1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/cms/compactibleFreeListSpace.hpp"
  27 #include "gc/cms/concurrentMarkSweepGeneration.hpp"
  28 #include "gc/cms/parNewGeneration.inline.hpp"
  29 #include "gc/cms/parOopClosures.inline.hpp"
  30 #include "gc/serial/defNewGeneration.inline.hpp"
  31 #include "gc/shared/adaptiveSizePolicy.hpp"
  32 #include "gc/shared/ageTable.inline.hpp"
  33 #include "gc/shared/copyFailedInfo.hpp"
  34 #include "gc/shared/gcHeapSummary.hpp"
  35 #include "gc/shared/gcTimer.hpp"
  36 #include "gc/shared/gcTrace.hpp"
  37 #include "gc/shared/gcTraceTime.inline.hpp"
  38 #include "gc/shared/genCollectedHeap.hpp"
  39 #include "gc/shared/genOopClosures.inline.hpp"
  40 #include "gc/shared/generation.hpp"
  41 #include "gc/shared/plab.inline.hpp"
  42 #include "gc/shared/preservedMarks.inline.hpp"
  43 #include "gc/shared/referencePolicy.hpp"
  44 #include "gc/shared/space.hpp"
  45 #include "gc/shared/spaceDecorator.hpp"
  46 #include "gc/shared/strongRootsScope.hpp"
  47 #include "gc/shared/taskqueue.inline.hpp"
  48 #include "gc/shared/workgroup.hpp"
  49 #include "logging/log.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "oops/objArrayOop.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "runtime/atomic.inline.hpp"
  54 #include "runtime/handles.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "utilities/copy.hpp"
  59 #include "utilities/globalDefinitions.hpp"
  60 #include "utilities/stack.inline.hpp"
  61 
  62 ParScanThreadState::ParScanThreadState(Space* to_space_,
  63                                        ParNewGeneration* young_gen_,
  64                                        Generation* old_gen_,
  65                                        int thread_num_,
  66                                        ObjToScanQueueSet* work_queue_set_,
  67                                        Stack<oop, mtGC>* overflow_stacks_,
  68                                        PreservedMarks* preserved_marks_,
  69                                        size_t desired_plab_sz_,
  70                                        ParallelTaskTerminator& term_) :
  71   _to_space(to_space_),
  72   _old_gen(old_gen_),
  73   _young_gen(young_gen_),
  74   _thread_num(thread_num_),
  75   _work_queue(work_queue_set_->queue(thread_num_)),
  76   _to_space_full(false),
  77   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  78   _preserved_marks(preserved_marks_),
  79   _ageTable(false), // false ==> not the global age table, no perf data.
  80   _to_space_alloc_buffer(desired_plab_sz_),
  81   _to_space_closure(young_gen_, this),
  82   _old_gen_closure(young_gen_, this),
  83   _to_space_root_closure(young_gen_, this),
  84   _old_gen_root_closure(young_gen_, this),
  85   _older_gen_closure(young_gen_, this),
  86   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
  87                       &_to_space_root_closure, young_gen_, &_old_gen_root_closure,
  88                       work_queue_set_, &term_),
  89   _is_alive_closure(young_gen_),
  90   _scan_weak_ref_closure(young_gen_, this),
  91   _keep_alive_closure(&_scan_weak_ref_closure),
  92   _strong_roots_time(0.0),
  93   _term_time(0.0)
  94 {
  95   #if TASKQUEUE_STATS
  96   _term_attempts = 0;
  97   _overflow_refills = 0;
  98   _overflow_refill_objs = 0;
  99   #endif // TASKQUEUE_STATS
 100 
 101   _survivor_chunk_array = (ChunkArray*) old_gen()->get_data_recorder(thread_num());
 102   _hash_seed = 17;  // Might want to take time-based random value.
 103   _start = os::elapsedTime();
 104   _old_gen_closure.set_generation(old_gen_);
 105   _old_gen_root_closure.set_generation(old_gen_);
 106 }
 107 
 108 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
 109                                               size_t plab_word_size) {
 110   ChunkArray* sca = survivor_chunk_array();
 111   if (sca != NULL) {
 112     // A non-null SCA implies that we want the PLAB data recorded.
 113     sca->record_sample(plab_start, plab_word_size);
 114   }
 115 }
 116 
 117 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
 118   return new_obj->is_objArray() &&
 119          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
 120          new_obj != old_obj;
 121 }
 122 
 123 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
 124   assert(old->is_objArray(), "must be obj array");
 125   assert(old->is_forwarded(), "must be forwarded");
 126   assert(GenCollectedHeap::heap()->is_in_reserved(old), "must be in heap.");
 127   assert(!old_gen()->is_in(old), "must be in young generation.");
 128 
 129   objArrayOop obj = objArrayOop(old->forwardee());
 130   // Process ParGCArrayScanChunk elements now
 131   // and push the remainder back onto queue
 132   int start     = arrayOop(old)->length();
 133   int end       = obj->length();
 134   int remainder = end - start;
 135   assert(start <= end, "just checking");
 136   if (remainder > 2 * ParGCArrayScanChunk) {
 137     // Test above combines last partial chunk with a full chunk
 138     end = start + ParGCArrayScanChunk;
 139     arrayOop(old)->set_length(end);
 140     // Push remainder.
 141     bool ok = work_queue()->push(old);
 142     assert(ok, "just popped, push must be okay");
 143   } else {
 144     // Restore length so that it can be used if there
 145     // is a promotion failure and forwarding pointers
 146     // must be removed.
 147     arrayOop(old)->set_length(end);
 148   }
 149 
 150   // process our set of indices (include header in first chunk)
 151   // should make sure end is even (aligned to HeapWord in case of compressed oops)
 152   if ((HeapWord *)obj < young_old_boundary()) {
 153     // object is in to_space
 154     obj->oop_iterate_range(&_to_space_closure, start, end);
 155   } else {
 156     // object is in old generation
 157     obj->oop_iterate_range(&_old_gen_closure, start, end);
 158   }
 159 }
 160 
 161 void ParScanThreadState::trim_queues(int max_size) {
 162   ObjToScanQueue* queue = work_queue();
 163   do {
 164     while (queue->size() > (juint)max_size) {
 165       oop obj_to_scan;
 166       if (queue->pop_local(obj_to_scan)) {
 167         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
 168           if (obj_to_scan->is_objArray() &&
 169               obj_to_scan->is_forwarded() &&
 170               obj_to_scan->forwardee() != obj_to_scan) {
 171             scan_partial_array_and_push_remainder(obj_to_scan);
 172           } else {
 173             // object is in to_space
 174             obj_to_scan->oop_iterate(&_to_space_closure);
 175           }
 176         } else {
 177           // object is in old generation
 178           obj_to_scan->oop_iterate(&_old_gen_closure);
 179         }
 180       }
 181     }
 182     // For the  case of compressed oops, we have a private, non-shared
 183     // overflow stack, so we eagerly drain it so as to more evenly
 184     // distribute load early. Note: this may be good to do in
 185     // general rather than delay for the final stealing phase.
 186     // If applicable, we'll transfer a set of objects over to our
 187     // work queue, allowing them to be stolen and draining our
 188     // private overflow stack.
 189   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
 190 }
 191 
 192 bool ParScanThreadState::take_from_overflow_stack() {
 193   assert(ParGCUseLocalOverflow, "Else should not call");
 194   assert(young_gen()->overflow_list() == NULL, "Error");
 195   ObjToScanQueue* queue = work_queue();
 196   Stack<oop, mtGC>* const of_stack = overflow_stack();
 197   const size_t num_overflow_elems = of_stack->size();
 198   const size_t space_available = queue->max_elems() - queue->size();
 199   const size_t num_take_elems = MIN3(space_available / 4,
 200                                      ParGCDesiredObjsFromOverflowList,
 201                                      num_overflow_elems);
 202   // Transfer the most recent num_take_elems from the overflow
 203   // stack to our work queue.
 204   for (size_t i = 0; i != num_take_elems; i++) {
 205     oop cur = of_stack->pop();
 206     oop obj_to_push = cur->forwardee();
 207     assert(GenCollectedHeap::heap()->is_in_reserved(cur), "Should be in heap");
 208     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
 209     assert(GenCollectedHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap");
 210     if (should_be_partially_scanned(obj_to_push, cur)) {
 211       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
 212       obj_to_push = cur;
 213     }
 214     bool ok = queue->push(obj_to_push);
 215     assert(ok, "Should have succeeded");
 216   }
 217   assert(young_gen()->overflow_list() == NULL, "Error");
 218   return num_take_elems > 0;  // was something transferred?
 219 }
 220 
 221 void ParScanThreadState::push_on_overflow_stack(oop p) {
 222   assert(ParGCUseLocalOverflow, "Else should not call");
 223   overflow_stack()->push(p);
 224   assert(young_gen()->overflow_list() == NULL, "Error");
 225 }
 226 
 227 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
 228   // If the object is small enough, try to reallocate the buffer.
 229   HeapWord* obj = NULL;
 230   if (!_to_space_full) {
 231     PLAB* const plab = to_space_alloc_buffer();
 232     Space* const sp  = to_space();
 233     if (word_sz * 100 < ParallelGCBufferWastePct * plab->word_sz()) {
 234       // Is small enough; abandon this buffer and start a new one.
 235       plab->retire();
 236       size_t buf_size = plab->word_sz();
 237       HeapWord* buf_space = sp->par_allocate(buf_size);
 238       if (buf_space == NULL) {
 239         const size_t min_bytes =
 240           PLAB::min_size() << LogHeapWordSize;
 241         size_t free_bytes = sp->free();
 242         while(buf_space == NULL && free_bytes >= min_bytes) {
 243           buf_size = free_bytes >> LogHeapWordSize;
 244           assert(buf_size == (size_t)align_object_size(buf_size), "Invariant");
 245           buf_space  = sp->par_allocate(buf_size);
 246           free_bytes = sp->free();
 247         }
 248       }
 249       if (buf_space != NULL) {
 250         plab->set_buf(buf_space, buf_size);
 251         record_survivor_plab(buf_space, buf_size);
 252         obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
 253         // Note that we cannot compare buf_size < word_sz below
 254         // because of AlignmentReserve (see PLAB::allocate()).
 255         assert(obj != NULL || plab->words_remaining() < word_sz,
 256                "Else should have been able to allocate");
 257         // It's conceivable that we may be able to use the
 258         // buffer we just grabbed for subsequent small requests
 259         // even if not for this one.
 260       } else {
 261         // We're used up.
 262         _to_space_full = true;
 263       }
 264     } else {
 265       // Too large; allocate the object individually.
 266       obj = sp->par_allocate(word_sz);
 267     }
 268   }
 269   return obj;
 270 }
 271 
 272 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) {
 273   to_space_alloc_buffer()->undo_allocation(obj, word_sz);
 274 }
 275 
 276 void ParScanThreadState::print_promotion_failure_size() {
 277   if (_promotion_failed_info.has_failed()) {
 278     log_trace(gc, promotion)(" (%d: promotion failure size = " SIZE_FORMAT ") ",
 279                              _thread_num, _promotion_failed_info.first_size());
 280   }
 281 }
 282 
 283 class ParScanThreadStateSet: private GenericGrowableArray {
 284 public:
 285   // Initializes states for the specified number of threads;
 286   ParScanThreadStateSet(int                     num_threads,
 287                         Space&                  to_space,
 288                         ParNewGeneration&       young_gen,
 289                         Generation&             old_gen,
 290                         ObjToScanQueueSet&      queue_set,
 291                         Stack<oop, mtGC>*       overflow_stacks_,
 292                         PreservedMarksSet&      preserved_marks_set,
 293                         size_t                  desired_plab_sz,
 294                         ParallelTaskTerminator& term);
 295 
 296   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
 297 
 298   inline ParScanThreadState& thread_state(int i);
 299 
 300   void trace_promotion_failed(const YoungGCTracer* gc_tracer);
 301   void reset(uint active_workers, bool promotion_failed);
 302   void flush();
 303 
 304   #if TASKQUEUE_STATS
 305   static void
 306     print_termination_stats_hdr(outputStream* const st);
 307   void print_termination_stats();
 308   static void
 309     print_taskqueue_stats_hdr(outputStream* const st);
 310   void print_taskqueue_stats();
 311   void reset_stats();
 312   #endif // TASKQUEUE_STATS
 313 
 314 private:
 315   ParallelTaskTerminator& _term;
 316   ParNewGeneration&       _young_gen;
 317   Generation&             _old_gen;
 318   ParScanThreadState*     _data;
 319   int length() const { return _len; };
 320  public:
 321   bool is_valid(int id) const { return id < length(); }
 322   ParallelTaskTerminator* terminator() { return &_term; }
 323 };
 324 
 325 ParScanThreadStateSet::ParScanThreadStateSet(int num_threads,
 326                                              Space& to_space,
 327                                              ParNewGeneration& young_gen,
 328                                              Generation& old_gen,
 329                                              ObjToScanQueueSet& queue_set,
 330                                              Stack<oop, mtGC>* overflow_stacks,
 331                                              PreservedMarksSet& preserved_marks_set,
 332                                              size_t desired_plab_sz,
 333                                              ParallelTaskTerminator& term)
 334 : GenericGrowableArray(num_threads, num_threads, false, mtInternal),
 335     _young_gen(young_gen),
 336     _old_gen(old_gen),
 337     _term(term)
 338 {
 339   assert(num_threads > 0, "sanity check!");
 340   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
 341          "overflow_stack allocation mismatch");
 342   // Initialize states.
 343   _data = (ParScanThreadState*) raw_allocate(sizeof(ParScanThreadState));
 344   for (int i = 0; i < num_threads; ++i) {
 345     ::new((void*) &_data[i])
 346       ParScanThreadState(&to_space, &young_gen, &old_gen, i, &queue_set,
 347           overflow_stacks, preserved_marks_set.get(i),
 348           desired_plab_sz, term);
 349   }
 350 }
 351 
 352 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i) {
 353   assert(i >= 0 && i < length(), "sanity check!");
 354   return _data[i];
 355 }
 356 
 357 void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
 358   for (int i = 0; i < length(); ++i) {
 359     if (thread_state(i).promotion_failed()) {
 360       gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
 361       thread_state(i).promotion_failed_info().reset();
 362     }
 363   }
 364 }
 365 
 366 void ParScanThreadStateSet::reset(uint active_threads, bool promotion_failed) {
 367   _term.reset_for_reuse(active_threads);
 368   if (promotion_failed) {
 369     for (int i = 0; i < length(); ++i) {
 370       thread_state(i).print_promotion_failure_size();
 371     }
 372   }
 373 }
 374 
 375 #if TASKQUEUE_STATS
 376 void ParScanThreadState::reset_stats() {
 377   taskqueue_stats().reset();
 378   _term_attempts = 0;
 379   _overflow_refills = 0;
 380   _overflow_refill_objs = 0;
 381 }
 382 
 383 void ParScanThreadStateSet::reset_stats() {
 384   for (int i = 0; i < length(); ++i) {
 385     thread_state(i).reset_stats();
 386   }
 387 }
 388 
 389 void ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st) {
 390   st->print_raw_cr("GC Termination Stats");
 391   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------");
 392   st->print_raw_cr("thr     ms        ms       %       ms       %   attempts");
 393   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------");
 394 }
 395 
 396 void ParScanThreadStateSet::print_termination_stats() {
 397   LogHandle(gc, task, stats) log;
 398   if (!log.is_debug()) {
 399     return;
 400   }
 401 
 402   ResourceMark rm;
 403   outputStream* st = log.debug_stream();
 404 
 405   print_termination_stats_hdr(st);
 406 
 407   for (int i = 0; i < length(); ++i) {
 408     const ParScanThreadState & pss = thread_state(i);
 409     const double elapsed_ms = pss.elapsed_time() * 1000.0;
 410     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
 411     const double term_ms = pss.term_time() * 1000.0;
 412     st->print_cr("%3d %9.2f %9.2f %6.2f %9.2f %6.2f " SIZE_FORMAT_W(8),
 413                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 414                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
 415   }
 416 }
 417 
 418 // Print stats related to work queue activity.
 419 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st) {
 420   st->print_raw_cr("GC Task Stats");
 421   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
 422   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
 423 }
 424 
 425 void ParScanThreadStateSet::print_taskqueue_stats() {
 426   if (!log_develop_is_enabled(Trace, gc, task, stats)) {
 427     return;
 428   }
 429   LogHandle(gc, task, stats) log;
 430   ResourceMark rm;
 431   outputStream* st = log.trace_stream();
 432   print_taskqueue_stats_hdr(st);
 433 
 434   TaskQueueStats totals;
 435   for (int i = 0; i < length(); ++i) {
 436     const ParScanThreadState & pss = thread_state(i);
 437     const TaskQueueStats & stats = pss.taskqueue_stats();
 438     st->print("%3d ", i); stats.print(st); st->cr();
 439     totals += stats;
 440 
 441     if (pss.overflow_refills() > 0) {
 442       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
 443                    SIZE_FORMAT_W(10) " overflow objects",
 444                    pss.overflow_refills(), pss.overflow_refill_objs());
 445     }
 446   }
 447   st->print("tot "); totals.print(st); st->cr();
 448 
 449   DEBUG_ONLY(totals.verify());
 450 }
 451 #endif // TASKQUEUE_STATS
 452 
 453 void ParScanThreadStateSet::flush() {
 454   // Work in this loop should be kept as lightweight as
 455   // possible since this might otherwise become a bottleneck
 456   // to scaling. Should we add heavy-weight work into this
 457   // loop, consider parallelizing the loop into the worker threads.
 458   for (int i = 0; i < length(); ++i) {
 459     ParScanThreadState& par_scan_state = thread_state(i);
 460 
 461     // Flush stats related to To-space PLAB activity and
 462     // retire the last buffer.
 463     par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_young_gen.plab_stats());
 464 
 465     // Every thread has its own age table.  We need to merge
 466     // them all into one.
 467     AgeTable *local_table = par_scan_state.age_table();
 468     _young_gen.age_table()->merge(local_table);
 469 
 470     // Inform old gen that we're done.
 471     _old_gen.par_promote_alloc_done(i);
 472     _old_gen.par_oop_since_save_marks_iterate_done(i);
 473   }
 474 
 475   if (UseConcMarkSweepGC) {
 476     // We need to call this even when ResizeOldPLAB is disabled
 477     // so as to avoid breaking some asserts. While we may be able
 478     // to avoid this by reorganizing the code a bit, I am loathe
 479     // to do that unless we find cases where ergo leads to bad
 480     // performance.
 481     CompactibleFreeListSpaceLAB::compute_desired_plab_size();
 482   }
 483 }
 484 
 485 ParScanClosure::ParScanClosure(ParNewGeneration* g,
 486                                ParScanThreadState* par_scan_state) :
 487   OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g) {
 488   _boundary = _g->reserved().end();
 489 }
 490 
 491 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
 492 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
 493 
 494 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
 495 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
 496 
 497 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
 498 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
 499 
 500 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
 501 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
 502 
 503 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
 504                                              ParScanThreadState* par_scan_state)
 505   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
 506 {}
 507 
 508 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
 509 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
 510 
 511 #ifdef WIN32
 512 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
 513 #endif
 514 
 515 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
 516     ParScanThreadState* par_scan_state_,
 517     ParScanWithoutBarrierClosure* to_space_closure_,
 518     ParScanWithBarrierClosure* old_gen_closure_,
 519     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
 520     ParNewGeneration* par_gen_,
 521     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
 522     ObjToScanQueueSet* task_queues_,
 523     ParallelTaskTerminator* terminator_) :
 524 
 525     _par_scan_state(par_scan_state_),
 526     _to_space_closure(to_space_closure_),
 527     _old_gen_closure(old_gen_closure_),
 528     _to_space_root_closure(to_space_root_closure_),
 529     _old_gen_root_closure(old_gen_root_closure_),
 530     _par_gen(par_gen_),
 531     _task_queues(task_queues_),
 532     _terminator(terminator_)
 533 {}
 534 
 535 void ParEvacuateFollowersClosure::do_void() {
 536   ObjToScanQueue* work_q = par_scan_state()->work_queue();
 537 
 538   while (true) {
 539     // Scan to-space and old-gen objs until we run out of both.
 540     oop obj_to_scan;
 541     par_scan_state()->trim_queues(0);
 542 
 543     // We have no local work, attempt to steal from other threads.
 544 
 545     // Attempt to steal work from promoted.
 546     if (task_queues()->steal(par_scan_state()->thread_num(),
 547                              par_scan_state()->hash_seed(),
 548                              obj_to_scan)) {
 549       bool res = work_q->push(obj_to_scan);
 550       assert(res, "Empty queue should have room for a push.");
 551 
 552       // If successful, goto Start.
 553       continue;
 554 
 555       // Try global overflow list.
 556     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
 557       continue;
 558     }
 559 
 560     // Otherwise, offer termination.
 561     par_scan_state()->start_term_time();
 562     if (terminator()->offer_termination()) break;
 563     par_scan_state()->end_term_time();
 564   }
 565   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
 566          "Broken overflow list?");
 567   // Finish the last termination pause.
 568   par_scan_state()->end_term_time();
 569 }
 570 
 571 ParNewGenTask::ParNewGenTask(ParNewGeneration* young_gen,
 572                              Generation* old_gen,
 573                              HeapWord* young_old_boundary,
 574                              ParScanThreadStateSet* state_set,
 575                              StrongRootsScope* strong_roots_scope) :
 576     AbstractGangTask("ParNewGeneration collection"),
 577     _young_gen(young_gen), _old_gen(old_gen),
 578     _young_old_boundary(young_old_boundary),
 579     _state_set(state_set),
 580     _strong_roots_scope(strong_roots_scope)
 581 {}
 582 
 583 void ParNewGenTask::work(uint worker_id) {
 584   GenCollectedHeap* gch = GenCollectedHeap::heap();
 585   // Since this is being done in a separate thread, need new resource
 586   // and handle marks.
 587   ResourceMark rm;
 588   HandleMark hm;
 589 
 590   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
 591   assert(_state_set->is_valid(worker_id), "Should not have been called");
 592 
 593   par_scan_state.set_young_old_boundary(_young_old_boundary);
 594 
 595   KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
 596                                       gch->rem_set()->klass_rem_set());
 597   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 598                                            &par_scan_state.to_space_root_closure(),
 599                                            false);
 600 
 601   par_scan_state.start_strong_roots();
 602   gch->gen_process_roots(_strong_roots_scope,
 603                          GenCollectedHeap::YoungGen,
 604                          true,  // Process younger gens, if any, as strong roots.
 605                          GenCollectedHeap::SO_ScavengeCodeCache,
 606                          GenCollectedHeap::StrongAndWeakRoots,
 607                          &par_scan_state.to_space_root_closure(),
 608                          &par_scan_state.older_gen_closure(),
 609                          &cld_scan_closure);
 610 
 611   par_scan_state.end_strong_roots();
 612 
 613   // "evacuate followers".
 614   par_scan_state.evacuate_followers_closure().do_void();
 615 }
 616 
 617 ParNewGeneration::ParNewGeneration(ReservedSpace rs, size_t initial_byte_size)
 618   : DefNewGeneration(rs, initial_byte_size, "PCopy"),
 619   _overflow_list(NULL),
 620   _is_alive_closure(this),
 621   _plab_stats("Young", YoungPLABSize, PLABWeight)
 622 {
 623   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
 624   NOT_PRODUCT(_num_par_pushes = 0;)
 625   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
 626   guarantee(_task_queues != NULL, "task_queues allocation failure.");
 627 
 628   for (uint i = 0; i < ParallelGCThreads; i++) {
 629     ObjToScanQueue *q = new ObjToScanQueue();
 630     guarantee(q != NULL, "work_queue Allocation failure.");
 631     _task_queues->register_queue(i, q);
 632   }
 633 
 634   for (uint i = 0; i < ParallelGCThreads; i++) {
 635     _task_queues->queue(i)->initialize();
 636   }
 637 
 638   _overflow_stacks = NULL;
 639   if (ParGCUseLocalOverflow) {
 640     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal with ','
 641     typedef Stack<oop, mtGC> GCOopStack;
 642 
 643     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
 644     for (size_t i = 0; i < ParallelGCThreads; ++i) {
 645       new (_overflow_stacks + i) Stack<oop, mtGC>();
 646     }
 647   }
 648 
 649   if (UsePerfData) {
 650     EXCEPTION_MARK;
 651     ResourceMark rm;
 652 
 653     const char* cname =
 654          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
 655     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
 656                                      ParallelGCThreads, CHECK);
 657   }
 658 }
 659 
 660 // ParNewGeneration::
 661 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
 662   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
 663 
 664 template <class T>
 665 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
 666 #ifdef ASSERT
 667   {
 668     assert(!oopDesc::is_null(*p), "expected non-null ref");
 669     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 670     // We never expect to see a null reference being processed
 671     // as a weak reference.
 672     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 673   }
 674 #endif // ASSERT
 675 
 676   _par_cl->do_oop_nv(p);
 677 
 678   if (GenCollectedHeap::heap()->is_in_reserved(p)) {
 679     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 680     _rs->write_ref_field_gc_par(p, obj);
 681   }
 682 }
 683 
 684 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
 685 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
 686 
 687 // ParNewGeneration::
 688 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
 689   DefNewGeneration::KeepAliveClosure(cl) {}
 690 
 691 template <class T>
 692 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
 693 #ifdef ASSERT
 694   {
 695     assert(!oopDesc::is_null(*p), "expected non-null ref");
 696     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 697     // We never expect to see a null reference being processed
 698     // as a weak reference.
 699     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 700   }
 701 #endif // ASSERT
 702 
 703   _cl->do_oop_nv(p);
 704 
 705   if (GenCollectedHeap::heap()->is_in_reserved(p)) {
 706     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 707     _rs->write_ref_field_gc_par(p, obj);
 708   }
 709 }
 710 
 711 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
 712 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
 713 
 714 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
 715   T heap_oop = oopDesc::load_heap_oop(p);
 716   if (!oopDesc::is_null(heap_oop)) {
 717     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 718     if ((HeapWord*)obj < _boundary) {
 719       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
 720       oop new_obj = obj->is_forwarded()
 721                       ? obj->forwardee()
 722                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
 723       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
 724     }
 725     if (_gc_barrier) {
 726       // If p points to a younger generation, mark the card.
 727       if ((HeapWord*)obj < _gen_boundary) {
 728         _rs->write_ref_field_gc_par(p, obj);
 729       }
 730     }
 731   }
 732 }
 733 
 734 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
 735 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
 736 
 737 class ParNewRefProcTaskProxy: public AbstractGangTask {
 738   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 739 public:
 740   ParNewRefProcTaskProxy(ProcessTask& task,
 741                          ParNewGeneration& young_gen,
 742                          Generation& old_gen,
 743                          HeapWord* young_old_boundary,
 744                          ParScanThreadStateSet& state_set);
 745 
 746 private:
 747   virtual void work(uint worker_id);
 748 private:
 749   ParNewGeneration&      _young_gen;
 750   ProcessTask&           _task;
 751   Generation&            _old_gen;
 752   HeapWord*              _young_old_boundary;
 753   ParScanThreadStateSet& _state_set;
 754 };
 755 
 756 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
 757                                                ParNewGeneration& young_gen,
 758                                                Generation& old_gen,
 759                                                HeapWord* young_old_boundary,
 760                                                ParScanThreadStateSet& state_set)
 761   : AbstractGangTask("ParNewGeneration parallel reference processing"),
 762     _young_gen(young_gen),
 763     _task(task),
 764     _old_gen(old_gen),
 765     _young_old_boundary(young_old_boundary),
 766     _state_set(state_set)
 767 { }
 768 
 769 void ParNewRefProcTaskProxy::work(uint worker_id) {
 770   ResourceMark rm;
 771   HandleMark hm;
 772   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
 773   par_scan_state.set_young_old_boundary(_young_old_boundary);
 774   _task.work(worker_id, par_scan_state.is_alive_closure(),
 775              par_scan_state.keep_alive_closure(),
 776              par_scan_state.evacuate_followers_closure());
 777 }
 778 
 779 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
 780   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 781   EnqueueTask& _task;
 782 
 783 public:
 784   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
 785     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
 786       _task(task)
 787   { }
 788 
 789   virtual void work(uint worker_id) {
 790     _task.work(worker_id);
 791   }
 792 };
 793 
 794 void ParNewRefProcTaskExecutor::execute(ProcessTask& task) {
 795   GenCollectedHeap* gch = GenCollectedHeap::heap();
 796   WorkGang* workers = gch->workers();
 797   assert(workers != NULL, "Need parallel worker threads.");
 798   _state_set.reset(workers->active_workers(), _young_gen.promotion_failed());
 799   ParNewRefProcTaskProxy rp_task(task, _young_gen, _old_gen,
 800                                  _young_gen.reserved().end(), _state_set);
 801   workers->run_task(&rp_task);
 802   _state_set.reset(0 /* bad value in debug if not reset */,
 803                    _young_gen.promotion_failed());
 804 }
 805 
 806 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task) {
 807   GenCollectedHeap* gch = GenCollectedHeap::heap();
 808   WorkGang* workers = gch->workers();
 809   assert(workers != NULL, "Need parallel worker threads.");
 810   ParNewRefEnqueueTaskProxy enq_task(task);
 811   workers->run_task(&enq_task);
 812 }
 813 
 814 void ParNewRefProcTaskExecutor::set_single_threaded_mode() {
 815   _state_set.flush();
 816   GenCollectedHeap* gch = GenCollectedHeap::heap();
 817   gch->save_marks();
 818 }
 819 
 820 ScanClosureWithParBarrier::
 821 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
 822   ScanClosure(g, gc_barrier)
 823 { }
 824 
 825 EvacuateFollowersClosureGeneral::
 826 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch,
 827                                 OopsInGenClosure* cur,
 828                                 OopsInGenClosure* older) :
 829   _gch(gch),
 830   _scan_cur_or_nonheap(cur), _scan_older(older)
 831 { }
 832 
 833 void EvacuateFollowersClosureGeneral::do_void() {
 834   do {
 835     // Beware: this call will lead to closure applications via virtual
 836     // calls.
 837     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen,
 838                                        _scan_cur_or_nonheap,
 839                                        _scan_older);
 840   } while (!_gch->no_allocs_since_save_marks());
 841 }
 842 
 843 // A Generation that does parallel young-gen collection.
 844 
 845 void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set) {
 846   assert(_promo_failure_scan_stack.is_empty(), "post condition");
 847   _promo_failure_scan_stack.clear(true); // Clear cached segments.
 848 
 849   remove_forwarding_pointers();
 850   log_info(gc, promotion)("Promotion failed");
 851   // All the spaces are in play for mark-sweep.
 852   swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
 853   from()->set_next_compaction_space(to());
 854   gch->set_incremental_collection_failed();
 855   // Inform the next generation that a promotion failure occurred.
 856   _old_gen->promotion_failure_occurred();
 857 
 858   // Trace promotion failure in the parallel GC threads
 859   thread_state_set.trace_promotion_failed(gc_tracer());
 860   // Single threaded code may have reported promotion failure to the global state
 861   if (_promotion_failed_info.has_failed()) {
 862     _gc_tracer.report_promotion_failed(_promotion_failed_info);
 863   }
 864   // Reset the PromotionFailureALot counters.
 865   NOT_PRODUCT(gch->reset_promotion_should_fail();)
 866 }
 867 
 868 void ParNewGeneration::collect(bool   full,
 869                                bool   clear_all_soft_refs,
 870                                size_t size,
 871                                bool   is_tlab) {
 872   assert(full || size > 0, "otherwise we don't want to collect");
 873 
 874   GenCollectedHeap* gch = GenCollectedHeap::heap();
 875 
 876   _gc_timer->register_gc_start();
 877 
 878   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 879   WorkGang* workers = gch->workers();
 880   assert(workers != NULL, "Need workgang for parallel work");
 881   uint active_workers =
 882        AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
 883                                                workers->active_workers(),
 884                                                Threads::number_of_non_daemon_threads());
 885   workers->set_active_workers(active_workers);
 886   _old_gen = gch->old_gen();
 887 
 888   // If the next generation is too full to accommodate worst-case promotion
 889   // from this generation, pass on collection; let the next generation
 890   // do it.
 891   if (!collection_attempt_is_safe()) {
 892     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
 893     return;
 894   }
 895   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 896 
 897   _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 898   gch->trace_heap_before_gc(gc_tracer());
 899 
 900   init_assuming_no_promotion_failure();
 901 
 902   if (UseAdaptiveSizePolicy) {
 903     set_survivor_overflow(false);
 904     size_policy->minor_collection_begin();
 905   }
 906 
 907   GCTraceTime(Trace, gc) t1("ParNew", NULL, gch->gc_cause());
 908 
 909   age_table()->clear();
 910   to()->clear(SpaceDecorator::Mangle);
 911 
 912   gch->save_marks();
 913 
 914   // Set the correct parallelism (number of queues) in the reference processor
 915   ref_processor()->set_active_mt_degree(active_workers);
 916 
 917   // Need to initialize the preserved marks before the ThreadStateSet c'tor.
 918   _preserved_marks_set.init(active_workers);
 919 
 920   // Always set the terminator for the active number of workers
 921   // because only those workers go through the termination protocol.
 922   ParallelTaskTerminator _term(active_workers, task_queues());
 923   ParScanThreadStateSet thread_state_set(active_workers,
 924                                          *to(), *this, *_old_gen, *task_queues(),
 925                                          _overflow_stacks, _preserved_marks_set,
 926                                          desired_plab_sz(), _term);
 927 
 928   thread_state_set.reset(active_workers, promotion_failed());
 929 
 930   {
 931     StrongRootsScope srs(active_workers);
 932 
 933     ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set, &srs);
 934     gch->rem_set()->prepare_for_younger_refs_iterate(true);
 935     // It turns out that even when we're using 1 thread, doing the work in a
 936     // separate thread causes wide variance in run times.  We can't help this
 937     // in the multi-threaded case, but we special-case n=1 here to get
 938     // repeatable measurements of the 1-thread overhead of the parallel code.
 939     if (active_workers > 1) {
 940       workers->run_task(&tsk);
 941     } else {
 942       tsk.work(0);
 943     }
 944   }
 945 
 946   thread_state_set.reset(0 /* Bad value in debug if not reset */,
 947                          promotion_failed());
 948 
 949   // Trace and reset failed promotion info.
 950   if (promotion_failed()) {
 951     thread_state_set.trace_promotion_failed(gc_tracer());
 952   }
 953 
 954   // Process (weak) reference objects found during scavenge.
 955   ReferenceProcessor* rp = ref_processor();
 956   IsAliveClosure is_alive(this);
 957   ScanWeakRefClosure scan_weak_ref(this);
 958   KeepAliveClosure keep_alive(&scan_weak_ref);
 959   ScanClosure               scan_without_gc_barrier(this, false);
 960   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
 961   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
 962   EvacuateFollowersClosureGeneral evacuate_followers(gch,
 963     &scan_without_gc_barrier, &scan_with_gc_barrier);
 964   rp->setup_policy(clear_all_soft_refs);
 965   // Can  the mt_degree be set later (at run_task() time would be best)?
 966   rp->set_active_mt_degree(active_workers);
 967   ReferenceProcessorStats stats;
 968   if (rp->processing_is_mt()) {
 969     ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
 970     stats = rp->process_discovered_references(&is_alive, &keep_alive,
 971                                               &evacuate_followers, &task_executor,
 972                                               _gc_timer);
 973   } else {
 974     thread_state_set.flush();
 975     gch->save_marks();
 976     stats = rp->process_discovered_references(&is_alive, &keep_alive,
 977                                               &evacuate_followers, NULL,
 978                                               _gc_timer);
 979   }
 980   _gc_tracer.report_gc_reference_stats(stats);
 981   _gc_tracer.report_tenuring_threshold(tenuring_threshold());
 982 
 983   if (!promotion_failed()) {
 984     // Swap the survivor spaces.
 985     eden()->clear(SpaceDecorator::Mangle);
 986     from()->clear(SpaceDecorator::Mangle);
 987     if (ZapUnusedHeapArea) {
 988       // This is now done here because of the piece-meal mangling which
 989       // can check for valid mangling at intermediate points in the
 990       // collection(s).  When a young collection fails to collect
 991       // sufficient space resizing of the young generation can occur
 992       // and redistribute the spaces in the young generation.  Mangle
 993       // here so that unzapped regions don't get distributed to
 994       // other spaces.
 995       to()->mangle_unused_area();
 996     }
 997     swap_spaces();
 998 
 999     // A successful scavenge should restart the GC time limit count which is
1000     // for full GC's.
1001     size_policy->reset_gc_overhead_limit_count();
1002 
1003     assert(to()->is_empty(), "to space should be empty now");
1004 
1005     adjust_desired_tenuring_threshold();
1006   } else {
1007     handle_promotion_failed(gch, thread_state_set);
1008   }
1009   _preserved_marks_set.reclaim();
1010   // set new iteration safe limit for the survivor spaces
1011   from()->set_concurrent_iteration_safe_limit(from()->top());
1012   to()->set_concurrent_iteration_safe_limit(to()->top());
1013 
1014   plab_stats()->adjust_desired_plab_sz();
1015 
1016   TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
1017   TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
1018 
1019   if (UseAdaptiveSizePolicy) {
1020     size_policy->minor_collection_end(gch->gc_cause());
1021     size_policy->avg_survived()->sample(from()->used());
1022   }
1023 
1024   // We need to use a monotonically non-decreasing time in ms
1025   // or we will see time-warp warnings and os::javaTimeMillis()
1026   // does not guarantee monotonicity.
1027   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1028   update_time_of_last_gc(now);
1029 
1030   rp->set_enqueuing_is_done(true);
1031   if (rp->processing_is_mt()) {
1032     ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
1033     rp->enqueue_discovered_references(&task_executor);
1034   } else {
1035     rp->enqueue_discovered_references(NULL);
1036   }
1037   rp->verify_no_references_recorded();
1038 
1039   gch->trace_heap_after_gc(gc_tracer());
1040 
1041   _gc_timer->register_gc_end();
1042 
1043   _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1044 }
1045 
1046 size_t ParNewGeneration::desired_plab_sz() {
1047   return _plab_stats.desired_plab_sz(GenCollectedHeap::heap()->workers()->active_workers());
1048 }
1049 
1050 static int sum;
1051 void ParNewGeneration::waste_some_time() {
1052   for (int i = 0; i < 100; i++) {
1053     sum += i;
1054   }
1055 }
1056 
1057 static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1058 
1059 // Because of concurrency, there are times where an object for which
1060 // "is_forwarded()" is true contains an "interim" forwarding pointer
1061 // value.  Such a value will soon be overwritten with a real value.
1062 // This method requires "obj" to have a forwarding pointer, and waits, if
1063 // necessary for a real one to be inserted, and returns it.
1064 
1065 oop ParNewGeneration::real_forwardee(oop obj) {
1066   oop forward_ptr = obj->forwardee();
1067   if (forward_ptr != ClaimedForwardPtr) {
1068     return forward_ptr;
1069   } else {
1070     return real_forwardee_slow(obj);
1071   }
1072 }
1073 
1074 oop ParNewGeneration::real_forwardee_slow(oop obj) {
1075   // Spin-read if it is claimed but not yet written by another thread.
1076   oop forward_ptr = obj->forwardee();
1077   while (forward_ptr == ClaimedForwardPtr) {
1078     waste_some_time();
1079     assert(obj->is_forwarded(), "precondition");
1080     forward_ptr = obj->forwardee();
1081   }
1082   return forward_ptr;
1083 }
1084 
1085 // Multiple GC threads may try to promote an object.  If the object
1086 // is successfully promoted, a forwarding pointer will be installed in
1087 // the object in the young generation.  This method claims the right
1088 // to install the forwarding pointer before it copies the object,
1089 // thus avoiding the need to undo the copy as in
1090 // copy_to_survivor_space_avoiding_with_undo.
1091 
1092 oop ParNewGeneration::copy_to_survivor_space(ParScanThreadState* par_scan_state,
1093                                              oop old,
1094                                              size_t sz,
1095                                              markOop m) {
1096   // In the sequential version, this assert also says that the object is
1097   // not forwarded.  That might not be the case here.  It is the case that
1098   // the caller observed it to be not forwarded at some time in the past.
1099   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1100 
1101   // The sequential code read "old->age()" below.  That doesn't work here,
1102   // since the age is in the mark word, and that might be overwritten with
1103   // a forwarding pointer by a parallel thread.  So we must save the mark
1104   // word in a local and then analyze it.
1105   oopDesc dummyOld;
1106   dummyOld.set_mark(m);
1107   assert(!dummyOld.is_forwarded(),
1108          "should not be called with forwarding pointer mark word.");
1109 
1110   oop new_obj = NULL;
1111   oop forward_ptr;
1112 
1113   // Try allocating obj in to-space (unless too old)
1114   if (dummyOld.age() < tenuring_threshold()) {
1115     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1116     if (new_obj == NULL) {
1117       set_survivor_overflow(true);
1118     }
1119   }
1120 
1121   if (new_obj == NULL) {
1122     // Either to-space is full or we decided to promote try allocating obj tenured
1123 
1124     // Attempt to install a null forwarding pointer (atomically),
1125     // to claim the right to install the real forwarding pointer.
1126     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1127     if (forward_ptr != NULL) {
1128       // someone else beat us to it.
1129         return real_forwardee(old);
1130     }
1131 
1132     if (!_promotion_failed) {
1133       new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
1134                                       old, m, sz);
1135     }
1136 
1137     if (new_obj == NULL) {
1138       // promotion failed, forward to self
1139       _promotion_failed = true;
1140       new_obj = old;
1141 
1142       par_scan_state->preserved_marks()->push_if_necessary(old, m);
1143       par_scan_state->register_promotion_failure(sz);
1144     }
1145 
1146     old->forward_to(new_obj);
1147     forward_ptr = NULL;
1148   } else {
1149     // Is in to-space; do copying ourselves.
1150     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1151     assert(GenCollectedHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
1152     forward_ptr = old->forward_to_atomic(new_obj);
1153     // Restore the mark word copied above.
1154     new_obj->set_mark(m);
1155     // Increment age if obj still in new generation
1156     new_obj->incr_age();
1157     par_scan_state->age_table()->add(new_obj, sz);
1158   }
1159   assert(new_obj != NULL, "just checking");
1160 
1161   // This code must come after the CAS test, or it will print incorrect
1162   // information.
1163   log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1164                                   is_in_reserved(new_obj) ? "copying" : "tenuring",
1165                                   new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size());
1166 
1167   if (forward_ptr == NULL) {
1168     oop obj_to_push = new_obj;
1169     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1170       // Length field used as index of next element to be scanned.
1171       // Real length can be obtained from real_forwardee()
1172       arrayOop(old)->set_length(0);
1173       obj_to_push = old;
1174       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1175              "push forwarded object");
1176     }
1177     // Push it on one of the queues of to-be-scanned objects.
1178     bool simulate_overflow = false;
1179     NOT_PRODUCT(
1180       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1181         // simulate a stack overflow
1182         simulate_overflow = true;
1183       }
1184     )
1185     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1186       // Add stats for overflow pushes.
1187       log_develop_trace(gc)("Queue Overflow");
1188       push_on_overflow_list(old, par_scan_state);
1189       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1190     }
1191 
1192     return new_obj;
1193   }
1194 
1195   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1196   // allocate it?
1197   if (is_in_reserved(new_obj)) {
1198     // Must be in to_space.
1199     assert(to()->is_in_reserved(new_obj), "Checking");
1200     if (forward_ptr == ClaimedForwardPtr) {
1201       // Wait to get the real forwarding pointer value.
1202       forward_ptr = real_forwardee(old);
1203     }
1204     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1205   }
1206 
1207   return forward_ptr;
1208 }
1209 
1210 #ifndef PRODUCT
1211 // It's OK to call this multi-threaded;  the worst thing
1212 // that can happen is that we'll get a bunch of closely
1213 // spaced simulated overflows, but that's OK, in fact
1214 // probably good as it would exercise the overflow code
1215 // under contention.
1216 bool ParNewGeneration::should_simulate_overflow() {
1217   if (_overflow_counter-- <= 0) { // just being defensive
1218     _overflow_counter = ParGCWorkQueueOverflowInterval;
1219     return true;
1220   } else {
1221     return false;
1222   }
1223 }
1224 #endif
1225 
1226 // In case we are using compressed oops, we need to be careful.
1227 // If the object being pushed is an object array, then its length
1228 // field keeps track of the "grey boundary" at which the next
1229 // incremental scan will be done (see ParGCArrayScanChunk).
1230 // When using compressed oops, this length field is kept in the
1231 // lower 32 bits of the erstwhile klass word and cannot be used
1232 // for the overflow chaining pointer (OCP below). As such the OCP
1233 // would itself need to be compressed into the top 32-bits in this
1234 // case. Unfortunately, see below, in the event that we have a
1235 // promotion failure, the node to be pushed on the list can be
1236 // outside of the Java heap, so the heap-based pointer compression
1237 // would not work (we would have potential aliasing between C-heap
1238 // and Java-heap pointers). For this reason, when using compressed
1239 // oops, we simply use a worker-thread-local, non-shared overflow
1240 // list in the form of a growable array, with a slightly different
1241 // overflow stack draining strategy. If/when we start using fat
1242 // stacks here, we can go back to using (fat) pointer chains
1243 // (although some performance comparisons would be useful since
1244 // single global lists have their own performance disadvantages
1245 // as we were made painfully aware not long ago, see 6786503).
1246 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1247 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1248   assert(is_in_reserved(from_space_obj), "Should be from this generation");
1249   if (ParGCUseLocalOverflow) {
1250     // In the case of compressed oops, we use a private, not-shared
1251     // overflow stack.
1252     par_scan_state->push_on_overflow_stack(from_space_obj);
1253   } else {
1254     assert(!UseCompressedOops, "Error");
1255     // if the object has been forwarded to itself, then we cannot
1256     // use the klass pointer for the linked list.  Instead we have
1257     // to allocate an oopDesc in the C-Heap and use that for the linked list.
1258     // XXX This is horribly inefficient when a promotion failure occurs
1259     // and should be fixed. XXX FIX ME !!!
1260 #ifndef PRODUCT
1261     Atomic::inc_ptr(&_num_par_pushes);
1262     assert(_num_par_pushes > 0, "Tautology");
1263 #endif
1264     if (from_space_obj->forwardee() == from_space_obj) {
1265       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1266       listhead->forward_to(from_space_obj);
1267       from_space_obj = listhead;
1268     }
1269     oop observed_overflow_list = _overflow_list;
1270     oop cur_overflow_list;
1271     do {
1272       cur_overflow_list = observed_overflow_list;
1273       if (cur_overflow_list != BUSY) {
1274         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1275       } else {
1276         from_space_obj->set_klass_to_list_ptr(NULL);
1277       }
1278       observed_overflow_list =
1279         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1280     } while (cur_overflow_list != observed_overflow_list);
1281   }
1282 }
1283 
1284 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1285   bool res;
1286 
1287   if (ParGCUseLocalOverflow) {
1288     res = par_scan_state->take_from_overflow_stack();
1289   } else {
1290     assert(!UseCompressedOops, "Error");
1291     res = take_from_overflow_list_work(par_scan_state);
1292   }
1293   return res;
1294 }
1295 
1296 
1297 // *NOTE*: The overflow list manipulation code here and
1298 // in CMSCollector:: are very similar in shape,
1299 // except that in the CMS case we thread the objects
1300 // directly into the list via their mark word, and do
1301 // not need to deal with special cases below related
1302 // to chunking of object arrays and promotion failure
1303 // handling.
1304 // CR 6797058 has been filed to attempt consolidation of
1305 // the common code.
1306 // Because of the common code, if you make any changes in
1307 // the code below, please check the CMS version to see if
1308 // similar changes might be needed.
1309 // See CMSCollector::par_take_from_overflow_list() for
1310 // more extensive documentation comments.
1311 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1312   ObjToScanQueue* work_q = par_scan_state->work_queue();
1313   // How many to take?
1314   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1315                                  (size_t)ParGCDesiredObjsFromOverflowList);
1316 
1317   assert(!UseCompressedOops, "Error");
1318   assert(par_scan_state->overflow_stack() == NULL, "Error");
1319   if (_overflow_list == NULL) return false;
1320 
1321   // Otherwise, there was something there; try claiming the list.
1322   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1323   // Trim off a prefix of at most objsFromOverflow items
1324   Thread* tid = Thread::current();
1325   size_t spin_count = ParallelGCThreads;
1326   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1327   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1328     // someone grabbed it before we did ...
1329     // ... we spin for a short while...
1330     os::sleep(tid, sleep_time_millis, false);
1331     if (_overflow_list == NULL) {
1332       // nothing left to take
1333       return false;
1334     } else if (_overflow_list != BUSY) {
1335      // try and grab the prefix
1336      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1337     }
1338   }
1339   if (prefix == NULL || prefix == BUSY) {
1340      // Nothing to take or waited long enough
1341      if (prefix == NULL) {
1342        // Write back the NULL in case we overwrote it with BUSY above
1343        // and it is still the same value.
1344        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1345      }
1346      return false;
1347   }
1348   assert(prefix != NULL && prefix != BUSY, "Error");
1349   size_t i = 1;
1350   oop cur = prefix;
1351   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1352     i++; cur = cur->list_ptr_from_klass();
1353   }
1354 
1355   // Reattach remaining (suffix) to overflow list
1356   if (cur->klass_or_null() == NULL) {
1357     // Write back the NULL in lieu of the BUSY we wrote
1358     // above and it is still the same value.
1359     if (_overflow_list == BUSY) {
1360       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1361     }
1362   } else {
1363     assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
1364     oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
1365     cur->set_klass_to_list_ptr(NULL);     // break off suffix
1366     // It's possible that the list is still in the empty(busy) state
1367     // we left it in a short while ago; in that case we may be
1368     // able to place back the suffix.
1369     oop observed_overflow_list = _overflow_list;
1370     oop cur_overflow_list = observed_overflow_list;
1371     bool attached = false;
1372     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1373       observed_overflow_list =
1374         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1375       if (cur_overflow_list == observed_overflow_list) {
1376         attached = true;
1377         break;
1378       } else cur_overflow_list = observed_overflow_list;
1379     }
1380     if (!attached) {
1381       // Too bad, someone else got in in between; we'll need to do a splice.
1382       // Find the last item of suffix list
1383       oop last = suffix;
1384       while (last->klass_or_null() != NULL) {
1385         last = last->list_ptr_from_klass();
1386       }
1387       // Atomically prepend suffix to current overflow list
1388       observed_overflow_list = _overflow_list;
1389       do {
1390         cur_overflow_list = observed_overflow_list;
1391         if (cur_overflow_list != BUSY) {
1392           // Do the splice ...
1393           last->set_klass_to_list_ptr(cur_overflow_list);
1394         } else { // cur_overflow_list == BUSY
1395           last->set_klass_to_list_ptr(NULL);
1396         }
1397         observed_overflow_list =
1398           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1399       } while (cur_overflow_list != observed_overflow_list);
1400     }
1401   }
1402 
1403   // Push objects on prefix list onto this thread's work queue
1404   assert(prefix != NULL && prefix != BUSY, "program logic");
1405   cur = prefix;
1406   ssize_t n = 0;
1407   while (cur != NULL) {
1408     oop obj_to_push = cur->forwardee();
1409     oop next        = cur->list_ptr_from_klass();
1410     cur->set_klass(obj_to_push->klass());
1411     // This may be an array object that is self-forwarded. In that case, the list pointer
1412     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1413     if (!is_in_reserved(cur)) {
1414       // This can become a scaling bottleneck when there is work queue overflow coincident
1415       // with promotion failure.
1416       oopDesc* f = cur;
1417       FREE_C_HEAP_ARRAY(oopDesc, f);
1418     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1419       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1420       obj_to_push = cur;
1421     }
1422     bool ok = work_q->push(obj_to_push);
1423     assert(ok, "Should have succeeded");
1424     cur = next;
1425     n++;
1426   }
1427   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1428 #ifndef PRODUCT
1429   assert(_num_par_pushes >= n, "Too many pops?");
1430   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1431 #endif
1432   return true;
1433 }
1434 #undef BUSY
1435 
1436 void ParNewGeneration::ref_processor_init() {
1437   if (_ref_processor == NULL) {
1438     // Allocate and initialize a reference processor
1439     _ref_processor =
1440       new ReferenceProcessor(_reserved,                  // span
1441                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1442                              ParallelGCThreads,          // mt processing degree
1443                              refs_discovery_is_mt(),     // mt discovery
1444                              ParallelGCThreads,          // mt discovery degree
1445                              refs_discovery_is_atomic(), // atomic_discovery
1446                              NULL);                      // is_alive_non_header
1447   }
1448 }
1449 
1450 const char* ParNewGeneration::name() const {
1451   return "par new generation";
1452 }