1 /*
   2  * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #ifndef _WINDOWS
  27 #include "alloca.h"
  28 #endif
  29 #include "asm/macroAssembler.hpp"
  30 #include "asm/macroAssembler.inline.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "oops/compiledICHolder.hpp"
  36 #include "prims/jvmtiRedefineClassesTrace.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/vframeArray.hpp"
  39 #include "vmreg_x86.inline.hpp"
  40 #ifdef COMPILER1
  41 #include "c1/c1_Runtime1.hpp"
  42 #endif
  43 #ifdef COMPILER2
  44 #include "opto/runtime.hpp"
  45 #endif
  46 #if INCLUDE_JVMCI
  47 #include "jvmci/jvmciJavaClasses.hpp"
  48 #endif
  49 
  50 #define __ masm->
  51 
  52 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  53 
  54 class SimpleRuntimeFrame {
  55 
  56   public:
  57 
  58   // Most of the runtime stubs have this simple frame layout.
  59   // This class exists to make the layout shared in one place.
  60   // Offsets are for compiler stack slots, which are jints.
  61   enum layout {
  62     // The frame sender code expects that rbp will be in the "natural" place and
  63     // will override any oopMap setting for it. We must therefore force the layout
  64     // so that it agrees with the frame sender code.
  65     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  66     rbp_off2,
  67     return_off, return_off2,
  68     framesize
  69   };
  70 };
  71 
  72 class RegisterSaver {
  73   // Capture info about frame layout.  Layout offsets are in jint
  74   // units because compiler frame slots are jints.
  75 #define HALF_ZMM_BANK_WORDS 128
  76 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  77 #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
  78   enum layout {
  79     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  80     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
  81     DEF_XMM_OFFS(0),
  82     DEF_XMM_OFFS(1),
  83     DEF_XMM_OFFS(2),
  84     DEF_XMM_OFFS(3),
  85     DEF_XMM_OFFS(4),
  86     DEF_XMM_OFFS(5),
  87     DEF_XMM_OFFS(6),
  88     DEF_XMM_OFFS(7),
  89     DEF_XMM_OFFS(8),
  90     DEF_XMM_OFFS(9),
  91     DEF_XMM_OFFS(10),
  92     DEF_XMM_OFFS(11),
  93     DEF_XMM_OFFS(12),
  94     DEF_XMM_OFFS(13),
  95     DEF_XMM_OFFS(14),
  96     DEF_XMM_OFFS(15),
  97     zmm_off = fpu_state_off + ((FPUStateSizeInWords - (HALF_ZMM_BANK_WORDS + 1))*wordSize / BytesPerInt),
  98     DEF_ZMM_OFFS(16),
  99     DEF_ZMM_OFFS(17),
 100     DEF_ZMM_OFFS(18),
 101     DEF_ZMM_OFFS(19),
 102     DEF_ZMM_OFFS(20),
 103     DEF_ZMM_OFFS(21),
 104     DEF_ZMM_OFFS(22),
 105     DEF_ZMM_OFFS(23),
 106     DEF_ZMM_OFFS(24),
 107     DEF_ZMM_OFFS(25),
 108     DEF_ZMM_OFFS(26),
 109     DEF_ZMM_OFFS(27),
 110     DEF_ZMM_OFFS(28),
 111     DEF_ZMM_OFFS(29),
 112     DEF_ZMM_OFFS(30),
 113     DEF_ZMM_OFFS(31),
 114     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
 115     fpu_stateH_end,
 116     r15_off, r15H_off,
 117     r14_off, r14H_off,
 118     r13_off, r13H_off,
 119     r12_off, r12H_off,
 120     r11_off, r11H_off,
 121     r10_off, r10H_off,
 122     r9_off,  r9H_off,
 123     r8_off,  r8H_off,
 124     rdi_off, rdiH_off,
 125     rsi_off, rsiH_off,
 126     ignore_off, ignoreH_off,  // extra copy of rbp
 127     rsp_off, rspH_off,
 128     rbx_off, rbxH_off,
 129     rdx_off, rdxH_off,
 130     rcx_off, rcxH_off,
 131     rax_off, raxH_off,
 132     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 133     align_off, alignH_off,
 134     flags_off, flagsH_off,
 135     // The frame sender code expects that rbp will be in the "natural" place and
 136     // will override any oopMap setting for it. We must therefore force the layout
 137     // so that it agrees with the frame sender code.
 138     rbp_off, rbpH_off,        // copy of rbp we will restore
 139     return_off, returnH_off,  // slot for return address
 140     reg_save_size             // size in compiler stack slots
 141   };
 142 
 143  public:
 144   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
 145   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 146 
 147   // Offsets into the register save area
 148   // Used by deoptimization when it is managing result register
 149   // values on its own
 150 
 151   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 152   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 153   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 154   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 155   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 156 
 157   // During deoptimization only the result registers need to be restored,
 158   // all the other values have already been extracted.
 159   static void restore_result_registers(MacroAssembler* masm);
 160 };
 161 
 162 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
 163   int vect_words = 0;
 164   int ymmhi_offset = -1;
 165   int off = 0;
 166   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 167   if (UseAVX < 3) {
 168     num_xmm_regs = num_xmm_regs/2;
 169   }
 170 #if defined(COMPILER2) || INCLUDE_JVMCI
 171   if (save_vectors) {
 172     assert(UseAVX > 0, "512bit vectors are supported only with EVEX");
 173     assert(MaxVectorSize == 64, "only 512bit vectors are supported now");
 174     // Save upper half of YMM registers
 175     vect_words = 16 * num_xmm_regs / wordSize;
 176     if (UseAVX < 3) {
 177       ymmhi_offset = additional_frame_words;
 178       additional_frame_words += vect_words;
 179     }
 180   }
 181 #else
 182   assert(!save_vectors, "vectors are generated only by C2 and JVMCI");
 183 #endif
 184 
 185   // Always make the frame size 16-byte aligned
 186   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
 187                                      reg_save_size*BytesPerInt, num_xmm_regs);
 188   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 189   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 190   // The caller will allocate additional_frame_words
 191   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
 192   // CodeBlob frame size is in words.
 193   int frame_size_in_words = frame_size_in_bytes / wordSize;
 194   *total_frame_words = frame_size_in_words;
 195 
 196   // Save registers, fpu state, and flags.
 197   // We assume caller has already pushed the return address onto the
 198   // stack, so rsp is 8-byte aligned here.
 199   // We push rpb twice in this sequence because we want the real rbp
 200   // to be under the return like a normal enter.
 201 
 202   __ enter();          // rsp becomes 16-byte aligned here
 203   __ push_CPU_state(); // Push a multiple of 16 bytes
 204 
 205   // push cpu state handles this on EVEX enabled targets
 206   if ((vect_words > 0) && (UseAVX < 3)) {
 207     assert(vect_words*wordSize >= 256, "");
 208     // Save upper half of YMM registes(0..num_xmm_regs)
 209     __ subptr(rsp, num_xmm_regs*16);
 210     for (int n = 0; n < num_xmm_regs; n++) {
 211       __ vextractf128h(Address(rsp, off++*16), as_XMMRegister(n));
 212     }
 213   }
 214   if (frame::arg_reg_save_area_bytes != 0) {
 215     // Allocate argument register save area
 216     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 217   }
 218 
 219   // Set an oopmap for the call site.  This oopmap will map all
 220   // oop-registers and debug-info registers as callee-saved.  This
 221   // will allow deoptimization at this safepoint to find all possible
 222   // debug-info recordings, as well as let GC find all oops.
 223 
 224   OopMapSet *oop_maps = new OopMapSet();
 225   OopMap* map = new OopMap(frame_size_in_slots, 0);
 226 
 227 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)
 228 #define YMMHI_STACK_OFFSET(x) VMRegImpl::stack2reg((x / VMRegImpl::stack_slot_size) + ymmhi_offset)
 229 
 230   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 231   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 232   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 233   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 234   // rbp location is known implicitly by the frame sender code, needs no oopmap
 235   // and the location where rbp was saved by is ignored
 236   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 240   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 241   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 242   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 243   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 244   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 245   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 246   // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 247   // on EVEX enabled targets, we get it included in the xsave area
 248   off = xmm0_off;
 249   int delta = xmm1_off - off;
 250   for (int n = 0; n < 16; n++) {
 251     XMMRegister xmm_name = as_XMMRegister(n);
 252     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 253     off += delta;
 254   }
 255   if(UseAVX > 2) {
 256     // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 257     off = zmm16_off;
 258     delta = zmm17_off - off;
 259     for (int n = 16; n < num_xmm_regs; n++) {
 260       XMMRegister xmm_name = as_XMMRegister(n);
 261       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 262       off += delta;
 263     }
 264   }
 265 
 266 #if defined(COMPILER2) || INCLUDE_JVMCI
 267   if (save_vectors) {
 268     assert(ymmhi_offset != -1, "save area must exist");
 269     map->set_callee_saved(YMMHI_STACK_OFFSET(  0), xmm0->as_VMReg()->next(4));
 270     map->set_callee_saved(YMMHI_STACK_OFFSET( 16), xmm1->as_VMReg()->next(4));
 271     map->set_callee_saved(YMMHI_STACK_OFFSET( 32), xmm2->as_VMReg()->next(4));
 272     map->set_callee_saved(YMMHI_STACK_OFFSET( 48), xmm3->as_VMReg()->next(4));
 273     map->set_callee_saved(YMMHI_STACK_OFFSET( 64), xmm4->as_VMReg()->next(4));
 274     map->set_callee_saved(YMMHI_STACK_OFFSET( 80), xmm5->as_VMReg()->next(4));
 275     map->set_callee_saved(YMMHI_STACK_OFFSET( 96), xmm6->as_VMReg()->next(4));
 276     map->set_callee_saved(YMMHI_STACK_OFFSET(112), xmm7->as_VMReg()->next(4));
 277     map->set_callee_saved(YMMHI_STACK_OFFSET(128), xmm8->as_VMReg()->next(4));
 278     map->set_callee_saved(YMMHI_STACK_OFFSET(144), xmm9->as_VMReg()->next(4));
 279     map->set_callee_saved(YMMHI_STACK_OFFSET(160), xmm10->as_VMReg()->next(4));
 280     map->set_callee_saved(YMMHI_STACK_OFFSET(176), xmm11->as_VMReg()->next(4));
 281     map->set_callee_saved(YMMHI_STACK_OFFSET(192), xmm12->as_VMReg()->next(4));
 282     map->set_callee_saved(YMMHI_STACK_OFFSET(208), xmm13->as_VMReg()->next(4));
 283     map->set_callee_saved(YMMHI_STACK_OFFSET(224), xmm14->as_VMReg()->next(4));
 284     map->set_callee_saved(YMMHI_STACK_OFFSET(240), xmm15->as_VMReg()->next(4));
 285   }
 286 #endif // COMPILER2 || INCLUDE_JVMCI
 287 
 288   // %%% These should all be a waste but we'll keep things as they were for now
 289   if (true) {
 290     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 291     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 292     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 293     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 294     // rbp location is known implicitly by the frame sender code, needs no oopmap
 295     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 296     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 297     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 298     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 299     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 300     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 301     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 302     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 303     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 304     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 305     // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 306     // on EVEX enabled targets, we get it included in the xsave area
 307     off = xmm0H_off;
 308     delta = xmm1H_off - off;
 309     for (int n = 0; n < 16; n++) {
 310       XMMRegister xmm_name = as_XMMRegister(n);
 311       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 312       off += delta;
 313     }
 314     if (UseAVX > 2) {
 315       // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 316       off = zmm16H_off;
 317       delta = zmm17H_off - off;
 318       for (int n = 16; n < num_xmm_regs; n++) {
 319         XMMRegister xmm_name = as_XMMRegister(n);
 320         map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 321         off += delta;
 322       }
 323     }
 324   }
 325 
 326   return map;
 327 }
 328 
 329 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 330   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 331   if (UseAVX < 3) {
 332     num_xmm_regs = num_xmm_regs/2;
 333   }
 334   if (frame::arg_reg_save_area_bytes != 0) {
 335     // Pop arg register save area
 336     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 337   }
 338 #if defined(COMPILER2) || INCLUDE_JVMCI
 339   // On EVEX enabled targets everything is handled in pop fpu state
 340   if ((restore_vectors) && (UseAVX < 3)) {
 341     assert(UseAVX > 0, "256/512-bit vectors are supported only with AVX");
 342     assert(MaxVectorSize == 64, "up to 512bit vectors are supported now");
 343     int off = 0;
 344     // Restore upper half of YMM registes (0..num_xmm_regs)
 345     for (int n = 0; n < num_xmm_regs; n++) {
 346       __ vinsertf128h(as_XMMRegister(n), Address(rsp,  off++*16));
 347     }
 348     __ addptr(rsp, num_xmm_regs*16);
 349   }
 350 #else
 351   assert(!restore_vectors, "vectors are generated only by C2 and JVMCI");
 352 #endif
 353   // Recover CPU state
 354   __ pop_CPU_state();
 355   // Get the rbp described implicitly by the calling convention (no oopMap)
 356   __ pop(rbp);
 357 }
 358 
 359 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 360 
 361   // Just restore result register. Only used by deoptimization. By
 362   // now any callee save register that needs to be restored to a c2
 363   // caller of the deoptee has been extracted into the vframeArray
 364   // and will be stuffed into the c2i adapter we create for later
 365   // restoration so only result registers need to be restored here.
 366 
 367   // Restore fp result register
 368   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 369   // Restore integer result register
 370   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 371   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 372 
 373   // Pop all of the register save are off the stack except the return address
 374   __ addptr(rsp, return_offset_in_bytes());
 375 }
 376 
 377 // Is vector's size (in bytes) bigger than a size saved by default?
 378 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 379 bool SharedRuntime::is_wide_vector(int size) {
 380   return size > 16;
 381 }
 382 
 383 // The java_calling_convention describes stack locations as ideal slots on
 384 // a frame with no abi restrictions. Since we must observe abi restrictions
 385 // (like the placement of the register window) the slots must be biased by
 386 // the following value.
 387 static int reg2offset_in(VMReg r) {
 388   // Account for saved rbp and return address
 389   // This should really be in_preserve_stack_slots
 390   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 391 }
 392 
 393 static int reg2offset_out(VMReg r) {
 394   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 395 }
 396 
 397 // ---------------------------------------------------------------------------
 398 // Read the array of BasicTypes from a signature, and compute where the
 399 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 400 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 401 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 402 // as framesizes are fixed.
 403 // VMRegImpl::stack0 refers to the first slot 0(sp).
 404 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 405 // up to RegisterImpl::number_of_registers) are the 64-bit
 406 // integer registers.
 407 
 408 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 409 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 410 // units regardless of build. Of course for i486 there is no 64 bit build
 411 
 412 // The Java calling convention is a "shifted" version of the C ABI.
 413 // By skipping the first C ABI register we can call non-static jni methods
 414 // with small numbers of arguments without having to shuffle the arguments
 415 // at all. Since we control the java ABI we ought to at least get some
 416 // advantage out of it.
 417 
 418 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 419                                            VMRegPair *regs,
 420                                            int total_args_passed,
 421                                            int is_outgoing) {
 422 
 423   // Create the mapping between argument positions and
 424   // registers.
 425   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 426     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 427   };
 428   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 429     j_farg0, j_farg1, j_farg2, j_farg3,
 430     j_farg4, j_farg5, j_farg6, j_farg7
 431   };
 432 
 433 
 434   uint int_args = 0;
 435   uint fp_args = 0;
 436   uint stk_args = 0; // inc by 2 each time
 437 
 438   for (int i = 0; i < total_args_passed; i++) {
 439     switch (sig_bt[i]) {
 440     case T_BOOLEAN:
 441     case T_CHAR:
 442     case T_BYTE:
 443     case T_SHORT:
 444     case T_INT:
 445       if (int_args < Argument::n_int_register_parameters_j) {
 446         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 447       } else {
 448         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 449         stk_args += 2;
 450       }
 451       break;
 452     case T_VOID:
 453       // halves of T_LONG or T_DOUBLE
 454       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 455       regs[i].set_bad();
 456       break;
 457     case T_LONG:
 458       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 459       // fall through
 460     case T_OBJECT:
 461     case T_ARRAY:
 462     case T_ADDRESS:
 463       if (int_args < Argument::n_int_register_parameters_j) {
 464         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 465       } else {
 466         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 467         stk_args += 2;
 468       }
 469       break;
 470     case T_FLOAT:
 471       if (fp_args < Argument::n_float_register_parameters_j) {
 472         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 473       } else {
 474         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 475         stk_args += 2;
 476       }
 477       break;
 478     case T_DOUBLE:
 479       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 480       if (fp_args < Argument::n_float_register_parameters_j) {
 481         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 482       } else {
 483         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 484         stk_args += 2;
 485       }
 486       break;
 487     default:
 488       ShouldNotReachHere();
 489       break;
 490     }
 491   }
 492 
 493   return round_to(stk_args, 2);
 494 }
 495 
 496 // Patch the callers callsite with entry to compiled code if it exists.
 497 static void patch_callers_callsite(MacroAssembler *masm) {
 498   Label L;
 499   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 500   __ jcc(Assembler::equal, L);
 501 
 502   // Save the current stack pointer
 503   __ mov(r13, rsp);
 504   // Schedule the branch target address early.
 505   // Call into the VM to patch the caller, then jump to compiled callee
 506   // rax isn't live so capture return address while we easily can
 507   __ movptr(rax, Address(rsp, 0));
 508 
 509   // align stack so push_CPU_state doesn't fault
 510   __ andptr(rsp, -(StackAlignmentInBytes));
 511   __ push_CPU_state();
 512 
 513   // VM needs caller's callsite
 514   // VM needs target method
 515   // This needs to be a long call since we will relocate this adapter to
 516   // the codeBuffer and it may not reach
 517 
 518   // Allocate argument register save area
 519   if (frame::arg_reg_save_area_bytes != 0) {
 520     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 521   }
 522   __ mov(c_rarg0, rbx);
 523   __ mov(c_rarg1, rax);
 524   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 525 
 526   // De-allocate argument register save area
 527   if (frame::arg_reg_save_area_bytes != 0) {
 528     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 529   }
 530 
 531   __ pop_CPU_state();
 532   // restore sp
 533   __ mov(rsp, r13);
 534   __ bind(L);
 535 }
 536 
 537 
 538 static void gen_c2i_adapter(MacroAssembler *masm,
 539                             int total_args_passed,
 540                             int comp_args_on_stack,
 541                             const BasicType *sig_bt,
 542                             const VMRegPair *regs,
 543                             Label& skip_fixup) {
 544   // Before we get into the guts of the C2I adapter, see if we should be here
 545   // at all.  We've come from compiled code and are attempting to jump to the
 546   // interpreter, which means the caller made a static call to get here
 547   // (vcalls always get a compiled target if there is one).  Check for a
 548   // compiled target.  If there is one, we need to patch the caller's call.
 549   patch_callers_callsite(masm);
 550 
 551   __ bind(skip_fixup);
 552 
 553   // Since all args are passed on the stack, total_args_passed *
 554   // Interpreter::stackElementSize is the space we need. Plus 1 because
 555   // we also account for the return address location since
 556   // we store it first rather than hold it in rax across all the shuffling
 557 
 558   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 559 
 560   // stack is aligned, keep it that way
 561   extraspace = round_to(extraspace, 2*wordSize);
 562 
 563   // Get return address
 564   __ pop(rax);
 565 
 566   // set senderSP value
 567   __ mov(r13, rsp);
 568 
 569   __ subptr(rsp, extraspace);
 570 
 571   // Store the return address in the expected location
 572   __ movptr(Address(rsp, 0), rax);
 573 
 574   // Now write the args into the outgoing interpreter space
 575   for (int i = 0; i < total_args_passed; i++) {
 576     if (sig_bt[i] == T_VOID) {
 577       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 578       continue;
 579     }
 580 
 581     // offset to start parameters
 582     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 583     int next_off = st_off - Interpreter::stackElementSize;
 584 
 585     // Say 4 args:
 586     // i   st_off
 587     // 0   32 T_LONG
 588     // 1   24 T_VOID
 589     // 2   16 T_OBJECT
 590     // 3    8 T_BOOL
 591     // -    0 return address
 592     //
 593     // However to make thing extra confusing. Because we can fit a long/double in
 594     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 595     // leaves one slot empty and only stores to a single slot. In this case the
 596     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 597 
 598     VMReg r_1 = regs[i].first();
 599     VMReg r_2 = regs[i].second();
 600     if (!r_1->is_valid()) {
 601       assert(!r_2->is_valid(), "");
 602       continue;
 603     }
 604     if (r_1->is_stack()) {
 605       // memory to memory use rax
 606       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 607       if (!r_2->is_valid()) {
 608         // sign extend??
 609         __ movl(rax, Address(rsp, ld_off));
 610         __ movptr(Address(rsp, st_off), rax);
 611 
 612       } else {
 613 
 614         __ movq(rax, Address(rsp, ld_off));
 615 
 616         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 617         // T_DOUBLE and T_LONG use two slots in the interpreter
 618         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 619           // ld_off == LSW, ld_off+wordSize == MSW
 620           // st_off == MSW, next_off == LSW
 621           __ movq(Address(rsp, next_off), rax);
 622 #ifdef ASSERT
 623           // Overwrite the unused slot with known junk
 624           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 625           __ movptr(Address(rsp, st_off), rax);
 626 #endif /* ASSERT */
 627         } else {
 628           __ movq(Address(rsp, st_off), rax);
 629         }
 630       }
 631     } else if (r_1->is_Register()) {
 632       Register r = r_1->as_Register();
 633       if (!r_2->is_valid()) {
 634         // must be only an int (or less ) so move only 32bits to slot
 635         // why not sign extend??
 636         __ movl(Address(rsp, st_off), r);
 637       } else {
 638         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 639         // T_DOUBLE and T_LONG use two slots in the interpreter
 640         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 641           // long/double in gpr
 642 #ifdef ASSERT
 643           // Overwrite the unused slot with known junk
 644           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 645           __ movptr(Address(rsp, st_off), rax);
 646 #endif /* ASSERT */
 647           __ movq(Address(rsp, next_off), r);
 648         } else {
 649           __ movptr(Address(rsp, st_off), r);
 650         }
 651       }
 652     } else {
 653       assert(r_1->is_XMMRegister(), "");
 654       if (!r_2->is_valid()) {
 655         // only a float use just part of the slot
 656         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 657       } else {
 658 #ifdef ASSERT
 659         // Overwrite the unused slot with known junk
 660         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 661         __ movptr(Address(rsp, st_off), rax);
 662 #endif /* ASSERT */
 663         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 664       }
 665     }
 666   }
 667 
 668   // Schedule the branch target address early.
 669   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 670   __ jmp(rcx);
 671 }
 672 
 673 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 674                         address code_start, address code_end,
 675                         Label& L_ok) {
 676   Label L_fail;
 677   __ lea(temp_reg, ExternalAddress(code_start));
 678   __ cmpptr(pc_reg, temp_reg);
 679   __ jcc(Assembler::belowEqual, L_fail);
 680   __ lea(temp_reg, ExternalAddress(code_end));
 681   __ cmpptr(pc_reg, temp_reg);
 682   __ jcc(Assembler::below, L_ok);
 683   __ bind(L_fail);
 684 }
 685 
 686 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 687                                     int total_args_passed,
 688                                     int comp_args_on_stack,
 689                                     const BasicType *sig_bt,
 690                                     const VMRegPair *regs) {
 691 
 692   // Note: r13 contains the senderSP on entry. We must preserve it since
 693   // we may do a i2c -> c2i transition if we lose a race where compiled
 694   // code goes non-entrant while we get args ready.
 695   // In addition we use r13 to locate all the interpreter args as
 696   // we must align the stack to 16 bytes on an i2c entry else we
 697   // lose alignment we expect in all compiled code and register
 698   // save code can segv when fxsave instructions find improperly
 699   // aligned stack pointer.
 700 
 701   // Adapters can be frameless because they do not require the caller
 702   // to perform additional cleanup work, such as correcting the stack pointer.
 703   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 704   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 705   // even if a callee has modified the stack pointer.
 706   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 707   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 708   // up via the senderSP register).
 709   // In other words, if *either* the caller or callee is interpreted, we can
 710   // get the stack pointer repaired after a call.
 711   // This is why c2i and i2c adapters cannot be indefinitely composed.
 712   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 713   // both caller and callee would be compiled methods, and neither would
 714   // clean up the stack pointer changes performed by the two adapters.
 715   // If this happens, control eventually transfers back to the compiled
 716   // caller, but with an uncorrected stack, causing delayed havoc.
 717 
 718   // Pick up the return address
 719   __ movptr(rax, Address(rsp, 0));
 720 
 721   if (VerifyAdapterCalls &&
 722       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 723     // So, let's test for cascading c2i/i2c adapters right now.
 724     //  assert(Interpreter::contains($return_addr) ||
 725     //         StubRoutines::contains($return_addr),
 726     //         "i2c adapter must return to an interpreter frame");
 727     __ block_comment("verify_i2c { ");
 728     Label L_ok;
 729     if (Interpreter::code() != NULL)
 730       range_check(masm, rax, r11,
 731                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 732                   L_ok);
 733     if (StubRoutines::code1() != NULL)
 734       range_check(masm, rax, r11,
 735                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 736                   L_ok);
 737     if (StubRoutines::code2() != NULL)
 738       range_check(masm, rax, r11,
 739                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 740                   L_ok);
 741     const char* msg = "i2c adapter must return to an interpreter frame";
 742     __ block_comment(msg);
 743     __ stop(msg);
 744     __ bind(L_ok);
 745     __ block_comment("} verify_i2ce ");
 746   }
 747 
 748   // Must preserve original SP for loading incoming arguments because
 749   // we need to align the outgoing SP for compiled code.
 750   __ movptr(r11, rsp);
 751 
 752   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 753   // in registers, we will occasionally have no stack args.
 754   int comp_words_on_stack = 0;
 755   if (comp_args_on_stack) {
 756     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 757     // registers are below.  By subtracting stack0, we either get a negative
 758     // number (all values in registers) or the maximum stack slot accessed.
 759 
 760     // Convert 4-byte c2 stack slots to words.
 761     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 762     // Round up to miminum stack alignment, in wordSize
 763     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 764     __ subptr(rsp, comp_words_on_stack * wordSize);
 765   }
 766 
 767 
 768   // Ensure compiled code always sees stack at proper alignment
 769   __ andptr(rsp, -16);
 770 
 771   // push the return address and misalign the stack that youngest frame always sees
 772   // as far as the placement of the call instruction
 773   __ push(rax);
 774 
 775   // Put saved SP in another register
 776   const Register saved_sp = rax;
 777   __ movptr(saved_sp, r11);
 778 
 779   // Will jump to the compiled code just as if compiled code was doing it.
 780   // Pre-load the register-jump target early, to schedule it better.
 781   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
 782 
 783 #if INCLUDE_JVMCI
 784   if (EnableJVMCI) {
 785     // check if this call should be routed towards a specific entry point
 786     __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 787     Label no_alternative_target;
 788     __ jcc(Assembler::equal, no_alternative_target);
 789     __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 790     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 791     __ bind(no_alternative_target);
 792   }
 793 #endif // INCLUDE_JVMCI
 794 
 795   // Now generate the shuffle code.  Pick up all register args and move the
 796   // rest through the floating point stack top.
 797   for (int i = 0; i < total_args_passed; i++) {
 798     if (sig_bt[i] == T_VOID) {
 799       // Longs and doubles are passed in native word order, but misaligned
 800       // in the 32-bit build.
 801       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 802       continue;
 803     }
 804 
 805     // Pick up 0, 1 or 2 words from SP+offset.
 806 
 807     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 808             "scrambled load targets?");
 809     // Load in argument order going down.
 810     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 811     // Point to interpreter value (vs. tag)
 812     int next_off = ld_off - Interpreter::stackElementSize;
 813     //
 814     //
 815     //
 816     VMReg r_1 = regs[i].first();
 817     VMReg r_2 = regs[i].second();
 818     if (!r_1->is_valid()) {
 819       assert(!r_2->is_valid(), "");
 820       continue;
 821     }
 822     if (r_1->is_stack()) {
 823       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 824       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 825 
 826       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 827       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 828       // will be generated.
 829       if (!r_2->is_valid()) {
 830         // sign extend???
 831         __ movl(r13, Address(saved_sp, ld_off));
 832         __ movptr(Address(rsp, st_off), r13);
 833       } else {
 834         //
 835         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 836         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 837         // So we must adjust where to pick up the data to match the interpreter.
 838         //
 839         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 840         // are accessed as negative so LSW is at LOW address
 841 
 842         // ld_off is MSW so get LSW
 843         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 844                            next_off : ld_off;
 845         __ movq(r13, Address(saved_sp, offset));
 846         // st_off is LSW (i.e. reg.first())
 847         __ movq(Address(rsp, st_off), r13);
 848       }
 849     } else if (r_1->is_Register()) {  // Register argument
 850       Register r = r_1->as_Register();
 851       assert(r != rax, "must be different");
 852       if (r_2->is_valid()) {
 853         //
 854         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 855         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 856         // So we must adjust where to pick up the data to match the interpreter.
 857 
 858         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 859                            next_off : ld_off;
 860 
 861         // this can be a misaligned move
 862         __ movq(r, Address(saved_sp, offset));
 863       } else {
 864         // sign extend and use a full word?
 865         __ movl(r, Address(saved_sp, ld_off));
 866       }
 867     } else {
 868       if (!r_2->is_valid()) {
 869         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 870       } else {
 871         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 872       }
 873     }
 874   }
 875 
 876   // 6243940 We might end up in handle_wrong_method if
 877   // the callee is deoptimized as we race thru here. If that
 878   // happens we don't want to take a safepoint because the
 879   // caller frame will look interpreted and arguments are now
 880   // "compiled" so it is much better to make this transition
 881   // invisible to the stack walking code. Unfortunately if
 882   // we try and find the callee by normal means a safepoint
 883   // is possible. So we stash the desired callee in the thread
 884   // and the vm will find there should this case occur.
 885 
 886   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 887 
 888   // put Method* where a c2i would expect should we end up there
 889   // only needed becaus eof c2 resolve stubs return Method* as a result in
 890   // rax
 891   __ mov(rax, rbx);
 892   __ jmp(r11);
 893 }
 894 
 895 // ---------------------------------------------------------------
 896 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 897                                                             int total_args_passed,
 898                                                             int comp_args_on_stack,
 899                                                             const BasicType *sig_bt,
 900                                                             const VMRegPair *regs,
 901                                                             AdapterFingerPrint* fingerprint) {
 902   address i2c_entry = __ pc();
 903 
 904   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 905 
 906   // -------------------------------------------------------------------------
 907   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
 908   // to the interpreter.  The args start out packed in the compiled layout.  They
 909   // need to be unpacked into the interpreter layout.  This will almost always
 910   // require some stack space.  We grow the current (compiled) stack, then repack
 911   // the args.  We  finally end in a jump to the generic interpreter entry point.
 912   // On exit from the interpreter, the interpreter will restore our SP (lest the
 913   // compiled code, which relys solely on SP and not RBP, get sick).
 914 
 915   address c2i_unverified_entry = __ pc();
 916   Label skip_fixup;
 917   Label ok;
 918 
 919   Register holder = rax;
 920   Register receiver = j_rarg0;
 921   Register temp = rbx;
 922 
 923   {
 924     __ load_klass(temp, receiver);
 925     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 926     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
 927     __ jcc(Assembler::equal, ok);
 928     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 929 
 930     __ bind(ok);
 931     // Method might have been compiled since the call site was patched to
 932     // interpreted if that is the case treat it as a miss so we can get
 933     // the call site corrected.
 934     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 935     __ jcc(Assembler::equal, skip_fixup);
 936     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 937   }
 938 
 939   address c2i_entry = __ pc();
 940 
 941   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 942 
 943   __ flush();
 944   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 945 }
 946 
 947 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 948                                          VMRegPair *regs,
 949                                          VMRegPair *regs2,
 950                                          int total_args_passed) {
 951   assert(regs2 == NULL, "not needed on x86");
 952 // We return the amount of VMRegImpl stack slots we need to reserve for all
 953 // the arguments NOT counting out_preserve_stack_slots.
 954 
 955 // NOTE: These arrays will have to change when c1 is ported
 956 #ifdef _WIN64
 957     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 958       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 959     };
 960     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 961       c_farg0, c_farg1, c_farg2, c_farg3
 962     };
 963 #else
 964     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 965       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 966     };
 967     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 968       c_farg0, c_farg1, c_farg2, c_farg3,
 969       c_farg4, c_farg5, c_farg6, c_farg7
 970     };
 971 #endif // _WIN64
 972 
 973 
 974     uint int_args = 0;
 975     uint fp_args = 0;
 976     uint stk_args = 0; // inc by 2 each time
 977 
 978     for (int i = 0; i < total_args_passed; i++) {
 979       switch (sig_bt[i]) {
 980       case T_BOOLEAN:
 981       case T_CHAR:
 982       case T_BYTE:
 983       case T_SHORT:
 984       case T_INT:
 985         if (int_args < Argument::n_int_register_parameters_c) {
 986           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 987 #ifdef _WIN64
 988           fp_args++;
 989           // Allocate slots for callee to stuff register args the stack.
 990           stk_args += 2;
 991 #endif
 992         } else {
 993           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 994           stk_args += 2;
 995         }
 996         break;
 997       case T_LONG:
 998         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 999         // fall through
1000       case T_OBJECT:
1001       case T_ARRAY:
1002       case T_ADDRESS:
1003       case T_METADATA:
1004         if (int_args < Argument::n_int_register_parameters_c) {
1005           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
1006 #ifdef _WIN64
1007           fp_args++;
1008           stk_args += 2;
1009 #endif
1010         } else {
1011           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1012           stk_args += 2;
1013         }
1014         break;
1015       case T_FLOAT:
1016         if (fp_args < Argument::n_float_register_parameters_c) {
1017           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
1018 #ifdef _WIN64
1019           int_args++;
1020           // Allocate slots for callee to stuff register args the stack.
1021           stk_args += 2;
1022 #endif
1023         } else {
1024           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1025           stk_args += 2;
1026         }
1027         break;
1028       case T_DOUBLE:
1029         assert(sig_bt[i + 1] == T_VOID, "expecting half");
1030         if (fp_args < Argument::n_float_register_parameters_c) {
1031           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
1032 #ifdef _WIN64
1033           int_args++;
1034           // Allocate slots for callee to stuff register args the stack.
1035           stk_args += 2;
1036 #endif
1037         } else {
1038           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1039           stk_args += 2;
1040         }
1041         break;
1042       case T_VOID: // Halves of longs and doubles
1043         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1044         regs[i].set_bad();
1045         break;
1046       default:
1047         ShouldNotReachHere();
1048         break;
1049       }
1050     }
1051 #ifdef _WIN64
1052   // windows abi requires that we always allocate enough stack space
1053   // for 4 64bit registers to be stored down.
1054   if (stk_args < 8) {
1055     stk_args = 8;
1056   }
1057 #endif // _WIN64
1058 
1059   return stk_args;
1060 }
1061 
1062 // On 64 bit we will store integer like items to the stack as
1063 // 64 bits items (sparc abi) even though java would only store
1064 // 32bits for a parameter. On 32bit it will simply be 32 bits
1065 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1066 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1067   if (src.first()->is_stack()) {
1068     if (dst.first()->is_stack()) {
1069       // stack to stack
1070       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1071       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1072     } else {
1073       // stack to reg
1074       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1075     }
1076   } else if (dst.first()->is_stack()) {
1077     // reg to stack
1078     // Do we really have to sign extend???
1079     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1080     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1081   } else {
1082     // Do we really have to sign extend???
1083     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1084     if (dst.first() != src.first()) {
1085       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1086     }
1087   }
1088 }
1089 
1090 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1091   if (src.first()->is_stack()) {
1092     if (dst.first()->is_stack()) {
1093       // stack to stack
1094       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1095       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1096     } else {
1097       // stack to reg
1098       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1099     }
1100   } else if (dst.first()->is_stack()) {
1101     // reg to stack
1102     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1103   } else {
1104     if (dst.first() != src.first()) {
1105       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1106     }
1107   }
1108 }
1109 
1110 // An oop arg. Must pass a handle not the oop itself
1111 static void object_move(MacroAssembler* masm,
1112                         OopMap* map,
1113                         int oop_handle_offset,
1114                         int framesize_in_slots,
1115                         VMRegPair src,
1116                         VMRegPair dst,
1117                         bool is_receiver,
1118                         int* receiver_offset) {
1119 
1120   // must pass a handle. First figure out the location we use as a handle
1121 
1122   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1123 
1124   // See if oop is NULL if it is we need no handle
1125 
1126   if (src.first()->is_stack()) {
1127 
1128     // Oop is already on the stack as an argument
1129     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1130     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1131     if (is_receiver) {
1132       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1133     }
1134 
1135     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1136     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1137     // conditionally move a NULL
1138     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1139   } else {
1140 
1141     // Oop is in an a register we must store it to the space we reserve
1142     // on the stack for oop_handles and pass a handle if oop is non-NULL
1143 
1144     const Register rOop = src.first()->as_Register();
1145     int oop_slot;
1146     if (rOop == j_rarg0)
1147       oop_slot = 0;
1148     else if (rOop == j_rarg1)
1149       oop_slot = 1;
1150     else if (rOop == j_rarg2)
1151       oop_slot = 2;
1152     else if (rOop == j_rarg3)
1153       oop_slot = 3;
1154     else if (rOop == j_rarg4)
1155       oop_slot = 4;
1156     else {
1157       assert(rOop == j_rarg5, "wrong register");
1158       oop_slot = 5;
1159     }
1160 
1161     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1162     int offset = oop_slot*VMRegImpl::stack_slot_size;
1163 
1164     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1165     // Store oop in handle area, may be NULL
1166     __ movptr(Address(rsp, offset), rOop);
1167     if (is_receiver) {
1168       *receiver_offset = offset;
1169     }
1170 
1171     __ cmpptr(rOop, (int32_t)NULL_WORD);
1172     __ lea(rHandle, Address(rsp, offset));
1173     // conditionally move a NULL from the handle area where it was just stored
1174     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1175   }
1176 
1177   // If arg is on the stack then place it otherwise it is already in correct reg.
1178   if (dst.first()->is_stack()) {
1179     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1180   }
1181 }
1182 
1183 // A float arg may have to do float reg int reg conversion
1184 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1185   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1186 
1187   // The calling conventions assures us that each VMregpair is either
1188   // all really one physical register or adjacent stack slots.
1189   // This greatly simplifies the cases here compared to sparc.
1190 
1191   if (src.first()->is_stack()) {
1192     if (dst.first()->is_stack()) {
1193       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1194       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1195     } else {
1196       // stack to reg
1197       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1198       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1199     }
1200   } else if (dst.first()->is_stack()) {
1201     // reg to stack
1202     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1203     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1204   } else {
1205     // reg to reg
1206     // In theory these overlap but the ordering is such that this is likely a nop
1207     if ( src.first() != dst.first()) {
1208       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1209     }
1210   }
1211 }
1212 
1213 // A long move
1214 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1215 
1216   // The calling conventions assures us that each VMregpair is either
1217   // all really one physical register or adjacent stack slots.
1218   // This greatly simplifies the cases here compared to sparc.
1219 
1220   if (src.is_single_phys_reg() ) {
1221     if (dst.is_single_phys_reg()) {
1222       if (dst.first() != src.first()) {
1223         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1224       }
1225     } else {
1226       assert(dst.is_single_reg(), "not a stack pair");
1227       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1228     }
1229   } else if (dst.is_single_phys_reg()) {
1230     assert(src.is_single_reg(),  "not a stack pair");
1231     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1232   } else {
1233     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1234     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1235     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1236   }
1237 }
1238 
1239 // A double move
1240 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1241 
1242   // The calling conventions assures us that each VMregpair is either
1243   // all really one physical register or adjacent stack slots.
1244   // This greatly simplifies the cases here compared to sparc.
1245 
1246   if (src.is_single_phys_reg() ) {
1247     if (dst.is_single_phys_reg()) {
1248       // In theory these overlap but the ordering is such that this is likely a nop
1249       if ( src.first() != dst.first()) {
1250         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1251       }
1252     } else {
1253       assert(dst.is_single_reg(), "not a stack pair");
1254       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1255     }
1256   } else if (dst.is_single_phys_reg()) {
1257     assert(src.is_single_reg(),  "not a stack pair");
1258     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1259   } else {
1260     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1261     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1262     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1263   }
1264 }
1265 
1266 
1267 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1268   // We always ignore the frame_slots arg and just use the space just below frame pointer
1269   // which by this time is free to use
1270   switch (ret_type) {
1271   case T_FLOAT:
1272     __ movflt(Address(rbp, -wordSize), xmm0);
1273     break;
1274   case T_DOUBLE:
1275     __ movdbl(Address(rbp, -wordSize), xmm0);
1276     break;
1277   case T_VOID:  break;
1278   default: {
1279     __ movptr(Address(rbp, -wordSize), rax);
1280     }
1281   }
1282 }
1283 
1284 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1285   // We always ignore the frame_slots arg and just use the space just below frame pointer
1286   // which by this time is free to use
1287   switch (ret_type) {
1288   case T_FLOAT:
1289     __ movflt(xmm0, Address(rbp, -wordSize));
1290     break;
1291   case T_DOUBLE:
1292     __ movdbl(xmm0, Address(rbp, -wordSize));
1293     break;
1294   case T_VOID:  break;
1295   default: {
1296     __ movptr(rax, Address(rbp, -wordSize));
1297     }
1298   }
1299 }
1300 
1301 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1302     for ( int i = first_arg ; i < arg_count ; i++ ) {
1303       if (args[i].first()->is_Register()) {
1304         __ push(args[i].first()->as_Register());
1305       } else if (args[i].first()->is_XMMRegister()) {
1306         __ subptr(rsp, 2*wordSize);
1307         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1308       }
1309     }
1310 }
1311 
1312 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1313     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1314       if (args[i].first()->is_Register()) {
1315         __ pop(args[i].first()->as_Register());
1316       } else if (args[i].first()->is_XMMRegister()) {
1317         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1318         __ addptr(rsp, 2*wordSize);
1319       }
1320     }
1321 }
1322 
1323 
1324 static void save_or_restore_arguments(MacroAssembler* masm,
1325                                       const int stack_slots,
1326                                       const int total_in_args,
1327                                       const int arg_save_area,
1328                                       OopMap* map,
1329                                       VMRegPair* in_regs,
1330                                       BasicType* in_sig_bt) {
1331   // if map is non-NULL then the code should store the values,
1332   // otherwise it should load them.
1333   int slot = arg_save_area;
1334   // Save down double word first
1335   for ( int i = 0; i < total_in_args; i++) {
1336     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1337       int offset = slot * VMRegImpl::stack_slot_size;
1338       slot += VMRegImpl::slots_per_word;
1339       assert(slot <= stack_slots, "overflow");
1340       if (map != NULL) {
1341         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1342       } else {
1343         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1344       }
1345     }
1346     if (in_regs[i].first()->is_Register() &&
1347         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1348       int offset = slot * VMRegImpl::stack_slot_size;
1349       if (map != NULL) {
1350         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1351         if (in_sig_bt[i] == T_ARRAY) {
1352           map->set_oop(VMRegImpl::stack2reg(slot));;
1353         }
1354       } else {
1355         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1356       }
1357       slot += VMRegImpl::slots_per_word;
1358     }
1359   }
1360   // Save or restore single word registers
1361   for ( int i = 0; i < total_in_args; i++) {
1362     if (in_regs[i].first()->is_Register()) {
1363       int offset = slot * VMRegImpl::stack_slot_size;
1364       slot++;
1365       assert(slot <= stack_slots, "overflow");
1366 
1367       // Value is in an input register pass we must flush it to the stack
1368       const Register reg = in_regs[i].first()->as_Register();
1369       switch (in_sig_bt[i]) {
1370         case T_BOOLEAN:
1371         case T_CHAR:
1372         case T_BYTE:
1373         case T_SHORT:
1374         case T_INT:
1375           if (map != NULL) {
1376             __ movl(Address(rsp, offset), reg);
1377           } else {
1378             __ movl(reg, Address(rsp, offset));
1379           }
1380           break;
1381         case T_ARRAY:
1382         case T_LONG:
1383           // handled above
1384           break;
1385         case T_OBJECT:
1386         default: ShouldNotReachHere();
1387       }
1388     } else if (in_regs[i].first()->is_XMMRegister()) {
1389       if (in_sig_bt[i] == T_FLOAT) {
1390         int offset = slot * VMRegImpl::stack_slot_size;
1391         slot++;
1392         assert(slot <= stack_slots, "overflow");
1393         if (map != NULL) {
1394           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1395         } else {
1396           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1397         }
1398       }
1399     } else if (in_regs[i].first()->is_stack()) {
1400       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1401         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1402         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1403       }
1404     }
1405   }
1406 }
1407 
1408 
1409 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1410 // keeps a new JNI critical region from starting until a GC has been
1411 // forced.  Save down any oops in registers and describe them in an
1412 // OopMap.
1413 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1414                                                int stack_slots,
1415                                                int total_c_args,
1416                                                int total_in_args,
1417                                                int arg_save_area,
1418                                                OopMapSet* oop_maps,
1419                                                VMRegPair* in_regs,
1420                                                BasicType* in_sig_bt) {
1421   __ block_comment("check GC_locker::needs_gc");
1422   Label cont;
1423   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
1424   __ jcc(Assembler::equal, cont);
1425 
1426   // Save down any incoming oops and call into the runtime to halt for a GC
1427 
1428   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1429   save_or_restore_arguments(masm, stack_slots, total_in_args,
1430                             arg_save_area, map, in_regs, in_sig_bt);
1431 
1432   address the_pc = __ pc();
1433   oop_maps->add_gc_map( __ offset(), map);
1434   __ set_last_Java_frame(rsp, noreg, the_pc);
1435 
1436   __ block_comment("block_for_jni_critical");
1437   __ movptr(c_rarg0, r15_thread);
1438   __ mov(r12, rsp); // remember sp
1439   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1440   __ andptr(rsp, -16); // align stack as required by ABI
1441   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1442   __ mov(rsp, r12); // restore sp
1443   __ reinit_heapbase();
1444 
1445   __ reset_last_Java_frame(false, true);
1446 
1447   save_or_restore_arguments(masm, stack_slots, total_in_args,
1448                             arg_save_area, NULL, in_regs, in_sig_bt);
1449 
1450   __ bind(cont);
1451 #ifdef ASSERT
1452   if (StressCriticalJNINatives) {
1453     // Stress register saving
1454     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1455     save_or_restore_arguments(masm, stack_slots, total_in_args,
1456                               arg_save_area, map, in_regs, in_sig_bt);
1457     // Destroy argument registers
1458     for (int i = 0; i < total_in_args - 1; i++) {
1459       if (in_regs[i].first()->is_Register()) {
1460         const Register reg = in_regs[i].first()->as_Register();
1461         __ xorptr(reg, reg);
1462       } else if (in_regs[i].first()->is_XMMRegister()) {
1463         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1464       } else if (in_regs[i].first()->is_FloatRegister()) {
1465         ShouldNotReachHere();
1466       } else if (in_regs[i].first()->is_stack()) {
1467         // Nothing to do
1468       } else {
1469         ShouldNotReachHere();
1470       }
1471       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1472         i++;
1473       }
1474     }
1475 
1476     save_or_restore_arguments(masm, stack_slots, total_in_args,
1477                               arg_save_area, NULL, in_regs, in_sig_bt);
1478   }
1479 #endif
1480 }
1481 
1482 // Unpack an array argument into a pointer to the body and the length
1483 // if the array is non-null, otherwise pass 0 for both.
1484 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1485   Register tmp_reg = rax;
1486   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1487          "possible collision");
1488   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1489          "possible collision");
1490 
1491   __ block_comment("unpack_array_argument {");
1492 
1493   // Pass the length, ptr pair
1494   Label is_null, done;
1495   VMRegPair tmp;
1496   tmp.set_ptr(tmp_reg->as_VMReg());
1497   if (reg.first()->is_stack()) {
1498     // Load the arg up from the stack
1499     move_ptr(masm, reg, tmp);
1500     reg = tmp;
1501   }
1502   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1503   __ jccb(Assembler::equal, is_null);
1504   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1505   move_ptr(masm, tmp, body_arg);
1506   // load the length relative to the body.
1507   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1508                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1509   move32_64(masm, tmp, length_arg);
1510   __ jmpb(done);
1511   __ bind(is_null);
1512   // Pass zeros
1513   __ xorptr(tmp_reg, tmp_reg);
1514   move_ptr(masm, tmp, body_arg);
1515   move32_64(masm, tmp, length_arg);
1516   __ bind(done);
1517 
1518   __ block_comment("} unpack_array_argument");
1519 }
1520 
1521 
1522 // Different signatures may require very different orders for the move
1523 // to avoid clobbering other arguments.  There's no simple way to
1524 // order them safely.  Compute a safe order for issuing stores and
1525 // break any cycles in those stores.  This code is fairly general but
1526 // it's not necessary on the other platforms so we keep it in the
1527 // platform dependent code instead of moving it into a shared file.
1528 // (See bugs 7013347 & 7145024.)
1529 // Note that this code is specific to LP64.
1530 class ComputeMoveOrder: public StackObj {
1531   class MoveOperation: public ResourceObj {
1532     friend class ComputeMoveOrder;
1533    private:
1534     VMRegPair        _src;
1535     VMRegPair        _dst;
1536     int              _src_index;
1537     int              _dst_index;
1538     bool             _processed;
1539     MoveOperation*  _next;
1540     MoveOperation*  _prev;
1541 
1542     static int get_id(VMRegPair r) {
1543       return r.first()->value();
1544     }
1545 
1546    public:
1547     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1548       _src(src)
1549     , _src_index(src_index)
1550     , _dst(dst)
1551     , _dst_index(dst_index)
1552     , _next(NULL)
1553     , _prev(NULL)
1554     , _processed(false) {
1555     }
1556 
1557     VMRegPair src() const              { return _src; }
1558     int src_id() const                 { return get_id(src()); }
1559     int src_index() const              { return _src_index; }
1560     VMRegPair dst() const              { return _dst; }
1561     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1562     int dst_index() const              { return _dst_index; }
1563     int dst_id() const                 { return get_id(dst()); }
1564     MoveOperation* next() const       { return _next; }
1565     MoveOperation* prev() const       { return _prev; }
1566     void set_processed()               { _processed = true; }
1567     bool is_processed() const          { return _processed; }
1568 
1569     // insert
1570     void break_cycle(VMRegPair temp_register) {
1571       // create a new store following the last store
1572       // to move from the temp_register to the original
1573       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1574 
1575       // break the cycle of links and insert new_store at the end
1576       // break the reverse link.
1577       MoveOperation* p = prev();
1578       assert(p->next() == this, "must be");
1579       _prev = NULL;
1580       p->_next = new_store;
1581       new_store->_prev = p;
1582 
1583       // change the original store to save it's value in the temp.
1584       set_dst(-1, temp_register);
1585     }
1586 
1587     void link(GrowableArray<MoveOperation*>& killer) {
1588       // link this store in front the store that it depends on
1589       MoveOperation* n = killer.at_grow(src_id(), NULL);
1590       if (n != NULL) {
1591         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1592         _next = n;
1593         n->_prev = this;
1594       }
1595     }
1596   };
1597 
1598  private:
1599   GrowableArray<MoveOperation*> edges;
1600 
1601  public:
1602   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1603                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1604     // Move operations where the dest is the stack can all be
1605     // scheduled first since they can't interfere with the other moves.
1606     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1607       if (in_sig_bt[i] == T_ARRAY) {
1608         c_arg--;
1609         if (out_regs[c_arg].first()->is_stack() &&
1610             out_regs[c_arg + 1].first()->is_stack()) {
1611           arg_order.push(i);
1612           arg_order.push(c_arg);
1613         } else {
1614           if (out_regs[c_arg].first()->is_stack() ||
1615               in_regs[i].first() == out_regs[c_arg].first()) {
1616             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1617           } else {
1618             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1619           }
1620         }
1621       } else if (in_sig_bt[i] == T_VOID) {
1622         arg_order.push(i);
1623         arg_order.push(c_arg);
1624       } else {
1625         if (out_regs[c_arg].first()->is_stack() ||
1626             in_regs[i].first() == out_regs[c_arg].first()) {
1627           arg_order.push(i);
1628           arg_order.push(c_arg);
1629         } else {
1630           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1631         }
1632       }
1633     }
1634     // Break any cycles in the register moves and emit the in the
1635     // proper order.
1636     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1637     for (int i = 0; i < stores->length(); i++) {
1638       arg_order.push(stores->at(i)->src_index());
1639       arg_order.push(stores->at(i)->dst_index());
1640     }
1641  }
1642 
1643   // Collected all the move operations
1644   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1645     if (src.first() == dst.first()) return;
1646     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1647   }
1648 
1649   // Walk the edges breaking cycles between moves.  The result list
1650   // can be walked in order to produce the proper set of loads
1651   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1652     // Record which moves kill which values
1653     GrowableArray<MoveOperation*> killer;
1654     for (int i = 0; i < edges.length(); i++) {
1655       MoveOperation* s = edges.at(i);
1656       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1657       killer.at_put_grow(s->dst_id(), s, NULL);
1658     }
1659     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1660            "make sure temp isn't in the registers that are killed");
1661 
1662     // create links between loads and stores
1663     for (int i = 0; i < edges.length(); i++) {
1664       edges.at(i)->link(killer);
1665     }
1666 
1667     // at this point, all the move operations are chained together
1668     // in a doubly linked list.  Processing it backwards finds
1669     // the beginning of the chain, forwards finds the end.  If there's
1670     // a cycle it can be broken at any point,  so pick an edge and walk
1671     // backward until the list ends or we end where we started.
1672     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1673     for (int e = 0; e < edges.length(); e++) {
1674       MoveOperation* s = edges.at(e);
1675       if (!s->is_processed()) {
1676         MoveOperation* start = s;
1677         // search for the beginning of the chain or cycle
1678         while (start->prev() != NULL && start->prev() != s) {
1679           start = start->prev();
1680         }
1681         if (start->prev() == s) {
1682           start->break_cycle(temp_register);
1683         }
1684         // walk the chain forward inserting to store list
1685         while (start != NULL) {
1686           stores->append(start);
1687           start->set_processed();
1688           start = start->next();
1689         }
1690       }
1691     }
1692     return stores;
1693   }
1694 };
1695 
1696 static void verify_oop_args(MacroAssembler* masm,
1697                             methodHandle method,
1698                             const BasicType* sig_bt,
1699                             const VMRegPair* regs) {
1700   Register temp_reg = rbx;  // not part of any compiled calling seq
1701   if (VerifyOops) {
1702     for (int i = 0; i < method->size_of_parameters(); i++) {
1703       if (sig_bt[i] == T_OBJECT ||
1704           sig_bt[i] == T_ARRAY) {
1705         VMReg r = regs[i].first();
1706         assert(r->is_valid(), "bad oop arg");
1707         if (r->is_stack()) {
1708           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1709           __ verify_oop(temp_reg);
1710         } else {
1711           __ verify_oop(r->as_Register());
1712         }
1713       }
1714     }
1715   }
1716 }
1717 
1718 static void gen_special_dispatch(MacroAssembler* masm,
1719                                  methodHandle method,
1720                                  const BasicType* sig_bt,
1721                                  const VMRegPair* regs) {
1722   verify_oop_args(masm, method, sig_bt, regs);
1723   vmIntrinsics::ID iid = method->intrinsic_id();
1724 
1725   // Now write the args into the outgoing interpreter space
1726   bool     has_receiver   = false;
1727   Register receiver_reg   = noreg;
1728   int      member_arg_pos = -1;
1729   Register member_reg     = noreg;
1730   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1731   if (ref_kind != 0) {
1732     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1733     member_reg = rbx;  // known to be free at this point
1734     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1735   } else if (iid == vmIntrinsics::_invokeBasic) {
1736     has_receiver = true;
1737   } else {
1738     fatal("unexpected intrinsic id %d", iid);
1739   }
1740 
1741   if (member_reg != noreg) {
1742     // Load the member_arg into register, if necessary.
1743     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1744     VMReg r = regs[member_arg_pos].first();
1745     if (r->is_stack()) {
1746       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1747     } else {
1748       // no data motion is needed
1749       member_reg = r->as_Register();
1750     }
1751   }
1752 
1753   if (has_receiver) {
1754     // Make sure the receiver is loaded into a register.
1755     assert(method->size_of_parameters() > 0, "oob");
1756     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1757     VMReg r = regs[0].first();
1758     assert(r->is_valid(), "bad receiver arg");
1759     if (r->is_stack()) {
1760       // Porting note:  This assumes that compiled calling conventions always
1761       // pass the receiver oop in a register.  If this is not true on some
1762       // platform, pick a temp and load the receiver from stack.
1763       fatal("receiver always in a register");
1764       receiver_reg = j_rarg0;  // known to be free at this point
1765       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1766     } else {
1767       // no data motion is needed
1768       receiver_reg = r->as_Register();
1769     }
1770   }
1771 
1772   // Figure out which address we are really jumping to:
1773   MethodHandles::generate_method_handle_dispatch(masm, iid,
1774                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1775 }
1776 
1777 // ---------------------------------------------------------------------------
1778 // Generate a native wrapper for a given method.  The method takes arguments
1779 // in the Java compiled code convention, marshals them to the native
1780 // convention (handlizes oops, etc), transitions to native, makes the call,
1781 // returns to java state (possibly blocking), unhandlizes any result and
1782 // returns.
1783 //
1784 // Critical native functions are a shorthand for the use of
1785 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1786 // functions.  The wrapper is expected to unpack the arguments before
1787 // passing them to the callee and perform checks before and after the
1788 // native call to ensure that they GC_locker
1789 // lock_critical/unlock_critical semantics are followed.  Some other
1790 // parts of JNI setup are skipped like the tear down of the JNI handle
1791 // block and the check for pending exceptions it's impossible for them
1792 // to be thrown.
1793 //
1794 // They are roughly structured like this:
1795 //    if (GC_locker::needs_gc())
1796 //      SharedRuntime::block_for_jni_critical();
1797 //    tranistion to thread_in_native
1798 //    unpack arrray arguments and call native entry point
1799 //    check for safepoint in progress
1800 //    check if any thread suspend flags are set
1801 //      call into JVM and possible unlock the JNI critical
1802 //      if a GC was suppressed while in the critical native.
1803 //    transition back to thread_in_Java
1804 //    return to caller
1805 //
1806 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1807                                                 methodHandle method,
1808                                                 int compile_id,
1809                                                 BasicType* in_sig_bt,
1810                                                 VMRegPair* in_regs,
1811                                                 BasicType ret_type) {
1812   if (method->is_method_handle_intrinsic()) {
1813     vmIntrinsics::ID iid = method->intrinsic_id();
1814     intptr_t start = (intptr_t)__ pc();
1815     int vep_offset = ((intptr_t)__ pc()) - start;
1816     gen_special_dispatch(masm,
1817                          method,
1818                          in_sig_bt,
1819                          in_regs);
1820     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1821     __ flush();
1822     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1823     return nmethod::new_native_nmethod(method,
1824                                        compile_id,
1825                                        masm->code(),
1826                                        vep_offset,
1827                                        frame_complete,
1828                                        stack_slots / VMRegImpl::slots_per_word,
1829                                        in_ByteSize(-1),
1830                                        in_ByteSize(-1),
1831                                        (OopMapSet*)NULL);
1832   }
1833   bool is_critical_native = true;
1834   address native_func = method->critical_native_function();
1835   if (native_func == NULL) {
1836     native_func = method->native_function();
1837     is_critical_native = false;
1838   }
1839   assert(native_func != NULL, "must have function");
1840 
1841   // An OopMap for lock (and class if static)
1842   OopMapSet *oop_maps = new OopMapSet();
1843   intptr_t start = (intptr_t)__ pc();
1844 
1845   // We have received a description of where all the java arg are located
1846   // on entry to the wrapper. We need to convert these args to where
1847   // the jni function will expect them. To figure out where they go
1848   // we convert the java signature to a C signature by inserting
1849   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1850 
1851   const int total_in_args = method->size_of_parameters();
1852   int total_c_args = total_in_args;
1853   if (!is_critical_native) {
1854     total_c_args += 1;
1855     if (method->is_static()) {
1856       total_c_args++;
1857     }
1858   } else {
1859     for (int i = 0; i < total_in_args; i++) {
1860       if (in_sig_bt[i] == T_ARRAY) {
1861         total_c_args++;
1862       }
1863     }
1864   }
1865 
1866   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1867   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1868   BasicType* in_elem_bt = NULL;
1869 
1870   int argc = 0;
1871   if (!is_critical_native) {
1872     out_sig_bt[argc++] = T_ADDRESS;
1873     if (method->is_static()) {
1874       out_sig_bt[argc++] = T_OBJECT;
1875     }
1876 
1877     for (int i = 0; i < total_in_args ; i++ ) {
1878       out_sig_bt[argc++] = in_sig_bt[i];
1879     }
1880   } else {
1881     Thread* THREAD = Thread::current();
1882     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1883     SignatureStream ss(method->signature());
1884     for (int i = 0; i < total_in_args ; i++ ) {
1885       if (in_sig_bt[i] == T_ARRAY) {
1886         // Arrays are passed as int, elem* pair
1887         out_sig_bt[argc++] = T_INT;
1888         out_sig_bt[argc++] = T_ADDRESS;
1889         Symbol* atype = ss.as_symbol(CHECK_NULL);
1890         const char* at = atype->as_C_string();
1891         if (strlen(at) == 2) {
1892           assert(at[0] == '[', "must be");
1893           switch (at[1]) {
1894             case 'B': in_elem_bt[i]  = T_BYTE; break;
1895             case 'C': in_elem_bt[i]  = T_CHAR; break;
1896             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1897             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1898             case 'I': in_elem_bt[i]  = T_INT; break;
1899             case 'J': in_elem_bt[i]  = T_LONG; break;
1900             case 'S': in_elem_bt[i]  = T_SHORT; break;
1901             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1902             default: ShouldNotReachHere();
1903           }
1904         }
1905       } else {
1906         out_sig_bt[argc++] = in_sig_bt[i];
1907         in_elem_bt[i] = T_VOID;
1908       }
1909       if (in_sig_bt[i] != T_VOID) {
1910         assert(in_sig_bt[i] == ss.type(), "must match");
1911         ss.next();
1912       }
1913     }
1914   }
1915 
1916   // Now figure out where the args must be stored and how much stack space
1917   // they require.
1918   int out_arg_slots;
1919   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1920 
1921   // Compute framesize for the wrapper.  We need to handlize all oops in
1922   // incoming registers
1923 
1924   // Calculate the total number of stack slots we will need.
1925 
1926   // First count the abi requirement plus all of the outgoing args
1927   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1928 
1929   // Now the space for the inbound oop handle area
1930   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1931   if (is_critical_native) {
1932     // Critical natives may have to call out so they need a save area
1933     // for register arguments.
1934     int double_slots = 0;
1935     int single_slots = 0;
1936     for ( int i = 0; i < total_in_args; i++) {
1937       if (in_regs[i].first()->is_Register()) {
1938         const Register reg = in_regs[i].first()->as_Register();
1939         switch (in_sig_bt[i]) {
1940           case T_BOOLEAN:
1941           case T_BYTE:
1942           case T_SHORT:
1943           case T_CHAR:
1944           case T_INT:  single_slots++; break;
1945           case T_ARRAY:  // specific to LP64 (7145024)
1946           case T_LONG: double_slots++; break;
1947           default:  ShouldNotReachHere();
1948         }
1949       } else if (in_regs[i].first()->is_XMMRegister()) {
1950         switch (in_sig_bt[i]) {
1951           case T_FLOAT:  single_slots++; break;
1952           case T_DOUBLE: double_slots++; break;
1953           default:  ShouldNotReachHere();
1954         }
1955       } else if (in_regs[i].first()->is_FloatRegister()) {
1956         ShouldNotReachHere();
1957       }
1958     }
1959     total_save_slots = double_slots * 2 + single_slots;
1960     // align the save area
1961     if (double_slots != 0) {
1962       stack_slots = round_to(stack_slots, 2);
1963     }
1964   }
1965 
1966   int oop_handle_offset = stack_slots;
1967   stack_slots += total_save_slots;
1968 
1969   // Now any space we need for handlizing a klass if static method
1970 
1971   int klass_slot_offset = 0;
1972   int klass_offset = -1;
1973   int lock_slot_offset = 0;
1974   bool is_static = false;
1975 
1976   if (method->is_static()) {
1977     klass_slot_offset = stack_slots;
1978     stack_slots += VMRegImpl::slots_per_word;
1979     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1980     is_static = true;
1981   }
1982 
1983   // Plus a lock if needed
1984 
1985   if (method->is_synchronized()) {
1986     lock_slot_offset = stack_slots;
1987     stack_slots += VMRegImpl::slots_per_word;
1988   }
1989 
1990   // Now a place (+2) to save return values or temp during shuffling
1991   // + 4 for return address (which we own) and saved rbp
1992   stack_slots += 6;
1993 
1994   // Ok The space we have allocated will look like:
1995   //
1996   //
1997   // FP-> |                     |
1998   //      |---------------------|
1999   //      | 2 slots for moves   |
2000   //      |---------------------|
2001   //      | lock box (if sync)  |
2002   //      |---------------------| <- lock_slot_offset
2003   //      | klass (if static)   |
2004   //      |---------------------| <- klass_slot_offset
2005   //      | oopHandle area      |
2006   //      |---------------------| <- oop_handle_offset (6 java arg registers)
2007   //      | outbound memory     |
2008   //      | based arguments     |
2009   //      |                     |
2010   //      |---------------------|
2011   //      |                     |
2012   // SP-> | out_preserved_slots |
2013   //
2014   //
2015 
2016 
2017   // Now compute actual number of stack words we need rounding to make
2018   // stack properly aligned.
2019   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
2020 
2021   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2022 
2023   // First thing make an ic check to see if we should even be here
2024 
2025   // We are free to use all registers as temps without saving them and
2026   // restoring them except rbp. rbp is the only callee save register
2027   // as far as the interpreter and the compiler(s) are concerned.
2028 
2029 
2030   const Register ic_reg = rax;
2031   const Register receiver = j_rarg0;
2032 
2033   Label hit;
2034   Label exception_pending;
2035 
2036   assert_different_registers(ic_reg, receiver, rscratch1);
2037   __ verify_oop(receiver);
2038   __ load_klass(rscratch1, receiver);
2039   __ cmpq(ic_reg, rscratch1);
2040   __ jcc(Assembler::equal, hit);
2041 
2042   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2043 
2044   // Verified entry point must be aligned
2045   __ align(8);
2046 
2047   __ bind(hit);
2048 
2049   int vep_offset = ((intptr_t)__ pc()) - start;
2050 
2051   // The instruction at the verified entry point must be 5 bytes or longer
2052   // because it can be patched on the fly by make_non_entrant. The stack bang
2053   // instruction fits that requirement.
2054 
2055   // Generate stack overflow check
2056 
2057   if (UseStackBanging) {
2058     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2059   } else {
2060     // need a 5 byte instruction to allow MT safe patching to non-entrant
2061     __ fat_nop();
2062   }
2063 
2064   // Generate a new frame for the wrapper.
2065   __ enter();
2066   // -2 because return address is already present and so is saved rbp
2067   __ subptr(rsp, stack_size - 2*wordSize);
2068 
2069   // Frame is now completed as far as size and linkage.
2070   int frame_complete = ((intptr_t)__ pc()) - start;
2071 
2072     if (UseRTMLocking) {
2073       // Abort RTM transaction before calling JNI
2074       // because critical section will be large and will be
2075       // aborted anyway. Also nmethod could be deoptimized.
2076       __ xabort(0);
2077     }
2078 
2079 #ifdef ASSERT
2080     {
2081       Label L;
2082       __ mov(rax, rsp);
2083       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2084       __ cmpptr(rax, rsp);
2085       __ jcc(Assembler::equal, L);
2086       __ stop("improperly aligned stack");
2087       __ bind(L);
2088     }
2089 #endif /* ASSERT */
2090 
2091 
2092   // We use r14 as the oop handle for the receiver/klass
2093   // It is callee save so it survives the call to native
2094 
2095   const Register oop_handle_reg = r14;
2096 
2097   if (is_critical_native) {
2098     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2099                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2100   }
2101 
2102   //
2103   // We immediately shuffle the arguments so that any vm call we have to
2104   // make from here on out (sync slow path, jvmti, etc.) we will have
2105   // captured the oops from our caller and have a valid oopMap for
2106   // them.
2107 
2108   // -----------------
2109   // The Grand Shuffle
2110 
2111   // The Java calling convention is either equal (linux) or denser (win64) than the
2112   // c calling convention. However the because of the jni_env argument the c calling
2113   // convention always has at least one more (and two for static) arguments than Java.
2114   // Therefore if we move the args from java -> c backwards then we will never have
2115   // a register->register conflict and we don't have to build a dependency graph
2116   // and figure out how to break any cycles.
2117   //
2118 
2119   // Record esp-based slot for receiver on stack for non-static methods
2120   int receiver_offset = -1;
2121 
2122   // This is a trick. We double the stack slots so we can claim
2123   // the oops in the caller's frame. Since we are sure to have
2124   // more args than the caller doubling is enough to make
2125   // sure we can capture all the incoming oop args from the
2126   // caller.
2127   //
2128   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2129 
2130   // Mark location of rbp (someday)
2131   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2132 
2133   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2134   // All inbound args are referenced based on rbp and all outbound args via rsp.
2135 
2136 
2137 #ifdef ASSERT
2138   bool reg_destroyed[RegisterImpl::number_of_registers];
2139   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2140   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2141     reg_destroyed[r] = false;
2142   }
2143   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2144     freg_destroyed[f] = false;
2145   }
2146 
2147 #endif /* ASSERT */
2148 
2149   // This may iterate in two different directions depending on the
2150   // kind of native it is.  The reason is that for regular JNI natives
2151   // the incoming and outgoing registers are offset upwards and for
2152   // critical natives they are offset down.
2153   GrowableArray<int> arg_order(2 * total_in_args);
2154   VMRegPair tmp_vmreg;
2155   tmp_vmreg.set1(rbx->as_VMReg());
2156 
2157   if (!is_critical_native) {
2158     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2159       arg_order.push(i);
2160       arg_order.push(c_arg);
2161     }
2162   } else {
2163     // Compute a valid move order, using tmp_vmreg to break any cycles
2164     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2165   }
2166 
2167   int temploc = -1;
2168   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2169     int i = arg_order.at(ai);
2170     int c_arg = arg_order.at(ai + 1);
2171     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2172     if (c_arg == -1) {
2173       assert(is_critical_native, "should only be required for critical natives");
2174       // This arg needs to be moved to a temporary
2175       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2176       in_regs[i] = tmp_vmreg;
2177       temploc = i;
2178       continue;
2179     } else if (i == -1) {
2180       assert(is_critical_native, "should only be required for critical natives");
2181       // Read from the temporary location
2182       assert(temploc != -1, "must be valid");
2183       i = temploc;
2184       temploc = -1;
2185     }
2186 #ifdef ASSERT
2187     if (in_regs[i].first()->is_Register()) {
2188       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2189     } else if (in_regs[i].first()->is_XMMRegister()) {
2190       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2191     }
2192     if (out_regs[c_arg].first()->is_Register()) {
2193       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2194     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2195       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2196     }
2197 #endif /* ASSERT */
2198     switch (in_sig_bt[i]) {
2199       case T_ARRAY:
2200         if (is_critical_native) {
2201           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2202           c_arg++;
2203 #ifdef ASSERT
2204           if (out_regs[c_arg].first()->is_Register()) {
2205             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2206           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2207             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2208           }
2209 #endif
2210           break;
2211         }
2212       case T_OBJECT:
2213         assert(!is_critical_native, "no oop arguments");
2214         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2215                     ((i == 0) && (!is_static)),
2216                     &receiver_offset);
2217         break;
2218       case T_VOID:
2219         break;
2220 
2221       case T_FLOAT:
2222         float_move(masm, in_regs[i], out_regs[c_arg]);
2223           break;
2224 
2225       case T_DOUBLE:
2226         assert( i + 1 < total_in_args &&
2227                 in_sig_bt[i + 1] == T_VOID &&
2228                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2229         double_move(masm, in_regs[i], out_regs[c_arg]);
2230         break;
2231 
2232       case T_LONG :
2233         long_move(masm, in_regs[i], out_regs[c_arg]);
2234         break;
2235 
2236       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2237 
2238       default:
2239         move32_64(masm, in_regs[i], out_regs[c_arg]);
2240     }
2241   }
2242 
2243   int c_arg;
2244 
2245   // Pre-load a static method's oop into r14.  Used both by locking code and
2246   // the normal JNI call code.
2247   if (!is_critical_native) {
2248     // point c_arg at the first arg that is already loaded in case we
2249     // need to spill before we call out
2250     c_arg = total_c_args - total_in_args;
2251 
2252     if (method->is_static()) {
2253 
2254       //  load oop into a register
2255       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2256 
2257       // Now handlize the static class mirror it's known not-null.
2258       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2259       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2260 
2261       // Now get the handle
2262       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2263       // store the klass handle as second argument
2264       __ movptr(c_rarg1, oop_handle_reg);
2265       // and protect the arg if we must spill
2266       c_arg--;
2267     }
2268   } else {
2269     // For JNI critical methods we need to save all registers in save_args.
2270     c_arg = 0;
2271   }
2272 
2273   // Change state to native (we save the return address in the thread, since it might not
2274   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2275   // points into the right code segment. It does not have to be the correct return pc.
2276   // We use the same pc/oopMap repeatedly when we call out
2277 
2278   intptr_t the_pc = (intptr_t) __ pc();
2279   oop_maps->add_gc_map(the_pc - start, map);
2280 
2281   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2282 
2283 
2284   // We have all of the arguments setup at this point. We must not touch any register
2285   // argument registers at this point (what if we save/restore them there are no oop?
2286 
2287   {
2288     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2289     // protect the args we've loaded
2290     save_args(masm, total_c_args, c_arg, out_regs);
2291     __ mov_metadata(c_rarg1, method());
2292     __ call_VM_leaf(
2293       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2294       r15_thread, c_rarg1);
2295     restore_args(masm, total_c_args, c_arg, out_regs);
2296   }
2297 
2298   // RedefineClasses() tracing support for obsolete method entry
2299   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2300     // protect the args we've loaded
2301     save_args(masm, total_c_args, c_arg, out_regs);
2302     __ mov_metadata(c_rarg1, method());
2303     __ call_VM_leaf(
2304       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2305       r15_thread, c_rarg1);
2306     restore_args(masm, total_c_args, c_arg, out_regs);
2307   }
2308 
2309   // Lock a synchronized method
2310 
2311   // Register definitions used by locking and unlocking
2312 
2313   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2314   const Register obj_reg  = rbx;  // Will contain the oop
2315   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2316   const Register old_hdr  = r13;  // value of old header at unlock time
2317 
2318   Label slow_path_lock;
2319   Label lock_done;
2320 
2321   if (method->is_synchronized()) {
2322     assert(!is_critical_native, "unhandled");
2323 
2324 
2325     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2326 
2327     // Get the handle (the 2nd argument)
2328     __ mov(oop_handle_reg, c_rarg1);
2329 
2330     // Get address of the box
2331 
2332     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2333 
2334     // Load the oop from the handle
2335     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2336 
2337     if (UseBiasedLocking) {
2338       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2339     }
2340 
2341     // Load immediate 1 into swap_reg %rax
2342     __ movl(swap_reg, 1);
2343 
2344     // Load (object->mark() | 1) into swap_reg %rax
2345     __ orptr(swap_reg, Address(obj_reg, 0));
2346 
2347     // Save (object->mark() | 1) into BasicLock's displaced header
2348     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2349 
2350     if (os::is_MP()) {
2351       __ lock();
2352     }
2353 
2354     // src -> dest iff dest == rax else rax <- dest
2355     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2356     __ jcc(Assembler::equal, lock_done);
2357 
2358     // Hmm should this move to the slow path code area???
2359 
2360     // Test if the oopMark is an obvious stack pointer, i.e.,
2361     //  1) (mark & 3) == 0, and
2362     //  2) rsp <= mark < mark + os::pagesize()
2363     // These 3 tests can be done by evaluating the following
2364     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2365     // assuming both stack pointer and pagesize have their
2366     // least significant 2 bits clear.
2367     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2368 
2369     __ subptr(swap_reg, rsp);
2370     __ andptr(swap_reg, 3 - os::vm_page_size());
2371 
2372     // Save the test result, for recursive case, the result is zero
2373     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2374     __ jcc(Assembler::notEqual, slow_path_lock);
2375 
2376     // Slow path will re-enter here
2377 
2378     __ bind(lock_done);
2379   }
2380 
2381 
2382   // Finally just about ready to make the JNI call
2383 
2384 
2385   // get JNIEnv* which is first argument to native
2386   if (!is_critical_native) {
2387     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2388   }
2389 
2390   // Now set thread in native
2391   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2392 
2393   __ call(RuntimeAddress(native_func));
2394 
2395   // Verify or restore cpu control state after JNI call
2396   __ restore_cpu_control_state_after_jni();
2397 
2398   // Unpack native results.
2399   switch (ret_type) {
2400   case T_BOOLEAN: __ c2bool(rax);            break;
2401   case T_CHAR   : __ movzwl(rax, rax);      break;
2402   case T_BYTE   : __ sign_extend_byte (rax); break;
2403   case T_SHORT  : __ sign_extend_short(rax); break;
2404   case T_INT    : /* nothing to do */        break;
2405   case T_DOUBLE :
2406   case T_FLOAT  :
2407     // Result is in xmm0 we'll save as needed
2408     break;
2409   case T_ARRAY:                 // Really a handle
2410   case T_OBJECT:                // Really a handle
2411       break; // can't de-handlize until after safepoint check
2412   case T_VOID: break;
2413   case T_LONG: break;
2414   default       : ShouldNotReachHere();
2415   }
2416 
2417   // Switch thread to "native transition" state before reading the synchronization state.
2418   // This additional state is necessary because reading and testing the synchronization
2419   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2420   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2421   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2422   //     Thread A is resumed to finish this native method, but doesn't block here since it
2423   //     didn't see any synchronization is progress, and escapes.
2424   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2425 
2426   if(os::is_MP()) {
2427     if (UseMembar) {
2428       // Force this write out before the read below
2429       __ membar(Assembler::Membar_mask_bits(
2430            Assembler::LoadLoad | Assembler::LoadStore |
2431            Assembler::StoreLoad | Assembler::StoreStore));
2432     } else {
2433       // Write serialization page so VM thread can do a pseudo remote membar.
2434       // We use the current thread pointer to calculate a thread specific
2435       // offset to write to within the page. This minimizes bus traffic
2436       // due to cache line collision.
2437       __ serialize_memory(r15_thread, rcx);
2438     }
2439   }
2440 
2441   Label after_transition;
2442 
2443   // check for safepoint operation in progress and/or pending suspend requests
2444   {
2445     Label Continue;
2446 
2447     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2448              SafepointSynchronize::_not_synchronized);
2449 
2450     Label L;
2451     __ jcc(Assembler::notEqual, L);
2452     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2453     __ jcc(Assembler::equal, Continue);
2454     __ bind(L);
2455 
2456     // Don't use call_VM as it will see a possible pending exception and forward it
2457     // and never return here preventing us from clearing _last_native_pc down below.
2458     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2459     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2460     // by hand.
2461     //
2462     save_native_result(masm, ret_type, stack_slots);
2463     __ mov(c_rarg0, r15_thread);
2464     __ mov(r12, rsp); // remember sp
2465     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2466     __ andptr(rsp, -16); // align stack as required by ABI
2467     if (!is_critical_native) {
2468       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2469     } else {
2470       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2471     }
2472     __ mov(rsp, r12); // restore sp
2473     __ reinit_heapbase();
2474     // Restore any method result value
2475     restore_native_result(masm, ret_type, stack_slots);
2476 
2477     if (is_critical_native) {
2478       // The call above performed the transition to thread_in_Java so
2479       // skip the transition logic below.
2480       __ jmpb(after_transition);
2481     }
2482 
2483     __ bind(Continue);
2484   }
2485 
2486   // change thread state
2487   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2488   __ bind(after_transition);
2489 
2490   Label reguard;
2491   Label reguard_done;
2492   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
2493   __ jcc(Assembler::equal, reguard);
2494   __ bind(reguard_done);
2495 
2496   // native result if any is live
2497 
2498   // Unlock
2499   Label unlock_done;
2500   Label slow_path_unlock;
2501   if (method->is_synchronized()) {
2502 
2503     // Get locked oop from the handle we passed to jni
2504     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2505 
2506     Label done;
2507 
2508     if (UseBiasedLocking) {
2509       __ biased_locking_exit(obj_reg, old_hdr, done);
2510     }
2511 
2512     // Simple recursive lock?
2513 
2514     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2515     __ jcc(Assembler::equal, done);
2516 
2517     // Must save rax if if it is live now because cmpxchg must use it
2518     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2519       save_native_result(masm, ret_type, stack_slots);
2520     }
2521 
2522 
2523     // get address of the stack lock
2524     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2525     //  get old displaced header
2526     __ movptr(old_hdr, Address(rax, 0));
2527 
2528     // Atomic swap old header if oop still contains the stack lock
2529     if (os::is_MP()) {
2530       __ lock();
2531     }
2532     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
2533     __ jcc(Assembler::notEqual, slow_path_unlock);
2534 
2535     // slow path re-enters here
2536     __ bind(unlock_done);
2537     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2538       restore_native_result(masm, ret_type, stack_slots);
2539     }
2540 
2541     __ bind(done);
2542 
2543   }
2544   {
2545     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2546     save_native_result(masm, ret_type, stack_slots);
2547     __ mov_metadata(c_rarg1, method());
2548     __ call_VM_leaf(
2549          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2550          r15_thread, c_rarg1);
2551     restore_native_result(masm, ret_type, stack_slots);
2552   }
2553 
2554   __ reset_last_Java_frame(false, true);
2555 
2556   // Unpack oop result
2557   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2558       Label L;
2559       __ testptr(rax, rax);
2560       __ jcc(Assembler::zero, L);
2561       __ movptr(rax, Address(rax, 0));
2562       __ bind(L);
2563       __ verify_oop(rax);
2564   }
2565 
2566   if (!is_critical_native) {
2567     // reset handle block
2568     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2569     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2570   }
2571 
2572   // pop our frame
2573 
2574   __ leave();
2575 
2576   if (!is_critical_native) {
2577     // Any exception pending?
2578     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2579     __ jcc(Assembler::notEqual, exception_pending);
2580   }
2581 
2582   // Return
2583 
2584   __ ret(0);
2585 
2586   // Unexpected paths are out of line and go here
2587 
2588   if (!is_critical_native) {
2589     // forward the exception
2590     __ bind(exception_pending);
2591 
2592     // and forward the exception
2593     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2594   }
2595 
2596   // Slow path locking & unlocking
2597   if (method->is_synchronized()) {
2598 
2599     // BEGIN Slow path lock
2600     __ bind(slow_path_lock);
2601 
2602     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2603     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2604 
2605     // protect the args we've loaded
2606     save_args(masm, total_c_args, c_arg, out_regs);
2607 
2608     __ mov(c_rarg0, obj_reg);
2609     __ mov(c_rarg1, lock_reg);
2610     __ mov(c_rarg2, r15_thread);
2611 
2612     // Not a leaf but we have last_Java_frame setup as we want
2613     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2614     restore_args(masm, total_c_args, c_arg, out_regs);
2615 
2616 #ifdef ASSERT
2617     { Label L;
2618     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2619     __ jcc(Assembler::equal, L);
2620     __ stop("no pending exception allowed on exit from monitorenter");
2621     __ bind(L);
2622     }
2623 #endif
2624     __ jmp(lock_done);
2625 
2626     // END Slow path lock
2627 
2628     // BEGIN Slow path unlock
2629     __ bind(slow_path_unlock);
2630 
2631     // If we haven't already saved the native result we must save it now as xmm registers
2632     // are still exposed.
2633 
2634     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2635       save_native_result(masm, ret_type, stack_slots);
2636     }
2637 
2638     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2639 
2640     __ mov(c_rarg0, obj_reg);
2641     __ mov(c_rarg2, r15_thread);
2642     __ mov(r12, rsp); // remember sp
2643     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2644     __ andptr(rsp, -16); // align stack as required by ABI
2645 
2646     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2647     // NOTE that obj_reg == rbx currently
2648     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2649     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2650 
2651     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2652     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2653     __ mov(rsp, r12); // restore sp
2654     __ reinit_heapbase();
2655 #ifdef ASSERT
2656     {
2657       Label L;
2658       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2659       __ jcc(Assembler::equal, L);
2660       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2661       __ bind(L);
2662     }
2663 #endif /* ASSERT */
2664 
2665     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2666 
2667     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2668       restore_native_result(masm, ret_type, stack_slots);
2669     }
2670     __ jmp(unlock_done);
2671 
2672     // END Slow path unlock
2673 
2674   } // synchronized
2675 
2676   // SLOW PATH Reguard the stack if needed
2677 
2678   __ bind(reguard);
2679   save_native_result(masm, ret_type, stack_slots);
2680   __ mov(r12, rsp); // remember sp
2681   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2682   __ andptr(rsp, -16); // align stack as required by ABI
2683   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2684   __ mov(rsp, r12); // restore sp
2685   __ reinit_heapbase();
2686   restore_native_result(masm, ret_type, stack_slots);
2687   // and continue
2688   __ jmp(reguard_done);
2689 
2690 
2691 
2692   __ flush();
2693 
2694   nmethod *nm = nmethod::new_native_nmethod(method,
2695                                             compile_id,
2696                                             masm->code(),
2697                                             vep_offset,
2698                                             frame_complete,
2699                                             stack_slots / VMRegImpl::slots_per_word,
2700                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2701                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2702                                             oop_maps);
2703 
2704   if (is_critical_native) {
2705     nm->set_lazy_critical_native(true);
2706   }
2707 
2708   return nm;
2709 
2710 }
2711 
2712 // this function returns the adjust size (in number of words) to a c2i adapter
2713 // activation for use during deoptimization
2714 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2715   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2716 }
2717 
2718 
2719 uint SharedRuntime::out_preserve_stack_slots() {
2720   return 0;
2721 }
2722 
2723 //------------------------------generate_deopt_blob----------------------------
2724 void SharedRuntime::generate_deopt_blob() {
2725   // Allocate space for the code
2726   ResourceMark rm;
2727   // Setup code generation tools
2728   int pad = 0;
2729 #if INCLUDE_JVMCI
2730   if (EnableJVMCI) {
2731     pad += 512; // Increase the buffer size when compiling for JVMCI
2732   }
2733 #endif
2734   CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
2735   MacroAssembler* masm = new MacroAssembler(&buffer);
2736   int frame_size_in_words;
2737   OopMap* map = NULL;
2738   OopMapSet *oop_maps = new OopMapSet();
2739 
2740   // -------------
2741   // This code enters when returning to a de-optimized nmethod.  A return
2742   // address has been pushed on the the stack, and return values are in
2743   // registers.
2744   // If we are doing a normal deopt then we were called from the patched
2745   // nmethod from the point we returned to the nmethod. So the return
2746   // address on the stack is wrong by NativeCall::instruction_size
2747   // We will adjust the value so it looks like we have the original return
2748   // address on the stack (like when we eagerly deoptimized).
2749   // In the case of an exception pending when deoptimizing, we enter
2750   // with a return address on the stack that points after the call we patched
2751   // into the exception handler. We have the following register state from,
2752   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2753   //    rax: exception oop
2754   //    rbx: exception handler
2755   //    rdx: throwing pc
2756   // So in this case we simply jam rdx into the useless return address and
2757   // the stack looks just like we want.
2758   //
2759   // At this point we need to de-opt.  We save the argument return
2760   // registers.  We call the first C routine, fetch_unroll_info().  This
2761   // routine captures the return values and returns a structure which
2762   // describes the current frame size and the sizes of all replacement frames.
2763   // The current frame is compiled code and may contain many inlined
2764   // functions, each with their own JVM state.  We pop the current frame, then
2765   // push all the new frames.  Then we call the C routine unpack_frames() to
2766   // populate these frames.  Finally unpack_frames() returns us the new target
2767   // address.  Notice that callee-save registers are BLOWN here; they have
2768   // already been captured in the vframeArray at the time the return PC was
2769   // patched.
2770   address start = __ pc();
2771   Label cont;
2772 
2773   // Prolog for non exception case!
2774 
2775   // Save everything in sight.
2776   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2777 
2778   // Normal deoptimization.  Save exec mode for unpack_frames.
2779   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2780   __ jmp(cont);
2781 
2782   int reexecute_offset = __ pc() - start;
2783 #if INCLUDE_JVMCI && !defined(COMPILER1)
2784   if (EnableJVMCI && UseJVMCICompiler) {
2785     // JVMCI does not use this kind of deoptimization
2786     __ should_not_reach_here();
2787   }
2788 #endif
2789 
2790   // Reexecute case
2791   // return address is the pc describes what bci to do re-execute at
2792 
2793   // No need to update map as each call to save_live_registers will produce identical oopmap
2794   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2795 
2796   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2797   __ jmp(cont);
2798 
2799 #if INCLUDE_JVMCI
2800   Label after_fetch_unroll_info_call;
2801   int implicit_exception_uncommon_trap_offset = 0;
2802   int uncommon_trap_offset = 0;
2803 
2804   if (EnableJVMCI) {
2805     implicit_exception_uncommon_trap_offset = __ pc() - start;
2806 
2807     __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2808     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD);
2809 
2810     uncommon_trap_offset = __ pc() - start;
2811 
2812     // Save everything in sight.
2813     RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2814     // fetch_unroll_info needs to call last_java_frame()
2815     __ set_last_Java_frame(noreg, noreg, NULL);
2816 
2817     __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())));
2818     __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1);
2819 
2820     __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute);
2821     __ mov(c_rarg0, r15_thread);
2822     __ movl(c_rarg2, r14); // exec mode
2823     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2824     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2825 
2826     __ reset_last_Java_frame(false, false);
2827 
2828     __ jmp(after_fetch_unroll_info_call);
2829   } // EnableJVMCI
2830 #endif // INCLUDE_JVMCI
2831 
2832   int exception_offset = __ pc() - start;
2833 
2834   // Prolog for exception case
2835 
2836   // all registers are dead at this entry point, except for rax, and
2837   // rdx which contain the exception oop and exception pc
2838   // respectively.  Set them in TLS and fall thru to the
2839   // unpack_with_exception_in_tls entry point.
2840 
2841   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2842   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2843 
2844   int exception_in_tls_offset = __ pc() - start;
2845 
2846   // new implementation because exception oop is now passed in JavaThread
2847 
2848   // Prolog for exception case
2849   // All registers must be preserved because they might be used by LinearScan
2850   // Exceptiop oop and throwing PC are passed in JavaThread
2851   // tos: stack at point of call to method that threw the exception (i.e. only
2852   // args are on the stack, no return address)
2853 
2854   // make room on stack for the return address
2855   // It will be patched later with the throwing pc. The correct value is not
2856   // available now because loading it from memory would destroy registers.
2857   __ push(0);
2858 
2859   // Save everything in sight.
2860   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2861 
2862   // Now it is safe to overwrite any register
2863 
2864   // Deopt during an exception.  Save exec mode for unpack_frames.
2865   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2866 
2867   // load throwing pc from JavaThread and patch it as the return address
2868   // of the current frame. Then clear the field in JavaThread
2869 
2870   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2871   __ movptr(Address(rbp, wordSize), rdx);
2872   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2873 
2874 #ifdef ASSERT
2875   // verify that there is really an exception oop in JavaThread
2876   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2877   __ verify_oop(rax);
2878 
2879   // verify that there is no pending exception
2880   Label no_pending_exception;
2881   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2882   __ testptr(rax, rax);
2883   __ jcc(Assembler::zero, no_pending_exception);
2884   __ stop("must not have pending exception here");
2885   __ bind(no_pending_exception);
2886 #endif
2887 
2888   __ bind(cont);
2889 
2890   // Call C code.  Need thread and this frame, but NOT official VM entry
2891   // crud.  We cannot block on this call, no GC can happen.
2892   //
2893   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2894 
2895   // fetch_unroll_info needs to call last_java_frame().
2896 
2897   __ set_last_Java_frame(noreg, noreg, NULL);
2898 #ifdef ASSERT
2899   { Label L;
2900     __ cmpptr(Address(r15_thread,
2901                     JavaThread::last_Java_fp_offset()),
2902             (int32_t)0);
2903     __ jcc(Assembler::equal, L);
2904     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2905     __ bind(L);
2906   }
2907 #endif // ASSERT
2908   __ mov(c_rarg0, r15_thread);
2909   __ movl(c_rarg1, r14); // exec_mode
2910   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2911 
2912   // Need to have an oopmap that tells fetch_unroll_info where to
2913   // find any register it might need.
2914   oop_maps->add_gc_map(__ pc() - start, map);
2915 
2916   __ reset_last_Java_frame(false, false);
2917 
2918 #if INCLUDE_JVMCI
2919   if (EnableJVMCI) {
2920     __ bind(after_fetch_unroll_info_call);
2921   }
2922 #endif
2923 
2924   // Load UnrollBlock* into rdi
2925   __ mov(rdi, rax);
2926 
2927   __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
2928    Label noException;
2929   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2930   __ jcc(Assembler::notEqual, noException);
2931   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2932   // QQQ this is useless it was NULL above
2933   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2934   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
2935   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2936 
2937   __ verify_oop(rax);
2938 
2939   // Overwrite the result registers with the exception results.
2940   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2941   // I think this is useless
2942   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
2943 
2944   __ bind(noException);
2945 
2946   // Only register save data is on the stack.
2947   // Now restore the result registers.  Everything else is either dead
2948   // or captured in the vframeArray.
2949   RegisterSaver::restore_result_registers(masm);
2950 
2951   // All of the register save area has been popped of the stack. Only the
2952   // return address remains.
2953 
2954   // Pop all the frames we must move/replace.
2955   //
2956   // Frame picture (youngest to oldest)
2957   // 1: self-frame (no frame link)
2958   // 2: deopting frame  (no frame link)
2959   // 3: caller of deopting frame (could be compiled/interpreted).
2960   //
2961   // Note: by leaving the return address of self-frame on the stack
2962   // and using the size of frame 2 to adjust the stack
2963   // when we are done the return to frame 3 will still be on the stack.
2964 
2965   // Pop deoptimized frame
2966   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2967   __ addptr(rsp, rcx);
2968 
2969   // rsp should be pointing at the return address to the caller (3)
2970 
2971   // Pick up the initial fp we should save
2972   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2973   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2974 
2975 #ifdef ASSERT
2976   // Compilers generate code that bang the stack by as much as the
2977   // interpreter would need. So this stack banging should never
2978   // trigger a fault. Verify that it does not on non product builds.
2979   if (UseStackBanging) {
2980     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2981     __ bang_stack_size(rbx, rcx);
2982   }
2983 #endif
2984 
2985   // Load address of array of frame pcs into rcx
2986   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2987 
2988   // Trash the old pc
2989   __ addptr(rsp, wordSize);
2990 
2991   // Load address of array of frame sizes into rsi
2992   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2993 
2994   // Load counter into rdx
2995   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2996 
2997   // Now adjust the caller's stack to make up for the extra locals
2998   // but record the original sp so that we can save it in the skeletal interpreter
2999   // frame and the stack walking of interpreter_sender will get the unextended sp
3000   // value and not the "real" sp value.
3001 
3002   const Register sender_sp = r8;
3003 
3004   __ mov(sender_sp, rsp);
3005   __ movl(rbx, Address(rdi,
3006                        Deoptimization::UnrollBlock::
3007                        caller_adjustment_offset_in_bytes()));
3008   __ subptr(rsp, rbx);
3009 
3010   // Push interpreter frames in a loop
3011   Label loop;
3012   __ bind(loop);
3013   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3014 #ifdef CC_INTERP
3015   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
3016 #ifdef ASSERT
3017   __ push(0xDEADDEAD);                  // Make a recognizable pattern
3018   __ push(0xDEADDEAD);
3019 #else /* ASSERT */
3020   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
3021 #endif /* ASSERT */
3022 #else
3023   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3024 #endif // CC_INTERP
3025   __ pushptr(Address(rcx, 0));          // Save return address
3026   __ enter();                           // Save old & set new ebp
3027   __ subptr(rsp, rbx);                  // Prolog
3028 #ifdef CC_INTERP
3029   __ movptr(Address(rbp,
3030                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3031             sender_sp); // Make it walkable
3032 #else /* CC_INTERP */
3033   // This value is corrected by layout_activation_impl
3034   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3035   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3036 #endif /* CC_INTERP */
3037   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3038   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3039   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3040   __ decrementl(rdx);                   // Decrement counter
3041   __ jcc(Assembler::notZero, loop);
3042   __ pushptr(Address(rcx, 0));          // Save final return address
3043 
3044   // Re-push self-frame
3045   __ enter();                           // Save old & set new ebp
3046 
3047   // Allocate a full sized register save area.
3048   // Return address and rbp are in place, so we allocate two less words.
3049   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3050 
3051   // Restore frame locals after moving the frame
3052   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3053   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3054 
3055   // Call C code.  Need thread but NOT official VM entry
3056   // crud.  We cannot block on this call, no GC can happen.  Call should
3057   // restore return values to their stack-slots with the new SP.
3058   //
3059   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3060 
3061   // Use rbp because the frames look interpreted now
3062   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3063   // Don't need the precise return PC here, just precise enough to point into this code blob.
3064   address the_pc = __ pc();
3065   __ set_last_Java_frame(noreg, rbp, the_pc);
3066 
3067   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3068   __ mov(c_rarg0, r15_thread);
3069   __ movl(c_rarg1, r14); // second arg: exec_mode
3070   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3071   // Revert SP alignment after call since we're going to do some SP relative addressing below
3072   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3073 
3074   // Set an oopmap for the call site
3075   // Use the same PC we used for the last java frame
3076   oop_maps->add_gc_map(the_pc - start,
3077                        new OopMap( frame_size_in_words, 0 ));
3078 
3079   // Clear fp AND pc
3080   __ reset_last_Java_frame(true, true);
3081 
3082   // Collect return values
3083   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3084   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3085   // I think this is useless (throwing pc?)
3086   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3087 
3088   // Pop self-frame.
3089   __ leave();                           // Epilog
3090 
3091   // Jump to interpreter
3092   __ ret(0);
3093 
3094   // Make sure all code is generated
3095   masm->flush();
3096 
3097   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3098   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3099 #if INCLUDE_JVMCI
3100   if (EnableJVMCI) {
3101     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
3102     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
3103   }
3104 #endif
3105 }
3106 
3107 #ifdef COMPILER2
3108 //------------------------------generate_uncommon_trap_blob--------------------
3109 void SharedRuntime::generate_uncommon_trap_blob() {
3110   // Allocate space for the code
3111   ResourceMark rm;
3112   // Setup code generation tools
3113   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3114   MacroAssembler* masm = new MacroAssembler(&buffer);
3115 
3116   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3117 
3118   address start = __ pc();
3119 
3120   if (UseRTMLocking) {
3121     // Abort RTM transaction before possible nmethod deoptimization.
3122     __ xabort(0);
3123   }
3124 
3125   // Push self-frame.  We get here with a return address on the
3126   // stack, so rsp is 8-byte aligned until we allocate our frame.
3127   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3128 
3129   // No callee saved registers. rbp is assumed implicitly saved
3130   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3131 
3132   // compiler left unloaded_class_index in j_rarg0 move to where the
3133   // runtime expects it.
3134   __ movl(c_rarg1, j_rarg0);
3135 
3136   __ set_last_Java_frame(noreg, noreg, NULL);
3137 
3138   // Call C code.  Need thread but NOT official VM entry
3139   // crud.  We cannot block on this call, no GC can happen.  Call should
3140   // capture callee-saved registers as well as return values.
3141   // Thread is in rdi already.
3142   //
3143   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3144 
3145   __ mov(c_rarg0, r15_thread);
3146   __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap);
3147   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3148 
3149   // Set an oopmap for the call site
3150   OopMapSet* oop_maps = new OopMapSet();
3151   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3152 
3153   // location of rbp is known implicitly by the frame sender code
3154 
3155   oop_maps->add_gc_map(__ pc() - start, map);
3156 
3157   __ reset_last_Java_frame(false, false);
3158 
3159   // Load UnrollBlock* into rdi
3160   __ mov(rdi, rax);
3161 
3162 #ifdef ASSERT
3163   { Label L;
3164     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
3165             (int32_t)Deoptimization::Unpack_uncommon_trap);
3166     __ jcc(Assembler::equal, L);
3167     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
3168     __ bind(L);
3169   }
3170 #endif
3171 
3172   // Pop all the frames we must move/replace.
3173   //
3174   // Frame picture (youngest to oldest)
3175   // 1: self-frame (no frame link)
3176   // 2: deopting frame  (no frame link)
3177   // 3: caller of deopting frame (could be compiled/interpreted).
3178 
3179   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3180   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3181 
3182   // Pop deoptimized frame (int)
3183   __ movl(rcx, Address(rdi,
3184                        Deoptimization::UnrollBlock::
3185                        size_of_deoptimized_frame_offset_in_bytes()));
3186   __ addptr(rsp, rcx);
3187 
3188   // rsp should be pointing at the return address to the caller (3)
3189 
3190   // Pick up the initial fp we should save
3191   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3192   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3193 
3194 #ifdef ASSERT
3195   // Compilers generate code that bang the stack by as much as the
3196   // interpreter would need. So this stack banging should never
3197   // trigger a fault. Verify that it does not on non product builds.
3198   if (UseStackBanging) {
3199     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3200     __ bang_stack_size(rbx, rcx);
3201   }
3202 #endif
3203 
3204   // Load address of array of frame pcs into rcx (address*)
3205   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3206 
3207   // Trash the return pc
3208   __ addptr(rsp, wordSize);
3209 
3210   // Load address of array of frame sizes into rsi (intptr_t*)
3211   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3212 
3213   // Counter
3214   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3215 
3216   // Now adjust the caller's stack to make up for the extra locals but
3217   // record the original sp so that we can save it in the skeletal
3218   // interpreter frame and the stack walking of interpreter_sender
3219   // will get the unextended sp value and not the "real" sp value.
3220 
3221   const Register sender_sp = r8;
3222 
3223   __ mov(sender_sp, rsp);
3224   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3225   __ subptr(rsp, rbx);
3226 
3227   // Push interpreter frames in a loop
3228   Label loop;
3229   __ bind(loop);
3230   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3231   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3232   __ pushptr(Address(rcx, 0));     // Save return address
3233   __ enter();                      // Save old & set new rbp
3234   __ subptr(rsp, rbx);             // Prolog
3235 #ifdef CC_INTERP
3236   __ movptr(Address(rbp,
3237                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3238             sender_sp); // Make it walkable
3239 #else // CC_INTERP
3240   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3241             sender_sp);            // Make it walkable
3242   // This value is corrected by layout_activation_impl
3243   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3244 #endif // CC_INTERP
3245   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3246   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3247   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3248   __ decrementl(rdx);              // Decrement counter
3249   __ jcc(Assembler::notZero, loop);
3250   __ pushptr(Address(rcx, 0));     // Save final return address
3251 
3252   // Re-push self-frame
3253   __ enter();                 // Save old & set new rbp
3254   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3255                               // Prolog
3256 
3257   // Use rbp because the frames look interpreted now
3258   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3259   // Don't need the precise return PC here, just precise enough to point into this code blob.
3260   address the_pc = __ pc();
3261   __ set_last_Java_frame(noreg, rbp, the_pc);
3262 
3263   // Call C code.  Need thread but NOT official VM entry
3264   // crud.  We cannot block on this call, no GC can happen.  Call should
3265   // restore return values to their stack-slots with the new SP.
3266   // Thread is in rdi already.
3267   //
3268   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3269 
3270   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3271   __ mov(c_rarg0, r15_thread);
3272   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3273   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3274 
3275   // Set an oopmap for the call site
3276   // Use the same PC we used for the last java frame
3277   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3278 
3279   // Clear fp AND pc
3280   __ reset_last_Java_frame(true, true);
3281 
3282   // Pop self-frame.
3283   __ leave();                 // Epilog
3284 
3285   // Jump to interpreter
3286   __ ret(0);
3287 
3288   // Make sure all code is generated
3289   masm->flush();
3290 
3291   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3292                                                  SimpleRuntimeFrame::framesize >> 1);
3293 }
3294 #endif // COMPILER2
3295 
3296 
3297 //------------------------------generate_handler_blob------
3298 //
3299 // Generate a special Compile2Runtime blob that saves all registers,
3300 // and setup oopmap.
3301 //
3302 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3303   assert(StubRoutines::forward_exception_entry() != NULL,
3304          "must be generated before");
3305 
3306   ResourceMark rm;
3307   OopMapSet *oop_maps = new OopMapSet();
3308   OopMap* map;
3309 
3310   // Allocate space for the code.  Setup code generation tools.
3311   CodeBuffer buffer("handler_blob", 2048, 1024);
3312   MacroAssembler* masm = new MacroAssembler(&buffer);
3313 
3314   address start   = __ pc();
3315   address call_pc = NULL;
3316   int frame_size_in_words;
3317   bool cause_return = (poll_type == POLL_AT_RETURN);
3318   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3319 
3320   if (UseRTMLocking) {
3321     // Abort RTM transaction before calling runtime
3322     // because critical section will be large and will be
3323     // aborted anyway. Also nmethod could be deoptimized.
3324     __ xabort(0);
3325   }
3326 
3327   // Make room for return address (or push it again)
3328   if (!cause_return) {
3329     __ push(rbx);
3330   }
3331 
3332   // Save registers, fpu state, and flags
3333   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3334 
3335   // The following is basically a call_VM.  However, we need the precise
3336   // address of the call in order to generate an oopmap. Hence, we do all the
3337   // work outselves.
3338 
3339   __ set_last_Java_frame(noreg, noreg, NULL);
3340 
3341   // The return address must always be correct so that frame constructor never
3342   // sees an invalid pc.
3343 
3344   if (!cause_return) {
3345     // overwrite the dummy value we pushed on entry
3346     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3347     __ movptr(Address(rbp, wordSize), c_rarg0);
3348   }
3349 
3350   // Do the call
3351   __ mov(c_rarg0, r15_thread);
3352   __ call(RuntimeAddress(call_ptr));
3353 
3354   // Set an oopmap for the call site.  This oopmap will map all
3355   // oop-registers and debug-info registers as callee-saved.  This
3356   // will allow deoptimization at this safepoint to find all possible
3357   // debug-info recordings, as well as let GC find all oops.
3358 
3359   oop_maps->add_gc_map( __ pc() - start, map);
3360 
3361   Label noException;
3362 
3363   __ reset_last_Java_frame(false, false);
3364 
3365   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3366   __ jcc(Assembler::equal, noException);
3367 
3368   // Exception pending
3369 
3370   RegisterSaver::restore_live_registers(masm, save_vectors);
3371 
3372   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3373 
3374   // No exception case
3375   __ bind(noException);
3376 
3377   // Normal exit, restore registers and exit.
3378   RegisterSaver::restore_live_registers(masm, save_vectors);
3379 
3380   __ ret(0);
3381 
3382   // Make sure all code is generated
3383   masm->flush();
3384 
3385   // Fill-out other meta info
3386   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3387 }
3388 
3389 //
3390 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3391 //
3392 // Generate a stub that calls into vm to find out the proper destination
3393 // of a java call. All the argument registers are live at this point
3394 // but since this is generic code we don't know what they are and the caller
3395 // must do any gc of the args.
3396 //
3397 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3398   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3399 
3400   // allocate space for the code
3401   ResourceMark rm;
3402 
3403   CodeBuffer buffer(name, 1000, 512);
3404   MacroAssembler* masm                = new MacroAssembler(&buffer);
3405 
3406   int frame_size_in_words;
3407 
3408   OopMapSet *oop_maps = new OopMapSet();
3409   OopMap* map = NULL;
3410 
3411   int start = __ offset();
3412 
3413   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3414 
3415   int frame_complete = __ offset();
3416 
3417   __ set_last_Java_frame(noreg, noreg, NULL);
3418 
3419   __ mov(c_rarg0, r15_thread);
3420 
3421   __ call(RuntimeAddress(destination));
3422 
3423 
3424   // Set an oopmap for the call site.
3425   // We need this not only for callee-saved registers, but also for volatile
3426   // registers that the compiler might be keeping live across a safepoint.
3427 
3428   oop_maps->add_gc_map( __ offset() - start, map);
3429 
3430   // rax contains the address we are going to jump to assuming no exception got installed
3431 
3432   // clear last_Java_sp
3433   __ reset_last_Java_frame(false, false);
3434   // check for pending exceptions
3435   Label pending;
3436   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3437   __ jcc(Assembler::notEqual, pending);
3438 
3439   // get the returned Method*
3440   __ get_vm_result_2(rbx, r15_thread);
3441   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3442 
3443   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3444 
3445   RegisterSaver::restore_live_registers(masm);
3446 
3447   // We are back the the original state on entry and ready to go.
3448 
3449   __ jmp(rax);
3450 
3451   // Pending exception after the safepoint
3452 
3453   __ bind(pending);
3454 
3455   RegisterSaver::restore_live_registers(masm);
3456 
3457   // exception pending => remove activation and forward to exception handler
3458 
3459   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3460 
3461   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3462   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3463 
3464   // -------------
3465   // make sure all code is generated
3466   masm->flush();
3467 
3468   // return the  blob
3469   // frame_size_words or bytes??
3470   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3471 }
3472 
3473 
3474 //------------------------------Montgomery multiplication------------------------
3475 //
3476 
3477 #ifndef _WINDOWS
3478 
3479 #define ASM_SUBTRACT
3480 
3481 #ifdef ASM_SUBTRACT
3482 // Subtract 0:b from carry:a.  Return carry.
3483 static unsigned long
3484 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3485   long i = 0, cnt = len;
3486   unsigned long tmp;
3487   asm volatile("clc; "
3488                "0: ; "
3489                "mov (%[b], %[i], 8), %[tmp]; "
3490                "sbb %[tmp], (%[a], %[i], 8); "
3491                "inc %[i]; dec %[cnt]; "
3492                "jne 0b; "
3493                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3494                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3495                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3496                : "memory");
3497   return tmp;
3498 }
3499 #else // ASM_SUBTRACT
3500 typedef int __attribute__((mode(TI))) int128;
3501 
3502 // Subtract 0:b from carry:a.  Return carry.
3503 static unsigned long
3504 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
3505   int128 tmp = 0;
3506   int i;
3507   for (i = 0; i < len; i++) {
3508     tmp += a[i];
3509     tmp -= b[i];
3510     a[i] = tmp;
3511     tmp >>= 64;
3512     assert(-1 <= tmp && tmp <= 0, "invariant");
3513   }
3514   return tmp + carry;
3515 }
3516 #endif // ! ASM_SUBTRACT
3517 
3518 // Multiply (unsigned) Long A by Long B, accumulating the double-
3519 // length result into the accumulator formed of T0, T1, and T2.
3520 #define MACC(A, B, T0, T1, T2)                                  \
3521 do {                                                            \
3522   unsigned long hi, lo;                                         \
3523   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
3524            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3525            : "r"(A), "a"(B) : "cc");                            \
3526  } while(0)
3527 
3528 // As above, but add twice the double-length result into the
3529 // accumulator.
3530 #define MACC2(A, B, T0, T1, T2)                                 \
3531 do {                                                            \
3532   unsigned long hi, lo;                                         \
3533   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
3534            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"           \
3535            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3536            : "r"(A), "a"(B) : "cc");                            \
3537  } while(0)
3538 
3539 // Fast Montgomery multiplication.  The derivation of the algorithm is
3540 // in  A Cryptographic Library for the Motorola DSP56000,
3541 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
3542 
3543 static void __attribute__((noinline))
3544 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
3545                     unsigned long m[], unsigned long inv, int len) {
3546   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3547   int i;
3548 
3549   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3550 
3551   for (i = 0; i < len; i++) {
3552     int j;
3553     for (j = 0; j < i; j++) {
3554       MACC(a[j], b[i-j], t0, t1, t2);
3555       MACC(m[j], n[i-j], t0, t1, t2);
3556     }
3557     MACC(a[i], b[0], t0, t1, t2);
3558     m[i] = t0 * inv;
3559     MACC(m[i], n[0], t0, t1, t2);
3560 
3561     assert(t0 == 0, "broken Montgomery multiply");
3562 
3563     t0 = t1; t1 = t2; t2 = 0;
3564   }
3565 
3566   for (i = len; i < 2*len; i++) {
3567     int j;
3568     for (j = i-len+1; j < len; j++) {
3569       MACC(a[j], b[i-j], t0, t1, t2);
3570       MACC(m[j], n[i-j], t0, t1, t2);
3571     }
3572     m[i-len] = t0;
3573     t0 = t1; t1 = t2; t2 = 0;
3574   }
3575 
3576   while (t0)
3577     t0 = sub(m, n, t0, len);
3578 }
3579 
3580 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
3581 // multiplies so it should be up to 25% faster than Montgomery
3582 // multiplication.  However, its loop control is more complex and it
3583 // may actually run slower on some machines.
3584 
3585 static void __attribute__((noinline))
3586 montgomery_square(unsigned long a[], unsigned long n[],
3587                   unsigned long m[], unsigned long inv, int len) {
3588   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3589   int i;
3590 
3591   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3592 
3593   for (i = 0; i < len; i++) {
3594     int j;
3595     int end = (i+1)/2;
3596     for (j = 0; j < end; j++) {
3597       MACC2(a[j], a[i-j], t0, t1, t2);
3598       MACC(m[j], n[i-j], t0, t1, t2);
3599     }
3600     if ((i & 1) == 0) {
3601       MACC(a[j], a[j], t0, t1, t2);
3602     }
3603     for (; j < i; j++) {
3604       MACC(m[j], n[i-j], t0, t1, t2);
3605     }
3606     m[i] = t0 * inv;
3607     MACC(m[i], n[0], t0, t1, t2);
3608 
3609     assert(t0 == 0, "broken Montgomery square");
3610 
3611     t0 = t1; t1 = t2; t2 = 0;
3612   }
3613 
3614   for (i = len; i < 2*len; i++) {
3615     int start = i-len+1;
3616     int end = start + (len - start)/2;
3617     int j;
3618     for (j = start; j < end; j++) {
3619       MACC2(a[j], a[i-j], t0, t1, t2);
3620       MACC(m[j], n[i-j], t0, t1, t2);
3621     }
3622     if ((i & 1) == 0) {
3623       MACC(a[j], a[j], t0, t1, t2);
3624     }
3625     for (; j < len; j++) {
3626       MACC(m[j], n[i-j], t0, t1, t2);
3627     }
3628     m[i-len] = t0;
3629     t0 = t1; t1 = t2; t2 = 0;
3630   }
3631 
3632   while (t0)
3633     t0 = sub(m, n, t0, len);
3634 }
3635 
3636 // Swap words in a longword.
3637 static unsigned long swap(unsigned long x) {
3638   return (x << 32) | (x >> 32);
3639 }
3640 
3641 // Copy len longwords from s to d, word-swapping as we go.  The
3642 // destination array is reversed.
3643 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
3644   d += len;
3645   while(len-- > 0) {
3646     d--;
3647     *d = swap(*s);
3648     s++;
3649   }
3650 }
3651 
3652 // The threshold at which squaring is advantageous was determined
3653 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3654 #define MONTGOMERY_SQUARING_THRESHOLD 64
3655 
3656 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3657                                         jint len, jlong inv,
3658                                         jint *m_ints) {
3659   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3660   int longwords = len/2;
3661 
3662   // Make very sure we don't use so much space that the stack might
3663   // overflow.  512 jints corresponds to an 16384-bit integer and
3664   // will use here a total of 8k bytes of stack space.
3665   int total_allocation = longwords * sizeof (unsigned long) * 4;
3666   guarantee(total_allocation <= 8192, "must be");
3667   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3668 
3669   // Local scratch arrays
3670   unsigned long
3671     *a = scratch + 0 * longwords,
3672     *b = scratch + 1 * longwords,
3673     *n = scratch + 2 * longwords,
3674     *m = scratch + 3 * longwords;
3675 
3676   reverse_words((unsigned long *)a_ints, a, longwords);
3677   reverse_words((unsigned long *)b_ints, b, longwords);
3678   reverse_words((unsigned long *)n_ints, n, longwords);
3679 
3680   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
3681 
3682   reverse_words(m, (unsigned long *)m_ints, longwords);
3683 }
3684 
3685 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3686                                       jint len, jlong inv,
3687                                       jint *m_ints) {
3688   assert(len % 2 == 0, "array length in montgomery_square must be even");
3689   int longwords = len/2;
3690 
3691   // Make very sure we don't use so much space that the stack might
3692   // overflow.  512 jints corresponds to an 16384-bit integer and
3693   // will use here a total of 6k bytes of stack space.
3694   int total_allocation = longwords * sizeof (unsigned long) * 3;
3695   guarantee(total_allocation <= 8192, "must be");
3696   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3697 
3698   // Local scratch arrays
3699   unsigned long
3700     *a = scratch + 0 * longwords,
3701     *n = scratch + 1 * longwords,
3702     *m = scratch + 2 * longwords;
3703 
3704   reverse_words((unsigned long *)a_ints, a, longwords);
3705   reverse_words((unsigned long *)n_ints, n, longwords);
3706 
3707   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3708     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
3709   } else {
3710     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
3711   }
3712 
3713   reverse_words(m, (unsigned long *)m_ints, longwords);
3714 }
3715 
3716 #endif // WINDOWS
3717 
3718 #ifdef COMPILER2
3719 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3720 //
3721 //------------------------------generate_exception_blob---------------------------
3722 // creates exception blob at the end
3723 // Using exception blob, this code is jumped from a compiled method.
3724 // (see emit_exception_handler in x86_64.ad file)
3725 //
3726 // Given an exception pc at a call we call into the runtime for the
3727 // handler in this method. This handler might merely restore state
3728 // (i.e. callee save registers) unwind the frame and jump to the
3729 // exception handler for the nmethod if there is no Java level handler
3730 // for the nmethod.
3731 //
3732 // This code is entered with a jmp.
3733 //
3734 // Arguments:
3735 //   rax: exception oop
3736 //   rdx: exception pc
3737 //
3738 // Results:
3739 //   rax: exception oop
3740 //   rdx: exception pc in caller or ???
3741 //   destination: exception handler of caller
3742 //
3743 // Note: the exception pc MUST be at a call (precise debug information)
3744 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3745 //
3746 
3747 void OptoRuntime::generate_exception_blob() {
3748   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3749   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3750   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3751 
3752   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3753 
3754   // Allocate space for the code
3755   ResourceMark rm;
3756   // Setup code generation tools
3757   CodeBuffer buffer("exception_blob", 2048, 1024);
3758   MacroAssembler* masm = new MacroAssembler(&buffer);
3759 
3760 
3761   address start = __ pc();
3762 
3763   // Exception pc is 'return address' for stack walker
3764   __ push(rdx);
3765   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3766 
3767   // Save callee-saved registers.  See x86_64.ad.
3768 
3769   // rbp is an implicitly saved callee saved register (i.e., the calling
3770   // convention will save/restore it in the prolog/epilog). Other than that
3771   // there are no callee save registers now that adapter frames are gone.
3772 
3773   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3774 
3775   // Store exception in Thread object. We cannot pass any arguments to the
3776   // handle_exception call, since we do not want to make any assumption
3777   // about the size of the frame where the exception happened in.
3778   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3779   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3780   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3781 
3782   // This call does all the hard work.  It checks if an exception handler
3783   // exists in the method.
3784   // If so, it returns the handler address.
3785   // If not, it prepares for stack-unwinding, restoring the callee-save
3786   // registers of the frame being removed.
3787   //
3788   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3789 
3790   // At a method handle call, the stack may not be properly aligned
3791   // when returning with an exception.
3792   address the_pc = __ pc();
3793   __ set_last_Java_frame(noreg, noreg, the_pc);
3794   __ mov(c_rarg0, r15_thread);
3795   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3796   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3797 
3798   // Set an oopmap for the call site.  This oopmap will only be used if we
3799   // are unwinding the stack.  Hence, all locations will be dead.
3800   // Callee-saved registers will be the same as the frame above (i.e.,
3801   // handle_exception_stub), since they were restored when we got the
3802   // exception.
3803 
3804   OopMapSet* oop_maps = new OopMapSet();
3805 
3806   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3807 
3808   __ reset_last_Java_frame(false, true);
3809 
3810   // Restore callee-saved registers
3811 
3812   // rbp is an implicitly saved callee-saved register (i.e., the calling
3813   // convention will save restore it in prolog/epilog) Other than that
3814   // there are no callee save registers now that adapter frames are gone.
3815 
3816   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3817 
3818   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3819   __ pop(rdx);                  // No need for exception pc anymore
3820 
3821   // rax: exception handler
3822 
3823   // We have a handler in rax (could be deopt blob).
3824   __ mov(r8, rax);
3825 
3826   // Get the exception oop
3827   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3828   // Get the exception pc in case we are deoptimized
3829   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3830 #ifdef ASSERT
3831   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
3832   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
3833 #endif
3834   // Clear the exception oop so GC no longer processes it as a root.
3835   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
3836 
3837   // rax: exception oop
3838   // r8:  exception handler
3839   // rdx: exception pc
3840   // Jump to handler
3841 
3842   __ jmp(r8);
3843 
3844   // Make sure all code is generated
3845   masm->flush();
3846 
3847   // Set exception blob
3848   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3849 }
3850 #endif // COMPILER2