1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "oops/fieldStreams.hpp"
  41 #include "oops/verifyOopClosure.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "runtime/biasedLocking.hpp"
  44 #include "runtime/compilationPolicy.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/signature.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.hpp"
  51 #include "runtime/vframe.hpp"
  52 #include "runtime/vframeArray.hpp"
  53 #include "runtime/vframe_hp.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/xmlstream.hpp"
  56 
  57 #if INCLUDE_JVMCI
  58 #include "jvmci/jvmciRuntime.hpp"
  59 #include "jvmci/jvmciJavaClasses.hpp"
  60 #endif
  61 
  62 
  63 bool DeoptimizationMarker::_is_active = false;
  64 
  65 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  66                                          int  caller_adjustment,
  67                                          int  caller_actual_parameters,
  68                                          int  number_of_frames,
  69                                          intptr_t* frame_sizes,
  70                                          address* frame_pcs,
  71                                          BasicType return_type,
  72                                          int exec_mode) {
  73   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  74   _caller_adjustment         = caller_adjustment;
  75   _caller_actual_parameters  = caller_actual_parameters;
  76   _number_of_frames          = number_of_frames;
  77   _frame_sizes               = frame_sizes;
  78   _frame_pcs                 = frame_pcs;
  79   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  80   _return_type               = return_type;
  81   _initial_info              = 0;
  82   // PD (x86 only)
  83   _counter_temp              = 0;
  84   _unpack_kind               = exec_mode;
  85   _sender_sp_temp            = 0;
  86 
  87   _total_frame_sizes         = size_of_frames();
  88   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  89 }
  90 
  91 
  92 Deoptimization::UnrollBlock::~UnrollBlock() {
  93   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  94   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  95   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  96 }
  97 
  98 
  99 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 100   assert(register_number < RegisterMap::reg_count, "checking register number");
 101   return &_register_block[register_number * 2];
 102 }
 103 
 104 
 105 
 106 int Deoptimization::UnrollBlock::size_of_frames() const {
 107   // Acount first for the adjustment of the initial frame
 108   int result = _caller_adjustment;
 109   for (int index = 0; index < number_of_frames(); index++) {
 110     result += frame_sizes()[index];
 111   }
 112   return result;
 113 }
 114 
 115 
 116 void Deoptimization::UnrollBlock::print() {
 117   ttyLocker ttyl;
 118   tty->print_cr("UnrollBlock");
 119   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 120   tty->print(   "  frame_sizes: ");
 121   for (int index = 0; index < number_of_frames(); index++) {
 122     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 123   }
 124   tty->cr();
 125 }
 126 
 127 
 128 // In order to make fetch_unroll_info work properly with escape
 129 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 130 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 131 // of previously eliminated objects occurs in realloc_objects, which is
 132 // called from the method fetch_unroll_info_helper below.
 133 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 134   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 135   // but makes the entry a little slower. There is however a little dance we have to
 136   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 137 
 138   // fetch_unroll_info() is called at the beginning of the deoptimization
 139   // handler. Note this fact before we start generating temporary frames
 140   // that can confuse an asynchronous stack walker. This counter is
 141   // decremented at the end of unpack_frames().
 142   if (TraceDeoptimization) {
 143     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 144   }
 145   thread->inc_in_deopt_handler();
 146 
 147   return fetch_unroll_info_helper(thread, exec_mode);
 148 JRT_END
 149 
 150 
 151 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 152 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 153 
 154   // Note: there is a safepoint safety issue here. No matter whether we enter
 155   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 156   // the vframeArray is created.
 157   //
 158 
 159   // Allocate our special deoptimization ResourceMark
 160   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 161   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 162   thread->set_deopt_mark(dmark);
 163 
 164   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 165   RegisterMap map(thread, true);
 166   RegisterMap dummy_map(thread, false);
 167   // Now get the deoptee with a valid map
 168   frame deoptee = stub_frame.sender(&map);
 169   // Set the deoptee nmethod
 170   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 171   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 172   bool skip_internal = thread->deopt_nmethod() != NULL && !thread->deopt_nmethod()->compiler()->is_jvmci();
 173 
 174   if (VerifyStack) {
 175     thread->validate_frame_layout();
 176   }
 177 
 178   // Create a growable array of VFrames where each VFrame represents an inlined
 179   // Java frame.  This storage is allocated with the usual system arena.
 180   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 181   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 182   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 183   while (!vf->is_top()) {
 184     assert(vf->is_compiled_frame(), "Wrong frame type");
 185     chunk->push(compiledVFrame::cast(vf));
 186     vf = vf->sender();
 187   }
 188   assert(vf->is_compiled_frame(), "Wrong frame type");
 189   chunk->push(compiledVFrame::cast(vf));
 190 
 191   ScopeDesc* trap_scope = chunk->at(0)->scope();
 192   Handle exceptionObject;
 193   if (trap_scope->rethrow_exception()) {
 194     if (PrintDeoptimizationDetails) {
 195       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 196     }
 197     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 198     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 199     ScopeValue* topOfStack = expressions->top();
 200     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 201     assert(exceptionObject() != NULL, "exception oop can not be null");
 202   }
 203 
 204   bool realloc_failures = false;
 205 
 206 #if defined(COMPILER2) || INCLUDE_JVMCI
 207   // Reallocate the non-escaping objects and restore their fields. Then
 208   // relock objects if synchronization on them was eliminated.
 209 #ifndef INCLUDE_JVMCI
 210   if (DoEscapeAnalysis || EliminateNestedLocks) {
 211     if (EliminateAllocations) {
 212 #endif // INCLUDE_JVMCI
 213       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 214       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 215 
 216       // The flag return_oop() indicates call sites which return oop
 217       // in compiled code. Such sites include java method calls,
 218       // runtime calls (for example, used to allocate new objects/arrays
 219       // on slow code path) and any other calls generated in compiled code.
 220       // It is not guaranteed that we can get such information here only
 221       // by analyzing bytecode in deoptimized frames. This is why this flag
 222       // is set during method compilation (see Compile::Process_OopMap_Node()).
 223       // If the previous frame was popped, we don't have a result.
 224       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
 225       Handle return_value;
 226       if (save_oop_result) {
 227         // Reallocation may trigger GC. If deoptimization happened on return from
 228         // call which returns oop we need to save it since it is not in oopmap.
 229         oop result = deoptee.saved_oop_result(&map);
 230         assert(result == NULL || result->is_oop(), "must be oop");
 231         return_value = Handle(thread, result);
 232         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 233         if (TraceDeoptimization) {
 234           ttyLocker ttyl;
 235           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 236         }
 237       }
 238       if (objects != NULL) {
 239         JRT_BLOCK
 240           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 241         JRT_END
 242         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 243 #ifndef PRODUCT
 244         if (TraceDeoptimization) {
 245           ttyLocker ttyl;
 246           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 247           print_objects(objects, realloc_failures);
 248         }
 249 #endif
 250       }
 251       if (save_oop_result) {
 252         // Restore result.
 253         deoptee.set_saved_oop_result(&map, return_value());
 254       }
 255 #ifndef INCLUDE_JVMCI
 256     }
 257     if (EliminateLocks) {
 258 #endif // INCLUDE_JVMCI
 259 #ifndef PRODUCT
 260       bool first = true;
 261 #endif
 262       for (int i = 0; i < chunk->length(); i++) {
 263         compiledVFrame* cvf = chunk->at(i);
 264         assert (cvf->scope() != NULL,"expect only compiled java frames");
 265         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 266         if (monitors->is_nonempty()) {
 267           relock_objects(monitors, thread, realloc_failures);
 268 #ifndef PRODUCT
 269           if (PrintDeoptimizationDetails) {
 270             ttyLocker ttyl;
 271             for (int j = 0; j < monitors->length(); j++) {
 272               MonitorInfo* mi = monitors->at(j);
 273               if (mi->eliminated()) {
 274                 if (first) {
 275                   first = false;
 276                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 277                 }
 278                 if (mi->owner_is_scalar_replaced()) {
 279                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 280                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 281                 } else {
 282                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 283                 }
 284               }
 285             }
 286           }
 287 #endif // !PRODUCT
 288         }
 289       }
 290 #ifndef INCLUDE_JVMCI
 291     }
 292   }
 293 #endif // INCLUDE_JVMCI
 294 #endif // COMPILER2 || INCLUDE_JVMCI
 295 
 296   // Ensure that no safepoint is taken after pointers have been stored
 297   // in fields of rematerialized objects.  If a safepoint occurs from here on
 298   // out the java state residing in the vframeArray will be missed.
 299   No_Safepoint_Verifier no_safepoint;
 300 
 301   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 302 #if defined(COMPILER2) || INCLUDE_JVMCI
 303   if (realloc_failures) {
 304     pop_frames_failed_reallocs(thread, array);
 305   }
 306 #endif
 307 
 308   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 309   thread->set_vframe_array_head(array);
 310 
 311   // Now that the vframeArray has been created if we have any deferred local writes
 312   // added by jvmti then we can free up that structure as the data is now in the
 313   // vframeArray
 314 
 315   if (thread->deferred_locals() != NULL) {
 316     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 317     int i = 0;
 318     do {
 319       // Because of inlining we could have multiple vframes for a single frame
 320       // and several of the vframes could have deferred writes. Find them all.
 321       if (list->at(i)->id() == array->original().id()) {
 322         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 323         list->remove_at(i);
 324         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 325         delete dlv;
 326       } else {
 327         i++;
 328       }
 329     } while ( i < list->length() );
 330     if (list->length() == 0) {
 331       thread->set_deferred_locals(NULL);
 332       // free the list and elements back to C heap.
 333       delete list;
 334     }
 335 
 336   }
 337 
 338 #ifndef SHARK
 339   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 340   CodeBlob* cb = stub_frame.cb();
 341   // Verify we have the right vframeArray
 342   assert(cb->frame_size() >= 0, "Unexpected frame size");
 343   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 344 
 345   // If the deopt call site is a MethodHandle invoke call site we have
 346   // to adjust the unpack_sp.
 347   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 348   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 349     unpack_sp = deoptee.unextended_sp();
 350 
 351 #ifdef ASSERT
 352   assert(cb->is_deoptimization_stub() ||
 353          cb->is_uncommon_trap_stub() ||
 354          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 355          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 356          "unexpected code blob: %s", cb->name());
 357 #endif
 358 #else
 359   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 360 #endif // !SHARK
 361 
 362   // This is a guarantee instead of an assert because if vframe doesn't match
 363   // we will unpack the wrong deoptimized frame and wind up in strange places
 364   // where it will be very difficult to figure out what went wrong. Better
 365   // to die an early death here than some very obscure death later when the
 366   // trail is cold.
 367   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 368   // in that it will fail to detect a problem when there is one. This needs
 369   // more work in tiger timeframe.
 370   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 371 
 372   int number_of_frames = array->frames();
 373 
 374   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 375   // virtual activation, which is the reverse of the elements in the vframes array.
 376   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 377   // +1 because we always have an interpreter return address for the final slot.
 378   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 379   int popframe_extra_args = 0;
 380   // Create an interpreter return address for the stub to use as its return
 381   // address so the skeletal frames are perfectly walkable
 382   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 383 
 384   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 385   // activation be put back on the expression stack of the caller for reexecution
 386   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 387     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 388   }
 389 
 390   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 391   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 392   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 393   //
 394   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 395   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 396 
 397   // It's possible that the number of parameters at the call site is
 398   // different than number of arguments in the callee when method
 399   // handles are used.  If the caller is interpreted get the real
 400   // value so that the proper amount of space can be added to it's
 401   // frame.
 402   bool caller_was_method_handle = false;
 403   if (deopt_sender.is_interpreted_frame()) {
 404     methodHandle method = deopt_sender.interpreter_frame_method();
 405     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 406     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 407       // Method handle invokes may involve fairly arbitrary chains of
 408       // calls so it's impossible to know how much actual space the
 409       // caller has for locals.
 410       caller_was_method_handle = true;
 411     }
 412   }
 413 
 414   //
 415   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 416   // frame_sizes/frame_pcs[1] next oldest frame (int)
 417   // frame_sizes/frame_pcs[n] youngest frame (int)
 418   //
 419   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 420   // owns the space for the return address to it's caller).  Confusing ain't it.
 421   //
 422   // The vframe array can address vframes with indices running from
 423   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 424   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 425   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 426   // so things look a little strange in this loop.
 427   //
 428   int callee_parameters = 0;
 429   int callee_locals = 0;
 430   for (int index = 0; index < array->frames(); index++ ) {
 431     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 432     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 433     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 434     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 435                                                                                                     callee_locals,
 436                                                                                                     index == 0,
 437                                                                                                     popframe_extra_args);
 438     // This pc doesn't have to be perfect just good enough to identify the frame
 439     // as interpreted so the skeleton frame will be walkable
 440     // The correct pc will be set when the skeleton frame is completely filled out
 441     // The final pc we store in the loop is wrong and will be overwritten below
 442     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 443 
 444     callee_parameters = array->element(index)->method()->size_of_parameters();
 445     callee_locals = array->element(index)->method()->max_locals();
 446     popframe_extra_args = 0;
 447   }
 448 
 449   // Compute whether the root vframe returns a float or double value.
 450   BasicType return_type;
 451   {
 452     HandleMark hm;
 453     methodHandle method(thread, array->element(0)->method());
 454     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 455     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 456   }
 457 
 458   // Compute information for handling adapters and adjusting the frame size of the caller.
 459   int caller_adjustment = 0;
 460 
 461   // Compute the amount the oldest interpreter frame will have to adjust
 462   // its caller's stack by. If the caller is a compiled frame then
 463   // we pretend that the callee has no parameters so that the
 464   // extension counts for the full amount of locals and not just
 465   // locals-parms. This is because without a c2i adapter the parm
 466   // area as created by the compiled frame will not be usable by
 467   // the interpreter. (Depending on the calling convention there
 468   // may not even be enough space).
 469 
 470   // QQQ I'd rather see this pushed down into last_frame_adjust
 471   // and have it take the sender (aka caller).
 472 
 473   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 474     caller_adjustment = last_frame_adjust(0, callee_locals);
 475   } else if (callee_locals > callee_parameters) {
 476     // The caller frame may need extending to accommodate
 477     // non-parameter locals of the first unpacked interpreted frame.
 478     // Compute that adjustment.
 479     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 480   }
 481 
 482   // If the sender is deoptimized the we must retrieve the address of the handler
 483   // since the frame will "magically" show the original pc before the deopt
 484   // and we'd undo the deopt.
 485 
 486   frame_pcs[0] = deopt_sender.raw_pc();
 487 
 488 #ifndef SHARK
 489   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 490 #endif // SHARK
 491 
 492 #ifdef INCLUDE_JVMCI
 493   if (exceptionObject() != NULL) {
 494     thread->set_exception_oop(exceptionObject());
 495     exec_mode = Unpack_exception;
 496   }
 497 #endif
 498 
 499   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 500                                       caller_adjustment * BytesPerWord,
 501                                       caller_was_method_handle ? 0 : callee_parameters,
 502                                       number_of_frames,
 503                                       frame_sizes,
 504                                       frame_pcs,
 505                                       return_type,
 506                                       exec_mode);
 507   // On some platforms, we need a way to pass some platform dependent
 508   // information to the unpacking code so the skeletal frames come out
 509   // correct (initial fp value, unextended sp, ...)
 510   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 511 
 512   if (array->frames() > 1) {
 513     if (VerifyStack && TraceDeoptimization) {
 514       ttyLocker ttyl;
 515       tty->print_cr("Deoptimizing method containing inlining");
 516     }
 517   }
 518 
 519   array->set_unroll_block(info);
 520   return info;
 521 }
 522 
 523 // Called to cleanup deoptimization data structures in normal case
 524 // after unpacking to stack and when stack overflow error occurs
 525 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 526                                         vframeArray *array) {
 527 
 528   // Get array if coming from exception
 529   if (array == NULL) {
 530     array = thread->vframe_array_head();
 531   }
 532   thread->set_vframe_array_head(NULL);
 533 
 534   // Free the previous UnrollBlock
 535   vframeArray* old_array = thread->vframe_array_last();
 536   thread->set_vframe_array_last(array);
 537 
 538   if (old_array != NULL) {
 539     UnrollBlock* old_info = old_array->unroll_block();
 540     old_array->set_unroll_block(NULL);
 541     delete old_info;
 542     delete old_array;
 543   }
 544 
 545   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 546   // inside the vframeArray (StackValueCollections)
 547 
 548   delete thread->deopt_mark();
 549   thread->set_deopt_mark(NULL);
 550   thread->set_deopt_nmethod(NULL);
 551 
 552 
 553   if (JvmtiExport::can_pop_frame()) {
 554 #ifndef CC_INTERP
 555     // Regardless of whether we entered this routine with the pending
 556     // popframe condition bit set, we should always clear it now
 557     thread->clear_popframe_condition();
 558 #else
 559     // C++ interpreter will clear has_pending_popframe when it enters
 560     // with method_resume. For deopt_resume2 we clear it now.
 561     if (thread->popframe_forcing_deopt_reexecution())
 562         thread->clear_popframe_condition();
 563 #endif /* CC_INTERP */
 564   }
 565 
 566   // unpack_frames() is called at the end of the deoptimization handler
 567   // and (in C2) at the end of the uncommon trap handler. Note this fact
 568   // so that an asynchronous stack walker can work again. This counter is
 569   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 570   // the beginning of uncommon_trap().
 571   thread->dec_in_deopt_handler();
 572 }
 573 
 574 
 575 // Return BasicType of value being returned
 576 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 577 
 578   // We are already active int he special DeoptResourceMark any ResourceObj's we
 579   // allocate will be freed at the end of the routine.
 580 
 581   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 582   // but makes the entry a little slower. There is however a little dance we have to
 583   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 584   ResetNoHandleMark rnhm; // No-op in release/product versions
 585   HandleMark hm;
 586 
 587   frame stub_frame = thread->last_frame();
 588 
 589   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 590   // must point to the vframeArray for the unpack frame.
 591   vframeArray* array = thread->vframe_array_head();
 592 
 593 #ifndef PRODUCT
 594   if (TraceDeoptimization) {
 595     ttyLocker ttyl;
 596     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 597                   p2i(thread), p2i(array), exec_mode);
 598   }
 599 #endif
 600   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 601               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 602 
 603   UnrollBlock* info = array->unroll_block();
 604 
 605   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 606   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 607 
 608   BasicType bt = info->return_type();
 609 
 610   // If we have an exception pending, claim that the return type is an oop
 611   // so the deopt_blob does not overwrite the exception_oop.
 612 
 613   if (exec_mode == Unpack_exception)
 614     bt = T_OBJECT;
 615 
 616   // Cleanup thread deopt data
 617   cleanup_deopt_info(thread, array);
 618 
 619 #ifndef PRODUCT
 620   if (VerifyStack) {
 621     ResourceMark res_mark;
 622 
 623     thread->validate_frame_layout();
 624 
 625     // Verify that the just-unpacked frames match the interpreter's
 626     // notions of expression stack and locals
 627     vframeArray* cur_array = thread->vframe_array_last();
 628     RegisterMap rm(thread, false);
 629     rm.set_include_argument_oops(false);
 630     bool is_top_frame = true;
 631     int callee_size_of_parameters = 0;
 632     int callee_max_locals = 0;
 633     for (int i = 0; i < cur_array->frames(); i++) {
 634       vframeArrayElement* el = cur_array->element(i);
 635       frame* iframe = el->iframe();
 636       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 637 
 638       // Get the oop map for this bci
 639       InterpreterOopMap mask;
 640       int cur_invoke_parameter_size = 0;
 641       bool try_next_mask = false;
 642       int next_mask_expression_stack_size = -1;
 643       int top_frame_expression_stack_adjustment = 0;
 644       methodHandle mh(thread, iframe->interpreter_frame_method());
 645       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 646       BytecodeStream str(mh);
 647       str.set_start(iframe->interpreter_frame_bci());
 648       int max_bci = mh->code_size();
 649       // Get to the next bytecode if possible
 650       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 651       // Check to see if we can grab the number of outgoing arguments
 652       // at an uncommon trap for an invoke (where the compiler
 653       // generates debug info before the invoke has executed)
 654       Bytecodes::Code cur_code = str.next();
 655       if (cur_code == Bytecodes::_invokevirtual   ||
 656           cur_code == Bytecodes::_invokespecial   ||
 657           cur_code == Bytecodes::_invokestatic    ||
 658           cur_code == Bytecodes::_invokeinterface ||
 659           cur_code == Bytecodes::_invokedynamic) {
 660         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 661         Symbol* signature = invoke.signature();
 662         ArgumentSizeComputer asc(signature);
 663         cur_invoke_parameter_size = asc.size();
 664         if (invoke.has_receiver()) {
 665           // Add in receiver
 666           ++cur_invoke_parameter_size;
 667         }
 668         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 669           callee_size_of_parameters++;
 670         }
 671       }
 672       if (str.bci() < max_bci) {
 673         Bytecodes::Code bc = str.next();
 674         if (bc >= 0) {
 675           // The interpreter oop map generator reports results before
 676           // the current bytecode has executed except in the case of
 677           // calls. It seems to be hard to tell whether the compiler
 678           // has emitted debug information matching the "state before"
 679           // a given bytecode or the state after, so we try both
 680           switch (cur_code) {
 681             case Bytecodes::_invokevirtual:
 682             case Bytecodes::_invokespecial:
 683             case Bytecodes::_invokestatic:
 684             case Bytecodes::_invokeinterface:
 685             case Bytecodes::_invokedynamic:
 686             case Bytecodes::_athrow:
 687               break;
 688             default: {
 689               InterpreterOopMap next_mask;
 690               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 691               next_mask_expression_stack_size = next_mask.expression_stack_size();
 692               // Need to subtract off the size of the result type of
 693               // the bytecode because this is not described in the
 694               // debug info but returned to the interpreter in the TOS
 695               // caching register
 696               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 697               if (bytecode_result_type != T_ILLEGAL) {
 698                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 699               }
 700               assert(top_frame_expression_stack_adjustment >= 0, "");
 701               try_next_mask = true;
 702               break;
 703             }
 704           }
 705         }
 706       }
 707 
 708       // Verify stack depth and oops in frame
 709       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 710       if (!(
 711             /* SPARC */
 712             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 713             /* x86 */
 714             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 715             (try_next_mask &&
 716              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 717                                                                     top_frame_expression_stack_adjustment))) ||
 718             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 719             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 720              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 721             )) {
 722         ttyLocker ttyl;
 723 
 724         // Print out some information that will help us debug the problem
 725         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 726         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 727         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 728                       iframe->interpreter_frame_expression_stack_size());
 729         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 730         tty->print_cr("  try_next_mask = %d", try_next_mask);
 731         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 732         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 733         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 734         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 735         tty->print_cr("  exec_mode = %d", exec_mode);
 736         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 737         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 738         tty->print_cr("  Interpreted frames:");
 739         for (int k = 0; k < cur_array->frames(); k++) {
 740           vframeArrayElement* el = cur_array->element(k);
 741           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 742         }
 743         cur_array->print_on_2(tty);
 744         guarantee(false, "wrong number of expression stack elements during deopt");
 745       }
 746       VerifyOopClosure verify;
 747       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
 748       callee_size_of_parameters = mh->size_of_parameters();
 749       callee_max_locals = mh->max_locals();
 750       is_top_frame = false;
 751     }
 752   }
 753 #endif /* !PRODUCT */
 754 
 755 
 756   return bt;
 757 JRT_END
 758 
 759 
 760 int Deoptimization::deoptimize_dependents() {
 761   Threads::deoptimized_wrt_marked_nmethods();
 762   return 0;
 763 }
 764 
 765 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 766   = Deoptimization::Action_reinterpret;
 767 
 768 #if defined(COMPILER2) || INCLUDE_JVMCI
 769 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 770   Handle pending_exception(thread->pending_exception());
 771   const char* exception_file = thread->exception_file();
 772   int exception_line = thread->exception_line();
 773   thread->clear_pending_exception();
 774 
 775   bool failures = false;
 776 
 777   for (int i = 0; i < objects->length(); i++) {
 778     assert(objects->at(i)->is_object(), "invalid debug information");
 779     ObjectValue* sv = (ObjectValue*) objects->at(i);
 780 
 781     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 782     oop obj = NULL;
 783 
 784     if (k->oop_is_instance()) {
 785       InstanceKlass* ik = InstanceKlass::cast(k());
 786       obj = ik->allocate_instance(THREAD);
 787     } else if (k->oop_is_typeArray()) {
 788       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 789       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 790       int len = sv->field_size() / type2size[ak->element_type()];
 791       obj = ak->allocate(len, THREAD);
 792     } else if (k->oop_is_objArray()) {
 793       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 794       obj = ak->allocate(sv->field_size(), THREAD);
 795     }
 796 
 797     if (obj == NULL) {
 798       failures = true;
 799     }
 800 
 801     assert(sv->value().is_null(), "redundant reallocation");
 802     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 803     CLEAR_PENDING_EXCEPTION;
 804     sv->set_value(obj);
 805   }
 806 
 807   if (failures) {
 808     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 809   } else if (pending_exception.not_null()) {
 810     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 811   }
 812 
 813   return failures;
 814 }
 815 
 816 // restore elements of an eliminated type array
 817 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 818   int index = 0;
 819   intptr_t val;
 820 
 821   for (int i = 0; i < sv->field_size(); i++) {
 822     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 823     switch(type) {
 824     case T_LONG: case T_DOUBLE: {
 825       assert(value->type() == T_INT, "Agreement.");
 826       StackValue* low =
 827         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 828 #ifdef _LP64
 829       jlong res = (jlong)low->get_int();
 830 #else
 831 #ifdef SPARC
 832       // For SPARC we have to swap high and low words.
 833       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 834 #else
 835       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 836 #endif //SPARC
 837 #endif
 838       obj->long_at_put(index, res);
 839       break;
 840     }
 841 
 842     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 843     case T_INT: case T_FLOAT: { // 4 bytes.
 844       assert(value->type() == T_INT, "Agreement.");
 845       bool big_value = false;
 846       if (i + 1 < sv->field_size() && type == T_INT) {
 847         if (sv->field_at(i)->is_location()) {
 848           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 849           if (type == Location::dbl || type == Location::lng) {
 850             big_value = true;
 851           }
 852         } else if (sv->field_at(i)->is_constant_int()) {
 853           ScopeValue* next_scope_field = sv->field_at(i + 1);
 854           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 855             big_value = true;
 856           }
 857         }
 858       }
 859 
 860       if (big_value) {
 861         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 862   #ifdef _LP64
 863         jlong res = (jlong)low->get_int();
 864   #else
 865   #ifdef SPARC
 866         // For SPARC we have to swap high and low words.
 867         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 868   #else
 869         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 870   #endif //SPARC
 871   #endif
 872         obj->int_at_put(index, (jint)*((jint*)&res));
 873         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 874       } else {
 875         val = value->get_int();
 876         obj->int_at_put(index, (jint)*((jint*)&val));
 877       }
 878       break;
 879     }
 880 
 881     case T_SHORT: case T_CHAR: // 2 bytes
 882       assert(value->type() == T_INT, "Agreement.");
 883       val = value->get_int();
 884       obj->short_at_put(index, (jshort)*((jint*)&val));
 885       break;
 886 
 887     case T_BOOLEAN: case T_BYTE: // 1 byte
 888       assert(value->type() == T_INT, "Agreement.");
 889       val = value->get_int();
 890       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 891       break;
 892 
 893       default:
 894         ShouldNotReachHere();
 895     }
 896     index++;
 897   }
 898 }
 899 
 900 
 901 // restore fields of an eliminated object array
 902 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 903   for (int i = 0; i < sv->field_size(); i++) {
 904     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 905     assert(value->type() == T_OBJECT, "object element expected");
 906     obj->obj_at_put(i, value->get_obj()());
 907   }
 908 }
 909 
 910 class ReassignedField {
 911 public:
 912   int _offset;
 913   BasicType _type;
 914 public:
 915   ReassignedField() {
 916     _offset = 0;
 917     _type = T_ILLEGAL;
 918   }
 919 };
 920 
 921 int compare(ReassignedField* left, ReassignedField* right) {
 922   return left->_offset - right->_offset;
 923 }
 924 
 925 // Restore fields of an eliminated instance object using the same field order
 926 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 927 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
 928   if (klass->superklass() != NULL) {
 929     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
 930   }
 931 
 932   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 933   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 934     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 935       ReassignedField field;
 936       field._offset = fs.offset();
 937       field._type = FieldType::basic_type(fs.signature());
 938       fields->append(field);
 939     }
 940   }
 941   fields->sort(compare);
 942   for (int i = 0; i < fields->length(); i++) {
 943     intptr_t val;
 944     ScopeValue* scope_field = sv->field_at(svIndex);
 945     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
 946     int offset = fields->at(i)._offset;
 947     BasicType type = fields->at(i)._type;
 948     switch (type) {
 949       case T_OBJECT: case T_ARRAY:
 950         assert(value->type() == T_OBJECT, "Agreement.");
 951         obj->obj_field_put(offset, value->get_obj()());
 952         break;
 953 
 954       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 955       case T_INT: case T_FLOAT: { // 4 bytes.
 956         assert(value->type() == T_INT, "Agreement.");
 957         bool big_value = false;
 958         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
 959           if (scope_field->is_location()) {
 960             Location::Type type = ((LocationValue*) scope_field)->location().type();
 961             if (type == Location::dbl || type == Location::lng) {
 962               big_value = true;
 963             }
 964           }
 965           if (scope_field->is_constant_int()) {
 966             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
 967             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 968               big_value = true;
 969             }
 970           }
 971         }
 972 
 973         if (big_value) {
 974           i++;
 975           assert(i < fields->length(), "second T_INT field needed");
 976           assert(fields->at(i)._type == T_INT, "T_INT field needed");
 977         } else {
 978           val = value->get_int();
 979           obj->int_field_put(offset, (jint)*((jint*)&val));
 980           break;
 981         }
 982       }
 983         /* no break */
 984 
 985       case T_LONG: case T_DOUBLE: {
 986         assert(value->type() == T_INT, "Agreement.");
 987         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
 988 #ifdef _LP64
 989         jlong res = (jlong)low->get_int();
 990 #else
 991 #ifdef SPARC
 992         // For SPARC we have to swap high and low words.
 993         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 994 #else
 995         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 996 #endif //SPARC
 997 #endif
 998         obj->long_field_put(offset, res);
 999         break;
1000       }
1001 
1002       case T_SHORT: case T_CHAR: // 2 bytes
1003         assert(value->type() == T_INT, "Agreement.");
1004         val = value->get_int();
1005         obj->short_field_put(offset, (jshort)*((jint*)&val));
1006         break;
1007 
1008       case T_BOOLEAN: case T_BYTE: // 1 byte
1009         assert(value->type() == T_INT, "Agreement.");
1010         val = value->get_int();
1011         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1012         break;
1013 
1014       default:
1015         ShouldNotReachHere();
1016     }
1017     svIndex++;
1018   }
1019   return svIndex;
1020 }
1021 
1022 // restore fields of all eliminated objects and arrays
1023 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1024   for (int i = 0; i < objects->length(); i++) {
1025     ObjectValue* sv = (ObjectValue*) objects->at(i);
1026     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1027     Handle obj = sv->value();
1028     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1029     if (PrintDeoptimizationDetails) {
1030       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1031     }
1032     if (obj.is_null()) {
1033       continue;
1034     }
1035 
1036     if (k->oop_is_instance()) {
1037       InstanceKlass* ik = InstanceKlass::cast(k());
1038       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1039     } else if (k->oop_is_typeArray()) {
1040       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
1041       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1042     } else if (k->oop_is_objArray()) {
1043       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1044     }
1045   }
1046 }
1047 
1048 
1049 // relock objects for which synchronization was eliminated
1050 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1051   for (int i = 0; i < monitors->length(); i++) {
1052     MonitorInfo* mon_info = monitors->at(i);
1053     if (mon_info->eliminated()) {
1054       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1055       if (!mon_info->owner_is_scalar_replaced()) {
1056         Handle obj = Handle(mon_info->owner());
1057         markOop mark = obj->mark();
1058         if (UseBiasedLocking && mark->has_bias_pattern()) {
1059           // New allocated objects may have the mark set to anonymously biased.
1060           // Also the deoptimized method may called methods with synchronization
1061           // where the thread-local object is bias locked to the current thread.
1062           assert(mark->is_biased_anonymously() ||
1063                  mark->biased_locker() == thread, "should be locked to current thread");
1064           // Reset mark word to unbiased prototype.
1065           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1066           obj->set_mark(unbiased_prototype);
1067         }
1068         BasicLock* lock = mon_info->lock();
1069         ObjectSynchronizer::slow_enter(obj, lock, thread);
1070         assert(mon_info->owner()->is_locked(), "object must be locked now");
1071       }
1072     }
1073   }
1074 }
1075 
1076 
1077 #ifndef PRODUCT
1078 // print information about reallocated objects
1079 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1080   fieldDescriptor fd;
1081 
1082   for (int i = 0; i < objects->length(); i++) {
1083     ObjectValue* sv = (ObjectValue*) objects->at(i);
1084     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1085     Handle obj = sv->value();
1086 
1087     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1088     k->print_value();
1089     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1090     if (obj.is_null()) {
1091       tty->print(" allocation failed");
1092     } else {
1093       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1094     }
1095     tty->cr();
1096 
1097     if (Verbose && !obj.is_null()) {
1098       k->oop_print_on(obj(), tty);
1099     }
1100   }
1101 }
1102 #endif
1103 #endif // COMPILER2 || INCLUDE_JVMCI
1104 
1105 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1106   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1107 
1108 #ifndef PRODUCT
1109   if (PrintDeoptimizationDetails) {
1110     ttyLocker ttyl;
1111     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1112     fr.print_on(tty);
1113     tty->print_cr("     Virtual frames (innermost first):");
1114     for (int index = 0; index < chunk->length(); index++) {
1115       compiledVFrame* vf = chunk->at(index);
1116       tty->print("       %2d - ", index);
1117       vf->print_value();
1118       int bci = chunk->at(index)->raw_bci();
1119       const char* code_name;
1120       if (bci == SynchronizationEntryBCI) {
1121         code_name = "sync entry";
1122       } else {
1123         Bytecodes::Code code = vf->method()->code_at(bci);
1124         code_name = Bytecodes::name(code);
1125       }
1126       tty->print(" - %s", code_name);
1127       tty->print_cr(" @ bci %d ", bci);
1128       if (Verbose) {
1129         vf->print();
1130         tty->cr();
1131       }
1132     }
1133   }
1134 #endif
1135 
1136   // Register map for next frame (used for stack crawl).  We capture
1137   // the state of the deopt'ing frame's caller.  Thus if we need to
1138   // stuff a C2I adapter we can properly fill in the callee-save
1139   // register locations.
1140   frame caller = fr.sender(reg_map);
1141   int frame_size = caller.sp() - fr.sp();
1142 
1143   frame sender = caller;
1144 
1145   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1146   // the vframeArray containing the unpacking information is allocated in the C heap.
1147   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1148   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1149 
1150   // Compare the vframeArray to the collected vframes
1151   assert(array->structural_compare(thread, chunk), "just checking");
1152 
1153 #ifndef PRODUCT
1154   if (PrintDeoptimizationDetails) {
1155     ttyLocker ttyl;
1156     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1157   }
1158 #endif // PRODUCT
1159 
1160   return array;
1161 }
1162 
1163 #if defined(COMPILER2) || INCLUDE_JVMCI
1164 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1165   // Reallocation of some scalar replaced objects failed. Record
1166   // that we need to pop all the interpreter frames for the
1167   // deoptimized compiled frame.
1168   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1169   thread->set_frames_to_pop_failed_realloc(array->frames());
1170   // Unlock all monitors here otherwise the interpreter will see a
1171   // mix of locked and unlocked monitors (because of failed
1172   // reallocations of synchronized objects) and be confused.
1173   for (int i = 0; i < array->frames(); i++) {
1174     MonitorChunk* monitors = array->element(i)->monitors();
1175     if (monitors != NULL) {
1176       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1177         BasicObjectLock* src = monitors->at(j);
1178         if (src->obj() != NULL) {
1179           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1180         }
1181       }
1182       array->element(i)->free_monitors(thread);
1183 #ifdef ASSERT
1184       array->element(i)->set_removed_monitors();
1185 #endif
1186     }
1187   }
1188 }
1189 #endif
1190 
1191 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1192   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1193   for (int i = 0; i < monitors->length(); i++) {
1194     MonitorInfo* mon_info = monitors->at(i);
1195     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1196       objects_to_revoke->append(Handle(mon_info->owner()));
1197     }
1198   }
1199 }
1200 
1201 
1202 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1203   if (!UseBiasedLocking) {
1204     return;
1205   }
1206 
1207   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1208 
1209   // Unfortunately we don't have a RegisterMap available in most of
1210   // the places we want to call this routine so we need to walk the
1211   // stack again to update the register map.
1212   if (map == NULL || !map->update_map()) {
1213     StackFrameStream sfs(thread, true);
1214     bool found = false;
1215     while (!found && !sfs.is_done()) {
1216       frame* cur = sfs.current();
1217       sfs.next();
1218       found = cur->id() == fr.id();
1219     }
1220     assert(found, "frame to be deoptimized not found on target thread's stack");
1221     map = sfs.register_map();
1222   }
1223 
1224   vframe* vf = vframe::new_vframe(&fr, map, thread);
1225   compiledVFrame* cvf = compiledVFrame::cast(vf);
1226   // Revoke monitors' biases in all scopes
1227   while (!cvf->is_top()) {
1228     collect_monitors(cvf, objects_to_revoke);
1229     cvf = compiledVFrame::cast(cvf->sender());
1230   }
1231   collect_monitors(cvf, objects_to_revoke);
1232 
1233   if (SafepointSynchronize::is_at_safepoint()) {
1234     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1235   } else {
1236     BiasedLocking::revoke(objects_to_revoke);
1237   }
1238 }
1239 
1240 
1241 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1242   if (!UseBiasedLocking) {
1243     return;
1244   }
1245 
1246   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1247   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1248   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1249     if (jt->has_last_Java_frame()) {
1250       StackFrameStream sfs(jt, true);
1251       while (!sfs.is_done()) {
1252         frame* cur = sfs.current();
1253         if (cb->contains(cur->pc())) {
1254           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1255           compiledVFrame* cvf = compiledVFrame::cast(vf);
1256           // Revoke monitors' biases in all scopes
1257           while (!cvf->is_top()) {
1258             collect_monitors(cvf, objects_to_revoke);
1259             cvf = compiledVFrame::cast(cvf->sender());
1260           }
1261           collect_monitors(cvf, objects_to_revoke);
1262         }
1263         sfs.next();
1264       }
1265     }
1266   }
1267   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1268 }
1269 
1270 
1271 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1272   assert(fr.can_be_deoptimized(), "checking frame type");
1273 
1274   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1275 
1276   if (LogCompilation && xtty != NULL) {
1277     nmethod* nm = fr.cb()->as_nmethod_or_null();
1278     assert(nm != NULL, "only compiled methods can deopt");
1279 
1280     ttyLocker ttyl;
1281     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "'", (uintx)thread->osthread()->thread_id());
1282     nm->log_identity(xtty);
1283     xtty->end_head();
1284     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1285       xtty->begin_elem("jvms bci='%d'", sd->bci());
1286       xtty->method(sd->method());
1287       xtty->end_elem();
1288       if (sd->is_top())  break;
1289     }
1290     xtty->tail("deoptimized");
1291   }
1292 
1293   // Patch the compiled method so that when execution returns to it we will
1294   // deopt the execution state and return to the interpreter.
1295   fr.deoptimize(thread);
1296 }
1297 
1298 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1299   deoptimize(thread, fr, map, Reason_constraint);
1300 }
1301 
1302 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1303   // Deoptimize only if the frame comes from compile code.
1304   // Do not deoptimize the frame which is already patched
1305   // during the execution of the loops below.
1306   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1307     return;
1308   }
1309   ResourceMark rm;
1310   DeoptimizationMarker dm;
1311   if (UseBiasedLocking) {
1312     revoke_biases_of_monitors(thread, fr, map);
1313   }
1314   deoptimize_single_frame(thread, fr, reason);
1315 
1316 }
1317 
1318 
1319 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1320   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1321          "can only deoptimize other thread at a safepoint");
1322   // Compute frame and register map based on thread and sp.
1323   RegisterMap reg_map(thread, UseBiasedLocking);
1324   frame fr = thread->last_frame();
1325   while (fr.id() != id) {
1326     fr = fr.sender(&reg_map);
1327   }
1328   deoptimize(thread, fr, &reg_map, reason);
1329 }
1330 
1331 
1332 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1333   if (thread == Thread::current()) {
1334     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1335   } else {
1336     VM_DeoptimizeFrame deopt(thread, id, reason);
1337     VMThread::execute(&deopt);
1338   }
1339 }
1340 
1341 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1342   deoptimize_frame(thread, id, Reason_constraint);
1343 }
1344 
1345 // JVMTI PopFrame support
1346 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1347 {
1348   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1349 }
1350 JRT_END
1351 
1352 MethodData*
1353 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1354                                 bool create_if_missing) {
1355   Thread* THREAD = thread;
1356   MethodData* mdo = m()->method_data();
1357   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1358     // Build an MDO.  Ignore errors like OutOfMemory;
1359     // that simply means we won't have an MDO to update.
1360     Method::build_interpreter_method_data(m, THREAD);
1361     if (HAS_PENDING_EXCEPTION) {
1362       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1363       CLEAR_PENDING_EXCEPTION;
1364     }
1365     mdo = m()->method_data();
1366   }
1367   return mdo;
1368 }
1369 
1370 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1371 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1372   // in case of an unresolved klass entry, load the class.
1373   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1374     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1375     return;
1376   }
1377 
1378   if (!constant_pool->tag_at(index).is_symbol()) return;
1379 
1380   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1381   Symbol*  symbol  = constant_pool->symbol_at(index);
1382 
1383   // class name?
1384   if (symbol->byte_at(0) != '(') {
1385     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1386     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1387     return;
1388   }
1389 
1390   // then it must be a signature!
1391   ResourceMark rm(THREAD);
1392   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1393     if (ss.is_object()) {
1394       Symbol* class_name = ss.as_symbol(CHECK);
1395       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1396       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1397     }
1398   }
1399 }
1400 
1401 
1402 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1403   EXCEPTION_MARK;
1404   load_class_by_index(constant_pool, index, THREAD);
1405   if (HAS_PENDING_EXCEPTION) {
1406     // Exception happened during classloading. We ignore the exception here, since it
1407     // is going to be rethrown since the current activation is going to be deoptimized and
1408     // the interpreter will re-execute the bytecode.
1409     CLEAR_PENDING_EXCEPTION;
1410     // Class loading called java code which may have caused a stack
1411     // overflow. If the exception was thrown right before the return
1412     // to the runtime the stack is no longer guarded. Reguard the
1413     // stack otherwise if we return to the uncommon trap blob and the
1414     // stack bang causes a stack overflow we crash.
1415     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1416     JavaThread* thread = (JavaThread*)THREAD;
1417     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
1418     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1419     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1420   }
1421 }
1422 
1423 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1424   HandleMark hm;
1425 
1426   // uncommon_trap() is called at the beginning of the uncommon trap
1427   // handler. Note this fact before we start generating temporary frames
1428   // that can confuse an asynchronous stack walker. This counter is
1429   // decremented at the end of unpack_frames().
1430   thread->inc_in_deopt_handler();
1431 
1432   // We need to update the map if we have biased locking.
1433 #if INCLUDE_JVMCI
1434   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1435   RegisterMap reg_map(thread, true);
1436 #else
1437   RegisterMap reg_map(thread, UseBiasedLocking);
1438 #endif
1439   frame stub_frame = thread->last_frame();
1440   frame fr = stub_frame.sender(&reg_map);
1441   // Make sure the calling nmethod is not getting deoptimized and removed
1442   // before we are done with it.
1443   nmethodLocker nl(fr.pc());
1444 
1445   // Log a message
1446   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1447               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1448 
1449   {
1450     ResourceMark rm;
1451 
1452     // Revoke biases of any monitors in the frame to ensure we can migrate them
1453     revoke_biases_of_monitors(thread, fr, &reg_map);
1454 
1455     DeoptReason reason = trap_request_reason(trap_request);
1456     DeoptAction action = trap_request_action(trap_request);
1457 #if INCLUDE_JVMCI
1458     int debug_id = trap_request_debug_id(trap_request);
1459 #endif
1460     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1461 
1462     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1463     compiledVFrame* cvf = compiledVFrame::cast(vf);
1464 
1465     nmethod* nm = cvf->code();
1466 
1467     ScopeDesc*      trap_scope  = cvf->scope();
1468 
1469     if (TraceDeoptimization) {
1470       ttyLocker ttyl;
1471       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1472 #if INCLUDE_JVMCI
1473           , debug_id
1474 #endif
1475           );
1476     }
1477 
1478     methodHandle    trap_method = trap_scope->method();
1479     int             trap_bci    = trap_scope->bci();
1480 #if INCLUDE_JVMCI
1481     oop speculation = thread->pending_failed_speculation();
1482     if (nm->is_compiled_by_jvmci()) {
1483       if (speculation != NULL) {
1484         oop speculation_log = nm->speculation_log();
1485         if (speculation_log != NULL) {
1486           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1487             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1488               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1489             }
1490           }
1491           if (TraceDeoptimization) {
1492             tty->print_cr("Saving speculation to speculation log");
1493           }
1494           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1495         } else {
1496           if (TraceDeoptimization) {
1497             tty->print_cr("Speculation present but no speculation log");
1498           }
1499         }
1500         thread->set_pending_failed_speculation(NULL);
1501       } else {
1502         if (TraceDeoptimization) {
1503           tty->print_cr("No speculation");
1504         }
1505       }
1506     } else {
1507       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1508     }
1509 
1510     if (trap_bci == SynchronizationEntryBCI) {
1511       trap_bci = 0;
1512       thread->set_pending_monitorenter(true);
1513     }
1514 
1515     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1516       thread->set_pending_transfer_to_interpreter(true);
1517     }
1518 #endif
1519 
1520     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1521     // Record this event in the histogram.
1522     gather_statistics(reason, action, trap_bc);
1523 
1524     // Ensure that we can record deopt. history:
1525     // Need MDO to record RTM code generation state.
1526     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1527 
1528     methodHandle profiled_method;
1529 #if INCLUDE_JVMCI
1530     if (nm->is_compiled_by_jvmci()) {
1531       profiled_method = nm->method();
1532     } else {
1533       profiled_method = trap_method;
1534     }
1535 #else
1536     profiled_method = trap_method;
1537 #endif
1538 
1539     MethodData* trap_mdo =
1540       get_method_data(thread, profiled_method, create_if_missing);
1541 
1542     // Log a message
1543     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1544                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1545                               trap_method->name_and_sig_as_C_string(), trap_bci);
1546 
1547     // Print a bunch of diagnostics, if requested.
1548     if (TraceDeoptimization || LogCompilation) {
1549       ResourceMark rm;
1550       ttyLocker ttyl;
1551       char buf[100];
1552       if (xtty != NULL) {
1553         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1554                          os::current_thread_id(),
1555                          format_trap_request(buf, sizeof(buf), trap_request));
1556         nm->log_identity(xtty);
1557       }
1558       Symbol* class_name = NULL;
1559       bool unresolved = false;
1560       if (unloaded_class_index >= 0) {
1561         constantPoolHandle constants (THREAD, trap_method->constants());
1562         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1563           class_name = constants->klass_name_at(unloaded_class_index);
1564           unresolved = true;
1565           if (xtty != NULL)
1566             xtty->print(" unresolved='1'");
1567         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1568           class_name = constants->symbol_at(unloaded_class_index);
1569         }
1570         if (xtty != NULL)
1571           xtty->name(class_name);
1572       }
1573       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1574         // Dump the relevant MDO state.
1575         // This is the deopt count for the current reason, any previous
1576         // reasons or recompiles seen at this point.
1577         int dcnt = trap_mdo->trap_count(reason);
1578         if (dcnt != 0)
1579           xtty->print(" count='%d'", dcnt);
1580         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1581         int dos = (pdata == NULL)? 0: pdata->trap_state();
1582         if (dos != 0) {
1583           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1584           if (trap_state_is_recompiled(dos)) {
1585             int recnt2 = trap_mdo->overflow_recompile_count();
1586             if (recnt2 != 0)
1587               xtty->print(" recompiles2='%d'", recnt2);
1588           }
1589         }
1590       }
1591       if (xtty != NULL) {
1592         xtty->stamp();
1593         xtty->end_head();
1594       }
1595       if (TraceDeoptimization) {  // make noise on the tty
1596         tty->print("Uncommon trap occurred in");
1597         nm->method()->print_short_name(tty);
1598         tty->print(" compiler=%s compile_id=%d", nm->compiler() == NULL ? "" : nm->compiler()->name(), nm->compile_id());
1599 #if INCLUDE_JVMCI
1600         oop installedCode = nm->jvmci_installed_code();
1601         if (installedCode != NULL) {
1602           oop installedCodeName = NULL;
1603           if (installedCode->is_a(InstalledCode::klass())) {
1604             installedCodeName = InstalledCode::name(installedCode);
1605           }
1606           if (installedCodeName != NULL) {
1607             tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1608           } else {
1609             tty->print(" (JVMCI: installed code has no name) ");
1610           }
1611         } else if (nm->is_compiled_by_jvmci()) {
1612           tty->print(" (JVMCI: no installed code) ");
1613         }
1614 #endif
1615         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1616                    p2i(fr.pc()),
1617                    os::current_thread_id(),
1618                    trap_reason_name(reason),
1619                    trap_action_name(action),
1620                    unloaded_class_index
1621 #if INCLUDE_JVMCI
1622                    , debug_id
1623 #endif
1624                    );
1625         if (class_name != NULL) {
1626           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1627           class_name->print_symbol_on(tty);
1628         }
1629         tty->cr();
1630       }
1631       if (xtty != NULL) {
1632         // Log the precise location of the trap.
1633         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1634           xtty->begin_elem("jvms bci='%d'", sd->bci());
1635           xtty->method(sd->method());
1636           xtty->end_elem();
1637           if (sd->is_top())  break;
1638         }
1639         xtty->tail("uncommon_trap");
1640       }
1641     }
1642     // (End diagnostic printout.)
1643 
1644     // Load class if necessary
1645     if (unloaded_class_index >= 0) {
1646       constantPoolHandle constants(THREAD, trap_method->constants());
1647       load_class_by_index(constants, unloaded_class_index);
1648     }
1649 
1650     // Flush the nmethod if necessary and desirable.
1651     //
1652     // We need to avoid situations where we are re-flushing the nmethod
1653     // because of a hot deoptimization site.  Repeated flushes at the same
1654     // point need to be detected by the compiler and avoided.  If the compiler
1655     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1656     // module must take measures to avoid an infinite cycle of recompilation
1657     // and deoptimization.  There are several such measures:
1658     //
1659     //   1. If a recompilation is ordered a second time at some site X
1660     //   and for the same reason R, the action is adjusted to 'reinterpret',
1661     //   to give the interpreter time to exercise the method more thoroughly.
1662     //   If this happens, the method's overflow_recompile_count is incremented.
1663     //
1664     //   2. If the compiler fails to reduce the deoptimization rate, then
1665     //   the method's overflow_recompile_count will begin to exceed the set
1666     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1667     //   is adjusted to 'make_not_compilable', and the method is abandoned
1668     //   to the interpreter.  This is a performance hit for hot methods,
1669     //   but is better than a disastrous infinite cycle of recompilations.
1670     //   (Actually, only the method containing the site X is abandoned.)
1671     //
1672     //   3. In parallel with the previous measures, if the total number of
1673     //   recompilations of a method exceeds the much larger set limit
1674     //   PerMethodRecompilationCutoff, the method is abandoned.
1675     //   This should only happen if the method is very large and has
1676     //   many "lukewarm" deoptimizations.  The code which enforces this
1677     //   limit is elsewhere (class nmethod, class Method).
1678     //
1679     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1680     // to recompile at each bytecode independently of the per-BCI cutoff.
1681     //
1682     // The decision to update code is up to the compiler, and is encoded
1683     // in the Action_xxx code.  If the compiler requests Action_none
1684     // no trap state is changed, no compiled code is changed, and the
1685     // computation suffers along in the interpreter.
1686     //
1687     // The other action codes specify various tactics for decompilation
1688     // and recompilation.  Action_maybe_recompile is the loosest, and
1689     // allows the compiled code to stay around until enough traps are seen,
1690     // and until the compiler gets around to recompiling the trapping method.
1691     //
1692     // The other actions cause immediate removal of the present code.
1693 
1694     // Traps caused by injected profile shouldn't pollute trap counts.
1695     bool injected_profile_trap = trap_method->has_injected_profile() &&
1696                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1697 
1698     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1699     bool make_not_entrant = false;
1700     bool make_not_compilable = false;
1701     bool reprofile = false;
1702     switch (action) {
1703     case Action_none:
1704       // Keep the old code.
1705       update_trap_state = false;
1706       break;
1707     case Action_maybe_recompile:
1708       // Do not need to invalidate the present code, but we can
1709       // initiate another
1710       // Start compiler without (necessarily) invalidating the nmethod.
1711       // The system will tolerate the old code, but new code should be
1712       // generated when possible.
1713       break;
1714     case Action_reinterpret:
1715       // Go back into the interpreter for a while, and then consider
1716       // recompiling form scratch.
1717       make_not_entrant = true;
1718       // Reset invocation counter for outer most method.
1719       // This will allow the interpreter to exercise the bytecodes
1720       // for a while before recompiling.
1721       // By contrast, Action_make_not_entrant is immediate.
1722       //
1723       // Note that the compiler will track null_check, null_assert,
1724       // range_check, and class_check events and log them as if they
1725       // had been traps taken from compiled code.  This will update
1726       // the MDO trap history so that the next compilation will
1727       // properly detect hot trap sites.
1728       reprofile = true;
1729       break;
1730     case Action_make_not_entrant:
1731       // Request immediate recompilation, and get rid of the old code.
1732       // Make them not entrant, so next time they are called they get
1733       // recompiled.  Unloaded classes are loaded now so recompile before next
1734       // time they are called.  Same for uninitialized.  The interpreter will
1735       // link the missing class, if any.
1736       make_not_entrant = true;
1737       break;
1738     case Action_make_not_compilable:
1739       // Give up on compiling this method at all.
1740       make_not_entrant = true;
1741       make_not_compilable = true;
1742       break;
1743     default:
1744       ShouldNotReachHere();
1745     }
1746 
1747     // Setting +ProfileTraps fixes the following, on all platforms:
1748     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1749     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1750     // recompile relies on a MethodData* to record heroic opt failures.
1751 
1752     // Whether the interpreter is producing MDO data or not, we also need
1753     // to use the MDO to detect hot deoptimization points and control
1754     // aggressive optimization.
1755     bool inc_recompile_count = false;
1756     ProfileData* pdata = NULL;
1757     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1758       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1759       uint this_trap_count = 0;
1760       bool maybe_prior_trap = false;
1761       bool maybe_prior_recompile = false;
1762       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1763 #if INCLUDE_JVMCI
1764                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1765 #endif
1766                                    nm->method(),
1767                                    //outputs:
1768                                    this_trap_count,
1769                                    maybe_prior_trap,
1770                                    maybe_prior_recompile);
1771       // Because the interpreter also counts null, div0, range, and class
1772       // checks, these traps from compiled code are double-counted.
1773       // This is harmless; it just means that the PerXTrapLimit values
1774       // are in effect a little smaller than they look.
1775 
1776       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1777       if (per_bc_reason != Reason_none) {
1778         // Now take action based on the partially known per-BCI history.
1779         if (maybe_prior_trap
1780             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1781           // If there are too many traps at this BCI, force a recompile.
1782           // This will allow the compiler to see the limit overflow, and
1783           // take corrective action, if possible.  The compiler generally
1784           // does not use the exact PerBytecodeTrapLimit value, but instead
1785           // changes its tactics if it sees any traps at all.  This provides
1786           // a little hysteresis, delaying a recompile until a trap happens
1787           // several times.
1788           //
1789           // Actually, since there is only one bit of counter per BCI,
1790           // the possible per-BCI counts are {0,1,(per-method count)}.
1791           // This produces accurate results if in fact there is only
1792           // one hot trap site, but begins to get fuzzy if there are
1793           // many sites.  For example, if there are ten sites each
1794           // trapping two or more times, they each get the blame for
1795           // all of their traps.
1796           make_not_entrant = true;
1797         }
1798 
1799         // Detect repeated recompilation at the same BCI, and enforce a limit.
1800         if (make_not_entrant && maybe_prior_recompile) {
1801           // More than one recompile at this point.
1802           inc_recompile_count = maybe_prior_trap;
1803         }
1804       } else {
1805         // For reasons which are not recorded per-bytecode, we simply
1806         // force recompiles unconditionally.
1807         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1808         make_not_entrant = true;
1809       }
1810 
1811       // Go back to the compiler if there are too many traps in this method.
1812       if (this_trap_count >= per_method_trap_limit(reason)) {
1813         // If there are too many traps in this method, force a recompile.
1814         // This will allow the compiler to see the limit overflow, and
1815         // take corrective action, if possible.
1816         // (This condition is an unlikely backstop only, because the
1817         // PerBytecodeTrapLimit is more likely to take effect first,
1818         // if it is applicable.)
1819         make_not_entrant = true;
1820       }
1821 
1822       // Here's more hysteresis:  If there has been a recompile at
1823       // this trap point already, run the method in the interpreter
1824       // for a while to exercise it more thoroughly.
1825       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1826         reprofile = true;
1827       }
1828     }
1829 
1830     // Take requested actions on the method:
1831 
1832     // Recompile
1833     if (make_not_entrant) {
1834       if (!nm->make_not_entrant()) {
1835         return; // the call did not change nmethod's state
1836       }
1837 
1838       if (pdata != NULL) {
1839         // Record the recompilation event, if any.
1840         int tstate0 = pdata->trap_state();
1841         int tstate1 = trap_state_set_recompiled(tstate0, true);
1842         if (tstate1 != tstate0)
1843           pdata->set_trap_state(tstate1);
1844       }
1845 
1846 #if INCLUDE_RTM_OPT
1847       // Restart collecting RTM locking abort statistic if the method
1848       // is recompiled for a reason other than RTM state change.
1849       // Assume that in new recompiled code the statistic could be different,
1850       // for example, due to different inlining.
1851       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1852           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
1853         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1854       }
1855 #endif
1856       // For code aging we count traps separately here, using make_not_entrant()
1857       // as a guard against simultaneous deopts in multiple threads.
1858       if (reason == Reason_tenured && trap_mdo != NULL) {
1859         trap_mdo->inc_tenure_traps();
1860       }
1861     }
1862 
1863     if (inc_recompile_count) {
1864       trap_mdo->inc_overflow_recompile_count();
1865       if ((uint)trap_mdo->overflow_recompile_count() >
1866           (uint)PerBytecodeRecompilationCutoff) {
1867         // Give up on the method containing the bad BCI.
1868         if (trap_method() == nm->method()) {
1869           make_not_compilable = true;
1870         } else {
1871           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1872           // But give grace to the enclosing nm->method().
1873         }
1874       }
1875     }
1876 
1877     // Reprofile
1878     if (reprofile) {
1879       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1880     }
1881 
1882     // Give up compiling
1883     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1884       assert(make_not_entrant, "consistent");
1885       nm->method()->set_not_compilable(CompLevel_full_optimization);
1886     }
1887 
1888   } // Free marked resources
1889 
1890 }
1891 JRT_END
1892 
1893 ProfileData*
1894 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1895                                          int trap_bci,
1896                                          Deoptimization::DeoptReason reason,
1897                                          bool update_total_trap_count,
1898 #if INCLUDE_JVMCI
1899                                          bool is_osr,
1900 #endif
1901                                          Method* compiled_method,
1902                                          //outputs:
1903                                          uint& ret_this_trap_count,
1904                                          bool& ret_maybe_prior_trap,
1905                                          bool& ret_maybe_prior_recompile) {
1906   bool maybe_prior_trap = false;
1907   bool maybe_prior_recompile = false;
1908   uint this_trap_count = 0;
1909   if (update_total_trap_count) {
1910     uint idx = reason;
1911 #if INCLUDE_JVMCI
1912     if (is_osr) {
1913       idx += Reason_LIMIT;
1914     }
1915 #endif
1916     uint prior_trap_count = trap_mdo->trap_count(idx);
1917     this_trap_count  = trap_mdo->inc_trap_count(idx);
1918 
1919     // If the runtime cannot find a place to store trap history,
1920     // it is estimated based on the general condition of the method.
1921     // If the method has ever been recompiled, or has ever incurred
1922     // a trap with the present reason , then this BCI is assumed
1923     // (pessimistically) to be the culprit.
1924     maybe_prior_trap      = (prior_trap_count != 0);
1925     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1926   }
1927   ProfileData* pdata = NULL;
1928 
1929 
1930   // For reasons which are recorded per bytecode, we check per-BCI data.
1931   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1932   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
1933   if (per_bc_reason != Reason_none) {
1934     // Find the profile data for this BCI.  If there isn't one,
1935     // try to allocate one from the MDO's set of spares.
1936     // This will let us detect a repeated trap at this point.
1937     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1938 
1939     if (pdata != NULL) {
1940       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1941         if (LogCompilation && xtty != NULL) {
1942           ttyLocker ttyl;
1943           // no more room for speculative traps in this MDO
1944           xtty->elem("speculative_traps_oom");
1945         }
1946       }
1947       // Query the trap state of this profile datum.
1948       int tstate0 = pdata->trap_state();
1949       if (!trap_state_has_reason(tstate0, per_bc_reason))
1950         maybe_prior_trap = false;
1951       if (!trap_state_is_recompiled(tstate0))
1952         maybe_prior_recompile = false;
1953 
1954       // Update the trap state of this profile datum.
1955       int tstate1 = tstate0;
1956       // Record the reason.
1957       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1958       // Store the updated state on the MDO, for next time.
1959       if (tstate1 != tstate0)
1960         pdata->set_trap_state(tstate1);
1961     } else {
1962       if (LogCompilation && xtty != NULL) {
1963         ttyLocker ttyl;
1964         // Missing MDP?  Leave a small complaint in the log.
1965         xtty->elem("missing_mdp bci='%d'", trap_bci);
1966       }
1967     }
1968   }
1969 
1970   // Return results:
1971   ret_this_trap_count = this_trap_count;
1972   ret_maybe_prior_trap = maybe_prior_trap;
1973   ret_maybe_prior_recompile = maybe_prior_recompile;
1974   return pdata;
1975 }
1976 
1977 void
1978 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1979   ResourceMark rm;
1980   // Ignored outputs:
1981   uint ignore_this_trap_count;
1982   bool ignore_maybe_prior_trap;
1983   bool ignore_maybe_prior_recompile;
1984   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
1985   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
1986   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
1987   query_update_method_data(trap_mdo, trap_bci,
1988                            (DeoptReason)reason,
1989                            update_total_counts,
1990 #if INCLUDE_JVMCI
1991                            false,
1992 #endif
1993                            NULL,
1994                            ignore_this_trap_count,
1995                            ignore_maybe_prior_trap,
1996                            ignore_maybe_prior_recompile);
1997 }
1998 
1999 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2000   if (TraceDeoptimization) {
2001     tty->print("Uncommon trap ");
2002   }
2003   // Still in Java no safepoints
2004   {
2005     // This enters VM and may safepoint
2006     uncommon_trap_inner(thread, trap_request);
2007   }
2008   return fetch_unroll_info_helper(thread, exec_mode);
2009 }
2010 
2011 // Local derived constants.
2012 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2013 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2014 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2015 
2016 //---------------------------trap_state_reason---------------------------------
2017 Deoptimization::DeoptReason
2018 Deoptimization::trap_state_reason(int trap_state) {
2019   // This assert provides the link between the width of DataLayout::trap_bits
2020   // and the encoding of "recorded" reasons.  It ensures there are enough
2021   // bits to store all needed reasons in the per-BCI MDO profile.
2022   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2023   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2024   trap_state -= recompile_bit;
2025   if (trap_state == DS_REASON_MASK) {
2026     return Reason_many;
2027   } else {
2028     assert((int)Reason_none == 0, "state=0 => Reason_none");
2029     return (DeoptReason)trap_state;
2030   }
2031 }
2032 //-------------------------trap_state_has_reason-------------------------------
2033 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2034   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2035   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2036   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2037   trap_state -= recompile_bit;
2038   if (trap_state == DS_REASON_MASK) {
2039     return -1;  // true, unspecifically (bottom of state lattice)
2040   } else if (trap_state == reason) {
2041     return 1;   // true, definitely
2042   } else if (trap_state == 0) {
2043     return 0;   // false, definitely (top of state lattice)
2044   } else {
2045     return 0;   // false, definitely
2046   }
2047 }
2048 //-------------------------trap_state_add_reason-------------------------------
2049 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2050   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2051   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2052   trap_state -= recompile_bit;
2053   if (trap_state == DS_REASON_MASK) {
2054     return trap_state + recompile_bit;     // already at state lattice bottom
2055   } else if (trap_state == reason) {
2056     return trap_state + recompile_bit;     // the condition is already true
2057   } else if (trap_state == 0) {
2058     return reason + recompile_bit;          // no condition has yet been true
2059   } else {
2060     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2061   }
2062 }
2063 //-----------------------trap_state_is_recompiled------------------------------
2064 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2065   return (trap_state & DS_RECOMPILE_BIT) != 0;
2066 }
2067 //-----------------------trap_state_set_recompiled-----------------------------
2068 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2069   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2070   else    return trap_state & ~DS_RECOMPILE_BIT;
2071 }
2072 //---------------------------format_trap_state---------------------------------
2073 // This is used for debugging and diagnostics, including LogFile output.
2074 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2075                                               int trap_state) {
2076   DeoptReason reason      = trap_state_reason(trap_state);
2077   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2078   // Re-encode the state from its decoded components.
2079   int decoded_state = 0;
2080   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2081     decoded_state = trap_state_add_reason(decoded_state, reason);
2082   if (recomp_flag)
2083     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2084   // If the state re-encodes properly, format it symbolically.
2085   // Because this routine is used for debugging and diagnostics,
2086   // be robust even if the state is a strange value.
2087   size_t len;
2088   if (decoded_state != trap_state) {
2089     // Random buggy state that doesn't decode??
2090     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2091   } else {
2092     len = jio_snprintf(buf, buflen, "%s%s",
2093                        trap_reason_name(reason),
2094                        recomp_flag ? " recompiled" : "");
2095   }
2096   if (len >= buflen)
2097     buf[buflen-1] = '\0';
2098   return buf;
2099 }
2100 
2101 
2102 //--------------------------------statics--------------------------------------
2103 const char* Deoptimization::_trap_reason_name[] = {
2104   // Note:  Keep this in sync. with enum DeoptReason.
2105   "none",
2106   "null_check",
2107   "null_assert" JVMCI_ONLY("_or_unreached0"),
2108   "range_check",
2109   "class_check",
2110   "array_check",
2111   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2112   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2113   "unloaded",
2114   "uninitialized",
2115   "unreached",
2116   "unhandled",
2117   "constraint",
2118   "div0_check",
2119   "age",
2120   "predicate",
2121   "loop_limit_check",
2122   "speculate_class_check",
2123   "speculate_null_check",
2124   "rtm_state_change",
2125   "unstable_if",
2126   "unstable_fused_if",
2127 #if INCLUDE_JVMCI
2128   "aliasing",
2129   "transfer_to_interpreter",
2130   "not_compiled_exception_handler",
2131   "unresolved",
2132   "jsr_mismatch",
2133 #endif
2134   "tenured"
2135 };
2136 const char* Deoptimization::_trap_action_name[] = {
2137   // Note:  Keep this in sync. with enum DeoptAction.
2138   "none",
2139   "maybe_recompile",
2140   "reinterpret",
2141   "make_not_entrant",
2142   "make_not_compilable"
2143 };
2144 
2145 const char* Deoptimization::trap_reason_name(int reason) {
2146   // Check that every reason has a name
2147   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2148 
2149   if (reason == Reason_many)  return "many";
2150   if ((uint)reason < Reason_LIMIT)
2151     return _trap_reason_name[reason];
2152   static char buf[20];
2153   sprintf(buf, "reason%d", reason);
2154   return buf;
2155 }
2156 const char* Deoptimization::trap_action_name(int action) {
2157   // Check that every action has a name
2158   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2159 
2160   if ((uint)action < Action_LIMIT)
2161     return _trap_action_name[action];
2162   static char buf[20];
2163   sprintf(buf, "action%d", action);
2164   return buf;
2165 }
2166 
2167 // This is used for debugging and diagnostics, including LogFile output.
2168 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2169                                                 int trap_request) {
2170   jint unloaded_class_index = trap_request_index(trap_request);
2171   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2172   const char* action = trap_action_name(trap_request_action(trap_request));
2173 #if INCLUDE_JVMCI
2174   int debug_id = trap_request_debug_id(trap_request);
2175 #endif
2176   size_t len;
2177   if (unloaded_class_index < 0) {
2178     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2179                        reason, action
2180 #if INCLUDE_JVMCI
2181                        ,debug_id
2182 #endif
2183                        );
2184   } else {
2185     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2186                        reason, action, unloaded_class_index
2187 #if INCLUDE_JVMCI
2188                        ,debug_id
2189 #endif
2190                        );
2191   }
2192   if (len >= buflen)
2193     buf[buflen-1] = '\0';
2194   return buf;
2195 }
2196 
2197 juint Deoptimization::_deoptimization_hist
2198         [Deoptimization::Reason_LIMIT]
2199     [1 + Deoptimization::Action_LIMIT]
2200         [Deoptimization::BC_CASE_LIMIT]
2201   = {0};
2202 
2203 enum {
2204   LSB_BITS = 8,
2205   LSB_MASK = right_n_bits(LSB_BITS)
2206 };
2207 
2208 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2209                                        Bytecodes::Code bc) {
2210   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2211   assert(action >= 0 && action < Action_LIMIT, "oob");
2212   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2213   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2214   juint* cases = _deoptimization_hist[reason][1+action];
2215   juint* bc_counter_addr = NULL;
2216   juint  bc_counter      = 0;
2217   // Look for an unused counter, or an exact match to this BC.
2218   if (bc != Bytecodes::_illegal) {
2219     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2220       juint* counter_addr = &cases[bc_case];
2221       juint  counter = *counter_addr;
2222       if ((counter == 0 && bc_counter_addr == NULL)
2223           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2224         // this counter is either free or is already devoted to this BC
2225         bc_counter_addr = counter_addr;
2226         bc_counter = counter | bc;
2227       }
2228     }
2229   }
2230   if (bc_counter_addr == NULL) {
2231     // Overflow, or no given bytecode.
2232     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2233     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2234   }
2235   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2236 }
2237 
2238 jint Deoptimization::total_deoptimization_count() {
2239   return _deoptimization_hist[Reason_none][0][0];
2240 }
2241 
2242 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2243   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2244   return _deoptimization_hist[reason][0][0];
2245 }
2246 
2247 void Deoptimization::print_statistics() {
2248   juint total = total_deoptimization_count();
2249   juint account = total;
2250   if (total != 0) {
2251     ttyLocker ttyl;
2252     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2253     tty->print_cr("Deoptimization traps recorded:");
2254     #define PRINT_STAT_LINE(name, r) \
2255       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2256     PRINT_STAT_LINE("total", total);
2257     // For each non-zero entry in the histogram, print the reason,
2258     // the action, and (if specifically known) the type of bytecode.
2259     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2260       for (int action = 0; action < Action_LIMIT; action++) {
2261         juint* cases = _deoptimization_hist[reason][1+action];
2262         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2263           juint counter = cases[bc_case];
2264           if (counter != 0) {
2265             char name[1*K];
2266             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2267             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2268               bc = Bytecodes::_illegal;
2269             sprintf(name, "%s/%s/%s",
2270                     trap_reason_name(reason),
2271                     trap_action_name(action),
2272                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2273             juint r = counter >> LSB_BITS;
2274             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2275             account -= r;
2276           }
2277         }
2278       }
2279     }
2280     if (account != 0) {
2281       PRINT_STAT_LINE("unaccounted", account);
2282     }
2283     #undef PRINT_STAT_LINE
2284     if (xtty != NULL)  xtty->tail("statistics");
2285   }
2286 }
2287 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2288 
2289 
2290 // Stubs for C1 only system.
2291 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2292   return false;
2293 }
2294 
2295 const char* Deoptimization::trap_reason_name(int reason) {
2296   return "unknown";
2297 }
2298 
2299 void Deoptimization::print_statistics() {
2300   // no output
2301 }
2302 
2303 void
2304 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2305   // no udpate
2306 }
2307 
2308 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2309   return 0;
2310 }
2311 
2312 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2313                                        Bytecodes::Code bc) {
2314   // no update
2315 }
2316 
2317 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2318                                               int trap_state) {
2319   jio_snprintf(buf, buflen, "#%d", trap_state);
2320   return buf;
2321 }
2322 
2323 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI