1 /*
   2  * Copyright (c) 2000, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
  26 // enumerate ref fields that have been modified (since the last
  27 // enumeration.)
  28 
  29 // As it currently stands, this barrier is *imprecise*: when a ref field in
  30 // an object "o" is modified, the card table entry for the card containing
  31 // the head of "o" is dirtied, not necessarily the card containing the
  32 // modified field itself.  For object arrays, however, the barrier *is*
  33 // precise; only the card containing the modified element is dirtied.
  34 // Any MemRegionClosures used to scan dirty cards should take these
  35 // considerations into account.
  36 
  37 class Generation;
  38 class OopsInGenClosure;
  39 class DirtyCardToOopClosure;
  40 
  41 class CardTableModRefBS: public ModRefBarrierSet {
  42   // Some classes get to look at some private stuff.
  43   friend class BytecodeInterpreter;
  44   friend class VMStructs;
  45   friend class CardTableRS;
  46   friend class CheckForUnmarkedOops; // Needs access to raw card bytes.
  47 #ifndef PRODUCT
  48   // For debugging.
  49   friend class GuaranteeNotModClosure;
  50 #endif
  51  protected:
  52 
  53   enum CardValues {
  54     clean_card                  = -1,
  55     // The mask contains zeros in places for all other values.
  56     clean_card_mask             = clean_card - 31,
  57 
  58     dirty_card                  =  0,
  59     precleaned_card             =  1,
  60     claimed_card                =  2,
  61     deferred_card               =  4,
  62     last_card                   =  8,
  63     CT_MR_BS_last_reserved      = 16
  64   };
  65 
  66   // dirty and precleaned are equivalent wrt younger_refs_iter.
  67   static bool card_is_dirty_wrt_gen_iter(jbyte cv) {
  68     return cv == dirty_card || cv == precleaned_card;
  69   }
  70 
  71   // Returns "true" iff the value "cv" will cause the card containing it
  72   // to be scanned in the current traversal.  May be overridden by
  73   // subtypes.
  74   virtual bool card_will_be_scanned(jbyte cv) {
  75     return CardTableModRefBS::card_is_dirty_wrt_gen_iter(cv);
  76   }
  77 
  78   // Returns "true" iff the value "cv" may have represented a dirty card at
  79   // some point.
  80   virtual bool card_may_have_been_dirty(jbyte cv) {
  81     return card_is_dirty_wrt_gen_iter(cv);
  82   }
  83 
  84   // The declaration order of these const fields is important; see the
  85   // constructor before changing.
  86   const MemRegion _whole_heap;       // the region covered by the card table
  87   const size_t    _guard_index;      // index of very last element in the card
  88                                      // table; it is set to a guard value
  89                                      // (last_card) and should never be modified
  90   const size_t    _last_valid_index; // index of the last valid element
  91   const size_t    _page_size;        // page size used when mapping _byte_map
  92   const size_t    _byte_map_size;    // in bytes
  93   jbyte*          _byte_map;         // the card marking array
  94 
  95   int _cur_covered_regions;
  96   // The covered regions should be in address order.
  97   MemRegion* _covered;
  98   // The committed regions correspond one-to-one to the covered regions.
  99   // They represent the card-table memory that has been committed to service
 100   // the corresponding covered region.  It may be that committed region for
 101   // one covered region corresponds to a larger region because of page-size
 102   // roundings.  Thus, a committed region for one covered region may
 103   // actually extend onto the card-table space for the next covered region.
 104   MemRegion* _committed;
 105 
 106   // The last card is a guard card, and we commit the page for it so
 107   // we can use the card for verification purposes. We make sure we never
 108   // uncommit the MemRegion for that page.
 109   MemRegion _guard_region;
 110 
 111  protected:
 112   // Initialization utilities; covered_words is the size of the covered region
 113   // in, um, words.
 114   inline size_t cards_required(size_t covered_words);
 115   inline size_t compute_byte_map_size();
 116 
 117   // Finds and return the index of the region, if any, to which the given
 118   // region would be contiguous.  If none exists, assign a new region and
 119   // returns its index.  Requires that no more than the maximum number of
 120   // covered regions defined in the constructor are ever in use.
 121   int find_covering_region_by_base(HeapWord* base);
 122 
 123   // Same as above, but finds the region containing the given address
 124   // instead of starting at a given base address.
 125   int find_covering_region_containing(HeapWord* addr);
 126 
 127   // Resize one of the regions covered by the remembered set.
 128   void resize_covered_region(MemRegion new_region);
 129 
 130   // Returns the leftmost end of a committed region corresponding to a
 131   // covered region before covered region "ind", or else "NULL" if "ind" is
 132   // the first covered region.
 133   HeapWord* largest_prev_committed_end(int ind) const;
 134 
 135   // Returns the part of the region mr that doesn't intersect with
 136   // any committed region other than self.  Used to prevent uncommitting
 137   // regions that are also committed by other regions.  Also protects
 138   // against uncommitting the guard region.
 139   MemRegion committed_unique_to_self(int self, MemRegion mr) const;
 140 
 141   // Mapping from address to card marking array entry
 142   jbyte* byte_for(const void* p) const {
 143     assert(_whole_heap.contains(p),
 144            "out of bounds access to card marking array");
 145     jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift];
 146     assert(result >= _byte_map && result < _byte_map + _byte_map_size,
 147            "out of bounds accessor for card marking array");
 148     return result;
 149   }
 150 
 151   // The card table byte one after the card marking array
 152   // entry for argument address. Typically used for higher bounds
 153   // for loops iterating through the card table.
 154   jbyte* byte_after(const void* p) const {
 155     return byte_for(p) + 1;
 156   }
 157 
 158   // Iterate over the portion of the card-table which covers the given
 159   // region mr in the given space and apply cl to any dirty sub-regions
 160   // of mr. cl and dcto_cl must either be the same closure or cl must
 161   // wrap dcto_cl. Both are required - neither may be NULL. Also, dcto_cl
 162   // may be modified. Note that this function will operate in a parallel
 163   // mode if worker threads are available.
 164   void non_clean_card_iterate(Space* sp, MemRegion mr,
 165                               DirtyCardToOopClosure* dcto_cl,
 166                               MemRegionClosure* cl,
 167                               bool clear);
 168 
 169   // Utility function used to implement the other versions below.
 170   void non_clean_card_iterate_work(MemRegion mr, MemRegionClosure* cl,
 171                                    bool clear);
 172 
 173   void par_non_clean_card_iterate_work(Space* sp, MemRegion mr,
 174                                        DirtyCardToOopClosure* dcto_cl,
 175                                        MemRegionClosure* cl,
 176                                        bool clear,
 177                                        int n_threads);
 178 
 179   // Dirty the bytes corresponding to "mr" (not all of which must be
 180   // covered.)
 181   void dirty_MemRegion(MemRegion mr);
 182 
 183   // Clear (to clean_card) the bytes entirely contained within "mr" (not
 184   // all of which must be covered.)
 185   void clear_MemRegion(MemRegion mr);
 186 
 187   // *** Support for parallel card scanning.
 188 
 189   enum SomeConstantsForParallelism {
 190     StridesPerThread    = 2,
 191     CardsPerStrideChunk = 256
 192   };
 193 
 194   // This is an array, one element per covered region of the card table.
 195   // Each entry is itself an array, with one element per chunk in the
 196   // covered region.  Each entry of these arrays is the lowest non-clean
 197   // card of the corresponding chunk containing part of an object from the
 198   // previous chunk, or else NULL.
 199   typedef jbyte*  CardPtr;
 200   typedef CardPtr* CardArr;
 201   CardArr* _lowest_non_clean;
 202   size_t*  _lowest_non_clean_chunk_size;
 203   uintptr_t* _lowest_non_clean_base_chunk_index;
 204   int* _last_LNC_resizing_collection;
 205 
 206   // Initializes "lowest_non_clean" to point to the array for the region
 207   // covering "sp", and "lowest_non_clean_base_chunk_index" to the chunk
 208   // index of the corresponding to the first element of that array.
 209   // Ensures that these arrays are of sufficient size, allocating if necessary.
 210   // May be called by several threads concurrently.
 211   void get_LNC_array_for_space(Space* sp,
 212                                jbyte**& lowest_non_clean,
 213                                uintptr_t& lowest_non_clean_base_chunk_index,
 214                                size_t& lowest_non_clean_chunk_size);
 215 
 216   // Returns the number of chunks necessary to cover "mr".
 217   size_t chunks_to_cover(MemRegion mr) {
 218     return (size_t)(addr_to_chunk_index(mr.last()) -
 219                     addr_to_chunk_index(mr.start()) + 1);
 220   }
 221 
 222   // Returns the index of the chunk in a stride which
 223   // covers the given address.
 224   uintptr_t addr_to_chunk_index(const void* addr) {
 225     uintptr_t card = (uintptr_t) byte_for(addr);
 226     return card / CardsPerStrideChunk;
 227   }
 228 
 229   // Apply cl, which must either itself apply dcto_cl or be dcto_cl,
 230   // to the cards in the stride (of n_strides) within the given space.
 231   void process_stride(Space* sp,
 232                       MemRegion used,
 233                       jint stride, int n_strides,
 234                       DirtyCardToOopClosure* dcto_cl,
 235                       MemRegionClosure* cl,
 236                       bool clear,
 237                       jbyte** lowest_non_clean,
 238                       uintptr_t lowest_non_clean_base_chunk_index,
 239                       size_t lowest_non_clean_chunk_size);
 240 
 241   // Makes sure that chunk boundaries are handled appropriately, by
 242   // adjusting the min_done of dcto_cl, and by using a special card-table
 243   // value to indicate how min_done should be set.
 244   void process_chunk_boundaries(Space* sp,
 245                                 DirtyCardToOopClosure* dcto_cl,
 246                                 MemRegion chunk_mr,
 247                                 MemRegion used,
 248                                 jbyte** lowest_non_clean,
 249                                 uintptr_t lowest_non_clean_base_chunk_index,
 250                                 size_t    lowest_non_clean_chunk_size);
 251 
 252 public:
 253   // Constants
 254   enum SomePublicConstants {
 255     card_shift                  = 9,
 256     card_size                   = 1 << card_shift,
 257     card_size_in_words          = card_size / sizeof(HeapWord)
 258   };
 259 
 260   static int clean_card_val()      { return clean_card; }
 261   static int clean_card_mask_val() { return clean_card_mask; }
 262   static int dirty_card_val()      { return dirty_card; }
 263   static int claimed_card_val()    { return claimed_card; }
 264   static int precleaned_card_val() { return precleaned_card; }
 265   static int deferred_card_val()   { return deferred_card; }
 266 
 267   // For RTTI simulation.
 268   bool is_a(BarrierSet::Name bsn) {
 269     return bsn == BarrierSet::CardTableModRef || ModRefBarrierSet::is_a(bsn);
 270   }
 271 
 272   CardTableModRefBS(MemRegion whole_heap, int max_covered_regions);
 273 
 274   // *** Barrier set functions.
 275 
 276   bool has_write_ref_pre_barrier() { return false; }
 277 
 278   inline bool write_ref_needs_barrier(void* field, oop new_val) {
 279     // Note that this assumes the perm gen is the highest generation
 280     // in the address space
 281     return new_val != NULL && !new_val->is_perm();
 282   }
 283 
 284   // Record a reference update. Note that these versions are precise!
 285   // The scanning code has to handle the fact that the write barrier may be
 286   // either precise or imprecise. We make non-virtual inline variants of
 287   // these functions here for performance.
 288 protected:
 289   void write_ref_field_work(oop obj, size_t offset, oop newVal);
 290   virtual void write_ref_field_work(void* field, oop newVal);
 291 public:
 292 
 293   bool has_write_ref_array_opt() { return true; }
 294   bool has_write_region_opt() { return true; }
 295 
 296   inline void inline_write_region(MemRegion mr) {
 297     dirty_MemRegion(mr);
 298   }
 299 protected:
 300   void write_region_work(MemRegion mr) {
 301     inline_write_region(mr);
 302   }
 303 public:
 304 
 305   inline void inline_write_ref_array(MemRegion mr) {
 306     dirty_MemRegion(mr);
 307   }
 308 protected:
 309   void write_ref_array_work(MemRegion mr) {
 310     inline_write_ref_array(mr);
 311   }
 312 public:
 313 
 314   bool is_aligned(HeapWord* addr) {
 315     return is_card_aligned(addr);
 316   }
 317 
 318   // *** Card-table-barrier-specific things.
 319 
 320   template <class T> inline void inline_write_ref_field_pre(T* field, oop newVal) {}
 321 
 322   template <class T> inline void inline_write_ref_field(T* field, oop newVal) {
 323     jbyte* byte = byte_for((void*)field);
 324     *byte = dirty_card;
 325   }
 326 
 327   // These are used by G1, when it uses the card table as a temporary data
 328   // structure for card claiming.
 329   bool is_card_dirty(size_t card_index) {
 330     return _byte_map[card_index] == dirty_card_val();
 331   }
 332 
 333   void mark_card_dirty(size_t card_index) {
 334     _byte_map[card_index] = dirty_card_val();
 335   }
 336 
 337   bool is_card_claimed(size_t card_index) {
 338     jbyte val = _byte_map[card_index];
 339     return (val & (clean_card_mask_val() | claimed_card_val())) == claimed_card_val();
 340   }
 341 
 342   void set_card_claimed(size_t card_index) {
 343       jbyte val = _byte_map[card_index];
 344       if (val == clean_card_val()) {
 345         val = (jbyte)claimed_card_val();
 346       } else {
 347         val |= (jbyte)claimed_card_val();
 348       }
 349       _byte_map[card_index] = val;
 350   }
 351 
 352   bool claim_card(size_t card_index);
 353 
 354   bool is_card_clean(size_t card_index) {
 355     return _byte_map[card_index] == clean_card_val();
 356   }
 357 
 358   bool is_card_deferred(size_t card_index) {
 359     jbyte val = _byte_map[card_index];
 360     return (val & (clean_card_mask_val() | deferred_card_val())) == deferred_card_val();
 361   }
 362 
 363   bool mark_card_deferred(size_t card_index);
 364 
 365   // Card marking array base (adjusted for heap low boundary)
 366   // This would be the 0th element of _byte_map, if the heap started at 0x0.
 367   // But since the heap starts at some higher address, this points to somewhere
 368   // before the beginning of the actual _byte_map.
 369   jbyte* byte_map_base;
 370 
 371   // Return true if "p" is at the start of a card.
 372   bool is_card_aligned(HeapWord* p) {
 373     jbyte* pcard = byte_for(p);
 374     return (addr_for(pcard) == p);
 375   }
 376 
 377   // The kinds of precision a CardTableModRefBS may offer.
 378   enum PrecisionStyle {
 379     Precise,
 380     ObjHeadPreciseArray
 381   };
 382 
 383   // Tells what style of precision this card table offers.
 384   PrecisionStyle precision() {
 385     return ObjHeadPreciseArray; // Only one supported for now.
 386   }
 387 
 388   // ModRefBS functions.
 389   virtual void invalidate(MemRegion mr, bool whole_heap = false);
 390   void clear(MemRegion mr);
 391   void dirty(MemRegion mr);
 392   void mod_oop_in_space_iterate(Space* sp, OopClosure* cl,
 393                                 bool clear = false,
 394                                 bool before_save_marks = false);
 395 
 396   // *** Card-table-RemSet-specific things.
 397 
 398   // Invoke "cl.do_MemRegion" on a set of MemRegions that collectively
 399   // includes all the modified cards (expressing each card as a
 400   // MemRegion).  Thus, several modified cards may be lumped into one
 401   // region.  The regions are non-overlapping, and are visited in
 402   // *decreasing* address order.  (This order aids with imprecise card
 403   // marking, where a dirty card may cause scanning, and summarization
 404   // marking, of objects that extend onto subsequent cards.)
 405   // If "clear" is true, the card is (conceptually) marked unmodified before
 406   // applying the closure.
 407   void mod_card_iterate(MemRegionClosure* cl, bool clear = false) {
 408     non_clean_card_iterate_work(_whole_heap, cl, clear);
 409   }
 410 
 411   // Like the "mod_cards_iterate" above, except only invokes the closure
 412   // for cards within the MemRegion "mr" (which is required to be
 413   // card-aligned and sized.)
 414   void mod_card_iterate(MemRegion mr, MemRegionClosure* cl,
 415                         bool clear = false) {
 416     non_clean_card_iterate_work(mr, cl, clear);
 417   }
 418 
 419   static uintx ct_max_alignment_constraint();
 420 
 421   // Apply closure "cl" to the dirty cards containing some part of
 422   // MemRegion "mr".
 423   void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl);
 424 
 425   // Return the MemRegion corresponding to the first maximal run
 426   // of dirty cards lying completely within MemRegion mr.
 427   // If reset is "true", then sets those card table entries to the given
 428   // value.
 429   MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset,
 430                                          int reset_val);
 431 
 432   // Set all the dirty cards in the given region to precleaned state.
 433   void preclean_dirty_cards(MemRegion mr);
 434 
 435   // Provide read-only access to the card table array.
 436   const jbyte* byte_for_const(const void* p) const {
 437     return byte_for(p);
 438   }
 439   const jbyte* byte_after_const(const void* p) const {
 440     return byte_after(p);
 441   }
 442 
 443   // Mapping from card marking array entry to address of first word
 444   HeapWord* addr_for(const jbyte* p) const {
 445     assert(p >= _byte_map && p < _byte_map + _byte_map_size,
 446            "out of bounds access to card marking array");
 447     size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte));
 448     HeapWord* result = (HeapWord*) (delta << card_shift);
 449     assert(_whole_heap.contains(result),
 450            "out of bounds accessor from card marking array");
 451     return result;
 452   }
 453 
 454   // Mapping from address to card marking array index.
 455   size_t index_for(void* p) {
 456     assert(_whole_heap.contains(p),
 457            "out of bounds access to card marking array");
 458     return byte_for(p) - _byte_map;
 459   }
 460 
 461   const jbyte* byte_for_index(const size_t card_index) const {
 462     return _byte_map + card_index;
 463   }
 464 
 465   void verify();
 466   void verify_guard();
 467 
 468   void verify_clean_region(MemRegion mr) PRODUCT_RETURN;
 469   void verify_dirty_region(MemRegion mr) PRODUCT_RETURN;
 470 
 471   static size_t par_chunk_heapword_alignment() {
 472     return CardsPerStrideChunk * card_size_in_words;
 473   }
 474 
 475 };
 476 
 477 class CardTableRS;
 478 
 479 // A specialization for the CardTableRS gen rem set.
 480 class CardTableModRefBSForCTRS: public CardTableModRefBS {
 481   CardTableRS* _rs;
 482 protected:
 483   bool card_will_be_scanned(jbyte cv);
 484   bool card_may_have_been_dirty(jbyte cv);
 485 public:
 486   CardTableModRefBSForCTRS(MemRegion whole_heap,
 487                            int max_covered_regions) :
 488     CardTableModRefBS(whole_heap, max_covered_regions) {}
 489 
 490   void set_CTRS(CardTableRS* rs) { _rs = rs; }
 491 };