1 /*
   2  * Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc_interface/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "memory/cardTableModRefBS.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/threadCritical.hpp"
  43 #include "utilities/exceptions.hpp"
  44 #ifdef TARGET_OS_ARCH_linux_x86
  45 # include "orderAccess_linux_x86.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_ARCH_linux_sparc
  48 # include "orderAccess_linux_sparc.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_ARCH_linux_zero
  51 # include "orderAccess_linux_zero.inline.hpp"
  52 #endif
  53 #ifdef TARGET_OS_ARCH_solaris_x86
  54 # include "orderAccess_solaris_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_OS_ARCH_solaris_sparc
  57 # include "orderAccess_solaris_sparc.inline.hpp"
  58 #endif
  59 #ifdef TARGET_OS_ARCH_windows_x86
  60 # include "orderAccess_windows_x86.inline.hpp"
  61 #endif
  62 #ifdef TARGET_OS_ARCH_linux_arm
  63 # include "orderAccess_linux_arm.inline.hpp"
  64 #endif
  65 #ifdef TARGET_OS_ARCH_linux_ppc
  66 # include "orderAccess_linux_ppc.inline.hpp"
  67 #endif
  68 
  69 
  70 // no precompiled headers
  71 #ifdef CC_INTERP
  72 
  73 /*
  74  * USELABELS - If using GCC, then use labels for the opcode dispatching
  75  * rather -then a switch statement. This improves performance because it
  76  * gives us the oportunity to have the instructions that calculate the
  77  * next opcode to jump to be intermixed with the rest of the instructions
  78  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  79  */
  80 #undef USELABELS
  81 #ifdef __GNUC__
  82 /*
  83    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  84    don't use the computed goto approach.
  85 */
  86 #ifndef ASSERT
  87 #define USELABELS
  88 #endif
  89 #endif
  90 
  91 #undef CASE
  92 #ifdef USELABELS
  93 #define CASE(opcode) opc ## opcode
  94 #define DEFAULT opc_default
  95 #else
  96 #define CASE(opcode) case Bytecodes:: opcode
  97 #define DEFAULT default
  98 #endif
  99 
 100 /*
 101  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
 102  * opcode before going back to the top of the while loop, rather then having
 103  * the top of the while loop handle it. This provides a better opportunity
 104  * for instruction scheduling. Some compilers just do this prefetch
 105  * automatically. Some actually end up with worse performance if you
 106  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
 107  */
 108 #undef PREFETCH_OPCCODE
 109 #define PREFETCH_OPCCODE
 110 
 111 /*
 112   Interpreter safepoint: it is expected that the interpreter will have no live
 113   handles of its own creation live at an interpreter safepoint. Therefore we
 114   run a HandleMarkCleaner and trash all handles allocated in the call chain
 115   since the JavaCalls::call_helper invocation that initiated the chain.
 116   There really shouldn't be any handles remaining to trash but this is cheap
 117   in relation to a safepoint.
 118 */
 119 #define SAFEPOINT                                                                 \
 120     if ( SafepointSynchronize::is_synchronizing()) {                              \
 121         {                                                                         \
 122           /* zap freed handles rather than GC'ing them */                         \
 123           HandleMarkCleaner __hmc(THREAD);                                        \
 124         }                                                                         \
 125         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 126     }
 127 
 128 /*
 129  * VM_JAVA_ERROR - Macro for throwing a java exception from
 130  * the interpreter loop. Should really be a CALL_VM but there
 131  * is no entry point to do the transition to vm so we just
 132  * do it by hand here.
 133  */
 134 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
 135     DECACHE_STATE();                                                              \
 136     SET_LAST_JAVA_FRAME();                                                        \
 137     {                                                                             \
 138        ThreadInVMfromJava trans(THREAD);                                          \
 139        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 140     }                                                                             \
 141     RESET_LAST_JAVA_FRAME();                                                      \
 142     CACHE_STATE();
 143 
 144 // Normal throw of a java error
 145 #define VM_JAVA_ERROR(name, msg)                                                  \
 146     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
 147     goto handle_exception;
 148 
 149 #ifdef PRODUCT
 150 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 151 #else
 152 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 153 {                                                                                                    \
 154     BytecodeCounter::_counter_value++;                                                               \
 155     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 156     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 157     if (TraceBytecodes) {                                                                            \
 158       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 159                                    topOfStack[Interpreter::expr_index_at(1)],   \
 160                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 161                                    handle_exception);                      \
 162     }                                                                      \
 163 }
 164 #endif
 165 
 166 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 167 #ifdef VM_JVMTI
 168 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 169    incremented. JvmtiExport::at_single_stepping_point() may cause a
 170    breakpoint opcode to get inserted at the current PC to allow the
 171    debugger to coalesce single-step events.
 172 
 173    As a result if we call at_single_stepping_point() we refetch opcode
 174    to get the current opcode. This will override any other prefetching
 175    that might have occurred.
 176 */
 177 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 178 {                                                                                \
 179       if (_jvmti_interp_events) {                                                \
 180         if (JvmtiExport::should_post_single_step()) {                            \
 181           DECACHE_STATE();                                                       \
 182           SET_LAST_JAVA_FRAME();                                                 \
 183           ThreadInVMfromJava trans(THREAD);                                      \
 184           JvmtiExport::at_single_stepping_point(THREAD,                          \
 185                                           istate->method(),                      \
 186                                           pc);                                   \
 187           RESET_LAST_JAVA_FRAME();                                               \
 188           CACHE_STATE();                                                         \
 189           if (THREAD->pop_frame_pending() &&                                     \
 190               !THREAD->pop_frame_in_process()) {                                 \
 191             goto handle_Pop_Frame;                                               \
 192           }                                                                      \
 193           opcode = *pc;                                                          \
 194         }                                                                        \
 195       }                                                                          \
 196 }
 197 #else
 198 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 199 #endif
 200 
 201 /*
 202  * CONTINUE - Macro for executing the next opcode.
 203  */
 204 #undef CONTINUE
 205 #ifdef USELABELS
 206 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 207 // initialization (which is is the initialization of the table pointer...)
 208 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 209 #define CONTINUE {                              \
 210         opcode = *pc;                           \
 211         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 212         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 213         DISPATCH(opcode);                       \
 214     }
 215 #else
 216 #ifdef PREFETCH_OPCCODE
 217 #define CONTINUE {                              \
 218         opcode = *pc;                           \
 219         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 220         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 221         continue;                               \
 222     }
 223 #else
 224 #define CONTINUE {                              \
 225         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 226         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 227         continue;                               \
 228     }
 229 #endif
 230 #endif
 231 
 232 // JavaStack Implementation
 233 #define MORE_STACK(count)  \
 234     (topOfStack -= ((count) * Interpreter::stackElementWords))
 235 
 236 
 237 #define UPDATE_PC(opsize) {pc += opsize; }
 238 /*
 239  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 240  */
 241 #undef UPDATE_PC_AND_TOS
 242 #define UPDATE_PC_AND_TOS(opsize, stack) \
 243     {pc += opsize; MORE_STACK(stack); }
 244 
 245 /*
 246  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 247  * and executing the next opcode. It's somewhat similar to the combination
 248  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 249  */
 250 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 251 #ifdef USELABELS
 252 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 253         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 254         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 255         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 256         DISPATCH(opcode);                                       \
 257     }
 258 
 259 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 260         pc += opsize; opcode = *pc;                             \
 261         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 262         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 263         DISPATCH(opcode);                                       \
 264     }
 265 #else
 266 #ifdef PREFETCH_OPCCODE
 267 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 268         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 269         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 270         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 271         goto do_continue;                                       \
 272     }
 273 
 274 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 275         pc += opsize; opcode = *pc;                             \
 276         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 277         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 278         goto do_continue;                                       \
 279     }
 280 #else
 281 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 282         pc += opsize; MORE_STACK(stack);                \
 283         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 284         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 285         goto do_continue;                               \
 286     }
 287 
 288 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 289         pc += opsize;                                   \
 290         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 291         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 292         goto do_continue;                               \
 293     }
 294 #endif /* PREFETCH_OPCCODE */
 295 #endif /* USELABELS */
 296 
 297 // About to call a new method, update the save the adjusted pc and return to frame manager
 298 #define UPDATE_PC_AND_RETURN(opsize)  \
 299    DECACHE_TOS();                     \
 300    istate->set_bcp(pc+opsize);        \
 301    return;
 302 
 303 
 304 #define METHOD istate->method()
 305 #define INVOCATION_COUNT METHOD->invocation_counter()
 306 #define BACKEDGE_COUNT METHOD->backedge_counter()
 307 
 308 
 309 #define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
 310 #define OSR_REQUEST(res, branch_pc) \
 311             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 312 /*
 313  * For those opcodes that need to have a GC point on a backwards branch
 314  */
 315 
 316 // Backedge counting is kind of strange. The asm interpreter will increment
 317 // the backedge counter as a separate counter but it does it's comparisons
 318 // to the sum (scaled) of invocation counter and backedge count to make
 319 // a decision. Seems kind of odd to sum them together like that
 320 
 321 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 322 
 323 
 324 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 325     if ((skip) <= 0) {                                                                              \
 326       if (UseLoopCounter) {                                                                         \
 327         bool do_OSR = UseOnStackReplacement;                                                        \
 328         BACKEDGE_COUNT->increment();                                                                \
 329         if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
 330         if (do_OSR) {                                                                               \
 331           nmethod*  osr_nmethod;                                                                    \
 332           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 333           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
 334             intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
 335             istate->set_msg(do_osr);                                                                \
 336             istate->set_osr_buf((address)buf);                                                      \
 337             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 338             return;                                                                                 \
 339           }                                                                                         \
 340         }                                                                                           \
 341       }  /* UseCompiler ... */                                                                      \
 342       INCR_INVOCATION_COUNT;                                                                        \
 343       SAFEPOINT;                                                                                    \
 344     }
 345 
 346 /*
 347  * For those opcodes that need to have a GC point on a backwards branch
 348  */
 349 
 350 /*
 351  * Macros for caching and flushing the interpreter state. Some local
 352  * variables need to be flushed out to the frame before we do certain
 353  * things (like pushing frames or becomming gc safe) and some need to
 354  * be recached later (like after popping a frame). We could use one
 355  * macro to cache or decache everything, but this would be less then
 356  * optimal because we don't always need to cache or decache everything
 357  * because some things we know are already cached or decached.
 358  */
 359 #undef DECACHE_TOS
 360 #undef CACHE_TOS
 361 #undef CACHE_PREV_TOS
 362 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 363 
 364 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 365 
 366 #undef DECACHE_PC
 367 #undef CACHE_PC
 368 #define DECACHE_PC()    istate->set_bcp(pc);
 369 #define CACHE_PC()      pc = istate->bcp();
 370 #define CACHE_CP()      cp = istate->constants();
 371 #define CACHE_LOCALS()  locals = istate->locals();
 372 #undef CACHE_FRAME
 373 #define CACHE_FRAME()
 374 
 375 /*
 376  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 377  * passed is a null ref.
 378  * On some architectures/platforms it should be possible to do this implicitly
 379  */
 380 #undef CHECK_NULL
 381 #define CHECK_NULL(obj_)                                                 \
 382     if ((obj_) == NULL) {                                                \
 383         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
 384     }                                                                    \
 385     VERIFY_OOP(obj_)
 386 
 387 #define VMdoubleConstZero() 0.0
 388 #define VMdoubleConstOne() 1.0
 389 #define VMlongConstZero() (max_jlong-max_jlong)
 390 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 391 
 392 /*
 393  * Alignment
 394  */
 395 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 396 
 397 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 398 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 399 
 400 // Reload interpreter state after calling the VM or a possible GC
 401 #define CACHE_STATE()   \
 402         CACHE_TOS();    \
 403         CACHE_PC();     \
 404         CACHE_CP();     \
 405         CACHE_LOCALS();
 406 
 407 // Call the VM don't check for pending exceptions
 408 #define CALL_VM_NOCHECK(func)                                     \
 409           DECACHE_STATE();                                        \
 410           SET_LAST_JAVA_FRAME();                                  \
 411           func;                                                   \
 412           RESET_LAST_JAVA_FRAME();                                \
 413           CACHE_STATE();                                          \
 414           if (THREAD->pop_frame_pending() &&                      \
 415               !THREAD->pop_frame_in_process()) {                  \
 416             goto handle_Pop_Frame;                                \
 417           }
 418 
 419 // Call the VM and check for pending exceptions
 420 #define CALL_VM(func, label) {                                    \
 421           CALL_VM_NOCHECK(func);                                  \
 422           if (THREAD->has_pending_exception()) goto label;        \
 423         }
 424 
 425 /*
 426  * BytecodeInterpreter::run(interpreterState istate)
 427  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 428  *
 429  * The real deal. This is where byte codes actually get interpreted.
 430  * Basically it's a big while loop that iterates until we return from
 431  * the method passed in.
 432  *
 433  * The runWithChecks is used if JVMTI is enabled.
 434  *
 435  */
 436 #if defined(VM_JVMTI)
 437 void
 438 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 439 #else
 440 void
 441 BytecodeInterpreter::run(interpreterState istate) {
 442 #endif
 443 
 444   // In order to simplify some tests based on switches set at runtime
 445   // we invoke the interpreter a single time after switches are enabled
 446   // and set simpler to to test variables rather than method calls or complex
 447   // boolean expressions.
 448 
 449   static int initialized = 0;
 450   static int checkit = 0;
 451   static intptr_t* c_addr = NULL;
 452   static intptr_t  c_value;
 453 
 454   if (checkit && *c_addr != c_value) {
 455     os::breakpoint();
 456   }
 457 #ifdef VM_JVMTI
 458   static bool _jvmti_interp_events = 0;
 459 #endif
 460 
 461   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 462 
 463 #ifdef ASSERT
 464   if (istate->_msg != initialize) {
 465     assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 466 #ifndef SHARK
 467     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 468 #endif // !SHARK
 469   }
 470   // Verify linkages.
 471   interpreterState l = istate;
 472   do {
 473     assert(l == l->_self_link, "bad link");
 474     l = l->_prev_link;
 475   } while (l != NULL);
 476   // Screwups with stack management usually cause us to overwrite istate
 477   // save a copy so we can verify it.
 478   interpreterState orig = istate;
 479 #endif
 480 
 481   static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
 482 
 483   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 484   register address          pc = istate->bcp();
 485   register jubyte opcode;
 486   register intptr_t*        locals = istate->locals();
 487   register constantPoolCacheOop  cp = istate->constants(); // method()->constants()->cache()
 488 #ifdef LOTS_OF_REGS
 489   register JavaThread*      THREAD = istate->thread();
 490   register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
 491 #else
 492 #undef THREAD
 493 #define THREAD istate->thread()
 494 #undef BYTE_MAP_BASE
 495 #define BYTE_MAP_BASE _byte_map_base
 496 #endif
 497 
 498 #ifdef USELABELS
 499   const static void* const opclabels_data[256] = {
 500 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 501 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 502 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 503 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 504 
 505 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 506 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 507 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 508 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 509 
 510 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 511 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 512 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 513 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 514 
 515 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 516 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 517 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 518 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 519 
 520 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 521 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 522 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 523 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 524 
 525 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 526 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 527 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 528 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 529 
 530 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 531 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 532 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 533 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 534 
 535 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 536 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 537 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 538 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 539 
 540 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 541 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 542 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 543 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 544 
 545 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 546 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 547 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 548 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 549 
 550 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 551 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 552 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 553 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 554 
 555 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 556 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 557 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_default,      &&opc_new,
 558 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 559 
 560 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 561 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 562 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 563 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 564 
 565 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 566 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 567 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 568 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 569 
 570 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 571 /* 0xE4 */ &&opc_default,     &&opc_return_register_finalizer,        &&opc_default,      &&opc_default,
 572 /* 0xE8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 573 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 574 
 575 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 576 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 577 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 578 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 579   };
 580   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 581 #endif /* USELABELS */
 582 
 583 #ifdef ASSERT
 584   // this will trigger a VERIFY_OOP on entry
 585   if (istate->msg() != initialize && ! METHOD->is_static()) {
 586     oop rcvr = LOCALS_OBJECT(0);
 587     VERIFY_OOP(rcvr);
 588   }
 589 #endif
 590 // #define HACK
 591 #ifdef HACK
 592   bool interesting = false;
 593 #endif // HACK
 594 
 595   /* QQQ this should be a stack method so we don't know actual direction */
 596   guarantee(istate->msg() == initialize ||
 597          topOfStack >= istate->stack_limit() &&
 598          topOfStack < istate->stack_base(),
 599          "Stack top out of range");
 600 
 601   switch (istate->msg()) {
 602     case initialize: {
 603       if (initialized++) ShouldNotReachHere(); // Only one initialize call
 604       _compiling = (UseCompiler || CountCompiledCalls);
 605 #ifdef VM_JVMTI
 606       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 607 #endif
 608       BarrierSet* bs = Universe::heap()->barrier_set();
 609       assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
 610       _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
 611       return;
 612     }
 613     break;
 614     case method_entry: {
 615       THREAD->set_do_not_unlock();
 616       // count invocations
 617       assert(initialized, "Interpreter not initialized");
 618       if (_compiling) {
 619         if (ProfileInterpreter) {
 620           METHOD->increment_interpreter_invocation_count();
 621         }
 622         INCR_INVOCATION_COUNT;
 623         if (INVOCATION_COUNT->reached_InvocationLimit()) {
 624             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 625 
 626             // We no longer retry on a counter overflow
 627 
 628             // istate->set_msg(retry_method);
 629             // THREAD->clr_do_not_unlock();
 630             // return;
 631         }
 632         SAFEPOINT;
 633       }
 634 
 635       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 636         // initialize
 637         os::breakpoint();
 638       }
 639 
 640 #ifdef HACK
 641       {
 642         ResourceMark rm;
 643         char *method_name = istate->method()->name_and_sig_as_C_string();
 644         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 645           tty->print_cr("entering: depth %d bci: %d",
 646                          (istate->_stack_base - istate->_stack),
 647                          istate->_bcp - istate->_method->code_base());
 648           interesting = true;
 649         }
 650       }
 651 #endif // HACK
 652 
 653 
 654       // lock method if synchronized
 655       if (METHOD->is_synchronized()) {
 656           // oop rcvr = locals[0].j.r;
 657           oop rcvr;
 658           if (METHOD->is_static()) {
 659             rcvr = METHOD->constants()->pool_holder()->java_mirror();
 660           } else {
 661             rcvr = LOCALS_OBJECT(0);
 662             VERIFY_OOP(rcvr);
 663           }
 664           // The initial monitor is ours for the taking
 665           BasicObjectLock* mon = &istate->monitor_base()[-1];
 666           oop monobj = mon->obj();
 667           assert(mon->obj() == rcvr, "method monitor mis-initialized");
 668 
 669           bool success = UseBiasedLocking;
 670           if (UseBiasedLocking) {
 671             markOop mark = rcvr->mark();
 672             if (mark->has_bias_pattern()) {
 673               // The bias pattern is present in the object's header. Need to check
 674               // whether the bias owner and the epoch are both still current.
 675               intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
 676               xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() ^ xx;
 677               intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
 678               if (yy != 0 ) {
 679                 // At this point we know that the header has the bias pattern and
 680                 // that we are not the bias owner in the current epoch. We need to
 681                 // figure out more details about the state of the header in order to
 682                 // know what operations can be legally performed on the object's
 683                 // header.
 684 
 685                 // If the low three bits in the xor result aren't clear, that means
 686                 // the prototype header is no longer biased and we have to revoke
 687                 // the bias on this object.
 688 
 689                 if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
 690                   // Biasing is still enabled for this data type. See whether the
 691                   // epoch of the current bias is still valid, meaning that the epoch
 692                   // bits of the mark word are equal to the epoch bits of the
 693                   // prototype header. (Note that the prototype header's epoch bits
 694                   // only change at a safepoint.) If not, attempt to rebias the object
 695                   // toward the current thread. Note that we must be absolutely sure
 696                   // that the current epoch is invalid in order to do this because
 697                   // otherwise the manipulations it performs on the mark word are
 698                   // illegal.
 699                   if (yy & markOopDesc::epoch_mask_in_place == 0) {
 700                     // The epoch of the current bias is still valid but we know nothing
 701                     // about the owner; it might be set or it might be clear. Try to
 702                     // acquire the bias of the object using an atomic operation. If this
 703                     // fails we will go in to the runtime to revoke the object's bias.
 704                     // Note that we first construct the presumed unbiased header so we
 705                     // don't accidentally blow away another thread's valid bias.
 706                     intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
 707                                                            markOopDesc::age_mask_in_place |
 708                                                            markOopDesc::epoch_mask_in_place);
 709                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
 710                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 711                     }
 712                   } else {
 713                     try_rebias:
 714                     // At this point we know the epoch has expired, meaning that the
 715                     // current "bias owner", if any, is actually invalid. Under these
 716                     // circumstances _only_, we are allowed to use the current header's
 717                     // value as the comparison value when doing the cas to acquire the
 718                     // bias in the current epoch. In other words, we allow transfer of
 719                     // the bias from one thread to another directly in this situation.
 720                     xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
 721                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->klass_part()->prototype_header(),
 722                                             (intptr_t*) rcvr->mark_addr(),
 723                                             (intptr_t) mark) != (intptr_t) mark) {
 724                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 725                     }
 726                   }
 727                 } else {
 728                   try_revoke_bias:
 729                   // The prototype mark in the klass doesn't have the bias bit set any
 730                   // more, indicating that objects of this data type are not supposed
 731                   // to be biased any more. We are going to try to reset the mark of
 732                   // this object to the prototype value and fall through to the
 733                   // CAS-based locking scheme. Note that if our CAS fails, it means
 734                   // that another thread raced us for the privilege of revoking the
 735                   // bias of this particular object, so it's okay to continue in the
 736                   // normal locking code.
 737                   //
 738                   xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
 739                   if (Atomic::cmpxchg_ptr(rcvr->klass()->klass_part()->prototype_header(),
 740                                           (intptr_t*) rcvr->mark_addr(),
 741                                           mark) == mark) {
 742                     // (*counters->revoked_lock_entry_count_addr())++;
 743                   success = false;
 744                   }
 745                 }
 746               }
 747             } else {
 748               cas_label:
 749               success = false;
 750             }
 751           }
 752           if (!success) {
 753             markOop displaced = rcvr->mark()->set_unlocked();
 754             mon->lock()->set_displaced_header(displaced);
 755             if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 756               // Is it simple recursive case?
 757               if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 758                 mon->lock()->set_displaced_header(NULL);
 759               } else {
 760                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 761               }
 762             }
 763           }
 764       }
 765       THREAD->clr_do_not_unlock();
 766 
 767       // Notify jvmti
 768 #ifdef VM_JVMTI
 769       if (_jvmti_interp_events) {
 770         // Whenever JVMTI puts a thread in interp_only_mode, method
 771         // entry/exit events are sent for that thread to track stack depth.
 772         if (THREAD->is_interp_only_mode()) {
 773           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 774                   handle_exception);
 775         }
 776       }
 777 #endif /* VM_JVMTI */
 778 
 779       goto run;
 780     }
 781 
 782     case popping_frame: {
 783       // returned from a java call to pop the frame, restart the call
 784       // clear the message so we don't confuse ourselves later
 785       ShouldNotReachHere();  // we don't return this.
 786       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 787       istate->set_msg(no_request);
 788       THREAD->clr_pop_frame_in_process();
 789       goto run;
 790     }
 791 
 792     case method_resume: {
 793       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 794         // resume
 795         os::breakpoint();
 796       }
 797 #ifdef HACK
 798       {
 799         ResourceMark rm;
 800         char *method_name = istate->method()->name_and_sig_as_C_string();
 801         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 802           tty->print_cr("resume: depth %d bci: %d",
 803                          (istate->_stack_base - istate->_stack) ,
 804                          istate->_bcp - istate->_method->code_base());
 805           interesting = true;
 806         }
 807       }
 808 #endif // HACK
 809       // returned from a java call, continue executing.
 810       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 811         goto handle_Pop_Frame;
 812       }
 813 
 814       if (THREAD->has_pending_exception()) goto handle_exception;
 815       // Update the pc by the saved amount of the invoke bytecode size
 816       UPDATE_PC(istate->bcp_advance());
 817       goto run;
 818     }
 819 
 820     case deopt_resume2: {
 821       // Returned from an opcode that will reexecute. Deopt was
 822       // a result of a PopFrame request.
 823       //
 824       goto run;
 825     }
 826 
 827     case deopt_resume: {
 828       // Returned from an opcode that has completed. The stack has
 829       // the result all we need to do is skip across the bytecode
 830       // and continue (assuming there is no exception pending)
 831       //
 832       // compute continuation length
 833       //
 834       // Note: it is possible to deopt at a return_register_finalizer opcode
 835       // because this requires entering the vm to do the registering. While the
 836       // opcode is complete we can't advance because there are no more opcodes
 837       // much like trying to deopt at a poll return. In that has we simply
 838       // get out of here
 839       //
 840       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 841         // this will do the right thing even if an exception is pending.
 842         goto handle_return;
 843       }
 844       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 845       if (THREAD->has_pending_exception()) goto handle_exception;
 846       goto run;
 847     }
 848     case got_monitors: {
 849       // continue locking now that we have a monitor to use
 850       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 851       oop lockee = STACK_OBJECT(-1);
 852       VERIFY_OOP(lockee);
 853       // derefing's lockee ought to provoke implicit null check
 854       // find a free monitor
 855       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 856       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 857       entry->set_obj(lockee);
 858 
 859       markOop displaced = lockee->mark()->set_unlocked();
 860       entry->lock()->set_displaced_header(displaced);
 861       if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 862         // Is it simple recursive case?
 863         if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 864           entry->lock()->set_displaced_header(NULL);
 865         } else {
 866           CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 867         }
 868       }
 869       UPDATE_PC_AND_TOS(1, -1);
 870       goto run;
 871     }
 872     default: {
 873       fatal("Unexpected message from frame manager");
 874     }
 875   }
 876 
 877 run:
 878 
 879   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 880   DEBUGGER_SINGLE_STEP_NOTIFY();
 881 #ifdef PREFETCH_OPCCODE
 882   opcode = *pc;  /* prefetch first opcode */
 883 #endif
 884 
 885 #ifndef USELABELS
 886   while (1)
 887 #endif
 888   {
 889 #ifndef PREFETCH_OPCCODE
 890       opcode = *pc;
 891 #endif
 892       // Seems like this happens twice per opcode. At worst this is only
 893       // need at entry to the loop.
 894       // DEBUGGER_SINGLE_STEP_NOTIFY();
 895       /* Using this labels avoids double breakpoints when quickening and
 896        * when returing from transition frames.
 897        */
 898   opcode_switch:
 899       assert(istate == orig, "Corrupted istate");
 900       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 901       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 902       assert(topOfStack < istate->stack_base(), "Stack underrun");
 903 
 904 #ifdef USELABELS
 905       DISPATCH(opcode);
 906 #else
 907       switch (opcode)
 908 #endif
 909       {
 910       CASE(_nop):
 911           UPDATE_PC_AND_CONTINUE(1);
 912 
 913           /* Push miscellaneous constants onto the stack. */
 914 
 915       CASE(_aconst_null):
 916           SET_STACK_OBJECT(NULL, 0);
 917           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 918 
 919 #undef  OPC_CONST_n
 920 #define OPC_CONST_n(opcode, const_type, value)                          \
 921       CASE(opcode):                                                     \
 922           SET_STACK_ ## const_type(value, 0);                           \
 923           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 924 
 925           OPC_CONST_n(_iconst_m1,   INT,       -1);
 926           OPC_CONST_n(_iconst_0,    INT,        0);
 927           OPC_CONST_n(_iconst_1,    INT,        1);
 928           OPC_CONST_n(_iconst_2,    INT,        2);
 929           OPC_CONST_n(_iconst_3,    INT,        3);
 930           OPC_CONST_n(_iconst_4,    INT,        4);
 931           OPC_CONST_n(_iconst_5,    INT,        5);
 932           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
 933           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
 934           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
 935 
 936 #undef  OPC_CONST2_n
 937 #define OPC_CONST2_n(opcname, value, key, kind)                         \
 938       CASE(_##opcname):                                                 \
 939       {                                                                 \
 940           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
 941           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
 942       }
 943          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
 944          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
 945          OPC_CONST2_n(lconst_0, Zero, long, LONG);
 946          OPC_CONST2_n(lconst_1, One,  long, LONG);
 947 
 948          /* Load constant from constant pool: */
 949 
 950           /* Push a 1-byte signed integer value onto the stack. */
 951       CASE(_bipush):
 952           SET_STACK_INT((jbyte)(pc[1]), 0);
 953           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 954 
 955           /* Push a 2-byte signed integer constant onto the stack. */
 956       CASE(_sipush):
 957           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
 958           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
 959 
 960           /* load from local variable */
 961 
 962       CASE(_aload):
 963           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
 964           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
 965           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 966 
 967       CASE(_iload):
 968       CASE(_fload):
 969           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
 970           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 971 
 972       CASE(_lload):
 973           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
 974           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
 975 
 976       CASE(_dload):
 977           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
 978           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
 979 
 980 #undef  OPC_LOAD_n
 981 #define OPC_LOAD_n(num)                                                 \
 982       CASE(_aload_##num):                                               \
 983           VERIFY_OOP(LOCALS_OBJECT(num));                               \
 984           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
 985           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
 986                                                                         \
 987       CASE(_iload_##num):                                               \
 988       CASE(_fload_##num):                                               \
 989           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
 990           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
 991                                                                         \
 992       CASE(_lload_##num):                                               \
 993           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
 994           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
 995       CASE(_dload_##num):                                               \
 996           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
 997           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
 998 
 999           OPC_LOAD_n(0);
1000           OPC_LOAD_n(1);
1001           OPC_LOAD_n(2);
1002           OPC_LOAD_n(3);
1003 
1004           /* store to a local variable */
1005 
1006       CASE(_astore):
1007           astore(topOfStack, -1, locals, pc[1]);
1008           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1009 
1010       CASE(_istore):
1011       CASE(_fstore):
1012           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1013           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1014 
1015       CASE(_lstore):
1016           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1017           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1018 
1019       CASE(_dstore):
1020           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1021           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1022 
1023       CASE(_wide): {
1024           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1025 
1026           opcode = pc[1];
1027           switch(opcode) {
1028               case Bytecodes::_aload:
1029                   VERIFY_OOP(LOCALS_OBJECT(reg));
1030                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1031                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1032 
1033               case Bytecodes::_iload:
1034               case Bytecodes::_fload:
1035                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1036                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1037 
1038               case Bytecodes::_lload:
1039                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1040                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1041 
1042               case Bytecodes::_dload:
1043                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1044                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1045 
1046               case Bytecodes::_astore:
1047                   astore(topOfStack, -1, locals, reg);
1048                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1049 
1050               case Bytecodes::_istore:
1051               case Bytecodes::_fstore:
1052                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1053                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1054 
1055               case Bytecodes::_lstore:
1056                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1057                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1058 
1059               case Bytecodes::_dstore:
1060                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1061                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1062 
1063               case Bytecodes::_iinc: {
1064                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1065                   // Be nice to see what this generates.... QQQ
1066                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1067                   UPDATE_PC_AND_CONTINUE(6);
1068               }
1069               case Bytecodes::_ret:
1070                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1071                   UPDATE_PC_AND_CONTINUE(0);
1072               default:
1073                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1074           }
1075       }
1076 
1077 
1078 #undef  OPC_STORE_n
1079 #define OPC_STORE_n(num)                                                \
1080       CASE(_astore_##num):                                              \
1081           astore(topOfStack, -1, locals, num);                          \
1082           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1083       CASE(_istore_##num):                                              \
1084       CASE(_fstore_##num):                                              \
1085           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1086           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1087 
1088           OPC_STORE_n(0);
1089           OPC_STORE_n(1);
1090           OPC_STORE_n(2);
1091           OPC_STORE_n(3);
1092 
1093 #undef  OPC_DSTORE_n
1094 #define OPC_DSTORE_n(num)                                               \
1095       CASE(_dstore_##num):                                              \
1096           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1097           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1098       CASE(_lstore_##num):                                              \
1099           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1100           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1101 
1102           OPC_DSTORE_n(0);
1103           OPC_DSTORE_n(1);
1104           OPC_DSTORE_n(2);
1105           OPC_DSTORE_n(3);
1106 
1107           /* stack pop, dup, and insert opcodes */
1108 
1109 
1110       CASE(_pop):                /* Discard the top item on the stack */
1111           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1112 
1113 
1114       CASE(_pop2):               /* Discard the top 2 items on the stack */
1115           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1116 
1117 
1118       CASE(_dup):               /* Duplicate the top item on the stack */
1119           dup(topOfStack);
1120           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1121 
1122       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1123           dup2(topOfStack);
1124           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1125 
1126       CASE(_dup_x1):    /* insert top word two down */
1127           dup_x1(topOfStack);
1128           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1129 
1130       CASE(_dup_x2):    /* insert top word three down  */
1131           dup_x2(topOfStack);
1132           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1133 
1134       CASE(_dup2_x1):   /* insert top 2 slots three down */
1135           dup2_x1(topOfStack);
1136           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1137 
1138       CASE(_dup2_x2):   /* insert top 2 slots four down */
1139           dup2_x2(topOfStack);
1140           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1141 
1142       CASE(_swap): {        /* swap top two elements on the stack */
1143           swap(topOfStack);
1144           UPDATE_PC_AND_CONTINUE(1);
1145       }
1146 
1147           /* Perform various binary integer operations */
1148 
1149 #undef  OPC_INT_BINARY
1150 #define OPC_INT_BINARY(opcname, opname, test)                           \
1151       CASE(_i##opcname):                                                \
1152           if (test && (STACK_INT(-1) == 0)) {                           \
1153               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1154                             "/ by zero");                               \
1155           }                                                             \
1156           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1157                                       STACK_INT(-1)),                   \
1158                                       -2);                              \
1159           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1160       CASE(_l##opcname):                                                \
1161       {                                                                 \
1162           if (test) {                                                   \
1163             jlong l1 = STACK_LONG(-1);                                  \
1164             if (VMlongEqz(l1)) {                                        \
1165               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1166                             "/ by long zero");                          \
1167             }                                                           \
1168           }                                                             \
1169           /* First long at (-1,-2) next long at (-3,-4) */              \
1170           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1171                                         STACK_LONG(-1)),                \
1172                                         -3);                            \
1173           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1174       }
1175 
1176       OPC_INT_BINARY(add, Add, 0);
1177       OPC_INT_BINARY(sub, Sub, 0);
1178       OPC_INT_BINARY(mul, Mul, 0);
1179       OPC_INT_BINARY(and, And, 0);
1180       OPC_INT_BINARY(or,  Or,  0);
1181       OPC_INT_BINARY(xor, Xor, 0);
1182       OPC_INT_BINARY(div, Div, 1);
1183       OPC_INT_BINARY(rem, Rem, 1);
1184 
1185 
1186       /* Perform various binary floating number operations */
1187       /* On some machine/platforms/compilers div zero check can be implicit */
1188 
1189 #undef  OPC_FLOAT_BINARY
1190 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1191       CASE(_d##opcname): {                                                 \
1192           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1193                                             STACK_DOUBLE(-1)),             \
1194                                             -3);                           \
1195           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1196       }                                                                    \
1197       CASE(_f##opcname):                                                   \
1198           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1199                                           STACK_FLOAT(-1)),                \
1200                                           -2);                             \
1201           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1202 
1203 
1204      OPC_FLOAT_BINARY(add, Add);
1205      OPC_FLOAT_BINARY(sub, Sub);
1206      OPC_FLOAT_BINARY(mul, Mul);
1207      OPC_FLOAT_BINARY(div, Div);
1208      OPC_FLOAT_BINARY(rem, Rem);
1209 
1210       /* Shift operations
1211        * Shift left int and long: ishl, lshl
1212        * Logical shift right int and long w/zero extension: iushr, lushr
1213        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1214        */
1215 
1216 #undef  OPC_SHIFT_BINARY
1217 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1218       CASE(_i##opcname):                                                \
1219          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1220                                      STACK_INT(-1)),                    \
1221                                      -2);                               \
1222          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1223       CASE(_l##opcname):                                                \
1224       {                                                                 \
1225          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1226                                        STACK_INT(-1)),                  \
1227                                        -2);                             \
1228          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1229       }
1230 
1231       OPC_SHIFT_BINARY(shl, Shl);
1232       OPC_SHIFT_BINARY(shr, Shr);
1233       OPC_SHIFT_BINARY(ushr, Ushr);
1234 
1235      /* Increment local variable by constant */
1236       CASE(_iinc):
1237       {
1238           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1239           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1240           UPDATE_PC_AND_CONTINUE(3);
1241       }
1242 
1243      /* negate the value on the top of the stack */
1244 
1245       CASE(_ineg):
1246          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1247          UPDATE_PC_AND_CONTINUE(1);
1248 
1249       CASE(_fneg):
1250          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1251          UPDATE_PC_AND_CONTINUE(1);
1252 
1253       CASE(_lneg):
1254       {
1255          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1256          UPDATE_PC_AND_CONTINUE(1);
1257       }
1258 
1259       CASE(_dneg):
1260       {
1261          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1262          UPDATE_PC_AND_CONTINUE(1);
1263       }
1264 
1265       /* Conversion operations */
1266 
1267       CASE(_i2f):       /* convert top of stack int to float */
1268          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1269          UPDATE_PC_AND_CONTINUE(1);
1270 
1271       CASE(_i2l):       /* convert top of stack int to long */
1272       {
1273           // this is ugly QQQ
1274           jlong r = VMint2Long(STACK_INT(-1));
1275           MORE_STACK(-1); // Pop
1276           SET_STACK_LONG(r, 1);
1277 
1278           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1279       }
1280 
1281       CASE(_i2d):       /* convert top of stack int to double */
1282       {
1283           // this is ugly QQQ (why cast to jlong?? )
1284           jdouble r = (jlong)STACK_INT(-1);
1285           MORE_STACK(-1); // Pop
1286           SET_STACK_DOUBLE(r, 1);
1287 
1288           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1289       }
1290 
1291       CASE(_l2i):       /* convert top of stack long to int */
1292       {
1293           jint r = VMlong2Int(STACK_LONG(-1));
1294           MORE_STACK(-2); // Pop
1295           SET_STACK_INT(r, 0);
1296           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1297       }
1298 
1299       CASE(_l2f):   /* convert top of stack long to float */
1300       {
1301           jlong r = STACK_LONG(-1);
1302           MORE_STACK(-2); // Pop
1303           SET_STACK_FLOAT(VMlong2Float(r), 0);
1304           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1305       }
1306 
1307       CASE(_l2d):       /* convert top of stack long to double */
1308       {
1309           jlong r = STACK_LONG(-1);
1310           MORE_STACK(-2); // Pop
1311           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1312           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1313       }
1314 
1315       CASE(_f2i):  /* Convert top of stack float to int */
1316           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1317           UPDATE_PC_AND_CONTINUE(1);
1318 
1319       CASE(_f2l):  /* convert top of stack float to long */
1320       {
1321           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1322           MORE_STACK(-1); // POP
1323           SET_STACK_LONG(r, 1);
1324           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1325       }
1326 
1327       CASE(_f2d):  /* convert top of stack float to double */
1328       {
1329           jfloat f;
1330           jdouble r;
1331           f = STACK_FLOAT(-1);
1332           r = (jdouble) f;
1333           MORE_STACK(-1); // POP
1334           SET_STACK_DOUBLE(r, 1);
1335           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1336       }
1337 
1338       CASE(_d2i): /* convert top of stack double to int */
1339       {
1340           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1341           MORE_STACK(-2);
1342           SET_STACK_INT(r1, 0);
1343           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1344       }
1345 
1346       CASE(_d2f): /* convert top of stack double to float */
1347       {
1348           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1349           MORE_STACK(-2);
1350           SET_STACK_FLOAT(r1, 0);
1351           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1352       }
1353 
1354       CASE(_d2l): /* convert top of stack double to long */
1355       {
1356           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1357           MORE_STACK(-2);
1358           SET_STACK_LONG(r1, 1);
1359           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1360       }
1361 
1362       CASE(_i2b):
1363           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1364           UPDATE_PC_AND_CONTINUE(1);
1365 
1366       CASE(_i2c):
1367           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1368           UPDATE_PC_AND_CONTINUE(1);
1369 
1370       CASE(_i2s):
1371           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1372           UPDATE_PC_AND_CONTINUE(1);
1373 
1374       /* comparison operators */
1375 
1376 
1377 #define COMPARISON_OP(name, comparison)                                      \
1378       CASE(_if_icmp##name): {                                                \
1379           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
1380                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1381           address branch_pc = pc;                                            \
1382           UPDATE_PC_AND_TOS(skip, -2);                                       \
1383           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1384           CONTINUE;                                                          \
1385       }                                                                      \
1386       CASE(_if##name): {                                                     \
1387           int skip = (STACK_INT(-1) comparison 0)                            \
1388                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1389           address branch_pc = pc;                                            \
1390           UPDATE_PC_AND_TOS(skip, -1);                                       \
1391           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1392           CONTINUE;                                                          \
1393       }
1394 
1395 #define COMPARISON_OP2(name, comparison)                                     \
1396       COMPARISON_OP(name, comparison)                                        \
1397       CASE(_if_acmp##name): {                                                \
1398           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
1399                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1400           address branch_pc = pc;                                            \
1401           UPDATE_PC_AND_TOS(skip, -2);                                       \
1402           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1403           CONTINUE;                                                          \
1404       }
1405 
1406 #define NULL_COMPARISON_NOT_OP(name)                                         \
1407       CASE(_if##name): {                                                     \
1408           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
1409                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1410           address branch_pc = pc;                                            \
1411           UPDATE_PC_AND_TOS(skip, -1);                                       \
1412           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1413           CONTINUE;                                                          \
1414       }
1415 
1416 #define NULL_COMPARISON_OP(name)                                             \
1417       CASE(_if##name): {                                                     \
1418           int skip = ((STACK_OBJECT(-1) == NULL))                            \
1419                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1420           address branch_pc = pc;                                            \
1421           UPDATE_PC_AND_TOS(skip, -1);                                       \
1422           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1423           CONTINUE;                                                          \
1424       }
1425       COMPARISON_OP(lt, <);
1426       COMPARISON_OP(gt, >);
1427       COMPARISON_OP(le, <=);
1428       COMPARISON_OP(ge, >=);
1429       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1430       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1431       NULL_COMPARISON_OP(null);
1432       NULL_COMPARISON_NOT_OP(nonnull);
1433 
1434       /* Goto pc at specified offset in switch table. */
1435 
1436       CASE(_tableswitch): {
1437           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1438           int32_t  key  = STACK_INT(-1);
1439           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1440           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1441           int32_t  skip;
1442           key -= low;
1443           skip = ((uint32_t) key > (uint32_t)(high - low))
1444                       ? Bytes::get_Java_u4((address)&lpc[0])
1445                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
1446           // Does this really need a full backedge check (osr?)
1447           address branch_pc = pc;
1448           UPDATE_PC_AND_TOS(skip, -1);
1449           DO_BACKEDGE_CHECKS(skip, branch_pc);
1450           CONTINUE;
1451       }
1452 
1453       /* Goto pc whose table entry matches specified key */
1454 
1455       CASE(_lookupswitch): {
1456           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1457           int32_t  key  = STACK_INT(-1);
1458           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1459           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1460           while (--npairs >= 0) {
1461               lpc += 2;
1462               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1463                   skip = Bytes::get_Java_u4((address)&lpc[1]);
1464                   break;
1465               }
1466           }
1467           address branch_pc = pc;
1468           UPDATE_PC_AND_TOS(skip, -1);
1469           DO_BACKEDGE_CHECKS(skip, branch_pc);
1470           CONTINUE;
1471       }
1472 
1473       CASE(_fcmpl):
1474       CASE(_fcmpg):
1475       {
1476           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1477                                         STACK_FLOAT(-1),
1478                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1479                         -2);
1480           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1481       }
1482 
1483       CASE(_dcmpl):
1484       CASE(_dcmpg):
1485       {
1486           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1487                                   STACK_DOUBLE(-1),
1488                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1489           MORE_STACK(-4); // Pop
1490           SET_STACK_INT(r, 0);
1491           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1492       }
1493 
1494       CASE(_lcmp):
1495       {
1496           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1497           MORE_STACK(-4);
1498           SET_STACK_INT(r, 0);
1499           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1500       }
1501 
1502 
1503       /* Return from a method */
1504 
1505       CASE(_areturn):
1506       CASE(_ireturn):
1507       CASE(_freturn):
1508       {
1509           // Allow a safepoint before returning to frame manager.
1510           SAFEPOINT;
1511 
1512           goto handle_return;
1513       }
1514 
1515       CASE(_lreturn):
1516       CASE(_dreturn):
1517       {
1518           // Allow a safepoint before returning to frame manager.
1519           SAFEPOINT;
1520           goto handle_return;
1521       }
1522 
1523       CASE(_return_register_finalizer): {
1524 
1525           oop rcvr = LOCALS_OBJECT(0);
1526           VERIFY_OOP(rcvr);
1527           if (rcvr->klass()->klass_part()->has_finalizer()) {
1528             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1529           }
1530           goto handle_return;
1531       }
1532       CASE(_return): {
1533 
1534           // Allow a safepoint before returning to frame manager.
1535           SAFEPOINT;
1536           goto handle_return;
1537       }
1538 
1539       /* Array access byte-codes */
1540 
1541       /* Every array access byte-code starts out like this */
1542 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1543 #define ARRAY_INTRO(arrayOff)                                                  \
1544       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1545       jint     index  = STACK_INT(arrayOff + 1);                               \
1546       char message[jintAsStringSize];                                          \
1547       CHECK_NULL(arrObj);                                                      \
1548       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1549           sprintf(message, "%d", index);                                       \
1550           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1551                         message);                                              \
1552       }
1553 
1554       /* 32-bit loads. These handle conversion from < 32-bit types */
1555 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1556       {                                                                               \
1557           ARRAY_INTRO(-2);                                                            \
1558           extra;                                                                      \
1559           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1560                            -2);                                                       \
1561           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1562       }
1563 
1564       /* 64-bit loads */
1565 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1566       {                                                                                    \
1567           ARRAY_INTRO(-2);                                                                 \
1568           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1569           extra;                                                                           \
1570           UPDATE_PC_AND_CONTINUE(1);                                            \
1571       }
1572 
1573       CASE(_iaload):
1574           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1575       CASE(_faload):
1576           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1577       CASE(_aaload):
1578           ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
1579       CASE(_baload):
1580           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1581       CASE(_caload):
1582           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1583       CASE(_saload):
1584           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1585       CASE(_laload):
1586           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1587       CASE(_daload):
1588           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1589 
1590       /* 32-bit stores. These handle conversion to < 32-bit types */
1591 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1592       {                                                                              \
1593           ARRAY_INTRO(-3);                                                           \
1594           extra;                                                                     \
1595           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1596           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1597       }
1598 
1599       /* 64-bit stores */
1600 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1601       {                                                                              \
1602           ARRAY_INTRO(-4);                                                           \
1603           extra;                                                                     \
1604           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1605           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1606       }
1607 
1608       CASE(_iastore):
1609           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1610       CASE(_fastore):
1611           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1612       /*
1613        * This one looks different because of the assignability check
1614        */
1615       CASE(_aastore): {
1616           oop rhsObject = STACK_OBJECT(-1);
1617           VERIFY_OOP(rhsObject);
1618           ARRAY_INTRO( -3);
1619           // arrObj, index are set
1620           if (rhsObject != NULL) {
1621             /* Check assignability of rhsObject into arrObj */
1622             klassOop rhsKlassOop = rhsObject->klass(); // EBX (subclass)
1623             assert(arrObj->klass()->klass()->klass_part()->oop_is_objArrayKlass(), "Ack not an objArrayKlass");
1624             klassOop elemKlassOop = ((objArrayKlass*) arrObj->klass()->klass_part())->element_klass(); // superklass EAX
1625             //
1626             // Check for compatibilty. This check must not GC!!
1627             // Seems way more expensive now that we must dispatch
1628             //
1629             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->klass_part()->is_subtype_of(elemKlassOop)) { // ebx->is...
1630               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1631             }
1632           }
1633           oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
1634           // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
1635           *elem_loc = rhsObject;
1636           // Mark the card
1637           OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
1638           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1639       }
1640       CASE(_bastore):
1641           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1642       CASE(_castore):
1643           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1644       CASE(_sastore):
1645           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1646       CASE(_lastore):
1647           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1648       CASE(_dastore):
1649           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1650 
1651       CASE(_arraylength):
1652       {
1653           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1654           CHECK_NULL(ary);
1655           SET_STACK_INT(ary->length(), -1);
1656           UPDATE_PC_AND_CONTINUE(1);
1657       }
1658 
1659       /* monitorenter and monitorexit for locking/unlocking an object */
1660 
1661       CASE(_monitorenter): {
1662         oop lockee = STACK_OBJECT(-1);
1663         // derefing's lockee ought to provoke implicit null check
1664         CHECK_NULL(lockee);
1665         // find a free monitor or one already allocated for this object
1666         // if we find a matching object then we need a new monitor
1667         // since this is recursive enter
1668         BasicObjectLock* limit = istate->monitor_base();
1669         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1670         BasicObjectLock* entry = NULL;
1671         while (most_recent != limit ) {
1672           if (most_recent->obj() == NULL) entry = most_recent;
1673           else if (most_recent->obj() == lockee) break;
1674           most_recent++;
1675         }
1676         if (entry != NULL) {
1677           entry->set_obj(lockee);
1678           markOop displaced = lockee->mark()->set_unlocked();
1679           entry->lock()->set_displaced_header(displaced);
1680           if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1681             // Is it simple recursive case?
1682             if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1683               entry->lock()->set_displaced_header(NULL);
1684             } else {
1685               CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1686             }
1687           }
1688           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1689         } else {
1690           istate->set_msg(more_monitors);
1691           UPDATE_PC_AND_RETURN(0); // Re-execute
1692         }
1693       }
1694 
1695       CASE(_monitorexit): {
1696         oop lockee = STACK_OBJECT(-1);
1697         CHECK_NULL(lockee);
1698         // derefing's lockee ought to provoke implicit null check
1699         // find our monitor slot
1700         BasicObjectLock* limit = istate->monitor_base();
1701         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1702         while (most_recent != limit ) {
1703           if ((most_recent)->obj() == lockee) {
1704             BasicLock* lock = most_recent->lock();
1705             markOop header = lock->displaced_header();
1706             most_recent->set_obj(NULL);
1707             // If it isn't recursive we either must swap old header or call the runtime
1708             if (header != NULL) {
1709               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1710                 // restore object for the slow case
1711                 most_recent->set_obj(lockee);
1712                 CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1713               }
1714             }
1715             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1716           }
1717           most_recent++;
1718         }
1719         // Need to throw illegal monitor state exception
1720         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1721         // Should never reach here...
1722         assert(false, "Should have thrown illegal monitor exception");
1723       }
1724 
1725       /* All of the non-quick opcodes. */
1726 
1727       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1728        *  constant pool index in the instruction.
1729        */
1730       CASE(_getfield):
1731       CASE(_getstatic):
1732         {
1733           u2 index;
1734           ConstantPoolCacheEntry* cache;
1735           index = Bytes::get_native_u2(pc+1);
1736 
1737           // QQQ Need to make this as inlined as possible. Probably need to
1738           // split all the bytecode cases out so c++ compiler has a chance
1739           // for constant prop to fold everything possible away.
1740 
1741           cache = cp->entry_at(index);
1742           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1743             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1744                     handle_exception);
1745             cache = cp->entry_at(index);
1746           }
1747 
1748 #ifdef VM_JVMTI
1749           if (_jvmti_interp_events) {
1750             int *count_addr;
1751             oop obj;
1752             // Check to see if a field modification watch has been set
1753             // before we take the time to call into the VM.
1754             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1755             if ( *count_addr > 0 ) {
1756               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1757                 obj = (oop)NULL;
1758               } else {
1759                 obj = (oop) STACK_OBJECT(-1);
1760                 VERIFY_OOP(obj);
1761               }
1762               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1763                                           obj,
1764                                           cache),
1765                                           handle_exception);
1766             }
1767           }
1768 #endif /* VM_JVMTI */
1769 
1770           oop obj;
1771           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1772             obj = (oop) cache->f1();
1773             MORE_STACK(1);  // Assume single slot push
1774           } else {
1775             obj = (oop) STACK_OBJECT(-1);
1776             CHECK_NULL(obj);
1777           }
1778 
1779           //
1780           // Now store the result on the stack
1781           //
1782           TosState tos_type = cache->flag_state();
1783           int field_offset = cache->f2();
1784           if (cache->is_volatile()) {
1785             if (tos_type == atos) {
1786               VERIFY_OOP(obj->obj_field_acquire(field_offset));
1787               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1788             } else if (tos_type == itos) {
1789               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1790             } else if (tos_type == ltos) {
1791               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1792               MORE_STACK(1);
1793             } else if (tos_type == btos) {
1794               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1795             } else if (tos_type == ctos) {
1796               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1797             } else if (tos_type == stos) {
1798               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1799             } else if (tos_type == ftos) {
1800               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1801             } else {
1802               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1803               MORE_STACK(1);
1804             }
1805           } else {
1806             if (tos_type == atos) {
1807               VERIFY_OOP(obj->obj_field(field_offset));
1808               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
1809             } else if (tos_type == itos) {
1810               SET_STACK_INT(obj->int_field(field_offset), -1);
1811             } else if (tos_type == ltos) {
1812               SET_STACK_LONG(obj->long_field(field_offset), 0);
1813               MORE_STACK(1);
1814             } else if (tos_type == btos) {
1815               SET_STACK_INT(obj->byte_field(field_offset), -1);
1816             } else if (tos_type == ctos) {
1817               SET_STACK_INT(obj->char_field(field_offset), -1);
1818             } else if (tos_type == stos) {
1819               SET_STACK_INT(obj->short_field(field_offset), -1);
1820             } else if (tos_type == ftos) {
1821               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1822             } else {
1823               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1824               MORE_STACK(1);
1825             }
1826           }
1827 
1828           UPDATE_PC_AND_CONTINUE(3);
1829          }
1830 
1831       CASE(_putfield):
1832       CASE(_putstatic):
1833         {
1834           u2 index = Bytes::get_native_u2(pc+1);
1835           ConstantPoolCacheEntry* cache = cp->entry_at(index);
1836           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1837             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1838                     handle_exception);
1839             cache = cp->entry_at(index);
1840           }
1841 
1842 #ifdef VM_JVMTI
1843           if (_jvmti_interp_events) {
1844             int *count_addr;
1845             oop obj;
1846             // Check to see if a field modification watch has been set
1847             // before we take the time to call into the VM.
1848             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
1849             if ( *count_addr > 0 ) {
1850               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1851                 obj = (oop)NULL;
1852               }
1853               else {
1854                 if (cache->is_long() || cache->is_double()) {
1855                   obj = (oop) STACK_OBJECT(-3);
1856                 } else {
1857                   obj = (oop) STACK_OBJECT(-2);
1858                 }
1859                 VERIFY_OOP(obj);
1860               }
1861 
1862               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
1863                                           obj,
1864                                           cache,
1865                                           (jvalue *)STACK_SLOT(-1)),
1866                                           handle_exception);
1867             }
1868           }
1869 #endif /* VM_JVMTI */
1870 
1871           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
1872           // out so c++ compiler has a chance for constant prop to fold everything possible away.
1873 
1874           oop obj;
1875           int count;
1876           TosState tos_type = cache->flag_state();
1877 
1878           count = -1;
1879           if (tos_type == ltos || tos_type == dtos) {
1880             --count;
1881           }
1882           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1883             obj = (oop) cache->f1();
1884           } else {
1885             --count;
1886             obj = (oop) STACK_OBJECT(count);
1887             CHECK_NULL(obj);
1888           }
1889 
1890           //
1891           // Now store the result
1892           //
1893           int field_offset = cache->f2();
1894           if (cache->is_volatile()) {
1895             if (tos_type == itos) {
1896               obj->release_int_field_put(field_offset, STACK_INT(-1));
1897             } else if (tos_type == atos) {
1898               VERIFY_OOP(STACK_OBJECT(-1));
1899               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
1900               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1901             } else if (tos_type == btos) {
1902               obj->release_byte_field_put(field_offset, STACK_INT(-1));
1903             } else if (tos_type == ltos) {
1904               obj->release_long_field_put(field_offset, STACK_LONG(-1));
1905             } else if (tos_type == ctos) {
1906               obj->release_char_field_put(field_offset, STACK_INT(-1));
1907             } else if (tos_type == stos) {
1908               obj->release_short_field_put(field_offset, STACK_INT(-1));
1909             } else if (tos_type == ftos) {
1910               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
1911             } else {
1912               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
1913             }
1914             OrderAccess::storeload();
1915           } else {
1916             if (tos_type == itos) {
1917               obj->int_field_put(field_offset, STACK_INT(-1));
1918             } else if (tos_type == atos) {
1919               VERIFY_OOP(STACK_OBJECT(-1));
1920               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
1921               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1922             } else if (tos_type == btos) {
1923               obj->byte_field_put(field_offset, STACK_INT(-1));
1924             } else if (tos_type == ltos) {
1925               obj->long_field_put(field_offset, STACK_LONG(-1));
1926             } else if (tos_type == ctos) {
1927               obj->char_field_put(field_offset, STACK_INT(-1));
1928             } else if (tos_type == stos) {
1929               obj->short_field_put(field_offset, STACK_INT(-1));
1930             } else if (tos_type == ftos) {
1931               obj->float_field_put(field_offset, STACK_FLOAT(-1));
1932             } else {
1933               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
1934             }
1935           }
1936 
1937           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
1938         }
1939 
1940       CASE(_new): {
1941         u2 index = Bytes::get_Java_u2(pc+1);
1942         constantPoolOop constants = istate->method()->constants();
1943         if (!constants->tag_at(index).is_unresolved_klass()) {
1944           // Make sure klass is initialized and doesn't have a finalizer
1945           oop entry = constants->slot_at(index).get_oop();
1946           assert(entry->is_klass(), "Should be resolved klass");
1947           klassOop k_entry = (klassOop) entry;
1948           assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
1949           instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
1950           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
1951             size_t obj_size = ik->size_helper();
1952             oop result = NULL;
1953             // If the TLAB isn't pre-zeroed then we'll have to do it
1954             bool need_zero = !ZeroTLAB;
1955             if (UseTLAB) {
1956               result = (oop) THREAD->tlab().allocate(obj_size);
1957             }
1958             if (result == NULL) {
1959               need_zero = true;
1960               // Try allocate in shared eden
1961         retry:
1962               HeapWord* compare_to = *Universe::heap()->top_addr();
1963               HeapWord* new_top = compare_to + obj_size;
1964               if (new_top <= *Universe::heap()->end_addr()) {
1965                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
1966                   goto retry;
1967                 }
1968                 result = (oop) compare_to;
1969               }
1970             }
1971             if (result != NULL) {
1972               // Initialize object (if nonzero size and need) and then the header
1973               if (need_zero ) {
1974                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
1975                 obj_size -= sizeof(oopDesc) / oopSize;
1976                 if (obj_size > 0 ) {
1977                   memset(to_zero, 0, obj_size * HeapWordSize);
1978                 }
1979               }
1980               if (UseBiasedLocking) {
1981                 result->set_mark(ik->prototype_header());
1982               } else {
1983                 result->set_mark(markOopDesc::prototype());
1984               }
1985               result->set_klass_gap(0);
1986               result->set_klass(k_entry);
1987               SET_STACK_OBJECT(result, 0);
1988               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1989             }
1990           }
1991         }
1992         // Slow case allocation
1993         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
1994                 handle_exception);
1995         SET_STACK_OBJECT(THREAD->vm_result(), 0);
1996         THREAD->set_vm_result(NULL);
1997         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1998       }
1999       CASE(_anewarray): {
2000         u2 index = Bytes::get_Java_u2(pc+1);
2001         jint size = STACK_INT(-1);
2002         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2003                 handle_exception);
2004         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2005         THREAD->set_vm_result(NULL);
2006         UPDATE_PC_AND_CONTINUE(3);
2007       }
2008       CASE(_multianewarray): {
2009         jint dims = *(pc+3);
2010         jint size = STACK_INT(-1);
2011         // stack grows down, dimensions are up!
2012         jint *dimarray =
2013                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2014                                       Interpreter::stackElementWords-1];
2015         //adjust pointer to start of stack element
2016         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2017                 handle_exception);
2018         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2019         THREAD->set_vm_result(NULL);
2020         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2021       }
2022       CASE(_checkcast):
2023           if (STACK_OBJECT(-1) != NULL) {
2024             VERIFY_OOP(STACK_OBJECT(-1));
2025             u2 index = Bytes::get_Java_u2(pc+1);
2026             if (ProfileInterpreter) {
2027               // needs Profile_checkcast QQQ
2028               ShouldNotReachHere();
2029             }
2030             // Constant pool may have actual klass or unresolved klass. If it is
2031             // unresolved we must resolve it
2032             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2033               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2034             }
2035             klassOop klassOf = (klassOop) METHOD->constants()->slot_at(index).get_oop();
2036             klassOop objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
2037             //
2038             // Check for compatibilty. This check must not GC!!
2039             // Seems way more expensive now that we must dispatch
2040             //
2041             if (objKlassOop != klassOf &&
2042                 !objKlassOop->klass_part()->is_subtype_of(klassOf)) {
2043               ResourceMark rm(THREAD);
2044               const char* objName = Klass::cast(objKlassOop)->external_name();
2045               const char* klassName = Klass::cast(klassOf)->external_name();
2046               char* message = SharedRuntime::generate_class_cast_message(
2047                 objName, klassName);
2048               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
2049             }
2050           } else {
2051             if (UncommonNullCast) {
2052 //              istate->method()->set_null_cast_seen();
2053 // [RGV] Not sure what to do here!
2054 
2055             }
2056           }
2057           UPDATE_PC_AND_CONTINUE(3);
2058 
2059       CASE(_instanceof):
2060           if (STACK_OBJECT(-1) == NULL) {
2061             SET_STACK_INT(0, -1);
2062           } else {
2063             VERIFY_OOP(STACK_OBJECT(-1));
2064             u2 index = Bytes::get_Java_u2(pc+1);
2065             // Constant pool may have actual klass or unresolved klass. If it is
2066             // unresolved we must resolve it
2067             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2068               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2069             }
2070             klassOop klassOf = (klassOop) METHOD->constants()->slot_at(index).get_oop();
2071             klassOop objKlassOop = STACK_OBJECT(-1)->klass();
2072             //
2073             // Check for compatibilty. This check must not GC!!
2074             // Seems way more expensive now that we must dispatch
2075             //
2076             if ( objKlassOop == klassOf || objKlassOop->klass_part()->is_subtype_of(klassOf)) {
2077               SET_STACK_INT(1, -1);
2078             } else {
2079               SET_STACK_INT(0, -1);
2080             }
2081           }
2082           UPDATE_PC_AND_CONTINUE(3);
2083 
2084       CASE(_ldc_w):
2085       CASE(_ldc):
2086         {
2087           u2 index;
2088           bool wide = false;
2089           int incr = 2; // frequent case
2090           if (opcode == Bytecodes::_ldc) {
2091             index = pc[1];
2092           } else {
2093             index = Bytes::get_Java_u2(pc+1);
2094             incr = 3;
2095             wide = true;
2096           }
2097 
2098           constantPoolOop constants = METHOD->constants();
2099           switch (constants->tag_at(index).value()) {
2100           case JVM_CONSTANT_Integer:
2101             SET_STACK_INT(constants->int_at(index), 0);
2102             break;
2103 
2104           case JVM_CONSTANT_Float:
2105             SET_STACK_FLOAT(constants->float_at(index), 0);
2106             break;
2107 
2108           case JVM_CONSTANT_String:
2109             VERIFY_OOP(constants->resolved_string_at(index));
2110             SET_STACK_OBJECT(constants->resolved_string_at(index), 0);
2111             break;
2112 
2113           case JVM_CONSTANT_Class:
2114             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2115             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2116             break;
2117 
2118           case JVM_CONSTANT_UnresolvedString:
2119           case JVM_CONSTANT_UnresolvedClass:
2120           case JVM_CONSTANT_UnresolvedClassInError:
2121             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2122             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2123             THREAD->set_vm_result(NULL);
2124             break;
2125 
2126           default:  ShouldNotReachHere();
2127           }
2128           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2129         }
2130 
2131       CASE(_ldc2_w):
2132         {
2133           u2 index = Bytes::get_Java_u2(pc+1);
2134 
2135           constantPoolOop constants = METHOD->constants();
2136           switch (constants->tag_at(index).value()) {
2137 
2138           case JVM_CONSTANT_Long:
2139              SET_STACK_LONG(constants->long_at(index), 1);
2140             break;
2141 
2142           case JVM_CONSTANT_Double:
2143              SET_STACK_DOUBLE(constants->double_at(index), 1);
2144             break;
2145           default:  ShouldNotReachHere();
2146           }
2147           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2148         }
2149 
2150       CASE(_invokeinterface): {
2151         u2 index = Bytes::get_native_u2(pc+1);
2152 
2153         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2154         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2155 
2156         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2157         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2158           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2159                   handle_exception);
2160           cache = cp->entry_at(index);
2161         }
2162 
2163         istate->set_msg(call_method);
2164 
2165         // Special case of invokeinterface called for virtual method of
2166         // java.lang.Object.  See cpCacheOop.cpp for details.
2167         // This code isn't produced by javac, but could be produced by
2168         // another compliant java compiler.
2169         if (cache->is_methodInterface()) {
2170           methodOop callee;
2171           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2172           if (cache->is_vfinal()) {
2173             callee = (methodOop) cache->f2();
2174           } else {
2175             // get receiver
2176             int parms = cache->parameter_size();
2177             // Same comments as invokevirtual apply here
2178             VERIFY_OOP(STACK_OBJECT(-parms));
2179             instanceKlass* rcvrKlass = (instanceKlass*)
2180                                  STACK_OBJECT(-parms)->klass()->klass_part();
2181             callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2182           }
2183           istate->set_callee(callee);
2184           istate->set_callee_entry_point(callee->from_interpreted_entry());
2185 #ifdef VM_JVMTI
2186           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2187             istate->set_callee_entry_point(callee->interpreter_entry());
2188           }
2189 #endif /* VM_JVMTI */
2190           istate->set_bcp_advance(5);
2191           UPDATE_PC_AND_RETURN(0); // I'll be back...
2192         }
2193 
2194         // this could definitely be cleaned up QQQ
2195         methodOop callee;
2196         klassOop iclass = (klassOop)cache->f1();
2197         // instanceKlass* interface = (instanceKlass*) iclass->klass_part();
2198         // get receiver
2199         int parms = cache->parameter_size();
2200         oop rcvr = STACK_OBJECT(-parms);
2201         CHECK_NULL(rcvr);
2202         instanceKlass* int2 = (instanceKlass*) rcvr->klass()->klass_part();
2203         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2204         int i;
2205         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2206           if (ki->interface_klass() == iclass) break;
2207         }
2208         // If the interface isn't found, this class doesn't implement this
2209         // interface.  The link resolver checks this but only for the first
2210         // time this interface is called.
2211         if (i == int2->itable_length()) {
2212           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2213         }
2214         int mindex = cache->f2();
2215         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2216         callee = im[mindex].method();
2217         if (callee == NULL) {
2218           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
2219         }
2220 
2221         istate->set_callee(callee);
2222         istate->set_callee_entry_point(callee->from_interpreted_entry());
2223 #ifdef VM_JVMTI
2224         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2225           istate->set_callee_entry_point(callee->interpreter_entry());
2226         }
2227 #endif /* VM_JVMTI */
2228         istate->set_bcp_advance(5);
2229         UPDATE_PC_AND_RETURN(0); // I'll be back...
2230       }
2231 
2232       CASE(_invokevirtual):
2233       CASE(_invokespecial):
2234       CASE(_invokestatic): {
2235         u2 index = Bytes::get_native_u2(pc+1);
2236 
2237         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2238         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2239         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2240 
2241         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2242           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2243                   handle_exception);
2244           cache = cp->entry_at(index);
2245         }
2246 
2247         istate->set_msg(call_method);
2248         {
2249           methodOop callee;
2250           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2251             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2252             if (cache->is_vfinal()) callee = (methodOop) cache->f2();
2253             else {
2254               // get receiver
2255               int parms = cache->parameter_size();
2256               // this works but needs a resourcemark and seems to create a vtable on every call:
2257               // methodOop callee = rcvr->klass()->klass_part()->vtable()->method_at(cache->f2());
2258               //
2259               // this fails with an assert
2260               // instanceKlass* rcvrKlass = instanceKlass::cast(STACK_OBJECT(-parms)->klass());
2261               // but this works
2262               VERIFY_OOP(STACK_OBJECT(-parms));
2263               instanceKlass* rcvrKlass = (instanceKlass*) STACK_OBJECT(-parms)->klass()->klass_part();
2264               /*
2265                 Executing this code in java.lang.String:
2266                     public String(char value[]) {
2267                           this.count = value.length;
2268                           this.value = (char[])value.clone();
2269                      }
2270 
2271                  a find on rcvr->klass()->klass_part() reports:
2272                  {type array char}{type array class}
2273                   - klass: {other class}
2274 
2275                   but using instanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2276                   because rcvr->klass()->klass_part()->oop_is_instance() == 0
2277                   However it seems to have a vtable in the right location. Huh?
2278 
2279               */
2280               callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2281             }
2282           } else {
2283             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2284               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2285             }
2286             callee = (methodOop) cache->f1();
2287           }
2288 
2289           istate->set_callee(callee);
2290           istate->set_callee_entry_point(callee->from_interpreted_entry());
2291 #ifdef VM_JVMTI
2292           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2293             istate->set_callee_entry_point(callee->interpreter_entry());
2294           }
2295 #endif /* VM_JVMTI */
2296           istate->set_bcp_advance(3);
2297           UPDATE_PC_AND_RETURN(0); // I'll be back...
2298         }
2299       }
2300 
2301       /* Allocate memory for a new java object. */
2302 
2303       CASE(_newarray): {
2304         BasicType atype = (BasicType) *(pc+1);
2305         jint size = STACK_INT(-1);
2306         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2307                 handle_exception);
2308         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2309         THREAD->set_vm_result(NULL);
2310 
2311         UPDATE_PC_AND_CONTINUE(2);
2312       }
2313 
2314       /* Throw an exception. */
2315 
2316       CASE(_athrow): {
2317           oop except_oop = STACK_OBJECT(-1);
2318           CHECK_NULL(except_oop);
2319           // set pending_exception so we use common code
2320           THREAD->set_pending_exception(except_oop, NULL, 0);
2321           goto handle_exception;
2322       }
2323 
2324       /* goto and jsr. They are exactly the same except jsr pushes
2325        * the address of the next instruction first.
2326        */
2327 
2328       CASE(_jsr): {
2329           /* push bytecode index on stack */
2330           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2331           MORE_STACK(1);
2332           /* FALL THROUGH */
2333       }
2334 
2335       CASE(_goto):
2336       {
2337           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2338           address branch_pc = pc;
2339           UPDATE_PC(offset);
2340           DO_BACKEDGE_CHECKS(offset, branch_pc);
2341           CONTINUE;
2342       }
2343 
2344       CASE(_jsr_w): {
2345           /* push return address on the stack */
2346           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2347           MORE_STACK(1);
2348           /* FALL THROUGH */
2349       }
2350 
2351       CASE(_goto_w):
2352       {
2353           int32_t offset = Bytes::get_Java_u4(pc + 1);
2354           address branch_pc = pc;
2355           UPDATE_PC(offset);
2356           DO_BACKEDGE_CHECKS(offset, branch_pc);
2357           CONTINUE;
2358       }
2359 
2360       /* return from a jsr or jsr_w */
2361 
2362       CASE(_ret): {
2363           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2364           UPDATE_PC_AND_CONTINUE(0);
2365       }
2366 
2367       /* debugger breakpoint */
2368 
2369       CASE(_breakpoint): {
2370           Bytecodes::Code original_bytecode;
2371           DECACHE_STATE();
2372           SET_LAST_JAVA_FRAME();
2373           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2374                               METHOD, pc);
2375           RESET_LAST_JAVA_FRAME();
2376           CACHE_STATE();
2377           if (THREAD->has_pending_exception()) goto handle_exception;
2378             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2379                                                     handle_exception);
2380 
2381           opcode = (jubyte)original_bytecode;
2382           goto opcode_switch;
2383       }
2384 
2385       DEFAULT:
2386           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2387                         Bytecodes::name((Bytecodes::Code)opcode)));
2388           goto finish;
2389 
2390       } /* switch(opc) */
2391 
2392 
2393 #ifdef USELABELS
2394     check_for_exception:
2395 #endif
2396     {
2397       if (!THREAD->has_pending_exception()) {
2398         CONTINUE;
2399       }
2400       /* We will be gcsafe soon, so flush our state. */
2401       DECACHE_PC();
2402       goto handle_exception;
2403     }
2404   do_continue: ;
2405 
2406   } /* while (1) interpreter loop */
2407 
2408 
2409   // An exception exists in the thread state see whether this activation can handle it
2410   handle_exception: {
2411 
2412     HandleMarkCleaner __hmc(THREAD);
2413     Handle except_oop(THREAD, THREAD->pending_exception());
2414     // Prevent any subsequent HandleMarkCleaner in the VM
2415     // from freeing the except_oop handle.
2416     HandleMark __hm(THREAD);
2417 
2418     THREAD->clear_pending_exception();
2419     assert(except_oop(), "No exception to process");
2420     intptr_t continuation_bci;
2421     // expression stack is emptied
2422     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2423     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2424             handle_exception);
2425 
2426     except_oop = (oop) THREAD->vm_result();
2427     THREAD->set_vm_result(NULL);
2428     if (continuation_bci >= 0) {
2429       // Place exception on top of stack
2430       SET_STACK_OBJECT(except_oop(), 0);
2431       MORE_STACK(1);
2432       pc = METHOD->code_base() + continuation_bci;
2433       if (TraceExceptions) {
2434         ttyLocker ttyl;
2435         ResourceMark rm;
2436         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2437         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2438         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2439                       pc - (intptr_t)METHOD->code_base(),
2440                       continuation_bci, THREAD);
2441       }
2442       // for AbortVMOnException flag
2443       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2444       goto run;
2445     }
2446     if (TraceExceptions) {
2447       ttyLocker ttyl;
2448       ResourceMark rm;
2449       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2450       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2451       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2452                     pc  - (intptr_t) METHOD->code_base(),
2453                     THREAD);
2454     }
2455     // for AbortVMOnException flag
2456     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2457     // No handler in this activation, unwind and try again
2458     THREAD->set_pending_exception(except_oop(), NULL, 0);
2459     goto handle_return;
2460   }  /* handle_exception: */
2461 
2462 
2463 
2464   // Return from an interpreter invocation with the result of the interpretation
2465   // on the top of the Java Stack (or a pending exception)
2466 
2467 handle_Pop_Frame:
2468 
2469   // We don't really do anything special here except we must be aware
2470   // that we can get here without ever locking the method (if sync).
2471   // Also we skip the notification of the exit.
2472 
2473   istate->set_msg(popping_frame);
2474   // Clear pending so while the pop is in process
2475   // we don't start another one if a call_vm is done.
2476   THREAD->clr_pop_frame_pending();
2477   // Let interpreter (only) see the we're in the process of popping a frame
2478   THREAD->set_pop_frame_in_process();
2479 
2480 handle_return:
2481   {
2482     DECACHE_STATE();
2483 
2484     bool suppress_error = istate->msg() == popping_frame;
2485     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
2486     Handle original_exception(THREAD, THREAD->pending_exception());
2487     Handle illegal_state_oop(THREAD, NULL);
2488 
2489     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2490     // in any following VM entries from freeing our live handles, but illegal_state_oop
2491     // isn't really allocated yet and so doesn't become live until later and
2492     // in unpredicatable places. Instead we must protect the places where we enter the
2493     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2494     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2495     // unfortunately isn't possible.
2496 
2497     THREAD->clear_pending_exception();
2498 
2499     //
2500     // As far as we are concerned we have returned. If we have a pending exception
2501     // that will be returned as this invocation's result. However if we get any
2502     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2503     // will be our final result (i.e. monitor exception trumps a pending exception).
2504     //
2505 
2506     // If we never locked the method (or really passed the point where we would have),
2507     // there is no need to unlock it (or look for other monitors), since that
2508     // could not have happened.
2509 
2510     if (THREAD->do_not_unlock()) {
2511 
2512       // Never locked, reset the flag now because obviously any caller must
2513       // have passed their point of locking for us to have gotten here.
2514 
2515       THREAD->clr_do_not_unlock();
2516     } else {
2517       // At this point we consider that we have returned. We now check that the
2518       // locks were properly block structured. If we find that they were not
2519       // used properly we will return with an illegal monitor exception.
2520       // The exception is checked by the caller not the callee since this
2521       // checking is considered to be part of the invocation and therefore
2522       // in the callers scope (JVM spec 8.13).
2523       //
2524       // Another weird thing to watch for is if the method was locked
2525       // recursively and then not exited properly. This means we must
2526       // examine all the entries in reverse time(and stack) order and
2527       // unlock as we find them. If we find the method monitor before
2528       // we are at the initial entry then we should throw an exception.
2529       // It is not clear the template based interpreter does this
2530       // correctly
2531 
2532       BasicObjectLock* base = istate->monitor_base();
2533       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2534       bool method_unlock_needed = METHOD->is_synchronized();
2535       // We know the initial monitor was used for the method don't check that
2536       // slot in the loop
2537       if (method_unlock_needed) base--;
2538 
2539       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2540       while (end < base) {
2541         oop lockee = end->obj();
2542         if (lockee != NULL) {
2543           BasicLock* lock = end->lock();
2544           markOop header = lock->displaced_header();
2545           end->set_obj(NULL);
2546           // If it isn't recursive we either must swap old header or call the runtime
2547           if (header != NULL) {
2548             if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2549               // restore object for the slow case
2550               end->set_obj(lockee);
2551               {
2552                 // Prevent any HandleMarkCleaner from freeing our live handles
2553                 HandleMark __hm(THREAD);
2554                 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2555               }
2556             }
2557           }
2558           // One error is plenty
2559           if (illegal_state_oop() == NULL && !suppress_error) {
2560             {
2561               // Prevent any HandleMarkCleaner from freeing our live handles
2562               HandleMark __hm(THREAD);
2563               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2564             }
2565             assert(THREAD->has_pending_exception(), "Lost our exception!");
2566             illegal_state_oop = THREAD->pending_exception();
2567             THREAD->clear_pending_exception();
2568           }
2569         }
2570         end++;
2571       }
2572       // Unlock the method if needed
2573       if (method_unlock_needed) {
2574         if (base->obj() == NULL) {
2575           // The method is already unlocked this is not good.
2576           if (illegal_state_oop() == NULL && !suppress_error) {
2577             {
2578               // Prevent any HandleMarkCleaner from freeing our live handles
2579               HandleMark __hm(THREAD);
2580               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2581             }
2582             assert(THREAD->has_pending_exception(), "Lost our exception!");
2583             illegal_state_oop = THREAD->pending_exception();
2584             THREAD->clear_pending_exception();
2585           }
2586         } else {
2587           //
2588           // The initial monitor is always used for the method
2589           // However if that slot is no longer the oop for the method it was unlocked
2590           // and reused by something that wasn't unlocked!
2591           //
2592           // deopt can come in with rcvr dead because c2 knows
2593           // its value is preserved in the monitor. So we can't use locals[0] at all
2594           // and must use first monitor slot.
2595           //
2596           oop rcvr = base->obj();
2597           if (rcvr == NULL) {
2598             if (!suppress_error) {
2599               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
2600               illegal_state_oop = THREAD->pending_exception();
2601               THREAD->clear_pending_exception();
2602             }
2603           } else {
2604             BasicLock* lock = base->lock();
2605             markOop header = lock->displaced_header();
2606             base->set_obj(NULL);
2607             // If it isn't recursive we either must swap old header or call the runtime
2608             if (header != NULL) {
2609               if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
2610                 // restore object for the slow case
2611                 base->set_obj(rcvr);
2612                 {
2613                   // Prevent any HandleMarkCleaner from freeing our live handles
2614                   HandleMark __hm(THREAD);
2615                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2616                 }
2617                 if (THREAD->has_pending_exception()) {
2618                   if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2619                   THREAD->clear_pending_exception();
2620                 }
2621               }
2622             }
2623           }
2624         }
2625       }
2626     }
2627 
2628     //
2629     // Notify jvmti/jvmdi
2630     //
2631     // NOTE: we do not notify a method_exit if we have a pending exception,
2632     // including an exception we generate for unlocking checks.  In the former
2633     // case, JVMDI has already been notified by our call for the exception handler
2634     // and in both cases as far as JVMDI is concerned we have already returned.
2635     // If we notify it again JVMDI will be all confused about how many frames
2636     // are still on the stack (4340444).
2637     //
2638     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
2639     // method_exit events whenever we leave an activation unless it was done
2640     // for popframe. This is nothing like jvmdi. However we are passing the
2641     // tests at the moment (apparently because they are jvmdi based) so rather
2642     // than change this code and possibly fail tests we will leave it alone
2643     // (with this note) in anticipation of changing the vm and the tests
2644     // simultaneously.
2645 
2646 
2647     //
2648     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
2649 
2650 
2651 
2652 #ifdef VM_JVMTI
2653       if (_jvmti_interp_events) {
2654         // Whenever JVMTI puts a thread in interp_only_mode, method
2655         // entry/exit events are sent for that thread to track stack depth.
2656         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
2657           {
2658             // Prevent any HandleMarkCleaner from freeing our live handles
2659             HandleMark __hm(THREAD);
2660             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
2661           }
2662         }
2663       }
2664 #endif /* VM_JVMTI */
2665 
2666     //
2667     // See if we are returning any exception
2668     // A pending exception that was pending prior to a possible popping frame
2669     // overrides the popping frame.
2670     //
2671     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
2672     if (illegal_state_oop() != NULL || original_exception() != NULL) {
2673       // inform the frame manager we have no result
2674       istate->set_msg(throwing_exception);
2675       if (illegal_state_oop() != NULL)
2676         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
2677       else
2678         THREAD->set_pending_exception(original_exception(), NULL, 0);
2679       istate->set_return_kind((Bytecodes::Code)opcode);
2680       UPDATE_PC_AND_RETURN(0);
2681     }
2682 
2683     if (istate->msg() == popping_frame) {
2684       // Make it simpler on the assembly code and set the message for the frame pop.
2685       // returns
2686       if (istate->prev() == NULL) {
2687         // We must be returning to a deoptimized frame (because popframe only happens between
2688         // two interpreted frames). We need to save the current arguments in C heap so that
2689         // the deoptimized frame when it restarts can copy the arguments to its expression
2690         // stack and re-execute the call. We also have to notify deoptimization that this
2691         // has occurred and to pick the preserved args copy them to the deoptimized frame's
2692         // java expression stack. Yuck.
2693         //
2694         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
2695                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
2696         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
2697       }
2698       THREAD->clr_pop_frame_in_process();
2699     }
2700 
2701     // Normal return
2702     // Advance the pc and return to frame manager
2703     istate->set_msg(return_from_method);
2704     istate->set_return_kind((Bytecodes::Code)opcode);
2705     UPDATE_PC_AND_RETURN(1);
2706   } /* handle_return: */
2707 
2708 // This is really a fatal error return
2709 
2710 finish:
2711   DECACHE_TOS();
2712   DECACHE_PC();
2713 
2714   return;
2715 }
2716 
2717 /*
2718  * All the code following this point is only produced once and is not present
2719  * in the JVMTI version of the interpreter
2720 */
2721 
2722 #ifndef VM_JVMTI
2723 
2724 // This constructor should only be used to contruct the object to signal
2725 // interpreter initialization. All other instances should be created by
2726 // the frame manager.
2727 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
2728   if (msg != initialize) ShouldNotReachHere();
2729   _msg = msg;
2730   _self_link = this;
2731   _prev_link = NULL;
2732 }
2733 
2734 // Inline static functions for Java Stack and Local manipulation
2735 
2736 // The implementations are platform dependent. We have to worry about alignment
2737 // issues on some machines which can change on the same platform depending on
2738 // whether it is an LP64 machine also.
2739 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
2740   return (address) tos[Interpreter::expr_index_at(-offset)];
2741 }
2742 
2743 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
2744   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
2745 }
2746 
2747 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
2748   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
2749 }
2750 
2751 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
2752   return (oop)tos [Interpreter::expr_index_at(-offset)];
2753 }
2754 
2755 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
2756   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
2757 }
2758 
2759 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
2760   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
2761 }
2762 
2763 // only used for value types
2764 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
2765                                                         int offset) {
2766   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2767 }
2768 
2769 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
2770                                                        int offset) {
2771   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2772 }
2773 
2774 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
2775                                                          int offset) {
2776   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2777 }
2778 
2779 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
2780                                                           int offset) {
2781   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2782 }
2783 
2784 // needs to be platform dep for the 32 bit platforms.
2785 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
2786                                                           int offset) {
2787   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
2788 }
2789 
2790 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
2791                                               address addr, int offset) {
2792   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
2793                         ((VMJavaVal64*)addr)->d);
2794 }
2795 
2796 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
2797                                                         int offset) {
2798   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2799   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
2800 }
2801 
2802 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
2803                                             address addr, int offset) {
2804   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2805   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
2806                         ((VMJavaVal64*)addr)->l;
2807 }
2808 
2809 // Locals
2810 
2811 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
2812   return (address)locals[Interpreter::local_index_at(-offset)];
2813 }
2814 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
2815   return (jint)locals[Interpreter::local_index_at(-offset)];
2816 }
2817 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
2818   return (jfloat)locals[Interpreter::local_index_at(-offset)];
2819 }
2820 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
2821   return (oop)locals[Interpreter::local_index_at(-offset)];
2822 }
2823 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
2824   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
2825 }
2826 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
2827   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
2828 }
2829 
2830 // Returns the address of locals value.
2831 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
2832   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2833 }
2834 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
2835   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2836 }
2837 
2838 // Used for local value or returnAddress
2839 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
2840                                    address value, int offset) {
2841   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
2842 }
2843 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
2844                                    jint value, int offset) {
2845   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
2846 }
2847 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
2848                                    jfloat value, int offset) {
2849   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
2850 }
2851 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
2852                                    oop value, int offset) {
2853   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
2854 }
2855 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
2856                                    jdouble value, int offset) {
2857   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
2858 }
2859 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
2860                                    jlong value, int offset) {
2861   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
2862 }
2863 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
2864                                    address addr, int offset) {
2865   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
2866 }
2867 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
2868                                    address addr, int offset) {
2869   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
2870 }
2871 
2872 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
2873                           intptr_t* locals, int locals_offset) {
2874   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
2875   locals[Interpreter::local_index_at(-locals_offset)] = value;
2876 }
2877 
2878 
2879 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
2880                                    int to_offset) {
2881   tos[Interpreter::expr_index_at(-to_offset)] =
2882                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
2883 }
2884 
2885 void BytecodeInterpreter::dup(intptr_t *tos) {
2886   copy_stack_slot(tos, -1, 0);
2887 }
2888 void BytecodeInterpreter::dup2(intptr_t *tos) {
2889   copy_stack_slot(tos, -2, 0);
2890   copy_stack_slot(tos, -1, 1);
2891 }
2892 
2893 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
2894   /* insert top word two down */
2895   copy_stack_slot(tos, -1, 0);
2896   copy_stack_slot(tos, -2, -1);
2897   copy_stack_slot(tos, 0, -2);
2898 }
2899 
2900 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
2901   /* insert top word three down  */
2902   copy_stack_slot(tos, -1, 0);
2903   copy_stack_slot(tos, -2, -1);
2904   copy_stack_slot(tos, -3, -2);
2905   copy_stack_slot(tos, 0, -3);
2906 }
2907 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
2908   /* insert top 2 slots three down */
2909   copy_stack_slot(tos, -1, 1);
2910   copy_stack_slot(tos, -2, 0);
2911   copy_stack_slot(tos, -3, -1);
2912   copy_stack_slot(tos, 1, -2);
2913   copy_stack_slot(tos, 0, -3);
2914 }
2915 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
2916   /* insert top 2 slots four down */
2917   copy_stack_slot(tos, -1, 1);
2918   copy_stack_slot(tos, -2, 0);
2919   copy_stack_slot(tos, -3, -1);
2920   copy_stack_slot(tos, -4, -2);
2921   copy_stack_slot(tos, 1, -3);
2922   copy_stack_slot(tos, 0, -4);
2923 }
2924 
2925 
2926 void BytecodeInterpreter::swap(intptr_t *tos) {
2927   // swap top two elements
2928   intptr_t val = tos[Interpreter::expr_index_at(1)];
2929   // Copy -2 entry to -1
2930   copy_stack_slot(tos, -2, -1);
2931   // Store saved -1 entry into -2
2932   tos[Interpreter::expr_index_at(2)] = val;
2933 }
2934 // --------------------------------------------------------------------------------
2935 // Non-product code
2936 #ifndef PRODUCT
2937 
2938 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
2939   switch (msg) {
2940      case BytecodeInterpreter::no_request:  return("no_request");
2941      case BytecodeInterpreter::initialize:  return("initialize");
2942      // status message to C++ interpreter
2943      case BytecodeInterpreter::method_entry:  return("method_entry");
2944      case BytecodeInterpreter::method_resume:  return("method_resume");
2945      case BytecodeInterpreter::got_monitors:  return("got_monitors");
2946      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
2947      // requests to frame manager from C++ interpreter
2948      case BytecodeInterpreter::call_method:  return("call_method");
2949      case BytecodeInterpreter::return_from_method:  return("return_from_method");
2950      case BytecodeInterpreter::more_monitors:  return("more_monitors");
2951      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
2952      case BytecodeInterpreter::popping_frame:  return("popping_frame");
2953      case BytecodeInterpreter::do_osr:  return("do_osr");
2954      // deopt
2955      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
2956      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
2957      default: return("BAD MSG");
2958   }
2959 }
2960 void
2961 BytecodeInterpreter::print() {
2962   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
2963   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
2964   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
2965   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
2966   {
2967     ResourceMark rm;
2968     char *method_name = _method->name_and_sig_as_C_string();
2969     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
2970   }
2971   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
2972   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
2973   tty->print_cr("msg: %s", C_msg(this->_msg));
2974   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
2975   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
2976   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
2977   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
2978   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
2979   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
2980   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
2981   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
2982   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
2983   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
2984   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
2985 #ifdef SPARC
2986   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
2987   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
2988   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
2989   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
2990 #endif
2991 #if defined(IA64) && !defined(ZERO)
2992   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
2993 #endif // IA64 && !ZERO
2994   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
2995 }
2996 
2997 extern "C" {
2998     void PI(uintptr_t arg) {
2999         ((BytecodeInterpreter*)arg)->print();
3000     }
3001 }
3002 #endif // PRODUCT
3003 
3004 #endif // JVMTI
3005 #endif // CC_INTERP