1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.inline.hpp"
  49 #include "oops/instanceKlass.hpp"
  50 #include "oops/objArrayOop.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/symbol.hpp"
  53 #include "oops/verifyOopClosure.hpp"
  54 #include "prims/jvm.h"
  55 #include "prims/jvm_misc.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/privilegedStack.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/biasedLocking.hpp"
  62 #include "runtime/commandLineFlagConstraintList.hpp"
  63 #include "runtime/commandLineFlagWriteableList.hpp"
  64 #include "runtime/commandLineFlagRangeList.hpp"
  65 #include "runtime/deoptimization.hpp"
  66 #include "runtime/fprofiler.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/globals.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/interfaceSupport.hpp"
  71 #include "runtime/java.hpp"
  72 #include "runtime/javaCalls.hpp"
  73 #include "runtime/jniPeriodicChecker.hpp"
  74 #include "runtime/timerTrace.hpp"
  75 #include "runtime/memprofiler.hpp"
  76 #include "runtime/mutexLocker.hpp"
  77 #include "runtime/objectMonitor.hpp"
  78 #include "runtime/orderAccess.inline.hpp"
  79 #include "runtime/osThread.hpp"
  80 #include "runtime/safepoint.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/statSampler.hpp"
  83 #include "runtime/stubRoutines.hpp"
  84 #include "runtime/sweeper.hpp"
  85 #include "runtime/task.hpp"
  86 #include "runtime/thread.inline.hpp"
  87 #include "runtime/threadCritical.hpp"
  88 #include "runtime/vframe.hpp"
  89 #include "runtime/vframeArray.hpp"
  90 #include "runtime/vframe_hp.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "runtime/vm_operations.hpp"
  93 #include "runtime/vm_version.hpp"
  94 #include "services/attachListener.hpp"
  95 #include "services/management.hpp"
  96 #include "services/memTracker.hpp"
  97 #include "services/threadService.hpp"
  98 #include "trace/traceMacros.hpp"
  99 #include "trace/tracing.hpp"
 100 #include "utilities/align.hpp"
 101 #include "utilities/defaultStream.hpp"
 102 #include "utilities/dtrace.hpp"
 103 #include "utilities/events.hpp"
 104 #include "utilities/macros.hpp"
 105 #include "utilities/preserveException.hpp"
 106 #include "utilities/vmError.hpp"
 107 #if INCLUDE_ALL_GCS
 108 #include "gc/cms/concurrentMarkSweepThread.hpp"
 109 #include "gc/g1/concurrentMarkThread.inline.hpp"
 110 #include "gc/parallel/pcTasks.hpp"
 111 #endif // INCLUDE_ALL_GCS
 112 #if INCLUDE_JVMCI
 113 #include "jvmci/jvmciCompiler.hpp"
 114 #include "jvmci/jvmciRuntime.hpp"
 115 #include "logging/logHandle.hpp"
 116 #endif
 117 #ifdef COMPILER1
 118 #include "c1/c1_Compiler.hpp"
 119 #endif
 120 #ifdef COMPILER2
 121 #include "opto/c2compiler.hpp"
 122 #include "opto/idealGraphPrinter.hpp"
 123 #endif
 124 #if INCLUDE_RTM_OPT
 125 #include "runtime/rtmLocking.hpp"
 126 #endif
 127 
 128 // Initialization after module runtime initialization
 129 void universe_post_module_init();  // must happen after call_initPhase2
 130 
 131 #ifdef DTRACE_ENABLED
 132 
 133 // Only bother with this argument setup if dtrace is available
 134 
 135   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 136   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 137 
 138   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 139     {                                                                      \
 140       ResourceMark rm(this);                                               \
 141       int len = 0;                                                         \
 142       const char* name = (javathread)->get_thread_name();                  \
 143       len = strlen(name);                                                  \
 144       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 145         (char *) name, len,                                                \
 146         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 147         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 148         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 149     }
 150 
 151 #else //  ndef DTRACE_ENABLED
 152 
 153   #define DTRACE_THREAD_PROBE(probe, javathread)
 154 
 155 #endif // ndef DTRACE_ENABLED
 156 
 157 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 158 // Current thread is maintained as a thread-local variable
 159 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 160 #endif
 161 // Class hierarchy
 162 // - Thread
 163 //   - VMThread
 164 //   - WatcherThread
 165 //   - ConcurrentMarkSweepThread
 166 //   - JavaThread
 167 //     - CompilerThread
 168 
 169 // ======= Thread ========
 170 // Support for forcing alignment of thread objects for biased locking
 171 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 172   if (UseBiasedLocking) {
 173     const int alignment = markOopDesc::biased_lock_alignment;
 174     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 175     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 176                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 177                                                          AllocFailStrategy::RETURN_NULL);
 178     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 179     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 180            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 181            "JavaThread alignment code overflowed allocated storage");
 182     if (aligned_addr != real_malloc_addr) {
 183       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 184                               p2i(real_malloc_addr),
 185                               p2i(aligned_addr));
 186     }
 187     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 188     return aligned_addr;
 189   } else {
 190     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 191                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 192   }
 193 }
 194 
 195 void Thread::operator delete(void* p) {
 196   if (UseBiasedLocking) {
 197     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 198     FreeHeap(real_malloc_addr);
 199   } else {
 200     FreeHeap(p);
 201   }
 202 }
 203 
 204 
 205 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 206 // JavaThread
 207 
 208 
 209 Thread::Thread() {
 210   // stack and get_thread
 211   set_stack_base(NULL);
 212   set_stack_size(0);
 213   set_self_raw_id(0);
 214   set_lgrp_id(-1);
 215   DEBUG_ONLY(clear_suspendible_thread();)
 216 
 217   // allocated data structures
 218   set_osthread(NULL);
 219   set_resource_area(new (mtThread)ResourceArea());
 220   DEBUG_ONLY(_current_resource_mark = NULL;)
 221   set_handle_area(new (mtThread) HandleArea(NULL));
 222   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 223   set_active_handles(NULL);
 224   set_free_handle_block(NULL);
 225   set_last_handle_mark(NULL);
 226 
 227   // This initial value ==> never claimed.
 228   _oops_do_parity = 0;
 229 
 230   // the handle mark links itself to last_handle_mark
 231   new HandleMark(this);
 232 
 233   // plain initialization
 234   debug_only(_owned_locks = NULL;)
 235   debug_only(_allow_allocation_count = 0;)
 236   NOT_PRODUCT(_allow_safepoint_count = 0;)
 237   NOT_PRODUCT(_skip_gcalot = false;)
 238   _jvmti_env_iteration_count = 0;
 239   set_allocated_bytes(0);
 240   _vm_operation_started_count = 0;
 241   _vm_operation_completed_count = 0;
 242   _current_pending_monitor = NULL;
 243   _current_pending_monitor_is_from_java = true;
 244   _current_waiting_monitor = NULL;
 245   _num_nested_signal = 0;
 246   omFreeList = NULL;
 247   omFreeCount = 0;
 248   omFreeProvision = 32;
 249   omInUseList = NULL;
 250   omInUseCount = 0;
 251 
 252 #ifdef ASSERT
 253   _visited_for_critical_count = false;
 254 #endif
 255 
 256   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 257                          Monitor::_safepoint_check_sometimes);
 258   _suspend_flags = 0;
 259 
 260   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 261   _hashStateX = os::random();
 262   _hashStateY = 842502087;
 263   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 264   _hashStateW = 273326509;
 265 
 266   _OnTrap   = 0;
 267   _schedctl = NULL;
 268   _Stalled  = 0;
 269   _TypeTag  = 0x2BAD;
 270 
 271   // Many of the following fields are effectively final - immutable
 272   // Note that nascent threads can't use the Native Monitor-Mutex
 273   // construct until the _MutexEvent is initialized ...
 274   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 275   // we might instead use a stack of ParkEvents that we could provision on-demand.
 276   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 277   // and ::Release()
 278   _ParkEvent   = ParkEvent::Allocate(this);
 279   _SleepEvent  = ParkEvent::Allocate(this);
 280   _MutexEvent  = ParkEvent::Allocate(this);
 281   _MuxEvent    = ParkEvent::Allocate(this);
 282 
 283 #ifdef CHECK_UNHANDLED_OOPS
 284   if (CheckUnhandledOops) {
 285     _unhandled_oops = new UnhandledOops(this);
 286   }
 287 #endif // CHECK_UNHANDLED_OOPS
 288 #ifdef ASSERT
 289   if (UseBiasedLocking) {
 290     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 291     assert(this == _real_malloc_address ||
 292            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 293            "bug in forced alignment of thread objects");
 294   }
 295 #endif // ASSERT
 296 }
 297 
 298 void Thread::initialize_thread_current() {
 299 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 300   assert(_thr_current == NULL, "Thread::current already initialized");
 301   _thr_current = this;
 302 #endif
 303   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 304   ThreadLocalStorage::set_thread(this);
 305   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 306 }
 307 
 308 void Thread::clear_thread_current() {
 309   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 310 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 311   _thr_current = NULL;
 312 #endif
 313   ThreadLocalStorage::set_thread(NULL);
 314 }
 315 
 316 void Thread::record_stack_base_and_size() {
 317   set_stack_base(os::current_stack_base());
 318   set_stack_size(os::current_stack_size());
 319   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 320   // in initialize_thread(). Without the adjustment, stack size is
 321   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 322   // So far, only Solaris has real implementation of initialize_thread().
 323   //
 324   // set up any platform-specific state.
 325   os::initialize_thread(this);
 326 
 327   // Set stack limits after thread is initialized.
 328   if (is_Java_thread()) {
 329     ((JavaThread*) this)->set_stack_overflow_limit();
 330     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 331   }
 332 #if INCLUDE_NMT
 333   // record thread's native stack, stack grows downward
 334   MemTracker::record_thread_stack(stack_end(), stack_size());
 335 #endif // INCLUDE_NMT
 336   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 337     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 338     os::current_thread_id(), p2i(stack_base() - stack_size()),
 339     p2i(stack_base()), stack_size()/1024);
 340 }
 341 
 342 
 343 Thread::~Thread() {
 344   EVENT_THREAD_DESTRUCT(this);
 345 
 346   // stack_base can be NULL if the thread is never started or exited before
 347   // record_stack_base_and_size called. Although, we would like to ensure
 348   // that all started threads do call record_stack_base_and_size(), there is
 349   // not proper way to enforce that.
 350 #if INCLUDE_NMT
 351   if (_stack_base != NULL) {
 352     MemTracker::release_thread_stack(stack_end(), stack_size());
 353 #ifdef ASSERT
 354     set_stack_base(NULL);
 355 #endif
 356   }
 357 #endif // INCLUDE_NMT
 358 
 359   // deallocate data structures
 360   delete resource_area();
 361   // since the handle marks are using the handle area, we have to deallocated the root
 362   // handle mark before deallocating the thread's handle area,
 363   assert(last_handle_mark() != NULL, "check we have an element");
 364   delete last_handle_mark();
 365   assert(last_handle_mark() == NULL, "check we have reached the end");
 366 
 367   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 368   // We NULL out the fields for good hygiene.
 369   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 370   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 371   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 372   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 373 
 374   delete handle_area();
 375   delete metadata_handles();
 376 
 377   // SR_handler uses this as a termination indicator -
 378   // needs to happen before os::free_thread()
 379   delete _SR_lock;
 380   _SR_lock = NULL;
 381 
 382   // osthread() can be NULL, if creation of thread failed.
 383   if (osthread() != NULL) os::free_thread(osthread());
 384 
 385   // clear Thread::current if thread is deleting itself.
 386   // Needed to ensure JNI correctly detects non-attached threads.
 387   if (this == Thread::current()) {
 388     clear_thread_current();
 389   }
 390 
 391   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 392 }
 393 
 394 // NOTE: dummy function for assertion purpose.
 395 void Thread::run() {
 396   ShouldNotReachHere();
 397 }
 398 
 399 #ifdef ASSERT
 400 // Private method to check for dangling thread pointer
 401 void check_for_dangling_thread_pointer(Thread *thread) {
 402   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 403          "possibility of dangling Thread pointer");
 404 }
 405 #endif
 406 
 407 ThreadPriority Thread::get_priority(const Thread* const thread) {
 408   ThreadPriority priority;
 409   // Can return an error!
 410   (void)os::get_priority(thread, priority);
 411   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 412   return priority;
 413 }
 414 
 415 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 416   debug_only(check_for_dangling_thread_pointer(thread);)
 417   // Can return an error!
 418   (void)os::set_priority(thread, priority);
 419 }
 420 
 421 
 422 void Thread::start(Thread* thread) {
 423   // Start is different from resume in that its safety is guaranteed by context or
 424   // being called from a Java method synchronized on the Thread object.
 425   if (!DisableStartThread) {
 426     if (thread->is_Java_thread()) {
 427       // Initialize the thread state to RUNNABLE before starting this thread.
 428       // Can not set it after the thread started because we do not know the
 429       // exact thread state at that time. It could be in MONITOR_WAIT or
 430       // in SLEEPING or some other state.
 431       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 432                                           java_lang_Thread::RUNNABLE);
 433     }
 434     os::start_thread(thread);
 435   }
 436 }
 437 
 438 // Enqueue a VM_Operation to do the job for us - sometime later
 439 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 440   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 441   VMThread::execute(vm_stop);
 442 }
 443 
 444 
 445 // Check if an external suspend request has completed (or has been
 446 // cancelled). Returns true if the thread is externally suspended and
 447 // false otherwise.
 448 //
 449 // The bits parameter returns information about the code path through
 450 // the routine. Useful for debugging:
 451 //
 452 // set in is_ext_suspend_completed():
 453 // 0x00000001 - routine was entered
 454 // 0x00000010 - routine return false at end
 455 // 0x00000100 - thread exited (return false)
 456 // 0x00000200 - suspend request cancelled (return false)
 457 // 0x00000400 - thread suspended (return true)
 458 // 0x00001000 - thread is in a suspend equivalent state (return true)
 459 // 0x00002000 - thread is native and walkable (return true)
 460 // 0x00004000 - thread is native_trans and walkable (needed retry)
 461 //
 462 // set in wait_for_ext_suspend_completion():
 463 // 0x00010000 - routine was entered
 464 // 0x00020000 - suspend request cancelled before loop (return false)
 465 // 0x00040000 - thread suspended before loop (return true)
 466 // 0x00080000 - suspend request cancelled in loop (return false)
 467 // 0x00100000 - thread suspended in loop (return true)
 468 // 0x00200000 - suspend not completed during retry loop (return false)
 469 
 470 // Helper class for tracing suspend wait debug bits.
 471 //
 472 // 0x00000100 indicates that the target thread exited before it could
 473 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 474 // 0x00080000 each indicate a cancelled suspend request so they don't
 475 // count as wait failures either.
 476 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 477 
 478 class TraceSuspendDebugBits : public StackObj {
 479  private:
 480   JavaThread * jt;
 481   bool         is_wait;
 482   bool         called_by_wait;  // meaningful when !is_wait
 483   uint32_t *   bits;
 484 
 485  public:
 486   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 487                         uint32_t *_bits) {
 488     jt             = _jt;
 489     is_wait        = _is_wait;
 490     called_by_wait = _called_by_wait;
 491     bits           = _bits;
 492   }
 493 
 494   ~TraceSuspendDebugBits() {
 495     if (!is_wait) {
 496 #if 1
 497       // By default, don't trace bits for is_ext_suspend_completed() calls.
 498       // That trace is very chatty.
 499       return;
 500 #else
 501       if (!called_by_wait) {
 502         // If tracing for is_ext_suspend_completed() is enabled, then only
 503         // trace calls to it from wait_for_ext_suspend_completion()
 504         return;
 505       }
 506 #endif
 507     }
 508 
 509     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 510       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 511         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 512         ResourceMark rm;
 513 
 514         tty->print_cr(
 515                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 516                       jt->get_thread_name(), *bits);
 517 
 518         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 519       }
 520     }
 521   }
 522 };
 523 #undef DEBUG_FALSE_BITS
 524 
 525 
 526 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 527                                           uint32_t *bits) {
 528   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 529 
 530   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 531   bool do_trans_retry;           // flag to force the retry
 532 
 533   *bits |= 0x00000001;
 534 
 535   do {
 536     do_trans_retry = false;
 537 
 538     if (is_exiting()) {
 539       // Thread is in the process of exiting. This is always checked
 540       // first to reduce the risk of dereferencing a freed JavaThread.
 541       *bits |= 0x00000100;
 542       return false;
 543     }
 544 
 545     if (!is_external_suspend()) {
 546       // Suspend request is cancelled. This is always checked before
 547       // is_ext_suspended() to reduce the risk of a rogue resume
 548       // confusing the thread that made the suspend request.
 549       *bits |= 0x00000200;
 550       return false;
 551     }
 552 
 553     if (is_ext_suspended()) {
 554       // thread is suspended
 555       *bits |= 0x00000400;
 556       return true;
 557     }
 558 
 559     // Now that we no longer do hard suspends of threads running
 560     // native code, the target thread can be changing thread state
 561     // while we are in this routine:
 562     //
 563     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 564     //
 565     // We save a copy of the thread state as observed at this moment
 566     // and make our decision about suspend completeness based on the
 567     // copy. This closes the race where the thread state is seen as
 568     // _thread_in_native_trans in the if-thread_blocked check, but is
 569     // seen as _thread_blocked in if-thread_in_native_trans check.
 570     JavaThreadState save_state = thread_state();
 571 
 572     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 573       // If the thread's state is _thread_blocked and this blocking
 574       // condition is known to be equivalent to a suspend, then we can
 575       // consider the thread to be externally suspended. This means that
 576       // the code that sets _thread_blocked has been modified to do
 577       // self-suspension if the blocking condition releases. We also
 578       // used to check for CONDVAR_WAIT here, but that is now covered by
 579       // the _thread_blocked with self-suspension check.
 580       //
 581       // Return true since we wouldn't be here unless there was still an
 582       // external suspend request.
 583       *bits |= 0x00001000;
 584       return true;
 585     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 586       // Threads running native code will self-suspend on native==>VM/Java
 587       // transitions. If its stack is walkable (should always be the case
 588       // unless this function is called before the actual java_suspend()
 589       // call), then the wait is done.
 590       *bits |= 0x00002000;
 591       return true;
 592     } else if (!called_by_wait && !did_trans_retry &&
 593                save_state == _thread_in_native_trans &&
 594                frame_anchor()->walkable()) {
 595       // The thread is transitioning from thread_in_native to another
 596       // thread state. check_safepoint_and_suspend_for_native_trans()
 597       // will force the thread to self-suspend. If it hasn't gotten
 598       // there yet we may have caught the thread in-between the native
 599       // code check above and the self-suspend. Lucky us. If we were
 600       // called by wait_for_ext_suspend_completion(), then it
 601       // will be doing the retries so we don't have to.
 602       //
 603       // Since we use the saved thread state in the if-statement above,
 604       // there is a chance that the thread has already transitioned to
 605       // _thread_blocked by the time we get here. In that case, we will
 606       // make a single unnecessary pass through the logic below. This
 607       // doesn't hurt anything since we still do the trans retry.
 608 
 609       *bits |= 0x00004000;
 610 
 611       // Once the thread leaves thread_in_native_trans for another
 612       // thread state, we break out of this retry loop. We shouldn't
 613       // need this flag to prevent us from getting back here, but
 614       // sometimes paranoia is good.
 615       did_trans_retry = true;
 616 
 617       // We wait for the thread to transition to a more usable state.
 618       for (int i = 1; i <= SuspendRetryCount; i++) {
 619         // We used to do an "os::yield_all(i)" call here with the intention
 620         // that yielding would increase on each retry. However, the parameter
 621         // is ignored on Linux which means the yield didn't scale up. Waiting
 622         // on the SR_lock below provides a much more predictable scale up for
 623         // the delay. It also provides a simple/direct point to check for any
 624         // safepoint requests from the VMThread
 625 
 626         // temporarily drops SR_lock while doing wait with safepoint check
 627         // (if we're a JavaThread - the WatcherThread can also call this)
 628         // and increase delay with each retry
 629         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 630 
 631         // check the actual thread state instead of what we saved above
 632         if (thread_state() != _thread_in_native_trans) {
 633           // the thread has transitioned to another thread state so
 634           // try all the checks (except this one) one more time.
 635           do_trans_retry = true;
 636           break;
 637         }
 638       } // end retry loop
 639 
 640 
 641     }
 642   } while (do_trans_retry);
 643 
 644   *bits |= 0x00000010;
 645   return false;
 646 }
 647 
 648 // Wait for an external suspend request to complete (or be cancelled).
 649 // Returns true if the thread is externally suspended and false otherwise.
 650 //
 651 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 652                                                  uint32_t *bits) {
 653   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 654                              false /* !called_by_wait */, bits);
 655 
 656   // local flag copies to minimize SR_lock hold time
 657   bool is_suspended;
 658   bool pending;
 659   uint32_t reset_bits;
 660 
 661   // set a marker so is_ext_suspend_completed() knows we are the caller
 662   *bits |= 0x00010000;
 663 
 664   // We use reset_bits to reinitialize the bits value at the top of
 665   // each retry loop. This allows the caller to make use of any
 666   // unused bits for their own marking purposes.
 667   reset_bits = *bits;
 668 
 669   {
 670     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 671     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 672                                             delay, bits);
 673     pending = is_external_suspend();
 674   }
 675   // must release SR_lock to allow suspension to complete
 676 
 677   if (!pending) {
 678     // A cancelled suspend request is the only false return from
 679     // is_ext_suspend_completed() that keeps us from entering the
 680     // retry loop.
 681     *bits |= 0x00020000;
 682     return false;
 683   }
 684 
 685   if (is_suspended) {
 686     *bits |= 0x00040000;
 687     return true;
 688   }
 689 
 690   for (int i = 1; i <= retries; i++) {
 691     *bits = reset_bits;  // reinit to only track last retry
 692 
 693     // We used to do an "os::yield_all(i)" call here with the intention
 694     // that yielding would increase on each retry. However, the parameter
 695     // is ignored on Linux which means the yield didn't scale up. Waiting
 696     // on the SR_lock below provides a much more predictable scale up for
 697     // the delay. It also provides a simple/direct point to check for any
 698     // safepoint requests from the VMThread
 699 
 700     {
 701       MutexLocker ml(SR_lock());
 702       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 703       // can also call this)  and increase delay with each retry
 704       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 705 
 706       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 707                                               delay, bits);
 708 
 709       // It is possible for the external suspend request to be cancelled
 710       // (by a resume) before the actual suspend operation is completed.
 711       // Refresh our local copy to see if we still need to wait.
 712       pending = is_external_suspend();
 713     }
 714 
 715     if (!pending) {
 716       // A cancelled suspend request is the only false return from
 717       // is_ext_suspend_completed() that keeps us from staying in the
 718       // retry loop.
 719       *bits |= 0x00080000;
 720       return false;
 721     }
 722 
 723     if (is_suspended) {
 724       *bits |= 0x00100000;
 725       return true;
 726     }
 727   } // end retry loop
 728 
 729   // thread did not suspend after all our retries
 730   *bits |= 0x00200000;
 731   return false;
 732 }
 733 
 734 #ifndef PRODUCT
 735 void JavaThread::record_jump(address target, address instr, const char* file,
 736                              int line) {
 737 
 738   // This should not need to be atomic as the only way for simultaneous
 739   // updates is via interrupts. Even then this should be rare or non-existent
 740   // and we don't care that much anyway.
 741 
 742   int index = _jmp_ring_index;
 743   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 744   _jmp_ring[index]._target = (intptr_t) target;
 745   _jmp_ring[index]._instruction = (intptr_t) instr;
 746   _jmp_ring[index]._file = file;
 747   _jmp_ring[index]._line = line;
 748 }
 749 #endif // PRODUCT
 750 
 751 // Called by flat profiler
 752 // Callers have already called wait_for_ext_suspend_completion
 753 // The assertion for that is currently too complex to put here:
 754 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 755   bool gotframe = false;
 756   // self suspension saves needed state.
 757   if (has_last_Java_frame() && _anchor.walkable()) {
 758     *_fr = pd_last_frame();
 759     gotframe = true;
 760   }
 761   return gotframe;
 762 }
 763 
 764 void Thread::interrupt(Thread* thread) {
 765   debug_only(check_for_dangling_thread_pointer(thread);)
 766   os::interrupt(thread);
 767 }
 768 
 769 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 770   debug_only(check_for_dangling_thread_pointer(thread);)
 771   // Note:  If clear_interrupted==false, this simply fetches and
 772   // returns the value of the field osthread()->interrupted().
 773   return os::is_interrupted(thread, clear_interrupted);
 774 }
 775 
 776 
 777 // GC Support
 778 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 779   jint thread_parity = _oops_do_parity;
 780   if (thread_parity != strong_roots_parity) {
 781     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 782     if (res == thread_parity) {
 783       return true;
 784     } else {
 785       guarantee(res == strong_roots_parity, "Or else what?");
 786       return false;
 787     }
 788   }
 789   return false;
 790 }
 791 
 792 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 793   active_handles()->oops_do(f);
 794   // Do oop for ThreadShadow
 795   f->do_oop((oop*)&_pending_exception);
 796   handle_area()->oops_do(f);
 797 
 798   if (MonitorInUseLists) {
 799     // When using thread local monitor lists, we scan them here,
 800     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 801     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 802   }
 803 }
 804 
 805 void Thread::metadata_handles_do(void f(Metadata*)) {
 806   // Only walk the Handles in Thread.
 807   if (metadata_handles() != NULL) {
 808     for (int i = 0; i< metadata_handles()->length(); i++) {
 809       f(metadata_handles()->at(i));
 810     }
 811   }
 812 }
 813 
 814 void Thread::print_on(outputStream* st) const {
 815   // get_priority assumes osthread initialized
 816   if (osthread() != NULL) {
 817     int os_prio;
 818     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 819       st->print("os_prio=%d ", os_prio);
 820     }
 821     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 822     ext().print_on(st);
 823     osthread()->print_on(st);
 824   }
 825   debug_only(if (WizardMode) print_owned_locks_on(st);)
 826 }
 827 
 828 // Thread::print_on_error() is called by fatal error handler. Don't use
 829 // any lock or allocate memory.
 830 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 831   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 832 
 833   if (is_VM_thread())                 { st->print("VMThread"); }
 834   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 835   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 836   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 837   else                                { st->print("Thread"); }
 838 
 839   if (is_Named_thread()) {
 840     st->print(" \"%s\"", name());
 841   }
 842 
 843   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 844             p2i(stack_end()), p2i(stack_base()));
 845 
 846   if (osthread()) {
 847     st->print(" [id=%d]", osthread()->thread_id());
 848   }
 849 }
 850 
 851 void Thread::print_value_on(outputStream* st) const {
 852   if (is_Named_thread()) {
 853     st->print(" \"%s\" ", name());
 854   }
 855   st->print(INTPTR_FORMAT, p2i(this));   // print address
 856 }
 857 
 858 #ifdef ASSERT
 859 void Thread::print_owned_locks_on(outputStream* st) const {
 860   Monitor *cur = _owned_locks;
 861   if (cur == NULL) {
 862     st->print(" (no locks) ");
 863   } else {
 864     st->print_cr(" Locks owned:");
 865     while (cur) {
 866       cur->print_on(st);
 867       cur = cur->next();
 868     }
 869   }
 870 }
 871 
 872 static int ref_use_count  = 0;
 873 
 874 bool Thread::owns_locks_but_compiled_lock() const {
 875   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 876     if (cur != Compile_lock) return true;
 877   }
 878   return false;
 879 }
 880 
 881 
 882 #endif
 883 
 884 #ifndef PRODUCT
 885 
 886 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 887 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 888 // no threads which allow_vm_block's are held
 889 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 890   // Check if current thread is allowed to block at a safepoint
 891   if (!(_allow_safepoint_count == 0)) {
 892     fatal("Possible safepoint reached by thread that does not allow it");
 893   }
 894   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 895     fatal("LEAF method calling lock?");
 896   }
 897 
 898 #ifdef ASSERT
 899   if (potential_vm_operation && is_Java_thread()
 900       && !Universe::is_bootstrapping()) {
 901     // Make sure we do not hold any locks that the VM thread also uses.
 902     // This could potentially lead to deadlocks
 903     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 904       // Threads_lock is special, since the safepoint synchronization will not start before this is
 905       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 906       // since it is used to transfer control between JavaThreads and the VMThread
 907       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 908       if ((cur->allow_vm_block() &&
 909            cur != Threads_lock &&
 910            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 911            cur != VMOperationRequest_lock &&
 912            cur != VMOperationQueue_lock) ||
 913            cur->rank() == Mutex::special) {
 914         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 915       }
 916     }
 917   }
 918 
 919   if (GCALotAtAllSafepoints) {
 920     // We could enter a safepoint here and thus have a gc
 921     InterfaceSupport::check_gc_alot();
 922   }
 923 #endif
 924 }
 925 #endif
 926 
 927 bool Thread::is_in_stack(address adr) const {
 928   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 929   address end = os::current_stack_pointer();
 930   // Allow non Java threads to call this without stack_base
 931   if (_stack_base == NULL) return true;
 932   if (stack_base() >= adr && adr >= end) return true;
 933 
 934   return false;
 935 }
 936 
 937 bool Thread::is_in_usable_stack(address adr) const {
 938   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 939   size_t usable_stack_size = _stack_size - stack_guard_size;
 940 
 941   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 942 }
 943 
 944 
 945 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 946 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 947 // used for compilation in the future. If that change is made, the need for these methods
 948 // should be revisited, and they should be removed if possible.
 949 
 950 bool Thread::is_lock_owned(address adr) const {
 951   return on_local_stack(adr);
 952 }
 953 
 954 bool Thread::set_as_starting_thread() {
 955   // NOTE: this must be called inside the main thread.
 956   return os::create_main_thread((JavaThread*)this);
 957 }
 958 
 959 static void initialize_class(Symbol* class_name, TRAPS) {
 960   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 961   InstanceKlass::cast(klass)->initialize(CHECK);
 962 }
 963 
 964 
 965 // Creates the initial ThreadGroup
 966 static Handle create_initial_thread_group(TRAPS) {
 967   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 968   InstanceKlass* ik = InstanceKlass::cast(k);
 969 
 970   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
 971   {
 972     JavaValue result(T_VOID);
 973     JavaCalls::call_special(&result,
 974                             system_instance,
 975                             ik,
 976                             vmSymbols::object_initializer_name(),
 977                             vmSymbols::void_method_signature(),
 978                             CHECK_NH);
 979   }
 980   Universe::set_system_thread_group(system_instance());
 981 
 982   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
 983   {
 984     JavaValue result(T_VOID);
 985     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 986     JavaCalls::call_special(&result,
 987                             main_instance,
 988                             ik,
 989                             vmSymbols::object_initializer_name(),
 990                             vmSymbols::threadgroup_string_void_signature(),
 991                             system_instance,
 992                             string,
 993                             CHECK_NH);
 994   }
 995   return main_instance;
 996 }
 997 
 998 // Creates the initial Thread
 999 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1000                                  TRAPS) {
1001   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1002   InstanceKlass* ik = InstanceKlass::cast(k);
1003   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1004 
1005   java_lang_Thread::set_thread(thread_oop(), thread);
1006   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1007   thread->set_threadObj(thread_oop());
1008 
1009   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1010 
1011   JavaValue result(T_VOID);
1012   JavaCalls::call_special(&result, thread_oop,
1013                           ik,
1014                           vmSymbols::object_initializer_name(),
1015                           vmSymbols::threadgroup_string_void_signature(),
1016                           thread_group,
1017                           string,
1018                           CHECK_NULL);
1019   return thread_oop();
1020 }
1021 
1022 char java_runtime_name[128] = "";
1023 char java_runtime_version[128] = "";
1024 
1025 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1026 static const char* get_java_runtime_name(TRAPS) {
1027   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1028                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1029   fieldDescriptor fd;
1030   bool found = k != NULL &&
1031                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1032                                                         vmSymbols::string_signature(), &fd);
1033   if (found) {
1034     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1035     if (name_oop == NULL) {
1036       return NULL;
1037     }
1038     const char* name = java_lang_String::as_utf8_string(name_oop,
1039                                                         java_runtime_name,
1040                                                         sizeof(java_runtime_name));
1041     return name;
1042   } else {
1043     return NULL;
1044   }
1045 }
1046 
1047 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1048 static const char* get_java_runtime_version(TRAPS) {
1049   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1050                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1051   fieldDescriptor fd;
1052   bool found = k != NULL &&
1053                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1054                                                         vmSymbols::string_signature(), &fd);
1055   if (found) {
1056     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1057     if (name_oop == NULL) {
1058       return NULL;
1059     }
1060     const char* name = java_lang_String::as_utf8_string(name_oop,
1061                                                         java_runtime_version,
1062                                                         sizeof(java_runtime_version));
1063     return name;
1064   } else {
1065     return NULL;
1066   }
1067 }
1068 
1069 // General purpose hook into Java code, run once when the VM is initialized.
1070 // The Java library method itself may be changed independently from the VM.
1071 static void call_postVMInitHook(TRAPS) {
1072   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1073   if (klass != NULL) {
1074     JavaValue result(T_VOID);
1075     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1076                            vmSymbols::void_method_signature(),
1077                            CHECK);
1078   }
1079 }
1080 
1081 static void reset_vm_info_property(TRAPS) {
1082   // the vm info string
1083   ResourceMark rm(THREAD);
1084   const char *vm_info = VM_Version::vm_info_string();
1085 
1086   // java.lang.System class
1087   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1088 
1089   // setProperty arguments
1090   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1091   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1092 
1093   // return value
1094   JavaValue r(T_OBJECT);
1095 
1096   // public static String setProperty(String key, String value);
1097   JavaCalls::call_static(&r,
1098                          klass,
1099                          vmSymbols::setProperty_name(),
1100                          vmSymbols::string_string_string_signature(),
1101                          key_str,
1102                          value_str,
1103                          CHECK);
1104 }
1105 
1106 
1107 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1108                                     bool daemon, TRAPS) {
1109   assert(thread_group.not_null(), "thread group should be specified");
1110   assert(threadObj() == NULL, "should only create Java thread object once");
1111 
1112   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1113   InstanceKlass* ik = InstanceKlass::cast(k);
1114   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1115 
1116   java_lang_Thread::set_thread(thread_oop(), this);
1117   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1118   set_threadObj(thread_oop());
1119 
1120   JavaValue result(T_VOID);
1121   if (thread_name != NULL) {
1122     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1123     // Thread gets assigned specified name and null target
1124     JavaCalls::call_special(&result,
1125                             thread_oop,
1126                             ik,
1127                             vmSymbols::object_initializer_name(),
1128                             vmSymbols::threadgroup_string_void_signature(),
1129                             thread_group, // Argument 1
1130                             name,         // Argument 2
1131                             THREAD);
1132   } else {
1133     // Thread gets assigned name "Thread-nnn" and null target
1134     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1135     JavaCalls::call_special(&result,
1136                             thread_oop,
1137                             ik,
1138                             vmSymbols::object_initializer_name(),
1139                             vmSymbols::threadgroup_runnable_void_signature(),
1140                             thread_group, // Argument 1
1141                             Handle(),     // Argument 2
1142                             THREAD);
1143   }
1144 
1145 
1146   if (daemon) {
1147     java_lang_Thread::set_daemon(thread_oop());
1148   }
1149 
1150   if (HAS_PENDING_EXCEPTION) {
1151     return;
1152   }
1153 
1154   Klass* group =  SystemDictionary::ThreadGroup_klass();
1155   Handle threadObj(THREAD, this->threadObj());
1156 
1157   JavaCalls::call_special(&result,
1158                           thread_group,
1159                           group,
1160                           vmSymbols::add_method_name(),
1161                           vmSymbols::thread_void_signature(),
1162                           threadObj,          // Arg 1
1163                           THREAD);
1164 }
1165 
1166 // NamedThread --  non-JavaThread subclasses with multiple
1167 // uniquely named instances should derive from this.
1168 NamedThread::NamedThread() : Thread() {
1169   _name = NULL;
1170   _processed_thread = NULL;
1171   _gc_id = GCId::undefined();
1172 }
1173 
1174 NamedThread::~NamedThread() {
1175   if (_name != NULL) {
1176     FREE_C_HEAP_ARRAY(char, _name);
1177     _name = NULL;
1178   }
1179 }
1180 
1181 void NamedThread::set_name(const char* format, ...) {
1182   guarantee(_name == NULL, "Only get to set name once.");
1183   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1184   guarantee(_name != NULL, "alloc failure");
1185   va_list ap;
1186   va_start(ap, format);
1187   jio_vsnprintf(_name, max_name_len, format, ap);
1188   va_end(ap);
1189 }
1190 
1191 void NamedThread::initialize_named_thread() {
1192   set_native_thread_name(name());
1193 }
1194 
1195 void NamedThread::print_on(outputStream* st) const {
1196   st->print("\"%s\" ", name());
1197   Thread::print_on(st);
1198   st->cr();
1199 }
1200 
1201 
1202 // ======= WatcherThread ========
1203 
1204 // The watcher thread exists to simulate timer interrupts.  It should
1205 // be replaced by an abstraction over whatever native support for
1206 // timer interrupts exists on the platform.
1207 
1208 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1209 bool WatcherThread::_startable = false;
1210 volatile bool  WatcherThread::_should_terminate = false;
1211 
1212 WatcherThread::WatcherThread() : Thread() {
1213   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1214   if (os::create_thread(this, os::watcher_thread)) {
1215     _watcher_thread = this;
1216 
1217     // Set the watcher thread to the highest OS priority which should not be
1218     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1219     // is created. The only normal thread using this priority is the reference
1220     // handler thread, which runs for very short intervals only.
1221     // If the VMThread's priority is not lower than the WatcherThread profiling
1222     // will be inaccurate.
1223     os::set_priority(this, MaxPriority);
1224     if (!DisableStartThread) {
1225       os::start_thread(this);
1226     }
1227   }
1228 }
1229 
1230 int WatcherThread::sleep() const {
1231   // The WatcherThread does not participate in the safepoint protocol
1232   // for the PeriodicTask_lock because it is not a JavaThread.
1233   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1234 
1235   if (_should_terminate) {
1236     // check for termination before we do any housekeeping or wait
1237     return 0;  // we did not sleep.
1238   }
1239 
1240   // remaining will be zero if there are no tasks,
1241   // causing the WatcherThread to sleep until a task is
1242   // enrolled
1243   int remaining = PeriodicTask::time_to_wait();
1244   int time_slept = 0;
1245 
1246   // we expect this to timeout - we only ever get unparked when
1247   // we should terminate or when a new task has been enrolled
1248   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1249 
1250   jlong time_before_loop = os::javaTimeNanos();
1251 
1252   while (true) {
1253     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1254                                             remaining);
1255     jlong now = os::javaTimeNanos();
1256 
1257     if (remaining == 0) {
1258       // if we didn't have any tasks we could have waited for a long time
1259       // consider the time_slept zero and reset time_before_loop
1260       time_slept = 0;
1261       time_before_loop = now;
1262     } else {
1263       // need to recalculate since we might have new tasks in _tasks
1264       time_slept = (int) ((now - time_before_loop) / 1000000);
1265     }
1266 
1267     // Change to task list or spurious wakeup of some kind
1268     if (timedout || _should_terminate) {
1269       break;
1270     }
1271 
1272     remaining = PeriodicTask::time_to_wait();
1273     if (remaining == 0) {
1274       // Last task was just disenrolled so loop around and wait until
1275       // another task gets enrolled
1276       continue;
1277     }
1278 
1279     remaining -= time_slept;
1280     if (remaining <= 0) {
1281       break;
1282     }
1283   }
1284 
1285   return time_slept;
1286 }
1287 
1288 void WatcherThread::run() {
1289   assert(this == watcher_thread(), "just checking");
1290 
1291   this->record_stack_base_and_size();
1292   this->set_native_thread_name(this->name());
1293   this->set_active_handles(JNIHandleBlock::allocate_block());
1294   while (true) {
1295     assert(watcher_thread() == Thread::current(), "thread consistency check");
1296     assert(watcher_thread() == this, "thread consistency check");
1297 
1298     // Calculate how long it'll be until the next PeriodicTask work
1299     // should be done, and sleep that amount of time.
1300     int time_waited = sleep();
1301 
1302     if (VMError::is_error_reported()) {
1303       // A fatal error has happened, the error handler(VMError::report_and_die)
1304       // should abort JVM after creating an error log file. However in some
1305       // rare cases, the error handler itself might deadlock. Here periodically
1306       // check for error reporting timeouts, and if it happens, just proceed to
1307       // abort the VM.
1308 
1309       // This code is in WatcherThread because WatcherThread wakes up
1310       // periodically so the fatal error handler doesn't need to do anything;
1311       // also because the WatcherThread is less likely to crash than other
1312       // threads.
1313 
1314       for (;;) {
1315         // Note: we use naked sleep in this loop because we want to avoid using
1316         // any kind of VM infrastructure which may be broken at this point.
1317         if (VMError::check_timeout()) {
1318           // We hit error reporting timeout. Error reporting was interrupted and
1319           // will be wrapping things up now (closing files etc). Give it some more
1320           // time, then quit the VM.
1321           os::naked_short_sleep(200);
1322           // Print a message to stderr.
1323           fdStream err(defaultStream::output_fd());
1324           err.print_raw_cr("# [ timer expired, abort... ]");
1325           // skip atexit/vm_exit/vm_abort hooks
1326           os::die();
1327         }
1328 
1329         // Wait a second, then recheck for timeout.
1330         os::naked_short_sleep(999);
1331       }
1332     }
1333 
1334     if (_should_terminate) {
1335       // check for termination before posting the next tick
1336       break;
1337     }
1338 
1339     PeriodicTask::real_time_tick(time_waited);
1340   }
1341 
1342   // Signal that it is terminated
1343   {
1344     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1345     _watcher_thread = NULL;
1346     Terminator_lock->notify();
1347   }
1348 }
1349 
1350 void WatcherThread::start() {
1351   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1352 
1353   if (watcher_thread() == NULL && _startable) {
1354     _should_terminate = false;
1355     // Create the single instance of WatcherThread
1356     new WatcherThread();
1357   }
1358 }
1359 
1360 void WatcherThread::make_startable() {
1361   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1362   _startable = true;
1363 }
1364 
1365 void WatcherThread::stop() {
1366   {
1367     // Follow normal safepoint aware lock enter protocol since the
1368     // WatcherThread is stopped by another JavaThread.
1369     MutexLocker ml(PeriodicTask_lock);
1370     _should_terminate = true;
1371 
1372     WatcherThread* watcher = watcher_thread();
1373     if (watcher != NULL) {
1374       // unpark the WatcherThread so it can see that it should terminate
1375       watcher->unpark();
1376     }
1377   }
1378 
1379   MutexLocker mu(Terminator_lock);
1380 
1381   while (watcher_thread() != NULL) {
1382     // This wait should make safepoint checks, wait without a timeout,
1383     // and wait as a suspend-equivalent condition.
1384     //
1385     // Note: If the FlatProfiler is running, then this thread is waiting
1386     // for the WatcherThread to terminate and the WatcherThread, via the
1387     // FlatProfiler task, is waiting for the external suspend request on
1388     // this thread to complete. wait_for_ext_suspend_completion() will
1389     // eventually timeout, but that takes time. Making this wait a
1390     // suspend-equivalent condition solves that timeout problem.
1391     //
1392     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1393                           Mutex::_as_suspend_equivalent_flag);
1394   }
1395 }
1396 
1397 void WatcherThread::unpark() {
1398   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1399   PeriodicTask_lock->notify();
1400 }
1401 
1402 void WatcherThread::print_on(outputStream* st) const {
1403   st->print("\"%s\" ", name());
1404   Thread::print_on(st);
1405   st->cr();
1406 }
1407 
1408 // ======= JavaThread ========
1409 
1410 #if INCLUDE_JVMCI
1411 
1412 jlong* JavaThread::_jvmci_old_thread_counters;
1413 
1414 bool jvmci_counters_include(JavaThread* thread) {
1415   oop threadObj = thread->threadObj();
1416   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1417 }
1418 
1419 void JavaThread::collect_counters(typeArrayOop array) {
1420   if (JVMCICounterSize > 0) {
1421     MutexLocker tl(Threads_lock);
1422     for (int i = 0; i < array->length(); i++) {
1423       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1424     }
1425     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1426       if (jvmci_counters_include(tp)) {
1427         for (int i = 0; i < array->length(); i++) {
1428           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1429         }
1430       }
1431     }
1432   }
1433 }
1434 
1435 #endif // INCLUDE_JVMCI
1436 
1437 // A JavaThread is a normal Java thread
1438 
1439 void JavaThread::initialize() {
1440   // Initialize fields
1441 
1442   set_saved_exception_pc(NULL);
1443   set_threadObj(NULL);
1444   _anchor.clear();
1445   set_entry_point(NULL);
1446   set_jni_functions(jni_functions());
1447   set_callee_target(NULL);
1448   set_vm_result(NULL);
1449   set_vm_result_2(NULL);
1450   set_vframe_array_head(NULL);
1451   set_vframe_array_last(NULL);
1452   set_deferred_locals(NULL);
1453   set_deopt_mark(NULL);
1454   set_deopt_compiled_method(NULL);
1455   clear_must_deopt_id();
1456   set_monitor_chunks(NULL);
1457   set_next(NULL);
1458   set_thread_state(_thread_new);
1459   _terminated = _not_terminated;
1460   _privileged_stack_top = NULL;
1461   _array_for_gc = NULL;
1462   _suspend_equivalent = false;
1463   _in_deopt_handler = 0;
1464   _doing_unsafe_access = false;
1465   _stack_guard_state = stack_guard_unused;
1466 #if INCLUDE_JVMCI
1467   _pending_monitorenter = false;
1468   _pending_deoptimization = -1;
1469   _pending_failed_speculation = NULL;
1470   _pending_transfer_to_interpreter = false;
1471   _adjusting_comp_level = false;
1472   _jvmci._alternate_call_target = NULL;
1473   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1474   if (JVMCICounterSize > 0) {
1475     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1476     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1477   } else {
1478     _jvmci_counters = NULL;
1479   }
1480 #endif // INCLUDE_JVMCI
1481   _reserved_stack_activation = NULL;  // stack base not known yet
1482   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1483   _exception_pc  = 0;
1484   _exception_handler_pc = 0;
1485   _is_method_handle_return = 0;
1486   _jvmti_thread_state= NULL;
1487   _should_post_on_exceptions_flag = JNI_FALSE;
1488   _jvmti_get_loaded_classes_closure = NULL;
1489   _interp_only_mode    = 0;
1490   _special_runtime_exit_condition = _no_async_condition;
1491   _pending_async_exception = NULL;
1492   _thread_stat = NULL;
1493   _thread_stat = new ThreadStatistics();
1494   _blocked_on_compilation = false;
1495   _jni_active_critical = 0;
1496   _pending_jni_exception_check_fn = NULL;
1497   _do_not_unlock_if_synchronized = false;
1498   _cached_monitor_info = NULL;
1499   _parker = Parker::Allocate(this);
1500 
1501 #ifndef PRODUCT
1502   _jmp_ring_index = 0;
1503   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1504     record_jump(NULL, NULL, NULL, 0);
1505   }
1506 #endif // PRODUCT
1507 
1508   set_thread_profiler(NULL);
1509   if (FlatProfiler::is_active()) {
1510     // This is where we would decide to either give each thread it's own profiler
1511     // or use one global one from FlatProfiler,
1512     // or up to some count of the number of profiled threads, etc.
1513     ThreadProfiler* pp = new ThreadProfiler();
1514     pp->engage();
1515     set_thread_profiler(pp);
1516   }
1517 
1518   // Setup safepoint state info for this thread
1519   ThreadSafepointState::create(this);
1520 
1521   debug_only(_java_call_counter = 0);
1522 
1523   // JVMTI PopFrame support
1524   _popframe_condition = popframe_inactive;
1525   _popframe_preserved_args = NULL;
1526   _popframe_preserved_args_size = 0;
1527   _frames_to_pop_failed_realloc = 0;
1528 
1529   pd_initialize();
1530 }
1531 
1532 #if INCLUDE_ALL_GCS
1533 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1534 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1535 #endif // INCLUDE_ALL_GCS
1536 
1537 JavaThread::JavaThread(bool is_attaching_via_jni) :
1538                        Thread()
1539 #if INCLUDE_ALL_GCS
1540                        , _satb_mark_queue(&_satb_mark_queue_set),
1541                        _dirty_card_queue(&_dirty_card_queue_set)
1542 #endif // INCLUDE_ALL_GCS
1543 {
1544   initialize();
1545   if (is_attaching_via_jni) {
1546     _jni_attach_state = _attaching_via_jni;
1547   } else {
1548     _jni_attach_state = _not_attaching_via_jni;
1549   }
1550   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1551 }
1552 
1553 bool JavaThread::reguard_stack(address cur_sp) {
1554   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1555       && _stack_guard_state != stack_guard_reserved_disabled) {
1556     return true; // Stack already guarded or guard pages not needed.
1557   }
1558 
1559   if (register_stack_overflow()) {
1560     // For those architectures which have separate register and
1561     // memory stacks, we must check the register stack to see if
1562     // it has overflowed.
1563     return false;
1564   }
1565 
1566   // Java code never executes within the yellow zone: the latter is only
1567   // there to provoke an exception during stack banging.  If java code
1568   // is executing there, either StackShadowPages should be larger, or
1569   // some exception code in c1, c2 or the interpreter isn't unwinding
1570   // when it should.
1571   guarantee(cur_sp > stack_reserved_zone_base(),
1572             "not enough space to reguard - increase StackShadowPages");
1573   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1574     enable_stack_yellow_reserved_zone();
1575     if (reserved_stack_activation() != stack_base()) {
1576       set_reserved_stack_activation(stack_base());
1577     }
1578   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1579     set_reserved_stack_activation(stack_base());
1580     enable_stack_reserved_zone();
1581   }
1582   return true;
1583 }
1584 
1585 bool JavaThread::reguard_stack(void) {
1586   return reguard_stack(os::current_stack_pointer());
1587 }
1588 
1589 
1590 void JavaThread::block_if_vm_exited() {
1591   if (_terminated == _vm_exited) {
1592     // _vm_exited is set at safepoint, and Threads_lock is never released
1593     // we will block here forever
1594     Threads_lock->lock_without_safepoint_check();
1595     ShouldNotReachHere();
1596   }
1597 }
1598 
1599 
1600 // Remove this ifdef when C1 is ported to the compiler interface.
1601 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1602 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1603 
1604 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1605                        Thread()
1606 #if INCLUDE_ALL_GCS
1607                        , _satb_mark_queue(&_satb_mark_queue_set),
1608                        _dirty_card_queue(&_dirty_card_queue_set)
1609 #endif // INCLUDE_ALL_GCS
1610 {
1611   initialize();
1612   _jni_attach_state = _not_attaching_via_jni;
1613   set_entry_point(entry_point);
1614   // Create the native thread itself.
1615   // %note runtime_23
1616   os::ThreadType thr_type = os::java_thread;
1617   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1618                                                      os::java_thread;
1619   os::create_thread(this, thr_type, stack_sz);
1620   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1621   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1622   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1623   // the exception consists of creating the exception object & initializing it, initialization
1624   // will leave the VM via a JavaCall and then all locks must be unlocked).
1625   //
1626   // The thread is still suspended when we reach here. Thread must be explicit started
1627   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1628   // by calling Threads:add. The reason why this is not done here, is because the thread
1629   // object must be fully initialized (take a look at JVM_Start)
1630 }
1631 
1632 JavaThread::~JavaThread() {
1633 
1634   // JSR166 -- return the parker to the free list
1635   Parker::Release(_parker);
1636   _parker = NULL;
1637 
1638   // Free any remaining  previous UnrollBlock
1639   vframeArray* old_array = vframe_array_last();
1640 
1641   if (old_array != NULL) {
1642     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1643     old_array->set_unroll_block(NULL);
1644     delete old_info;
1645     delete old_array;
1646   }
1647 
1648   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1649   if (deferred != NULL) {
1650     // This can only happen if thread is destroyed before deoptimization occurs.
1651     assert(deferred->length() != 0, "empty array!");
1652     do {
1653       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1654       deferred->remove_at(0);
1655       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1656       delete dlv;
1657     } while (deferred->length() != 0);
1658     delete deferred;
1659   }
1660 
1661   // All Java related clean up happens in exit
1662   ThreadSafepointState::destroy(this);
1663   if (_thread_profiler != NULL) delete _thread_profiler;
1664   if (_thread_stat != NULL) delete _thread_stat;
1665 
1666 #if INCLUDE_JVMCI
1667   if (JVMCICounterSize > 0) {
1668     if (jvmci_counters_include(this)) {
1669       for (int i = 0; i < JVMCICounterSize; i++) {
1670         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1671       }
1672     }
1673     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1674   }
1675 #endif // INCLUDE_JVMCI
1676 }
1677 
1678 
1679 // The first routine called by a new Java thread
1680 void JavaThread::run() {
1681   // initialize thread-local alloc buffer related fields
1682   this->initialize_tlab();
1683 
1684   // used to test validity of stack trace backs
1685   this->record_base_of_stack_pointer();
1686 
1687   // Record real stack base and size.
1688   this->record_stack_base_and_size();
1689 
1690   this->create_stack_guard_pages();
1691 
1692   this->cache_global_variables();
1693 
1694   // Thread is now sufficient initialized to be handled by the safepoint code as being
1695   // in the VM. Change thread state from _thread_new to _thread_in_vm
1696   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1697 
1698   assert(JavaThread::current() == this, "sanity check");
1699   assert(!Thread::current()->owns_locks(), "sanity check");
1700 
1701   DTRACE_THREAD_PROBE(start, this);
1702 
1703   // This operation might block. We call that after all safepoint checks for a new thread has
1704   // been completed.
1705   this->set_active_handles(JNIHandleBlock::allocate_block());
1706 
1707   if (JvmtiExport::should_post_thread_life()) {
1708     JvmtiExport::post_thread_start(this);
1709   }
1710 
1711   EventThreadStart event;
1712   if (event.should_commit()) {
1713     event.set_thread(THREAD_TRACE_ID(this));
1714     event.commit();
1715   }
1716 
1717   // We call another function to do the rest so we are sure that the stack addresses used
1718   // from there will be lower than the stack base just computed
1719   thread_main_inner();
1720 
1721   // Note, thread is no longer valid at this point!
1722 }
1723 
1724 
1725 void JavaThread::thread_main_inner() {
1726   assert(JavaThread::current() == this, "sanity check");
1727   assert(this->threadObj() != NULL, "just checking");
1728 
1729   // Execute thread entry point unless this thread has a pending exception
1730   // or has been stopped before starting.
1731   // Note: Due to JVM_StopThread we can have pending exceptions already!
1732   if (!this->has_pending_exception() &&
1733       !java_lang_Thread::is_stillborn(this->threadObj())) {
1734     {
1735       ResourceMark rm(this);
1736       this->set_native_thread_name(this->get_thread_name());
1737     }
1738     HandleMark hm(this);
1739     this->entry_point()(this, this);
1740   }
1741 
1742   DTRACE_THREAD_PROBE(stop, this);
1743 
1744   this->exit(false);
1745   delete this;
1746 }
1747 
1748 
1749 static void ensure_join(JavaThread* thread) {
1750   // We do not need to grap the Threads_lock, since we are operating on ourself.
1751   Handle threadObj(thread, thread->threadObj());
1752   assert(threadObj.not_null(), "java thread object must exist");
1753   ObjectLocker lock(threadObj, thread);
1754   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1755   thread->clear_pending_exception();
1756   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1757   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1758   // Clear the native thread instance - this makes isAlive return false and allows the join()
1759   // to complete once we've done the notify_all below
1760   java_lang_Thread::set_thread(threadObj(), NULL);
1761   lock.notify_all(thread);
1762   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1763   thread->clear_pending_exception();
1764 }
1765 
1766 
1767 // For any new cleanup additions, please check to see if they need to be applied to
1768 // cleanup_failed_attach_current_thread as well.
1769 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1770   assert(this == JavaThread::current(), "thread consistency check");
1771 
1772   HandleMark hm(this);
1773   Handle uncaught_exception(this, this->pending_exception());
1774   this->clear_pending_exception();
1775   Handle threadObj(this, this->threadObj());
1776   assert(threadObj.not_null(), "Java thread object should be created");
1777 
1778   if (get_thread_profiler() != NULL) {
1779     get_thread_profiler()->disengage();
1780     ResourceMark rm;
1781     get_thread_profiler()->print(get_thread_name());
1782   }
1783 
1784 
1785   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1786   {
1787     EXCEPTION_MARK;
1788 
1789     CLEAR_PENDING_EXCEPTION;
1790   }
1791   if (!destroy_vm) {
1792     if (uncaught_exception.not_null()) {
1793       EXCEPTION_MARK;
1794       // Call method Thread.dispatchUncaughtException().
1795       Klass* thread_klass = SystemDictionary::Thread_klass();
1796       JavaValue result(T_VOID);
1797       JavaCalls::call_virtual(&result,
1798                               threadObj, thread_klass,
1799                               vmSymbols::dispatchUncaughtException_name(),
1800                               vmSymbols::throwable_void_signature(),
1801                               uncaught_exception,
1802                               THREAD);
1803       if (HAS_PENDING_EXCEPTION) {
1804         ResourceMark rm(this);
1805         jio_fprintf(defaultStream::error_stream(),
1806                     "\nException: %s thrown from the UncaughtExceptionHandler"
1807                     " in thread \"%s\"\n",
1808                     pending_exception()->klass()->external_name(),
1809                     get_thread_name());
1810         CLEAR_PENDING_EXCEPTION;
1811       }
1812     }
1813 
1814     // Called before the java thread exit since we want to read info
1815     // from java_lang_Thread object
1816     EventThreadEnd event;
1817     if (event.should_commit()) {
1818       event.set_thread(THREAD_TRACE_ID(this));
1819       event.commit();
1820     }
1821 
1822     // Call after last event on thread
1823     EVENT_THREAD_EXIT(this);
1824 
1825     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1826     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1827     // is deprecated anyhow.
1828     if (!is_Compiler_thread()) {
1829       int count = 3;
1830       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1831         EXCEPTION_MARK;
1832         JavaValue result(T_VOID);
1833         Klass* thread_klass = SystemDictionary::Thread_klass();
1834         JavaCalls::call_virtual(&result,
1835                                 threadObj, thread_klass,
1836                                 vmSymbols::exit_method_name(),
1837                                 vmSymbols::void_method_signature(),
1838                                 THREAD);
1839         CLEAR_PENDING_EXCEPTION;
1840       }
1841     }
1842     // notify JVMTI
1843     if (JvmtiExport::should_post_thread_life()) {
1844       JvmtiExport::post_thread_end(this);
1845     }
1846 
1847     // We have notified the agents that we are exiting, before we go on,
1848     // we must check for a pending external suspend request and honor it
1849     // in order to not surprise the thread that made the suspend request.
1850     while (true) {
1851       {
1852         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1853         if (!is_external_suspend()) {
1854           set_terminated(_thread_exiting);
1855           ThreadService::current_thread_exiting(this);
1856           break;
1857         }
1858         // Implied else:
1859         // Things get a little tricky here. We have a pending external
1860         // suspend request, but we are holding the SR_lock so we
1861         // can't just self-suspend. So we temporarily drop the lock
1862         // and then self-suspend.
1863       }
1864 
1865       ThreadBlockInVM tbivm(this);
1866       java_suspend_self();
1867 
1868       // We're done with this suspend request, but we have to loop around
1869       // and check again. Eventually we will get SR_lock without a pending
1870       // external suspend request and will be able to mark ourselves as
1871       // exiting.
1872     }
1873     // no more external suspends are allowed at this point
1874   } else {
1875     // before_exit() has already posted JVMTI THREAD_END events
1876   }
1877 
1878   // Notify waiters on thread object. This has to be done after exit() is called
1879   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1880   // group should have the destroyed bit set before waiters are notified).
1881   ensure_join(this);
1882   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1883 
1884   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1885   // held by this thread must be released. The spec does not distinguish
1886   // between JNI-acquired and regular Java monitors. We can only see
1887   // regular Java monitors here if monitor enter-exit matching is broken.
1888   //
1889   // Optionally release any monitors for regular JavaThread exits. This
1890   // is provided as a work around for any bugs in monitor enter-exit
1891   // matching. This can be expensive so it is not enabled by default.
1892   //
1893   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1894   // ObjectSynchronizer::release_monitors_owned_by_thread().
1895   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1896     // Sanity check even though JNI DetachCurrentThread() would have
1897     // returned JNI_ERR if there was a Java frame. JavaThread exit
1898     // should be done executing Java code by the time we get here.
1899     assert(!this->has_last_Java_frame(),
1900            "should not have a Java frame when detaching or exiting");
1901     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1902     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1903   }
1904 
1905   // These things needs to be done while we are still a Java Thread. Make sure that thread
1906   // is in a consistent state, in case GC happens
1907   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1908 
1909   if (active_handles() != NULL) {
1910     JNIHandleBlock* block = active_handles();
1911     set_active_handles(NULL);
1912     JNIHandleBlock::release_block(block);
1913   }
1914 
1915   if (free_handle_block() != NULL) {
1916     JNIHandleBlock* block = free_handle_block();
1917     set_free_handle_block(NULL);
1918     JNIHandleBlock::release_block(block);
1919   }
1920 
1921   // These have to be removed while this is still a valid thread.
1922   remove_stack_guard_pages();
1923 
1924   if (UseTLAB) {
1925     tlab().make_parsable(true);  // retire TLAB
1926   }
1927 
1928   if (JvmtiEnv::environments_might_exist()) {
1929     JvmtiExport::cleanup_thread(this);
1930   }
1931 
1932   // We must flush any deferred card marks before removing a thread from
1933   // the list of active threads.
1934   Universe::heap()->flush_deferred_store_barrier(this);
1935   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1936 
1937 #if INCLUDE_ALL_GCS
1938   // We must flush the G1-related buffers before removing a thread
1939   // from the list of active threads. We must do this after any deferred
1940   // card marks have been flushed (above) so that any entries that are
1941   // added to the thread's dirty card queue as a result are not lost.
1942   if (UseG1GC) {
1943     flush_barrier_queues();
1944   }
1945 #endif // INCLUDE_ALL_GCS
1946 
1947   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1948     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1949     os::current_thread_id());
1950 
1951   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1952   Threads::remove(this);
1953 }
1954 
1955 #if INCLUDE_ALL_GCS
1956 // Flush G1-related queues.
1957 void JavaThread::flush_barrier_queues() {
1958   satb_mark_queue().flush();
1959   dirty_card_queue().flush();
1960 }
1961 
1962 void JavaThread::initialize_queues() {
1963   assert(!SafepointSynchronize::is_at_safepoint(),
1964          "we should not be at a safepoint");
1965 
1966   SATBMarkQueue& satb_queue = satb_mark_queue();
1967   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1968   // The SATB queue should have been constructed with its active
1969   // field set to false.
1970   assert(!satb_queue.is_active(), "SATB queue should not be active");
1971   assert(satb_queue.is_empty(), "SATB queue should be empty");
1972   // If we are creating the thread during a marking cycle, we should
1973   // set the active field of the SATB queue to true.
1974   if (satb_queue_set.is_active()) {
1975     satb_queue.set_active(true);
1976   }
1977 
1978   DirtyCardQueue& dirty_queue = dirty_card_queue();
1979   // The dirty card queue should have been constructed with its
1980   // active field set to true.
1981   assert(dirty_queue.is_active(), "dirty card queue should be active");
1982 }
1983 #endif // INCLUDE_ALL_GCS
1984 
1985 void JavaThread::cleanup_failed_attach_current_thread() {
1986   if (get_thread_profiler() != NULL) {
1987     get_thread_profiler()->disengage();
1988     ResourceMark rm;
1989     get_thread_profiler()->print(get_thread_name());
1990   }
1991 
1992   if (active_handles() != NULL) {
1993     JNIHandleBlock* block = active_handles();
1994     set_active_handles(NULL);
1995     JNIHandleBlock::release_block(block);
1996   }
1997 
1998   if (free_handle_block() != NULL) {
1999     JNIHandleBlock* block = free_handle_block();
2000     set_free_handle_block(NULL);
2001     JNIHandleBlock::release_block(block);
2002   }
2003 
2004   // These have to be removed while this is still a valid thread.
2005   remove_stack_guard_pages();
2006 
2007   if (UseTLAB) {
2008     tlab().make_parsable(true);  // retire TLAB, if any
2009   }
2010 
2011 #if INCLUDE_ALL_GCS
2012   if (UseG1GC) {
2013     flush_barrier_queues();
2014   }
2015 #endif // INCLUDE_ALL_GCS
2016 
2017   Threads::remove(this);
2018   delete this;
2019 }
2020 
2021 
2022 
2023 
2024 JavaThread* JavaThread::active() {
2025   Thread* thread = Thread::current();
2026   if (thread->is_Java_thread()) {
2027     return (JavaThread*) thread;
2028   } else {
2029     assert(thread->is_VM_thread(), "this must be a vm thread");
2030     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2031     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2032     assert(ret->is_Java_thread(), "must be a Java thread");
2033     return ret;
2034   }
2035 }
2036 
2037 bool JavaThread::is_lock_owned(address adr) const {
2038   if (Thread::is_lock_owned(adr)) return true;
2039 
2040   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2041     if (chunk->contains(adr)) return true;
2042   }
2043 
2044   return false;
2045 }
2046 
2047 
2048 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2049   chunk->set_next(monitor_chunks());
2050   set_monitor_chunks(chunk);
2051 }
2052 
2053 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2054   guarantee(monitor_chunks() != NULL, "must be non empty");
2055   if (monitor_chunks() == chunk) {
2056     set_monitor_chunks(chunk->next());
2057   } else {
2058     MonitorChunk* prev = monitor_chunks();
2059     while (prev->next() != chunk) prev = prev->next();
2060     prev->set_next(chunk->next());
2061   }
2062 }
2063 
2064 // JVM support.
2065 
2066 // Note: this function shouldn't block if it's called in
2067 // _thread_in_native_trans state (such as from
2068 // check_special_condition_for_native_trans()).
2069 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2070 
2071   if (has_last_Java_frame() && has_async_condition()) {
2072     // If we are at a polling page safepoint (not a poll return)
2073     // then we must defer async exception because live registers
2074     // will be clobbered by the exception path. Poll return is
2075     // ok because the call we a returning from already collides
2076     // with exception handling registers and so there is no issue.
2077     // (The exception handling path kills call result registers but
2078     //  this is ok since the exception kills the result anyway).
2079 
2080     if (is_at_poll_safepoint()) {
2081       // if the code we are returning to has deoptimized we must defer
2082       // the exception otherwise live registers get clobbered on the
2083       // exception path before deoptimization is able to retrieve them.
2084       //
2085       RegisterMap map(this, false);
2086       frame caller_fr = last_frame().sender(&map);
2087       assert(caller_fr.is_compiled_frame(), "what?");
2088       if (caller_fr.is_deoptimized_frame()) {
2089         log_info(exceptions)("deferred async exception at compiled safepoint");
2090         return;
2091       }
2092     }
2093   }
2094 
2095   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2096   if (condition == _no_async_condition) {
2097     // Conditions have changed since has_special_runtime_exit_condition()
2098     // was called:
2099     // - if we were here only because of an external suspend request,
2100     //   then that was taken care of above (or cancelled) so we are done
2101     // - if we were here because of another async request, then it has
2102     //   been cleared between the has_special_runtime_exit_condition()
2103     //   and now so again we are done
2104     return;
2105   }
2106 
2107   // Check for pending async. exception
2108   if (_pending_async_exception != NULL) {
2109     // Only overwrite an already pending exception, if it is not a threadDeath.
2110     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2111 
2112       // We cannot call Exceptions::_throw(...) here because we cannot block
2113       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2114 
2115       LogTarget(Info, exceptions) lt;
2116       if (lt.is_enabled()) {
2117         ResourceMark rm;
2118         LogStream ls(lt);
2119         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2120           if (has_last_Java_frame()) {
2121             frame f = last_frame();
2122            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2123           }
2124         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2125       }
2126       _pending_async_exception = NULL;
2127       clear_has_async_exception();
2128     }
2129   }
2130 
2131   if (check_unsafe_error &&
2132       condition == _async_unsafe_access_error && !has_pending_exception()) {
2133     condition = _no_async_condition;  // done
2134     switch (thread_state()) {
2135     case _thread_in_vm: {
2136       JavaThread* THREAD = this;
2137       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2138     }
2139     case _thread_in_native: {
2140       ThreadInVMfromNative tiv(this);
2141       JavaThread* THREAD = this;
2142       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2143     }
2144     case _thread_in_Java: {
2145       ThreadInVMfromJava tiv(this);
2146       JavaThread* THREAD = this;
2147       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2148     }
2149     default:
2150       ShouldNotReachHere();
2151     }
2152   }
2153 
2154   assert(condition == _no_async_condition || has_pending_exception() ||
2155          (!check_unsafe_error && condition == _async_unsafe_access_error),
2156          "must have handled the async condition, if no exception");
2157 }
2158 
2159 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2160   //
2161   // Check for pending external suspend. Internal suspend requests do
2162   // not use handle_special_runtime_exit_condition().
2163   // If JNIEnv proxies are allowed, don't self-suspend if the target
2164   // thread is not the current thread. In older versions of jdbx, jdbx
2165   // threads could call into the VM with another thread's JNIEnv so we
2166   // can be here operating on behalf of a suspended thread (4432884).
2167   bool do_self_suspend = is_external_suspend_with_lock();
2168   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2169     //
2170     // Because thread is external suspended the safepoint code will count
2171     // thread as at a safepoint. This can be odd because we can be here
2172     // as _thread_in_Java which would normally transition to _thread_blocked
2173     // at a safepoint. We would like to mark the thread as _thread_blocked
2174     // before calling java_suspend_self like all other callers of it but
2175     // we must then observe proper safepoint protocol. (We can't leave
2176     // _thread_blocked with a safepoint in progress). However we can be
2177     // here as _thread_in_native_trans so we can't use a normal transition
2178     // constructor/destructor pair because they assert on that type of
2179     // transition. We could do something like:
2180     //
2181     // JavaThreadState state = thread_state();
2182     // set_thread_state(_thread_in_vm);
2183     // {
2184     //   ThreadBlockInVM tbivm(this);
2185     //   java_suspend_self()
2186     // }
2187     // set_thread_state(_thread_in_vm_trans);
2188     // if (safepoint) block;
2189     // set_thread_state(state);
2190     //
2191     // but that is pretty messy. Instead we just go with the way the
2192     // code has worked before and note that this is the only path to
2193     // java_suspend_self that doesn't put the thread in _thread_blocked
2194     // mode.
2195 
2196     frame_anchor()->make_walkable(this);
2197     java_suspend_self();
2198 
2199     // We might be here for reasons in addition to the self-suspend request
2200     // so check for other async requests.
2201   }
2202 
2203   if (check_asyncs) {
2204     check_and_handle_async_exceptions();
2205   }
2206 #if INCLUDE_TRACE
2207   if (is_trace_suspend()) {
2208     TRACE_SUSPEND_THREAD(this);
2209   }
2210 #endif
2211 }
2212 
2213 void JavaThread::send_thread_stop(oop java_throwable)  {
2214   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2215   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2216   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2217 
2218   // Do not throw asynchronous exceptions against the compiler thread
2219   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2220   if (!can_call_java()) return;
2221 
2222   {
2223     // Actually throw the Throwable against the target Thread - however
2224     // only if there is no thread death exception installed already.
2225     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2226       // If the topmost frame is a runtime stub, then we are calling into
2227       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2228       // must deoptimize the caller before continuing, as the compiled  exception handler table
2229       // may not be valid
2230       if (has_last_Java_frame()) {
2231         frame f = last_frame();
2232         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2233           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2234           RegisterMap reg_map(this, UseBiasedLocking);
2235           frame compiled_frame = f.sender(&reg_map);
2236           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2237             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2238           }
2239         }
2240       }
2241 
2242       // Set async. pending exception in thread.
2243       set_pending_async_exception(java_throwable);
2244 
2245       if (log_is_enabled(Info, exceptions)) {
2246          ResourceMark rm;
2247         log_info(exceptions)("Pending Async. exception installed of type: %s",
2248                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2249       }
2250       // for AbortVMOnException flag
2251       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2252     }
2253   }
2254 
2255 
2256   // Interrupt thread so it will wake up from a potential wait()
2257   Thread::interrupt(this);
2258 }
2259 
2260 // External suspension mechanism.
2261 //
2262 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2263 // to any VM_locks and it is at a transition
2264 // Self-suspension will happen on the transition out of the vm.
2265 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2266 //
2267 // Guarantees on return:
2268 //   + Target thread will not execute any new bytecode (that's why we need to
2269 //     force a safepoint)
2270 //   + Target thread will not enter any new monitors
2271 //
2272 void JavaThread::java_suspend() {
2273   { MutexLocker mu(Threads_lock);
2274     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2275       return;
2276     }
2277   }
2278 
2279   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2280     if (!is_external_suspend()) {
2281       // a racing resume has cancelled us; bail out now
2282       return;
2283     }
2284 
2285     // suspend is done
2286     uint32_t debug_bits = 0;
2287     // Warning: is_ext_suspend_completed() may temporarily drop the
2288     // SR_lock to allow the thread to reach a stable thread state if
2289     // it is currently in a transient thread state.
2290     if (is_ext_suspend_completed(false /* !called_by_wait */,
2291                                  SuspendRetryDelay, &debug_bits)) {
2292       return;
2293     }
2294   }
2295 
2296   VM_ThreadSuspend vm_suspend;
2297   VMThread::execute(&vm_suspend);
2298 }
2299 
2300 // Part II of external suspension.
2301 // A JavaThread self suspends when it detects a pending external suspend
2302 // request. This is usually on transitions. It is also done in places
2303 // where continuing to the next transition would surprise the caller,
2304 // e.g., monitor entry.
2305 //
2306 // Returns the number of times that the thread self-suspended.
2307 //
2308 // Note: DO NOT call java_suspend_self() when you just want to block current
2309 //       thread. java_suspend_self() is the second stage of cooperative
2310 //       suspension for external suspend requests and should only be used
2311 //       to complete an external suspend request.
2312 //
2313 int JavaThread::java_suspend_self() {
2314   int ret = 0;
2315 
2316   // we are in the process of exiting so don't suspend
2317   if (is_exiting()) {
2318     clear_external_suspend();
2319     return ret;
2320   }
2321 
2322   assert(_anchor.walkable() ||
2323          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2324          "must have walkable stack");
2325 
2326   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2327 
2328   assert(!this->is_ext_suspended(),
2329          "a thread trying to self-suspend should not already be suspended");
2330 
2331   if (this->is_suspend_equivalent()) {
2332     // If we are self-suspending as a result of the lifting of a
2333     // suspend equivalent condition, then the suspend_equivalent
2334     // flag is not cleared until we set the ext_suspended flag so
2335     // that wait_for_ext_suspend_completion() returns consistent
2336     // results.
2337     this->clear_suspend_equivalent();
2338   }
2339 
2340   // A racing resume may have cancelled us before we grabbed SR_lock
2341   // above. Or another external suspend request could be waiting for us
2342   // by the time we return from SR_lock()->wait(). The thread
2343   // that requested the suspension may already be trying to walk our
2344   // stack and if we return now, we can change the stack out from under
2345   // it. This would be a "bad thing (TM)" and cause the stack walker
2346   // to crash. We stay self-suspended until there are no more pending
2347   // external suspend requests.
2348   while (is_external_suspend()) {
2349     ret++;
2350     this->set_ext_suspended();
2351 
2352     // _ext_suspended flag is cleared by java_resume()
2353     while (is_ext_suspended()) {
2354       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2355     }
2356   }
2357 
2358   return ret;
2359 }
2360 
2361 #ifdef ASSERT
2362 // verify the JavaThread has not yet been published in the Threads::list, and
2363 // hence doesn't need protection from concurrent access at this stage
2364 void JavaThread::verify_not_published() {
2365   if (!Threads_lock->owned_by_self()) {
2366     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2367     assert(!Threads::includes(this),
2368            "java thread shouldn't have been published yet!");
2369   } else {
2370     assert(!Threads::includes(this),
2371            "java thread shouldn't have been published yet!");
2372   }
2373 }
2374 #endif
2375 
2376 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2377 // progress or when _suspend_flags is non-zero.
2378 // Current thread needs to self-suspend if there is a suspend request and/or
2379 // block if a safepoint is in progress.
2380 // Async exception ISN'T checked.
2381 // Note only the ThreadInVMfromNative transition can call this function
2382 // directly and when thread state is _thread_in_native_trans
2383 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2384   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2385 
2386   JavaThread *curJT = JavaThread::current();
2387   bool do_self_suspend = thread->is_external_suspend();
2388 
2389   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2390 
2391   // If JNIEnv proxies are allowed, don't self-suspend if the target
2392   // thread is not the current thread. In older versions of jdbx, jdbx
2393   // threads could call into the VM with another thread's JNIEnv so we
2394   // can be here operating on behalf of a suspended thread (4432884).
2395   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2396     JavaThreadState state = thread->thread_state();
2397 
2398     // We mark this thread_blocked state as a suspend-equivalent so
2399     // that a caller to is_ext_suspend_completed() won't be confused.
2400     // The suspend-equivalent state is cleared by java_suspend_self().
2401     thread->set_suspend_equivalent();
2402 
2403     // If the safepoint code sees the _thread_in_native_trans state, it will
2404     // wait until the thread changes to other thread state. There is no
2405     // guarantee on how soon we can obtain the SR_lock and complete the
2406     // self-suspend request. It would be a bad idea to let safepoint wait for
2407     // too long. Temporarily change the state to _thread_blocked to
2408     // let the VM thread know that this thread is ready for GC. The problem
2409     // of changing thread state is that safepoint could happen just after
2410     // java_suspend_self() returns after being resumed, and VM thread will
2411     // see the _thread_blocked state. We must check for safepoint
2412     // after restoring the state and make sure we won't leave while a safepoint
2413     // is in progress.
2414     thread->set_thread_state(_thread_blocked);
2415     thread->java_suspend_self();
2416     thread->set_thread_state(state);
2417 
2418     InterfaceSupport::serialize_thread_state_with_handler(thread);
2419   }
2420 
2421   if (SafepointSynchronize::do_call_back()) {
2422     // If we are safepointing, then block the caller which may not be
2423     // the same as the target thread (see above).
2424     SafepointSynchronize::block(curJT);
2425   }
2426 
2427   if (thread->is_deopt_suspend()) {
2428     thread->clear_deopt_suspend();
2429     RegisterMap map(thread, false);
2430     frame f = thread->last_frame();
2431     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2432       f = f.sender(&map);
2433     }
2434     if (f.id() == thread->must_deopt_id()) {
2435       thread->clear_must_deopt_id();
2436       f.deoptimize(thread);
2437     } else {
2438       fatal("missed deoptimization!");
2439     }
2440   }
2441 #if INCLUDE_TRACE
2442   if (thread->is_trace_suspend()) {
2443     TRACE_SUSPEND_THREAD(thread);
2444   }
2445 #endif
2446 }
2447 
2448 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2449 // progress or when _suspend_flags is non-zero.
2450 // Current thread needs to self-suspend if there is a suspend request and/or
2451 // block if a safepoint is in progress.
2452 // Also check for pending async exception (not including unsafe access error).
2453 // Note only the native==>VM/Java barriers can call this function and when
2454 // thread state is _thread_in_native_trans.
2455 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2456   check_safepoint_and_suspend_for_native_trans(thread);
2457 
2458   if (thread->has_async_exception()) {
2459     // We are in _thread_in_native_trans state, don't handle unsafe
2460     // access error since that may block.
2461     thread->check_and_handle_async_exceptions(false);
2462   }
2463 }
2464 
2465 // This is a variant of the normal
2466 // check_special_condition_for_native_trans with slightly different
2467 // semantics for use by critical native wrappers.  It does all the
2468 // normal checks but also performs the transition back into
2469 // thread_in_Java state.  This is required so that critical natives
2470 // can potentially block and perform a GC if they are the last thread
2471 // exiting the GCLocker.
2472 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2473   check_special_condition_for_native_trans(thread);
2474 
2475   // Finish the transition
2476   thread->set_thread_state(_thread_in_Java);
2477 
2478   if (thread->do_critical_native_unlock()) {
2479     ThreadInVMfromJavaNoAsyncException tiv(thread);
2480     GCLocker::unlock_critical(thread);
2481     thread->clear_critical_native_unlock();
2482   }
2483 }
2484 
2485 // We need to guarantee the Threads_lock here, since resumes are not
2486 // allowed during safepoint synchronization
2487 // Can only resume from an external suspension
2488 void JavaThread::java_resume() {
2489   assert_locked_or_safepoint(Threads_lock);
2490 
2491   // Sanity check: thread is gone, has started exiting or the thread
2492   // was not externally suspended.
2493   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2494     return;
2495   }
2496 
2497   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2498 
2499   clear_external_suspend();
2500 
2501   if (is_ext_suspended()) {
2502     clear_ext_suspended();
2503     SR_lock()->notify_all();
2504   }
2505 }
2506 
2507 size_t JavaThread::_stack_red_zone_size = 0;
2508 size_t JavaThread::_stack_yellow_zone_size = 0;
2509 size_t JavaThread::_stack_reserved_zone_size = 0;
2510 size_t JavaThread::_stack_shadow_zone_size = 0;
2511 
2512 void JavaThread::create_stack_guard_pages() {
2513   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2514   address low_addr = stack_end();
2515   size_t len = stack_guard_zone_size();
2516 
2517   int must_commit = os::must_commit_stack_guard_pages();
2518   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2519 
2520   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2521     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2522     return;
2523   }
2524 
2525   if (os::guard_memory((char *) low_addr, len)) {
2526     _stack_guard_state = stack_guard_enabled;
2527   } else {
2528     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2529       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2530     if (os::uncommit_memory((char *) low_addr, len)) {
2531       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2532     }
2533     return;
2534   }
2535 
2536   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2537     PTR_FORMAT "-" PTR_FORMAT ".",
2538     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2539 }
2540 
2541 void JavaThread::remove_stack_guard_pages() {
2542   assert(Thread::current() == this, "from different thread");
2543   if (_stack_guard_state == stack_guard_unused) return;
2544   address low_addr = stack_end();
2545   size_t len = stack_guard_zone_size();
2546 
2547   if (os::must_commit_stack_guard_pages()) {
2548     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2549       _stack_guard_state = stack_guard_unused;
2550     } else {
2551       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2552         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2553       return;
2554     }
2555   } else {
2556     if (_stack_guard_state == stack_guard_unused) return;
2557     if (os::unguard_memory((char *) low_addr, len)) {
2558       _stack_guard_state = stack_guard_unused;
2559     } else {
2560       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2561         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2562       return;
2563     }
2564   }
2565 
2566   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2567     PTR_FORMAT "-" PTR_FORMAT ".",
2568     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2569 }
2570 
2571 void JavaThread::enable_stack_reserved_zone() {
2572   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2573   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2574 
2575   // The base notation is from the stack's point of view, growing downward.
2576   // We need to adjust it to work correctly with guard_memory()
2577   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2578 
2579   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2580   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2581 
2582   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2583     _stack_guard_state = stack_guard_enabled;
2584   } else {
2585     warning("Attempt to guard stack reserved zone failed.");
2586   }
2587   enable_register_stack_guard();
2588 }
2589 
2590 void JavaThread::disable_stack_reserved_zone() {
2591   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2592   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2593 
2594   // Simply return if called for a thread that does not use guard pages.
2595   if (_stack_guard_state == stack_guard_unused) return;
2596 
2597   // The base notation is from the stack's point of view, growing downward.
2598   // We need to adjust it to work correctly with guard_memory()
2599   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2600 
2601   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2602     _stack_guard_state = stack_guard_reserved_disabled;
2603   } else {
2604     warning("Attempt to unguard stack reserved zone failed.");
2605   }
2606   disable_register_stack_guard();
2607 }
2608 
2609 void JavaThread::enable_stack_yellow_reserved_zone() {
2610   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2611   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2612 
2613   // The base notation is from the stacks point of view, growing downward.
2614   // We need to adjust it to work correctly with guard_memory()
2615   address base = stack_red_zone_base();
2616 
2617   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2618   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2619 
2620   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2621     _stack_guard_state = stack_guard_enabled;
2622   } else {
2623     warning("Attempt to guard stack yellow zone failed.");
2624   }
2625   enable_register_stack_guard();
2626 }
2627 
2628 void JavaThread::disable_stack_yellow_reserved_zone() {
2629   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2630   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2631 
2632   // Simply return if called for a thread that does not use guard pages.
2633   if (_stack_guard_state == stack_guard_unused) return;
2634 
2635   // The base notation is from the stacks point of view, growing downward.
2636   // We need to adjust it to work correctly with guard_memory()
2637   address base = stack_red_zone_base();
2638 
2639   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2640     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2641   } else {
2642     warning("Attempt to unguard stack yellow zone failed.");
2643   }
2644   disable_register_stack_guard();
2645 }
2646 
2647 void JavaThread::enable_stack_red_zone() {
2648   // The base notation is from the stacks point of view, growing downward.
2649   // We need to adjust it to work correctly with guard_memory()
2650   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2651   address base = stack_red_zone_base() - stack_red_zone_size();
2652 
2653   guarantee(base < stack_base(), "Error calculating stack red zone");
2654   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2655 
2656   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2657     warning("Attempt to guard stack red zone failed.");
2658   }
2659 }
2660 
2661 void JavaThread::disable_stack_red_zone() {
2662   // The base notation is from the stacks point of view, growing downward.
2663   // We need to adjust it to work correctly with guard_memory()
2664   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2665   address base = stack_red_zone_base() - stack_red_zone_size();
2666   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2667     warning("Attempt to unguard stack red zone failed.");
2668   }
2669 }
2670 
2671 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2672   // ignore is there is no stack
2673   if (!has_last_Java_frame()) return;
2674   // traverse the stack frames. Starts from top frame.
2675   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2676     frame* fr = fst.current();
2677     f(fr, fst.register_map());
2678   }
2679 }
2680 
2681 
2682 #ifndef PRODUCT
2683 // Deoptimization
2684 // Function for testing deoptimization
2685 void JavaThread::deoptimize() {
2686   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2687   StackFrameStream fst(this, UseBiasedLocking);
2688   bool deopt = false;           // Dump stack only if a deopt actually happens.
2689   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2690   // Iterate over all frames in the thread and deoptimize
2691   for (; !fst.is_done(); fst.next()) {
2692     if (fst.current()->can_be_deoptimized()) {
2693 
2694       if (only_at) {
2695         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2696         // consists of comma or carriage return separated numbers so
2697         // search for the current bci in that string.
2698         address pc = fst.current()->pc();
2699         nmethod* nm =  (nmethod*) fst.current()->cb();
2700         ScopeDesc* sd = nm->scope_desc_at(pc);
2701         char buffer[8];
2702         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2703         size_t len = strlen(buffer);
2704         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2705         while (found != NULL) {
2706           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2707               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2708             // Check that the bci found is bracketed by terminators.
2709             break;
2710           }
2711           found = strstr(found + 1, buffer);
2712         }
2713         if (!found) {
2714           continue;
2715         }
2716       }
2717 
2718       if (DebugDeoptimization && !deopt) {
2719         deopt = true; // One-time only print before deopt
2720         tty->print_cr("[BEFORE Deoptimization]");
2721         trace_frames();
2722         trace_stack();
2723       }
2724       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2725     }
2726   }
2727 
2728   if (DebugDeoptimization && deopt) {
2729     tty->print_cr("[AFTER Deoptimization]");
2730     trace_frames();
2731   }
2732 }
2733 
2734 
2735 // Make zombies
2736 void JavaThread::make_zombies() {
2737   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2738     if (fst.current()->can_be_deoptimized()) {
2739       // it is a Java nmethod
2740       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2741       nm->make_not_entrant();
2742     }
2743   }
2744 }
2745 #endif // PRODUCT
2746 
2747 
2748 void JavaThread::deoptimized_wrt_marked_nmethods() {
2749   if (!has_last_Java_frame()) return;
2750   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2751   StackFrameStream fst(this, UseBiasedLocking);
2752   for (; !fst.is_done(); fst.next()) {
2753     if (fst.current()->should_be_deoptimized()) {
2754       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2755     }
2756   }
2757 }
2758 
2759 
2760 // If the caller is a NamedThread, then remember, in the current scope,
2761 // the given JavaThread in its _processed_thread field.
2762 class RememberProcessedThread: public StackObj {
2763   NamedThread* _cur_thr;
2764  public:
2765   RememberProcessedThread(JavaThread* jthr) {
2766     Thread* thread = Thread::current();
2767     if (thread->is_Named_thread()) {
2768       _cur_thr = (NamedThread *)thread;
2769       _cur_thr->set_processed_thread(jthr);
2770     } else {
2771       _cur_thr = NULL;
2772     }
2773   }
2774 
2775   ~RememberProcessedThread() {
2776     if (_cur_thr) {
2777       _cur_thr->set_processed_thread(NULL);
2778     }
2779   }
2780 };
2781 
2782 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2783   // Verify that the deferred card marks have been flushed.
2784   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2785 
2786   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2787   // since there may be more than one thread using each ThreadProfiler.
2788 
2789   // Traverse the GCHandles
2790   Thread::oops_do(f, cf);
2791 
2792   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2793 
2794   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2795          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2796 
2797   if (has_last_Java_frame()) {
2798     // Record JavaThread to GC thread
2799     RememberProcessedThread rpt(this);
2800 
2801     // Traverse the privileged stack
2802     if (_privileged_stack_top != NULL) {
2803       _privileged_stack_top->oops_do(f);
2804     }
2805 
2806     // traverse the registered growable array
2807     if (_array_for_gc != NULL) {
2808       for (int index = 0; index < _array_for_gc->length(); index++) {
2809         f->do_oop(_array_for_gc->adr_at(index));
2810       }
2811     }
2812 
2813     // Traverse the monitor chunks
2814     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2815       chunk->oops_do(f);
2816     }
2817 
2818     // Traverse the execution stack
2819     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2820       fst.current()->oops_do(f, cf, fst.register_map());
2821     }
2822   }
2823 
2824   // callee_target is never live across a gc point so NULL it here should
2825   // it still contain a methdOop.
2826 
2827   set_callee_target(NULL);
2828 
2829   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2830   // If we have deferred set_locals there might be oops waiting to be
2831   // written
2832   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2833   if (list != NULL) {
2834     for (int i = 0; i < list->length(); i++) {
2835       list->at(i)->oops_do(f);
2836     }
2837   }
2838 
2839   // Traverse instance variables at the end since the GC may be moving things
2840   // around using this function
2841   f->do_oop((oop*) &_threadObj);
2842   f->do_oop((oop*) &_vm_result);
2843   f->do_oop((oop*) &_exception_oop);
2844   f->do_oop((oop*) &_pending_async_exception);
2845 
2846   if (jvmti_thread_state() != NULL) {
2847     jvmti_thread_state()->oops_do(f);
2848   }
2849 }
2850 
2851 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2852   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2853          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2854 
2855   if (has_last_Java_frame()) {
2856     // Traverse the execution stack
2857     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2858       fst.current()->nmethods_do(cf);
2859     }
2860   }
2861 }
2862 
2863 void JavaThread::metadata_do(void f(Metadata*)) {
2864   if (has_last_Java_frame()) {
2865     // Traverse the execution stack to call f() on the methods in the stack
2866     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2867       fst.current()->metadata_do(f);
2868     }
2869   } else if (is_Compiler_thread()) {
2870     // need to walk ciMetadata in current compile tasks to keep alive.
2871     CompilerThread* ct = (CompilerThread*)this;
2872     if (ct->env() != NULL) {
2873       ct->env()->metadata_do(f);
2874     }
2875     if (ct->task() != NULL) {
2876       ct->task()->metadata_do(f);
2877     }
2878   }
2879 }
2880 
2881 // Printing
2882 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2883   switch (_thread_state) {
2884   case _thread_uninitialized:     return "_thread_uninitialized";
2885   case _thread_new:               return "_thread_new";
2886   case _thread_new_trans:         return "_thread_new_trans";
2887   case _thread_in_native:         return "_thread_in_native";
2888   case _thread_in_native_trans:   return "_thread_in_native_trans";
2889   case _thread_in_vm:             return "_thread_in_vm";
2890   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2891   case _thread_in_Java:           return "_thread_in_Java";
2892   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2893   case _thread_blocked:           return "_thread_blocked";
2894   case _thread_blocked_trans:     return "_thread_blocked_trans";
2895   default:                        return "unknown thread state";
2896   }
2897 }
2898 
2899 #ifndef PRODUCT
2900 void JavaThread::print_thread_state_on(outputStream *st) const {
2901   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2902 };
2903 void JavaThread::print_thread_state() const {
2904   print_thread_state_on(tty);
2905 }
2906 #endif // PRODUCT
2907 
2908 // Called by Threads::print() for VM_PrintThreads operation
2909 void JavaThread::print_on(outputStream *st) const {
2910   st->print_raw("\"");
2911   st->print_raw(get_thread_name());
2912   st->print_raw("\" ");
2913   oop thread_oop = threadObj();
2914   if (thread_oop != NULL) {
2915     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2916     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2917     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2918   }
2919   Thread::print_on(st);
2920   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2921   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2922   if (thread_oop != NULL) {
2923     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2924   }
2925 #ifndef PRODUCT
2926   print_thread_state_on(st);
2927   _safepoint_state->print_on(st);
2928 #endif // PRODUCT
2929   if (is_Compiler_thread()) {
2930     CompilerThread* ct = (CompilerThread*)this;
2931     if (ct->task() != NULL) {
2932       st->print("   Compiling: ");
2933       ct->task()->print(st, NULL, true, false);
2934     } else {
2935       st->print("   No compile task");
2936     }
2937     st->cr();
2938   }
2939 }
2940 
2941 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2942   st->print("%s", get_thread_name_string(buf, buflen));
2943 }
2944 
2945 // Called by fatal error handler. The difference between this and
2946 // JavaThread::print() is that we can't grab lock or allocate memory.
2947 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2948   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2949   oop thread_obj = threadObj();
2950   if (thread_obj != NULL) {
2951     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2952   }
2953   st->print(" [");
2954   st->print("%s", _get_thread_state_name(_thread_state));
2955   if (osthread()) {
2956     st->print(", id=%d", osthread()->thread_id());
2957   }
2958   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2959             p2i(stack_end()), p2i(stack_base()));
2960   st->print("]");
2961   return;
2962 }
2963 
2964 // Verification
2965 
2966 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2967 
2968 void JavaThread::verify() {
2969   // Verify oops in the thread.
2970   oops_do(&VerifyOopClosure::verify_oop, NULL);
2971 
2972   // Verify the stack frames.
2973   frames_do(frame_verify);
2974 }
2975 
2976 // CR 6300358 (sub-CR 2137150)
2977 // Most callers of this method assume that it can't return NULL but a
2978 // thread may not have a name whilst it is in the process of attaching to
2979 // the VM - see CR 6412693, and there are places where a JavaThread can be
2980 // seen prior to having it's threadObj set (eg JNI attaching threads and
2981 // if vm exit occurs during initialization). These cases can all be accounted
2982 // for such that this method never returns NULL.
2983 const char* JavaThread::get_thread_name() const {
2984 #ifdef ASSERT
2985   // early safepoints can hit while current thread does not yet have TLS
2986   if (!SafepointSynchronize::is_at_safepoint()) {
2987     Thread *cur = Thread::current();
2988     if (!(cur->is_Java_thread() && cur == this)) {
2989       // Current JavaThreads are allowed to get their own name without
2990       // the Threads_lock.
2991       assert_locked_or_safepoint(Threads_lock);
2992     }
2993   }
2994 #endif // ASSERT
2995   return get_thread_name_string();
2996 }
2997 
2998 // Returns a non-NULL representation of this thread's name, or a suitable
2999 // descriptive string if there is no set name
3000 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3001   const char* name_str;
3002   oop thread_obj = threadObj();
3003   if (thread_obj != NULL) {
3004     oop name = java_lang_Thread::name(thread_obj);
3005     if (name != NULL) {
3006       if (buf == NULL) {
3007         name_str = java_lang_String::as_utf8_string(name);
3008       } else {
3009         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3010       }
3011     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3012       name_str = "<no-name - thread is attaching>";
3013     } else {
3014       name_str = Thread::name();
3015     }
3016   } else {
3017     name_str = Thread::name();
3018   }
3019   assert(name_str != NULL, "unexpected NULL thread name");
3020   return name_str;
3021 }
3022 
3023 
3024 const char* JavaThread::get_threadgroup_name() const {
3025   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3026   oop thread_obj = threadObj();
3027   if (thread_obj != NULL) {
3028     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3029     if (thread_group != NULL) {
3030       // ThreadGroup.name can be null
3031       return java_lang_ThreadGroup::name(thread_group);
3032     }
3033   }
3034   return NULL;
3035 }
3036 
3037 const char* JavaThread::get_parent_name() const {
3038   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3039   oop thread_obj = threadObj();
3040   if (thread_obj != NULL) {
3041     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3042     if (thread_group != NULL) {
3043       oop parent = java_lang_ThreadGroup::parent(thread_group);
3044       if (parent != NULL) {
3045         // ThreadGroup.name can be null
3046         return java_lang_ThreadGroup::name(parent);
3047       }
3048     }
3049   }
3050   return NULL;
3051 }
3052 
3053 ThreadPriority JavaThread::java_priority() const {
3054   oop thr_oop = threadObj();
3055   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3056   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3057   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3058   return priority;
3059 }
3060 
3061 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3062 
3063   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3064   // Link Java Thread object <-> C++ Thread
3065 
3066   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3067   // and put it into a new Handle.  The Handle "thread_oop" can then
3068   // be used to pass the C++ thread object to other methods.
3069 
3070   // Set the Java level thread object (jthread) field of the
3071   // new thread (a JavaThread *) to C++ thread object using the
3072   // "thread_oop" handle.
3073 
3074   // Set the thread field (a JavaThread *) of the
3075   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3076 
3077   Handle thread_oop(Thread::current(),
3078                     JNIHandles::resolve_non_null(jni_thread));
3079   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3080          "must be initialized");
3081   set_threadObj(thread_oop());
3082   java_lang_Thread::set_thread(thread_oop(), this);
3083 
3084   if (prio == NoPriority) {
3085     prio = java_lang_Thread::priority(thread_oop());
3086     assert(prio != NoPriority, "A valid priority should be present");
3087   }
3088 
3089   // Push the Java priority down to the native thread; needs Threads_lock
3090   Thread::set_priority(this, prio);
3091 
3092   prepare_ext();
3093 
3094   // Add the new thread to the Threads list and set it in motion.
3095   // We must have threads lock in order to call Threads::add.
3096   // It is crucial that we do not block before the thread is
3097   // added to the Threads list for if a GC happens, then the java_thread oop
3098   // will not be visited by GC.
3099   Threads::add(this);
3100 }
3101 
3102 oop JavaThread::current_park_blocker() {
3103   // Support for JSR-166 locks
3104   oop thread_oop = threadObj();
3105   if (thread_oop != NULL &&
3106       JDK_Version::current().supports_thread_park_blocker()) {
3107     return java_lang_Thread::park_blocker(thread_oop);
3108   }
3109   return NULL;
3110 }
3111 
3112 
3113 void JavaThread::print_stack_on(outputStream* st) {
3114   if (!has_last_Java_frame()) return;
3115   ResourceMark rm;
3116   HandleMark   hm;
3117 
3118   RegisterMap reg_map(this);
3119   vframe* start_vf = last_java_vframe(&reg_map);
3120   int count = 0;
3121   for (vframe* f = start_vf; f; f = f->sender()) {
3122     if (f->is_java_frame()) {
3123       javaVFrame* jvf = javaVFrame::cast(f);
3124       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3125 
3126       // Print out lock information
3127       if (JavaMonitorsInStackTrace) {
3128         jvf->print_lock_info_on(st, count);
3129       }
3130     } else {
3131       // Ignore non-Java frames
3132     }
3133 
3134     // Bail-out case for too deep stacks
3135     count++;
3136     if (MaxJavaStackTraceDepth == count) return;
3137   }
3138 }
3139 
3140 
3141 // JVMTI PopFrame support
3142 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3143   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3144   if (in_bytes(size_in_bytes) != 0) {
3145     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3146     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3147     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3148   }
3149 }
3150 
3151 void* JavaThread::popframe_preserved_args() {
3152   return _popframe_preserved_args;
3153 }
3154 
3155 ByteSize JavaThread::popframe_preserved_args_size() {
3156   return in_ByteSize(_popframe_preserved_args_size);
3157 }
3158 
3159 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3160   int sz = in_bytes(popframe_preserved_args_size());
3161   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3162   return in_WordSize(sz / wordSize);
3163 }
3164 
3165 void JavaThread::popframe_free_preserved_args() {
3166   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3167   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3168   _popframe_preserved_args = NULL;
3169   _popframe_preserved_args_size = 0;
3170 }
3171 
3172 #ifndef PRODUCT
3173 
3174 void JavaThread::trace_frames() {
3175   tty->print_cr("[Describe stack]");
3176   int frame_no = 1;
3177   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3178     tty->print("  %d. ", frame_no++);
3179     fst.current()->print_value_on(tty, this);
3180     tty->cr();
3181   }
3182 }
3183 
3184 class PrintAndVerifyOopClosure: public OopClosure {
3185  protected:
3186   template <class T> inline void do_oop_work(T* p) {
3187     oop obj = oopDesc::load_decode_heap_oop(p);
3188     if (obj == NULL) return;
3189     tty->print(INTPTR_FORMAT ": ", p2i(p));
3190     if (obj->is_oop_or_null()) {
3191       if (obj->is_objArray()) {
3192         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3193       } else {
3194         obj->print();
3195       }
3196     } else {
3197       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3198     }
3199     tty->cr();
3200   }
3201  public:
3202   virtual void do_oop(oop* p) { do_oop_work(p); }
3203   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3204 };
3205 
3206 
3207 static void oops_print(frame* f, const RegisterMap *map) {
3208   PrintAndVerifyOopClosure print;
3209   f->print_value();
3210   f->oops_do(&print, NULL, (RegisterMap*)map);
3211 }
3212 
3213 // Print our all the locations that contain oops and whether they are
3214 // valid or not.  This useful when trying to find the oldest frame
3215 // where an oop has gone bad since the frame walk is from youngest to
3216 // oldest.
3217 void JavaThread::trace_oops() {
3218   tty->print_cr("[Trace oops]");
3219   frames_do(oops_print);
3220 }
3221 
3222 
3223 #ifdef ASSERT
3224 // Print or validate the layout of stack frames
3225 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3226   ResourceMark rm;
3227   PRESERVE_EXCEPTION_MARK;
3228   FrameValues values;
3229   int frame_no = 0;
3230   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3231     fst.current()->describe(values, ++frame_no);
3232     if (depth == frame_no) break;
3233   }
3234   if (validate_only) {
3235     values.validate();
3236   } else {
3237     tty->print_cr("[Describe stack layout]");
3238     values.print(this);
3239   }
3240 }
3241 #endif
3242 
3243 void JavaThread::trace_stack_from(vframe* start_vf) {
3244   ResourceMark rm;
3245   int vframe_no = 1;
3246   for (vframe* f = start_vf; f; f = f->sender()) {
3247     if (f->is_java_frame()) {
3248       javaVFrame::cast(f)->print_activation(vframe_no++);
3249     } else {
3250       f->print();
3251     }
3252     if (vframe_no > StackPrintLimit) {
3253       tty->print_cr("...<more frames>...");
3254       return;
3255     }
3256   }
3257 }
3258 
3259 
3260 void JavaThread::trace_stack() {
3261   if (!has_last_Java_frame()) return;
3262   ResourceMark rm;
3263   HandleMark   hm;
3264   RegisterMap reg_map(this);
3265   trace_stack_from(last_java_vframe(&reg_map));
3266 }
3267 
3268 
3269 #endif // PRODUCT
3270 
3271 
3272 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3273   assert(reg_map != NULL, "a map must be given");
3274   frame f = last_frame();
3275   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3276     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3277   }
3278   return NULL;
3279 }
3280 
3281 
3282 Klass* JavaThread::security_get_caller_class(int depth) {
3283   vframeStream vfst(this);
3284   vfst.security_get_caller_frame(depth);
3285   if (!vfst.at_end()) {
3286     return vfst.method()->method_holder();
3287   }
3288   return NULL;
3289 }
3290 
3291 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3292   assert(thread->is_Compiler_thread(), "must be compiler thread");
3293   CompileBroker::compiler_thread_loop();
3294 }
3295 
3296 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3297   NMethodSweeper::sweeper_loop();
3298 }
3299 
3300 // Create a CompilerThread
3301 CompilerThread::CompilerThread(CompileQueue* queue,
3302                                CompilerCounters* counters)
3303                                : JavaThread(&compiler_thread_entry) {
3304   _env   = NULL;
3305   _log   = NULL;
3306   _task  = NULL;
3307   _queue = queue;
3308   _counters = counters;
3309   _buffer_blob = NULL;
3310   _compiler = NULL;
3311 
3312 #ifndef PRODUCT
3313   _ideal_graph_printer = NULL;
3314 #endif
3315 }
3316 
3317 bool CompilerThread::can_call_java() const {
3318   return _compiler != NULL && _compiler->is_jvmci();
3319 }
3320 
3321 // Create sweeper thread
3322 CodeCacheSweeperThread::CodeCacheSweeperThread()
3323 : JavaThread(&sweeper_thread_entry) {
3324   _scanned_compiled_method = NULL;
3325 }
3326 
3327 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3328   JavaThread::oops_do(f, cf);
3329   if (_scanned_compiled_method != NULL && cf != NULL) {
3330     // Safepoints can occur when the sweeper is scanning an nmethod so
3331     // process it here to make sure it isn't unloaded in the middle of
3332     // a scan.
3333     cf->do_code_blob(_scanned_compiled_method);
3334   }
3335 }
3336 
3337 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3338   JavaThread::nmethods_do(cf);
3339   if (_scanned_compiled_method != NULL && cf != NULL) {
3340     // Safepoints can occur when the sweeper is scanning an nmethod so
3341     // process it here to make sure it isn't unloaded in the middle of
3342     // a scan.
3343     cf->do_code_blob(_scanned_compiled_method);
3344   }
3345 }
3346 
3347 
3348 // ======= Threads ========
3349 
3350 // The Threads class links together all active threads, and provides
3351 // operations over all threads.  It is protected by its own Mutex
3352 // lock, which is also used in other contexts to protect thread
3353 // operations from having the thread being operated on from exiting
3354 // and going away unexpectedly (e.g., safepoint synchronization)
3355 
3356 JavaThread* Threads::_thread_list = NULL;
3357 int         Threads::_number_of_threads = 0;
3358 int         Threads::_number_of_non_daemon_threads = 0;
3359 int         Threads::_return_code = 0;
3360 int         Threads::_thread_claim_parity = 0;
3361 size_t      JavaThread::_stack_size_at_create = 0;
3362 #ifdef ASSERT
3363 bool        Threads::_vm_complete = false;
3364 #endif
3365 
3366 // All JavaThreads
3367 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3368 
3369 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3370 void Threads::threads_do(ThreadClosure* tc) {
3371   assert_locked_or_safepoint(Threads_lock);
3372   // ALL_JAVA_THREADS iterates through all JavaThreads
3373   ALL_JAVA_THREADS(p) {
3374     tc->do_thread(p);
3375   }
3376   // Someday we could have a table or list of all non-JavaThreads.
3377   // For now, just manually iterate through them.
3378   tc->do_thread(VMThread::vm_thread());
3379   Universe::heap()->gc_threads_do(tc);
3380   WatcherThread *wt = WatcherThread::watcher_thread();
3381   // Strictly speaking, the following NULL check isn't sufficient to make sure
3382   // the data for WatcherThread is still valid upon being examined. However,
3383   // considering that WatchThread terminates when the VM is on the way to
3384   // exit at safepoint, the chance of the above is extremely small. The right
3385   // way to prevent termination of WatcherThread would be to acquire
3386   // Terminator_lock, but we can't do that without violating the lock rank
3387   // checking in some cases.
3388   if (wt != NULL) {
3389     tc->do_thread(wt);
3390   }
3391 
3392   // If CompilerThreads ever become non-JavaThreads, add them here
3393 }
3394 
3395 void Threads::parallel_java_threads_do(ThreadClosure* tc) {
3396   int cp = Threads::thread_claim_parity();
3397   ALL_JAVA_THREADS(p) {
3398     if (p->claim_oops_do(true, cp)) {
3399       tc->do_thread(p);
3400     }
3401   }
3402   // Thread claiming protocol requires us to claim the same interesting
3403   // threads on all paths. Notably, Threads::possibly_parallel_threads_do
3404   // claims all Java threads *and* the VMThread. To avoid breaking the
3405   // claiming protocol, we have to claim VMThread on this path too, even
3406   // if we do not apply the closure to the VMThread.
3407   VMThread* vmt = VMThread::vm_thread();
3408   (void)vmt->claim_oops_do(true, cp);
3409 }
3410 
3411 // The system initialization in the library has three phases.
3412 //
3413 // Phase 1: java.lang.System class initialization
3414 //     java.lang.System is a primordial class loaded and initialized
3415 //     by the VM early during startup.  java.lang.System.<clinit>
3416 //     only does registerNatives and keeps the rest of the class
3417 //     initialization work later until thread initialization completes.
3418 //
3419 //     System.initPhase1 initializes the system properties, the static
3420 //     fields in, out, and err. Set up java signal handlers, OS-specific
3421 //     system settings, and thread group of the main thread.
3422 static void call_initPhase1(TRAPS) {
3423   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3424   JavaValue result(T_VOID);
3425   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3426                                          vmSymbols::void_method_signature(), CHECK);
3427 }
3428 
3429 // Phase 2. Module system initialization
3430 //     This will initialize the module system.  Only java.base classes
3431 //     can be loaded until phase 2 completes.
3432 //
3433 //     Call System.initPhase2 after the compiler initialization and jsr292
3434 //     classes get initialized because module initialization runs a lot of java
3435 //     code, that for performance reasons, should be compiled.  Also, this will
3436 //     enable the startup code to use lambda and other language features in this
3437 //     phase and onward.
3438 //
3439 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3440 static void call_initPhase2(TRAPS) {
3441   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3442 
3443   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3444 
3445   JavaValue result(T_INT);
3446   JavaCallArguments args;
3447   args.push_int(DisplayVMOutputToStderr);
3448   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3449   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3450                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3451   if (result.get_jint() != JNI_OK) {
3452     vm_exit_during_initialization(); // no message or exception
3453   }
3454 
3455   universe_post_module_init();
3456 }
3457 
3458 // Phase 3. final setup - set security manager, system class loader and TCCL
3459 //
3460 //     This will instantiate and set the security manager, set the system class
3461 //     loader as well as the thread context class loader.  The security manager
3462 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3463 //     other modules or the application's classpath.
3464 static void call_initPhase3(TRAPS) {
3465   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3466   JavaValue result(T_VOID);
3467   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3468                                          vmSymbols::void_method_signature(), CHECK);
3469 }
3470 
3471 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3472   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3473 
3474   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3475     create_vm_init_libraries();
3476   }
3477 
3478   initialize_class(vmSymbols::java_lang_String(), CHECK);
3479 
3480   // Inject CompactStrings value after the static initializers for String ran.
3481   java_lang_String::set_compact_strings(CompactStrings);
3482 
3483   // Initialize java_lang.System (needed before creating the thread)
3484   initialize_class(vmSymbols::java_lang_System(), CHECK);
3485   // The VM creates & returns objects of this class. Make sure it's initialized.
3486   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3487   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3488   Handle thread_group = create_initial_thread_group(CHECK);
3489   Universe::set_main_thread_group(thread_group());
3490   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3491   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3492   main_thread->set_threadObj(thread_object);
3493   // Set thread status to running since main thread has
3494   // been started and running.
3495   java_lang_Thread::set_thread_status(thread_object,
3496                                       java_lang_Thread::RUNNABLE);
3497 
3498   // The VM creates objects of this class.
3499   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3500 
3501   // The VM preresolves methods to these classes. Make sure that they get initialized
3502   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3503   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3504 
3505   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3506   call_initPhase1(CHECK);
3507 
3508   // get the Java runtime name after java.lang.System is initialized
3509   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3510   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3511 
3512   // an instance of OutOfMemory exception has been allocated earlier
3513   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3514   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3515   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3516   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3517   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3518   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3519   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3520   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3521 }
3522 
3523 void Threads::initialize_jsr292_core_classes(TRAPS) {
3524   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3525 
3526   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3527   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3528   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3529   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3530 }
3531 
3532 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3533   extern void JDK_Version_init();
3534 
3535   // Preinitialize version info.
3536   VM_Version::early_initialize();
3537 
3538   // Check version
3539   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3540 
3541   // Initialize library-based TLS
3542   ThreadLocalStorage::init();
3543 
3544   // Initialize the output stream module
3545   ostream_init();
3546 
3547   // Process java launcher properties.
3548   Arguments::process_sun_java_launcher_properties(args);
3549 
3550   // Initialize the os module
3551   os::init();
3552 
3553   // Record VM creation timing statistics
3554   TraceVmCreationTime create_vm_timer;
3555   create_vm_timer.start();
3556 
3557   // Initialize system properties.
3558   Arguments::init_system_properties();
3559 
3560   // So that JDK version can be used as a discriminator when parsing arguments
3561   JDK_Version_init();
3562 
3563   // Update/Initialize System properties after JDK version number is known
3564   Arguments::init_version_specific_system_properties();
3565 
3566   // Make sure to initialize log configuration *before* parsing arguments
3567   LogConfiguration::initialize(create_vm_timer.begin_time());
3568 
3569   // Parse arguments
3570   jint parse_result = Arguments::parse(args);
3571   if (parse_result != JNI_OK) return parse_result;
3572 
3573   os::init_before_ergo();
3574 
3575   jint ergo_result = Arguments::apply_ergo();
3576   if (ergo_result != JNI_OK) return ergo_result;
3577 
3578   // Final check of all ranges after ergonomics which may change values.
3579   if (!CommandLineFlagRangeList::check_ranges()) {
3580     return JNI_EINVAL;
3581   }
3582 
3583   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3584   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3585   if (!constraint_result) {
3586     return JNI_EINVAL;
3587   }
3588 
3589   CommandLineFlagWriteableList::mark_startup();
3590 
3591   if (PauseAtStartup) {
3592     os::pause();
3593   }
3594 
3595   HOTSPOT_VM_INIT_BEGIN();
3596 
3597   // Timing (must come after argument parsing)
3598   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3599 
3600   // Initialize the os module after parsing the args
3601   jint os_init_2_result = os::init_2();
3602   if (os_init_2_result != JNI_OK) return os_init_2_result;
3603 
3604   jint adjust_after_os_result = Arguments::adjust_after_os();
3605   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3606 
3607   // Initialize output stream logging
3608   ostream_init_log();
3609 
3610   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3611   // Must be before create_vm_init_agents()
3612   if (Arguments::init_libraries_at_startup()) {
3613     convert_vm_init_libraries_to_agents();
3614   }
3615 
3616   // Launch -agentlib/-agentpath and converted -Xrun agents
3617   if (Arguments::init_agents_at_startup()) {
3618     create_vm_init_agents();
3619   }
3620 
3621   // Initialize Threads state
3622   _thread_list = NULL;
3623   _number_of_threads = 0;
3624   _number_of_non_daemon_threads = 0;
3625 
3626   // Initialize global data structures and create system classes in heap
3627   vm_init_globals();
3628 
3629 #if INCLUDE_JVMCI
3630   if (JVMCICounterSize > 0) {
3631     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3632     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3633   } else {
3634     JavaThread::_jvmci_old_thread_counters = NULL;
3635   }
3636 #endif // INCLUDE_JVMCI
3637 
3638   // Attach the main thread to this os thread
3639   JavaThread* main_thread = new JavaThread();
3640   main_thread->set_thread_state(_thread_in_vm);
3641   main_thread->initialize_thread_current();
3642   // must do this before set_active_handles
3643   main_thread->record_stack_base_and_size();
3644   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3645 
3646   if (!main_thread->set_as_starting_thread()) {
3647     vm_shutdown_during_initialization(
3648                                       "Failed necessary internal allocation. Out of swap space");
3649     delete main_thread;
3650     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3651     return JNI_ENOMEM;
3652   }
3653 
3654   // Enable guard page *after* os::create_main_thread(), otherwise it would
3655   // crash Linux VM, see notes in os_linux.cpp.
3656   main_thread->create_stack_guard_pages();
3657 
3658   // Initialize Java-Level synchronization subsystem
3659   ObjectMonitor::Initialize();
3660 
3661   // Initialize global modules
3662   jint status = init_globals();
3663   if (status != JNI_OK) {
3664     delete main_thread;
3665     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3666     return status;
3667   }
3668 
3669   if (TRACE_INITIALIZE() != JNI_OK) {
3670     vm_exit_during_initialization("Failed to initialize tracing backend");
3671   }
3672 
3673   // Should be done after the heap is fully created
3674   main_thread->cache_global_variables();
3675 
3676   HandleMark hm;
3677 
3678   { MutexLocker mu(Threads_lock);
3679     Threads::add(main_thread);
3680   }
3681 
3682   // Any JVMTI raw monitors entered in onload will transition into
3683   // real raw monitor. VM is setup enough here for raw monitor enter.
3684   JvmtiExport::transition_pending_onload_raw_monitors();
3685 
3686   // Create the VMThread
3687   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3688 
3689   VMThread::create();
3690     Thread* vmthread = VMThread::vm_thread();
3691 
3692     if (!os::create_thread(vmthread, os::vm_thread)) {
3693       vm_exit_during_initialization("Cannot create VM thread. "
3694                                     "Out of system resources.");
3695     }
3696 
3697     // Wait for the VM thread to become ready, and VMThread::run to initialize
3698     // Monitors can have spurious returns, must always check another state flag
3699     {
3700       MutexLocker ml(Notify_lock);
3701       os::start_thread(vmthread);
3702       while (vmthread->active_handles() == NULL) {
3703         Notify_lock->wait();
3704       }
3705     }
3706   }
3707 
3708   assert(Universe::is_fully_initialized(), "not initialized");
3709   if (VerifyDuringStartup) {
3710     // Make sure we're starting with a clean slate.
3711     VM_Verify verify_op;
3712     VMThread::execute(&verify_op);
3713   }
3714 
3715   Thread* THREAD = Thread::current();
3716 
3717   // At this point, the Universe is initialized, but we have not executed
3718   // any byte code.  Now is a good time (the only time) to dump out the
3719   // internal state of the JVM for sharing.
3720   if (DumpSharedSpaces) {
3721     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3722     ShouldNotReachHere();
3723   }
3724 
3725   // Always call even when there are not JVMTI environments yet, since environments
3726   // may be attached late and JVMTI must track phases of VM execution
3727   JvmtiExport::enter_early_start_phase();
3728 
3729   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3730   JvmtiExport::post_early_vm_start();
3731 
3732   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3733 
3734   // We need this for ClassDataSharing - the initial vm.info property is set
3735   // with the default value of CDS "sharing" which may be reset through
3736   // command line options.
3737   reset_vm_info_property(CHECK_JNI_ERR);
3738 
3739   quicken_jni_functions();
3740 
3741   // No more stub generation allowed after that point.
3742   StubCodeDesc::freeze();
3743 
3744   // Set flag that basic initialization has completed. Used by exceptions and various
3745   // debug stuff, that does not work until all basic classes have been initialized.
3746   set_init_completed();
3747 
3748   LogConfiguration::post_initialize();
3749   Metaspace::post_initialize();
3750 
3751   HOTSPOT_VM_INIT_END();
3752 
3753   // record VM initialization completion time
3754 #if INCLUDE_MANAGEMENT
3755   Management::record_vm_init_completed();
3756 #endif // INCLUDE_MANAGEMENT
3757 
3758   // Signal Dispatcher needs to be started before VMInit event is posted
3759   os::signal_init(CHECK_JNI_ERR);
3760 
3761   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3762   if (!DisableAttachMechanism) {
3763     AttachListener::vm_start();
3764     if (StartAttachListener || AttachListener::init_at_startup()) {
3765       AttachListener::init();
3766     }
3767   }
3768 
3769   // Launch -Xrun agents
3770   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3771   // back-end can launch with -Xdebug -Xrunjdwp.
3772   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3773     create_vm_init_libraries();
3774   }
3775 
3776   if (CleanChunkPoolAsync) {
3777     Chunk::start_chunk_pool_cleaner_task();
3778   }
3779 
3780   // initialize compiler(s)
3781 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3782   CompileBroker::compilation_init(CHECK_JNI_ERR);
3783 #endif
3784 
3785   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3786   // It is done after compilers are initialized, because otherwise compilations of
3787   // signature polymorphic MH intrinsics can be missed
3788   // (see SystemDictionary::find_method_handle_intrinsic).
3789   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3790 
3791   // This will initialize the module system.  Only java.base classes can be
3792   // loaded until phase 2 completes
3793   call_initPhase2(CHECK_JNI_ERR);
3794 
3795   // Always call even when there are not JVMTI environments yet, since environments
3796   // may be attached late and JVMTI must track phases of VM execution
3797   JvmtiExport::enter_start_phase();
3798 
3799   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3800   JvmtiExport::post_vm_start();
3801 
3802   // Final system initialization including security manager and system class loader
3803   call_initPhase3(CHECK_JNI_ERR);
3804 
3805   // cache the system class loader
3806   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3807 
3808 #if INCLUDE_JVMCI
3809   if (EnableJVMCI) {
3810     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3811     // The JVMCI Java initialization code will read this flag and
3812     // do the printing if it's set.
3813     bool init = JVMCIPrintProperties;
3814 
3815     if (!init) {
3816       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3817       // compilations via JVMCI will not actually block until JVMCI is initialized.
3818       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3819     }
3820 
3821     if (init) {
3822       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3823     }
3824   }
3825 #endif
3826 
3827   // Always call even when there are not JVMTI environments yet, since environments
3828   // may be attached late and JVMTI must track phases of VM execution
3829   JvmtiExport::enter_live_phase();
3830 
3831   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3832   JvmtiExport::post_vm_initialized();
3833 
3834   if (TRACE_START() != JNI_OK) {
3835     vm_exit_during_initialization("Failed to start tracing backend.");
3836   }
3837 
3838 #if INCLUDE_MANAGEMENT
3839   Management::initialize(THREAD);
3840 
3841   if (HAS_PENDING_EXCEPTION) {
3842     // management agent fails to start possibly due to
3843     // configuration problem and is responsible for printing
3844     // stack trace if appropriate. Simply exit VM.
3845     vm_exit(1);
3846   }
3847 #endif // INCLUDE_MANAGEMENT
3848 
3849   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3850   if (MemProfiling)                   MemProfiler::engage();
3851   StatSampler::engage();
3852   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3853 
3854   BiasedLocking::init();
3855 
3856 #if INCLUDE_RTM_OPT
3857   RTMLockingCounters::init();
3858 #endif
3859 
3860   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3861     call_postVMInitHook(THREAD);
3862     // The Java side of PostVMInitHook.run must deal with all
3863     // exceptions and provide means of diagnosis.
3864     if (HAS_PENDING_EXCEPTION) {
3865       CLEAR_PENDING_EXCEPTION;
3866     }
3867   }
3868 
3869   {
3870     MutexLocker ml(PeriodicTask_lock);
3871     // Make sure the WatcherThread can be started by WatcherThread::start()
3872     // or by dynamic enrollment.
3873     WatcherThread::make_startable();
3874     // Start up the WatcherThread if there are any periodic tasks
3875     // NOTE:  All PeriodicTasks should be registered by now. If they
3876     //   aren't, late joiners might appear to start slowly (we might
3877     //   take a while to process their first tick).
3878     if (PeriodicTask::num_tasks() > 0) {
3879       WatcherThread::start();
3880     }
3881   }
3882 
3883   create_vm_timer.end();
3884 #ifdef ASSERT
3885   _vm_complete = true;
3886 #endif
3887   return JNI_OK;
3888 }
3889 
3890 // type for the Agent_OnLoad and JVM_OnLoad entry points
3891 extern "C" {
3892   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3893 }
3894 // Find a command line agent library and return its entry point for
3895 //         -agentlib:  -agentpath:   -Xrun
3896 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3897 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3898                                     const char *on_load_symbols[],
3899                                     size_t num_symbol_entries) {
3900   OnLoadEntry_t on_load_entry = NULL;
3901   void *library = NULL;
3902 
3903   if (!agent->valid()) {
3904     char buffer[JVM_MAXPATHLEN];
3905     char ebuf[1024] = "";
3906     const char *name = agent->name();
3907     const char *msg = "Could not find agent library ";
3908 
3909     // First check to see if agent is statically linked into executable
3910     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3911       library = agent->os_lib();
3912     } else if (agent->is_absolute_path()) {
3913       library = os::dll_load(name, ebuf, sizeof ebuf);
3914       if (library == NULL) {
3915         const char *sub_msg = " in absolute path, with error: ";
3916         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3917         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3918         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3919         // If we can't find the agent, exit.
3920         vm_exit_during_initialization(buf, NULL);
3921         FREE_C_HEAP_ARRAY(char, buf);
3922       }
3923     } else {
3924       // Try to load the agent from the standard dll directory
3925       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3926                              name)) {
3927         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3928       }
3929       if (library == NULL) { // Try the local directory
3930         char ns[1] = {0};
3931         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3932           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3933         }
3934         if (library == NULL) {
3935           const char *sub_msg = " on the library path, with error: ";
3936           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3937           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3938           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3939           // If we can't find the agent, exit.
3940           vm_exit_during_initialization(buf, NULL);
3941           FREE_C_HEAP_ARRAY(char, buf);
3942         }
3943       }
3944     }
3945     agent->set_os_lib(library);
3946     agent->set_valid();
3947   }
3948 
3949   // Find the OnLoad function.
3950   on_load_entry =
3951     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3952                                                           false,
3953                                                           on_load_symbols,
3954                                                           num_symbol_entries));
3955   return on_load_entry;
3956 }
3957 
3958 // Find the JVM_OnLoad entry point
3959 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3960   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3961   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3962 }
3963 
3964 // Find the Agent_OnLoad entry point
3965 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3966   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3967   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3968 }
3969 
3970 // For backwards compatibility with -Xrun
3971 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3972 // treated like -agentpath:
3973 // Must be called before agent libraries are created
3974 void Threads::convert_vm_init_libraries_to_agents() {
3975   AgentLibrary* agent;
3976   AgentLibrary* next;
3977 
3978   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3979     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3980     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3981 
3982     // If there is an JVM_OnLoad function it will get called later,
3983     // otherwise see if there is an Agent_OnLoad
3984     if (on_load_entry == NULL) {
3985       on_load_entry = lookup_agent_on_load(agent);
3986       if (on_load_entry != NULL) {
3987         // switch it to the agent list -- so that Agent_OnLoad will be called,
3988         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3989         Arguments::convert_library_to_agent(agent);
3990       } else {
3991         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3992       }
3993     }
3994   }
3995 }
3996 
3997 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3998 // Invokes Agent_OnLoad
3999 // Called very early -- before JavaThreads exist
4000 void Threads::create_vm_init_agents() {
4001   extern struct JavaVM_ main_vm;
4002   AgentLibrary* agent;
4003 
4004   JvmtiExport::enter_onload_phase();
4005 
4006   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4007     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4008 
4009     if (on_load_entry != NULL) {
4010       // Invoke the Agent_OnLoad function
4011       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4012       if (err != JNI_OK) {
4013         vm_exit_during_initialization("agent library failed to init", agent->name());
4014       }
4015     } else {
4016       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4017     }
4018   }
4019   JvmtiExport::enter_primordial_phase();
4020 }
4021 
4022 extern "C" {
4023   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4024 }
4025 
4026 void Threads::shutdown_vm_agents() {
4027   // Send any Agent_OnUnload notifications
4028   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4029   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4030   extern struct JavaVM_ main_vm;
4031   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4032 
4033     // Find the Agent_OnUnload function.
4034     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4035                                                    os::find_agent_function(agent,
4036                                                    false,
4037                                                    on_unload_symbols,
4038                                                    num_symbol_entries));
4039 
4040     // Invoke the Agent_OnUnload function
4041     if (unload_entry != NULL) {
4042       JavaThread* thread = JavaThread::current();
4043       ThreadToNativeFromVM ttn(thread);
4044       HandleMark hm(thread);
4045       (*unload_entry)(&main_vm);
4046     }
4047   }
4048 }
4049 
4050 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4051 // Invokes JVM_OnLoad
4052 void Threads::create_vm_init_libraries() {
4053   extern struct JavaVM_ main_vm;
4054   AgentLibrary* agent;
4055 
4056   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4057     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4058 
4059     if (on_load_entry != NULL) {
4060       // Invoke the JVM_OnLoad function
4061       JavaThread* thread = JavaThread::current();
4062       ThreadToNativeFromVM ttn(thread);
4063       HandleMark hm(thread);
4064       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4065       if (err != JNI_OK) {
4066         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4067       }
4068     } else {
4069       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4070     }
4071   }
4072 }
4073 
4074 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4075   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4076 
4077   JavaThread* java_thread = NULL;
4078   // Sequential search for now.  Need to do better optimization later.
4079   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4080     oop tobj = thread->threadObj();
4081     if (!thread->is_exiting() &&
4082         tobj != NULL &&
4083         java_tid == java_lang_Thread::thread_id(tobj)) {
4084       java_thread = thread;
4085       break;
4086     }
4087   }
4088   return java_thread;
4089 }
4090 
4091 
4092 // Last thread running calls java.lang.Shutdown.shutdown()
4093 void JavaThread::invoke_shutdown_hooks() {
4094   HandleMark hm(this);
4095 
4096   // We could get here with a pending exception, if so clear it now.
4097   if (this->has_pending_exception()) {
4098     this->clear_pending_exception();
4099   }
4100 
4101   EXCEPTION_MARK;
4102   Klass* shutdown_klass =
4103     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4104                                       THREAD);
4105   if (shutdown_klass != NULL) {
4106     // SystemDictionary::resolve_or_null will return null if there was
4107     // an exception.  If we cannot load the Shutdown class, just don't
4108     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4109     // and finalizers (if runFinalizersOnExit is set) won't be run.
4110     // Note that if a shutdown hook was registered or runFinalizersOnExit
4111     // was called, the Shutdown class would have already been loaded
4112     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4113     JavaValue result(T_VOID);
4114     JavaCalls::call_static(&result,
4115                            shutdown_klass,
4116                            vmSymbols::shutdown_method_name(),
4117                            vmSymbols::void_method_signature(),
4118                            THREAD);
4119   }
4120   CLEAR_PENDING_EXCEPTION;
4121 }
4122 
4123 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4124 // the program falls off the end of main(). Another VM exit path is through
4125 // vm_exit() when the program calls System.exit() to return a value or when
4126 // there is a serious error in VM. The two shutdown paths are not exactly
4127 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4128 // and VM_Exit op at VM level.
4129 //
4130 // Shutdown sequence:
4131 //   + Shutdown native memory tracking if it is on
4132 //   + Wait until we are the last non-daemon thread to execute
4133 //     <-- every thing is still working at this moment -->
4134 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4135 //        shutdown hooks, run finalizers if finalization-on-exit
4136 //   + Call before_exit(), prepare for VM exit
4137 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4138 //        currently the only user of this mechanism is File.deleteOnExit())
4139 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4140 //        post thread end and vm death events to JVMTI,
4141 //        stop signal thread
4142 //   + Call JavaThread::exit(), it will:
4143 //      > release JNI handle blocks, remove stack guard pages
4144 //      > remove this thread from Threads list
4145 //     <-- no more Java code from this thread after this point -->
4146 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4147 //     the compiler threads at safepoint
4148 //     <-- do not use anything that could get blocked by Safepoint -->
4149 //   + Disable tracing at JNI/JVM barriers
4150 //   + Set _vm_exited flag for threads that are still running native code
4151 //   + Delete this thread
4152 //   + Call exit_globals()
4153 //      > deletes tty
4154 //      > deletes PerfMemory resources
4155 //   + Return to caller
4156 
4157 bool Threads::destroy_vm() {
4158   JavaThread* thread = JavaThread::current();
4159 
4160 #ifdef ASSERT
4161   _vm_complete = false;
4162 #endif
4163   // Wait until we are the last non-daemon thread to execute
4164   { MutexLocker nu(Threads_lock);
4165     while (Threads::number_of_non_daemon_threads() > 1)
4166       // This wait should make safepoint checks, wait without a timeout,
4167       // and wait as a suspend-equivalent condition.
4168       //
4169       // Note: If the FlatProfiler is running and this thread is waiting
4170       // for another non-daemon thread to finish, then the FlatProfiler
4171       // is waiting for the external suspend request on this thread to
4172       // complete. wait_for_ext_suspend_completion() will eventually
4173       // timeout, but that takes time. Making this wait a suspend-
4174       // equivalent condition solves that timeout problem.
4175       //
4176       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4177                          Mutex::_as_suspend_equivalent_flag);
4178   }
4179 
4180   // Hang forever on exit if we are reporting an error.
4181   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4182     os::infinite_sleep();
4183   }
4184   os::wait_for_keypress_at_exit();
4185 
4186   // run Java level shutdown hooks
4187   thread->invoke_shutdown_hooks();
4188 
4189   before_exit(thread);
4190 
4191   thread->exit(true);
4192 
4193   // Stop VM thread.
4194   {
4195     // 4945125 The vm thread comes to a safepoint during exit.
4196     // GC vm_operations can get caught at the safepoint, and the
4197     // heap is unparseable if they are caught. Grab the Heap_lock
4198     // to prevent this. The GC vm_operations will not be able to
4199     // queue until after the vm thread is dead. After this point,
4200     // we'll never emerge out of the safepoint before the VM exits.
4201 
4202     MutexLocker ml(Heap_lock);
4203 
4204     VMThread::wait_for_vm_thread_exit();
4205     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4206     VMThread::destroy();
4207   }
4208 
4209   // clean up ideal graph printers
4210 #if defined(COMPILER2) && !defined(PRODUCT)
4211   IdealGraphPrinter::clean_up();
4212 #endif
4213 
4214   // Now, all Java threads are gone except daemon threads. Daemon threads
4215   // running Java code or in VM are stopped by the Safepoint. However,
4216   // daemon threads executing native code are still running.  But they
4217   // will be stopped at native=>Java/VM barriers. Note that we can't
4218   // simply kill or suspend them, as it is inherently deadlock-prone.
4219 
4220   VM_Exit::set_vm_exited();
4221 
4222   notify_vm_shutdown();
4223 
4224   delete thread;
4225 
4226 #if INCLUDE_JVMCI
4227   if (JVMCICounterSize > 0) {
4228     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4229   }
4230 #endif
4231 
4232   // exit_globals() will delete tty
4233   exit_globals();
4234 
4235   LogConfiguration::finalize();
4236 
4237   return true;
4238 }
4239 
4240 
4241 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4242   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4243   return is_supported_jni_version(version);
4244 }
4245 
4246 
4247 jboolean Threads::is_supported_jni_version(jint version) {
4248   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4249   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4250   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4251   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4252   if (version == JNI_VERSION_9) return JNI_TRUE;
4253   return JNI_FALSE;
4254 }
4255 
4256 
4257 void Threads::add(JavaThread* p, bool force_daemon) {
4258   // The threads lock must be owned at this point
4259   assert_locked_or_safepoint(Threads_lock);
4260 
4261   // See the comment for this method in thread.hpp for its purpose and
4262   // why it is called here.
4263   p->initialize_queues();
4264   p->set_next(_thread_list);
4265   _thread_list = p;
4266   _number_of_threads++;
4267   oop threadObj = p->threadObj();
4268   bool daemon = true;
4269   // Bootstrapping problem: threadObj can be null for initial
4270   // JavaThread (or for threads attached via JNI)
4271   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4272     _number_of_non_daemon_threads++;
4273     daemon = false;
4274   }
4275 
4276   ThreadService::add_thread(p, daemon);
4277 
4278   // Possible GC point.
4279   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4280 }
4281 
4282 void Threads::remove(JavaThread* p) {
4283 
4284   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4285   ObjectSynchronizer::omFlush(p);
4286 
4287   // Extra scope needed for Thread_lock, so we can check
4288   // that we do not remove thread without safepoint code notice
4289   { MutexLocker ml(Threads_lock);
4290 
4291     assert(includes(p), "p must be present");
4292 
4293     JavaThread* current = _thread_list;
4294     JavaThread* prev    = NULL;
4295 
4296     while (current != p) {
4297       prev    = current;
4298       current = current->next();
4299     }
4300 
4301     if (prev) {
4302       prev->set_next(current->next());
4303     } else {
4304       _thread_list = p->next();
4305     }
4306     _number_of_threads--;
4307     oop threadObj = p->threadObj();
4308     bool daemon = true;
4309     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4310       _number_of_non_daemon_threads--;
4311       daemon = false;
4312 
4313       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4314       // on destroy_vm will wake up.
4315       if (number_of_non_daemon_threads() == 1) {
4316         Threads_lock->notify_all();
4317       }
4318     }
4319     ThreadService::remove_thread(p, daemon);
4320 
4321     // Make sure that safepoint code disregard this thread. This is needed since
4322     // the thread might mess around with locks after this point. This can cause it
4323     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4324     // of this thread since it is removed from the queue.
4325     p->set_terminated_value();
4326   } // unlock Threads_lock
4327 
4328   // Since Events::log uses a lock, we grab it outside the Threads_lock
4329   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4330 }
4331 
4332 // Threads_lock must be held when this is called (or must be called during a safepoint)
4333 bool Threads::includes(JavaThread* p) {
4334   assert(Threads_lock->is_locked(), "sanity check");
4335   ALL_JAVA_THREADS(q) {
4336     if (q == p) {
4337       return true;
4338     }
4339   }
4340   return false;
4341 }
4342 
4343 // Operations on the Threads list for GC.  These are not explicitly locked,
4344 // but the garbage collector must provide a safe context for them to run.
4345 // In particular, these things should never be called when the Threads_lock
4346 // is held by some other thread. (Note: the Safepoint abstraction also
4347 // uses the Threads_lock to guarantee this property. It also makes sure that
4348 // all threads gets blocked when exiting or starting).
4349 
4350 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4351   ALL_JAVA_THREADS(p) {
4352     p->oops_do(f, cf);
4353   }
4354   VMThread::vm_thread()->oops_do(f, cf);
4355 }
4356 
4357 void Threads::change_thread_claim_parity() {
4358   // Set the new claim parity.
4359   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4360          "Not in range.");
4361   _thread_claim_parity++;
4362   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4363   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4364          "Not in range.");
4365 }
4366 
4367 #ifdef ASSERT
4368 void Threads::assert_all_threads_claimed() {
4369   ALL_JAVA_THREADS(p) {
4370     const int thread_parity = p->oops_do_parity();
4371     assert((thread_parity == _thread_claim_parity),
4372            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4373   }
4374   VMThread* vmt = VMThread::vm_thread();
4375   const int thread_parity = vmt->oops_do_parity();
4376   assert((thread_parity == _thread_claim_parity),
4377          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4378 }
4379 #endif // ASSERT
4380 
4381 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4382   int cp = Threads::thread_claim_parity();
4383   ALL_JAVA_THREADS(p) {
4384     if (p->claim_oops_do(is_par, cp)) {
4385       p->oops_do(f, cf);
4386     }
4387   }
4388   VMThread* vmt = VMThread::vm_thread();
4389   if (vmt->claim_oops_do(is_par, cp)) {
4390     vmt->oops_do(f, cf);
4391   }
4392 }
4393 
4394 #if INCLUDE_ALL_GCS
4395 // Used by ParallelScavenge
4396 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4397   ALL_JAVA_THREADS(p) {
4398     q->enqueue(new ThreadRootsTask(p));
4399   }
4400   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4401 }
4402 
4403 // Used by Parallel Old
4404 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4405   ALL_JAVA_THREADS(p) {
4406     q->enqueue(new ThreadRootsMarkingTask(p));
4407   }
4408   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4409 }
4410 #endif // INCLUDE_ALL_GCS
4411 
4412 void Threads::nmethods_do(CodeBlobClosure* cf) {
4413   ALL_JAVA_THREADS(p) {
4414     // This is used by the code cache sweeper to mark nmethods that are active
4415     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4416     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4417     if(!p->is_Code_cache_sweeper_thread()) {
4418       p->nmethods_do(cf);
4419     }
4420   }
4421 }
4422 
4423 void Threads::metadata_do(void f(Metadata*)) {
4424   ALL_JAVA_THREADS(p) {
4425     p->metadata_do(f);
4426   }
4427 }
4428 
4429 class ThreadHandlesClosure : public ThreadClosure {
4430   void (*_f)(Metadata*);
4431  public:
4432   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4433   virtual void do_thread(Thread* thread) {
4434     thread->metadata_handles_do(_f);
4435   }
4436 };
4437 
4438 void Threads::metadata_handles_do(void f(Metadata*)) {
4439   // Only walk the Handles in Thread.
4440   ThreadHandlesClosure handles_closure(f);
4441   threads_do(&handles_closure);
4442 }
4443 
4444 void Threads::deoptimized_wrt_marked_nmethods() {
4445   ALL_JAVA_THREADS(p) {
4446     p->deoptimized_wrt_marked_nmethods();
4447   }
4448 }
4449 
4450 
4451 // Get count Java threads that are waiting to enter the specified monitor.
4452 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4453                                                          address monitor,
4454                                                          bool doLock) {
4455   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4456          "must grab Threads_lock or be at safepoint");
4457   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4458 
4459   int i = 0;
4460   {
4461     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4462     ALL_JAVA_THREADS(p) {
4463       if (!p->can_call_java()) continue;
4464 
4465       address pending = (address)p->current_pending_monitor();
4466       if (pending == monitor) {             // found a match
4467         if (i < count) result->append(p);   // save the first count matches
4468         i++;
4469       }
4470     }
4471   }
4472   return result;
4473 }
4474 
4475 
4476 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4477                                                       bool doLock) {
4478   assert(doLock ||
4479          Threads_lock->owned_by_self() ||
4480          SafepointSynchronize::is_at_safepoint(),
4481          "must grab Threads_lock or be at safepoint");
4482 
4483   // NULL owner means not locked so we can skip the search
4484   if (owner == NULL) return NULL;
4485 
4486   {
4487     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4488     ALL_JAVA_THREADS(p) {
4489       // first, see if owner is the address of a Java thread
4490       if (owner == (address)p) return p;
4491     }
4492   }
4493   // Cannot assert on lack of success here since this function may be
4494   // used by code that is trying to report useful problem information
4495   // like deadlock detection.
4496   if (UseHeavyMonitors) return NULL;
4497 
4498   // If we didn't find a matching Java thread and we didn't force use of
4499   // heavyweight monitors, then the owner is the stack address of the
4500   // Lock Word in the owning Java thread's stack.
4501   //
4502   JavaThread* the_owner = NULL;
4503   {
4504     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4505     ALL_JAVA_THREADS(q) {
4506       if (q->is_lock_owned(owner)) {
4507         the_owner = q;
4508         break;
4509       }
4510     }
4511   }
4512   // cannot assert on lack of success here; see above comment
4513   return the_owner;
4514 }
4515 
4516 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4517 void Threads::print_on(outputStream* st, bool print_stacks,
4518                        bool internal_format, bool print_concurrent_locks) {
4519   char buf[32];
4520   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4521 
4522   st->print_cr("Full thread dump %s (%s %s):",
4523                Abstract_VM_Version::vm_name(),
4524                Abstract_VM_Version::vm_release(),
4525                Abstract_VM_Version::vm_info_string());
4526   st->cr();
4527 
4528 #if INCLUDE_SERVICES
4529   // Dump concurrent locks
4530   ConcurrentLocksDump concurrent_locks;
4531   if (print_concurrent_locks) {
4532     concurrent_locks.dump_at_safepoint();
4533   }
4534 #endif // INCLUDE_SERVICES
4535 
4536   ALL_JAVA_THREADS(p) {
4537     ResourceMark rm;
4538     p->print_on(st);
4539     if (print_stacks) {
4540       if (internal_format) {
4541         p->trace_stack();
4542       } else {
4543         p->print_stack_on(st);
4544       }
4545     }
4546     st->cr();
4547 #if INCLUDE_SERVICES
4548     if (print_concurrent_locks) {
4549       concurrent_locks.print_locks_on(p, st);
4550     }
4551 #endif // INCLUDE_SERVICES
4552   }
4553 
4554   VMThread::vm_thread()->print_on(st);
4555   st->cr();
4556   Universe::heap()->print_gc_threads_on(st);
4557   WatcherThread* wt = WatcherThread::watcher_thread();
4558   if (wt != NULL) {
4559     wt->print_on(st);
4560     st->cr();
4561   }
4562   st->flush();
4563 }
4564 
4565 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4566                              int buflen, bool* found_current) {
4567   if (this_thread != NULL) {
4568     bool is_current = (current == this_thread);
4569     *found_current = *found_current || is_current;
4570     st->print("%s", is_current ? "=>" : "  ");
4571 
4572     st->print(PTR_FORMAT, p2i(this_thread));
4573     st->print(" ");
4574     this_thread->print_on_error(st, buf, buflen);
4575     st->cr();
4576   }
4577 }
4578 
4579 class PrintOnErrorClosure : public ThreadClosure {
4580   outputStream* _st;
4581   Thread* _current;
4582   char* _buf;
4583   int _buflen;
4584   bool* _found_current;
4585  public:
4586   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4587                       int buflen, bool* found_current) :
4588    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4589 
4590   virtual void do_thread(Thread* thread) {
4591     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4592   }
4593 };
4594 
4595 // Threads::print_on_error() is called by fatal error handler. It's possible
4596 // that VM is not at safepoint and/or current thread is inside signal handler.
4597 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4598 // memory (even in resource area), it might deadlock the error handler.
4599 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4600                              int buflen) {
4601   bool found_current = false;
4602   st->print_cr("Java Threads: ( => current thread )");
4603   ALL_JAVA_THREADS(thread) {
4604     print_on_error(thread, st, current, buf, buflen, &found_current);
4605   }
4606   st->cr();
4607 
4608   st->print_cr("Other Threads:");
4609   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4610   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4611 
4612   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4613   Universe::heap()->gc_threads_do(&print_closure);
4614 
4615   if (!found_current) {
4616     st->cr();
4617     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4618     current->print_on_error(st, buf, buflen);
4619     st->cr();
4620   }
4621   st->cr();
4622   st->print_cr("Threads with active compile tasks:");
4623   print_threads_compiling(st, buf, buflen);
4624 }
4625 
4626 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4627   ALL_JAVA_THREADS(thread) {
4628     if (thread->is_Compiler_thread()) {
4629       CompilerThread* ct = (CompilerThread*) thread;
4630       if (ct->task() != NULL) {
4631         thread->print_name_on_error(st, buf, buflen);
4632         ct->task()->print(st, NULL, true, true);
4633       }
4634     }
4635   }
4636 }
4637 
4638 
4639 // Internal SpinLock and Mutex
4640 // Based on ParkEvent
4641 
4642 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4643 //
4644 // We employ SpinLocks _only for low-contention, fixed-length
4645 // short-duration critical sections where we're concerned
4646 // about native mutex_t or HotSpot Mutex:: latency.
4647 // The mux construct provides a spin-then-block mutual exclusion
4648 // mechanism.
4649 //
4650 // Testing has shown that contention on the ListLock guarding gFreeList
4651 // is common.  If we implement ListLock as a simple SpinLock it's common
4652 // for the JVM to devolve to yielding with little progress.  This is true
4653 // despite the fact that the critical sections protected by ListLock are
4654 // extremely short.
4655 //
4656 // TODO-FIXME: ListLock should be of type SpinLock.
4657 // We should make this a 1st-class type, integrated into the lock
4658 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4659 // should have sufficient padding to avoid false-sharing and excessive
4660 // cache-coherency traffic.
4661 
4662 
4663 typedef volatile int SpinLockT;
4664 
4665 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4666   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4667     return;   // normal fast-path return
4668   }
4669 
4670   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4671   TEVENT(SpinAcquire - ctx);
4672   int ctr = 0;
4673   int Yields = 0;
4674   for (;;) {
4675     while (*adr != 0) {
4676       ++ctr;
4677       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4678         if (Yields > 5) {
4679           os::naked_short_sleep(1);
4680         } else {
4681           os::naked_yield();
4682           ++Yields;
4683         }
4684       } else {
4685         SpinPause();
4686       }
4687     }
4688     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4689   }
4690 }
4691 
4692 void Thread::SpinRelease(volatile int * adr) {
4693   assert(*adr != 0, "invariant");
4694   OrderAccess::fence();      // guarantee at least release consistency.
4695   // Roach-motel semantics.
4696   // It's safe if subsequent LDs and STs float "up" into the critical section,
4697   // but prior LDs and STs within the critical section can't be allowed
4698   // to reorder or float past the ST that releases the lock.
4699   // Loads and stores in the critical section - which appear in program
4700   // order before the store that releases the lock - must also appear
4701   // before the store that releases the lock in memory visibility order.
4702   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4703   // the ST of 0 into the lock-word which releases the lock, so fence
4704   // more than covers this on all platforms.
4705   *adr = 0;
4706 }
4707 
4708 // muxAcquire and muxRelease:
4709 //
4710 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4711 //    The LSB of the word is set IFF the lock is held.
4712 //    The remainder of the word points to the head of a singly-linked list
4713 //    of threads blocked on the lock.
4714 //
4715 // *  The current implementation of muxAcquire-muxRelease uses its own
4716 //    dedicated Thread._MuxEvent instance.  If we're interested in
4717 //    minimizing the peak number of extant ParkEvent instances then
4718 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4719 //    as certain invariants were satisfied.  Specifically, care would need
4720 //    to be taken with regards to consuming unpark() "permits".
4721 //    A safe rule of thumb is that a thread would never call muxAcquire()
4722 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4723 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4724 //    consume an unpark() permit intended for monitorenter, for instance.
4725 //    One way around this would be to widen the restricted-range semaphore
4726 //    implemented in park().  Another alternative would be to provide
4727 //    multiple instances of the PlatformEvent() for each thread.  One
4728 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4729 //
4730 // *  Usage:
4731 //    -- Only as leaf locks
4732 //    -- for short-term locking only as muxAcquire does not perform
4733 //       thread state transitions.
4734 //
4735 // Alternatives:
4736 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4737 //    but with parking or spin-then-park instead of pure spinning.
4738 // *  Use Taura-Oyama-Yonenzawa locks.
4739 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4740 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4741 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4742 //    acquiring threads use timers (ParkTimed) to detect and recover from
4743 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4744 //    boundaries by using placement-new.
4745 // *  Augment MCS with advisory back-link fields maintained with CAS().
4746 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4747 //    The validity of the backlinks must be ratified before we trust the value.
4748 //    If the backlinks are invalid the exiting thread must back-track through the
4749 //    the forward links, which are always trustworthy.
4750 // *  Add a successor indication.  The LockWord is currently encoded as
4751 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4752 //    to provide the usual futile-wakeup optimization.
4753 //    See RTStt for details.
4754 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4755 //
4756 
4757 
4758 typedef volatile intptr_t MutexT;      // Mux Lock-word
4759 enum MuxBits { LOCKBIT = 1 };
4760 
4761 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4762   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4763   if (w == 0) return;
4764   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4765     return;
4766   }
4767 
4768   TEVENT(muxAcquire - Contention);
4769   ParkEvent * const Self = Thread::current()->_MuxEvent;
4770   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4771   for (;;) {
4772     int its = (os::is_MP() ? 100 : 0) + 1;
4773 
4774     // Optional spin phase: spin-then-park strategy
4775     while (--its >= 0) {
4776       w = *Lock;
4777       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4778         return;
4779       }
4780     }
4781 
4782     Self->reset();
4783     Self->OnList = intptr_t(Lock);
4784     // The following fence() isn't _strictly necessary as the subsequent
4785     // CAS() both serializes execution and ratifies the fetched *Lock value.
4786     OrderAccess::fence();
4787     for (;;) {
4788       w = *Lock;
4789       if ((w & LOCKBIT) == 0) {
4790         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4791           Self->OnList = 0;   // hygiene - allows stronger asserts
4792           return;
4793         }
4794         continue;      // Interference -- *Lock changed -- Just retry
4795       }
4796       assert(w & LOCKBIT, "invariant");
4797       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4798       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4799     }
4800 
4801     while (Self->OnList != 0) {
4802       Self->park();
4803     }
4804   }
4805 }
4806 
4807 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4808   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4809   if (w == 0) return;
4810   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4811     return;
4812   }
4813 
4814   TEVENT(muxAcquire - Contention);
4815   ParkEvent * ReleaseAfter = NULL;
4816   if (ev == NULL) {
4817     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4818   }
4819   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4820   for (;;) {
4821     guarantee(ev->OnList == 0, "invariant");
4822     int its = (os::is_MP() ? 100 : 0) + 1;
4823 
4824     // Optional spin phase: spin-then-park strategy
4825     while (--its >= 0) {
4826       w = *Lock;
4827       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4828         if (ReleaseAfter != NULL) {
4829           ParkEvent::Release(ReleaseAfter);
4830         }
4831         return;
4832       }
4833     }
4834 
4835     ev->reset();
4836     ev->OnList = intptr_t(Lock);
4837     // The following fence() isn't _strictly necessary as the subsequent
4838     // CAS() both serializes execution and ratifies the fetched *Lock value.
4839     OrderAccess::fence();
4840     for (;;) {
4841       w = *Lock;
4842       if ((w & LOCKBIT) == 0) {
4843         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4844           ev->OnList = 0;
4845           // We call ::Release while holding the outer lock, thus
4846           // artificially lengthening the critical section.
4847           // Consider deferring the ::Release() until the subsequent unlock(),
4848           // after we've dropped the outer lock.
4849           if (ReleaseAfter != NULL) {
4850             ParkEvent::Release(ReleaseAfter);
4851           }
4852           return;
4853         }
4854         continue;      // Interference -- *Lock changed -- Just retry
4855       }
4856       assert(w & LOCKBIT, "invariant");
4857       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4858       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4859     }
4860 
4861     while (ev->OnList != 0) {
4862       ev->park();
4863     }
4864   }
4865 }
4866 
4867 // Release() must extract a successor from the list and then wake that thread.
4868 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4869 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4870 // Release() would :
4871 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4872 // (B) Extract a successor from the private list "in-hand"
4873 // (C) attempt to CAS() the residual back into *Lock over null.
4874 //     If there were any newly arrived threads and the CAS() would fail.
4875 //     In that case Release() would detach the RATs, re-merge the list in-hand
4876 //     with the RATs and repeat as needed.  Alternately, Release() might
4877 //     detach and extract a successor, but then pass the residual list to the wakee.
4878 //     The wakee would be responsible for reattaching and remerging before it
4879 //     competed for the lock.
4880 //
4881 // Both "pop" and DMR are immune from ABA corruption -- there can be
4882 // multiple concurrent pushers, but only one popper or detacher.
4883 // This implementation pops from the head of the list.  This is unfair,
4884 // but tends to provide excellent throughput as hot threads remain hot.
4885 // (We wake recently run threads first).
4886 //
4887 // All paths through muxRelease() will execute a CAS.
4888 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4889 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4890 // executed within the critical section are complete and globally visible before the
4891 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4892 void Thread::muxRelease(volatile intptr_t * Lock)  {
4893   for (;;) {
4894     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4895     assert(w & LOCKBIT, "invariant");
4896     if (w == LOCKBIT) return;
4897     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4898     assert(List != NULL, "invariant");
4899     assert(List->OnList == intptr_t(Lock), "invariant");
4900     ParkEvent * const nxt = List->ListNext;
4901     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4902 
4903     // The following CAS() releases the lock and pops the head element.
4904     // The CAS() also ratifies the previously fetched lock-word value.
4905     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4906       continue;
4907     }
4908     List->OnList = 0;
4909     OrderAccess::fence();
4910     List->unpark();
4911     return;
4912   }
4913 }
4914 
4915 
4916 void Threads::verify() {
4917   ALL_JAVA_THREADS(p) {
4918     p->verify();
4919   }
4920   VMThread* thread = VMThread::vm_thread();
4921   if (thread != NULL) thread->verify();
4922 }