1 /*
   2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // do not include  precompiled  header file
  26 # include "incls/_os_linux.cpp.incl"
  27 
  28 // put OS-includes here
  29 # include <sys/types.h>
  30 # include <sys/mman.h>
  31 # include <pthread.h>
  32 # include <signal.h>
  33 # include <errno.h>
  34 # include <dlfcn.h>
  35 # include <stdio.h>
  36 # include <unistd.h>
  37 # include <sys/resource.h>
  38 # include <pthread.h>
  39 # include <sys/stat.h>
  40 # include <sys/time.h>
  41 # include <sys/times.h>
  42 # include <sys/utsname.h>
  43 # include <sys/socket.h>
  44 # include <sys/wait.h>
  45 # include <pwd.h>
  46 # include <poll.h>
  47 # include <semaphore.h>
  48 # include <fcntl.h>
  49 # include <string.h>
  50 # include <syscall.h>
  51 # include <sys/sysinfo.h>
  52 # include <gnu/libc-version.h>
  53 # include <sys/ipc.h>
  54 # include <sys/shm.h>
  55 # include <link.h>
  56 
  57 #define MAX_PATH    (2 * K)
  58 
  59 // for timer info max values which include all bits
  60 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  61 #define SEC_IN_NANOSECS  1000000000LL
  62 
  63 ////////////////////////////////////////////////////////////////////////////////
  64 // global variables
  65 julong os::Linux::_physical_memory = 0;
  66 
  67 address   os::Linux::_initial_thread_stack_bottom = NULL;
  68 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
  69 
  70 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
  71 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
  72 Mutex* os::Linux::_createThread_lock = NULL;
  73 pthread_t os::Linux::_main_thread;
  74 int os::Linux::_page_size = -1;
  75 bool os::Linux::_is_floating_stack = false;
  76 bool os::Linux::_is_NPTL = false;
  77 bool os::Linux::_supports_fast_thread_cpu_time = false;
  78 const char * os::Linux::_glibc_version = NULL;
  79 const char * os::Linux::_libpthread_version = NULL;
  80 
  81 static jlong initial_time_count=0;
  82 
  83 static int clock_tics_per_sec = 100;
  84 
  85 // For diagnostics to print a message once. see run_periodic_checks
  86 static sigset_t check_signal_done;
  87 static bool check_signals = true;;
  88 
  89 static pid_t _initial_pid = 0;
  90 
  91 /* Signal number used to suspend/resume a thread */
  92 
  93 /* do not use any signal number less than SIGSEGV, see 4355769 */
  94 static int SR_signum = SIGUSR2;
  95 sigset_t SR_sigset;
  96 
  97 /* Used to protect dlsym() calls */
  98 static pthread_mutex_t dl_mutex;
  99 
 100 ////////////////////////////////////////////////////////////////////////////////
 101 // utility functions
 102 
 103 static int SR_initialize();
 104 static int SR_finalize();
 105 
 106 julong os::available_memory() {
 107   return Linux::available_memory();
 108 }
 109 
 110 julong os::Linux::available_memory() {
 111   // values in struct sysinfo are "unsigned long"
 112   struct sysinfo si;
 113   sysinfo(&si);
 114 
 115   return (julong)si.freeram * si.mem_unit;
 116 }
 117 
 118 julong os::physical_memory() {
 119   return Linux::physical_memory();
 120 }
 121 
 122 julong os::allocatable_physical_memory(julong size) {
 123 #ifdef _LP64
 124   return size;
 125 #else
 126   julong result = MIN2(size, (julong)3800*M);
 127    if (!is_allocatable(result)) {
 128      // See comments under solaris for alignment considerations
 129      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 130      result =  MIN2(size, reasonable_size);
 131    }
 132    return result;
 133 #endif // _LP64
 134 }
 135 
 136 ////////////////////////////////////////////////////////////////////////////////
 137 // environment support
 138 
 139 bool os::getenv(const char* name, char* buf, int len) {
 140   const char* val = ::getenv(name);
 141   if (val != NULL && strlen(val) < (size_t)len) {
 142     strcpy(buf, val);
 143     return true;
 144   }
 145   if (len > 0) buf[0] = 0;  // return a null string
 146   return false;
 147 }
 148 
 149 
 150 // Return true if user is running as root.
 151 
 152 bool os::have_special_privileges() {
 153   static bool init = false;
 154   static bool privileges = false;
 155   if (!init) {
 156     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 157     init = true;
 158   }
 159   return privileges;
 160 }
 161 
 162 
 163 #ifndef SYS_gettid
 164 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 165 #ifdef __ia64__
 166 #define SYS_gettid 1105
 167 #elif __i386__
 168 #define SYS_gettid 224
 169 #elif __amd64__
 170 #define SYS_gettid 186
 171 #elif __sparc__
 172 #define SYS_gettid 143
 173 #else
 174 #error define gettid for the arch
 175 #endif
 176 #endif
 177 
 178 // Cpu architecture string
 179 #if   defined(IA64)
 180 static char cpu_arch[] = "ia64";
 181 #elif defined(IA32)
 182 static char cpu_arch[] = "i386";
 183 #elif defined(AMD64)
 184 static char cpu_arch[] = "amd64";
 185 #elif defined(SPARC)
 186 #  ifdef _LP64
 187 static char cpu_arch[] = "sparcv9";
 188 #  else
 189 static char cpu_arch[] = "sparc";
 190 #  endif
 191 #else
 192 #error Add appropriate cpu_arch setting
 193 #endif
 194 
 195 
 196 // pid_t gettid()
 197 //
 198 // Returns the kernel thread id of the currently running thread. Kernel
 199 // thread id is used to access /proc.
 200 //
 201 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 202 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 203 //
 204 pid_t os::Linux::gettid() {
 205   int rslt = syscall(SYS_gettid);
 206   if (rslt == -1) {
 207      // old kernel, no NPTL support
 208      return getpid();
 209   } else {
 210      return (pid_t)rslt;
 211   }
 212 }
 213 
 214 // Most versions of linux have a bug where the number of processors are
 215 // determined by looking at the /proc file system.  In a chroot environment,
 216 // the system call returns 1.  This causes the VM to act as if it is
 217 // a single processor and elide locking (see is_MP() call).
 218 static bool unsafe_chroot_detected = false;
 219 static const char *unstable_chroot_error = "/proc file system not found.\n"
 220                      "Java may be unstable running multithreaded in a chroot "
 221                      "environment on Linux when /proc filesystem is not mounted.";
 222 
 223 void os::Linux::initialize_system_info() {
 224   _processor_count = sysconf(_SC_NPROCESSORS_CONF);
 225   if (_processor_count == 1) {
 226     pid_t pid = os::Linux::gettid();
 227     char fname[32];
 228     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 229     FILE *fp = fopen(fname, "r");
 230     if (fp == NULL) {
 231       unsafe_chroot_detected = true;
 232     } else {
 233       fclose(fp);
 234     }
 235   }
 236   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 237   assert(_processor_count > 0, "linux error");
 238 }
 239 
 240 void os::init_system_properties_values() {
 241 //  char arch[12];
 242 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 243 
 244   // The next steps are taken in the product version:
 245   //
 246   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
 247   // This library should be located at:
 248   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
 249   //
 250   // If "/jre/lib/" appears at the right place in the path, then we
 251   // assume libjvm[_g].so is installed in a JDK and we use this path.
 252   //
 253   // Otherwise exit with message: "Could not create the Java virtual machine."
 254   //
 255   // The following extra steps are taken in the debugging version:
 256   //
 257   // If "/jre/lib/" does NOT appear at the right place in the path
 258   // instead of exit check for $JAVA_HOME environment variable.
 259   //
 260   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 261   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
 262   // it looks like libjvm[_g].so is installed there
 263   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
 264   //
 265   // Otherwise exit.
 266   //
 267   // Important note: if the location of libjvm.so changes this
 268   // code needs to be changed accordingly.
 269 
 270   // The next few definitions allow the code to be verbatim:
 271 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
 272 #define getenv(n) ::getenv(n)
 273 
 274 /*
 275  * See ld(1):
 276  *      The linker uses the following search paths to locate required
 277  *      shared libraries:
 278  *        1: ...
 279  *        ...
 280  *        7: The default directories, normally /lib and /usr/lib.
 281  */
 282 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 283 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 284 #else
 285 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 286 #endif
 287 
 288 #define EXTENSIONS_DIR  "/lib/ext"
 289 #define ENDORSED_DIR    "/lib/endorsed"
 290 #define REG_DIR         "/usr/java/packages"
 291 
 292   {
 293     /* sysclasspath, java_home, dll_dir */
 294     {
 295         char *home_path;
 296         char *dll_path;
 297         char *pslash;
 298         char buf[MAXPATHLEN];
 299         os::jvm_path(buf, sizeof(buf));
 300 
 301         // Found the full path to libjvm.so.
 302         // Now cut the path to <java_home>/jre if we can.
 303         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 304         pslash = strrchr(buf, '/');
 305         if (pslash != NULL)
 306             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 307         dll_path = malloc(strlen(buf) + 1);
 308         if (dll_path == NULL)
 309             return;
 310         strcpy(dll_path, buf);
 311         Arguments::set_dll_dir(dll_path);
 312 
 313         if (pslash != NULL) {
 314             pslash = strrchr(buf, '/');
 315             if (pslash != NULL) {
 316                 *pslash = '\0';       /* get rid of /<arch> */
 317                 pslash = strrchr(buf, '/');
 318                 if (pslash != NULL)
 319                     *pslash = '\0';   /* get rid of /lib */
 320             }
 321         }
 322 
 323         home_path = malloc(strlen(buf) + 1);
 324         if (home_path == NULL)
 325             return;
 326         strcpy(home_path, buf);
 327         Arguments::set_java_home(home_path);
 328 
 329         if (!set_boot_path('/', ':'))
 330             return;
 331     }
 332 
 333     /*
 334      * Where to look for native libraries
 335      *
 336      * Note: Due to a legacy implementation, most of the library path
 337      * is set in the launcher.  This was to accomodate linking restrictions
 338      * on legacy Linux implementations (which are no longer supported).
 339      * Eventually, all the library path setting will be done here.
 340      *
 341      * However, to prevent the proliferation of improperly built native
 342      * libraries, the new path component /usr/java/packages is added here.
 343      * Eventually, all the library path setting will be done here.
 344      */
 345     {
 346         char *ld_library_path;
 347 
 348         /*
 349          * Construct the invariant part of ld_library_path. Note that the
 350          * space for the colon and the trailing null are provided by the
 351          * nulls included by the sizeof operator (so actually we allocate
 352          * a byte more than necessary).
 353          */
 354         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 355             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 356         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 357 
 358         /*
 359          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 360          * should always exist (until the legacy problem cited above is
 361          * addressed).
 362          */
 363         char *v = getenv("LD_LIBRARY_PATH");
 364         if (v != NULL) {
 365             char *t = ld_library_path;
 366             /* That's +1 for the colon and +1 for the trailing '\0' */
 367             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 368             sprintf(ld_library_path, "%s:%s", v, t);
 369         }
 370         Arguments::set_library_path(ld_library_path);
 371     }
 372 
 373     /*
 374      * Extensions directories.
 375      *
 376      * Note that the space for the colon and the trailing null are provided
 377      * by the nulls included by the sizeof operator (so actually one byte more
 378      * than necessary is allocated).
 379      */
 380     {
 381         char *buf = malloc(strlen(Arguments::get_java_home()) +
 382             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 383         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 384             Arguments::get_java_home());
 385         Arguments::set_ext_dirs(buf);
 386     }
 387 
 388     /* Endorsed standards default directory. */
 389     {
 390         char * buf;
 391         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 392         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 393         Arguments::set_endorsed_dirs(buf);
 394     }
 395   }
 396 
 397 #undef malloc
 398 #undef getenv
 399 #undef EXTENSIONS_DIR
 400 #undef ENDORSED_DIR
 401 
 402   // Done
 403   return;
 404 }
 405 
 406 ////////////////////////////////////////////////////////////////////////////////
 407 // breakpoint support
 408 
 409 void os::breakpoint() {
 410   BREAKPOINT;
 411 }
 412 
 413 extern "C" void breakpoint() {
 414   // use debugger to set breakpoint here
 415 }
 416 
 417 ////////////////////////////////////////////////////////////////////////////////
 418 // signal support
 419 
 420 debug_only(static bool signal_sets_initialized = false);
 421 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 422 
 423 bool os::Linux::is_sig_ignored(int sig) {
 424       struct sigaction oact;
 425       sigaction(sig, (struct sigaction*)NULL, &oact);
 426       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 427                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 428       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 429            return true;
 430       else
 431            return false;
 432 }
 433 
 434 void os::Linux::signal_sets_init() {
 435   // Should also have an assertion stating we are still single-threaded.
 436   assert(!signal_sets_initialized, "Already initialized");
 437   // Fill in signals that are necessarily unblocked for all threads in
 438   // the VM. Currently, we unblock the following signals:
 439   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 440   //                         by -Xrs (=ReduceSignalUsage));
 441   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 442   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 443   // the dispositions or masks wrt these signals.
 444   // Programs embedding the VM that want to use the above signals for their
 445   // own purposes must, at this time, use the "-Xrs" option to prevent
 446   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 447   // (See bug 4345157, and other related bugs).
 448   // In reality, though, unblocking these signals is really a nop, since
 449   // these signals are not blocked by default.
 450   sigemptyset(&unblocked_sigs);
 451   sigemptyset(&allowdebug_blocked_sigs);
 452   sigaddset(&unblocked_sigs, SIGILL);
 453   sigaddset(&unblocked_sigs, SIGSEGV);
 454   sigaddset(&unblocked_sigs, SIGBUS);
 455   sigaddset(&unblocked_sigs, SIGFPE);
 456   sigaddset(&unblocked_sigs, SR_signum);
 457 
 458   if (!ReduceSignalUsage) {
 459    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 460       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 461       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 462    }
 463    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 464       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 465       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 466    }
 467    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 468       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 469       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 470    }
 471   }
 472   // Fill in signals that are blocked by all but the VM thread.
 473   sigemptyset(&vm_sigs);
 474   if (!ReduceSignalUsage)
 475     sigaddset(&vm_sigs, BREAK_SIGNAL);
 476   debug_only(signal_sets_initialized = true);
 477 
 478 }
 479 
 480 // These are signals that are unblocked while a thread is running Java.
 481 // (For some reason, they get blocked by default.)
 482 sigset_t* os::Linux::unblocked_signals() {
 483   assert(signal_sets_initialized, "Not initialized");
 484   return &unblocked_sigs;
 485 }
 486 
 487 // These are the signals that are blocked while a (non-VM) thread is
 488 // running Java. Only the VM thread handles these signals.
 489 sigset_t* os::Linux::vm_signals() {
 490   assert(signal_sets_initialized, "Not initialized");
 491   return &vm_sigs;
 492 }
 493 
 494 // These are signals that are blocked during cond_wait to allow debugger in
 495 sigset_t* os::Linux::allowdebug_blocked_signals() {
 496   assert(signal_sets_initialized, "Not initialized");
 497   return &allowdebug_blocked_sigs;
 498 }
 499 
 500 void os::Linux::hotspot_sigmask(Thread* thread) {
 501 
 502   //Save caller's signal mask before setting VM signal mask
 503   sigset_t caller_sigmask;
 504   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 505 
 506   OSThread* osthread = thread->osthread();
 507   osthread->set_caller_sigmask(caller_sigmask);
 508 
 509   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 510 
 511   if (!ReduceSignalUsage) {
 512     if (thread->is_VM_thread()) {
 513       // Only the VM thread handles BREAK_SIGNAL ...
 514       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 515     } else {
 516       // ... all other threads block BREAK_SIGNAL
 517       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 518     }
 519   }
 520 }
 521 
 522 //////////////////////////////////////////////////////////////////////////////
 523 // detecting pthread library
 524 
 525 void os::Linux::libpthread_init() {
 526   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 527   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 528   // generic name for earlier versions.
 529   // Define macros here so we can build HotSpot on old systems.
 530 # ifndef _CS_GNU_LIBC_VERSION
 531 # define _CS_GNU_LIBC_VERSION 2
 532 # endif
 533 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 534 # define _CS_GNU_LIBPTHREAD_VERSION 3
 535 # endif
 536 
 537   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 538   if (n > 0) {
 539      char *str = (char *)malloc(n);
 540      confstr(_CS_GNU_LIBC_VERSION, str, n);
 541      os::Linux::set_glibc_version(str);
 542   } else {
 543      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 544      static char _gnu_libc_version[32];
 545      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 546               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 547      os::Linux::set_glibc_version(_gnu_libc_version);
 548   }
 549 
 550   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 551   if (n > 0) {
 552      char *str = (char *)malloc(n);
 553      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 554      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 555      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 556      // is the case. LinuxThreads has a hard limit on max number of threads.
 557      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 558      // On the other hand, NPTL does not have such a limit, sysconf()
 559      // will return -1 and errno is not changed. Check if it is really NPTL.
 560      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 561          strstr(str, "NPTL") &&
 562          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 563        free(str);
 564        os::Linux::set_libpthread_version("linuxthreads");
 565      } else {
 566        os::Linux::set_libpthread_version(str);
 567      }
 568   } else {
 569     // glibc before 2.3.2 only has LinuxThreads.
 570     os::Linux::set_libpthread_version("linuxthreads");
 571   }
 572 
 573   if (strstr(libpthread_version(), "NPTL")) {
 574      os::Linux::set_is_NPTL();
 575   } else {
 576      os::Linux::set_is_LinuxThreads();
 577   }
 578 
 579   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 580   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 581   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 582      os::Linux::set_is_floating_stack();
 583   }
 584 }
 585 
 586 /////////////////////////////////////////////////////////////////////////////
 587 // thread stack
 588 
 589 // Force Linux kernel to expand current thread stack. If "bottom" is close
 590 // to the stack guard, caller should block all signals.
 591 //
 592 // MAP_GROWSDOWN:
 593 //   A special mmap() flag that is used to implement thread stacks. It tells
 594 //   kernel that the memory region should extend downwards when needed. This
 595 //   allows early versions of LinuxThreads to only mmap the first few pages
 596 //   when creating a new thread. Linux kernel will automatically expand thread
 597 //   stack as needed (on page faults).
 598 //
 599 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 600 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 601 //   region, it's hard to tell if the fault is due to a legitimate stack
 602 //   access or because of reading/writing non-exist memory (e.g. buffer
 603 //   overrun). As a rule, if the fault happens below current stack pointer,
 604 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 605 //   application (see Linux kernel fault.c).
 606 //
 607 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 608 //   stack overflow detection.
 609 //
 610 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 611 //   not use this flag. However, the stack of initial thread is not created
 612 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 613 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 614 //   and then attach the thread to JVM.
 615 //
 616 // To get around the problem and allow stack banging on Linux, we need to
 617 // manually expand thread stack after receiving the SIGSEGV.
 618 //
 619 // There are two ways to expand thread stack to address "bottom", we used
 620 // both of them in JVM before 1.5:
 621 //   1. adjust stack pointer first so that it is below "bottom", and then
 622 //      touch "bottom"
 623 //   2. mmap() the page in question
 624 //
 625 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 626 // if current sp is already near the lower end of page 101, and we need to
 627 // call mmap() to map page 100, it is possible that part of the mmap() frame
 628 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 629 // That will destroy the mmap() frame and cause VM to crash.
 630 //
 631 // The following code works by adjusting sp first, then accessing the "bottom"
 632 // page to force a page fault. Linux kernel will then automatically expand the
 633 // stack mapping.
 634 //
 635 // _expand_stack_to() assumes its frame size is less than page size, which
 636 // should always be true if the function is not inlined.
 637 
 638 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 639 #define NOINLINE
 640 #else
 641 #define NOINLINE __attribute__ ((noinline))
 642 #endif
 643 
 644 static void _expand_stack_to(address bottom) NOINLINE;
 645 
 646 static void _expand_stack_to(address bottom) {
 647   address sp;
 648   size_t size;
 649   volatile char *p;
 650 
 651   // Adjust bottom to point to the largest address within the same page, it
 652   // gives us a one-page buffer if alloca() allocates slightly more memory.
 653   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 654   bottom += os::Linux::page_size() - 1;
 655 
 656   // sp might be slightly above current stack pointer; if that's the case, we
 657   // will alloca() a little more space than necessary, which is OK. Don't use
 658   // os::current_stack_pointer(), as its result can be slightly below current
 659   // stack pointer, causing us to not alloca enough to reach "bottom".
 660   sp = (address)&sp;
 661 
 662   if (sp > bottom) {
 663     size = sp - bottom;
 664     p = (volatile char *)alloca(size);
 665     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 666     p[0] = '\0';
 667   }
 668 }
 669 
 670 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 671   assert(t!=NULL, "just checking");
 672   assert(t->osthread()->expanding_stack(), "expand should be set");
 673   assert(t->stack_base() != NULL, "stack_base was not initialized");
 674 
 675   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 676     sigset_t mask_all, old_sigset;
 677     sigfillset(&mask_all);
 678     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 679     _expand_stack_to(addr);
 680     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 681     return true;
 682   }
 683   return false;
 684 }
 685 
 686 //////////////////////////////////////////////////////////////////////////////
 687 // create new thread
 688 
 689 static address highest_vm_reserved_address();
 690 
 691 // check if it's safe to start a new thread
 692 static bool _thread_safety_check(Thread* thread) {
 693   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 694     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 695     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 696     //   allocated (MAP_FIXED) from high address space. Every thread stack
 697     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 698     //   it to other values if they rebuild LinuxThreads).
 699     //
 700     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 701     // the memory region has already been mmap'ed. That means if we have too
 702     // many threads and/or very large heap, eventually thread stack will
 703     // collide with heap.
 704     //
 705     // Here we try to prevent heap/stack collision by comparing current
 706     // stack bottom with the highest address that has been mmap'ed by JVM
 707     // plus a safety margin for memory maps created by native code.
 708     //
 709     // This feature can be disabled by setting ThreadSafetyMargin to 0
 710     //
 711     if (ThreadSafetyMargin > 0) {
 712       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 713 
 714       // not safe if our stack extends below the safety margin
 715       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 716     } else {
 717       return true;
 718     }
 719   } else {
 720     // Floating stack LinuxThreads or NPTL:
 721     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 722     //   there's not enough space left, pthread_create() will fail. If we come
 723     //   here, that means enough space has been reserved for stack.
 724     return true;
 725   }
 726 }
 727 
 728 // Thread start routine for all newly created threads
 729 static void *java_start(Thread *thread) {
 730   // Try to randomize the cache line index of hot stack frames.
 731   // This helps when threads of the same stack traces evict each other's
 732   // cache lines. The threads can be either from the same JVM instance, or
 733   // from different JVM instances. The benefit is especially true for
 734   // processors with hyperthreading technology.
 735   static int counter = 0;
 736   int pid = os::current_process_id();
 737   alloca(((pid ^ counter++) & 7) * 128);
 738 
 739   ThreadLocalStorage::set_thread(thread);
 740 
 741   OSThread* osthread = thread->osthread();
 742   Monitor* sync = osthread->startThread_lock();
 743 
 744   // non floating stack LinuxThreads needs extra check, see above
 745   if (!_thread_safety_check(thread)) {
 746     // notify parent thread
 747     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 748     osthread->set_state(ZOMBIE);
 749     sync->notify_all();
 750     return NULL;
 751   }
 752 
 753   // thread_id is kernel thread id (similar to Solaris LWP id)
 754   osthread->set_thread_id(os::Linux::gettid());
 755 
 756   if (UseNUMA) {
 757     int lgrp_id = os::numa_get_group_id();
 758     if (lgrp_id != -1) {
 759       thread->set_lgrp_id(lgrp_id);
 760     }
 761   }
 762   // initialize signal mask for this thread
 763   os::Linux::hotspot_sigmask(thread);
 764 
 765   // initialize floating point control register
 766   os::Linux::init_thread_fpu_state();
 767 
 768   // handshaking with parent thread
 769   {
 770     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 771 
 772     // notify parent thread
 773     osthread->set_state(INITIALIZED);
 774     sync->notify_all();
 775 
 776     // wait until os::start_thread()
 777     while (osthread->get_state() == INITIALIZED) {
 778       sync->wait(Mutex::_no_safepoint_check_flag);
 779     }
 780   }
 781 
 782   // call one more level start routine
 783   thread->run();
 784 
 785   return 0;
 786 }
 787 
 788 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 789   assert(thread->osthread() == NULL, "caller responsible");
 790 
 791   // Allocate the OSThread object
 792   OSThread* osthread = new OSThread(NULL, NULL);
 793   if (osthread == NULL) {
 794     return false;
 795   }
 796 
 797   // set the correct thread state
 798   osthread->set_thread_type(thr_type);
 799 
 800   // Initial state is ALLOCATED but not INITIALIZED
 801   osthread->set_state(ALLOCATED);
 802 
 803   thread->set_osthread(osthread);
 804 
 805   // init thread attributes
 806   pthread_attr_t attr;
 807   pthread_attr_init(&attr);
 808   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 809 
 810   // stack size
 811   if (os::Linux::supports_variable_stack_size()) {
 812     // calculate stack size if it's not specified by caller
 813     if (stack_size == 0) {
 814       stack_size = os::Linux::default_stack_size(thr_type);
 815 
 816       switch (thr_type) {
 817       case os::java_thread:
 818         // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 819         if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
 820         break;
 821       case os::compiler_thread:
 822         if (CompilerThreadStackSize > 0) {
 823           stack_size = (size_t)(CompilerThreadStackSize * K);
 824           break;
 825         } // else fall through:
 826           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 827       case os::vm_thread:
 828       case os::pgc_thread:
 829       case os::cgc_thread:
 830       case os::watcher_thread:
 831         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 832         break;
 833       }
 834     }
 835 
 836     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 837     pthread_attr_setstacksize(&attr, stack_size);
 838   } else {
 839     // let pthread_create() pick the default value.
 840   }
 841 
 842   // glibc guard page
 843   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 844 
 845   ThreadState state;
 846 
 847   {
 848     // Serialize thread creation if we are running with fixed stack LinuxThreads
 849     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 850     if (lock) {
 851       os::Linux::createThread_lock()->lock_without_safepoint_check();
 852     }
 853 
 854     pthread_t tid;
 855     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 856 
 857     pthread_attr_destroy(&attr);
 858 
 859     if (ret != 0) {
 860       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 861         perror("pthread_create()");
 862       }
 863       // Need to clean up stuff we've allocated so far
 864       thread->set_osthread(NULL);
 865       delete osthread;
 866       if (lock) os::Linux::createThread_lock()->unlock();
 867       return false;
 868     }
 869 
 870     // Store pthread info into the OSThread
 871     osthread->set_pthread_id(tid);
 872 
 873     // Wait until child thread is either initialized or aborted
 874     {
 875       Monitor* sync_with_child = osthread->startThread_lock();
 876       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 877       while ((state = osthread->get_state()) == ALLOCATED) {
 878         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 879       }
 880     }
 881 
 882     if (lock) {
 883       os::Linux::createThread_lock()->unlock();
 884     }
 885   }
 886 
 887   // Aborted due to thread limit being reached
 888   if (state == ZOMBIE) {
 889       thread->set_osthread(NULL);
 890       delete osthread;
 891       return false;
 892   }
 893 
 894   // The thread is returned suspended (in state INITIALIZED),
 895   // and is started higher up in the call chain
 896   assert(state == INITIALIZED, "race condition");
 897   return true;
 898 }
 899 
 900 /////////////////////////////////////////////////////////////////////////////
 901 // attach existing thread
 902 
 903 // bootstrap the main thread
 904 bool os::create_main_thread(JavaThread* thread) {
 905   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 906   return create_attached_thread(thread);
 907 }
 908 
 909 bool os::create_attached_thread(JavaThread* thread) {
 910 #ifdef ASSERT
 911     thread->verify_not_published();
 912 #endif
 913 
 914   // Allocate the OSThread object
 915   OSThread* osthread = new OSThread(NULL, NULL);
 916 
 917   if (osthread == NULL) {
 918     return false;
 919   }
 920 
 921   // Store pthread info into the OSThread
 922   osthread->set_thread_id(os::Linux::gettid());
 923   osthread->set_pthread_id(::pthread_self());
 924 
 925   // initialize floating point control register
 926   os::Linux::init_thread_fpu_state();
 927 
 928   // Initial thread state is RUNNABLE
 929   osthread->set_state(RUNNABLE);
 930 
 931   thread->set_osthread(osthread);
 932 
 933   if (UseNUMA) {
 934     int lgrp_id = os::numa_get_group_id();
 935     if (lgrp_id != -1) {
 936       thread->set_lgrp_id(lgrp_id);
 937     }
 938   }
 939 
 940   if (os::Linux::is_initial_thread()) {
 941     // If current thread is initial thread, its stack is mapped on demand,
 942     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 943     // the entire stack region to avoid SEGV in stack banging.
 944     // It is also useful to get around the heap-stack-gap problem on SuSE
 945     // kernel (see 4821821 for details). We first expand stack to the top
 946     // of yellow zone, then enable stack yellow zone (order is significant,
 947     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 948     // is no gap between the last two virtual memory regions.
 949 
 950     JavaThread *jt = (JavaThread *)thread;
 951     address addr = jt->stack_yellow_zone_base();
 952     assert(addr != NULL, "initialization problem?");
 953     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 954 
 955     osthread->set_expanding_stack();
 956     os::Linux::manually_expand_stack(jt, addr);
 957     osthread->clear_expanding_stack();
 958   }
 959 
 960   // initialize signal mask for this thread
 961   // and save the caller's signal mask
 962   os::Linux::hotspot_sigmask(thread);
 963 
 964   return true;
 965 }
 966 
 967 void os::pd_start_thread(Thread* thread) {
 968   OSThread * osthread = thread->osthread();
 969   assert(osthread->get_state() != INITIALIZED, "just checking");
 970   Monitor* sync_with_child = osthread->startThread_lock();
 971   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 972   sync_with_child->notify();
 973 }
 974 
 975 // Free Linux resources related to the OSThread
 976 void os::free_thread(OSThread* osthread) {
 977   assert(osthread != NULL, "osthread not set");
 978 
 979   if (Thread::current()->osthread() == osthread) {
 980     // Restore caller's signal mask
 981     sigset_t sigmask = osthread->caller_sigmask();
 982     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 983    }
 984 
 985   delete osthread;
 986 }
 987 
 988 //////////////////////////////////////////////////////////////////////////////
 989 // thread local storage
 990 
 991 int os::allocate_thread_local_storage() {
 992   pthread_key_t key;
 993   int rslt = pthread_key_create(&key, NULL);
 994   assert(rslt == 0, "cannot allocate thread local storage");
 995   return (int)key;
 996 }
 997 
 998 // Note: This is currently not used by VM, as we don't destroy TLS key
 999 // on VM exit.
1000 void os::free_thread_local_storage(int index) {
1001   int rslt = pthread_key_delete((pthread_key_t)index);
1002   assert(rslt == 0, "invalid index");
1003 }
1004 
1005 void os::thread_local_storage_at_put(int index, void* value) {
1006   int rslt = pthread_setspecific((pthread_key_t)index, value);
1007   assert(rslt == 0, "pthread_setspecific failed");
1008 }
1009 
1010 extern "C" Thread* get_thread() {
1011   return ThreadLocalStorage::thread();
1012 }
1013 
1014 //////////////////////////////////////////////////////////////////////////////
1015 // initial thread
1016 
1017 // Check if current thread is the initial thread, similar to Solaris thr_main.
1018 bool os::Linux::is_initial_thread(void) {
1019   char dummy;
1020   // If called before init complete, thread stack bottom will be null.
1021   // Can be called if fatal error occurs before initialization.
1022   if (initial_thread_stack_bottom() == NULL) return false;
1023   assert(initial_thread_stack_bottom() != NULL &&
1024          initial_thread_stack_size()   != 0,
1025          "os::init did not locate initial thread's stack region");
1026   if ((address)&dummy >= initial_thread_stack_bottom() &&
1027       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1028        return true;
1029   else return false;
1030 }
1031 
1032 // Find the virtual memory area that contains addr
1033 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1034   FILE *fp = fopen("/proc/self/maps", "r");
1035   if (fp) {
1036     address low, high;
1037     while (!feof(fp)) {
1038       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1039         if (low <= addr && addr < high) {
1040            if (vma_low)  *vma_low  = low;
1041            if (vma_high) *vma_high = high;
1042            fclose (fp);
1043            return true;
1044         }
1045       }
1046       for (;;) {
1047         int ch = fgetc(fp);
1048         if (ch == EOF || ch == (int)'\n') break;
1049       }
1050     }
1051     fclose(fp);
1052   }
1053   return false;
1054 }
1055 
1056 // Locate initial thread stack. This special handling of initial thread stack
1057 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1058 // bogus value for initial thread.
1059 void os::Linux::capture_initial_stack(size_t max_size) {
1060   // stack size is the easy part, get it from RLIMIT_STACK
1061   size_t stack_size;
1062   struct rlimit rlim;
1063   getrlimit(RLIMIT_STACK, &rlim);
1064   stack_size = rlim.rlim_cur;
1065 
1066   // 6308388: a bug in ld.so will relocate its own .data section to the
1067   //   lower end of primordial stack; reduce ulimit -s value a little bit
1068   //   so we won't install guard page on ld.so's data section.
1069   stack_size -= 2 * page_size();
1070 
1071   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1072   //   7.1, in both cases we will get 2G in return value.
1073   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1074   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1075   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1076   //   in case other parts in glibc still assumes 2M max stack size.
1077   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1078 #ifndef IA64
1079   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1080 #else
1081   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1082   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1083 #endif
1084 
1085   // Try to figure out where the stack base (top) is. This is harder.
1086   //
1087   // When an application is started, glibc saves the initial stack pointer in
1088   // a global variable "__libc_stack_end", which is then used by system
1089   // libraries. __libc_stack_end should be pretty close to stack top. The
1090   // variable is available since the very early days. However, because it is
1091   // a private interface, it could disappear in the future.
1092   //
1093   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1094   // to __libc_stack_end, it is very close to stack top, but isn't the real
1095   // stack top. Note that /proc may not exist if VM is running as a chroot
1096   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1097   // /proc/<pid>/stat could change in the future (though unlikely).
1098   //
1099   // We try __libc_stack_end first. If that doesn't work, look for
1100   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1101   // as a hint, which should work well in most cases.
1102 
1103   uintptr_t stack_start;
1104 
1105   // try __libc_stack_end first
1106   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1107   if (p && *p) {
1108     stack_start = *p;
1109   } else {
1110     // see if we can get the start_stack field from /proc/self/stat
1111     FILE *fp;
1112     int pid;
1113     char state;
1114     int ppid;
1115     int pgrp;
1116     int session;
1117     int nr;
1118     int tpgrp;
1119     unsigned long flags;
1120     unsigned long minflt;
1121     unsigned long cminflt;
1122     unsigned long majflt;
1123     unsigned long cmajflt;
1124     unsigned long utime;
1125     unsigned long stime;
1126     long cutime;
1127     long cstime;
1128     long prio;
1129     long nice;
1130     long junk;
1131     long it_real;
1132     uintptr_t start;
1133     uintptr_t vsize;
1134     uintptr_t rss;
1135     unsigned long rsslim;
1136     uintptr_t scodes;
1137     uintptr_t ecode;
1138     int i;
1139 
1140     // Figure what the primordial thread stack base is. Code is inspired
1141     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1142     // followed by command name surrounded by parentheses, state, etc.
1143     char stat[2048];
1144     int statlen;
1145 
1146     fp = fopen("/proc/self/stat", "r");
1147     if (fp) {
1148       statlen = fread(stat, 1, 2047, fp);
1149       stat[statlen] = '\0';
1150       fclose(fp);
1151 
1152       // Skip pid and the command string. Note that we could be dealing with
1153       // weird command names, e.g. user could decide to rename java launcher
1154       // to "java 1.4.2 :)", then the stat file would look like
1155       //                1234 (java 1.4.2 :)) R ... ...
1156       // We don't really need to know the command string, just find the last
1157       // occurrence of ")" and then start parsing from there. See bug 4726580.
1158       char * s = strrchr(stat, ')');
1159 
1160       i = 0;
1161       if (s) {
1162         // Skip blank chars
1163         do s++; while (isspace(*s));
1164 
1165         /*                                     1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2   2   2 */
1166         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8 */
1167         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld "
1168                    UINTX_FORMAT UINTX_FORMAT UINTX_FORMAT
1169                    " %lu "
1170                    UINTX_FORMAT UINTX_FORMAT UINTX_FORMAT,
1171              &state,          /* 3  %c  */
1172              &ppid,           /* 4  %d  */
1173              &pgrp,           /* 5  %d  */
1174              &session,        /* 6  %d  */
1175              &nr,             /* 7  %d  */
1176              &tpgrp,          /* 8  %d  */
1177              &flags,          /* 9  %lu  */
1178              &minflt,         /* 10 %lu  */
1179              &cminflt,        /* 11 %lu  */
1180              &majflt,         /* 12 %lu  */
1181              &cmajflt,        /* 13 %lu  */
1182              &utime,          /* 14 %lu  */
1183              &stime,          /* 15 %lu  */
1184              &cutime,         /* 16 %ld  */
1185              &cstime,         /* 17 %ld  */
1186              &prio,           /* 18 %ld  */
1187              &nice,           /* 19 %ld  */
1188              &junk,           /* 20 %ld  */
1189              &it_real,        /* 21 %ld  */
1190              &start,          /* 22 UINTX_FORMAT  */
1191              &vsize,          /* 23 UINTX_FORMAT  */
1192              &rss,            /* 24 UINTX_FORMAT  */
1193              &rsslim,         /* 25 %lu  */
1194              &scodes,         /* 26 UINTX_FORMAT  */
1195              &ecode,          /* 27 UINTX_FORMAT  */
1196              &stack_start);   /* 28 UINTX_FORMAT  */
1197       }
1198 
1199       if (i != 28 - 2) {
1200          assert(false, "Bad conversion from /proc/self/stat");
1201          // product mode - assume we are the initial thread, good luck in the
1202          // embedded case.
1203          warning("Can't detect initial thread stack location - bad conversion");
1204          stack_start = (uintptr_t) &rlim;
1205       }
1206     } else {
1207       // For some reason we can't open /proc/self/stat (for example, running on
1208       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1209       // most cases, so don't abort:
1210       warning("Can't detect initial thread stack location - no /proc/self/stat");
1211       stack_start = (uintptr_t) &rlim;
1212     }
1213   }
1214 
1215   // Now we have a pointer (stack_start) very close to the stack top, the
1216   // next thing to do is to figure out the exact location of stack top. We
1217   // can find out the virtual memory area that contains stack_start by
1218   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1219   // and its upper limit is the real stack top. (again, this would fail if
1220   // running inside chroot, because /proc may not exist.)
1221 
1222   uintptr_t stack_top;
1223   address low, high;
1224   if (find_vma((address)stack_start, &low, &high)) {
1225     // success, "high" is the true stack top. (ignore "low", because initial
1226     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1227     stack_top = (uintptr_t)high;
1228   } else {
1229     // failed, likely because /proc/self/maps does not exist
1230     warning("Can't detect initial thread stack location - find_vma failed");
1231     // best effort: stack_start is normally within a few pages below the real
1232     // stack top, use it as stack top, and reduce stack size so we won't put
1233     // guard page outside stack.
1234     stack_top = stack_start;
1235     stack_size -= 16 * page_size();
1236   }
1237 
1238   // stack_top could be partially down the page so align it
1239   stack_top = align_size_up(stack_top, page_size());
1240 
1241   if (max_size && stack_size > max_size) {
1242      _initial_thread_stack_size = max_size;
1243   } else {
1244      _initial_thread_stack_size = stack_size;
1245   }
1246 
1247   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1248   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1249 }
1250 
1251 ////////////////////////////////////////////////////////////////////////////////
1252 // time support
1253 
1254 // Time since start-up in seconds to a fine granularity.
1255 // Used by VMSelfDestructTimer and the MemProfiler.
1256 double os::elapsedTime() {
1257 
1258   return (double)(os::elapsed_counter()) * 0.000001;
1259 }
1260 
1261 jlong os::elapsed_counter() {
1262   timeval time;
1263   int status = gettimeofday(&time, NULL);
1264   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1265 }
1266 
1267 jlong os::elapsed_frequency() {
1268   return (1000 * 1000);
1269 }
1270 
1271 // For now, we say that linux does not support vtime.  I have no idea
1272 // whether it can actually be made to (DLD, 9/13/05).
1273 
1274 bool os::supports_vtime() { return false; }
1275 bool os::enable_vtime()   { return false; }
1276 bool os::vtime_enabled()  { return false; }
1277 double os::elapsedVTime() {
1278   // better than nothing, but not much
1279   return elapsedTime();
1280 }
1281 
1282 jlong os::javaTimeMillis() {
1283   timeval time;
1284   int status = gettimeofday(&time, NULL);
1285   assert(status != -1, "linux error");
1286   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1287 }
1288 
1289 #ifndef CLOCK_MONOTONIC
1290 #define CLOCK_MONOTONIC (1)
1291 #endif
1292 
1293 void os::Linux::clock_init() {
1294   // we do dlopen's in this particular order due to bug in linux
1295   // dynamical loader (see 6348968) leading to crash on exit
1296   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1297   if (handle == NULL) {
1298     handle = dlopen("librt.so", RTLD_LAZY);
1299   }
1300 
1301   if (handle) {
1302     int (*clock_getres_func)(clockid_t, struct timespec*) =
1303            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1304     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1305            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1306     if (clock_getres_func && clock_gettime_func) {
1307       // See if monotonic clock is supported by the kernel. Note that some
1308       // early implementations simply return kernel jiffies (updated every
1309       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1310       // for nano time (though the monotonic property is still nice to have).
1311       // It's fixed in newer kernels, however clock_getres() still returns
1312       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1313       // resolution for now. Hopefully as people move to new kernels, this
1314       // won't be a problem.
1315       struct timespec res;
1316       struct timespec tp;
1317       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1318           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1319         // yes, monotonic clock is supported
1320         _clock_gettime = clock_gettime_func;
1321       } else {
1322         // close librt if there is no monotonic clock
1323         dlclose(handle);
1324       }
1325     }
1326   }
1327 }
1328 
1329 #ifndef SYS_clock_getres
1330 
1331 #if defined(IA32) || defined(AMD64)
1332 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1333 #else
1334 #error Value of SYS_clock_getres not known on this platform
1335 #endif
1336 
1337 #endif
1338 
1339 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1340 
1341 void os::Linux::fast_thread_clock_init() {
1342   if (!UseLinuxPosixThreadCPUClocks) {
1343     return;
1344   }
1345   clockid_t clockid;
1346   struct timespec tp;
1347   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1348       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1349 
1350   // Switch to using fast clocks for thread cpu time if
1351   // the sys_clock_getres() returns 0 error code.
1352   // Note, that some kernels may support the current thread
1353   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1354   // returned by the pthread_getcpuclockid().
1355   // If the fast Posix clocks are supported then the sys_clock_getres()
1356   // must return at least tp.tv_sec == 0 which means a resolution
1357   // better than 1 sec. This is extra check for reliability.
1358 
1359   if(pthread_getcpuclockid_func &&
1360      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1361      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1362 
1363     _supports_fast_thread_cpu_time = true;
1364     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1365   }
1366 }
1367 
1368 jlong os::javaTimeNanos() {
1369   if (Linux::supports_monotonic_clock()) {
1370     struct timespec tp;
1371     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1372     assert(status == 0, "gettime error");
1373     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1374     return result;
1375   } else {
1376     timeval time;
1377     int status = gettimeofday(&time, NULL);
1378     assert(status != -1, "linux error");
1379     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1380     return 1000 * usecs;
1381   }
1382 }
1383 
1384 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1385   if (Linux::supports_monotonic_clock()) {
1386     info_ptr->max_value = ALL_64_BITS;
1387 
1388     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1389     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1390     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1391   } else {
1392     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1393     info_ptr->max_value = ALL_64_BITS;
1394 
1395     // gettimeofday is a real time clock so it skips
1396     info_ptr->may_skip_backward = true;
1397     info_ptr->may_skip_forward = true;
1398   }
1399 
1400   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1401 }
1402 
1403 // Return the real, user, and system times in seconds from an
1404 // arbitrary fixed point in the past.
1405 bool os::getTimesSecs(double* process_real_time,
1406                       double* process_user_time,
1407                       double* process_system_time) {
1408   struct tms ticks;
1409   clock_t real_ticks = times(&ticks);
1410 
1411   if (real_ticks == (clock_t) (-1)) {
1412     return false;
1413   } else {
1414     double ticks_per_second = (double) clock_tics_per_sec;
1415     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1416     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1417     *process_real_time = ((double) real_ticks) / ticks_per_second;
1418 
1419     return true;
1420   }
1421 }
1422 
1423 
1424 char * os::local_time_string(char *buf, size_t buflen) {
1425   struct tm t;
1426   time_t long_time;
1427   time(&long_time);
1428   localtime_r(&long_time, &t);
1429   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1430                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1431                t.tm_hour, t.tm_min, t.tm_sec);
1432   return buf;
1433 }
1434 
1435 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1436   return localtime_r(clock, res);
1437 }
1438 
1439 ////////////////////////////////////////////////////////////////////////////////
1440 // runtime exit support
1441 
1442 // Note: os::shutdown() might be called very early during initialization, or
1443 // called from signal handler. Before adding something to os::shutdown(), make
1444 // sure it is async-safe and can handle partially initialized VM.
1445 void os::shutdown() {
1446 
1447   // allow PerfMemory to attempt cleanup of any persistent resources
1448   perfMemory_exit();
1449 
1450   // needs to remove object in file system
1451   AttachListener::abort();
1452 
1453   // flush buffered output, finish log files
1454   ostream_abort();
1455 
1456   // Check for abort hook
1457   abort_hook_t abort_hook = Arguments::abort_hook();
1458   if (abort_hook != NULL) {
1459     abort_hook();
1460   }
1461 
1462 }
1463 
1464 // Note: os::abort() might be called very early during initialization, or
1465 // called from signal handler. Before adding something to os::abort(), make
1466 // sure it is async-safe and can handle partially initialized VM.
1467 void os::abort(bool dump_core) {
1468   os::shutdown();
1469   if (dump_core) {
1470 #ifndef PRODUCT
1471     fdStream out(defaultStream::output_fd());
1472     out.print_raw("Current thread is ");
1473     char buf[16];
1474     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1475     out.print_raw_cr(buf);
1476     out.print_raw_cr("Dumping core ...");
1477 #endif
1478     ::abort(); // dump core
1479   }
1480 
1481   ::exit(1);
1482 }
1483 
1484 // Die immediately, no exit hook, no abort hook, no cleanup.
1485 void os::die() {
1486   // _exit() on LinuxThreads only kills current thread
1487   ::abort();
1488 }
1489 
1490 // unused on linux for now.
1491 void os::set_error_file(const char *logfile) {}
1492 
1493 intx os::current_thread_id() { return (intx)pthread_self(); }
1494 int os::current_process_id() {
1495 
1496   // Under the old linux thread library, linux gives each thread
1497   // its own process id. Because of this each thread will return
1498   // a different pid if this method were to return the result
1499   // of getpid(2). Linux provides no api that returns the pid
1500   // of the launcher thread for the vm. This implementation
1501   // returns a unique pid, the pid of the launcher thread
1502   // that starts the vm 'process'.
1503 
1504   // Under the NPTL, getpid() returns the same pid as the
1505   // launcher thread rather than a unique pid per thread.
1506   // Use gettid() if you want the old pre NPTL behaviour.
1507 
1508   // if you are looking for the result of a call to getpid() that
1509   // returns a unique pid for the calling thread, then look at the
1510   // OSThread::thread_id() method in osThread_linux.hpp file
1511 
1512   return (int)(_initial_pid ? _initial_pid : getpid());
1513 }
1514 
1515 // DLL functions
1516 
1517 const char* os::dll_file_extension() { return ".so"; }
1518 
1519 const char* os::get_temp_directory() { return "/tmp/"; }
1520 
1521 static bool file_exists(const char* filename) {
1522   struct stat statbuf;
1523   if (filename == NULL || strlen(filename) == 0) {
1524     return false;
1525   }
1526   return os::stat(filename, &statbuf) == 0;
1527 }
1528 
1529 void os::dll_build_name(char* buffer, size_t buflen,
1530                         const char* pname, const char* fname) {
1531   // Copied from libhpi
1532   const size_t pnamelen = pname ? strlen(pname) : 0;
1533 
1534   // Quietly truncate on buffer overflow.  Should be an error.
1535   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1536       *buffer = '\0';
1537       return;
1538   }
1539 
1540   if (pnamelen == 0) {
1541     snprintf(buffer, buflen, "lib%s.so", fname);
1542   } else if (strchr(pname, *os::path_separator()) != NULL) {
1543     int n;
1544     char** pelements = split_path(pname, &n);
1545     for (int i = 0 ; i < n ; i++) {
1546       // Really shouldn't be NULL, but check can't hurt
1547       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1548         continue; // skip the empty path values
1549       }
1550       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1551       if (file_exists(buffer)) {
1552         break;
1553       }
1554     }
1555     // release the storage
1556     for (int i = 0 ; i < n ; i++) {
1557       if (pelements[i] != NULL) {
1558         FREE_C_HEAP_ARRAY(char, pelements[i]);
1559       }
1560     }
1561     if (pelements != NULL) {
1562       FREE_C_HEAP_ARRAY(char*, pelements);
1563     }
1564   } else {
1565     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1566   }
1567 }
1568 
1569 const char* os::get_current_directory(char *buf, int buflen) {
1570   return getcwd(buf, buflen);
1571 }
1572 
1573 // check if addr is inside libjvm[_g].so
1574 bool os::address_is_in_vm(address addr) {
1575   static address libjvm_base_addr;
1576   Dl_info dlinfo;
1577 
1578   if (libjvm_base_addr == NULL) {
1579     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1580     libjvm_base_addr = (address)dlinfo.dli_fbase;
1581     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1582   }
1583 
1584   if (dladdr((void *)addr, &dlinfo)) {
1585     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1586   }
1587 
1588   return false;
1589 }
1590 
1591 bool os::dll_address_to_function_name(address addr, char *buf,
1592                                       int buflen, int *offset) {
1593   Dl_info dlinfo;
1594 
1595   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1596     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1597     if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1598     return true;
1599   } else {
1600     if (buf) buf[0] = '\0';
1601     if (offset) *offset = -1;
1602     return false;
1603   }
1604 }
1605 
1606 struct _address_to_library_name {
1607   address addr;          // input : memory address
1608   size_t  buflen;        //         size of fname
1609   char*   fname;         // output: library name
1610   address base;          //         library base addr
1611 };
1612 
1613 static int address_to_library_name_callback(struct dl_phdr_info *info,
1614                                             size_t size, void *data) {
1615   int i;
1616   bool found = false;
1617   address libbase = NULL;
1618   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1619 
1620   // iterate through all loadable segments
1621   for (i = 0; i < info->dlpi_phnum; i++) {
1622     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1623     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1624       // base address of a library is the lowest address of its loaded
1625       // segments.
1626       if (libbase == NULL || libbase > segbase) {
1627         libbase = segbase;
1628       }
1629       // see if 'addr' is within current segment
1630       if (segbase <= d->addr &&
1631           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1632         found = true;
1633       }
1634     }
1635   }
1636 
1637   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1638   // so dll_address_to_library_name() can fall through to use dladdr() which
1639   // can figure out executable name from argv[0].
1640   if (found && info->dlpi_name && info->dlpi_name[0]) {
1641     d->base = libbase;
1642     if (d->fname) {
1643       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1644     }
1645     return 1;
1646   }
1647   return 0;
1648 }
1649 
1650 bool os::dll_address_to_library_name(address addr, char* buf,
1651                                      int buflen, int* offset) {
1652   Dl_info dlinfo;
1653   struct _address_to_library_name data;
1654 
1655   // There is a bug in old glibc dladdr() implementation that it could resolve
1656   // to wrong library name if the .so file has a base address != NULL. Here
1657   // we iterate through the program headers of all loaded libraries to find
1658   // out which library 'addr' really belongs to. This workaround can be
1659   // removed once the minimum requirement for glibc is moved to 2.3.x.
1660   data.addr = addr;
1661   data.fname = buf;
1662   data.buflen = buflen;
1663   data.base = NULL;
1664   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1665 
1666   if (rslt) {
1667      // buf already contains library name
1668      if (offset) *offset = addr - data.base;
1669      return true;
1670   } else if (dladdr((void*)addr, &dlinfo)){
1671      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1672      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1673      return true;
1674   } else {
1675      if (buf) buf[0] = '\0';
1676      if (offset) *offset = -1;
1677      return false;
1678   }
1679 }
1680 
1681   // Loads .dll/.so and
1682   // in case of error it checks if .dll/.so was built for the
1683   // same architecture as Hotspot is running on
1684 
1685 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1686 {
1687   void * result= ::dlopen(filename, RTLD_LAZY);
1688   if (result != NULL) {
1689     // Successful loading
1690     return result;
1691   }
1692 
1693   Elf32_Ehdr elf_head;
1694 
1695   // Read system error message into ebuf
1696   // It may or may not be overwritten below
1697   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1698   ebuf[ebuflen-1]='\0';
1699   int diag_msg_max_length=ebuflen-strlen(ebuf);
1700   char* diag_msg_buf=ebuf+strlen(ebuf);
1701 
1702   if (diag_msg_max_length==0) {
1703     // No more space in ebuf for additional diagnostics message
1704     return NULL;
1705   }
1706 
1707 
1708   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1709 
1710   if (file_descriptor < 0) {
1711     // Can't open library, report dlerror() message
1712     return NULL;
1713   }
1714 
1715   bool failed_to_read_elf_head=
1716     (sizeof(elf_head)!=
1717         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1718 
1719   ::close(file_descriptor);
1720   if (failed_to_read_elf_head) {
1721     // file i/o error - report dlerror() msg
1722     return NULL;
1723   }
1724 
1725   typedef struct {
1726     Elf32_Half  code;         // Actual value as defined in elf.h
1727     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1728     char        elf_class;    // 32 or 64 bit
1729     char        endianess;    // MSB or LSB
1730     char*       name;         // String representation
1731   } arch_t;
1732 
1733   #ifndef EM_486
1734   #define EM_486          6               /* Intel 80486 */
1735   #endif
1736 
1737   static const arch_t arch_array[]={
1738     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1739     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1740     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1741     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1742     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1743     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1744     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1745     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1746     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
1747   };
1748 
1749   #if  (defined IA32)
1750     static  Elf32_Half running_arch_code=EM_386;
1751   #elif   (defined AMD64)
1752     static  Elf32_Half running_arch_code=EM_X86_64;
1753   #elif  (defined IA64)
1754     static  Elf32_Half running_arch_code=EM_IA_64;
1755   #elif  (defined __sparc) && (defined _LP64)
1756     static  Elf32_Half running_arch_code=EM_SPARCV9;
1757   #elif  (defined __sparc) && (!defined _LP64)
1758     static  Elf32_Half running_arch_code=EM_SPARC;
1759   #elif  (defined __powerpc64__)
1760     static  Elf32_Half running_arch_code=EM_PPC64;
1761   #elif  (defined __powerpc__)
1762     static  Elf32_Half running_arch_code=EM_PPC;
1763   #else
1764     #error Method os::dll_load requires that one of following is defined:\
1765          IA32, AMD64, IA64, __sparc, __powerpc__
1766   #endif
1767 
1768   // Identify compatability class for VM's architecture and library's architecture
1769   // Obtain string descriptions for architectures
1770 
1771   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1772   int running_arch_index=-1;
1773 
1774   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1775     if (running_arch_code == arch_array[i].code) {
1776       running_arch_index    = i;
1777     }
1778     if (lib_arch.code == arch_array[i].code) {
1779       lib_arch.compat_class = arch_array[i].compat_class;
1780       lib_arch.name         = arch_array[i].name;
1781     }
1782   }
1783 
1784   assert(running_arch_index != -1,
1785     "Didn't find running architecture code (running_arch_code) in arch_array");
1786   if (running_arch_index == -1) {
1787     // Even though running architecture detection failed
1788     // we may still continue with reporting dlerror() message
1789     return NULL;
1790   }
1791 
1792   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1793     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1794     return NULL;
1795   }
1796 
1797   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1798     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1799     return NULL;
1800   }
1801 
1802   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1803     if ( lib_arch.name!=NULL ) {
1804       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1805         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1806         lib_arch.name, arch_array[running_arch_index].name);
1807     } else {
1808       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1809       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1810         lib_arch.code,
1811         arch_array[running_arch_index].name);
1812     }
1813   }
1814 
1815   return NULL;
1816 }
1817 
1818 /*
1819  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1820  * chances are you might want to run the generated bits against glibc-2.0
1821  * libdl.so, so always use locking for any version of glibc.
1822  */
1823 void* os::dll_lookup(void* handle, const char* name) {
1824   pthread_mutex_lock(&dl_mutex);
1825   void* res = dlsym(handle, name);
1826   pthread_mutex_unlock(&dl_mutex);
1827   return res;
1828 }
1829 
1830 
1831 bool _print_ascii_file(const char* filename, outputStream* st) {
1832   int fd = open(filename, O_RDONLY);
1833   if (fd == -1) {
1834      return false;
1835   }
1836 
1837   char buf[32];
1838   int bytes;
1839   while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1840     st->print_raw(buf, bytes);
1841   }
1842 
1843   close(fd);
1844 
1845   return true;
1846 }
1847 
1848 void os::print_dll_info(outputStream *st) {
1849    st->print_cr("Dynamic libraries:");
1850 
1851    char fname[32];
1852    pid_t pid = os::Linux::gettid();
1853 
1854    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1855 
1856    if (!_print_ascii_file(fname, st)) {
1857      st->print("Can not get library information for pid = %d\n", pid);
1858    }
1859 }
1860 
1861 
1862 void os::print_os_info(outputStream* st) {
1863   st->print("OS:");
1864 
1865   // Try to identify popular distros.
1866   // Most Linux distributions have /etc/XXX-release file, which contains
1867   // the OS version string. Some have more than one /etc/XXX-release file
1868   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1869   // so the order is important.
1870   if (!_print_ascii_file("/etc/mandrake-release", st) &&
1871       !_print_ascii_file("/etc/sun-release", st) &&
1872       !_print_ascii_file("/etc/redhat-release", st) &&
1873       !_print_ascii_file("/etc/SuSE-release", st) &&
1874       !_print_ascii_file("/etc/turbolinux-release", st) &&
1875       !_print_ascii_file("/etc/gentoo-release", st) &&
1876       !_print_ascii_file("/etc/debian_version", st)) {
1877       st->print("Linux");
1878   }
1879   st->cr();
1880 
1881   // kernel
1882   st->print("uname:");
1883   struct utsname name;
1884   uname(&name);
1885   st->print(name.sysname); st->print(" ");
1886   st->print(name.release); st->print(" ");
1887   st->print(name.version); st->print(" ");
1888   st->print(name.machine);
1889   st->cr();
1890 
1891   // Print warning if unsafe chroot environment detected
1892   if (unsafe_chroot_detected) {
1893     st->print("WARNING!! ");
1894     st->print_cr(unstable_chroot_error);
1895   }
1896 
1897   // libc, pthread
1898   st->print("libc:");
1899   st->print(os::Linux::glibc_version()); st->print(" ");
1900   st->print(os::Linux::libpthread_version()); st->print(" ");
1901   if (os::Linux::is_LinuxThreads()) {
1902      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
1903   }
1904   st->cr();
1905 
1906   // rlimit
1907   st->print("rlimit:");
1908   struct rlimit rlim;
1909 
1910   st->print(" STACK ");
1911   getrlimit(RLIMIT_STACK, &rlim);
1912   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1913   else st->print("%uk", rlim.rlim_cur >> 10);
1914 
1915   st->print(", CORE ");
1916   getrlimit(RLIMIT_CORE, &rlim);
1917   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1918   else st->print("%uk", rlim.rlim_cur >> 10);
1919 
1920   st->print(", NPROC ");
1921   getrlimit(RLIMIT_NPROC, &rlim);
1922   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1923   else st->print("%d", rlim.rlim_cur);
1924 
1925   st->print(", NOFILE ");
1926   getrlimit(RLIMIT_NOFILE, &rlim);
1927   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1928   else st->print("%d", rlim.rlim_cur);
1929 
1930   st->print(", AS ");
1931   getrlimit(RLIMIT_AS, &rlim);
1932   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1933   else st->print("%uk", rlim.rlim_cur >> 10);
1934   st->cr();
1935 
1936   // load average
1937   st->print("load average:");
1938   double loadavg[3];
1939   os::loadavg(loadavg, 3);
1940   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1941   st->cr();
1942 }
1943 
1944 void os::print_memory_info(outputStream* st) {
1945 
1946   st->print("Memory:");
1947   st->print(" %dk page", os::vm_page_size()>>10);
1948 
1949   // values in struct sysinfo are "unsigned long"
1950   struct sysinfo si;
1951   sysinfo(&si);
1952 
1953   st->print(", physical " UINT64_FORMAT "k",
1954             os::physical_memory() >> 10);
1955   st->print("(" UINT64_FORMAT "k free)",
1956             os::available_memory() >> 10);
1957   st->print(", swap " UINT64_FORMAT "k",
1958             ((jlong)si.totalswap * si.mem_unit) >> 10);
1959   st->print("(" UINT64_FORMAT "k free)",
1960             ((jlong)si.freeswap * si.mem_unit) >> 10);
1961   st->cr();
1962 }
1963 
1964 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1965 // but they're the same for all the linux arch that we support
1966 // and they're the same for solaris but there's no common place to put this.
1967 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1968                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1969                           "ILL_COPROC", "ILL_BADSTK" };
1970 
1971 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1972                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1973                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1974 
1975 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1976 
1977 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1978 
1979 void os::print_siginfo(outputStream* st, void* siginfo) {
1980   st->print("siginfo:");
1981 
1982   const int buflen = 100;
1983   char buf[buflen];
1984   siginfo_t *si = (siginfo_t*)siginfo;
1985   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1986   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1987     st->print("si_errno=%s", buf);
1988   } else {
1989     st->print("si_errno=%d", si->si_errno);
1990   }
1991   const int c = si->si_code;
1992   assert(c > 0, "unexpected si_code");
1993   switch (si->si_signo) {
1994   case SIGILL:
1995     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1996     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1997     break;
1998   case SIGFPE:
1999     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2000     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2001     break;
2002   case SIGSEGV:
2003     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2004     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2005     break;
2006   case SIGBUS:
2007     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2008     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2009     break;
2010   default:
2011     st->print(", si_code=%d", si->si_code);
2012     // no si_addr
2013   }
2014 
2015   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2016       UseSharedSpaces) {
2017     FileMapInfo* mapinfo = FileMapInfo::current_info();
2018     if (mapinfo->is_in_shared_space(si->si_addr)) {
2019       st->print("\n\nError accessing class data sharing archive."   \
2020                 " Mapped file inaccessible during execution, "      \
2021                 " possible disk/network problem.");
2022     }
2023   }
2024   st->cr();
2025 }
2026 
2027 
2028 static void print_signal_handler(outputStream* st, int sig,
2029                                  char* buf, size_t buflen);
2030 
2031 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2032   st->print_cr("Signal Handlers:");
2033   print_signal_handler(st, SIGSEGV, buf, buflen);
2034   print_signal_handler(st, SIGBUS , buf, buflen);
2035   print_signal_handler(st, SIGFPE , buf, buflen);
2036   print_signal_handler(st, SIGPIPE, buf, buflen);
2037   print_signal_handler(st, SIGXFSZ, buf, buflen);
2038   print_signal_handler(st, SIGILL , buf, buflen);
2039   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2040   print_signal_handler(st, SR_signum, buf, buflen);
2041   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2042   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2043   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2044   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2045 }
2046 
2047 static char saved_jvm_path[MAXPATHLEN] = {0};
2048 
2049 // Find the full path to the current module, libjvm.so or libjvm_g.so
2050 void os::jvm_path(char *buf, jint len) {
2051   // Error checking.
2052   if (len < MAXPATHLEN) {
2053     assert(false, "must use a large-enough buffer");
2054     buf[0] = '\0';
2055     return;
2056   }
2057   // Lazy resolve the path to current module.
2058   if (saved_jvm_path[0] != 0) {
2059     strcpy(buf, saved_jvm_path);
2060     return;
2061   }
2062 
2063   char dli_fname[MAXPATHLEN];
2064   bool ret = dll_address_to_library_name(
2065                 CAST_FROM_FN_PTR(address, os::jvm_path),
2066                 dli_fname, sizeof(dli_fname), NULL);
2067   assert(ret != 0, "cannot locate libjvm");
2068   if (realpath(dli_fname, buf) == NULL)
2069     return;
2070 
2071   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2072     // Support for the gamma launcher.  Typical value for buf is
2073     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2074     // the right place in the string, then assume we are installed in a JDK and
2075     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2076     // up the path so it looks like libjvm.so is installed there (append a
2077     // fake suffix hotspot/libjvm.so).
2078     const char *p = buf + strlen(buf) - 1;
2079     for (int count = 0; p > buf && count < 5; ++count) {
2080       for (--p; p > buf && *p != '/'; --p)
2081         /* empty */ ;
2082     }
2083 
2084     if (strncmp(p, "/jre/lib/", 9) != 0) {
2085       // Look for JAVA_HOME in the environment.
2086       char* java_home_var = ::getenv("JAVA_HOME");
2087       if (java_home_var != NULL && java_home_var[0] != 0) {
2088         // Check the current module name "libjvm.so" or "libjvm_g.so".
2089         p = strrchr(buf, '/');
2090         assert(strstr(p, "/libjvm") == p, "invalid library name");
2091         p = strstr(p, "_g") ? "_g" : "";
2092 
2093         if (realpath(java_home_var, buf) == NULL)
2094           return;
2095         sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
2096         if (0 == access(buf, F_OK)) {
2097           // Use current module name "libjvm[_g].so" instead of
2098           // "libjvm"debug_only("_g")".so" since for fastdebug version
2099           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2100           // It is used when we are choosing the HPI library's name
2101           // "libhpi[_g].so" in hpi::initialize_get_interface().
2102           sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
2103         } else {
2104           // Go back to path of .so
2105           if (realpath(dli_fname, buf) == NULL)
2106             return;
2107         }
2108       }
2109     }
2110   }
2111 
2112   strcpy(saved_jvm_path, buf);
2113 }
2114 
2115 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2116   // no prefix required, not even "_"
2117 }
2118 
2119 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2120   // no suffix required
2121 }
2122 
2123 ////////////////////////////////////////////////////////////////////////////////
2124 // sun.misc.Signal support
2125 
2126 static volatile jint sigint_count = 0;
2127 
2128 static void
2129 UserHandler(int sig, void *siginfo, void *context) {
2130   // 4511530 - sem_post is serialized and handled by the manager thread. When
2131   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2132   // don't want to flood the manager thread with sem_post requests.
2133   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2134       return;
2135 
2136   // Ctrl-C is pressed during error reporting, likely because the error
2137   // handler fails to abort. Let VM die immediately.
2138   if (sig == SIGINT && is_error_reported()) {
2139      os::die();
2140   }
2141 
2142   os::signal_notify(sig);
2143 }
2144 
2145 void* os::user_handler() {
2146   return CAST_FROM_FN_PTR(void*, UserHandler);
2147 }
2148 
2149 extern "C" {
2150   typedef void (*sa_handler_t)(int);
2151   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2152 }
2153 
2154 void* os::signal(int signal_number, void* handler) {
2155   struct sigaction sigAct, oldSigAct;
2156 
2157   sigfillset(&(sigAct.sa_mask));
2158   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2159   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2160 
2161   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2162     // -1 means registration failed
2163     return (void *)-1;
2164   }
2165 
2166   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2167 }
2168 
2169 void os::signal_raise(int signal_number) {
2170   ::raise(signal_number);
2171 }
2172 
2173 /*
2174  * The following code is moved from os.cpp for making this
2175  * code platform specific, which it is by its very nature.
2176  */
2177 
2178 // Will be modified when max signal is changed to be dynamic
2179 int os::sigexitnum_pd() {
2180   return NSIG;
2181 }
2182 
2183 // a counter for each possible signal value
2184 static volatile jint pending_signals[NSIG+1] = { 0 };
2185 
2186 // Linux(POSIX) specific hand shaking semaphore.
2187 static sem_t sig_sem;
2188 
2189 void os::signal_init_pd() {
2190   // Initialize signal structures
2191   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2192 
2193   // Initialize signal semaphore
2194   ::sem_init(&sig_sem, 0, 0);
2195 }
2196 
2197 void os::signal_notify(int sig) {
2198   Atomic::inc(&pending_signals[sig]);
2199   ::sem_post(&sig_sem);
2200 }
2201 
2202 static int check_pending_signals(bool wait) {
2203   Atomic::store(0, &sigint_count);
2204   for (;;) {
2205     for (int i = 0; i < NSIG + 1; i++) {
2206       jint n = pending_signals[i];
2207       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2208         return i;
2209       }
2210     }
2211     if (!wait) {
2212       return -1;
2213     }
2214     JavaThread *thread = JavaThread::current();
2215     ThreadBlockInVM tbivm(thread);
2216 
2217     bool threadIsSuspended;
2218     do {
2219       thread->set_suspend_equivalent();
2220       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2221       ::sem_wait(&sig_sem);
2222 
2223       // were we externally suspended while we were waiting?
2224       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2225       if (threadIsSuspended) {
2226         //
2227         // The semaphore has been incremented, but while we were waiting
2228         // another thread suspended us. We don't want to continue running
2229         // while suspended because that would surprise the thread that
2230         // suspended us.
2231         //
2232         ::sem_post(&sig_sem);
2233 
2234         thread->java_suspend_self();
2235       }
2236     } while (threadIsSuspended);
2237   }
2238 }
2239 
2240 int os::signal_lookup() {
2241   return check_pending_signals(false);
2242 }
2243 
2244 int os::signal_wait() {
2245   return check_pending_signals(true);
2246 }
2247 
2248 ////////////////////////////////////////////////////////////////////////////////
2249 // Virtual Memory
2250 
2251 int os::vm_page_size() {
2252   // Seems redundant as all get out
2253   assert(os::Linux::page_size() != -1, "must call os::init");
2254   return os::Linux::page_size();
2255 }
2256 
2257 // Solaris allocates memory by pages.
2258 int os::vm_allocation_granularity() {
2259   assert(os::Linux::page_size() != -1, "must call os::init");
2260   return os::Linux::page_size();
2261 }
2262 
2263 // Rationale behind this function:
2264 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2265 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2266 //  samples for JITted code. Here we create private executable mapping over the code cache
2267 //  and then we can use standard (well, almost, as mapping can change) way to provide
2268 //  info for the reporting script by storing timestamp and location of symbol
2269 void linux_wrap_code(char* base, size_t size) {
2270   static volatile jint cnt = 0;
2271 
2272   if (!UseOprofile) {
2273     return;
2274   }
2275 
2276   char buf[40];
2277   int num = Atomic::add(1, &cnt);
2278 
2279   sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
2280   unlink(buf);
2281 
2282   int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2283 
2284   if (fd != -1) {
2285     off_t rv = lseek(fd, size-2, SEEK_SET);
2286     if (rv != (off_t)-1) {
2287       if (write(fd, "", 1) == 1) {
2288         mmap(base, size,
2289              PROT_READ|PROT_WRITE|PROT_EXEC,
2290              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2291       }
2292     }
2293     close(fd);
2294     unlink(buf);
2295   }
2296 }
2297 
2298 // NOTE: Linux kernel does not really reserve the pages for us.
2299 //       All it does is to check if there are enough free pages
2300 //       left at the time of mmap(). This could be a potential
2301 //       problem.
2302 bool os::commit_memory(char* addr, size_t size, bool exec) {
2303   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2304   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2305                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2306   return res != (uintptr_t) MAP_FAILED;
2307 }
2308 
2309 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2310                        bool exec) {
2311   return commit_memory(addr, size, exec);
2312 }
2313 
2314 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2315 
2316 void os::free_memory(char *addr, size_t bytes) {
2317   ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
2318          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2319 }
2320 
2321 void os::numa_make_global(char *addr, size_t bytes) {
2322   Linux::numa_interleave_memory(addr, bytes);
2323 }
2324 
2325 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2326   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2327 }
2328 
2329 bool os::numa_topology_changed()   { return false; }
2330 
2331 size_t os::numa_get_groups_num() {
2332   int max_node = Linux::numa_max_node();
2333   return max_node > 0 ? max_node + 1 : 1;
2334 }
2335 
2336 int os::numa_get_group_id() {
2337   int cpu_id = Linux::sched_getcpu();
2338   if (cpu_id != -1) {
2339     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2340     if (lgrp_id != -1) {
2341       return lgrp_id;
2342     }
2343   }
2344   return 0;
2345 }
2346 
2347 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2348   for (size_t i = 0; i < size; i++) {
2349     ids[i] = i;
2350   }
2351   return size;
2352 }
2353 
2354 bool os::get_page_info(char *start, page_info* info) {
2355   return false;
2356 }
2357 
2358 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2359   return end;
2360 }
2361 
2362 extern "C" void numa_warn(int number, char *where, ...) { }
2363 extern "C" void numa_error(char *where) { }
2364 
2365 
2366 // If we are running with libnuma version > 2, then we should
2367 // be trying to use symbols with versions 1.1
2368 // If we are running with earlier version, which did not have symbol versions,
2369 // we should use the base version.
2370 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2371   void *f = dlvsym(handle, name, "libnuma_1.1");
2372   if (f == NULL) {
2373     f = dlsym(handle, name);
2374   }
2375   return f;
2376 }
2377 
2378 bool os::Linux::libnuma_init() {
2379   // sched_getcpu() should be in libc.
2380   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2381                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2382 
2383   if (sched_getcpu() != -1) { // Does it work?
2384     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2385     if (handle != NULL) {
2386       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2387                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2388       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2389                                        libnuma_dlsym(handle, "numa_max_node")));
2390       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2391                                         libnuma_dlsym(handle, "numa_available")));
2392       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2393                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2394       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2395                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2396 
2397 
2398       if (numa_available() != -1) {
2399         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2400         // Create a cpu -> node mapping
2401         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2402         rebuild_cpu_to_node_map();
2403         return true;
2404       }
2405     }
2406   }
2407   return false;
2408 }
2409 
2410 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2411 // The table is later used in get_node_by_cpu().
2412 void os::Linux::rebuild_cpu_to_node_map() {
2413   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2414                               // in libnuma (possible values are starting from 16,
2415                               // and continuing up with every other power of 2, but less
2416                               // than the maximum number of CPUs supported by kernel), and
2417                               // is a subject to change (in libnuma version 2 the requirements
2418                               // are more reasonable) we'll just hardcode the number they use
2419                               // in the library.
2420   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2421 
2422   size_t cpu_num = os::active_processor_count();
2423   size_t cpu_map_size = NCPUS / BitsPerCLong;
2424   size_t cpu_map_valid_size =
2425     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2426 
2427   cpu_to_node()->clear();
2428   cpu_to_node()->at_grow(cpu_num - 1);
2429   size_t node_num = numa_get_groups_num();
2430 
2431   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2432   for (size_t i = 0; i < node_num; i++) {
2433     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2434       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2435         if (cpu_map[j] != 0) {
2436           for (size_t k = 0; k < BitsPerCLong; k++) {
2437             if (cpu_map[j] & (1UL << k)) {
2438               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2439             }
2440           }
2441         }
2442       }
2443     }
2444   }
2445   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2446 }
2447 
2448 int os::Linux::get_node_by_cpu(int cpu_id) {
2449   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2450     return cpu_to_node()->at(cpu_id);
2451   }
2452   return -1;
2453 }
2454 
2455 GrowableArray<int>* os::Linux::_cpu_to_node;
2456 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2457 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2458 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2459 os::Linux::numa_available_func_t os::Linux::_numa_available;
2460 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2461 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2462 unsigned long* os::Linux::_numa_all_nodes;
2463 
2464 bool os::uncommit_memory(char* addr, size_t size) {
2465   return ::mmap(addr, size, PROT_NONE,
2466                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
2467     != MAP_FAILED;
2468 }
2469 
2470 static address _highest_vm_reserved_address = NULL;
2471 
2472 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2473 // at 'requested_addr'. If there are existing memory mappings at the same
2474 // location, however, they will be overwritten. If 'fixed' is false,
2475 // 'requested_addr' is only treated as a hint, the return value may or
2476 // may not start from the requested address. Unlike Linux mmap(), this
2477 // function returns NULL to indicate failure.
2478 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2479   char * addr;
2480   int flags;
2481 
2482   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2483   if (fixed) {
2484     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2485     flags |= MAP_FIXED;
2486   }
2487 
2488   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2489   // to PROT_EXEC if executable when we commit the page.
2490   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2491                        flags, -1, 0);
2492 
2493   if (addr != MAP_FAILED) {
2494     // anon_mmap() should only get called during VM initialization,
2495     // don't need lock (actually we can skip locking even it can be called
2496     // from multiple threads, because _highest_vm_reserved_address is just a
2497     // hint about the upper limit of non-stack memory regions.)
2498     if ((address)addr + bytes > _highest_vm_reserved_address) {
2499       _highest_vm_reserved_address = (address)addr + bytes;
2500     }
2501   }
2502 
2503   return addr == MAP_FAILED ? NULL : addr;
2504 }
2505 
2506 // Don't update _highest_vm_reserved_address, because there might be memory
2507 // regions above addr + size. If so, releasing a memory region only creates
2508 // a hole in the address space, it doesn't help prevent heap-stack collision.
2509 //
2510 static int anon_munmap(char * addr, size_t size) {
2511   return ::munmap(addr, size) == 0;
2512 }
2513 
2514 char* os::reserve_memory(size_t bytes, char* requested_addr,
2515                          size_t alignment_hint) {
2516   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2517 }
2518 
2519 bool os::release_memory(char* addr, size_t size) {
2520   return anon_munmap(addr, size);
2521 }
2522 
2523 static address highest_vm_reserved_address() {
2524   return _highest_vm_reserved_address;
2525 }
2526 
2527 static bool linux_mprotect(char* addr, size_t size, int prot) {
2528   // Linux wants the mprotect address argument to be page aligned.
2529   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2530 
2531   // According to SUSv3, mprotect() should only be used with mappings
2532   // established by mmap(), and mmap() always maps whole pages. Unaligned
2533   // 'addr' likely indicates problem in the VM (e.g. trying to change
2534   // protection of malloc'ed or statically allocated memory). Check the
2535   // caller if you hit this assert.
2536   assert(addr == bottom, "sanity check");
2537 
2538   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2539   return ::mprotect(bottom, size, prot) == 0;
2540 }
2541 
2542 // Set protections specified
2543 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2544                         bool is_committed) {
2545   unsigned int p = 0;
2546   switch (prot) {
2547   case MEM_PROT_NONE: p = PROT_NONE; break;
2548   case MEM_PROT_READ: p = PROT_READ; break;
2549   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2550   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2551   default:
2552     ShouldNotReachHere();
2553   }
2554   // is_committed is unused.
2555   return linux_mprotect(addr, bytes, p);
2556 }
2557 
2558 bool os::guard_memory(char* addr, size_t size) {
2559   return linux_mprotect(addr, size, PROT_NONE);
2560 }
2561 
2562 bool os::unguard_memory(char* addr, size_t size) {
2563   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2564 }
2565 
2566 // Large page support
2567 
2568 static size_t _large_page_size = 0;
2569 
2570 bool os::large_page_init() {
2571   if (!UseLargePages) return false;
2572 
2573   if (LargePageSizeInBytes) {
2574     _large_page_size = LargePageSizeInBytes;
2575   } else {
2576     // large_page_size on Linux is used to round up heap size. x86 uses either
2577     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2578     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2579     // page as large as 256M.
2580     //
2581     // Here we try to figure out page size by parsing /proc/meminfo and looking
2582     // for a line with the following format:
2583     //    Hugepagesize:     2048 kB
2584     //
2585     // If we can't determine the value (e.g. /proc is not mounted, or the text
2586     // format has been changed), we'll use the largest page size supported by
2587     // the processor.
2588 
2589     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
2590 
2591     FILE *fp = fopen("/proc/meminfo", "r");
2592     if (fp) {
2593       while (!feof(fp)) {
2594         int x = 0;
2595         char buf[16];
2596         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2597           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2598             _large_page_size = x * K;
2599             break;
2600           }
2601         } else {
2602           // skip to next line
2603           for (;;) {
2604             int ch = fgetc(fp);
2605             if (ch == EOF || ch == (int)'\n') break;
2606           }
2607         }
2608       }
2609       fclose(fp);
2610     }
2611   }
2612 
2613   const size_t default_page_size = (size_t)Linux::page_size();
2614   if (_large_page_size > default_page_size) {
2615     _page_sizes[0] = _large_page_size;
2616     _page_sizes[1] = default_page_size;
2617     _page_sizes[2] = 0;
2618   }
2619 
2620   // Large page support is available on 2.6 or newer kernel, some vendors
2621   // (e.g. Redhat) have backported it to their 2.4 based distributions.
2622   // We optimistically assume the support is available. If later it turns out
2623   // not true, VM will automatically switch to use regular page size.
2624   return true;
2625 }
2626 
2627 #ifndef SHM_HUGETLB
2628 #define SHM_HUGETLB 04000
2629 #endif
2630 
2631 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2632   // "exec" is passed in but not used.  Creating the shared image for
2633   // the code cache doesn't have an SHM_X executable permission to check.
2634   assert(UseLargePages, "only for large pages");
2635 
2636   key_t key = IPC_PRIVATE;
2637   char *addr;
2638 
2639   bool warn_on_failure = UseLargePages &&
2640                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2641                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2642                         );
2643   char msg[128];
2644 
2645   // Create a large shared memory region to attach to based on size.
2646   // Currently, size is the total size of the heap
2647   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2648   if (shmid == -1) {
2649      // Possible reasons for shmget failure:
2650      // 1. shmmax is too small for Java heap.
2651      //    > check shmmax value: cat /proc/sys/kernel/shmmax
2652      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2653      // 2. not enough large page memory.
2654      //    > check available large pages: cat /proc/meminfo
2655      //    > increase amount of large pages:
2656      //          echo new_value > /proc/sys/vm/nr_hugepages
2657      //      Note 1: different Linux may use different name for this property,
2658      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2659      //      Note 2: it's possible there's enough physical memory available but
2660      //            they are so fragmented after a long run that they can't
2661      //            coalesce into large pages. Try to reserve large pages when
2662      //            the system is still "fresh".
2663      if (warn_on_failure) {
2664        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2665        warning(msg);
2666      }
2667      return NULL;
2668   }
2669 
2670   // attach to the region
2671   addr = (char*)shmat(shmid, NULL, 0);
2672   int err = errno;
2673 
2674   // Remove shmid. If shmat() is successful, the actual shared memory segment
2675   // will be deleted when it's detached by shmdt() or when the process
2676   // terminates. If shmat() is not successful this will remove the shared
2677   // segment immediately.
2678   shmctl(shmid, IPC_RMID, NULL);
2679 
2680   if ((intptr_t)addr == -1) {
2681      if (warn_on_failure) {
2682        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2683        warning(msg);
2684      }
2685      return NULL;
2686   }
2687 
2688   return addr;
2689 }
2690 
2691 bool os::release_memory_special(char* base, size_t bytes) {
2692   // detaching the SHM segment will also delete it, see reserve_memory_special()
2693   int rslt = shmdt(base);
2694   return rslt == 0;
2695 }
2696 
2697 size_t os::large_page_size() {
2698   return _large_page_size;
2699 }
2700 
2701 // Linux does not support anonymous mmap with large page memory. The only way
2702 // to reserve large page memory without file backing is through SysV shared
2703 // memory API. The entire memory region is committed and pinned upfront.
2704 // Hopefully this will change in the future...
2705 bool os::can_commit_large_page_memory() {
2706   return false;
2707 }
2708 
2709 bool os::can_execute_large_page_memory() {
2710   return false;
2711 }
2712 
2713 // Reserve memory at an arbitrary address, only if that area is
2714 // available (and not reserved for something else).
2715 
2716 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2717   const int max_tries = 10;
2718   char* base[max_tries];
2719   size_t size[max_tries];
2720   const size_t gap = 0x000000;
2721 
2722   // Assert only that the size is a multiple of the page size, since
2723   // that's all that mmap requires, and since that's all we really know
2724   // about at this low abstraction level.  If we need higher alignment,
2725   // we can either pass an alignment to this method or verify alignment
2726   // in one of the methods further up the call chain.  See bug 5044738.
2727   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2728 
2729   // Repeatedly allocate blocks until the block is allocated at the
2730   // right spot. Give up after max_tries. Note that reserve_memory() will
2731   // automatically update _highest_vm_reserved_address if the call is
2732   // successful. The variable tracks the highest memory address every reserved
2733   // by JVM. It is used to detect heap-stack collision if running with
2734   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2735   // space than needed, it could confuse the collision detecting code. To
2736   // solve the problem, save current _highest_vm_reserved_address and
2737   // calculate the correct value before return.
2738   address old_highest = _highest_vm_reserved_address;
2739 
2740   // Linux mmap allows caller to pass an address as hint; give it a try first,
2741   // if kernel honors the hint then we can return immediately.
2742   char * addr = anon_mmap(requested_addr, bytes, false);
2743   if (addr == requested_addr) {
2744      return requested_addr;
2745   }
2746 
2747   if (addr != NULL) {
2748      // mmap() is successful but it fails to reserve at the requested address
2749      anon_munmap(addr, bytes);
2750   }
2751 
2752   int i;
2753   for (i = 0; i < max_tries; ++i) {
2754     base[i] = reserve_memory(bytes);
2755 
2756     if (base[i] != NULL) {
2757       // Is this the block we wanted?
2758       if (base[i] == requested_addr) {
2759         size[i] = bytes;
2760         break;
2761       }
2762 
2763       // Does this overlap the block we wanted? Give back the overlapped
2764       // parts and try again.
2765 
2766       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2767       if (top_overlap >= 0 && top_overlap < bytes) {
2768         unmap_memory(base[i], top_overlap);
2769         base[i] += top_overlap;
2770         size[i] = bytes - top_overlap;
2771       } else {
2772         size_t bottom_overlap = base[i] + bytes - requested_addr;
2773         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2774           unmap_memory(requested_addr, bottom_overlap);
2775           size[i] = bytes - bottom_overlap;
2776         } else {
2777           size[i] = bytes;
2778         }
2779       }
2780     }
2781   }
2782 
2783   // Give back the unused reserved pieces.
2784 
2785   for (int j = 0; j < i; ++j) {
2786     if (base[j] != NULL) {
2787       unmap_memory(base[j], size[j]);
2788     }
2789   }
2790 
2791   if (i < max_tries) {
2792     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2793     return requested_addr;
2794   } else {
2795     _highest_vm_reserved_address = old_highest;
2796     return NULL;
2797   }
2798 }
2799 
2800 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2801   return ::read(fd, buf, nBytes);
2802 }
2803 
2804 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
2805 // Solaris uses poll(), linux uses park().
2806 // Poll() is likely a better choice, assuming that Thread.interrupt()
2807 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2808 // SIGSEGV, see 4355769.
2809 
2810 const int NANOSECS_PER_MILLISECS = 1000000;
2811 
2812 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2813   assert(thread == Thread::current(),  "thread consistency check");
2814 
2815   ParkEvent * const slp = thread->_SleepEvent ;
2816   slp->reset() ;
2817   OrderAccess::fence() ;
2818 
2819   if (interruptible) {
2820     jlong prevtime = javaTimeNanos();
2821 
2822     for (;;) {
2823       if (os::is_interrupted(thread, true)) {
2824         return OS_INTRPT;
2825       }
2826 
2827       jlong newtime = javaTimeNanos();
2828 
2829       if (newtime - prevtime < 0) {
2830         // time moving backwards, should only happen if no monotonic clock
2831         // not a guarantee() because JVM should not abort on kernel/glibc bugs
2832         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2833       } else {
2834         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2835       }
2836 
2837       if(millis <= 0) {
2838         return OS_OK;
2839       }
2840 
2841       prevtime = newtime;
2842 
2843       {
2844         assert(thread->is_Java_thread(), "sanity check");
2845         JavaThread *jt = (JavaThread *) thread;
2846         ThreadBlockInVM tbivm(jt);
2847         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2848 
2849         jt->set_suspend_equivalent();
2850         // cleared by handle_special_suspend_equivalent_condition() or
2851         // java_suspend_self() via check_and_wait_while_suspended()
2852 
2853         slp->park(millis);
2854 
2855         // were we externally suspended while we were waiting?
2856         jt->check_and_wait_while_suspended();
2857       }
2858     }
2859   } else {
2860     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2861     jlong prevtime = javaTimeNanos();
2862 
2863     for (;;) {
2864       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2865       // the 1st iteration ...
2866       jlong newtime = javaTimeNanos();
2867 
2868       if (newtime - prevtime < 0) {
2869         // time moving backwards, should only happen if no monotonic clock
2870         // not a guarantee() because JVM should not abort on kernel/glibc bugs
2871         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2872       } else {
2873         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2874       }
2875 
2876       if(millis <= 0) break ;
2877 
2878       prevtime = newtime;
2879       slp->park(millis);
2880     }
2881     return OS_OK ;
2882   }
2883 }
2884 
2885 int os::naked_sleep() {
2886   // %% make the sleep time an integer flag. for now use 1 millisec.
2887   return os::sleep(Thread::current(), 1, false);
2888 }
2889 
2890 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2891 void os::infinite_sleep() {
2892   while (true) {    // sleep forever ...
2893     ::sleep(100);   // ... 100 seconds at a time
2894   }
2895 }
2896 
2897 // Used to convert frequent JVM_Yield() to nops
2898 bool os::dont_yield() {
2899   return DontYieldALot;
2900 }
2901 
2902 void os::yield() {
2903   sched_yield();
2904 }
2905 
2906 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2907 
2908 void os::yield_all(int attempts) {
2909   // Yields to all threads, including threads with lower priorities
2910   // Threads on Linux are all with same priority. The Solaris style
2911   // os::yield_all() with nanosleep(1ms) is not necessary.
2912   sched_yield();
2913 }
2914 
2915 // Called from the tight loops to possibly influence time-sharing heuristics
2916 void os::loop_breaker(int attempts) {
2917   os::yield_all(attempts);
2918 }
2919 
2920 ////////////////////////////////////////////////////////////////////////////////
2921 // thread priority support
2922 
2923 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
2924 // only supports dynamic priority, static priority must be zero. For real-time
2925 // applications, Linux supports SCHED_RR which allows static priority (1-99).
2926 // However, for large multi-threaded applications, SCHED_RR is not only slower
2927 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2928 // of 5 runs - Sep 2005).
2929 //
2930 // The following code actually changes the niceness of kernel-thread/LWP. It
2931 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2932 // not the entire user process, and user level threads are 1:1 mapped to kernel
2933 // threads. It has always been the case, but could change in the future. For
2934 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2935 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2936 
2937 int os::java_to_os_priority[MaxPriority + 1] = {
2938   19,              // 0 Entry should never be used
2939 
2940    4,              // 1 MinPriority
2941    3,              // 2
2942    2,              // 3
2943 
2944    1,              // 4
2945    0,              // 5 NormPriority
2946   -1,              // 6
2947 
2948   -2,              // 7
2949   -3,              // 8
2950   -4,              // 9 NearMaxPriority
2951 
2952   -5               // 10 MaxPriority
2953 };
2954 
2955 static int prio_init() {
2956   if (ThreadPriorityPolicy == 1) {
2957     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2958     // if effective uid is not root. Perhaps, a more elegant way of doing
2959     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2960     if (geteuid() != 0) {
2961       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2962         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
2963       }
2964       ThreadPriorityPolicy = 0;
2965     }
2966   }
2967   return 0;
2968 }
2969 
2970 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2971   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2972 
2973   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2974   return (ret == 0) ? OS_OK : OS_ERR;
2975 }
2976 
2977 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2978   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2979     *priority_ptr = java_to_os_priority[NormPriority];
2980     return OS_OK;
2981   }
2982 
2983   errno = 0;
2984   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2985   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2986 }
2987 
2988 // Hint to the underlying OS that a task switch would not be good.
2989 // Void return because it's a hint and can fail.
2990 void os::hint_no_preempt() {}
2991 
2992 ////////////////////////////////////////////////////////////////////////////////
2993 // suspend/resume support
2994 
2995 //  the low-level signal-based suspend/resume support is a remnant from the
2996 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2997 //  within hotspot. Now there is a single use-case for this:
2998 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2999 //      that runs in the watcher thread.
3000 //  The remaining code is greatly simplified from the more general suspension
3001 //  code that used to be used.
3002 //
3003 //  The protocol is quite simple:
3004 //  - suspend:
3005 //      - sends a signal to the target thread
3006 //      - polls the suspend state of the osthread using a yield loop
3007 //      - target thread signal handler (SR_handler) sets suspend state
3008 //        and blocks in sigsuspend until continued
3009 //  - resume:
3010 //      - sets target osthread state to continue
3011 //      - sends signal to end the sigsuspend loop in the SR_handler
3012 //
3013 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3014 //
3015 
3016 static void resume_clear_context(OSThread *osthread) {
3017   osthread->set_ucontext(NULL);
3018   osthread->set_siginfo(NULL);
3019 
3020   // notify the suspend action is completed, we have now resumed
3021   osthread->sr.clear_suspended();
3022 }
3023 
3024 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3025   osthread->set_ucontext(context);
3026   osthread->set_siginfo(siginfo);
3027 }
3028 
3029 //
3030 // Handler function invoked when a thread's execution is suspended or
3031 // resumed. We have to be careful that only async-safe functions are
3032 // called here (Note: most pthread functions are not async safe and
3033 // should be avoided.)
3034 //
3035 // Note: sigwait() is a more natural fit than sigsuspend() from an
3036 // interface point of view, but sigwait() prevents the signal hander
3037 // from being run. libpthread would get very confused by not having
3038 // its signal handlers run and prevents sigwait()'s use with the
3039 // mutex granting granting signal.
3040 //
3041 // Currently only ever called on the VMThread
3042 //
3043 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3044   // Save and restore errno to avoid confusing native code with EINTR
3045   // after sigsuspend.
3046   int old_errno = errno;
3047 
3048   Thread* thread = Thread::current();
3049   OSThread* osthread = thread->osthread();
3050   assert(thread->is_VM_thread(), "Must be VMThread");
3051   // read current suspend action
3052   int action = osthread->sr.suspend_action();
3053   if (action == SR_SUSPEND) {
3054     suspend_save_context(osthread, siginfo, context);
3055 
3056     // Notify the suspend action is about to be completed. do_suspend()
3057     // waits until SR_SUSPENDED is set and then returns. We will wait
3058     // here for a resume signal and that completes the suspend-other
3059     // action. do_suspend/do_resume is always called as a pair from
3060     // the same thread - so there are no races
3061 
3062     // notify the caller
3063     osthread->sr.set_suspended();
3064 
3065     sigset_t suspend_set;  // signals for sigsuspend()
3066 
3067     // get current set of blocked signals and unblock resume signal
3068     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3069     sigdelset(&suspend_set, SR_signum);
3070 
3071     // wait here until we are resumed
3072     do {
3073       sigsuspend(&suspend_set);
3074       // ignore all returns until we get a resume signal
3075     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3076 
3077     resume_clear_context(osthread);
3078 
3079   } else {
3080     assert(action == SR_CONTINUE, "unexpected sr action");
3081     // nothing special to do - just leave the handler
3082   }
3083 
3084   errno = old_errno;
3085 }
3086 
3087 
3088 static int SR_initialize() {
3089   struct sigaction act;
3090   char *s;
3091   /* Get signal number to use for suspend/resume */
3092   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3093     int sig = ::strtol(s, 0, 10);
3094     if (sig > 0 || sig < _NSIG) {
3095         SR_signum = sig;
3096     }
3097   }
3098 
3099   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3100         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3101 
3102   sigemptyset(&SR_sigset);
3103   sigaddset(&SR_sigset, SR_signum);
3104 
3105   /* Set up signal handler for suspend/resume */
3106   act.sa_flags = SA_RESTART|SA_SIGINFO;
3107   act.sa_handler = (void (*)(int)) SR_handler;
3108 
3109   // SR_signum is blocked by default.
3110   // 4528190 - We also need to block pthread restart signal (32 on all
3111   // supported Linux platforms). Note that LinuxThreads need to block
3112   // this signal for all threads to work properly. So we don't have
3113   // to use hard-coded signal number when setting up the mask.
3114   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3115 
3116   if (sigaction(SR_signum, &act, 0) == -1) {
3117     return -1;
3118   }
3119 
3120   // Save signal flag
3121   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3122   return 0;
3123 }
3124 
3125 static int SR_finalize() {
3126   return 0;
3127 }
3128 
3129 
3130 // returns true on success and false on error - really an error is fatal
3131 // but this seems the normal response to library errors
3132 static bool do_suspend(OSThread* osthread) {
3133   // mark as suspended and send signal
3134   osthread->sr.set_suspend_action(SR_SUSPEND);
3135   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3136   assert_status(status == 0, status, "pthread_kill");
3137 
3138   // check status and wait until notified of suspension
3139   if (status == 0) {
3140     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3141       os::yield_all(i);
3142     }
3143     osthread->sr.set_suspend_action(SR_NONE);
3144     return true;
3145   }
3146   else {
3147     osthread->sr.set_suspend_action(SR_NONE);
3148     return false;
3149   }
3150 }
3151 
3152 static void do_resume(OSThread* osthread) {
3153   assert(osthread->sr.is_suspended(), "thread should be suspended");
3154   osthread->sr.set_suspend_action(SR_CONTINUE);
3155 
3156   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3157   assert_status(status == 0, status, "pthread_kill");
3158   // check status and wait unit notified of resumption
3159   if (status == 0) {
3160     for (int i = 0; osthread->sr.is_suspended(); i++) {
3161       os::yield_all(i);
3162     }
3163   }
3164   osthread->sr.set_suspend_action(SR_NONE);
3165 }
3166 
3167 ////////////////////////////////////////////////////////////////////////////////
3168 // interrupt support
3169 
3170 void os::interrupt(Thread* thread) {
3171   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3172     "possibility of dangling Thread pointer");
3173 
3174   OSThread* osthread = thread->osthread();
3175 
3176   if (!osthread->interrupted()) {
3177     osthread->set_interrupted(true);
3178     // More than one thread can get here with the same value of osthread,
3179     // resulting in multiple notifications.  We do, however, want the store
3180     // to interrupted() to be visible to other threads before we execute unpark().
3181     OrderAccess::fence();
3182     ParkEvent * const slp = thread->_SleepEvent ;
3183     if (slp != NULL) slp->unpark() ;
3184   }
3185 
3186   // For JSR166. Unpark even if interrupt status already was set
3187   if (thread->is_Java_thread())
3188     ((JavaThread*)thread)->parker()->unpark();
3189 
3190   ParkEvent * ev = thread->_ParkEvent ;
3191   if (ev != NULL) ev->unpark() ;
3192 
3193 }
3194 
3195 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3196   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3197     "possibility of dangling Thread pointer");
3198 
3199   OSThread* osthread = thread->osthread();
3200 
3201   bool interrupted = osthread->interrupted();
3202 
3203   if (interrupted && clear_interrupted) {
3204     osthread->set_interrupted(false);
3205     // consider thread->_SleepEvent->reset() ... optional optimization
3206   }
3207 
3208   return interrupted;
3209 }
3210 
3211 ///////////////////////////////////////////////////////////////////////////////////
3212 // signal handling (except suspend/resume)
3213 
3214 // This routine may be used by user applications as a "hook" to catch signals.
3215 // The user-defined signal handler must pass unrecognized signals to this
3216 // routine, and if it returns true (non-zero), then the signal handler must
3217 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3218 // routine will never retun false (zero), but instead will execute a VM panic
3219 // routine kill the process.
3220 //
3221 // If this routine returns false, it is OK to call it again.  This allows
3222 // the user-defined signal handler to perform checks either before or after
3223 // the VM performs its own checks.  Naturally, the user code would be making
3224 // a serious error if it tried to handle an exception (such as a null check
3225 // or breakpoint) that the VM was generating for its own correct operation.
3226 //
3227 // This routine may recognize any of the following kinds of signals:
3228 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3229 // It should be consulted by handlers for any of those signals.
3230 //
3231 // The caller of this routine must pass in the three arguments supplied
3232 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3233 // field of the structure passed to sigaction().  This routine assumes that
3234 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3235 //
3236 // Note that the VM will print warnings if it detects conflicting signal
3237 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3238 //
3239 extern "C" int
3240 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3241                         void* ucontext, int abort_if_unrecognized);
3242 
3243 void signalHandler(int sig, siginfo_t* info, void* uc) {
3244   assert(info != NULL && uc != NULL, "it must be old kernel");
3245   JVM_handle_linux_signal(sig, info, uc, true);
3246 }
3247 
3248 
3249 // This boolean allows users to forward their own non-matching signals
3250 // to JVM_handle_linux_signal, harmlessly.
3251 bool os::Linux::signal_handlers_are_installed = false;
3252 
3253 // For signal-chaining
3254 struct sigaction os::Linux::sigact[MAXSIGNUM];
3255 unsigned int os::Linux::sigs = 0;
3256 bool os::Linux::libjsig_is_loaded = false;
3257 typedef struct sigaction *(*get_signal_t)(int);
3258 get_signal_t os::Linux::get_signal_action = NULL;
3259 
3260 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3261   struct sigaction *actp = NULL;
3262 
3263   if (libjsig_is_loaded) {
3264     // Retrieve the old signal handler from libjsig
3265     actp = (*get_signal_action)(sig);
3266   }
3267   if (actp == NULL) {
3268     // Retrieve the preinstalled signal handler from jvm
3269     actp = get_preinstalled_handler(sig);
3270   }
3271 
3272   return actp;
3273 }
3274 
3275 static bool call_chained_handler(struct sigaction *actp, int sig,
3276                                  siginfo_t *siginfo, void *context) {
3277   // Call the old signal handler
3278   if (actp->sa_handler == SIG_DFL) {
3279     // It's more reasonable to let jvm treat it as an unexpected exception
3280     // instead of taking the default action.
3281     return false;
3282   } else if (actp->sa_handler != SIG_IGN) {
3283     if ((actp->sa_flags & SA_NODEFER) == 0) {
3284       // automaticlly block the signal
3285       sigaddset(&(actp->sa_mask), sig);
3286     }
3287 
3288     sa_handler_t hand;
3289     sa_sigaction_t sa;
3290     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3291     // retrieve the chained handler
3292     if (siginfo_flag_set) {
3293       sa = actp->sa_sigaction;
3294     } else {
3295       hand = actp->sa_handler;
3296     }
3297 
3298     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3299       actp->sa_handler = SIG_DFL;
3300     }
3301 
3302     // try to honor the signal mask
3303     sigset_t oset;
3304     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3305 
3306     // call into the chained handler
3307     if (siginfo_flag_set) {
3308       (*sa)(sig, siginfo, context);
3309     } else {
3310       (*hand)(sig);
3311     }
3312 
3313     // restore the signal mask
3314     pthread_sigmask(SIG_SETMASK, &oset, 0);
3315   }
3316   // Tell jvm's signal handler the signal is taken care of.
3317   return true;
3318 }
3319 
3320 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3321   bool chained = false;
3322   // signal-chaining
3323   if (UseSignalChaining) {
3324     struct sigaction *actp = get_chained_signal_action(sig);
3325     if (actp != NULL) {
3326       chained = call_chained_handler(actp, sig, siginfo, context);
3327     }
3328   }
3329   return chained;
3330 }
3331 
3332 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3333   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3334     return &sigact[sig];
3335   }
3336   return NULL;
3337 }
3338 
3339 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3340   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3341   sigact[sig] = oldAct;
3342   sigs |= (unsigned int)1 << sig;
3343 }
3344 
3345 // for diagnostic
3346 int os::Linux::sigflags[MAXSIGNUM];
3347 
3348 int os::Linux::get_our_sigflags(int sig) {
3349   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3350   return sigflags[sig];
3351 }
3352 
3353 void os::Linux::set_our_sigflags(int sig, int flags) {
3354   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3355   sigflags[sig] = flags;
3356 }
3357 
3358 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3359   // Check for overwrite.
3360   struct sigaction oldAct;
3361   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3362 
3363   void* oldhand = oldAct.sa_sigaction
3364                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3365                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3366   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3367       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3368       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3369     if (AllowUserSignalHandlers || !set_installed) {
3370       // Do not overwrite; user takes responsibility to forward to us.
3371       return;
3372     } else if (UseSignalChaining) {
3373       // save the old handler in jvm
3374       save_preinstalled_handler(sig, oldAct);
3375       // libjsig also interposes the sigaction() call below and saves the
3376       // old sigaction on it own.
3377     } else {
3378       fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
3379     }
3380   }
3381 
3382   struct sigaction sigAct;
3383   sigfillset(&(sigAct.sa_mask));
3384   sigAct.sa_handler = SIG_DFL;
3385   if (!set_installed) {
3386     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3387   } else {
3388     sigAct.sa_sigaction = signalHandler;
3389     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3390   }
3391   // Save flags, which are set by ours
3392   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3393   sigflags[sig] = sigAct.sa_flags;
3394 
3395   int ret = sigaction(sig, &sigAct, &oldAct);
3396   assert(ret == 0, "check");
3397 
3398   void* oldhand2  = oldAct.sa_sigaction
3399                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3400                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3401   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3402 }
3403 
3404 // install signal handlers for signals that HotSpot needs to
3405 // handle in order to support Java-level exception handling.
3406 
3407 void os::Linux::install_signal_handlers() {
3408   if (!signal_handlers_are_installed) {
3409     signal_handlers_are_installed = true;
3410 
3411     // signal-chaining
3412     typedef void (*signal_setting_t)();
3413     signal_setting_t begin_signal_setting = NULL;
3414     signal_setting_t end_signal_setting = NULL;
3415     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3416                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3417     if (begin_signal_setting != NULL) {
3418       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3419                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3420       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3421                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3422       libjsig_is_loaded = true;
3423       assert(UseSignalChaining, "should enable signal-chaining");
3424     }
3425     if (libjsig_is_loaded) {
3426       // Tell libjsig jvm is setting signal handlers
3427       (*begin_signal_setting)();
3428     }
3429 
3430     set_signal_handler(SIGSEGV, true);
3431     set_signal_handler(SIGPIPE, true);
3432     set_signal_handler(SIGBUS, true);
3433     set_signal_handler(SIGILL, true);
3434     set_signal_handler(SIGFPE, true);
3435     set_signal_handler(SIGXFSZ, true);
3436 
3437     if (libjsig_is_loaded) {
3438       // Tell libjsig jvm finishes setting signal handlers
3439       (*end_signal_setting)();
3440     }
3441 
3442     // We don't activate signal checker if libjsig is in place, we trust ourselves
3443     // and if UserSignalHandler is installed all bets are off
3444     if (CheckJNICalls) {
3445       if (libjsig_is_loaded) {
3446         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3447         check_signals = false;
3448       }
3449       if (AllowUserSignalHandlers) {
3450         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3451         check_signals = false;
3452       }
3453     }
3454   }
3455 }
3456 
3457 // This is the fastest way to get thread cpu time on Linux.
3458 // Returns cpu time (user+sys) for any thread, not only for current.
3459 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3460 // It might work on 2.6.10+ with a special kernel/glibc patch.
3461 // For reference, please, see IEEE Std 1003.1-2004:
3462 //   http://www.unix.org/single_unix_specification
3463 
3464 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3465   struct timespec tp;
3466   int rc = os::Linux::clock_gettime(clockid, &tp);
3467   assert(rc == 0, "clock_gettime is expected to return 0 code");
3468 
3469   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3470 }
3471 
3472 /////
3473 // glibc on Linux platform uses non-documented flag
3474 // to indicate, that some special sort of signal
3475 // trampoline is used.
3476 // We will never set this flag, and we should
3477 // ignore this flag in our diagnostic
3478 #ifdef SIGNIFICANT_SIGNAL_MASK
3479 #undef SIGNIFICANT_SIGNAL_MASK
3480 #endif
3481 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3482 
3483 static const char* get_signal_handler_name(address handler,
3484                                            char* buf, int buflen) {
3485   int offset;
3486   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3487   if (found) {
3488     // skip directory names
3489     const char *p1, *p2;
3490     p1 = buf;
3491     size_t len = strlen(os::file_separator());
3492     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3493     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3494   } else {
3495     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3496   }
3497   return buf;
3498 }
3499 
3500 static void print_signal_handler(outputStream* st, int sig,
3501                                  char* buf, size_t buflen) {
3502   struct sigaction sa;
3503 
3504   sigaction(sig, NULL, &sa);
3505 
3506   // See comment for SIGNIFICANT_SIGNAL_MASK define
3507   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3508 
3509   st->print("%s: ", os::exception_name(sig, buf, buflen));
3510 
3511   address handler = (sa.sa_flags & SA_SIGINFO)
3512     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3513     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3514 
3515   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3516     st->print("SIG_DFL");
3517   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3518     st->print("SIG_IGN");
3519   } else {
3520     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3521   }
3522 
3523   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3524 
3525   address rh = VMError::get_resetted_sighandler(sig);
3526   // May be, handler was resetted by VMError?
3527   if(rh != NULL) {
3528     handler = rh;
3529     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3530   }
3531 
3532   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3533 
3534   // Check: is it our handler?
3535   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3536      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3537     // It is our signal handler
3538     // check for flags, reset system-used one!
3539     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3540       st->print(
3541                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3542                 os::Linux::get_our_sigflags(sig));
3543     }
3544   }
3545   st->cr();
3546 }
3547 
3548 
3549 #define DO_SIGNAL_CHECK(sig) \
3550   if (!sigismember(&check_signal_done, sig)) \
3551     os::Linux::check_signal_handler(sig)
3552 
3553 // This method is a periodic task to check for misbehaving JNI applications
3554 // under CheckJNI, we can add any periodic checks here
3555 
3556 void os::run_periodic_checks() {
3557 
3558   if (check_signals == false) return;
3559 
3560   // SEGV and BUS if overridden could potentially prevent
3561   // generation of hs*.log in the event of a crash, debugging
3562   // such a case can be very challenging, so we absolutely
3563   // check the following for a good measure:
3564   DO_SIGNAL_CHECK(SIGSEGV);
3565   DO_SIGNAL_CHECK(SIGILL);
3566   DO_SIGNAL_CHECK(SIGFPE);
3567   DO_SIGNAL_CHECK(SIGBUS);
3568   DO_SIGNAL_CHECK(SIGPIPE);
3569   DO_SIGNAL_CHECK(SIGXFSZ);
3570 
3571 
3572   // ReduceSignalUsage allows the user to override these handlers
3573   // see comments at the very top and jvm_solaris.h
3574   if (!ReduceSignalUsage) {
3575     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3576     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3577     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3578     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3579   }
3580 
3581   DO_SIGNAL_CHECK(SR_signum);
3582   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3583 }
3584 
3585 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3586 
3587 static os_sigaction_t os_sigaction = NULL;
3588 
3589 void os::Linux::check_signal_handler(int sig) {
3590   char buf[O_BUFLEN];
3591   address jvmHandler = NULL;
3592 
3593 
3594   struct sigaction act;
3595   if (os_sigaction == NULL) {
3596     // only trust the default sigaction, in case it has been interposed
3597     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3598     if (os_sigaction == NULL) return;
3599   }
3600 
3601   os_sigaction(sig, (struct sigaction*)NULL, &act);
3602 
3603 
3604   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3605 
3606   address thisHandler = (act.sa_flags & SA_SIGINFO)
3607     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3608     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3609 
3610 
3611   switch(sig) {
3612   case SIGSEGV:
3613   case SIGBUS:
3614   case SIGFPE:
3615   case SIGPIPE:
3616   case SIGILL:
3617   case SIGXFSZ:
3618     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3619     break;
3620 
3621   case SHUTDOWN1_SIGNAL:
3622   case SHUTDOWN2_SIGNAL:
3623   case SHUTDOWN3_SIGNAL:
3624   case BREAK_SIGNAL:
3625     jvmHandler = (address)user_handler();
3626     break;
3627 
3628   case INTERRUPT_SIGNAL:
3629     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3630     break;
3631 
3632   default:
3633     if (sig == SR_signum) {
3634       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3635     } else {
3636       return;
3637     }
3638     break;
3639   }
3640 
3641   if (thisHandler != jvmHandler) {
3642     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3643     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3644     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3645     // No need to check this sig any longer
3646     sigaddset(&check_signal_done, sig);
3647   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3648     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3649     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3650     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3651     // No need to check this sig any longer
3652     sigaddset(&check_signal_done, sig);
3653   }
3654 
3655   // Dump all the signal
3656   if (sigismember(&check_signal_done, sig)) {
3657     print_signal_handlers(tty, buf, O_BUFLEN);
3658   }
3659 }
3660 
3661 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3662 
3663 extern bool signal_name(int signo, char* buf, size_t len);
3664 
3665 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3666   if (0 < exception_code && exception_code <= SIGRTMAX) {
3667     // signal
3668     if (!signal_name(exception_code, buf, size)) {
3669       jio_snprintf(buf, size, "SIG%d", exception_code);
3670     }
3671     return buf;
3672   } else {
3673     return NULL;
3674   }
3675 }
3676 
3677 // this is called _before_ the most of global arguments have been parsed
3678 void os::init(void) {
3679   char dummy;   /* used to get a guess on initial stack address */
3680 //  first_hrtime = gethrtime();
3681 
3682   // With LinuxThreads the JavaMain thread pid (primordial thread)
3683   // is different than the pid of the java launcher thread.
3684   // So, on Linux, the launcher thread pid is passed to the VM
3685   // via the sun.java.launcher.pid property.
3686   // Use this property instead of getpid() if it was correctly passed.
3687   // See bug 6351349.
3688   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3689 
3690   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3691 
3692   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3693 
3694   init_random(1234567);
3695 
3696   ThreadCritical::initialize();
3697 
3698   Linux::set_page_size(sysconf(_SC_PAGESIZE));
3699   if (Linux::page_size() == -1) {
3700     fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
3701   }
3702   init_page_sizes((size_t) Linux::page_size());
3703 
3704   Linux::initialize_system_info();
3705 
3706   // main_thread points to the aboriginal thread
3707   Linux::_main_thread = pthread_self();
3708 
3709   Linux::clock_init();
3710   initial_time_count = os::elapsed_counter();
3711   pthread_mutex_init(&dl_mutex, NULL);
3712 }
3713 
3714 // To install functions for atexit system call
3715 extern "C" {
3716   static void perfMemory_exit_helper() {
3717     perfMemory_exit();
3718   }
3719 }
3720 
3721 // this is called _after_ the global arguments have been parsed
3722 jint os::init_2(void)
3723 {
3724   Linux::fast_thread_clock_init();
3725 
3726   // Allocate a single page and mark it as readable for safepoint polling
3727   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3728   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3729 
3730   os::set_polling_page( polling_page );
3731 
3732 #ifndef PRODUCT
3733   if(Verbose && PrintMiscellaneous)
3734     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3735 #endif
3736 
3737   if (!UseMembar) {
3738     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3739     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3740     os::set_memory_serialize_page( mem_serialize_page );
3741 
3742 #ifndef PRODUCT
3743     if(Verbose && PrintMiscellaneous)
3744       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3745 #endif
3746   }
3747 
3748   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3749 
3750   // initialize suspend/resume support - must do this before signal_sets_init()
3751   if (SR_initialize() != 0) {
3752     perror("SR_initialize failed");
3753     return JNI_ERR;
3754   }
3755 
3756   Linux::signal_sets_init();
3757   Linux::install_signal_handlers();
3758 
3759   size_t threadStackSizeInBytes = ThreadStackSize * K;
3760   if (threadStackSizeInBytes != 0 &&
3761       threadStackSizeInBytes < Linux::min_stack_allowed) {
3762         tty->print_cr("\nThe stack size specified is too small, "
3763                       "Specify at least %dk",
3764                       Linux::min_stack_allowed / K);
3765         return JNI_ERR;
3766   }
3767 
3768   // Make the stack size a multiple of the page size so that
3769   // the yellow/red zones can be guarded.
3770   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3771         vm_page_size()));
3772 
3773   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
3774 
3775   Linux::libpthread_init();
3776   if (PrintMiscellaneous && (Verbose || WizardMode)) {
3777      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
3778           Linux::glibc_version(), Linux::libpthread_version(),
3779           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
3780   }
3781 
3782   if (UseNUMA) {
3783     if (!Linux::libnuma_init()) {
3784       UseNUMA = false;
3785     } else {
3786       if ((Linux::numa_max_node() < 1)) {
3787         // There's only one node(they start from 0), disable NUMA.
3788         UseNUMA = false;
3789       }
3790     }
3791     if (!UseNUMA && ForceNUMA) {
3792       UseNUMA = true;
3793     }
3794   }
3795 
3796   if (MaxFDLimit) {
3797     // set the number of file descriptors to max. print out error
3798     // if getrlimit/setrlimit fails but continue regardless.
3799     struct rlimit nbr_files;
3800     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3801     if (status != 0) {
3802       if (PrintMiscellaneous && (Verbose || WizardMode))
3803         perror("os::init_2 getrlimit failed");
3804     } else {
3805       nbr_files.rlim_cur = nbr_files.rlim_max;
3806       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3807       if (status != 0) {
3808         if (PrintMiscellaneous && (Verbose || WizardMode))
3809           perror("os::init_2 setrlimit failed");
3810       }
3811     }
3812   }
3813 
3814   // Initialize lock used to serialize thread creation (see os::create_thread)
3815   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
3816 
3817   // Initialize HPI.
3818   jint hpi_result = hpi::initialize();
3819   if (hpi_result != JNI_OK) {
3820     tty->print_cr("There was an error trying to initialize the HPI library.");
3821     return hpi_result;
3822   }
3823 
3824   // at-exit methods are called in the reverse order of their registration.
3825   // atexit functions are called on return from main or as a result of a
3826   // call to exit(3C). There can be only 32 of these functions registered
3827   // and atexit() does not set errno.
3828 
3829   if (PerfAllowAtExitRegistration) {
3830     // only register atexit functions if PerfAllowAtExitRegistration is set.
3831     // atexit functions can be delayed until process exit time, which
3832     // can be problematic for embedded VM situations. Embedded VMs should
3833     // call DestroyJavaVM() to assure that VM resources are released.
3834 
3835     // note: perfMemory_exit_helper atexit function may be removed in
3836     // the future if the appropriate cleanup code can be added to the
3837     // VM_Exit VMOperation's doit method.
3838     if (atexit(perfMemory_exit_helper) != 0) {
3839       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3840     }
3841   }
3842 
3843   // initialize thread priority policy
3844   prio_init();
3845 
3846   return JNI_OK;
3847 }
3848 
3849 // Mark the polling page as unreadable
3850 void os::make_polling_page_unreadable(void) {
3851   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
3852     fatal("Could not disable polling page");
3853 };
3854 
3855 // Mark the polling page as readable
3856 void os::make_polling_page_readable(void) {
3857   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
3858     fatal("Could not enable polling page");
3859   }
3860 };
3861 
3862 int os::active_processor_count() {
3863   // Linux doesn't yet have a (official) notion of processor sets,
3864   // so just return the number of online processors.
3865   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3866   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3867   return online_cpus;
3868 }
3869 
3870 bool os::distribute_processes(uint length, uint* distribution) {
3871   // Not yet implemented.
3872   return false;
3873 }
3874 
3875 bool os::bind_to_processor(uint processor_id) {
3876   // Not yet implemented.
3877   return false;
3878 }
3879 
3880 ///
3881 
3882 // Suspends the target using the signal mechanism and then grabs the PC before
3883 // resuming the target. Used by the flat-profiler only
3884 ExtendedPC os::get_thread_pc(Thread* thread) {
3885   // Make sure that it is called by the watcher for the VMThread
3886   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3887   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3888 
3889   ExtendedPC epc;
3890 
3891   OSThread* osthread = thread->osthread();
3892   if (do_suspend(osthread)) {
3893     if (osthread->ucontext() != NULL) {
3894       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
3895     } else {
3896       // NULL context is unexpected, double-check this is the VMThread
3897       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3898     }
3899     do_resume(osthread);
3900   }
3901   // failure means pthread_kill failed for some reason - arguably this is
3902   // a fatal problem, but such problems are ignored elsewhere
3903 
3904   return epc;
3905 }
3906 
3907 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3908 {
3909    if (is_NPTL()) {
3910       return pthread_cond_timedwait(_cond, _mutex, _abstime);
3911    } else {
3912 #ifndef IA64
3913       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
3914       // word back to default 64bit precision if condvar is signaled. Java
3915       // wants 53bit precision.  Save and restore current value.
3916       int fpu = get_fpu_control_word();
3917 #endif // IA64
3918       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
3919 #ifndef IA64
3920       set_fpu_control_word(fpu);
3921 #endif // IA64
3922       return status;
3923    }
3924 }
3925 
3926 ////////////////////////////////////////////////////////////////////////////////
3927 // debug support
3928 
3929 #ifndef PRODUCT
3930 static address same_page(address x, address y) {
3931   int page_bits = -os::vm_page_size();
3932   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3933     return x;
3934   else if (x > y)
3935     return (address)(intptr_t(y) | ~page_bits) + 1;
3936   else
3937     return (address)(intptr_t(y) & page_bits);
3938 }
3939 
3940 bool os::find(address addr) {
3941   Dl_info dlinfo;
3942   memset(&dlinfo, 0, sizeof(dlinfo));
3943   if (dladdr(addr, &dlinfo)) {
3944     tty->print(PTR_FORMAT ": ", addr);
3945     if (dlinfo.dli_sname != NULL) {
3946       tty->print("%s+%#x", dlinfo.dli_sname,
3947                  addr - (intptr_t)dlinfo.dli_saddr);
3948     } else if (dlinfo.dli_fname) {
3949       tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3950     } else {
3951       tty->print("<absolute address>");
3952     }
3953     if (dlinfo.dli_fname) {
3954       tty->print(" in %s", dlinfo.dli_fname);
3955     }
3956     if (dlinfo.dli_fbase) {
3957       tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3958     }
3959     tty->cr();
3960 
3961     if (Verbose) {
3962       // decode some bytes around the PC
3963       address begin = same_page(addr-40, addr);
3964       address end   = same_page(addr+40, addr);
3965       address       lowest = (address) dlinfo.dli_sname;
3966       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3967       if (begin < lowest)  begin = lowest;
3968       Dl_info dlinfo2;
3969       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3970           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3971         end = (address) dlinfo2.dli_saddr;
3972       Disassembler::decode(begin, end);
3973     }
3974     return true;
3975   }
3976   return false;
3977 }
3978 
3979 #endif
3980 
3981 ////////////////////////////////////////////////////////////////////////////////
3982 // misc
3983 
3984 // This does not do anything on Linux. This is basically a hook for being
3985 // able to use structured exception handling (thread-local exception filters)
3986 // on, e.g., Win32.
3987 void
3988 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3989                          JavaCallArguments* args, Thread* thread) {
3990   f(value, method, args, thread);
3991 }
3992 
3993 void os::print_statistics() {
3994 }
3995 
3996 int os::message_box(const char* title, const char* message) {
3997   int i;
3998   fdStream err(defaultStream::error_fd());
3999   for (i = 0; i < 78; i++) err.print_raw("=");
4000   err.cr();
4001   err.print_raw_cr(title);
4002   for (i = 0; i < 78; i++) err.print_raw("-");
4003   err.cr();
4004   err.print_raw_cr(message);
4005   for (i = 0; i < 78; i++) err.print_raw("=");
4006   err.cr();
4007 
4008   char buf[16];
4009   // Prevent process from exiting upon "read error" without consuming all CPU
4010   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4011 
4012   return buf[0] == 'y' || buf[0] == 'Y';
4013 }
4014 
4015 int os::stat(const char *path, struct stat *sbuf) {
4016   char pathbuf[MAX_PATH];
4017   if (strlen(path) > MAX_PATH - 1) {
4018     errno = ENAMETOOLONG;
4019     return -1;
4020   }
4021   hpi::native_path(strcpy(pathbuf, path));
4022   return ::stat(pathbuf, sbuf);
4023 }
4024 
4025 bool os::check_heap(bool force) {
4026   return true;
4027 }
4028 
4029 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4030   return ::vsnprintf(buf, count, format, args);
4031 }
4032 
4033 // Is a (classpath) directory empty?
4034 bool os::dir_is_empty(const char* path) {
4035   DIR *dir = NULL;
4036   struct dirent *ptr;
4037 
4038   dir = opendir(path);
4039   if (dir == NULL) return true;
4040 
4041   /* Scan the directory */
4042   bool result = true;
4043   char buf[sizeof(struct dirent) + MAX_PATH];
4044   while (result && (ptr = ::readdir(dir)) != NULL) {
4045     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4046       result = false;
4047     }
4048   }
4049   closedir(dir);
4050   return result;
4051 }
4052 
4053 // create binary file, rewriting existing file if required
4054 int os::create_binary_file(const char* path, bool rewrite_existing) {
4055   int oflags = O_WRONLY | O_CREAT;
4056   if (!rewrite_existing) {
4057     oflags |= O_EXCL;
4058   }
4059   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4060 }
4061 
4062 // return current position of file pointer
4063 jlong os::current_file_offset(int fd) {
4064   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4065 }
4066 
4067 // move file pointer to the specified offset
4068 jlong os::seek_to_file_offset(int fd, jlong offset) {
4069   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4070 }
4071 
4072 // Map a block of memory.
4073 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4074                      char *addr, size_t bytes, bool read_only,
4075                      bool allow_exec) {
4076   int prot;
4077   int flags;
4078 
4079   if (read_only) {
4080     prot = PROT_READ;
4081     flags = MAP_SHARED;
4082   } else {
4083     prot = PROT_READ | PROT_WRITE;
4084     flags = MAP_PRIVATE;
4085   }
4086 
4087   if (allow_exec) {
4088     prot |= PROT_EXEC;
4089   }
4090 
4091   if (addr != NULL) {
4092     flags |= MAP_FIXED;
4093   }
4094 
4095   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4096                                      fd, file_offset);
4097   if (mapped_address == MAP_FAILED) {
4098     return NULL;
4099   }
4100   return mapped_address;
4101 }
4102 
4103 
4104 // Remap a block of memory.
4105 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4106                        char *addr, size_t bytes, bool read_only,
4107                        bool allow_exec) {
4108   // same as map_memory() on this OS
4109   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4110                         allow_exec);
4111 }
4112 
4113 
4114 // Unmap a block of memory.
4115 bool os::unmap_memory(char* addr, size_t bytes) {
4116   return munmap(addr, bytes) == 0;
4117 }
4118 
4119 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4120 
4121 static clockid_t thread_cpu_clockid(Thread* thread) {
4122   pthread_t tid = thread->osthread()->pthread_id();
4123   clockid_t clockid;
4124 
4125   // Get thread clockid
4126   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4127   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4128   return clockid;
4129 }
4130 
4131 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4132 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4133 // of a thread.
4134 //
4135 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4136 // the fast estimate available on the platform.
4137 
4138 jlong os::current_thread_cpu_time() {
4139   if (os::Linux::supports_fast_thread_cpu_time()) {
4140     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4141   } else {
4142     // return user + sys since the cost is the same
4143     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4144   }
4145 }
4146 
4147 jlong os::thread_cpu_time(Thread* thread) {
4148   // consistent with what current_thread_cpu_time() returns
4149   if (os::Linux::supports_fast_thread_cpu_time()) {
4150     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4151   } else {
4152     return slow_thread_cpu_time(thread, true /* user + sys */);
4153   }
4154 }
4155 
4156 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4157   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4158     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4159   } else {
4160     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4161   }
4162 }
4163 
4164 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4165   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4166     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4167   } else {
4168     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4169   }
4170 }
4171 
4172 //
4173 //  -1 on error.
4174 //
4175 
4176 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4177   static bool proc_pid_cpu_avail = true;
4178   static bool proc_task_unchecked = true;
4179   static const char *proc_stat_path = "/proc/%d/stat";
4180   pid_t  tid = thread->osthread()->thread_id();
4181   int i;
4182   char *s;
4183   char stat[2048];
4184   int statlen;
4185   char proc_name[64];
4186   int count;
4187   long sys_time, user_time;
4188   char string[64];
4189   int idummy;
4190   long ldummy;
4191   FILE *fp;
4192 
4193   // We first try accessing /proc/<pid>/cpu since this is faster to
4194   // process.  If this file is not present (linux kernels 2.5 and above)
4195   // then we open /proc/<pid>/stat.
4196   if ( proc_pid_cpu_avail ) {
4197     sprintf(proc_name, "/proc/%d/cpu", tid);
4198     fp =  fopen(proc_name, "r");
4199     if ( fp != NULL ) {
4200       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4201       fclose(fp);
4202       if ( count != 3 ) return -1;
4203 
4204       if (user_sys_cpu_time) {
4205         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4206       } else {
4207         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4208       }
4209     }
4210     else proc_pid_cpu_avail = false;
4211   }
4212 
4213   // The /proc/<tid>/stat aggregates per-process usage on
4214   // new Linux kernels 2.6+ where NPTL is supported.
4215   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4216   // See bug 6328462.
4217   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4218   // and possibly in some other cases, so we check its availability.
4219   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4220     // This is executed only once
4221     proc_task_unchecked = false;
4222     fp = fopen("/proc/self/task", "r");
4223     if (fp != NULL) {
4224       proc_stat_path = "/proc/self/task/%d/stat";
4225       fclose(fp);
4226     }
4227   }
4228 
4229   sprintf(proc_name, proc_stat_path, tid);
4230   fp = fopen(proc_name, "r");
4231   if ( fp == NULL ) return -1;
4232   statlen = fread(stat, 1, 2047, fp);
4233   stat[statlen] = '\0';
4234   fclose(fp);
4235 
4236   // Skip pid and the command string. Note that we could be dealing with
4237   // weird command names, e.g. user could decide to rename java launcher
4238   // to "java 1.4.2 :)", then the stat file would look like
4239   //                1234 (java 1.4.2 :)) R ... ...
4240   // We don't really need to know the command string, just find the last
4241   // occurrence of ")" and then start parsing from there. See bug 4726580.
4242   s = strrchr(stat, ')');
4243   i = 0;
4244   if (s == NULL ) return -1;
4245 
4246   // Skip blank chars
4247   do s++; while (isspace(*s));
4248 
4249   count = sscanf(s,"%*c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4250                  &idummy, &idummy, &idummy, &idummy, &idummy,
4251                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4252                  &user_time, &sys_time);
4253   if ( count != 12 ) return -1;
4254   if (user_sys_cpu_time) {
4255     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4256   } else {
4257     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4258   }
4259 }
4260 
4261 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4262   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4263   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4264   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4265   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4266 }
4267 
4268 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4269   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4270   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4271   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4272   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4273 }
4274 
4275 bool os::is_thread_cpu_time_supported() {
4276   return true;
4277 }
4278 
4279 // System loadavg support.  Returns -1 if load average cannot be obtained.
4280 // Linux doesn't yet have a (official) notion of processor sets,
4281 // so just return the system wide load average.
4282 int os::loadavg(double loadavg[], int nelem) {
4283   return ::getloadavg(loadavg, nelem);
4284 }
4285 
4286 void os::pause() {
4287   char filename[MAX_PATH];
4288   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4289     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4290   } else {
4291     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4292   }
4293 
4294   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4295   if (fd != -1) {
4296     struct stat buf;
4297     close(fd);
4298     while (::stat(filename, &buf) == 0) {
4299       (void)::poll(NULL, 0, 100);
4300     }
4301   } else {
4302     jio_fprintf(stderr,
4303       "Could not open pause file '%s', continuing immediately.\n", filename);
4304   }
4305 }
4306 
4307 extern "C" {
4308 
4309 /**
4310  * NOTE: the following code is to keep the green threads code
4311  * in the libjava.so happy. Once the green threads is removed,
4312  * these code will no longer be needed.
4313  */
4314 int
4315 jdk_waitpid(pid_t pid, int* status, int options) {
4316     return waitpid(pid, status, options);
4317 }
4318 
4319 int
4320 fork1() {
4321     return fork();
4322 }
4323 
4324 int
4325 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4326     return sem_init(sem, pshared, value);
4327 }
4328 
4329 int
4330 jdk_sem_post(sem_t *sem) {
4331     return sem_post(sem);
4332 }
4333 
4334 int
4335 jdk_sem_wait(sem_t *sem) {
4336     return sem_wait(sem);
4337 }
4338 
4339 int
4340 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4341     return pthread_sigmask(how , newmask, oldmask);
4342 }
4343 
4344 }
4345 
4346 // Refer to the comments in os_solaris.cpp park-unpark.
4347 //
4348 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4349 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4350 // For specifics regarding the bug see GLIBC BUGID 261237 :
4351 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4352 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4353 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4354 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4355 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4356 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4357 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4358 // of libpthread avoids the problem, but isn't practical.
4359 //
4360 // Possible remedies:
4361 //
4362 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4363 //      This is palliative and probabilistic, however.  If the thread is preempted
4364 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4365 //      than the minimum period may have passed, and the abstime may be stale (in the
4366 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4367 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4368 //
4369 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4370 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4371 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4372 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4373 //      thread.
4374 //
4375 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4376 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4377 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4378 //      This also works well.  In fact it avoids kernel-level scalability impediments
4379 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4380 //      timers in a graceful fashion.
4381 //
4382 // 4.   When the abstime value is in the past it appears that control returns
4383 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4384 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4385 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4386 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4387 //      It may be possible to avoid reinitialization by checking the return
4388 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4389 //      condvar we must establish the invariant that cond_signal() is only called
4390 //      within critical sections protected by the adjunct mutex.  This prevents
4391 //      cond_signal() from "seeing" a condvar that's in the midst of being
4392 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4393 //      desirable signal-after-unlock optimization that avoids futile context switching.
4394 //
4395 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4396 //      structure when a condvar is used or initialized.  cond_destroy()  would
4397 //      release the helper structure.  Our reinitialize-after-timedwait fix
4398 //      put excessive stress on malloc/free and locks protecting the c-heap.
4399 //
4400 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4401 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4402 // and only enabling the work-around for vulnerable environments.
4403 
4404 // utility to compute the abstime argument to timedwait:
4405 // millis is the relative timeout time
4406 // abstime will be the absolute timeout time
4407 // TODO: replace compute_abstime() with unpackTime()
4408 
4409 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4410   if (millis < 0)  millis = 0;
4411   struct timeval now;
4412   int status = gettimeofday(&now, NULL);
4413   assert(status == 0, "gettimeofday");
4414   jlong seconds = millis / 1000;
4415   millis %= 1000;
4416   if (seconds > 50000000) { // see man cond_timedwait(3T)
4417     seconds = 50000000;
4418   }
4419   abstime->tv_sec = now.tv_sec  + seconds;
4420   long       usec = now.tv_usec + millis * 1000;
4421   if (usec >= 1000000) {
4422     abstime->tv_sec += 1;
4423     usec -= 1000000;
4424   }
4425   abstime->tv_nsec = usec * 1000;
4426   return abstime;
4427 }
4428 
4429 
4430 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4431 // Conceptually TryPark() should be equivalent to park(0).
4432 
4433 int os::PlatformEvent::TryPark() {
4434   for (;;) {
4435     const int v = _Event ;
4436     guarantee ((v == 0) || (v == 1), "invariant") ;
4437     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4438   }
4439 }
4440 
4441 void os::PlatformEvent::park() {       // AKA "down()"
4442   // Invariant: Only the thread associated with the Event/PlatformEvent
4443   // may call park().
4444   // TODO: assert that _Assoc != NULL or _Assoc == Self
4445   int v ;
4446   for (;;) {
4447       v = _Event ;
4448       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4449   }
4450   guarantee (v >= 0, "invariant") ;
4451   if (v == 0) {
4452      // Do this the hard way by blocking ...
4453      int status = pthread_mutex_lock(_mutex);
4454      assert_status(status == 0, status, "mutex_lock");
4455      guarantee (_nParked == 0, "invariant") ;
4456      ++ _nParked ;
4457      while (_Event < 0) {
4458         status = pthread_cond_wait(_cond, _mutex);
4459         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4460         // Treat this the same as if the wait was interrupted
4461         if (status == ETIME) { status = EINTR; }
4462         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4463      }
4464      -- _nParked ;
4465 
4466     // In theory we could move the ST of 0 into _Event past the unlock(),
4467     // but then we'd need a MEMBAR after the ST.
4468     _Event = 0 ;
4469      status = pthread_mutex_unlock(_mutex);
4470      assert_status(status == 0, status, "mutex_unlock");
4471   }
4472   guarantee (_Event >= 0, "invariant") ;
4473 }
4474 
4475 int os::PlatformEvent::park(jlong millis) {
4476   guarantee (_nParked == 0, "invariant") ;
4477 
4478   int v ;
4479   for (;;) {
4480       v = _Event ;
4481       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4482   }
4483   guarantee (v >= 0, "invariant") ;
4484   if (v != 0) return OS_OK ;
4485 
4486   // We do this the hard way, by blocking the thread.
4487   // Consider enforcing a minimum timeout value.
4488   struct timespec abst;
4489   compute_abstime(&abst, millis);
4490 
4491   int ret = OS_TIMEOUT;
4492   int status = pthread_mutex_lock(_mutex);
4493   assert_status(status == 0, status, "mutex_lock");
4494   guarantee (_nParked == 0, "invariant") ;
4495   ++_nParked ;
4496 
4497   // Object.wait(timo) will return because of
4498   // (a) notification
4499   // (b) timeout
4500   // (c) thread.interrupt
4501   //
4502   // Thread.interrupt and object.notify{All} both call Event::set.
4503   // That is, we treat thread.interrupt as a special case of notification.
4504   // The underlying Solaris implementation, cond_timedwait, admits
4505   // spurious/premature wakeups, but the JLS/JVM spec prevents the
4506   // JVM from making those visible to Java code.  As such, we must
4507   // filter out spurious wakeups.  We assume all ETIME returns are valid.
4508   //
4509   // TODO: properly differentiate simultaneous notify+interrupt.
4510   // In that case, we should propagate the notify to another waiter.
4511 
4512   while (_Event < 0) {
4513     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4514     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4515       pthread_cond_destroy (_cond);
4516       pthread_cond_init (_cond, NULL) ;
4517     }
4518     assert_status(status == 0 || status == EINTR ||
4519                   status == ETIME || status == ETIMEDOUT,
4520                   status, "cond_timedwait");
4521     if (!FilterSpuriousWakeups) break ;                 // previous semantics
4522     if (status == ETIME || status == ETIMEDOUT) break ;
4523     // We consume and ignore EINTR and spurious wakeups.
4524   }
4525   --_nParked ;
4526   if (_Event >= 0) {
4527      ret = OS_OK;
4528   }
4529   _Event = 0 ;
4530   status = pthread_mutex_unlock(_mutex);
4531   assert_status(status == 0, status, "mutex_unlock");
4532   assert (_nParked == 0, "invariant") ;
4533   return ret;
4534 }
4535 
4536 void os::PlatformEvent::unpark() {
4537   int v, AnyWaiters ;
4538   for (;;) {
4539       v = _Event ;
4540       if (v > 0) {
4541          // The LD of _Event could have reordered or be satisfied
4542          // by a read-aside from this processor's write buffer.
4543          // To avoid problems execute a barrier and then
4544          // ratify the value.
4545          OrderAccess::fence() ;
4546          if (_Event == v) return ;
4547          continue ;
4548       }
4549       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4550   }
4551   if (v < 0) {
4552      // Wait for the thread associated with the event to vacate
4553      int status = pthread_mutex_lock(_mutex);
4554      assert_status(status == 0, status, "mutex_lock");
4555      AnyWaiters = _nParked ;
4556      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4557      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4558         AnyWaiters = 0 ;
4559         pthread_cond_signal (_cond);
4560      }
4561      status = pthread_mutex_unlock(_mutex);
4562      assert_status(status == 0, status, "mutex_unlock");
4563      if (AnyWaiters != 0) {
4564         status = pthread_cond_signal(_cond);
4565         assert_status(status == 0, status, "cond_signal");
4566      }
4567   }
4568 
4569   // Note that we signal() _after dropping the lock for "immortal" Events.
4570   // This is safe and avoids a common class of  futile wakeups.  In rare
4571   // circumstances this can cause a thread to return prematurely from
4572   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4573   // simply re-test the condition and re-park itself.
4574 }
4575 
4576 
4577 // JSR166
4578 // -------------------------------------------------------
4579 
4580 /*
4581  * The solaris and linux implementations of park/unpark are fairly
4582  * conservative for now, but can be improved. They currently use a
4583  * mutex/condvar pair, plus a a count.
4584  * Park decrements count if > 0, else does a condvar wait.  Unpark
4585  * sets count to 1 and signals condvar.  Only one thread ever waits
4586  * on the condvar. Contention seen when trying to park implies that someone
4587  * is unparking you, so don't wait. And spurious returns are fine, so there
4588  * is no need to track notifications.
4589  */
4590 
4591 
4592 #define NANOSECS_PER_SEC 1000000000
4593 #define NANOSECS_PER_MILLISEC 1000000
4594 #define MAX_SECS 100000000
4595 /*
4596  * This code is common to linux and solaris and will be moved to a
4597  * common place in dolphin.
4598  *
4599  * The passed in time value is either a relative time in nanoseconds
4600  * or an absolute time in milliseconds. Either way it has to be unpacked
4601  * into suitable seconds and nanoseconds components and stored in the
4602  * given timespec structure.
4603  * Given time is a 64-bit value and the time_t used in the timespec is only
4604  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4605  * overflow if times way in the future are given. Further on Solaris versions
4606  * prior to 10 there is a restriction (see cond_timedwait) that the specified
4607  * number of seconds, in abstime, is less than current_time  + 100,000,000.
4608  * As it will be 28 years before "now + 100000000" will overflow we can
4609  * ignore overflow and just impose a hard-limit on seconds using the value
4610  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4611  * years from "now".
4612  */
4613 
4614 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4615   assert (time > 0, "convertTime");
4616 
4617   struct timeval now;
4618   int status = gettimeofday(&now, NULL);
4619   assert(status == 0, "gettimeofday");
4620 
4621   time_t max_secs = now.tv_sec + MAX_SECS;
4622 
4623   if (isAbsolute) {
4624     jlong secs = time / 1000;
4625     if (secs > max_secs) {
4626       absTime->tv_sec = max_secs;
4627     }
4628     else {
4629       absTime->tv_sec = secs;
4630     }
4631     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4632   }
4633   else {
4634     jlong secs = time / NANOSECS_PER_SEC;
4635     if (secs >= MAX_SECS) {
4636       absTime->tv_sec = max_secs;
4637       absTime->tv_nsec = 0;
4638     }
4639     else {
4640       absTime->tv_sec = now.tv_sec + secs;
4641       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4642       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4643         absTime->tv_nsec -= NANOSECS_PER_SEC;
4644         ++absTime->tv_sec; // note: this must be <= max_secs
4645       }
4646     }
4647   }
4648   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4649   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4650   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4651   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4652 }
4653 
4654 void Parker::park(bool isAbsolute, jlong time) {
4655   // Optional fast-path check:
4656   // Return immediately if a permit is available.
4657   if (_counter > 0) {
4658       _counter = 0 ;
4659       return ;
4660   }
4661 
4662   Thread* thread = Thread::current();
4663   assert(thread->is_Java_thread(), "Must be JavaThread");
4664   JavaThread *jt = (JavaThread *)thread;
4665 
4666   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4667   // Check interrupt before trying to wait
4668   if (Thread::is_interrupted(thread, false)) {
4669     return;
4670   }
4671 
4672   // Next, demultiplex/decode time arguments
4673   timespec absTime;
4674   if (time < 0) { // don't wait at all
4675     return;
4676   }
4677   if (time > 0) {
4678     unpackTime(&absTime, isAbsolute, time);
4679   }
4680 
4681 
4682   // Enter safepoint region
4683   // Beware of deadlocks such as 6317397.
4684   // The per-thread Parker:: mutex is a classic leaf-lock.
4685   // In particular a thread must never block on the Threads_lock while
4686   // holding the Parker:: mutex.  If safepoints are pending both the
4687   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4688   ThreadBlockInVM tbivm(jt);
4689 
4690   // Don't wait if cannot get lock since interference arises from
4691   // unblocking.  Also. check interrupt before trying wait
4692   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4693     return;
4694   }
4695 
4696   int status ;
4697   if (_counter > 0)  { // no wait needed
4698     _counter = 0;
4699     status = pthread_mutex_unlock(_mutex);
4700     assert (status == 0, "invariant") ;
4701     return;
4702   }
4703 
4704 #ifdef ASSERT
4705   // Don't catch signals while blocked; let the running threads have the signals.
4706   // (This allows a debugger to break into the running thread.)
4707   sigset_t oldsigs;
4708   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4709   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4710 #endif
4711 
4712   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4713   jt->set_suspend_equivalent();
4714   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4715 
4716   if (time == 0) {
4717     status = pthread_cond_wait (_cond, _mutex) ;
4718   } else {
4719     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4720     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4721       pthread_cond_destroy (_cond) ;
4722       pthread_cond_init    (_cond, NULL);
4723     }
4724   }
4725   assert_status(status == 0 || status == EINTR ||
4726                 status == ETIME || status == ETIMEDOUT,
4727                 status, "cond_timedwait");
4728 
4729 #ifdef ASSERT
4730   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4731 #endif
4732 
4733   _counter = 0 ;
4734   status = pthread_mutex_unlock(_mutex) ;
4735   assert_status(status == 0, status, "invariant") ;
4736   // If externally suspended while waiting, re-suspend
4737   if (jt->handle_special_suspend_equivalent_condition()) {
4738     jt->java_suspend_self();
4739   }
4740 
4741 }
4742 
4743 void Parker::unpark() {
4744   int s, status ;
4745   status = pthread_mutex_lock(_mutex);
4746   assert (status == 0, "invariant") ;
4747   s = _counter;
4748   _counter = 1;
4749   if (s < 1) {
4750      if (WorkAroundNPTLTimedWaitHang) {
4751         status = pthread_cond_signal (_cond) ;
4752         assert (status == 0, "invariant") ;
4753         status = pthread_mutex_unlock(_mutex);
4754         assert (status == 0, "invariant") ;
4755      } else {
4756         status = pthread_mutex_unlock(_mutex);
4757         assert (status == 0, "invariant") ;
4758         status = pthread_cond_signal (_cond) ;
4759         assert (status == 0, "invariant") ;
4760      }
4761   } else {
4762     pthread_mutex_unlock(_mutex);
4763     assert (status == 0, "invariant") ;
4764   }
4765 }
4766 
4767 
4768 extern char** environ;
4769 
4770 #ifndef __NR_fork
4771 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
4772 #endif
4773 
4774 #ifndef __NR_execve
4775 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
4776 #endif
4777 
4778 // Run the specified command in a separate process. Return its exit value,
4779 // or -1 on failure (e.g. can't fork a new process).
4780 // Unlike system(), this function can be called from signal handler. It
4781 // doesn't block SIGINT et al.
4782 int os::fork_and_exec(char* cmd) {
4783   const char * argv[4] = {"sh", "-c", cmd, NULL};
4784 
4785   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
4786   // pthread_atfork handlers and reset pthread library. All we need is a
4787   // separate process to execve. Make a direct syscall to fork process.
4788   // On IA64 there's no fork syscall, we have to use fork() and hope for
4789   // the best...
4790   pid_t pid = NOT_IA64(syscall(__NR_fork);)
4791               IA64_ONLY(fork();)
4792 
4793   if (pid < 0) {
4794     // fork failed
4795     return -1;
4796 
4797   } else if (pid == 0) {
4798     // child process
4799 
4800     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
4801     // first to kill every thread on the thread list. Because this list is
4802     // not reset by fork() (see notes above), execve() will instead kill
4803     // every thread in the parent process. We know this is the only thread
4804     // in the new process, so make a system call directly.
4805     // IA64 should use normal execve() from glibc to match the glibc fork()
4806     // above.
4807     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
4808     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
4809 
4810     // execve failed
4811     _exit(-1);
4812 
4813   } else  {
4814     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4815     // care about the actual exit code, for now.
4816 
4817     int status;
4818 
4819     // Wait for the child process to exit.  This returns immediately if
4820     // the child has already exited. */
4821     while (waitpid(pid, &status, 0) < 0) {
4822         switch (errno) {
4823         case ECHILD: return 0;
4824         case EINTR: break;
4825         default: return -1;
4826         }
4827     }
4828 
4829     if (WIFEXITED(status)) {
4830        // The child exited normally; get its exit code.
4831        return WEXITSTATUS(status);
4832     } else if (WIFSIGNALED(status)) {
4833        // The child exited because of a signal
4834        // The best value to return is 0x80 + signal number,
4835        // because that is what all Unix shells do, and because
4836        // it allows callers to distinguish between process exit and
4837        // process death by signal.
4838        return 0x80 + WTERMSIG(status);
4839     } else {
4840        // Unknown exit code; pass it through
4841        return status;
4842     }
4843   }
4844 }