = block_of_op_with_id(op_id);
2208     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2209       // check if spill moves could have been appended at the end of this block, but
2210       // before the branch instruction. So the split child information for this branch would
2211       // be incorrect.
2212       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2213       if (branch != NULL) {
2214         if (block->live_out().at(opr->vreg_number())) {
2215           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2216           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2217         }
2218       }
2219     }
2220 #endif
2221 
2222     // operands are not changed when an interval is split during allocation,
2223     // so search the right interval here
2224     interval = split_child_at_op_id(interval, op_id, mode);
2225   }
2226 
2227   LIR_Opr res = operand_for_interval(interval);
2228 
2229 #ifdef X86
2230   // new semantic for is_last_use: not only set on definite end of interval,
2231   // but also before hole
2232   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2233   // last use information is completely correct
2234   // information is only needed for fpu stack allocation
2235   if (res->is_fpu_register()) {
2236     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2237       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2238       res = res->make_last_use();
2239     }
2240   }
2241 #endif
2242 
2243   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2244 
2245   return res;
2246 }
2247 
2248 
2249 #ifdef ASSERT
2250 // some methods used to check correctness of debug information
2251 
2252 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2253   if (values == NULL) {
2254     return;
2255   }
2256 
2257   for (int i = 0; i < values->length(); i++) {
2258     ScopeValue* value = values->at(i);
2259 
2260     if (value->is_location()) {
2261       Location location = ((LocationValue*)value)->location();
2262       assert(location.where() == Location::on_stack, "value is in register");
2263     }
2264   }
2265 }
2266 
2267 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2268   if (values == NULL) {
2269     return;
2270   }
2271 
2272   for (int i = 0; i < values->length(); i++) {
2273     MonitorValue* value = values->at(i);
2274 
2275     if (value->owner()->is_location()) {
2276       Location location = ((LocationValue*)value->owner())->location();
2277       assert(location.where() == Location::on_stack, "owner is in register");
2278     }
2279     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2280   }
2281 }
2282 
2283 void assert_equal(Location l1, Location l2) {
2284   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2285 }
2286 
2287 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2288   if (v1->is_location()) {
2289     assert(v2->is_location(), "");
2290     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2291   } else if (v1->is_constant_int()) {
2292     assert(v2->is_constant_int(), "");
2293     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2294   } else if (v1->is_constant_double()) {
2295     assert(v2->is_constant_double(), "");
2296     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2297   } else if (v1->is_constant_long()) {
2298     assert(v2->is_constant_long(), "");
2299     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2300   } else if (v1->is_constant_oop()) {
2301     assert(v2->is_constant_oop(), "");
2302     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2303   } else {
2304     ShouldNotReachHere();
2305   }
2306 }
2307 
2308 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2309   assert_equal(m1->owner(), m2->owner());
2310   assert_equal(m1->basic_lock(), m2->basic_lock());
2311 }
2312 
2313 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2314   assert(d1->scope() == d2->scope(), "not equal");
2315   assert(d1->bci() == d2->bci(), "not equal");
2316 
2317   if (d1->locals() != NULL) {
2318     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2319     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2320     for (int i = 0; i < d1->locals()->length(); i++) {
2321       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2322     }
2323   } else {
2324     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2325   }
2326 
2327   if (d1->expressions() != NULL) {
2328     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2329     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2330     for (int i = 0; i < d1->expressions()->length(); i++) {
2331       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2332     }
2333   } else {
2334     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2335   }
2336 
2337   if (d1->monitors() != NULL) {
2338     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2339     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2340     for (int i = 0; i < d1->monitors()->length(); i++) {
2341       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2342     }
2343   } else {
2344     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2345   }
2346 
2347   if (d1->caller() != NULL) {
2348     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2349     assert_equal(d1->caller(), d2->caller());
2350   } else {
2351     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2352   }
2353 }
2354 
2355 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2356   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2357     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2358     switch (code) {
2359       case Bytecodes::_ifnull    : // fall through
2360       case Bytecodes::_ifnonnull : // fall through
2361       case Bytecodes::_ifeq      : // fall through
2362       case Bytecodes::_ifne      : // fall through
2363       case Bytecodes::_iflt      : // fall through
2364       case Bytecodes::_ifge      : // fall through
2365       case Bytecodes::_ifgt      : // fall through
2366       case Bytecodes::_ifle      : // fall through
2367       case Bytecodes::_if_icmpeq : // fall through
2368       case Bytecodes::_if_icmpne : // fall through
2369       case Bytecodes::_if_icmplt : // fall through
2370       case Bytecodes::_if_icmpge : // fall through
2371       case Bytecodes::_if_icmpgt : // fall through
2372       case Bytecodes::_if_icmple : // fall through
2373       case Bytecodes::_if_acmpeq : // fall through
2374       case Bytecodes::_if_acmpne :
2375         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2376         break;
2377     }
2378   }
2379 }
2380 
2381 #endif // ASSERT
2382 
2383 
2384 IntervalWalker* LinearScan::init_compute_oop_maps() {
2385   // setup lists of potential oops for walking
2386   Interval* oop_intervals;
2387   Interval* non_oop_intervals;
2388 
2389   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2390 
2391   // intervals that have no oops inside need not to be processed
2392   // to ensure a walking until the last instruction id, add a dummy interval
2393   // with a high operation id
2394   non_oop_intervals = new Interval(any_reg);
2395   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2396 
2397   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2398 }
2399 
2400 
2401 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2402   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2403 
2404   // walk before the current operation -> intervals that start at
2405   // the operation (= output operands of the operation) are not
2406   // included in the oop map
2407   iw->walk_before(op->id());
2408 
2409   int frame_size = frame_map()->framesize();
2410   int arg_count = frame_map()->oop_map_arg_count();
2411   OopMap* map = new OopMap(frame_size, arg_count);
2412 
2413   // Iterate through active intervals
2414   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2415     int assigned_reg = interval->assigned_reg();
2416 
2417     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2418     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2419     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2420 
2421     // Check if this range covers the instruction. Intervals that
2422     // start or end at the current operation are not included in the
2423     // oop map, except in the case of patching moves.  For patching
2424     // moves, any intervals which end at this instruction are included
2425     // in the oop map since we may safepoint while doing the patch
2426     // before we've consumed the inputs.
2427     if (op->is_patching() || op->id() < interval->current_to()) {
2428 
2429       // caller-save registers must not be included into oop-maps at calls
2430       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2431 
2432       VMReg name = vm_reg_for_interval(interval);
2433       set_oop(map, name);
2434 
2435       // Spill optimization: when the stack value is guaranteed to be always correct,
2436       // then it must be added to the oop map even if the interval is currently in a register
2437       if (interval->always_in_memory() &&
2438           op->id() > interval->spill_definition_pos() &&
2439           interval->assigned_reg() != interval->canonical_spill_slot()) {
2440         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2441         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2442         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2443 
2444         set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2445       }
2446     }
2447   }
2448 
2449   // add oops from lock stack
2450   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2451   int locks_count = info->stack()->total_locks_size();
2452   for (int i = 0; i < locks_count; i++) {
2453     set_oop(map, frame_map()->monitor_object_regname(i));
2454   }
2455 
2456   return map;
2457 }
2458 
2459 
2460 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2461   assert(visitor.info_count() > 0, "no oop map needed");
2462 
2463   // compute oop_map only for first CodeEmitInfo
2464   // because it is (in most cases) equal for all other infos of the same operation
2465   CodeEmitInfo* first_info = visitor.info_at(0);
2466   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2467 
2468   for (int i = 0; i < visitor.info_count(); i++) {
2469     CodeEmitInfo* info = visitor.info_at(i);
2470     OopMap* oop_map = first_oop_map;
2471 
2472     // compute worst case interpreter size in case of a deoptimization
2473     _compilation->update_interpreter_frame_size(info->interpreter_frame_size());
2474 
2475     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2476       // this info has a different number of locks then the precomputed oop map
2477       // (possible for lock and unlock instructions) -> compute oop map with
2478       // correct lock information
2479       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2480     }
2481 
2482     if (info->_oop_map == NULL) {
2483       info->_oop_map = oop_map;
2484     } else {
2485       // a CodeEmitInfo can not be shared between different LIR-instructions
2486       // because interval splitting can occur anywhere between two instructions
2487       // and so the oop maps must be different
2488       // -> check if the already set oop_map is exactly the one calculated for this operation
2489       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2490     }
2491   }
2492 }
2493 
2494 
2495 // frequently used constants
2496 // Allocate them with new so they are never destroyed (otherwise, a
2497 // forced exit could destroy these objects while they are still in
2498 // use).
2499 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2500 ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2501 ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
2502 ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2503 ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2504 LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2505 
2506 void LinearScan::init_compute_debug_info() {
2507   // cache for frequently used scope values
2508   // (cpu registers and stack slots)
2509   int cache_size = (LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2;
2510   _scope_value_cache = ScopeValueArray(cache_size, cache_size, NULL);
2511 }
2512 
2513 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2514   Location loc;
2515   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2516     bailout("too large frame");
2517   }
2518   ScopeValue* object_scope_value = new LocationValue(loc);
2519 
2520   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2521     bailout("too large frame");
2522   }
2523   return new MonitorValue(object_scope_value, loc);
2524 }
2525 
2526 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2527   Location loc;
2528   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2529     bailout("too large frame");
2530   }
2531   return new LocationValue(loc);
2532 }
2533 
2534 
2535 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2536   assert(opr->is_constant(), "should not be called otherwise");
2537 
2538   LIR_Const* c = opr->as_constant_ptr();
2539   BasicType t = c->type();
2540   switch (t) {
2541     case T_OBJECT: {
2542       jobject value = c->as_jobject();
2543       if (value == NULL) {
2544         scope_values->append(_oop_null_scope_value);
2545       } else {
2546         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2547       }
2548       return 1;
2549     }
2550 
2551     case T_INT: // fall through
2552     case T_FLOAT: {
2553       int value = c->as_jint_bits();
2554       switch (value) {
2555         case -1: scope_values->append(_int_m1_scope_value); break;
2556         case 0:  scope_values->append(_int_0_scope_value); break;
2557         case 1:  scope_values->append(_int_1_scope_value); break;
2558         case 2:  scope_values->append(_int_2_scope_value); break;
2559         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2560       }
2561       return 1;
2562     }
2563 
2564     case T_LONG: // fall through
2565     case T_DOUBLE: {
2566 #ifdef _LP64
2567       scope_values->append(_int_0_scope_value);
2568       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2569 #else
2570       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2571         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2572         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2573       } else {
2574         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2575         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2576       }
2577 #endif
2578       return 2;
2579     }
2580 
2581     case T_ADDRESS: {
2582 #ifdef _LP64
2583       scope_values->append(new ConstantLongValue(c->as_jint()));
2584 #else
2585       scope_values->append(new ConstantIntValue(c->as_jint()));
2586 #endif
2587       return 1;
2588     }
2589 
2590     default:
2591       ShouldNotReachHere();
2592       return -1;
2593   }
2594 }
2595 
2596 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2597   if (opr->is_single_stack()) {
2598     int stack_idx = opr->single_stack_ix();
2599     bool is_oop = opr->is_oop_register();
2600     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2601 
2602     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2603     if (sv == NULL) {
2604       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2605       sv = location_for_name(stack_idx, loc_type);
2606       _scope_value_cache.at_put(cache_idx, sv);
2607     }
2608 
2609     // check if cached value is correct
2610     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2611 
2612     scope_values->append(sv);
2613     return 1;
2614 
2615   } else if (opr->is_single_cpu()) {
2616     bool is_oop = opr->is_oop_register();
2617     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2618     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2619 
2620     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2621     if (sv == NULL) {
2622       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2623       VMReg rname = frame_map()->regname(opr);
2624       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2625       _scope_value_cache.at_put(cache_idx, sv);
2626     }
2627 
2628     // check if cached value is correct
2629     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2630 
2631     scope_values->append(sv);
2632     return 1;
2633 
2634 #ifdef X86
2635   } else if (opr->is_single_xmm()) {
2636     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2637     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2638 
2639     scope_values->append(sv);
2640     return 1;
2641 #endif
2642 
2643   } else if (opr->is_single_fpu()) {
2644 #ifdef X86
2645     // the exact location of fpu stack values is only known
2646     // during fpu stack allocation, so the stack allocator object
2647     // must be present
2648     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2649     assert(_fpu_stack_allocator != NULL, "must be present");
2650     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2651 #endif
2652 
2653     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2654     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2655 #ifndef __SOFTFP__
2656 #ifndef VM_LITTLE_ENDIAN
2657     if (! float_saved_as_double) {
2658       // On big endian system, we may have an issue if float registers use only
2659       // the low half of the (same) double registers.
2660       // Both the float and the double could have the same regnr but would correspond
2661       // to two different addresses once saved.
2662 
2663       // get next safely (no assertion checks)
2664       VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2665       if (next->is_reg() &&
2666           (next->as_FloatRegister() == rname->as_FloatRegister())) {
2667         // the back-end does use the same numbering for the double and the float
2668         rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2669       }
2670     }
2671 #endif
2672 #endif
2673     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2674 
2675     scope_values->append(sv);
2676     return 1;
2677 
2678   } else {
2679     // double-size operands
2680 
2681     ScopeValue* first;
2682     ScopeValue* second;
2683 
2684     if (opr->is_double_stack()) {
2685 #ifdef _LP64
2686       Location loc1;
2687       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2688       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2689         bailout("too large frame");
2690       }
2691       // Does this reverse on x86 vs. sparc?
2692       first =  new LocationValue(loc1);
2693       second = _int_0_scope_value;
2694 #else
2695       Location loc1, loc2;
2696       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2697         bailout("too large frame");
2698       }
2699       first =  new LocationValue(loc1);
2700       second = new LocationValue(loc2);
2701 #endif // _LP64
2702 
2703     } else if (opr->is_double_cpu()) {
2704 #ifdef _LP64
2705       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2706       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2707       second = _int_0_scope_value;
2708 #else
2709       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2710       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2711 
2712       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2713         // lo/hi and swapped relative to first and second, so swap them
2714         VMReg tmp = rname_first;
2715         rname_first = rname_second;
2716         rname_second = tmp;
2717       }
2718 
2719       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2720       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2721 #endif //_LP64
2722 
2723 
2724 #ifdef X86
2725     } else if (opr->is_double_xmm()) {
2726       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2727       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2728 #  ifdef _LP64
2729       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2730       second = _int_0_scope_value;
2731 #  else
2732       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2733       // %%% This is probably a waste but we'll keep things as they were for now
2734       if (true) {
2735         VMReg rname_second = rname_first->next();
2736         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2737       }
2738 #  endif
2739 #endif
2740 
2741     } else if (opr->is_double_fpu()) {
2742       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2743       // the double as float registers in the native ordering. On X86,
2744       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2745       // the low-order word of the double and fpu_regnrLo + 1 is the
2746       // name for the other half.  *first and *second must represent the
2747       // least and most significant words, respectively.
2748 
2749 #ifdef X86
2750       // the exact location of fpu stack values is only known
2751       // during fpu stack allocation, so the stack allocator object
2752       // must be present
2753       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2754       assert(_fpu_stack_allocator != NULL, "must be present");
2755       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2756 
2757       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2758 #endif
2759 #ifdef SPARC
2760       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2761 #endif
2762 #ifdef ARM32
2763       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2764 #endif
2765 #ifdef PPC32
2766       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2767 #endif
2768 
2769 #ifdef VM_LITTLE_ENDIAN
2770       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2771 #else
2772       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2773 #endif
2774 
2775 #ifdef _LP64
2776       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2777       second = _int_0_scope_value;
2778 #else
2779       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2780       // %%% This is probably a waste but we'll keep things as they were for now
2781       if (true) {
2782         VMReg rname_second = rname_first->next();
2783         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2784       }
2785 #endif
2786 
2787     } else {
2788       ShouldNotReachHere();
2789       first = NULL;
2790       second = NULL;
2791     }
2792 
2793     assert(first != NULL && second != NULL, "must be set");
2794     // The convention the interpreter uses is that the second local
2795     // holds the first raw word of the native double representation.
2796     // This is actually reasonable, since locals and stack arrays
2797     // grow downwards in all implementations.
2798     // (If, on some machine, the interpreter's Java locals or stack
2799     // were to grow upwards, the embedded doubles would be word-swapped.)
2800     scope_values->append(second);
2801     scope_values->append(first);
2802     return 2;
2803   }
2804 }
2805 
2806 
2807 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2808   if (value != NULL) {
2809     LIR_Opr opr = value->operand();
2810     Constant* con = value->as_Constant();
2811 
2812     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2813     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2814 
2815     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2816       // Unpinned constants may have a virtual operand for a part of the lifetime
2817       // or may be illegal when it was optimized away,
2818       // so always use a constant operand
2819       opr = LIR_OprFact::value_type(con->type());
2820     }
2821     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2822 
2823     if (opr->is_virtual()) {
2824       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2825 
2826       BlockBegin* block = block_of_op_with_id(op_id);
2827       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2828         // generating debug information for the last instruction of a block.
2829         // if this instruction is a branch, spill moves are inserted before this branch
2830         // and so the wrong operand would be returned (spill moves at block boundaries are not
2831         // considered in the live ranges of intervals)
2832         // Solution: use the first op_id of the branch target block instead.
2833         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2834           if (block->live_out().at(opr->vreg_number())) {
2835             op_id = block->sux_at(0)->first_lir_instruction_id();
2836             mode = LIR_OpVisitState::outputMode;
2837           }
2838         }
2839       }
2840 
2841       // Get current location of operand
2842       // The operand must be live because debug information is considered when building the intervals
2843       // if the interval is not live, color_lir_opr will cause an assertion failure
2844       opr = color_lir_opr(opr, op_id, mode);
2845       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2846 
2847       // Append to ScopeValue array
2848       return append_scope_value_for_operand(opr, scope_values);
2849 
2850     } else {
2851       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2852       assert(opr->is_constant(), "operand must be constant");
2853 
2854       return append_scope_value_for_constant(opr, scope_values);
2855     }
2856   } else {
2857     // append a dummy value because real value not needed
2858     scope_values->append(_illegal_value);
2859     return 1;
2860   }
2861 }
2862 
2863 
2864 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2865   IRScopeDebugInfo* caller_debug_info = NULL;
2866 
2867   ValueStack* caller_state = cur_state->caller_state();
2868   if (caller_state != NULL) {
2869     // process recursively to compute outermost scope first
2870     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2871   }
2872 
2873   // initialize these to null.
2874   // If we don't need deopt info or there are no locals, expressions or monitors,
2875   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2876   GrowableArray<ScopeValue*>*   locals      = NULL;
2877   GrowableArray<ScopeValue*>*   expressions = NULL;
2878   GrowableArray<MonitorValue*>* monitors    = NULL;
2879 
2880   // describe local variable values
2881   int nof_locals = cur_state->locals_size();
2882   if (nof_locals > 0) {
2883     locals = new GrowableArray<ScopeValue*>(nof_locals);
2884 
2885     int pos = 0;
2886     while (pos < nof_locals) {
2887       assert(pos < cur_state->locals_size(), "why not?");
2888 
2889       Value local = cur_state->local_at(pos);
2890       pos += append_scope_value(op_id, local, locals);
2891 
2892       assert(locals->length() == pos, "must match");
2893     }
2894     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2895     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2896   } else if (cur_scope->method()->max_locals() > 0) {
2897     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2898     nof_locals = cur_scope->method()->max_locals();
2899     locals = new GrowableArray<ScopeValue*>(nof_locals);
2900     for(int i = 0; i < nof_locals; i++) {
2901       locals->append(_illegal_value);
2902     }
2903   }
2904 
2905   // describe expression stack
2906   int nof_stack = cur_state->stack_size();
2907   if (nof_stack > 0) {
2908     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2909 
2910     int pos = 0;
2911     while (pos < nof_stack) {
2912       Value expression = cur_state->stack_at_inc(pos);
2913       append_scope_value(op_id, expression, expressions);
2914 
2915       assert(expressions->length() == pos, "must match");
2916     }
2917     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2918   }
2919 
2920   // describe monitors
2921   int nof_locks = cur_state->locks_size();
2922   if (nof_locks > 0) {
2923     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2924     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2925     for (int i = 0; i < nof_locks; i++) {
2926       monitors->append(location_for_monitor_index(lock_offset + i));
2927     }
2928   }
2929 
2930   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2931 }
2932 
2933 
2934 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2935   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2936 
2937   IRScope* innermost_scope = info->scope();
2938   ValueStack* innermost_state = info->stack();
2939 
2940   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2941 
2942   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2943 
2944   if (info->_scope_debug_info == NULL) {
2945     // compute debug information
2946     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2947   } else {
2948     // debug information already set. Check that it is correct from the current point of view
2949     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2950   }
2951 }
2952 
2953 
2954 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2955   LIR_OpVisitState visitor;
2956   int num_inst = instructions->length();
2957   bool has_dead = false;
2958 
2959   for (int j = 0; j < num_inst; j++) {
2960     LIR_Op* op = instructions->at(j);
2961     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2962       has_dead = true;
2963       continue;
2964     }
2965     int op_id = op->id();
2966 
2967     // visit instruction to get list of operands
2968     visitor.visit(op);
2969 
2970     // iterate all modes of the visitor and process all virtual operands
2971     for_each_visitor_mode(mode) {
2972       int n = visitor.opr_count(mode);
2973       for (int k = 0; k < n; k++) {
2974         LIR_Opr opr = visitor.opr_at(mode, k);
2975         if (opr->is_virtual_register()) {
2976           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2977         }
2978       }
2979     }
2980 
2981     if (visitor.info_count() > 0) {
2982       // exception handling
2983       if (compilation()->has_exception_handlers()) {
2984         XHandlers* xhandlers = visitor.all_xhandler();
2985         int n = xhandlers->length();
2986         for (int k = 0; k < n; k++) {
2987           XHandler* handler = xhandlers->handler_at(k);
2988           if (handler->entry_code() != NULL) {
2989             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2990           }
2991         }
2992       } else {
2993         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2994       }
2995 
2996       // compute oop map
2997       assert(iw != NULL, "needed for compute_oop_map");
2998       compute_oop_map(iw, visitor, op);
2999 
3000       // compute debug information
3001       if (!use_fpu_stack_allocation()) {
3002         // compute debug information if fpu stack allocation is not needed.
3003         // when fpu stack allocation is needed, the debug information can not
3004         // be computed here because the exact location of fpu operands is not known
3005         // -> debug information is created inside the fpu stack allocator
3006         int n = visitor.info_count();
3007         for (int k = 0; k < n; k++) {
3008           compute_debug_info(visitor.info_at(k), op_id);
3009         }
3010       }
3011     }
3012 
3013 #ifdef ASSERT
3014     // make sure we haven't made the op invalid.
3015     op->verify();
3016 #endif
3017 
3018     // remove useless moves
3019     if (op->code() == lir_move) {
3020       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
3021       LIR_Op1* move = (LIR_Op1*)op;
3022       LIR_Opr src = move->in_opr();
3023       LIR_Opr dst = move->result_opr();
3024       if (dst == src ||
3025           !dst->is_pointer() && !src->is_pointer() &&
3026           src->is_same_register(dst)) {
3027         instructions->at_put(j, NULL);
3028         has_dead = true;
3029       }
3030     }
3031   }
3032 
3033   if (has_dead) {
3034     // iterate all instructions of the block and remove all null-values.
3035     int insert_point = 0;
3036     for (int j = 0; j < num_inst; j++) {
3037       LIR_Op* op = instructions->at(j);
3038       if (op != NULL) {
3039         if (insert_point != j) {
3040           instructions->at_put(insert_point, op);
3041         }
3042         insert_point++;
3043       }
3044     }
3045     instructions->trunc_to(insert_point);
3046   }
3047 }
3048 
3049 void LinearScan::assign_reg_num() {
3050   TIME_LINEAR_SCAN(timer_assign_reg_num);
3051 
3052   init_compute_debug_info();
3053   IntervalWalker* iw = init_compute_oop_maps();
3054 
3055   int num_blocks = block_count();
3056   for (int i = 0; i < num_blocks; i++) {
3057     BlockBegin* block = block_at(i);
3058     assign_reg_num(block->lir()->instructions_list(), iw);
3059   }
3060 }
3061 
3062 
3063 void LinearScan::do_linear_scan() {
3064   NOT_PRODUCT(_total_timer.begin_method());
3065 
3066   number_instructions();
3067 
3068   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3069 
3070   compute_local_live_sets();
3071   compute_global_live_sets();
3072   CHECK_BAILOUT();
3073 
3074   build_intervals();
3075   CHECK_BAILOUT();
3076   sort_intervals_before_allocation();
3077 
3078   NOT_PRODUCT(print_intervals("Before Register Allocation"));
3079   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3080 
3081   allocate_registers();
3082   CHECK_BAILOUT();
3083 
3084   resolve_data_flow();
3085   if (compilation()->has_exception_handlers()) {
3086     resolve_exception_handlers();
3087   }
3088   // fill in number of spill slots into frame_map
3089   propagate_spill_slots();
3090   CHECK_BAILOUT();
3091 
3092   NOT_PRODUCT(print_intervals("After Register Allocation"));
3093   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3094 
3095   sort_intervals_after_allocation();
3096 
3097   DEBUG_ONLY(verify());
3098 
3099   eliminate_spill_moves();
3100   assign_reg_num();
3101   CHECK_BAILOUT();
3102 
3103   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3104   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3105 
3106   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3107 
3108     if (use_fpu_stack_allocation()) {
3109       allocate_fpu_stack(); // Only has effect on Intel
3110       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3111     }
3112   }
3113 
3114   { TIME_LINEAR_SCAN(timer_optimize_lir);
3115 
3116     EdgeMoveOptimizer::optimize(ir()->code());
3117     ControlFlowOptimizer::optimize(ir()->code());
3118     // check that cfg is still correct after optimizations
3119     ir()->verify();
3120   }
3121 
3122   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3123   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3124   NOT_PRODUCT(_total_timer.end_method(this));
3125 }
3126 
3127 
3128 // ********** Printing functions
3129 
3130 #ifndef PRODUCT
3131 
3132 void LinearScan::print_timers(double total) {
3133   _total_timer.print(total);
3134 }
3135 
3136 void LinearScan::print_statistics() {
3137   _stat_before_alloc.print("before allocation");
3138   _stat_after_asign.print("after assignment of register");
3139   _stat_final.print("after optimization");
3140 }
3141 
3142 void LinearScan::print_bitmap(BitMap& b) {
3143   for (unsigned int i = 0; i < b.size(); i++) {
3144     if (b.at(i)) tty->print("%d ", i);
3145   }
3146   tty->cr();
3147 }
3148 
3149 void LinearScan::print_intervals(const char* label) {
3150   if (TraceLinearScanLevel >= 1) {
3151     int i;
3152     tty->cr();
3153     tty->print_cr("%s", label);
3154 
3155     for (i = 0; i < interval_count(); i++) {
3156       Interval* interval = interval_at(i);
3157       if (interval != NULL) {
3158         interval->print();
3159       }
3160     }
3161 
3162     tty->cr();
3163     tty->print_cr("--- Basic Blocks ---");
3164     for (i = 0; i < block_count(); i++) {
3165       BlockBegin* block = block_at(i);
3166       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3167     }
3168     tty->cr();
3169     tty->cr();
3170   }
3171 
3172   if (PrintCFGToFile) {
3173     CFGPrinter::print_intervals(&_intervals, label);
3174   }
3175 }
3176 
3177 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3178   if (TraceLinearScanLevel >= level) {
3179     tty->cr();
3180     tty->print_cr("%s", label);
3181     print_LIR(ir()->linear_scan_order());
3182     tty->cr();
3183   }
3184 
3185   if (level == 1 && PrintCFGToFile) {
3186     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3187   }
3188 }
3189 
3190 #endif //PRODUCT
3191 
3192 
3193 // ********** verification functions for allocation
3194 // (check that all intervals have a correct register and that no registers are overwritten)
3195 #ifdef ASSERT
3196 
3197 void LinearScan::verify() {
3198   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3199   verify_intervals();
3200 
3201   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3202   verify_no_oops_in_fixed_intervals();
3203 
3204   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3205   verify_constants();
3206 
3207   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3208   verify_registers();
3209 
3210   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3211 }
3212 
3213 void LinearScan::verify_intervals() {
3214   int len = interval_count();
3215   bool has_error = false;
3216 
3217   for (int i = 0; i < len; i++) {
3218     Interval* i1 = interval_at(i);
3219     if (i1 == NULL) continue;
3220 
3221     i1->check_split_children();
3222 
3223     if (i1->reg_num() != i) {
3224       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3225       has_error = true;
3226     }
3227 
3228     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3229       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3230       has_error = true;
3231     }
3232 
3233     if (i1->assigned_reg() == any_reg) {
3234       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3235       has_error = true;
3236     }
3237 
3238     if (i1->assigned_reg() == i1->assigned_regHi()) {
3239       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3240       has_error = true;
3241     }
3242 
3243     if (!is_processed_reg_num(i1->assigned_reg())) {
3244       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3245       has_error = true;
3246     }
3247 
3248     // special intervals that are created in MoveResolver
3249     // -> ignore them because the range information has no meaning there
3250     if (i1->from() == 1 && i1->to() == 2) continue;
3251 
3252     if (i1->first() == Range::end()) {
3253       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3254       has_error = true;
3255     }
3256 
3257     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3258       if (r->from() >= r->to()) {
3259         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3260         has_error = true;
3261       }
3262     }
3263 
3264     for (int j = i + 1; j < len; j++) {
3265       Interval* i2 = interval_at(j);
3266       if (i2 == NULL || (i2->from() == 1 && i2->to() == 2)) continue;
3267 
3268       int r1 = i1->assigned_reg();
3269       int r1Hi = i1->assigned_regHi();
3270       int r2 = i2->assigned_reg();
3271       int r2Hi = i2->assigned_regHi();
3272       if ((r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi))) && i1->intersects(i2)) {
3273         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3274         i1->print(); tty->cr();
3275         i2->print(); tty->cr();
3276         has_error = true;
3277       }
3278     }
3279   }
3280 
3281   assert(has_error == false, "register allocation invalid");
3282 }
3283 
3284 
3285 void LinearScan::verify_no_oops_in_fixed_intervals() {
3286   Interval* fixed_intervals;
3287   Interval* other_intervals;
3288   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3289 
3290   // to ensure a walking until the last instruction id, add a dummy interval
3291   // with a high operation id
3292   other_intervals = new Interval(any_reg);
3293   other_intervals->add_range(max_jint - 2, max_jint - 1);
3294   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3295 
3296   LIR_OpVisitState visitor;
3297   for (int i = 0; i < block_count(); i++) {
3298     BlockBegin* block = block_at(i);
3299 
3300     LIR_OpList* instructions = block->lir()->instructions_list();
3301 
3302     for (int j = 0; j < instructions->length(); j++) {
3303       LIR_Op* op = instructions->at(j);
3304       int op_id = op->id();
3305 
3306       visitor.visit(op);
3307 
3308       if (visitor.info_count() > 0) {
3309         iw->walk_before(op->id());
3310         bool check_live = true;
3311         if (op->code() == lir_move) {
3312           LIR_Op1* move = (LIR_Op1*)op;
3313           check_live = (move->patch_code() == lir_patch_none);
3314         }
3315         LIR_OpBranch* branch = op->as_OpBranch();
3316         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3317           // Don't bother checking the stub in this case since the
3318           // exception stub will never return to normal control flow.
3319           check_live = false;
3320         }
3321 
3322         // Make sure none of the fixed registers is live across an
3323         // oopmap since we can't handle that correctly.
3324         if (check_live) {
3325           for (Interval* interval = iw->active_first(fixedKind);
3326                interval != Interval::end();
3327                interval = interval->next()) {
3328             if (interval->current_to() > op->id() + 1) {
3329               // This interval is live out of this op so make sure
3330               // that this interval represents some value that's
3331               // referenced by this op either as an input or output.
3332               bool ok = false;
3333               for_each_visitor_mode(mode) {
3334                 int n = visitor.opr_count(mode);
3335                 for (int k = 0; k < n; k++) {
3336                   LIR_Opr opr = visitor.opr_at(mode, k);
3337                   if (opr->is_fixed_cpu()) {
3338                     if (interval_at(reg_num(opr)) == interval) {
3339                       ok = true;
3340                       break;
3341                     }
3342                     int hi = reg_numHi(opr);
3343                     if (hi != -1 && interval_at(hi) == interval) {
3344                       ok = true;
3345                       break;
3346                     }
3347                   }
3348                 }
3349               }
3350               assert(ok, "fixed intervals should never be live across an oopmap point");
3351             }
3352           }
3353         }
3354       }
3355 
3356       // oop-maps at calls do not contain registers, so check is not needed
3357       if (!visitor.has_call()) {
3358 
3359         for_each_visitor_mode(mode) {
3360           int n = visitor.opr_count(mode);
3361           for (int k = 0; k < n; k++) {
3362             LIR_Opr opr = visitor.opr_at(mode, k);
3363 
3364             if (opr->is_fixed_cpu() && opr->is_oop()) {
3365               // operand is a non-virtual cpu register and contains an oop
3366               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3367 
3368               Interval* interval = interval_at(reg_num(opr));
3369               assert(interval != NULL, "no interval");
3370 
3371               if (mode == LIR_OpVisitState::inputMode) {
3372                 if (interval->to() >= op_id + 1) {
3373                   assert(interval->to() < op_id + 2 ||
3374                          interval->has_hole_between(op_id, op_id + 2),
3375                          "oop input operand live after instruction");
3376                 }
3377               } else if (mode == LIR_OpVisitState::outputMode) {
3378                 if (interval->from() <= op_id - 1) {
3379                   assert(interval->has_hole_between(op_id - 1, op_id),
3380                          "oop input operand live after instruction");
3381                 }
3382               }
3383             }
3384           }
3385         }
3386       }
3387     }
3388   }
3389 }
3390 
3391 
3392 void LinearScan::verify_constants() {
3393   int num_regs = num_virtual_regs();
3394   int size = live_set_size();
3395   int num_blocks = block_count();
3396 
3397   for (int i = 0; i < num_blocks; i++) {
3398     BlockBegin* block = block_at(i);
3399     BitMap live_at_edge = block->live_in();
3400 
3401     // visit all registers where the live_at_edge bit is set
3402     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3403       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3404 
3405       Value value = gen()->instruction_for_vreg(r);
3406 
3407       assert(value != NULL, "all intervals live across block boundaries must have Value");
3408       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3409       assert(value->operand()->vreg_number() == r, "register number must match");
3410       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3411     }
3412   }
3413 }
3414 
3415 
3416 class RegisterVerifier: public StackObj {
3417  private:
3418   LinearScan*   _allocator;
3419   BlockList     _work_list;      // all blocks that must be processed
3420   IntervalsList _saved_states;   // saved information of previous check
3421 
3422   // simplified access to methods of LinearScan
3423   Compilation*  compilation() const              { return _allocator->compilation(); }
3424   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3425   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3426 
3427   // currently, only registers are processed
3428   int           state_size()                     { return LinearScan::nof_regs; }
3429 
3430   // accessors
3431   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3432   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3433   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3434 
3435   // helper functions
3436   IntervalList* copy(IntervalList* input_state);
3437   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3438   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3439 
3440   void process_block(BlockBegin* block);
3441   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3442   void process_successor(BlockBegin* block, IntervalList* input_state);
3443   void process_operations(LIR_List* ops, IntervalList* input_state);
3444 
3445  public:
3446   RegisterVerifier(LinearScan* allocator)
3447     : _allocator(allocator)
3448     , _work_list(16)
3449     , _saved_states(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL)
3450   { }
3451 
3452   void verify(BlockBegin* start);
3453 };
3454 
3455 
3456 // entry function from LinearScan that starts the verification
3457 void LinearScan::verify_registers() {
3458   RegisterVerifier verifier(this);
3459   verifier.verify(block_at(0));
3460 }
3461 
3462 
3463 void RegisterVerifier::verify(BlockBegin* start) {
3464   // setup input registers (method arguments) for first block
3465   int input_state_len = state_size();
3466   IntervalList* input_state = new IntervalList(input_state_len, input_state_len, NULL);
3467   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3468   for (int n = 0; n < args->length(); n++) {
3469     LIR_Opr opr = args->at(n);
3470     if (opr->is_register()) {
3471       Interval* interval = interval_at(reg_num(opr));
3472 
3473       if (interval->assigned_reg() < state_size()) {
3474         input_state->at_put(interval->assigned_reg(), interval);
3475       }
3476       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3477         input_state->at_put(interval->assigned_regHi(), interval);
3478       }
3479     }
3480   }
3481 
3482   set_state_for_block(start, input_state);
3483   add_to_work_list(start);
3484 
3485   // main loop for verification
3486   do {
3487     BlockBegin* block = _work_list.at(0);
3488     _work_list.remove_at(0);
3489 
3490     process_block(block);
3491   } while (!_work_list.is_empty());
3492 }
3493 
3494 void RegisterVerifier::process_block(BlockBegin* block) {
3495   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3496 
3497   // must copy state because it is modified
3498   IntervalList* input_state = copy(state_for_block(block));
3499 
3500   if (TraceLinearScanLevel >= 4) {
3501     tty->print_cr("Input-State of intervals:");
3502     tty->print("    ");
3503     for (int i = 0; i < state_size(); i++) {
3504       if (input_state->at(i) != NULL) {
3505         tty->print(" %4d", input_state->at(i)->reg_num());
3506       } else {
3507         tty->print("   __");
3508       }
3509     }
3510     tty->cr();
3511     tty->cr();
3512   }
3513 
3514   // process all operations of the block
3515   process_operations(block->lir(), input_state);
3516 
3517   // iterate all successors
3518   for (int i = 0; i < block->number_of_sux(); i++) {
3519     process_successor(block->sux_at(i), input_state);
3520   }
3521 }
3522 
3523 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3524   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3525 
3526   // must copy state because it is modified
3527   input_state = copy(input_state);
3528 
3529   if (xhandler->entry_code() != NULL) {
3530     process_operations(xhandler->entry_code(), input_state);
3531   }
3532   process_successor(xhandler->entry_block(), input_state);
3533 }
3534 
3535 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3536   IntervalList* saved_state = state_for_block(block);
3537 
3538   if (saved_state != NULL) {
3539     // this block was already processed before.
3540     // check if new input_state is consistent with saved_state
3541 
3542     bool saved_state_correct = true;
3543     for (int i = 0; i < state_size(); i++) {
3544       if (input_state->at(i) != saved_state->at(i)) {
3545         // current input_state and previous saved_state assume a different
3546         // interval in this register -> assume that this register is invalid
3547         if (saved_state->at(i) != NULL) {
3548           // invalidate old calculation only if it assumed that
3549           // register was valid. when the register was already invalid,
3550           // then the old calculation was correct.
3551           saved_state_correct = false;
3552           saved_state->at_put(i, NULL);
3553 
3554           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3555         }
3556       }
3557     }
3558 
3559     if (saved_state_correct) {
3560       // already processed block with correct input_state
3561       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3562     } else {
3563       // must re-visit this block
3564       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3565       add_to_work_list(block);
3566     }
3567 
3568   } else {
3569     // block was not processed before, so set initial input_state
3570     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3571 
3572     set_state_for_block(block, copy(input_state));
3573     add_to_work_list(block);
3574   }
3575 }
3576 
3577 
3578 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3579   IntervalList* copy_state = new IntervalList(input_state->length());
3580   copy_state->appendAll(input_state);
3581   return copy_state;
3582 }
3583 
3584 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3585   if (reg != LinearScan::any_reg && reg < state_size()) {
3586     if (interval != NULL) {
3587       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3588     } else if (input_state->at(reg) != NULL) {
3589       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3590     }
3591 
3592     input_state->at_put(reg, interval);
3593   }
3594 }
3595 
3596 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3597   if (reg != LinearScan::any_reg && reg < state_size()) {
3598     if (input_state->at(reg) != interval) {
3599       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3600       return true;
3601     }
3602   }
3603   return false;
3604 }
3605 
3606 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3607   // visit all instructions of the block
3608   LIR_OpVisitState visitor;
3609   bool has_error = false;
3610 
3611   for (int i = 0; i < ops->length(); i++) {
3612     LIR_Op* op = ops->at(i);
3613     visitor.visit(op);
3614 
3615     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3616 
3617     // check if input operands are correct
3618     int j;
3619     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3620     for (j = 0; j < n; j++) {
3621       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3622       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3623         Interval* interval = interval_at(reg_num(opr));
3624         if (op->id() != -1) {
3625           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3626         }
3627 
3628         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3629         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3630 
3631         // When an operand is marked with is_last_use, then the fpu stack allocator
3632         // removes the register from the fpu stack -> the register contains no value
3633         if (opr->is_last_use()) {
3634           state_put(input_state, interval->assigned_reg(),   NULL);
3635           state_put(input_state, interval->assigned_regHi(), NULL);
3636         }
3637       }
3638     }
3639 
3640     // invalidate all caller save registers at calls
3641     if (visitor.has_call()) {
3642       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3643         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3644       }
3645       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3646         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3647       }
3648 
3649 #ifdef X86
3650       int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms();
3651       for (j = 0; j < num_caller_save_xmm_regs; j++) {
3652         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3653       }
3654 #endif
3655     }
3656 
3657     // process xhandler before output and temp operands
3658     XHandlers* xhandlers = visitor.all_xhandler();
3659     n = xhandlers->length();
3660     for (int k = 0; k < n; k++) {
3661       process_xhandler(xhandlers->handler_at(k), input_state);
3662     }
3663 
3664     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3665     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3666     for (j = 0; j < n; j++) {
3667       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3668       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3669         Interval* interval = interval_at(reg_num(opr));
3670         if (op->id() != -1) {
3671           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3672         }
3673 
3674         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3675         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3676       }
3677     }
3678 
3679     // set output operands
3680     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3681     for (j = 0; j < n; j++) {
3682       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3683       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3684         Interval* interval = interval_at(reg_num(opr));
3685         if (op->id() != -1) {
3686           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3687         }
3688 
3689         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3690         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3691       }
3692     }
3693   }
3694   assert(has_error == false, "Error in register allocation");
3695 }
3696 
3697 #endif // ASSERT
3698 
3699 
3700 
3701 // **** Implementation of MoveResolver ******************************
3702 
3703 MoveResolver::MoveResolver(LinearScan* allocator) :
3704   _allocator(allocator),
3705   _multiple_reads_allowed(false),
3706   _mapping_from(8),
3707   _mapping_from_opr(8),
3708   _mapping_to(8),
3709   _insert_list(NULL),
3710   _insert_idx(-1),
3711   _insertion_buffer()
3712 {
3713   for (int i = 0; i < LinearScan::nof_regs; i++) {
3714     _register_blocked[i] = 0;
3715   }
3716   DEBUG_ONLY(check_empty());
3717 }
3718 
3719 
3720 #ifdef ASSERT
3721 
3722 void MoveResolver::check_empty() {
3723   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3724   for (int i = 0; i < LinearScan::nof_regs; i++) {
3725     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3726   }
3727   assert(_multiple_reads_allowed == false, "must have default value");
3728 }
3729 
3730 void MoveResolver::verify_before_resolve() {
3731   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3732   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3733   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3734 
3735   int i, j;
3736   if (!_multiple_reads_allowed) {
3737     for (i = 0; i < _mapping_from.length(); i++) {
3738       for (j = i + 1; j < _mapping_from.length(); j++) {
3739         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3740       }
3741     }
3742   }
3743 
3744   for (i = 0; i < _mapping_to.length(); i++) {
3745     for (j = i + 1; j < _mapping_to.length(); j++) {
3746       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3747     }
3748   }
3749 
3750 
3751   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3752   used_regs.clear();
3753   if (!_multiple_reads_allowed) {
3754     for (i = 0; i < _mapping_from.length(); i++) {
3755       Interval* it = _mapping_from.at(i);
3756       if (it != NULL) {
3757         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3758         used_regs.set_bit(it->assigned_reg());
3759 
3760         if (it->assigned_regHi() != LinearScan::any_reg) {
3761           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3762           used_regs.set_bit(it->assigned_regHi());
3763         }
3764       }
3765     }
3766   }
3767 
3768   used_regs.clear();
3769   for (i = 0; i < _mapping_to.length(); i++) {
3770     Interval* it = _mapping_to.at(i);
3771     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3772     used_regs.set_bit(it->assigned_reg());
3773 
3774     if (it->assigned_regHi() != LinearScan::any_reg) {
3775       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3776       used_regs.set_bit(it->assigned_regHi());
3777     }
3778   }
3779 
3780   used_regs.clear();
3781   for (i = 0; i < _mapping_from.length(); i++) {
3782     Interval* it = _mapping_from.at(i);
3783     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3784       used_regs.set_bit(it->assigned_reg());
3785     }
3786   }
3787   for (i = 0; i < _mapping_to.length(); i++) {
3788     Interval* it = _mapping_to.at(i);
3789     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3790   }
3791 }
3792 
3793 #endif // ASSERT
3794 
3795 
3796 // mark assigned_reg and assigned_regHi of the interval as blocked
3797 void MoveResolver::block_registers(Interval* it) {
3798   int reg = it->assigned_reg();
3799   if (reg < LinearScan::nof_regs) {
3800     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3801     set_register_blocked(reg, 1);
3802   }
3803   reg = it->assigned_regHi();
3804   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3805     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3806     set_register_blocked(reg, 1);
3807   }
3808 }
3809 
3810 // mark assigned_reg and assigned_regHi of the interval as unblocked
3811 void MoveResolver::unblock_registers(Interval* it) {
3812   int reg = it->assigned_reg();
3813   if (reg < LinearScan::nof_regs) {
3814     assert(register_blocked(reg) > 0, "register already marked as unused");
3815     set_register_blocked(reg, -1);
3816   }
3817   reg = it->assigned_regHi();
3818   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3819     assert(register_blocked(reg) > 0, "register already marked as unused");
3820     set_register_blocked(reg, -1);
3821   }
3822 }
3823 
3824 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3825 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3826   int from_reg = -1;
3827   int from_regHi = -1;
3828   if (from != NULL) {
3829     from_reg = from->assigned_reg();
3830     from_regHi = from->assigned_regHi();
3831   }
3832 
3833   int reg = to->assigned_reg();
3834   if (reg < LinearScan::nof_regs) {
3835     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3836       return false;
3837     }
3838   }
3839   reg = to->assigned_regHi();
3840   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3841     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3842       return false;
3843     }
3844   }
3845 
3846   return true;
3847 }
3848 
3849 
3850 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3851   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3852   _insertion_buffer.init(list);
3853 }
3854 
3855 void MoveResolver::append_insertion_buffer() {
3856   if (_insertion_buffer.initialized()) {
3857     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3858   }
3859   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3860 
3861   _insert_list = NULL;
3862   _insert_idx = -1;
3863 }
3864 
3865 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3866   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3867   assert(from_interval->type() == to_interval->type(), "move between different types");
3868   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3869   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3870 
3871   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3872   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3873 
3874   if (!_multiple_reads_allowed) {
3875     // the last_use flag is an optimization for FPU stack allocation. When the same
3876     // input interval is used in more than one move, then it is too difficult to determine
3877     // if this move is really the last use.
3878     from_opr = from_opr->make_last_use();
3879   }
3880   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3881 
3882   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3883 }
3884 
3885 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3886   assert(from_opr->type() == to_interval->type(), "move between different types");
3887   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3888   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3889 
3890   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3891   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3892 
3893   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3894 }
3895 
3896 
3897 void MoveResolver::resolve_mappings() {
3898   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3899   DEBUG_ONLY(verify_before_resolve());
3900 
3901   // Block all registers that are used as input operands of a move.
3902   // When a register is blocked, no move to this register is emitted.
3903   // This is necessary for detecting cycles in moves.
3904   int i;
3905   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3906     Interval* from_interval = _mapping_from.at(i);
3907     if (from_interval != NULL) {
3908       block_registers(from_interval);
3909     }
3910   }
3911 
3912   int spill_candidate = -1;
3913   while (_mapping_from.length() > 0) {
3914     bool processed_interval = false;
3915 
3916     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3917       Interval* from_interval = _mapping_from.at(i);
3918       Interval* to_interval = _mapping_to.at(i);
3919 
3920       if (save_to_process_move(from_interval, to_interval)) {
3921         // this inverval can be processed because target is free
3922         if (from_interval != NULL) {
3923           insert_move(from_interval, to_interval);
3924           unblock_registers(from_interval);
3925         } else {
3926           insert_move(_mapping_from_opr.at(i), to_interval);
3927         }
3928         _mapping_from.remove_at(i);
3929         _mapping_from_opr.remove_at(i);
3930         _mapping_to.remove_at(i);
3931 
3932         processed_interval = true;
3933       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3934         // this interval cannot be processed now because target is not free
3935         // it starts in a register, so it is a possible candidate for spilling
3936         spill_candidate = i;
3937       }
3938     }
3939 
3940     if (!processed_interval) {
3941       // no move could be processed because there is a cycle in the move list
3942       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3943       assert(spill_candidate != -1, "no interval in register for spilling found");
3944 
3945       // create a new spill interval and assign a stack slot to it
3946       Interval* from_interval = _mapping_from.at(spill_candidate);
3947       Interval* spill_interval = new Interval(-1);
3948       spill_interval->set_type(from_interval->type());
3949 
3950       // add a dummy range because real position is difficult to calculate
3951       // Note: this range is a special case when the integrity of the allocation is checked
3952       spill_interval->add_range(1, 2);
3953 
3954       //       do not allocate a new spill slot for temporary interval, but
3955       //       use spill slot assigned to from_interval. Otherwise moves from
3956       //       one stack slot to another can happen (not allowed by LIR_Assembler
3957       int spill_slot = from_interval->canonical_spill_slot();
3958       if (spill_slot < 0) {
3959         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3960         from_interval->set_canonical_spill_slot(spill_slot);
3961       }
3962       spill_interval->assign_reg(spill_slot);
3963       allocator()->append_interval(spill_interval);
3964 
3965       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3966 
3967       // insert a move from register to stack and update the mapping
3968       insert_move(from_interval, spill_interval);
3969       _mapping_from.at_put(spill_candidate, spill_interval);
3970       unblock_registers(from_interval);
3971     }
3972   }
3973 
3974   // reset to default value
3975   _multiple_reads_allowed = false;
3976 
3977   // check that all intervals have been processed
3978   DEBUG_ONLY(check_empty());
3979 }
3980 
3981 
3982 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3983   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3984   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3985 
3986   create_insertion_buffer(insert_list);
3987   _insert_list = insert_list;
3988   _insert_idx = insert_idx;
3989 }
3990 
3991 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3992   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3993 
3994   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3995     // insert position changed -> resolve current mappings
3996     resolve_mappings();
3997   }
3998 
3999   if (insert_list != _insert_list) {
4000     // block changed -> append insertion_buffer because it is
4001     // bound to a specific block and create a new insertion_buffer
4002     append_insertion_buffer();
4003     create_insertion_buffer(insert_list);
4004   }
4005 
4006   _insert_list = insert_list;
4007   _insert_idx = insert_idx;
4008 }
4009 
4010 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
4011   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4012 
4013   _mapping_from.append(from_interval);
4014   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
4015   _mapping_to.append(to_interval);
4016 }
4017 
4018 
4019 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
4020   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4021   assert(from_opr->is_constant(), "only for constants");
4022 
4023   _mapping_from.append(NULL);
4024   _mapping_from_opr.append(from_opr);
4025   _mapping_to.append(to_interval);
4026 }
4027 
4028 void MoveResolver::resolve_and_append_moves() {
4029   if (has_mappings()) {
4030     resolve_mappings();
4031   }
4032   append_insertion_buffer();
4033 }
4034 
4035 
4036 
4037 // **** Implementation of Range *************************************
4038 
4039 Range::Range(int from, int to, Range* next) :
4040   _from(from),
4041   _to(to),
4042   _next(next)
4043 {
4044 }
4045 
4046 // initialize sentinel
4047 Range* Range::_end = NULL;
4048 void Range::initialize(Arena* arena) {
4049   _end = new (arena) Range(max_jint, max_jint, NULL);
4050 }
4051 
4052 int Range::intersects_at(Range* r2) const {
4053   const Range* r1 = this;
4054 
4055   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4056   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4057 
4058   do {
4059     if (r1->from() < r2->from()) {
4060       if (r1->to() <= r2->from()) {
4061         r1 = r1->next(); if (r1 == _end) return -1;
4062       } else {
4063         return r2->from();
4064       }
4065     } else if (r2->from() < r1->from()) {
4066       if (r2->to() <= r1->from()) {
4067         r2 = r2->next(); if (r2 == _end) return -1;
4068       } else {
4069         return r1->from();
4070       }
4071     } else { // r1->from() == r2->from()
4072       if (r1->from() == r1->to()) {
4073         r1 = r1->next(); if (r1 == _end) return -1;
4074       } else if (r2->from() == r2->to()) {
4075         r2 = r2->next(); if (r2 == _end) return -1;
4076       } else {
4077         return r1->from();
4078       }
4079     }
4080   } while (true);
4081 }
4082 
4083 #ifndef PRODUCT
4084 void Range::print(outputStream* out) const {
4085   out->print("[%d, %d[ ", _from, _to);
4086 }
4087 #endif
4088 
4089 
4090 
4091 // **** Implementation of Interval **********************************
4092 
4093 // initialize sentinel
4094 Interval* Interval::_end = NULL;
4095 void Interval::initialize(Arena* arena) {
4096   Range::initialize(arena);
4097   _end = new (arena) Interval(-1);
4098 }
4099 
4100 Interval::Interval(int reg_num) :
4101   _reg_num(reg_num),
4102   _type(T_ILLEGAL),
4103   _first(Range::end()),
4104   _use_pos_and_kinds(12),
4105   _current(Range::end()),
4106   _next(_end),
4107   _state(invalidState),
4108   _assigned_reg(LinearScan::any_reg),
4109   _assigned_regHi(LinearScan::any_reg),
4110   _cached_to(-1),
4111   _cached_opr(LIR_OprFact::illegalOpr),
4112   _cached_vm_reg(VMRegImpl::Bad()),
4113   _split_children(0),
4114   _canonical_spill_slot(-1),
4115   _insert_move_when_activated(false),
4116   _register_hint(NULL),
4117   _spill_state(noDefinitionFound),
4118   _spill_definition_pos(-1)
4119 {
4120   _split_parent = this;
4121   _current_split_child = this;
4122 }
4123 
4124 int Interval::calc_to() {
4125   assert(_first != Range::end(), "interval has no range");
4126 
4127   Range* r = _first;
4128   while (r->next() != Range::end()) {
4129     r = r->next();
4130   }
4131   return r->to();
4132 }
4133 
4134 
4135 #ifdef ASSERT
4136 // consistency check of split-children
4137 void Interval::check_split_children() {
4138   if (_split_children.length() > 0) {
4139     assert(is_split_parent(), "only split parents can have children");
4140 
4141     for (int i = 0; i < _split_children.length(); i++) {
4142       Interval* i1 = _split_children.at(i);
4143 
4144       assert(i1->split_parent() == this, "not a split child of this interval");
4145       assert(i1->type() == type(), "must be equal for all split children");
4146       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4147 
4148       for (int j = i + 1; j < _split_children.length(); j++) {
4149         Interval* i2 = _split_children.at(j);
4150 
4151         assert(i1->reg_num() != i2->reg_num(), "same register number");
4152 
4153         if (i1->from() < i2->from()) {
4154           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4155         } else {
4156           assert(i2->from() < i1->from(), "intervals start at same op_id");
4157           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4158         }
4159       }
4160     }
4161   }
4162 }
4163 #endif // ASSERT
4164 
4165 Interval* Interval::register_hint(bool search_split_child) const {
4166   if (!search_split_child) {
4167     return _register_hint;
4168   }
4169 
4170   if (_register_hint != NULL) {
4171     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4172 
4173     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4174       return _register_hint;
4175 
4176     } else if (_register_hint->_split_children.length() > 0) {
4177       // search the first split child that has a register assigned
4178       int len = _register_hint->_split_children.length();
4179       for (int i = 0; i < len; i++) {
4180         Interval* cur = _register_hint->_split_children.at(i);
4181 
4182         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4183           return cur;
4184         }
4185       }
4186     }
4187   }
4188 
4189   // no hint interval found that has a register assigned
4190   return NULL;
4191 }
4192 
4193 
4194 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4195   assert(is_split_parent(), "can only be called for split parents");
4196   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4197 
4198   Interval* result;
4199   if (_split_children.length() == 0) {
4200     result = this;
4201   } else {
4202     result = NULL;
4203     int len = _split_children.length();
4204 
4205     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4206     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4207 
4208     int i;
4209     for (i = 0; i < len; i++) {
4210       Interval* cur = _split_children.at(i);
4211       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4212         if (i > 0) {
4213           // exchange current split child to start of list (faster access for next call)
4214           _split_children.at_put(i, _split_children.at(0));
4215           _split_children.at_put(0, cur);
4216         }
4217 
4218         // interval found
4219         result = cur;
4220         break;
4221       }
4222     }
4223 
4224 #ifdef ASSERT
4225     for (i = 0; i < len; i++) {
4226       Interval* tmp = _split_children.at(i);
4227       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4228         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4229         result->print();
4230         tmp->print();
4231         assert(false, "two valid result intervals found");
4232       }
4233     }
4234 #endif
4235   }
4236 
4237   assert(result != NULL, "no matching interval found");
4238   assert(result->covers(op_id, mode), "op_id not covered by interval");
4239 
4240   return result;
4241 }
4242 
4243 
4244 // returns the last split child that ends before the given op_id
4245 Interval* Interval::split_child_before_op_id(int op_id) {
4246   assert(op_id >= 0, "invalid op_id");
4247 
4248   Interval* parent = split_parent();
4249   Interval* result = NULL;
4250 
4251   int len = parent->_split_children.length();
4252   assert(len > 0, "no split children available");
4253 
4254   for (int i = len - 1; i >= 0; i--) {
4255     Interval* cur = parent->_split_children.at(i);
4256     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4257       result = cur;
4258     }
4259   }
4260 
4261   assert(result != NULL, "no split child found");
4262   return result;
4263 }
4264 
4265 
4266 // checks if op_id is covered by any split child
4267 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4268   assert(is_split_parent(), "can only be called for split parents");
4269   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4270 
4271   if (_split_children.length() == 0) {
4272     // simple case if interval was not split
4273     return covers(op_id, mode);
4274 
4275   } else {
4276     // extended case: check all split children
4277     int len = _split_children.length();
4278     for (int i = 0; i < len; i++) {
4279       Interval* cur = _split_children.at(i);
4280       if (cur->covers(op_id, mode)) {
4281         return true;
4282       }
4283     }
4284     return false;
4285   }
4286 }
4287 
4288 
4289 // Note: use positions are sorted descending -> first use has highest index
4290 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4291   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4292 
4293   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4294     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4295       return _use_pos_and_kinds.at(i);
4296     }
4297   }
4298   return max_jint;
4299 }
4300 
4301 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4302   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4303 
4304   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4305     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4306       return _use_pos_and_kinds.at(i);
4307     }
4308   }
4309   return max_jint;
4310 }
4311 
4312 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4313   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4314 
4315   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4316     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4317       return _use_pos_and_kinds.at(i);
4318     }
4319   }
4320   return max_jint;
4321 }
4322 
4323 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4324   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4325 
4326   int prev = 0;
4327   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4328     if (_use_pos_and_kinds.at(i) > from) {
4329       return prev;
4330     }
4331     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4332       prev = _use_pos_and_kinds.at(i);
4333     }
4334   }
4335   return prev;
4336 }
4337 
4338 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4339   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4340 
4341   // do not add use positions for precolored intervals because
4342   // they are never used
4343   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4344 #ifdef ASSERT
4345     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4346     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4347       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4348       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4349       if (i > 0) {
4350         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4351       }
4352     }
4353 #endif
4354 
4355     // Note: add_use is called in descending order, so list gets sorted
4356     //       automatically by just appending new use positions
4357     int len = _use_pos_and_kinds.length();
4358     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4359       _use_pos_and_kinds.append(pos);
4360       _use_pos_and_kinds.append(use_kind);
4361     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4362       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4363       _use_pos_and_kinds.at_put(len - 1, use_kind);
4364     }
4365   }
4366 }
4367 
4368 void Interval::add_range(int from, int to) {
4369   assert(from < to, "invalid range");
4370   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4371   assert(from <= first()->to(), "not inserting at begin of interval");
4372 
4373   if (first()->from() <= to) {
4374     // join intersecting ranges
4375     first()->set_from(MIN2(from, first()->from()));
4376     first()->set_to  (MAX2(to,   first()->to()));
4377   } else {
4378     // insert new range
4379     _first = new Range(from, to, first());
4380   }
4381 }
4382 
4383 Interval* Interval::new_split_child() {
4384   // allocate new interval
4385   Interval* result = new Interval(-1);
4386   result->set_type(type());
4387 
4388   Interval* parent = split_parent();
4389   result->_split_parent = parent;
4390   result->set_register_hint(parent);
4391 
4392   // insert new interval in children-list of parent
4393   if (parent->_split_children.length() == 0) {
4394     assert(is_split_parent(), "list must be initialized at first split");
4395 
4396     parent->_split_children = IntervalList(4);
4397     parent->_split_children.append(this);
4398   }
4399   parent->_split_children.append(result);
4400 
4401   return result;
4402 }
4403 
4404 // split this interval at the specified position and return
4405 // the remainder as a new interval.
4406 //
4407 // when an interval is split, a bi-directional link is established between the original interval
4408 // (the split parent) and the intervals that are split off this interval (the split children)
4409 // When a split child is split again, the new created interval is also a direct child
4410 // of the original parent (there is no tree of split children stored, but a flat list)
4411 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4412 //
4413 // Note: The new interval has no valid reg_num
4414 Interval* Interval::split(int split_pos) {
4415   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4416 
4417   // allocate new interval
4418   Interval* result = new_split_child();
4419 
4420   // split the ranges
4421   Range* prev = NULL;
4422   Range* cur = _first;
4423   while (cur != Range::end() && cur->to() <= split_pos) {
4424     prev = cur;
4425     cur = cur->next();
4426   }
4427   assert(cur != Range::end(), "split interval after end of last range");
4428 
4429   if (cur->from() < split_pos) {
4430     result->_first = new Range(split_pos, cur->to(), cur->next());
4431     cur->set_to(split_pos);
4432     cur->set_next(Range::end());
4433 
4434   } else {
4435     assert(prev != NULL, "split before start of first range");
4436     result->_first = cur;
4437     prev->set_next(Range::end());
4438   }
4439   result->_current = result->_first;
4440   _cached_to = -1; // clear cached value
4441 
4442   // split list of use positions
4443   int total_len = _use_pos_and_kinds.length();
4444   int start_idx = total_len - 2;
4445   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4446     start_idx -= 2;
4447   }
4448 
4449   intStack new_use_pos_and_kinds(total_len - start_idx);
4450   int i;
4451   for (i = start_idx + 2; i < total_len; i++) {
4452     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4453   }
4454 
4455   _use_pos_and_kinds.trunc_to(start_idx + 2);
4456   result->_use_pos_and_kinds = _use_pos_and_kinds;
4457   _use_pos_and_kinds = new_use_pos_and_kinds;
4458 
4459 #ifdef ASSERT
4460   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4461   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4462   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4463 
4464   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4465     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4466     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4467   }
4468   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4469     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4470     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4471   }
4472 #endif
4473 
4474   return result;
4475 }
4476 
4477 // split this interval at the specified position and return
4478 // the head as a new interval (the original interval is the tail)
4479 //
4480 // Currently, only the first range can be split, and the new interval
4481 // must not have split positions
4482 Interval* Interval::split_from_start(int split_pos) {
4483   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4484   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4485   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4486   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4487 
4488   // allocate new interval
4489   Interval* result = new_split_child();
4490 
4491   // the new created interval has only one range (checked by assertion above),
4492   // so the splitting of the ranges is very simple
4493   result->add_range(_first->from(), split_pos);
4494 
4495   if (split_pos == _first->to()) {
4496     assert(_first->next() != Range::end(), "must not be at end");
4497     _first = _first->next();
4498   } else {
4499     _first->set_from(split_pos);
4500   }
4501 
4502   return result;
4503 }
4504 
4505 
4506 // returns true if the op_id is inside the interval
4507 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4508   Range* cur  = _first;
4509 
4510   while (cur != Range::end() && cur->to() < op_id) {
4511     cur = cur->next();
4512   }
4513   if (cur != Range::end()) {
4514     assert(cur->to() != cur->next()->from(), "ranges not separated");
4515 
4516     if (mode == LIR_OpVisitState::outputMode) {
4517       return cur->from() <= op_id && op_id < cur->to();
4518     } else {
4519       return cur->from() <= op_id && op_id <= cur->to();
4520     }
4521   }
4522   return false;
4523 }
4524 
4525 // returns true if the interval has any hole between hole_from and hole_to
4526 // (even if the hole has only the length 1)
4527 bool Interval::has_hole_between(int hole_from, int hole_to) {
4528   assert(hole_from < hole_to, "check");
4529   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4530 
4531   Range* cur  = _first;
4532   while (cur != Range::end()) {
4533     assert(cur->to() < cur->next()->from(), "no space between ranges");
4534 
4535     // hole-range starts before this range -> hole
4536     if (hole_from < cur->from()) {
4537       return true;
4538 
4539     // hole-range completely inside this range -> no hole
4540     } else if (hole_to <= cur->to()) {
4541       return false;
4542 
4543     // overlapping of hole-range with this range -> hole
4544     } else if (hole_from <= cur->to()) {
4545       return true;
4546     }
4547 
4548     cur = cur->next();
4549   }
4550 
4551   return false;
4552 }
4553 
4554 
4555 #ifndef PRODUCT
4556 void Interval::print(outputStream* out) const {
4557   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4558   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4559 
4560   const char* type_name;
4561   LIR_Opr opr = LIR_OprFact::illegal();
4562   if (reg_num() < LIR_OprDesc::vreg_base) {
4563     type_name = "fixed";
4564     // need a temporary operand for fixed intervals because type() cannot be called
4565 #ifdef X86
4566     int last_xmm_reg = pd_last_xmm_reg;
4567 #ifdef _LP64
4568     if (UseAVX < 3) {
4569       last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
4570     }
4571 #endif
4572 #endif
4573     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4574       opr = LIR_OprFact::single_cpu(assigned_reg());
4575     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4576       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4577 #ifdef X86
4578     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= last_xmm_reg) {
4579       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4580 #endif
4581     } else {
4582       ShouldNotReachHere();
4583     }
4584   } else {
4585     type_name = type2name(type());
4586     if (assigned_reg() != -1 &&
4587         (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4588       opr = LinearScan::calc_operand_for_interval(this);
4589     }
4590   }
4591 
4592   out->print("%d %s ", reg_num(), type_name);
4593   if (opr->is_valid()) {
4594     out->print("\"");
4595     opr->print(out);
4596     out->print("\" ");
4597   }
4598   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4599 
4600   // print ranges
4601   Range* cur = _first;
4602   while (cur != Range::end()) {
4603     cur->print(out);
4604     cur = cur->next();
4605     assert(cur != NULL, "range list not closed with range sentinel");
4606   }
4607 
4608   // print use positions
4609   int prev = 0;
4610   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4611   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4612     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4613     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4614 
4615     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4616     prev = _use_pos_and_kinds.at(i);
4617   }
4618 
4619   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4620   out->cr();
4621 }
4622 #endif
4623 
4624 
4625 
4626 // **** Implementation of IntervalWalker ****************************
4627 
4628 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4629  : _compilation(allocator->compilation())
4630  , _allocator(allocator)
4631 {
4632   _unhandled_first[fixedKind] = unhandled_fixed_first;
4633   _unhandled_first[anyKind]   = unhandled_any_first;
4634   _active_first[fixedKind]    = Interval::end();
4635   _inactive_first[fixedKind]  = Interval::end();
4636   _active_first[anyKind]      = Interval::end();
4637   _inactive_first[anyKind]    = Interval::end();
4638   _current_position = -1;
4639   _current = NULL;
4640   next_interval();
4641 }
4642 
4643 
4644 // append interval at top of list
4645 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4646   interval->set_next(*list); *list = interval;
4647 }
4648 
4649 
4650 // append interval in order of current range from()
4651 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4652   Interval* prev = NULL;
4653   Interval* cur  = *list;
4654   while (cur->current_from() < interval->current_from()) {
4655     prev = cur; cur = cur->next();
4656   }
4657   if (prev == NULL) {
4658     *list = interval;
4659   } else {
4660     prev->set_next(interval);
4661   }
4662   interval->set_next(cur);
4663 }
4664 
4665 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4666   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4667 
4668   Interval* prev = NULL;
4669   Interval* cur  = *list;
4670   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4671     prev = cur; cur = cur->next();
4672   }
4673   if (prev == NULL) {
4674     *list = interval;
4675   } else {
4676     prev->set_next(interval);
4677   }
4678   interval->set_next(cur);
4679 }
4680 
4681 
4682 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4683   while (*list != Interval::end() && *list != i) {
4684     list = (*list)->next_addr();
4685   }
4686   if (*list != Interval::end()) {
4687     assert(*list == i, "check");
4688     *list = (*list)->next();
4689     return true;
4690   } else {
4691     return false;
4692   }
4693 }
4694 
4695 void IntervalWalker::remove_from_list(Interval* i) {
4696   bool deleted;
4697 
4698   if (i->state() == activeState) {
4699     deleted = remove_from_list(active_first_addr(anyKind), i);
4700   } else {
4701     assert(i->state() == inactiveState, "invalid state");
4702     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4703   }
4704 
4705   assert(deleted, "interval has not been found in list");
4706 }
4707 
4708 
4709 void IntervalWalker::walk_to(IntervalState state, int from) {
4710   assert (state == activeState || state == inactiveState, "wrong state");
4711   for_each_interval_kind(kind) {
4712     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4713     Interval* next   = *prev;
4714     while (next->current_from() <= from) {
4715       Interval* cur = next;
4716       next = cur->next();
4717 
4718       bool range_has_changed = false;
4719       while (cur->current_to() <= from) {
4720         cur->next_range();
4721         range_has_changed = true;
4722       }
4723 
4724       // also handle move from inactive list to active list
4725       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4726 
4727       if (range_has_changed) {
4728         // remove cur from list
4729         *prev = next;
4730         if (cur->current_at_end()) {
4731           // move to handled state (not maintained as a list)
4732           cur->set_state(handledState);
4733           interval_moved(cur, kind, state, handledState);
4734         } else if (cur->current_from() <= from){
4735           // sort into active list
4736           append_sorted(active_first_addr(kind), cur);
4737           cur->set_state(activeState);
4738           if (*prev == cur) {
4739             assert(state == activeState, "check");
4740             prev = cur->next_addr();
4741           }
4742           interval_moved(cur, kind, state, activeState);
4743         } else {
4744           // sort into inactive list
4745           append_sorted(inactive_first_addr(kind), cur);
4746           cur->set_state(inactiveState);
4747           if (*prev == cur) {
4748             assert(state == inactiveState, "check");
4749             prev = cur->next_addr();
4750           }
4751           interval_moved(cur, kind, state, inactiveState);
4752         }
4753       } else {
4754         prev = cur->next_addr();
4755         continue;
4756       }
4757     }
4758   }
4759 }
4760 
4761 
4762 void IntervalWalker::next_interval() {
4763   IntervalKind kind;
4764   Interval* any   = _unhandled_first[anyKind];
4765   Interval* fixed = _unhandled_first[fixedKind];
4766 
4767   if (any != Interval::end()) {
4768     // intervals may start at same position -> prefer fixed interval
4769     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4770 
4771     assert (kind == fixedKind && fixed->from() <= any->from() ||
4772             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4773     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4774 
4775   } else if (fixed != Interval::end()) {
4776     kind = fixedKind;
4777   } else {
4778     _current = NULL; return;
4779   }
4780   _current_kind = kind;
4781   _current = _unhandled_first[kind];
4782   _unhandled_first[kind] = _current->next();
4783   _current->set_next(Interval::end());
4784   _current->rewind_range();
4785 }
4786 
4787 
4788 void IntervalWalker::walk_to(int lir_op_id) {
4789   assert(_current_position <= lir_op_id, "can not walk backwards");
4790   while (current() != NULL) {
4791     bool is_active = current()->from() <= lir_op_id;
4792     int id = is_active ? current()->from() : lir_op_id;
4793 
4794     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4795 
4796     // set _current_position prior to call of walk_to
4797     _current_position = id;
4798 
4799     // call walk_to even if _current_position == id
4800     walk_to(activeState, id);
4801     walk_to(inactiveState, id);
4802 
4803     if (is_active) {
4804       current()->set_state(activeState);
4805       if (activate_current()) {
4806         append_sorted(active_first_addr(current_kind()), current());
4807         interval_moved(current(), current_kind(), unhandledState, activeState);
4808       }
4809 
4810       next_interval();
4811     } else {
4812       return;
4813     }
4814   }
4815 }
4816 
4817 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4818 #ifndef PRODUCT
4819   if (TraceLinearScanLevel >= 4) {
4820     #define print_state(state) \
4821     switch(state) {\
4822       case unhandledState: tty->print("unhandled"); break;\
4823       case activeState: tty->print("active"); break;\
4824       case inactiveState: tty->print("inactive"); break;\
4825       case handledState: tty->print("handled"); break;\
4826       default: ShouldNotReachHere(); \
4827     }
4828 
4829     print_state(from); tty->print(" to "); print_state(to);
4830     tty->fill_to(23);
4831     interval->print();
4832 
4833     #undef print_state
4834   }
4835 #endif
4836 }
4837 
4838 
4839 
4840 // **** Implementation of LinearScanWalker **************************
4841 
4842 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4843   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4844   , _move_resolver(allocator)
4845 {
4846   for (int i = 0; i < LinearScan::nof_regs; i++) {
4847     _spill_intervals[i] = new IntervalList(2);
4848   }
4849 }
4850 
4851 
4852 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4853   for (int i = _first_reg; i <= _last_reg; i++) {
4854     _use_pos[i] = max_jint;
4855 
4856     if (!only_process_use_pos) {
4857       _block_pos[i] = max_jint;
4858       _spill_intervals[i]->clear();
4859     }
4860   }
4861 }
4862 
4863 inline void LinearScanWalker::exclude_from_use(int reg) {
4864   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4865   if (reg >= _first_reg && reg <= _last_reg) {
4866     _use_pos[reg] = 0;
4867   }
4868 }
4869 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4870   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4871 
4872   exclude_from_use(i->assigned_reg());
4873   exclude_from_use(i->assigned_regHi());
4874 }
4875 
4876 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4877   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4878 
4879   if (reg >= _first_reg && reg <= _last_reg) {
4880     if (_use_pos[reg] > use_pos) {
4881       _use_pos[reg] = use_pos;
4882     }
4883     if (!only_process_use_pos) {
4884       _spill_intervals[reg]->append(i);
4885     }
4886   }
4887 }
4888 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4889   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4890   if (use_pos != -1) {
4891     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4892     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4893   }
4894 }
4895 
4896 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4897   if (reg >= _first_reg && reg <= _last_reg) {
4898     if (_block_pos[reg] > block_pos) {
4899       _block_pos[reg] = block_pos;
4900     }
4901     if (_use_pos[reg] > block_pos) {
4902       _use_pos[reg] = block_pos;
4903     }
4904   }
4905 }
4906 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4907   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4908   if (block_pos != -1) {
4909     set_block_pos(i->assigned_reg(), i, block_pos);
4910     set_block_pos(i->assigned_regHi(), i, block_pos);
4911   }
4912 }
4913 
4914 
4915 void LinearScanWalker::free_exclude_active_fixed() {
4916   Interval* list = active_first(fixedKind);
4917   while (list != Interval::end()) {
4918     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4919     exclude_from_use(list);
4920     list = list->next();
4921   }
4922 }
4923 
4924 void LinearScanWalker::free_exclude_active_any() {
4925   Interval* list = active_first(anyKind);
4926   while (list != Interval::end()) {
4927     exclude_from_use(list);
4928     list = list->next();
4929   }
4930 }
4931 
4932 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4933   Interval* list = inactive_first(fixedKind);
4934   while (list != Interval::end()) {
4935     if (cur->to() <= list->current_from()) {
4936       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4937       set_use_pos(list, list->current_from(), true);
4938     } else {
4939       set_use_pos(list, list->current_intersects_at(cur), true);
4940     }
4941     list = list->next();
4942   }
4943 }
4944 
4945 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4946   Interval* list = inactive_first(anyKind);
4947   while (list != Interval::end()) {
4948     set_use_pos(list, list->current_intersects_at(cur), true);
4949     list = list->next();
4950   }
4951 }
4952 
4953 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4954   Interval* list = unhandled_first(kind);
4955   while (list != Interval::end()) {
4956     set_use_pos(list, list->intersects_at(cur), true);
4957     if (kind == fixedKind && cur->to() <= list->from()) {
4958       set_use_pos(list, list->from(), true);
4959     }
4960     list = list->next();
4961   }
4962 }
4963 
4964 void LinearScanWalker::spill_exclude_active_fixed() {
4965   Interval* list = active_first(fixedKind);
4966   while (list != Interval::end()) {
4967     exclude_from_use(list);
4968     list = list->next();
4969   }
4970 }
4971 
4972 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4973   Interval* list = unhandled_first(fixedKind);
4974   while (list != Interval::end()) {
4975     set_block_pos(list, list->intersects_at(cur));
4976     list = list->next();
4977   }
4978 }
4979 
4980 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4981   Interval* list = inactive_first(fixedKind);
4982   while (list != Interval::end()) {
4983     if (cur->to() > list->current_from()) {
4984       set_block_pos(list, list->current_intersects_at(cur));
4985     } else {
4986       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4987     }
4988 
4989     list = list->next();
4990   }
4991 }
4992 
4993 void LinearScanWalker::spill_collect_active_any() {
4994   Interval* list = active_first(anyKind);
4995   while (list != Interval::end()) {
4996     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4997     list = list->next();
4998   }
4999 }
5000 
5001 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
5002   Interval* list = inactive_first(anyKind);
5003   while (list != Interval::end()) {
5004     if (list->current_intersects(cur)) {
5005       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
5006     }
5007     list = list->next();
5008   }
5009 }
5010 
5011 
5012 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
5013   // output all moves here. When source and target are equal, the move is
5014   // optimized away later in assign_reg_nums
5015 
5016   op_id = (op_id + 1) & ~1;
5017   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
5018   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
5019 
5020   // calculate index of instruction inside instruction list of current block
5021   // the minimal index (for a block with no spill moves) can be calculated because the
5022   // numbering of instructions is known.
5023   // When the block already contains spill moves, the index must be increased until the
5024   // correct index is reached.
5025   LIR_OpList* list = op_block->lir()->instructions_list();
5026   int index = (op_id - list->at(0)->id()) / 2;
5027   assert(list->at(index)->id() <= op_id, "error in calculation");
5028 
5029   while (list->at(index)->id() != op_id) {
5030     index++;
5031     assert(0 <= index && index < list->length(), "index out of bounds");
5032   }
5033   assert(1 <= index && index < list->length(), "index out of bounds");
5034   assert(list->at(index)->id() == op_id, "error in calculation");
5035 
5036   // insert new instruction before instruction at position index
5037   _move_resolver.move_insert_position(op_block->lir(), index - 1);
5038   _move_resolver.add_mapping(src_it, dst_it);
5039 }
5040 
5041 
5042 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5043   int from_block_nr = min_block->linear_scan_number();
5044   int to_block_nr = max_block->linear_scan_number();
5045 
5046   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5047   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5048   assert(from_block_nr < to_block_nr, "must cross block boundary");
5049 
5050   // Try to split at end of max_block. If this would be after
5051   // max_split_pos, then use the begin of max_block
5052   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5053   if (optimal_split_pos > max_split_pos) {
5054     optimal_split_pos = max_block->first_lir_instruction_id();
5055   }
5056 
5057   int min_loop_depth = max_block->loop_depth();
5058   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5059     BlockBegin* cur = block_at(i);
5060 
5061     if (cur->loop_depth() < min_loop_depth) {
5062       // block with lower loop-depth found -> split at the end of this block
5063       min_loop_depth = cur->loop_depth();
5064       optimal_split_pos = cur->last_lir_instruction_id() + 2;
5065     }
5066   }
5067   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5068 
5069   return optimal_split_pos;
5070 }
5071 
5072 
5073 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5074   int optimal_split_pos = -1;
5075   if (min_split_pos == max_split_pos) {
5076     // trivial case, no optimization of split position possible
5077     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
5078     optimal_split_pos = min_split_pos;
5079 
5080   } else {
5081     assert(min_split_pos < max_split_pos, "must be true then");
5082     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5083 
5084     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5085     // beginning of a block, then min_split_pos is also a possible split position.
5086     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5087     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5088 
5089     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5090     // when an interval ends at the end of the last block of the method
5091     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5092     // block at this op_id)
5093     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5094 
5095     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5096     if (min_block == max_block) {
5097       // split position cannot be moved to block boundary, so split as late as possible
5098       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5099       optimal_split_pos = max_split_pos;
5100 
5101     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5102       // Do not move split position if the interval has a hole before max_split_pos.
5103       // Intervals resulting from Phi-Functions have more than one definition (marked
5104       // as mustHaveRegister) with a hole before each definition. When the register is needed
5105       // for the second definition, an earlier reloading is unnecessary.
5106       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5107       optimal_split_pos = max_split_pos;
5108 
5109     } else {
5110       // seach optimal block boundary between min_split_pos and max_split_pos
5111       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5112 
5113       if (do_loop_optimization) {
5114         // Loop optimization: if a loop-end marker is found between min- and max-position,
5115         // then split before this loop
5116         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5117         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5118 
5119         assert(loop_end_pos > min_split_pos, "invalid order");
5120         if (loop_end_pos < max_split_pos) {
5121           // loop-end marker found between min- and max-position
5122           // if it is not the end marker for the same loop as the min-position, then move
5123           // the max-position to this loop block.
5124           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5125           // of the interval (normally, only mustHaveRegister causes a reloading)
5126           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5127 
5128           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5129           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5130 
5131           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5132           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5133             optimal_split_pos = -1;
5134             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5135           } else {
5136             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5137           }
5138         }
5139       }
5140 
5141       if (optimal_split_pos == -1) {
5142         // not calculated by loop optimization
5143         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5144       }
5145     }
5146   }
5147   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5148 
5149   return optimal_split_pos;
5150 }
5151 
5152 
5153 /*
5154   split an interval at the optimal position between min_split_pos and
5155   max_split_pos in two parts:
5156   1) the left part has already a location assigned
5157   2) the right part is sorted into to the unhandled-list
5158 */
5159 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5160   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5161   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5162 
5163   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5164   assert(current_position() < min_split_pos, "cannot split before current position");
5165   assert(min_split_pos <= max_split_pos,     "invalid order");
5166   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5167 
5168   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5169 
5170   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5171   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5172   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5173 
5174   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5175     // the split position would be just before the end of the interval
5176     // -> no split at all necessary
5177     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5178     return;
5179   }
5180 
5181   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5182   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5183 
5184   if (!allocator()->is_block_begin(optimal_split_pos)) {
5185     // move position before actual instruction (odd op_id)
5186     optimal_split_pos = (optimal_split_pos - 1) | 1;
5187   }
5188 
5189   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5190   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5191   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5192 
5193   Interval* split_part = it->split(optimal_split_pos);
5194 
5195   allocator()->append_interval(split_part);
5196   allocator()->copy_register_flags(it, split_part);
5197   split_part->set_insert_move_when_activated(move_necessary);
5198   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5199 
5200   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5201   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5202   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5203 }
5204 
5205 /*
5206   split an interval at the optimal position between min_split_pos and
5207   max_split_pos in two parts:
5208   1) the left part has already a location assigned
5209   2) the right part is always on the stack and therefore ignored in further processing
5210 */
5211 void LinearScanWalker::split_for_spilling(Interval* it) {
5212   // calculate allowed range of splitting position
5213   int max_split_pos = current_position();
5214   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5215 
5216   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5217   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5218 
5219   assert(it->state() == activeState,     "why spill interval that is not active?");
5220   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5221   assert(min_split_pos <= max_split_pos, "invalid order");
5222   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5223   assert(current_position() < it->to(),  "interval must not end before current position");
5224 
5225   if (min_split_pos == it->from()) {
5226     // the whole interval is never used, so spill it entirely to memory
5227     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5228     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5229 
5230     allocator()->assign_spill_slot(it);
5231     allocator()->change_spill_state(it, min_split_pos);
5232 
5233     // Also kick parent intervals out of register to memory when they have no use
5234     // position. This avoids short interval in register surrounded by intervals in
5235     // memory -> avoid useless moves from memory to register and back
5236     Interval* parent = it;
5237     while (parent != NULL && parent->is_split_child()) {
5238       parent = parent->split_child_before_op_id(parent->from());
5239 
5240       if (parent->assigned_reg() < LinearScan::nof_regs) {
5241         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5242           // parent is never used, so kick it out of its assigned register
5243           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5244           allocator()->assign_spill_slot(parent);
5245         } else {
5246           // do not go further back because the register is actually used by the interval
5247           parent = NULL;
5248         }
5249       }
5250     }
5251 
5252   } else {
5253     // search optimal split pos, split interval and spill only the right hand part
5254     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5255 
5256     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5257     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5258     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5259 
5260     if (!allocator()->is_block_begin(optimal_split_pos)) {
5261       // move position before actual instruction (odd op_id)
5262       optimal_split_pos = (optimal_split_pos - 1) | 1;
5263     }
5264 
5265     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5266     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5267     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5268 
5269     Interval* spilled_part = it->split(optimal_split_pos);
5270     allocator()->append_interval(spilled_part);
5271     allocator()->assign_spill_slot(spilled_part);
5272     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5273 
5274     if (!allocator()->is_block_begin(optimal_split_pos)) {
5275       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5276       insert_move(optimal_split_pos, it, spilled_part);
5277     }
5278 
5279     // the current_split_child is needed later when moves are inserted for reloading
5280     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5281     spilled_part->make_current_split_child();
5282 
5283     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5284     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5285     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5286   }
5287 }
5288 
5289 
5290 void LinearScanWalker::split_stack_interval(Interval* it) {
5291   int min_split_pos = current_position() + 1;
5292   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5293 
5294   split_before_usage(it, min_split_pos, max_split_pos);
5295 }
5296 
5297 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5298   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5299   int max_split_pos = register_available_until;
5300 
5301   split_before_usage(it, min_split_pos, max_split_pos);
5302 }
5303 
5304 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5305   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5306 
5307   int current_pos = current_position();
5308   if (it->state() == inactiveState) {
5309     // the interval is currently inactive, so no spill slot is needed for now.
5310     // when the split part is activated, the interval has a new chance to get a register,
5311     // so in the best case no stack slot is necessary
5312     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5313     split_before_usage(it, current_pos + 1, current_pos + 1);
5314 
5315   } else {
5316     // search the position where the interval must have a register and split
5317     // at the optimal position before.
5318     // The new created part is added to the unhandled list and will get a register
5319     // when it is activated
5320     int min_split_pos = current_pos + 1;
5321     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5322 
5323     split_before_usage(it, min_split_pos, max_split_pos);
5324 
5325     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5326     split_for_spilling(it);
5327   }
5328 }
5329 
5330 
5331 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5332   int min_full_reg = any_reg;
5333   int max_partial_reg = any_reg;
5334 
5335   for (int i = _first_reg; i <= _last_reg; i++) {
5336     if (i == ignore_reg) {
5337       // this register must be ignored
5338 
5339     } else if (_use_pos[i] >= interval_to) {
5340       // this register is free for the full interval
5341       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5342         min_full_reg = i;
5343       }
5344     } else if (_use_pos[i] > reg_needed_until) {
5345       // this register is at least free until reg_needed_until
5346       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5347         max_partial_reg = i;
5348       }
5349     }
5350   }
5351 
5352   if (min_full_reg != any_reg) {
5353     return min_full_reg;
5354   } else if (max_partial_reg != any_reg) {
5355     *need_split = true;
5356     return max_partial_reg;
5357   } else {
5358     return any_reg;
5359   }
5360 }
5361 
5362 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5363   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5364 
5365   int min_full_reg = any_reg;
5366   int max_partial_reg = any_reg;
5367 
5368   for (int i = _first_reg; i < _last_reg; i+=2) {
5369     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5370       // this register is free for the full interval
5371       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5372         min_full_reg = i;
5373       }
5374     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5375       // this register is at least free until reg_needed_until
5376       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5377         max_partial_reg = i;
5378       }
5379     }
5380   }
5381 
5382   if (min_full_reg != any_reg) {
5383     return min_full_reg;
5384   } else if (max_partial_reg != any_reg) {
5385     *need_split = true;
5386     return max_partial_reg;
5387   } else {
5388     return any_reg;
5389   }
5390 }
5391 
5392 
5393 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5394   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5395 
5396   init_use_lists(true);
5397   free_exclude_active_fixed();
5398   free_exclude_active_any();
5399   free_collect_inactive_fixed(cur);
5400   free_collect_inactive_any(cur);
5401 //  free_collect_unhandled(fixedKind, cur);
5402   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5403 
5404   // _use_pos contains the start of the next interval that has this register assigned
5405   // (either as a fixed register or a normal allocated register in the past)
5406   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5407   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5408   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5409 
5410   int hint_reg, hint_regHi;
5411   Interval* register_hint = cur->register_hint();
5412   if (register_hint != NULL) {
5413     hint_reg = register_hint->assigned_reg();
5414     hint_regHi = register_hint->assigned_regHi();
5415 
5416     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5417       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5418       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5419     }
5420     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5421 
5422   } else {
5423     hint_reg = any_reg;
5424     hint_regHi = any_reg;
5425   }
5426   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5427   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5428 
5429   // the register must be free at least until this position
5430   int reg_needed_until = cur->from() + 1;
5431   int interval_to = cur->to();
5432 
5433   bool need_split = false;
5434   int split_pos = -1;
5435   int reg = any_reg;
5436   int regHi = any_reg;
5437 
5438   if (_adjacent_regs) {
5439     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5440     regHi = reg + 1;
5441     if (reg == any_reg) {
5442       return false;
5443     }
5444     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5445 
5446   } else {
5447     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5448     if (reg == any_reg) {
5449       return false;
5450     }
5451     split_pos = _use_pos[reg];
5452 
5453     if (_num_phys_regs == 2) {
5454       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5455 
5456       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5457         // do not split interval if only one register can be assigned until the split pos
5458         // (when one register is found for the whole interval, split&spill is only
5459         // performed for the hi register)
5460         return false;
5461 
5462       } else if (regHi != any_reg) {
5463         split_pos = MIN2(split_pos, _use_pos[regHi]);
5464 
5465         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5466         if (reg > regHi) {
5467           int temp = reg;
5468           reg = regHi;
5469           regHi = temp;
5470         }
5471       }
5472     }
5473   }
5474 
5475   cur->assign_reg(reg, regHi);
5476   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5477 
5478   assert(split_pos > 0, "invalid split_pos");
5479   if (need_split) {
5480     // register not available for full interval, so split it
5481     split_when_partial_register_available(cur, split_pos);
5482   }
5483 
5484   // only return true if interval is completely assigned
5485   return _num_phys_regs == 1 || regHi != any_reg;
5486 }
5487 
5488 
5489 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5490   int max_reg = any_reg;
5491 
5492   for (int i = _first_reg; i <= _last_reg; i++) {
5493     if (i == ignore_reg) {
5494       // this register must be ignored
5495 
5496     } else if (_use_pos[i] > reg_needed_until) {
5497       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5498         max_reg = i;
5499       }
5500     }
5501   }
5502 
5503   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5504     *need_split = true;
5505   }
5506 
5507   return max_reg;
5508 }
5509 
5510 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5511   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5512 
5513   int max_reg = any_reg;
5514 
5515   for (int i = _first_reg; i < _last_reg; i+=2) {
5516     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5517       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5518         max_reg = i;
5519       }
5520     }
5521   }
5522 
5523   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5524     *need_split = true;
5525   }
5526 
5527   return max_reg;
5528 }
5529 
5530 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5531   assert(reg != any_reg, "no register assigned");
5532 
5533   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5534     Interval* it = _spill_intervals[reg]->at(i);
5535     remove_from_list(it);
5536     split_and_spill_interval(it);
5537   }
5538 
5539   if (regHi != any_reg) {
5540     IntervalList* processed = _spill_intervals[reg];
5541     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5542       Interval* it = _spill_intervals[regHi]->at(i);
5543       if (processed->find(it) == -1) {
5544         remove_from_list(it);
5545         split_and_spill_interval(it);
5546       }
5547     }
5548   }
5549 }
5550 
5551 
5552 // Split an Interval and spill it to memory so that cur can be placed in a register
5553 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5554   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5555 
5556   // collect current usage of registers
5557   init_use_lists(false);
5558   spill_exclude_active_fixed();
5559 //  spill_block_unhandled_fixed(cur);
5560   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5561   spill_block_inactive_fixed(cur);
5562   spill_collect_active_any();
5563   spill_collect_inactive_any(cur);
5564 
5565 #ifndef PRODUCT
5566   if (TraceLinearScanLevel >= 4) {
5567     tty->print_cr("      state of registers:");
5568     for (int i = _first_reg; i <= _last_reg; i++) {
5569       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5570       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5571         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5572       }
5573       tty->cr();
5574     }
5575   }
5576 #endif
5577 
5578   // the register must be free at least until this position
5579   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5580   int interval_to = cur->to();
5581   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5582 
5583   int split_pos = 0;
5584   int use_pos = 0;
5585   bool need_split = false;
5586   int reg, regHi;
5587 
5588   if (_adjacent_regs) {
5589     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5590     regHi = reg + 1;
5591 
5592     if (reg != any_reg) {
5593       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5594       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5595     }
5596   } else {
5597     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5598     regHi = any_reg;
5599 
5600     if (reg != any_reg) {
5601       use_pos = _use_pos[reg];
5602       split_pos = _block_pos[reg];
5603 
5604       if (_num_phys_regs == 2) {
5605         if (cur->assigned_reg() != any_reg) {
5606           regHi = reg;
5607           reg = cur->assigned_reg();
5608         } else {
5609           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5610           if (regHi != any_reg) {
5611             use_pos = MIN2(use_pos, _use_pos[regHi]);
5612             split_pos = MIN2(split_pos, _block_pos[regHi]);
5613           }
5614         }
5615 
5616         if (regHi != any_reg && reg > regHi) {
5617           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5618           int temp = reg;
5619           reg = regHi;
5620           regHi = temp;
5621         }
5622       }
5623     }
5624   }
5625 
5626   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5627     // the first use of cur is later than the spilling position -> spill cur
5628     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5629 
5630     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5631       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5632       // assign a reasonable register and do a bailout in product mode to avoid errors
5633       allocator()->assign_spill_slot(cur);
5634       BAILOUT("LinearScan: no register found");
5635     }
5636 
5637     split_and_spill_interval(cur);
5638   } else {
5639     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5640     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5641     assert(split_pos > 0, "invalid split_pos");
5642     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5643 
5644     cur->assign_reg(reg, regHi);
5645     if (need_split) {
5646       // register not available for full interval, so split it
5647       split_when_partial_register_available(cur, split_pos);
5648     }
5649 
5650     // perform splitting and spilling for all affected intervalls
5651     split_and_spill_intersecting_intervals(reg, regHi);
5652   }
5653 }
5654 
5655 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5656 #ifdef X86
5657   // fast calculation of intervals that can never get a register because the
5658   // the next instruction is a call that blocks all registers
5659   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5660 
5661   // check if this interval is the result of a split operation
5662   // (an interval got a register until this position)
5663   int pos = cur->from();
5664   if ((pos & 1) == 1) {
5665     // the current instruction is a call that blocks all registers
5666     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5667       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5668 
5669       // safety check that there is really no register available
5670       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5671       return true;
5672     }
5673 
5674   }
5675 #endif
5676   return false;
5677 }
5678 
5679 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5680   BasicType type = cur->type();
5681   _num_phys_regs = LinearScan::num_physical_regs(type);
5682   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5683 
5684   if (pd_init_regs_for_alloc(cur)) {
5685     // the appropriate register range was selected.
5686   } else if (type == T_FLOAT || type == T_DOUBLE) {
5687     _first_reg = pd_first_fpu_reg;
5688     _last_reg = pd_last_fpu_reg;
5689   } else {
5690     _first_reg = pd_first_cpu_reg;
5691     _last_reg = FrameMap::last_cpu_reg();
5692   }
5693 
5694   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5695   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5696 }
5697 
5698 
5699 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5700   if (op->code() != lir_move) {
5701     return false;
5702   }
5703   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5704 
5705   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5706   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5707   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5708 }
5709 
5710 // optimization (especially for phi functions of nested loops):
5711 // assign same spill slot to non-intersecting intervals
5712 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5713   if (cur->is_split_child()) {
5714     // optimization is only suitable for split parents
5715     return;
5716   }
5717 
5718   Interval* register_hint = cur->register_hint(false);
5719   if (register_hint == NULL) {
5720     // cur is not the target of a move, otherwise register_hint would be set
5721     return;
5722   }
5723   assert(register_hint->is_split_parent(), "register hint must be split parent");
5724 
5725   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5726     // combining the stack slots for intervals where spill move optimization is applied
5727     // is not benefitial and would cause problems
5728     return;
5729   }
5730 
5731   int begin_pos = cur->from();
5732   int end_pos = cur->to();
5733   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5734     // safety check that lir_op_with_id is allowed
5735     return;
5736   }
5737 
5738   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5739     // cur and register_hint are not connected with two moves
5740     return;
5741   }
5742 
5743   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5744   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5745   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5746     // register_hint must be split, otherwise the re-writing of use positions does not work
5747     return;
5748   }
5749 
5750   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5751   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5752   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5753   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5754 
5755   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5756     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5757     return;
5758   }
5759   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5760 
5761   // modify intervals such that cur gets the same stack slot as register_hint
5762   // delete use positions to prevent the intervals to get a register at beginning
5763   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5764   cur->remove_first_use_pos();
5765   end_hint->remove_first_use_pos();
5766 }
5767 
5768 
5769 // allocate a physical register or memory location to an interval
5770 bool LinearScanWalker::activate_current() {
5771   Interval* cur = current();
5772   bool result = true;
5773 
5774   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5775   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5776 
5777   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5778     // activating an interval that has a stack slot assigned -> split it at first use position
5779     // used for method parameters
5780     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5781 
5782     split_stack_interval(cur);
5783     result = false;
5784 
5785   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5786     // activating an interval that must start in a stack slot, but may get a register later
5787     // used for lir_roundfp: rounding is done by store to stack and reload later
5788     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5789     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5790 
5791     allocator()->assign_spill_slot(cur);
5792     split_stack_interval(cur);
5793     result = false;
5794 
5795   } else if (cur->assigned_reg() == any_reg) {
5796     // interval has not assigned register -> normal allocation
5797     // (this is the normal case for most intervals)
5798     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5799 
5800     // assign same spill slot to non-intersecting intervals
5801     combine_spilled_intervals(cur);
5802 
5803     init_vars_for_alloc(cur);
5804     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5805       // no empty register available.
5806       // split and spill another interval so that this interval gets a register
5807       alloc_locked_reg(cur);
5808     }
5809 
5810     // spilled intervals need not be move to active-list
5811     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5812       result = false;
5813     }
5814   }
5815 
5816   // load spilled values that become active from stack slot to register
5817   if (cur->insert_move_when_activated()) {
5818     assert(cur->is_split_child(), "must be");
5819     assert(cur->current_split_child() != NULL, "must be");
5820     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5821     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5822 
5823     insert_move(cur->from(), cur->current_split_child(), cur);
5824   }
5825   cur->make_current_split_child();
5826 
5827   return result; // true = interval is moved to active list
5828 }
5829 
5830 
5831 // Implementation of EdgeMoveOptimizer
5832 
5833 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5834   _edge_instructions(4),
5835   _edge_instructions_idx(4)
5836 {
5837 }
5838 
5839 void EdgeMoveOptimizer::optimize(BlockList* code) {
5840   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5841 
5842   // ignore the first block in the list (index 0 is not processed)
5843   for (int i = code->length() - 1; i >= 1; i--) {
5844     BlockBegin* block = code->at(i);
5845 
5846     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5847       optimizer.optimize_moves_at_block_end(block);
5848     }
5849     if (block->number_of_sux() == 2) {
5850       optimizer.optimize_moves_at_block_begin(block);
5851     }
5852   }
5853 }
5854 
5855 
5856 // clear all internal data structures
5857 void EdgeMoveOptimizer::init_instructions() {
5858   _edge_instructions.clear();
5859   _edge_instructions_idx.clear();
5860 }
5861 
5862 // append a lir-instruction-list and the index of the current operation in to the list
5863 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5864   _edge_instructions.append(instructions);
5865   _edge_instructions_idx.append(instructions_idx);
5866 }
5867 
5868 // return the current operation of the given edge (predecessor or successor)
5869 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5870   LIR_OpList* instructions = _edge_instructions.at(edge);
5871   int idx = _edge_instructions_idx.at(edge);
5872 
5873   if (idx < instructions->length()) {
5874     return instructions->at(idx);
5875   } else {
5876     return NULL;
5877   }
5878 }
5879 
5880 // removes the current operation of the given edge (predecessor or successor)
5881 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5882   LIR_OpList* instructions = _edge_instructions.at(edge);
5883   int idx = _edge_instructions_idx.at(edge);
5884   instructions->remove_at(idx);
5885 
5886   if (decrement_index) {
5887     _edge_instructions_idx.at_put(edge, idx - 1);
5888   }
5889 }
5890 
5891 
5892 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5893   if (op1 == NULL || op2 == NULL) {
5894     // at least one block is already empty -> no optimization possible
5895     return true;
5896   }
5897 
5898   if (op1->code() == lir_move && op2->code() == lir_move) {
5899     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5900     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5901     LIR_Op1* move1 = (LIR_Op1*)op1;
5902     LIR_Op1* move2 = (LIR_Op1*)op2;
5903     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5904       // these moves are exactly equal and can be optimized
5905       return false;
5906     }
5907 
5908   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5909     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5910     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5911     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5912     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5913     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5914       // equal FPU stack operations can be optimized
5915       return false;
5916     }
5917 
5918   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5919     // equal FPU stack operations can be optimized
5920     return false;
5921   }
5922 
5923   // no optimization possible
5924   return true;
5925 }
5926 
5927 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5928   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5929 
5930   if (block->is_predecessor(block)) {
5931     // currently we can't handle this correctly.
5932     return;
5933   }
5934 
5935   init_instructions();
5936   int num_preds = block->number_of_preds();
5937   assert(num_preds > 1, "do not call otherwise");
5938   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5939 
5940   // setup a list with the lir-instructions of all predecessors
5941   int i;
5942   for (i = 0; i < num_preds; i++) {
5943     BlockBegin* pred = block->pred_at(i);
5944     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5945 
5946     if (pred->number_of_sux() != 1) {
5947       // this can happen with switch-statements where multiple edges are between
5948       // the same blocks.
5949       return;
5950     }
5951 
5952     assert(pred->number_of_sux() == 1, "can handle only one successor");
5953     assert(pred->sux_at(0) == block, "invalid control flow");
5954     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5955     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5956     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5957 
5958     if (pred_instructions->last()->info() != NULL) {
5959       // can not optimize instructions when debug info is needed
5960       return;
5961     }
5962 
5963     // ignore the unconditional branch at the end of the block
5964     append_instructions(pred_instructions, pred_instructions->length() - 2);
5965   }
5966 
5967 
5968   // process lir-instructions while all predecessors end with the same instruction
5969   while (true) {
5970     LIR_Op* op = instruction_at(0);
5971     for (i = 1; i < num_preds; i++) {
5972       if (operations_different(op, instruction_at(i))) {
5973         // these instructions are different and cannot be optimized ->
5974         // no further optimization possible
5975         return;
5976       }
5977     }
5978 
5979     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5980 
5981     // insert the instruction at the beginning of the current block
5982     block->lir()->insert_before(1, op);
5983 
5984     // delete the instruction at the end of all predecessors
5985     for (i = 0; i < num_preds; i++) {
5986       remove_cur_instruction(i, true);
5987     }
5988   }
5989 }
5990 
5991 
5992 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5993   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5994 
5995   init_instructions();
5996   int num_sux = block->number_of_sux();
5997 
5998   LIR_OpList* cur_instructions = block->lir()->instructions_list();
5999 
6000   assert(num_sux == 2, "method should not be called otherwise");
6001   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
6002   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6003   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
6004 
6005   if (cur_instructions->last()->info() != NULL) {
6006     // can no optimize instructions when debug info is needed
6007     return;
6008   }
6009 
6010   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
6011   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
6012     // not a valid case for optimization
6013     // currently, only blocks that end with two branches (conditional branch followed
6014     // by unconditional branch) are optimized
6015     return;
6016   }
6017 
6018   // now it is guaranteed that the block ends with two branch instructions.
6019   // the instructions are inserted at the end of the block before these two branches
6020   int insert_idx = cur_instructions->length() - 2;
6021 
6022   int i;
6023 #ifdef ASSERT
6024   for (i = insert_idx - 1; i >= 0; i--) {
6025     LIR_Op* op = cur_instructions->at(i);
6026     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
6027       assert(false, "block with two successors can have only two branch instructions");
6028     }
6029   }
6030 #endif
6031 
6032   // setup a list with the lir-instructions of all successors
6033   for (i = 0; i < num_sux; i++) {
6034     BlockBegin* sux = block->sux_at(i);
6035     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
6036 
6037     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
6038 
6039     if (sux->number_of_preds() != 1) {
6040       // this can happen with switch-statements where multiple edges are between
6041       // the same blocks.
6042       return;
6043     }
6044     assert(sux->pred_at(0) == block, "invalid control flow");
6045     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6046 
6047     // ignore the label at the beginning of the block
6048     append_instructions(sux_instructions, 1);
6049   }
6050 
6051   // process lir-instructions while all successors begin with the same instruction
6052   while (true) {
6053     LIR_Op* op = instruction_at(0);
6054     for (i = 1; i < num_sux; i++) {
6055       if (operations_different(op, instruction_at(i))) {
6056         // these instructions are different and cannot be optimized ->
6057         // no further optimization possible
6058         return;
6059       }
6060     }
6061 
6062     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6063 
6064     // insert instruction at end of current block
6065     block->lir()->insert_before(insert_idx, op);
6066     insert_idx++;
6067 
6068     // delete the instructions at the beginning of all successors
6069     for (i = 0; i < num_sux; i++) {
6070       remove_cur_instruction(i, false);
6071     }
6072   }
6073 }
6074 
6075 
6076 // Implementation of ControlFlowOptimizer
6077 
6078 ControlFlowOptimizer::ControlFlowOptimizer() :
6079   _original_preds(4)
6080 {
6081 }
6082 
6083 void ControlFlowOptimizer::optimize(BlockList* code) {
6084   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6085 
6086   // push the OSR entry block to the end so that we're not jumping over it.
6087   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6088   if (osr_entry) {
6089     int index = osr_entry->linear_scan_number();
6090     assert(code->at(index) == osr_entry, "wrong index");
6091     code->remove_at(index);
6092     code->append(osr_entry);
6093   }
6094 
6095   optimizer.reorder_short_loops(code);
6096   optimizer.delete_empty_blocks(code);
6097   optimizer.delete_unnecessary_jumps(code);
6098   optimizer.delete_jumps_to_return(code);
6099 }
6100 
6101 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6102   int i = header_idx + 1;
6103   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6104   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6105     i++;
6106   }
6107 
6108   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6109     int end_idx = i - 1;
6110     BlockBegin* end_block = code->at(end_idx);
6111 
6112     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6113       // short loop from header_idx to end_idx found -> reorder blocks such that
6114       // the header_block is the last block instead of the first block of the loop
6115       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6116                                          end_idx - header_idx + 1,
6117                                          header_block->block_id(), end_block->block_id()));
6118 
6119       for (int j = header_idx; j < end_idx; j++) {
6120         code->at_put(j, code->at(j + 1));
6121       }
6122       code->at_put(end_idx, header_block);
6123 
6124       // correct the flags so that any loop alignment occurs in the right place.
6125       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6126       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6127       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6128     }
6129   }
6130 }
6131 
6132 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6133   for (int i = code->length() - 1; i >= 0; i--) {
6134     BlockBegin* block = code->at(i);
6135 
6136     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6137       reorder_short_loop(code, block, i);
6138     }
6139   }
6140 
6141   DEBUG_ONLY(verify(code));
6142 }
6143 
6144 // only blocks with exactly one successor can be deleted. Such blocks
6145 // must always end with an unconditional branch to this successor
6146 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6147   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6148     return false;
6149   }
6150 
6151   LIR_OpList* instructions = block->lir()->instructions_list();
6152 
6153   assert(instructions->length() >= 2, "block must have label and branch");
6154   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6155   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6156   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6157   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6158 
6159   // block must have exactly one successor
6160 
6161   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6162     return true;
6163   }
6164   return false;
6165 }
6166 
6167 // substitute branch targets in all branch-instructions of this blocks
6168 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6169   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6170 
6171   LIR_OpList* instructions = block->lir()->instructions_list();
6172 
6173   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6174   for (int i = instructions->length() - 1; i >= 1; i--) {
6175     LIR_Op* op = instructions->at(i);
6176 
6177     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6178       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6179       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6180 
6181       if (branch->block() == target_from) {
6182         branch->change_block(target_to);
6183       }
6184       if (branch->ublock() == target_from) {
6185         branch->change_ublock(target_to);
6186       }
6187     }
6188   }
6189 }
6190 
6191 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6192   int old_pos = 0;
6193   int new_pos = 0;
6194   int num_blocks = code->length();
6195 
6196   while (old_pos < num_blocks) {
6197     BlockBegin* block = code->at(old_pos);
6198 
6199     if (can_delete_block(block)) {
6200       BlockBegin* new_target = block->sux_at(0);
6201 
6202       // propagate backward branch target flag for correct code alignment
6203       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6204         new_target->set(BlockBegin::backward_branch_target_flag);
6205       }
6206 
6207       // collect a list with all predecessors that contains each predecessor only once
6208       // the predecessors of cur are changed during the substitution, so a copy of the
6209       // predecessor list is necessary
6210       int j;
6211       _original_preds.clear();
6212       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6213         BlockBegin* pred = block->pred_at(j);
6214         if (_original_preds.find(pred) == -1) {
6215           _original_preds.append(pred);
6216         }
6217       }
6218 
6219       for (j = _original_preds.length() - 1; j >= 0; j--) {
6220         BlockBegin* pred = _original_preds.at(j);
6221         substitute_branch_target(pred, block, new_target);
6222         pred->substitute_sux(block, new_target);
6223       }
6224     } else {
6225       // adjust position of this block in the block list if blocks before
6226       // have been deleted
6227       if (new_pos != old_pos) {
6228         code->at_put(new_pos, code->at(old_pos));
6229       }
6230       new_pos++;
6231     }
6232     old_pos++;
6233   }
6234   code->trunc_to(new_pos);
6235 
6236   DEBUG_ONLY(verify(code));
6237 }
6238 
6239 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6240   // skip the last block because there a branch is always necessary
6241   for (int i = code->length() - 2; i >= 0; i--) {
6242     BlockBegin* block = code->at(i);
6243     LIR_OpList* instructions = block->lir()->instructions_list();
6244 
6245     LIR_Op* last_op = instructions->last();
6246     if (last_op->code() == lir_branch) {
6247       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6248       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6249 
6250       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6251       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6252 
6253       if (last_branch->info() == NULL) {
6254         if (last_branch->block() == code->at(i + 1)) {
6255 
6256           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6257 
6258           // delete last branch instruction
6259           instructions->trunc_to(instructions->length() - 1);
6260 
6261         } else {
6262           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6263           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6264             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6265             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6266 
6267             if (prev_branch->stub() == NULL) {
6268 
6269               LIR_Op2* prev_cmp = NULL;
6270               // There might be a cmove inserted for profiling which depends on the same
6271               // compare. If we change the condition of the respective compare, we have
6272               // to take care of this cmove as well.
6273               LIR_Op2* prev_cmove = NULL;
6274 
6275               for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6276                 prev_op = instructions->at(j);
6277                 // check for the cmove
6278                 if (prev_op->code() == lir_cmove) {
6279                   assert(prev_op->as_Op2() != NULL, "cmove must be of type LIR_Op2");
6280                   prev_cmove = (LIR_Op2*)prev_op;
6281                   assert(prev_branch->cond() == prev_cmove->condition(), "should be the same");
6282                 }
6283                 if (prev_op->code() == lir_cmp) {
6284                   assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6285                   prev_cmp = (LIR_Op2*)prev_op;
6286                   assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6287                 }
6288               }
6289               assert(prev_cmp != NULL, "should have found comp instruction for branch");
6290               if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6291 
6292                 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6293 
6294                 // eliminate a conditional branch to the immediate successor
6295                 prev_branch->change_block(last_branch->block());
6296                 prev_branch->negate_cond();
6297                 prev_cmp->set_condition(prev_branch->cond());
6298                 instructions->trunc_to(instructions->length() - 1);
6299                 // if we do change the condition, we have to change the cmove as well
6300                 if (prev_cmove != NULL) {
6301                   prev_cmove->set_condition(prev_branch->cond());
6302                   LIR_Opr t = prev_cmove->in_opr1();
6303                   prev_cmove->set_in_opr1(prev_cmove->in_opr2());
6304                   prev_cmove->set_in_opr2(t);
6305                 }
6306               }
6307             }
6308           }
6309         }
6310       }
6311     }
6312   }
6313 
6314   DEBUG_ONLY(verify(code));
6315 }
6316 
6317 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6318 #ifdef ASSERT
6319   BitMap return_converted(BlockBegin::number_of_blocks());
6320   return_converted.clear();
6321 #endif
6322 
6323   for (int i = code->length() - 1; i >= 0; i--) {
6324     BlockBegin* block = code->at(i);
6325     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6326     LIR_Op*     cur_last_op = cur_instructions->last();
6327 
6328     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6329     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6330       // the block contains only a label and a return
6331       // if a predecessor ends with an unconditional jump to this block, then the jump
6332       // can be replaced with a return instruction
6333       //
6334       // Note: the original block with only a return statement cannot be deleted completely
6335       //       because the predecessors might have other (conditional) jumps to this block
6336       //       -> this may lead to unnecesary return instructions in the final code
6337 
6338       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6339       assert(block->number_of_sux() == 0 ||
6340              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6341              "blocks that end with return must not have successors");
6342 
6343       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6344       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6345 
6346       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6347         BlockBegin* pred = block->pred_at(j);
6348         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6349         LIR_Op*     pred_last_op = pred_instructions->last();
6350 
6351         if (pred_last_op->code() == lir_branch) {
6352           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6353           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6354 
6355           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6356             // replace the jump to a return with a direct return
6357             // Note: currently the edge between the blocks is not deleted
6358             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6359 #ifdef ASSERT
6360             return_converted.set_bit(pred->block_id());
6361 #endif
6362           }
6363         }
6364       }
6365     }
6366   }
6367 }
6368 
6369 
6370 #ifdef ASSERT
6371 void ControlFlowOptimizer::verify(BlockList* code) {
6372   for (int i = 0; i < code->length(); i++) {
6373     BlockBegin* block = code->at(i);
6374     LIR_OpList* instructions = block->lir()->instructions_list();
6375 
6376     int j;
6377     for (j = 0; j < instructions->length(); j++) {
6378       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6379 
6380       if (op_branch != NULL) {
6381         assert(op_branch->block() == NULL || code->find(op_branch->block()) != -1, "branch target not valid");
6382         assert(op_branch->ublock() == NULL || code->find(op_branch->ublock()) != -1, "branch target not valid");
6383       }
6384     }
6385 
6386     for (j = 0; j < block->number_of_sux() - 1; j++) {
6387       BlockBegin* sux = block->sux_at(j);
6388       assert(code->find(sux) != -1, "successor not valid");
6389     }
6390 
6391     for (j = 0; j < block->number_of_preds() - 1; j++) {
6392       BlockBegin* pred = block->pred_at(j);
6393       assert(code->find(pred) != -1, "successor not valid");
6394     }
6395   }
6396 }
6397 #endif
6398 
6399 
6400 #ifndef PRODUCT
6401 
6402 // Implementation of LinearStatistic
6403 
6404 const char* LinearScanStatistic::counter_name(int counter_idx) {
6405   switch (counter_idx) {
6406     case counter_method:          return "compiled methods";
6407     case counter_fpu_method:      return "methods using fpu";
6408     case counter_loop_method:     return "methods with loops";
6409     case counter_exception_method:return "methods with xhandler";
6410 
6411     case counter_loop:            return "loops";
6412     case counter_block:           return "blocks";
6413     case counter_loop_block:      return "blocks inside loop";
6414     case counter_exception_block: return "exception handler entries";
6415     case counter_interval:        return "intervals";
6416     case counter_fixed_interval:  return "fixed intervals";
6417     case counter_range:           return "ranges";
6418     case counter_fixed_range:     return "fixed ranges";
6419     case counter_use_pos:         return "use positions";
6420     case counter_fixed_use_pos:   return "fixed use positions";
6421     case counter_spill_slots:     return "spill slots";
6422 
6423     // counter for classes of lir instructions
6424     case counter_instruction:     return "total instructions";
6425     case counter_label:           return "labels";
6426     case counter_entry:           return "method entries";
6427     case counter_return:          return "method returns";
6428     case counter_call:            return "method calls";
6429     case counter_move:            return "moves";
6430     case counter_cmp:             return "compare";
6431     case counter_cond_branch:     return "conditional branches";
6432     case counter_uncond_branch:   return "unconditional branches";
6433     case counter_stub_branch:     return "branches to stub";
6434     case counter_alu:             return "artithmetic + logic";
6435     case counter_alloc:           return "allocations";
6436     case counter_sync:            return "synchronisation";
6437     case counter_throw:           return "throw";
6438     case counter_unwind:          return "unwind";
6439     case counter_typecheck:       return "type+null-checks";
6440     case counter_fpu_stack:       return "fpu-stack";
6441     case counter_misc_inst:       return "other instructions";
6442     case counter_other_inst:      return "misc. instructions";
6443 
6444     // counter for different types of moves
6445     case counter_move_total:      return "total moves";
6446     case counter_move_reg_reg:    return "register->register";
6447     case counter_move_reg_stack:  return "register->stack";
6448     case counter_move_stack_reg:  return "stack->register";
6449     case counter_move_stack_stack:return "stack->stack";
6450     case counter_move_reg_mem:    return "register->memory";
6451     case counter_move_mem_reg:    return "memory->register";
6452     case counter_move_const_any:  return "constant->any";
6453 
6454     case blank_line_1:            return "";
6455     case blank_line_2:            return "";
6456 
6457     default: ShouldNotReachHere(); return "";
6458   }
6459 }
6460 
6461 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6462   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6463     return counter_method;
6464   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6465     return counter_block;
6466   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6467     return counter_instruction;
6468   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6469     return counter_move_total;
6470   }
6471   return invalid_counter;
6472 }
6473 
6474 LinearScanStatistic::LinearScanStatistic() {
6475   for (int i = 0; i < number_of_counters; i++) {
6476     _counters_sum[i] = 0;
6477     _counters_max[i] = -1;
6478   }
6479 
6480 }
6481 
6482 // add the method-local numbers to the total sum
6483 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6484   for (int i = 0; i < number_of_counters; i++) {
6485     _counters_sum[i] += method_statistic._counters_sum[i];
6486     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6487   }
6488 }
6489 
6490 void LinearScanStatistic::print(const char* title) {
6491   if (CountLinearScan || TraceLinearScanLevel > 0) {
6492     tty->cr();
6493     tty->print_cr("***** LinearScan statistic - %s *****", title);
6494 
6495     for (int i = 0; i < number_of_counters; i++) {
6496       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6497         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6498 
6499         if (base_counter(i) != invalid_counter) {
6500           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6501         } else {
6502           tty->print("           ");
6503         }
6504 
6505         if (_counters_max[i] >= 0) {
6506           tty->print("%8d", _counters_max[i]);
6507         }
6508       }
6509       tty->cr();
6510     }
6511   }
6512 }
6513 
6514 void LinearScanStatistic::collect(LinearScan* allocator) {
6515   inc_counter(counter_method);
6516   if (allocator->has_fpu_registers()) {
6517     inc_counter(counter_fpu_method);
6518   }
6519   if (allocator->num_loops() > 0) {
6520     inc_counter(counter_loop_method);
6521   }
6522   inc_counter(counter_loop, allocator->num_loops());
6523   inc_counter(counter_spill_slots, allocator->max_spills());
6524 
6525   int i;
6526   for (i = 0; i < allocator->interval_count(); i++) {
6527     Interval* cur = allocator->interval_at(i);
6528 
6529     if (cur != NULL) {
6530       inc_counter(counter_interval);
6531       inc_counter(counter_use_pos, cur->num_use_positions());
6532       if (LinearScan::is_precolored_interval(cur)) {
6533         inc_counter(counter_fixed_interval);
6534         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6535       }
6536 
6537       Range* range = cur->first();
6538       while (range != Range::end()) {
6539         inc_counter(counter_range);
6540         if (LinearScan::is_precolored_interval(cur)) {
6541           inc_counter(counter_fixed_range);
6542         }
6543         range = range->next();
6544       }
6545     }
6546   }
6547 
6548   bool has_xhandlers = false;
6549   // Note: only count blocks that are in code-emit order
6550   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6551     BlockBegin* cur = allocator->ir()->code()->at(i);
6552 
6553     inc_counter(counter_block);
6554     if (cur->loop_depth() > 0) {
6555       inc_counter(counter_loop_block);
6556     }
6557     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6558       inc_counter(counter_exception_block);
6559       has_xhandlers = true;
6560     }
6561 
6562     LIR_OpList* instructions = cur->lir()->instructions_list();
6563     for (int j = 0; j < instructions->length(); j++) {
6564       LIR_Op* op = instructions->at(j);
6565 
6566       inc_counter(counter_instruction);
6567 
6568       switch (op->code()) {
6569         case lir_label:           inc_counter(counter_label); break;
6570         case lir_std_entry:
6571         case lir_osr_entry:       inc_counter(counter_entry); break;
6572         case lir_return:          inc_counter(counter_return); break;
6573 
6574         case lir_rtcall:
6575         case lir_static_call:
6576         case lir_optvirtual_call:
6577         case lir_virtual_call:    inc_counter(counter_call); break;
6578 
6579         case lir_move: {
6580           inc_counter(counter_move);
6581           inc_counter(counter_move_total);
6582 
6583           LIR_Opr in = op->as_Op1()->in_opr();
6584           LIR_Opr res = op->as_Op1()->result_opr();
6585           if (in->is_register()) {
6586             if (res->is_register()) {
6587               inc_counter(counter_move_reg_reg);
6588             } else if (res->is_stack()) {
6589               inc_counter(counter_move_reg_stack);
6590             } else if (res->is_address()) {
6591               inc_counter(counter_move_reg_mem);
6592             } else {
6593               ShouldNotReachHere();
6594             }
6595           } else if (in->is_stack()) {
6596             if (res->is_register()) {
6597               inc_counter(counter_move_stack_reg);
6598             } else {
6599               inc_counter(counter_move_stack_stack);
6600             }
6601           } else if (in->is_address()) {
6602             assert(res->is_register(), "must be");
6603             inc_counter(counter_move_mem_reg);
6604           } else if (in->is_constant()) {
6605             inc_counter(counter_move_const_any);
6606           } else {
6607             ShouldNotReachHere();
6608           }
6609           break;
6610         }
6611 
6612         case lir_cmp:             inc_counter(counter_cmp); break;
6613 
6614         case lir_branch:
6615         case lir_cond_float_branch: {
6616           LIR_OpBranch* branch = op->as_OpBranch();
6617           if (branch->block() == NULL) {
6618             inc_counter(counter_stub_branch);
6619           } else if (branch->cond() == lir_cond_always) {
6620             inc_counter(counter_uncond_branch);
6621           } else {
6622             inc_counter(counter_cond_branch);
6623           }
6624           break;
6625         }
6626 
6627         case lir_neg:
6628         case lir_add:
6629         case lir_sub:
6630         case lir_mul:
6631         case lir_mul_strictfp:
6632         case lir_div:
6633         case lir_div_strictfp:
6634         case lir_rem:
6635         case lir_sqrt:
6636         case lir_abs:
6637         case lir_log10:
6638         case lir_logic_and:
6639         case lir_logic_or:
6640         case lir_logic_xor:
6641         case lir_shl:
6642         case lir_shr:
6643         case lir_ushr:            inc_counter(counter_alu); break;
6644 
6645         case lir_alloc_object:
6646         case lir_alloc_array:     inc_counter(counter_alloc); break;
6647 
6648         case lir_monaddr:
6649         case lir_lock:
6650         case lir_unlock:          inc_counter(counter_sync); break;
6651 
6652         case lir_throw:           inc_counter(counter_throw); break;
6653 
6654         case lir_unwind:          inc_counter(counter_unwind); break;
6655 
6656         case lir_null_check:
6657         case lir_leal:
6658         case lir_instanceof:
6659         case lir_checkcast:
6660         case lir_store_check:     inc_counter(counter_typecheck); break;
6661 
6662         case lir_fpop_raw:
6663         case lir_fxch:
6664         case lir_fld:             inc_counter(counter_fpu_stack); break;
6665 
6666         case lir_nop:
6667         case lir_push:
6668         case lir_pop:
6669         case lir_convert:
6670         case lir_roundfp:
6671         case lir_cmove:           inc_counter(counter_misc_inst); break;
6672 
6673         default:                  inc_counter(counter_other_inst); break;
6674       }
6675     }
6676   }
6677 
6678   if (has_xhandlers) {
6679     inc_counter(counter_exception_method);
6680   }
6681 }
6682 
6683 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6684   if (CountLinearScan || TraceLinearScanLevel > 0) {
6685 
6686     LinearScanStatistic local_statistic = LinearScanStatistic();
6687 
6688     local_statistic.collect(allocator);
6689     global_statistic.sum_up(local_statistic);
6690 
6691     if (TraceLinearScanLevel > 2) {
6692       local_statistic.print("current local statistic");
6693     }
6694   }
6695 }
6696 
6697 
6698 // Implementation of LinearTimers
6699 
6700 LinearScanTimers::LinearScanTimers() {
6701   for (int i = 0; i < number_of_timers; i++) {
6702     timer(i)->reset();
6703   }
6704 }
6705 
6706 const char* LinearScanTimers::timer_name(int idx) {
6707   switch (idx) {
6708     case timer_do_nothing:               return "Nothing (Time Check)";
6709     case timer_number_instructions:      return "Number Instructions";
6710     case timer_compute_local_live_sets:  return "Local Live Sets";
6711     case timer_compute_global_live_sets: return "Global Live Sets";
6712     case timer_build_intervals:          return "Build Intervals";
6713     case timer_sort_intervals_before:    return "Sort Intervals Before";
6714     case timer_allocate_registers:       return "Allocate Registers";
6715     case timer_resolve_data_flow:        return "Resolve Data Flow";
6716     case timer_sort_intervals_after:     return "Sort Intervals After";
6717     case timer_eliminate_spill_moves:    return "Spill optimization";
6718     case timer_assign_reg_num:           return "Assign Reg Num";
6719     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6720     case timer_optimize_lir:             return "Optimize LIR";
6721     default: ShouldNotReachHere();       return "";
6722   }
6723 }
6724 
6725 void LinearScanTimers::begin_method() {
6726   if (TimeEachLinearScan) {
6727     // reset all timers to measure only current method
6728     for (int i = 0; i < number_of_timers; i++) {
6729       timer(i)->reset();
6730     }
6731   }
6732 }
6733 
6734 void LinearScanTimers::end_method(LinearScan* allocator) {
6735   if (TimeEachLinearScan) {
6736 
6737     double c = timer(timer_do_nothing)->seconds();
6738     double total = 0;
6739     for (int i = 1; i < number_of_timers; i++) {
6740       total += timer(i)->seconds() - c;
6741     }
6742 
6743     if (total >= 0.0005) {
6744       // print all information in one line for automatic processing
6745       tty->print("@"); allocator->compilation()->method()->print_name();
6746 
6747       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6748       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6749       tty->print("@ %d ", allocator->block_count());
6750       tty->print("@ %d ", allocator->num_virtual_regs());
6751       tty->print("@ %d ", allocator->interval_count());
6752       tty->print("@ %d ", allocator->_num_calls);
6753       tty->print("@ %d ", allocator->num_loops());
6754 
6755       tty->print("@ %6.6f ", total);
6756       for (int i = 1; i < number_of_timers; i++) {
6757         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6758       }
6759       tty->cr();
6760     }
6761   }
6762 }
6763 
6764 void LinearScanTimers::print(double total_time) {
6765   if (TimeLinearScan) {
6766     // correction value: sum of dummy-timer that only measures the time that
6767     // is necesary to start and stop itself
6768     double c = timer(timer_do_nothing)->seconds();
6769 
6770     for (int i = 0; i < number_of_timers; i++) {
6771       double t = timer(i)->seconds();
6772       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6773     }
6774   }
6775 }
6776 
6777 #endif // #ifndef PRODUCT