1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifdef TARGET_COMPILER_gcc
  29 # include "utilities/globalDefinitions_gcc.hpp"
  30 #endif
  31 #ifdef TARGET_COMPILER_visCPP
  32 # include "utilities/globalDefinitions_visCPP.hpp"
  33 #endif
  34 #ifdef TARGET_COMPILER_sparcWorks
  35 # include "utilities/globalDefinitions_sparcWorks.hpp"
  36 #endif
  37 
  38 #include "utilities/macros.hpp"
  39 
  40 // This file holds all globally used constants & types, class (forward)
  41 // declarations and a few frequently used utility functions.
  42 
  43 //----------------------------------------------------------------------------------------------------
  44 // Constants
  45 
  46 const int LogBytesPerShort   = 1;
  47 const int LogBytesPerInt     = 2;
  48 #ifdef _LP64
  49 const int LogBytesPerWord    = 3;
  50 #else
  51 const int LogBytesPerWord    = 2;
  52 #endif
  53 const int LogBytesPerLong    = 3;
  54 
  55 const int BytesPerShort      = 1 << LogBytesPerShort;
  56 const int BytesPerInt        = 1 << LogBytesPerInt;
  57 const int BytesPerWord       = 1 << LogBytesPerWord;
  58 const int BytesPerLong       = 1 << LogBytesPerLong;
  59 
  60 const int LogBitsPerByte     = 3;
  61 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  62 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  63 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
  64 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
  65 
  66 const int BitsPerByte        = 1 << LogBitsPerByte;
  67 const int BitsPerShort       = 1 << LogBitsPerShort;
  68 const int BitsPerInt         = 1 << LogBitsPerInt;
  69 const int BitsPerWord        = 1 << LogBitsPerWord;
  70 const int BitsPerLong        = 1 << LogBitsPerLong;
  71 
  72 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
  73 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
  74 
  75 const int WordsPerLong       = 2;       // Number of stack entries for longs
  76 
  77 const int oopSize            = sizeof(char*); // Full-width oop
  78 extern int heapOopSize;                       // Oop within a java object
  79 const int wordSize           = sizeof(char*);
  80 const int longSize           = sizeof(jlong);
  81 const int jintSize           = sizeof(jint);
  82 const int size_tSize         = sizeof(size_t);
  83 
  84 const int BytesPerOop        = BytesPerWord;  // Full-width oop
  85 
  86 extern int LogBytesPerHeapOop;                // Oop within a java object
  87 extern int LogBitsPerHeapOop;
  88 extern int BytesPerHeapOop;
  89 extern int BitsPerHeapOop;
  90 
  91 // Oop encoding heap max
  92 extern uint64_t OopEncodingHeapMax;
  93 
  94 const int BitsPerJavaInteger = 32;
  95 const int BitsPerJavaLong    = 64;
  96 const int BitsPerSize_t      = size_tSize * BitsPerByte;
  97 
  98 // Size of a char[] needed to represent a jint as a string in decimal.
  99 const int jintAsStringSize = 12;
 100 
 101 // In fact this should be
 102 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 103 // see os::set_memory_serialize_page()
 104 #ifdef _LP64
 105 const int SerializePageShiftCount = 4;
 106 #else
 107 const int SerializePageShiftCount = 3;
 108 #endif
 109 
 110 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 111 // pointer into the heap.  We require that object sizes be measured in
 112 // units of heap words, so that that
 113 //   HeapWord* hw;
 114 //   hw += oop(hw)->foo();
 115 // works, where foo is a method (like size or scavenge) that returns the
 116 // object size.
 117 class HeapWord {
 118   friend class VMStructs;
 119  private:
 120   char* i;
 121 #ifndef PRODUCT
 122  public:
 123   char* value() { return i; }
 124 #endif
 125 };
 126 
 127 // HeapWordSize must be 2^LogHeapWordSize.
 128 const int HeapWordSize        = sizeof(HeapWord);
 129 #ifdef _LP64
 130 const int LogHeapWordSize     = 3;
 131 #else
 132 const int LogHeapWordSize     = 2;
 133 #endif
 134 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 135 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 136 
 137 // The larger HeapWordSize for 64bit requires larger heaps
 138 // for the same application running in 64bit.  See bug 4967770.
 139 // The minimum alignment to a heap word size is done.  Other
 140 // parts of the memory system may required additional alignment
 141 // and are responsible for those alignments.
 142 #ifdef _LP64
 143 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 144 #else
 145 #define ScaleForWordSize(x) (x)
 146 #endif
 147 
 148 // The minimum number of native machine words necessary to contain "byte_size"
 149 // bytes.
 150 inline size_t heap_word_size(size_t byte_size) {
 151   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 152 }
 153 
 154 
 155 const size_t K                  = 1024;
 156 const size_t M                  = K*K;
 157 const size_t G                  = M*K;
 158 const size_t HWperKB            = K / sizeof(HeapWord);
 159 
 160 const size_t LOG_K              = 10;
 161 const size_t LOG_M              = 2 * LOG_K;
 162 const size_t LOG_G              = 2 * LOG_M;
 163 
 164 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 165 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 166 
 167 // Constants for converting from a base unit to milli-base units.  For
 168 // example from seconds to milliseconds and microseconds
 169 
 170 const int MILLIUNITS    = 1000;         // milli units per base unit
 171 const int MICROUNITS    = 1000000;      // micro units per base unit
 172 const int NANOUNITS     = 1000000000;   // nano units per base unit
 173 
 174 inline const char* proper_unit_for_byte_size(size_t s) {
 175   if (s >= 10*M) {
 176     return "M";
 177   } else if (s >= 10*K) {
 178     return "K";
 179   } else {
 180     return "B";
 181   }
 182 }
 183 
 184 inline size_t byte_size_in_proper_unit(size_t s) {
 185   if (s >= 10*M) {
 186     return s/M;
 187   } else if (s >= 10*K) {
 188     return s/K;
 189   } else {
 190     return s;
 191   }
 192 }
 193 
 194 
 195 //----------------------------------------------------------------------------------------------------
 196 // VM type definitions
 197 
 198 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 199 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 200 
 201 typedef intptr_t  intx;
 202 typedef uintptr_t uintx;
 203 
 204 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 205 const intx  max_intx  = (uintx)min_intx - 1;
 206 const uintx max_uintx = (uintx)-1;
 207 
 208 // Table of values:
 209 //      sizeof intx         4               8
 210 // min_intx             0x80000000      0x8000000000000000
 211 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 212 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 213 
 214 typedef unsigned int uint;   NEEDS_CLEANUP
 215 
 216 
 217 //----------------------------------------------------------------------------------------------------
 218 // Java type definitions
 219 
 220 // All kinds of 'plain' byte addresses
 221 typedef   signed char s_char;
 222 typedef unsigned char u_char;
 223 typedef u_char*       address;
 224 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 225                                     // except for some implementations of a C++
 226                                     // linkage pointer to function. Should never
 227                                     // need one of those to be placed in this
 228                                     // type anyway.
 229 
 230 //  Utility functions to "portably" (?) bit twiddle pointers
 231 //  Where portable means keep ANSI C++ compilers quiet
 232 
 233 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 234 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 235 
 236 //  Utility functions to "portably" make cast to/from function pointers.
 237 
 238 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 239 inline address_word  castable_address(address x)              { return address_word(x) ; }
 240 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 241 
 242 // Pointer subtraction.
 243 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 244 // the range we might need to find differences from one end of the heap
 245 // to the other.
 246 // A typical use might be:
 247 //     if (pointer_delta(end(), top()) >= size) {
 248 //       // enough room for an object of size
 249 //       ...
 250 // and then additions like
 251 //       ... top() + size ...
 252 // are safe because we know that top() is at least size below end().
 253 inline size_t pointer_delta(const void* left,
 254                             const void* right,
 255                             size_t element_size) {
 256   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 257 }
 258 // A version specialized for HeapWord*'s.
 259 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 260   return pointer_delta(left, right, sizeof(HeapWord));
 261 }
 262 
 263 //
 264 // ANSI C++ does not allow casting from one pointer type to a function pointer
 265 // directly without at best a warning. This macro accomplishes it silently
 266 // In every case that is present at this point the value be cast is a pointer
 267 // to a C linkage function. In somecase the type used for the cast reflects
 268 // that linkage and a picky compiler would not complain. In other cases because
 269 // there is no convenient place to place a typedef with extern C linkage (i.e
 270 // a platform dependent header file) it doesn't. At this point no compiler seems
 271 // picky enough to catch these instances (which are few). It is possible that
 272 // using templates could fix these for all cases. This use of templates is likely
 273 // so far from the middle of the road that it is likely to be problematic in
 274 // many C++ compilers.
 275 //
 276 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 277 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 278 
 279 // Unsigned byte types for os and stream.hpp
 280 
 281 // Unsigned one, two, four and eigth byte quantities used for describing
 282 // the .class file format. See JVM book chapter 4.
 283 
 284 typedef jubyte  u1;
 285 typedef jushort u2;
 286 typedef juint   u4;
 287 typedef julong  u8;
 288 
 289 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 290 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 291 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 292 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 293 
 294 //----------------------------------------------------------------------------------------------------
 295 // JVM spec restrictions
 296 
 297 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 298 
 299 
 300 //----------------------------------------------------------------------------------------------------
 301 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 302 //
 303 // Determines whether on-the-fly class replacement and frame popping are enabled.
 304 
 305 #define HOTSWAP
 306 
 307 //----------------------------------------------------------------------------------------------------
 308 // Object alignment, in units of HeapWords.
 309 //
 310 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 311 // reference fields can be naturally aligned.
 312 
 313 extern int MinObjAlignment;
 314 extern int MinObjAlignmentInBytes;
 315 extern int MinObjAlignmentInBytesMask;
 316 
 317 extern int LogMinObjAlignment;
 318 extern int LogMinObjAlignmentInBytes;
 319 
 320 // Machine dependent stuff
 321 
 322 #ifdef TARGET_ARCH_x86
 323 # include "globalDefinitions_x86.hpp"
 324 #endif
 325 #ifdef TARGET_ARCH_sparc
 326 # include "globalDefinitions_sparc.hpp"
 327 #endif
 328 #ifdef TARGET_ARCH_zero
 329 # include "globalDefinitions_zero.hpp"
 330 #endif
 331 #ifdef TARGET_ARCH_arm
 332 # include "globalDefinitions_arm.hpp"
 333 #endif
 334 #ifdef TARGET_ARCH_ppc
 335 # include "globalDefinitions_ppc.hpp"
 336 #endif
 337 
 338 
 339 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 340 // Note: this value must be a power of 2
 341 
 342 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 343 
 344 // Signed variants of alignment helpers.  There are two versions of each, a macro
 345 // for use in places like enum definitions that require compile-time constant
 346 // expressions and a function for all other places so as to get type checking.
 347 
 348 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 349 
 350 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 351   return align_size_up_(size, alignment);
 352 }
 353 
 354 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 355 
 356 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 357   return align_size_down_(size, alignment);
 358 }
 359 
 360 // Align objects by rounding up their size, in HeapWord units.
 361 
 362 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 363 
 364 inline intptr_t align_object_size(intptr_t size) {
 365   return align_size_up(size, MinObjAlignment);
 366 }
 367 
 368 inline bool is_object_aligned(intptr_t addr) {
 369   return addr == align_object_size(addr);
 370 }
 371 
 372 // Pad out certain offsets to jlong alignment, in HeapWord units.
 373 
 374 inline intptr_t align_object_offset(intptr_t offset) {
 375   return align_size_up(offset, HeapWordsPerLong);
 376 }
 377 
 378 // The expected size in bytes of a cache line, used to pad data structures.
 379 #define DEFAULT_CACHE_LINE_SIZE 64
 380 
 381 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
 382 // expected cache line size (a power of two).  The first addend avoids sharing
 383 // when the start address is not a multiple of alignment; the second maintains
 384 // alignment of starting addresses that happen to be a multiple.
 385 #define PADDING_SIZE(type, alignment)                           \
 386   ((alignment) + align_size_up_(sizeof(type), alignment))
 387 
 388 // Templates to create a subclass padded to avoid cache line sharing.  These are
 389 // effective only when applied to derived-most (leaf) classes.
 390 
 391 // When no args are passed to the base ctor.
 392 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 393 class Padded: public T {
 394 private:
 395   char _pad_buf_[PADDING_SIZE(T, alignment)];
 396 };
 397 
 398 // When either 0 or 1 args may be passed to the base ctor.
 399 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 400 class Padded01: public T {
 401 public:
 402   Padded01(): T() { }
 403   Padded01(Arg1T arg1): T(arg1) { }
 404 private:
 405   char _pad_buf_[PADDING_SIZE(T, alignment)];
 406 };
 407 
 408 //----------------------------------------------------------------------------------------------------
 409 // Utility macros for compilers
 410 // used to silence compiler warnings
 411 
 412 #define Unused_Variable(var) var
 413 
 414 
 415 //----------------------------------------------------------------------------------------------------
 416 // Miscellaneous
 417 
 418 // 6302670 Eliminate Hotspot __fabsf dependency
 419 // All fabs() callers should call this function instead, which will implicitly
 420 // convert the operand to double, avoiding a dependency on __fabsf which
 421 // doesn't exist in early versions of Solaris 8.
 422 inline double fabsd(double value) {
 423   return fabs(value);
 424 }
 425 
 426 inline jint low (jlong value)                    { return jint(value); }
 427 inline jint high(jlong value)                    { return jint(value >> 32); }
 428 
 429 // the fancy casts are a hopefully portable way
 430 // to do unsigned 32 to 64 bit type conversion
 431 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 432                                                    *value |= (jlong)(julong)(juint)low; }
 433 
 434 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 435                                                    *value |= (jlong)high       << 32; }
 436 
 437 inline jlong jlong_from(jint h, jint l) {
 438   jlong result = 0; // initialization to avoid warning
 439   set_high(&result, h);
 440   set_low(&result,  l);
 441   return result;
 442 }
 443 
 444 union jlong_accessor {
 445   jint  words[2];
 446   jlong long_value;
 447 };
 448 
 449 void basic_types_init(); // cannot define here; uses assert
 450 
 451 
 452 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 453 enum BasicType {
 454   T_BOOLEAN  =  4,
 455   T_CHAR     =  5,
 456   T_FLOAT    =  6,
 457   T_DOUBLE   =  7,
 458   T_BYTE     =  8,
 459   T_SHORT    =  9,
 460   T_INT      = 10,
 461   T_LONG     = 11,
 462   T_OBJECT   = 12,
 463   T_ARRAY    = 13,
 464   T_VOID     = 14,
 465   T_ADDRESS  = 15,
 466   T_NARROWOOP= 16,
 467   T_CONFLICT = 17, // for stack value type with conflicting contents
 468   T_ILLEGAL  = 99
 469 };
 470 
 471 inline bool is_java_primitive(BasicType t) {
 472   return T_BOOLEAN <= t && t <= T_LONG;
 473 }
 474 
 475 inline bool is_subword_type(BasicType t) {
 476   // these guys are processed exactly like T_INT in calling sequences:
 477   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 478 }
 479 
 480 inline bool is_signed_subword_type(BasicType t) {
 481   return (t == T_BYTE || t == T_SHORT);
 482 }
 483 
 484 // Convert a char from a classfile signature to a BasicType
 485 inline BasicType char2type(char c) {
 486   switch( c ) {
 487   case 'B': return T_BYTE;
 488   case 'C': return T_CHAR;
 489   case 'D': return T_DOUBLE;
 490   case 'F': return T_FLOAT;
 491   case 'I': return T_INT;
 492   case 'J': return T_LONG;
 493   case 'S': return T_SHORT;
 494   case 'Z': return T_BOOLEAN;
 495   case 'V': return T_VOID;
 496   case 'L': return T_OBJECT;
 497   case '[': return T_ARRAY;
 498   }
 499   return T_ILLEGAL;
 500 }
 501 
 502 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 503 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 504 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 505 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 506 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 507 extern BasicType name2type(const char* name);
 508 
 509 // Auxilary math routines
 510 // least common multiple
 511 extern size_t lcm(size_t a, size_t b);
 512 
 513 
 514 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 515 enum BasicTypeSize {
 516   T_BOOLEAN_size = 1,
 517   T_CHAR_size    = 1,
 518   T_FLOAT_size   = 1,
 519   T_DOUBLE_size  = 2,
 520   T_BYTE_size    = 1,
 521   T_SHORT_size   = 1,
 522   T_INT_size     = 1,
 523   T_LONG_size    = 2,
 524   T_OBJECT_size  = 1,
 525   T_ARRAY_size   = 1,
 526   T_NARROWOOP_size = 1,
 527   T_VOID_size    = 0
 528 };
 529 
 530 
 531 // maps a BasicType to its instance field storage type:
 532 // all sub-word integral types are widened to T_INT
 533 extern BasicType type2field[T_CONFLICT+1];
 534 extern BasicType type2wfield[T_CONFLICT+1];
 535 
 536 
 537 // size in bytes
 538 enum ArrayElementSize {
 539   T_BOOLEAN_aelem_bytes = 1,
 540   T_CHAR_aelem_bytes    = 2,
 541   T_FLOAT_aelem_bytes   = 4,
 542   T_DOUBLE_aelem_bytes  = 8,
 543   T_BYTE_aelem_bytes    = 1,
 544   T_SHORT_aelem_bytes   = 2,
 545   T_INT_aelem_bytes     = 4,
 546   T_LONG_aelem_bytes    = 8,
 547 #ifdef _LP64
 548   T_OBJECT_aelem_bytes  = 8,
 549   T_ARRAY_aelem_bytes   = 8,
 550 #else
 551   T_OBJECT_aelem_bytes  = 4,
 552   T_ARRAY_aelem_bytes   = 4,
 553 #endif
 554   T_NARROWOOP_aelem_bytes = 4,
 555   T_VOID_aelem_bytes    = 0
 556 };
 557 
 558 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 559 #ifdef ASSERT
 560 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 561 #else
 562 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 563 #endif
 564 
 565 
 566 // JavaValue serves as a container for arbitrary Java values.
 567 
 568 class JavaValue {
 569 
 570  public:
 571   typedef union JavaCallValue {
 572     jfloat   f;
 573     jdouble  d;
 574     jint     i;
 575     jlong    l;
 576     jobject  h;
 577   } JavaCallValue;
 578 
 579  private:
 580   BasicType _type;
 581   JavaCallValue _value;
 582 
 583  public:
 584   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 585 
 586   JavaValue(jfloat value) {
 587     _type    = T_FLOAT;
 588     _value.f = value;
 589   }
 590 
 591   JavaValue(jdouble value) {
 592     _type    = T_DOUBLE;
 593     _value.d = value;
 594   }
 595 
 596  jfloat get_jfloat() const { return _value.f; }
 597  jdouble get_jdouble() const { return _value.d; }
 598  jint get_jint() const { return _value.i; }
 599  jlong get_jlong() const { return _value.l; }
 600  jobject get_jobject() const { return _value.h; }
 601  JavaCallValue* get_value_addr() { return &_value; }
 602  BasicType get_type() const { return _type; }
 603 
 604  void set_jfloat(jfloat f) { _value.f = f;}
 605  void set_jdouble(jdouble d) { _value.d = d;}
 606  void set_jint(jint i) { _value.i = i;}
 607  void set_jlong(jlong l) { _value.l = l;}
 608  void set_jobject(jobject h) { _value.h = h;}
 609  void set_type(BasicType t) { _type = t; }
 610 
 611  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 612  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 613  jchar get_jchar() const { return (jchar) (_value.i);}
 614  jshort get_jshort() const { return (jshort) (_value.i);}
 615 
 616 };
 617 
 618 
 619 #define STACK_BIAS      0
 620 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 621 // in order to extend the reach of the stack pointer.
 622 #if defined(SPARC) && defined(_LP64)
 623 #undef STACK_BIAS
 624 #define STACK_BIAS      0x7ff
 625 #endif
 626 
 627 
 628 // TosState describes the top-of-stack state before and after the execution of
 629 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 630 // registers. The TosState corresponds to the 'machine represention' of this cached
 631 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 632 // as well as a 5th state in case the top-of-stack value is actually on the top
 633 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 634 // state when it comes to machine representation but is used separately for (oop)
 635 // type specific operations (e.g. verification code).
 636 
 637 enum TosState {         // describes the tos cache contents
 638   btos = 0,             // byte, bool tos cached
 639   ctos = 1,             // char tos cached
 640   stos = 2,             // short tos cached
 641   itos = 3,             // int tos cached
 642   ltos = 4,             // long tos cached
 643   ftos = 5,             // float tos cached
 644   dtos = 6,             // double tos cached
 645   atos = 7,             // object cached
 646   vtos = 8,             // tos not cached
 647   number_of_states,
 648   ilgl                  // illegal state: should not occur
 649 };
 650 
 651 
 652 inline TosState as_TosState(BasicType type) {
 653   switch (type) {
 654     case T_BYTE   : return btos;
 655     case T_BOOLEAN: return btos; // FIXME: Add ztos
 656     case T_CHAR   : return ctos;
 657     case T_SHORT  : return stos;
 658     case T_INT    : return itos;
 659     case T_LONG   : return ltos;
 660     case T_FLOAT  : return ftos;
 661     case T_DOUBLE : return dtos;
 662     case T_VOID   : return vtos;
 663     case T_ARRAY  : // fall through
 664     case T_OBJECT : return atos;
 665   }
 666   return ilgl;
 667 }
 668 
 669 inline BasicType as_BasicType(TosState state) {
 670   switch (state) {
 671     //case ztos: return T_BOOLEAN;//FIXME
 672     case btos : return T_BYTE;
 673     case ctos : return T_CHAR;
 674     case stos : return T_SHORT;
 675     case itos : return T_INT;
 676     case ltos : return T_LONG;
 677     case ftos : return T_FLOAT;
 678     case dtos : return T_DOUBLE;
 679     case atos : return T_OBJECT;
 680     case vtos : return T_VOID;
 681   }
 682   return T_ILLEGAL;
 683 }
 684 
 685 
 686 // Helper function to convert BasicType info into TosState
 687 // Note: Cannot define here as it uses global constant at the time being.
 688 TosState as_TosState(BasicType type);
 689 
 690 
 691 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
 692 
 693 enum ReferenceType {
 694  REF_NONE,      // Regular class
 695  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
 696  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
 697  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
 698  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
 699  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
 700 };
 701 
 702 
 703 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 704 // information is needed by the safepoint code.
 705 //
 706 // There are 4 essential states:
 707 //
 708 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 709 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 710 //  _thread_in_vm       : Executing in the vm
 711 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 712 //
 713 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 714 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 715 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 716 //
 717 // Given a state, the xxx_trans state can always be found by adding 1.
 718 //
 719 enum JavaThreadState {
 720   _thread_uninitialized     =  0, // should never happen (missing initialization)
 721   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 722   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 723   _thread_in_native         =  4, // running in native code
 724   _thread_in_native_trans   =  5, // corresponding transition state
 725   _thread_in_vm             =  6, // running in VM
 726   _thread_in_vm_trans       =  7, // corresponding transition state
 727   _thread_in_Java           =  8, // running in Java or in stub code
 728   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 729   _thread_blocked           = 10, // blocked in vm
 730   _thread_blocked_trans     = 11, // corresponding transition state
 731   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 732 };
 733 
 734 
 735 // Handy constants for deciding which compiler mode to use.
 736 enum MethodCompilation {
 737   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 738   InvalidOSREntryBci = -2
 739 };
 740 
 741 // Enumeration to distinguish tiers of compilation
 742 enum CompLevel {
 743   CompLevel_any               = -1,
 744   CompLevel_all               = -1,
 745   CompLevel_none              = 0,         // Interpreter
 746   CompLevel_simple            = 1,         // C1
 747   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 748   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 749   CompLevel_full_optimization = 4,         // C2 or Shark
 750 
 751 #if defined(COMPILER2) || defined(SHARK)
 752   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 753 #elif defined(COMPILER1)
 754   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 755 #else
 756   CompLevel_highest_tier      = CompLevel_none,
 757 #endif
 758 
 759 #if defined(TIERED)
 760   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 761 #elif defined(COMPILER1)
 762   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 763 #elif defined(COMPILER2) || defined(SHARK)
 764   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 765 #else
 766   CompLevel_initial_compile   = CompLevel_none
 767 #endif
 768 };
 769 
 770 inline bool is_c1_compile(int comp_level) {
 771   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 772 }
 773 
 774 inline bool is_c2_compile(int comp_level) {
 775   return comp_level == CompLevel_full_optimization;
 776 }
 777 
 778 inline bool is_highest_tier_compile(int comp_level) {
 779   return comp_level == CompLevel_highest_tier;
 780 }
 781 
 782 //----------------------------------------------------------------------------------------------------
 783 // 'Forward' declarations of frequently used classes
 784 // (in order to reduce interface dependencies & reduce
 785 // number of unnecessary compilations after changes)
 786 
 787 class symbolTable;
 788 class ClassFileStream;
 789 
 790 class Event;
 791 
 792 class Thread;
 793 class  VMThread;
 794 class  JavaThread;
 795 class Threads;
 796 
 797 class VM_Operation;
 798 class VMOperationQueue;
 799 
 800 class CodeBlob;
 801 class  nmethod;
 802 class  OSRAdapter;
 803 class  I2CAdapter;
 804 class  C2IAdapter;
 805 class CompiledIC;
 806 class relocInfo;
 807 class ScopeDesc;
 808 class PcDesc;
 809 
 810 class Recompiler;
 811 class Recompilee;
 812 class RecompilationPolicy;
 813 class RFrame;
 814 class  CompiledRFrame;
 815 class  InterpretedRFrame;
 816 
 817 class frame;
 818 
 819 class vframe;
 820 class   javaVFrame;
 821 class     interpretedVFrame;
 822 class     compiledVFrame;
 823 class     deoptimizedVFrame;
 824 class   externalVFrame;
 825 class     entryVFrame;
 826 
 827 class RegisterMap;
 828 
 829 class Mutex;
 830 class Monitor;
 831 class BasicLock;
 832 class BasicObjectLock;
 833 
 834 class PeriodicTask;
 835 
 836 class JavaCallWrapper;
 837 
 838 class   oopDesc;
 839 
 840 class NativeCall;
 841 
 842 class zone;
 843 
 844 class StubQueue;
 845 
 846 class outputStream;
 847 
 848 class ResourceArea;
 849 
 850 class DebugInformationRecorder;
 851 class ScopeValue;
 852 class CompressedStream;
 853 class   DebugInfoReadStream;
 854 class   DebugInfoWriteStream;
 855 class LocationValue;
 856 class ConstantValue;
 857 class IllegalValue;
 858 
 859 class PrivilegedElement;
 860 class MonitorArray;
 861 
 862 class MonitorInfo;
 863 
 864 class OffsetClosure;
 865 class OopMapCache;
 866 class InterpreterOopMap;
 867 class OopMapCacheEntry;
 868 class OSThread;
 869 
 870 typedef int (*OSThreadStartFunc)(void*);
 871 
 872 class Space;
 873 
 874 class JavaValue;
 875 class methodHandle;
 876 class JavaCallArguments;
 877 
 878 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
 879 
 880 extern void basic_fatal(const char* msg);
 881 
 882 
 883 //----------------------------------------------------------------------------------------------------
 884 // Special constants for debugging
 885 
 886 const jint     badInt           = -3;                       // generic "bad int" value
 887 const long     badAddressVal    = -2;                       // generic "bad address" value
 888 const long     badOopVal        = -1;                       // generic "bad oop" value
 889 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 890 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 891 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 892 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 893 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 894 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
 895 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 896 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 897 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 898 
 899 
 900 // (These must be implemented as #defines because C++ compilers are
 901 // not obligated to inline non-integral constants!)
 902 #define       badAddress        ((address)::badAddressVal)
 903 #define       badOop            ((oop)::badOopVal)
 904 #define       badHeapWord       (::badHeapWordVal)
 905 #define       badJNIHandle      ((oop)::badJNIHandleVal)
 906 
 907 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 908 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 909 
 910 //----------------------------------------------------------------------------------------------------
 911 // Utility functions for bitfield manipulations
 912 
 913 const intptr_t AllBits    = ~0; // all bits set in a word
 914 const intptr_t NoBits     =  0; // no bits set in a word
 915 const jlong    NoLongBits =  0; // no bits set in a long
 916 const intptr_t OneBit     =  1; // only right_most bit set in a word
 917 
 918 // get a word with the n.th or the right-most or left-most n bits set
 919 // (note: #define used only so that they can be used in enum constant definitions)
 920 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
 921 #define right_n_bits(n)   (nth_bit(n) - 1)
 922 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
 923 
 924 // bit-operations using a mask m
 925 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 926 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 927 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 928 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 929 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 930 
 931 // bit-operations using the n.th bit
 932 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 933 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 934 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 935 
 936 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 937 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 938   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 939 }
 940 
 941 
 942 //----------------------------------------------------------------------------------------------------
 943 // Utility functions for integers
 944 
 945 // Avoid use of global min/max macros which may cause unwanted double
 946 // evaluation of arguments.
 947 #ifdef max
 948 #undef max
 949 #endif
 950 
 951 #ifdef min
 952 #undef min
 953 #endif
 954 
 955 #define max(a,b) Do_not_use_max_use_MAX2_instead
 956 #define min(a,b) Do_not_use_min_use_MIN2_instead
 957 
 958 // It is necessary to use templates here. Having normal overloaded
 959 // functions does not work because it is necessary to provide both 32-
 960 // and 64-bit overloaded functions, which does not work, and having
 961 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
 962 // will be even more error-prone than macros.
 963 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
 964 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
 965 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
 966 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
 967 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
 968 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
 969 
 970 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
 971 
 972 // true if x is a power of 2, false otherwise
 973 inline bool is_power_of_2(intptr_t x) {
 974   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
 975 }
 976 
 977 // long version of is_power_of_2
 978 inline bool is_power_of_2_long(jlong x) {
 979   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
 980 }
 981 
 982 //* largest i such that 2^i <= x
 983 //  A negative value of 'x' will return '31'
 984 inline int log2_intptr(intptr_t x) {
 985   int i = -1;
 986   uintptr_t p =  1;
 987   while (p != 0 && p <= (uintptr_t)x) {
 988     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 989     i++; p *= 2;
 990   }
 991   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 992   // (if p = 0 then overflow occurred and i = 31)
 993   return i;
 994 }
 995 
 996 //* largest i such that 2^i <= x
 997 //  A negative value of 'x' will return '63'
 998 inline int log2_long(jlong x) {
 999   int i = -1;
1000   julong p =  1;
1001   while (p != 0 && p <= (julong)x) {
1002     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1003     i++; p *= 2;
1004   }
1005   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1006   // (if p = 0 then overflow occurred and i = 63)
1007   return i;
1008 }
1009 
1010 //* the argument must be exactly a power of 2
1011 inline int exact_log2(intptr_t x) {
1012   #ifdef ASSERT
1013     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1014   #endif
1015   return log2_intptr(x);
1016 }
1017 
1018 //* the argument must be exactly a power of 2
1019 inline int exact_log2_long(jlong x) {
1020   #ifdef ASSERT
1021     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1022   #endif
1023   return log2_long(x);
1024 }
1025 
1026 
1027 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1028 inline intptr_t round_to(intptr_t x, uintx s) {
1029   #ifdef ASSERT
1030     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1031   #endif
1032   const uintx m = s - 1;
1033   return mask_bits(x + m, ~m);
1034 }
1035 
1036 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1037 inline intptr_t round_down(intptr_t x, uintx s) {
1038   #ifdef ASSERT
1039     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1040   #endif
1041   const uintx m = s - 1;
1042   return mask_bits(x, ~m);
1043 }
1044 
1045 
1046 inline bool is_odd (intx x) { return x & 1;      }
1047 inline bool is_even(intx x) { return !is_odd(x); }
1048 
1049 // "to" should be greater than "from."
1050 inline intx byte_size(void* from, void* to) {
1051   return (address)to - (address)from;
1052 }
1053 
1054 //----------------------------------------------------------------------------------------------------
1055 // Avoid non-portable casts with these routines (DEPRECATED)
1056 
1057 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1058 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1059 
1060 // Given sequence of four bytes, build into a 32-bit word
1061 // following the conventions used in class files.
1062 // On the 386, this could be realized with a simple address cast.
1063 //
1064 
1065 // This routine takes eight bytes:
1066 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1067   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1068        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1069        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1070        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1071        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1072        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1073        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1074        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1075 }
1076 
1077 // This routine takes four bytes:
1078 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1079   return  (( u4(c1) << 24 )  &  0xff000000)
1080        |  (( u4(c2) << 16 )  &  0x00ff0000)
1081        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1082        |  (( u4(c4) <<  0 )  &  0x000000ff);
1083 }
1084 
1085 // And this one works if the four bytes are contiguous in memory:
1086 inline u4 build_u4_from( u1* p ) {
1087   return  build_u4_from( p[0], p[1], p[2], p[3] );
1088 }
1089 
1090 // Ditto for two-byte ints:
1091 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1092   return  u2((( u2(c1) <<  8 )  &  0xff00)
1093           |  (( u2(c2) <<  0 )  &  0x00ff));
1094 }
1095 
1096 // And this one works if the two bytes are contiguous in memory:
1097 inline u2 build_u2_from( u1* p ) {
1098   return  build_u2_from( p[0], p[1] );
1099 }
1100 
1101 // Ditto for floats:
1102 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1103   u4 u = build_u4_from( c1, c2, c3, c4 );
1104   return  *(jfloat*)&u;
1105 }
1106 
1107 inline jfloat build_float_from( u1* p ) {
1108   u4 u = build_u4_from( p );
1109   return  *(jfloat*)&u;
1110 }
1111 
1112 
1113 // now (64-bit) longs
1114 
1115 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1116   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1117        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1118        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1119        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1120        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1121        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1122        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1123        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1124 }
1125 
1126 inline jlong build_long_from( u1* p ) {
1127   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1128 }
1129 
1130 
1131 // Doubles, too!
1132 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1133   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1134   return  *(jdouble*)&u;
1135 }
1136 
1137 inline jdouble build_double_from( u1* p ) {
1138   jlong u = build_long_from( p );
1139   return  *(jdouble*)&u;
1140 }
1141 
1142 
1143 // Portable routines to go the other way:
1144 
1145 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1146   c1 = u1(x >> 8);
1147   c2 = u1(x);
1148 }
1149 
1150 inline void explode_short_to( u2 x, u1* p ) {
1151   explode_short_to( x, p[0], p[1]);
1152 }
1153 
1154 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1155   c1 = u1(x >> 24);
1156   c2 = u1(x >> 16);
1157   c3 = u1(x >>  8);
1158   c4 = u1(x);
1159 }
1160 
1161 inline void explode_int_to( u4 x, u1* p ) {
1162   explode_int_to( x, p[0], p[1], p[2], p[3]);
1163 }
1164 
1165 
1166 // Pack and extract shorts to/from ints:
1167 
1168 inline int extract_low_short_from_int(jint x) {
1169   return x & 0xffff;
1170 }
1171 
1172 inline int extract_high_short_from_int(jint x) {
1173   return (x >> 16) & 0xffff;
1174 }
1175 
1176 inline int build_int_from_shorts( jushort low, jushort high ) {
1177   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1178 }
1179 
1180 // Printf-style formatters for fixed- and variable-width types as pointers and
1181 // integers.
1182 //
1183 // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1184 // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
1185 // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
1186 // (in ILP32).
1187 
1188 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1189 
1190 // Format 32-bit quantities.
1191 #define INT32_FORMAT  "%d"
1192 #define UINT32_FORMAT "%u"
1193 #define INT32_FORMAT_W(width)   "%" #width "d"
1194 #define UINT32_FORMAT_W(width)  "%" #width "u"
1195 
1196 #define PTR32_FORMAT  "0x%08x"
1197 
1198 // Format 64-bit quantities.
1199 #define INT64_FORMAT  "%" FORMAT64_MODIFIER "d"
1200 #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
1201 #define PTR64_FORMAT  "0x%016" FORMAT64_MODIFIER "x"
1202 
1203 #define INT64_FORMAT_W(width)  "%" #width FORMAT64_MODIFIER "d"
1204 #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
1205 
1206 // Format macros that allow the field width to be specified.  The width must be
1207 // a string literal (e.g., "8") or a macro that evaluates to one.
1208 #ifdef _LP64
1209 #define UINTX_FORMAT_W(width)   UINT64_FORMAT_W(width)
1210 #define SSIZE_FORMAT_W(width)   INT64_FORMAT_W(width)
1211 #define SIZE_FORMAT_W(width)    UINT64_FORMAT_W(width)
1212 #else
1213 #define UINTX_FORMAT_W(width)   UINT32_FORMAT_W(width)
1214 #define SSIZE_FORMAT_W(width)   INT32_FORMAT_W(width)
1215 #define SIZE_FORMAT_W(width)    UINT32_FORMAT_W(width)
1216 #endif // _LP64
1217 
1218 // Format pointers and size_t (or size_t-like integer types) which change size
1219 // between 32- and 64-bit. The pointer format theoretically should be "%p",
1220 // however, it has different output on different platforms. On Windows, the data
1221 // will be padded with zeros automatically. On Solaris, we can use "%016p" &
1222 // "%08p" on 64 bit & 32 bit platforms to make the data padded with extra zeros.
1223 // On Linux, "%016p" or "%08p" is not be allowed, at least on the latest GCC
1224 // 4.3.2. So we have to use "%016x" or "%08x" to simulate the printing format.
1225 // GCC 4.3.2, however requires the data to be converted to "intptr_t" when
1226 // using "%x".
1227 #ifdef  _LP64
1228 #define PTR_FORMAT    PTR64_FORMAT
1229 #define UINTX_FORMAT  UINT64_FORMAT
1230 #define INTX_FORMAT   INT64_FORMAT
1231 #define SIZE_FORMAT   UINT64_FORMAT
1232 #define SSIZE_FORMAT  INT64_FORMAT
1233 #else   // !_LP64
1234 #define PTR_FORMAT    PTR32_FORMAT
1235 #define UINTX_FORMAT  UINT32_FORMAT
1236 #define INTX_FORMAT   INT32_FORMAT
1237 #define SIZE_FORMAT   UINT32_FORMAT
1238 #define SSIZE_FORMAT  INT32_FORMAT
1239 #endif  // _LP64
1240 
1241 #define INTPTR_FORMAT PTR_FORMAT
1242 
1243 // Enable zap-a-lot if in debug version.
1244 
1245 # ifdef ASSERT
1246 # ifdef COMPILER2
1247 #   define ENABLE_ZAP_DEAD_LOCALS
1248 #endif /* COMPILER2 */
1249 # endif /* ASSERT */
1250 
1251 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1252 
1253 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP