1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jfr/support/jfrThreadId.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/metaspaceShared.hpp"
  51 #include "memory/oopFactory.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/access.inline.hpp"
  55 #include "oops/instanceKlass.hpp"
  56 #include "oops/objArrayOop.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/symbol.hpp"
  59 #include "oops/typeArrayOop.inline.hpp"
  60 #include "oops/verifyOopClosure.hpp"
  61 #include "prims/jvm_misc.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "prims/jvmtiThreadState.hpp"
  64 #include "prims/privilegedStack.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/biasedLocking.hpp"
  68 #include "runtime/flags/jvmFlagConstraintList.hpp"
  69 #include "runtime/flags/jvmFlagRangeList.hpp"
  70 #include "runtime/flags/jvmFlagWriteableList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handshake.hpp"
  74 #include "runtime/init.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/java.hpp"
  77 #include "runtime/javaCalls.hpp"
  78 #include "runtime/jniHandles.inline.hpp"
  79 #include "runtime/jniPeriodicChecker.hpp"
  80 #include "runtime/memprofiler.hpp"
  81 #include "runtime/mutexLocker.hpp"
  82 #include "runtime/objectMonitor.hpp"
  83 #include "runtime/orderAccess.inline.hpp"
  84 #include "runtime/osThread.hpp"
  85 #include "runtime/prefetch.inline.hpp"
  86 #include "runtime/safepoint.hpp"
  87 #include "runtime/safepointMechanism.inline.hpp"
  88 #include "runtime/sharedRuntime.hpp"
  89 #include "runtime/statSampler.hpp"
  90 #include "runtime/stubRoutines.hpp"
  91 #include "runtime/sweeper.hpp"
  92 #include "runtime/task.hpp"
  93 #include "runtime/thread.inline.hpp"
  94 #include "runtime/threadCritical.hpp"
  95 #include "runtime/threadSMR.inline.hpp"
  96 #include "runtime/timer.hpp"
  97 #include "runtime/timerTrace.hpp"
  98 #include "runtime/vframe.inline.hpp"
  99 #include "runtime/vframeArray.hpp"
 100 #include "runtime/vframe_hp.hpp"
 101 #include "runtime/vmThread.hpp"
 102 #include "runtime/vm_operations.hpp"
 103 #include "runtime/vm_version.hpp"
 104 #include "services/attachListener.hpp"
 105 #include "services/management.hpp"
 106 #include "services/memTracker.hpp"
 107 #include "services/threadService.hpp"
 108 #include "utilities/align.hpp"
 109 #include "utilities/copy.hpp"
 110 #include "utilities/defaultStream.hpp"
 111 #include "utilities/dtrace.hpp"
 112 #include "utilities/events.hpp"
 113 #include "utilities/macros.hpp"
 114 #include "utilities/preserveException.hpp"
 115 #include "utilities/vmError.hpp"
 116 #if INCLUDE_JVMCI
 117 #include "jvmci/jvmciCompiler.hpp"
 118 #include "jvmci/jvmciRuntime.hpp"
 119 #include "logging/logHandle.hpp"
 120 #endif
 121 #ifdef COMPILER1
 122 #include "c1/c1_Compiler.hpp"
 123 #endif
 124 #ifdef COMPILER2
 125 #include "opto/c2compiler.hpp"
 126 #include "opto/idealGraphPrinter.hpp"
 127 #endif
 128 #if INCLUDE_RTM_OPT
 129 #include "runtime/rtmLocking.hpp"
 130 #endif
 131 #if INCLUDE_JFR
 132 #include "jfr/jfr.hpp"
 133 #endif
 134 
 135 // Initialization after module runtime initialization
 136 void universe_post_module_init();  // must happen after call_initPhase2
 137 
 138 #ifdef DTRACE_ENABLED
 139 
 140 // Only bother with this argument setup if dtrace is available
 141 
 142   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 143   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 144 
 145   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 146     {                                                                      \
 147       ResourceMark rm(this);                                               \
 148       int len = 0;                                                         \
 149       const char* name = (javathread)->get_thread_name();                  \
 150       len = strlen(name);                                                  \
 151       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 152         (char *) name, len,                                                \
 153         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 154         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 155         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 156     }
 157 
 158 #else //  ndef DTRACE_ENABLED
 159 
 160   #define DTRACE_THREAD_PROBE(probe, javathread)
 161 
 162 #endif // ndef DTRACE_ENABLED
 163 
 164 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 165 // Current thread is maintained as a thread-local variable
 166 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 167 #endif
 168 // Class hierarchy
 169 // - Thread
 170 //   - VMThread
 171 //   - WatcherThread
 172 //   - ConcurrentMarkSweepThread
 173 //   - JavaThread
 174 //     - CompilerThread
 175 
 176 // ======= Thread ========
 177 // Support for forcing alignment of thread objects for biased locking
 178 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 179   if (UseBiasedLocking) {
 180     const int alignment = markOopDesc::biased_lock_alignment;
 181     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 182     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 183                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 184                                                          AllocFailStrategy::RETURN_NULL);
 185     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 186     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 187            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 188            "JavaThread alignment code overflowed allocated storage");
 189     if (aligned_addr != real_malloc_addr) {
 190       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 191                               p2i(real_malloc_addr),
 192                               p2i(aligned_addr));
 193     }
 194     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 195     return aligned_addr;
 196   } else {
 197     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 198                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 199   }
 200 }
 201 
 202 void Thread::operator delete(void* p) {
 203   if (UseBiasedLocking) {
 204     FreeHeap(((Thread*) p)->_real_malloc_address);
 205   } else {
 206     FreeHeap(p);
 207   }
 208 }
 209 
 210 void JavaThread::smr_delete() {
 211   if (_on_thread_list) {
 212     ThreadsSMRSupport::smr_delete(this);
 213   } else {
 214     delete this;
 215   }
 216 }
 217 
 218 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 219 // JavaThread
 220 
 221 
 222 Thread::Thread() {
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_self_raw_id(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239 
 240   _statistic_info.setStartTime(os::javaTimeMillis());
 241   _statistic_info.setDefineClassCount(0);
 242 
 243   // This initial value ==> never claimed.
 244   _oops_do_parity = 0;
 245   _threads_hazard_ptr = NULL;
 246   _threads_list_ptr = NULL;
 247   _nested_threads_hazard_ptr_cnt = 0;
 248   _rcu_counter = 0;
 249 
 250   // the handle mark links itself to last_handle_mark
 251   new HandleMark(this);
 252 
 253   // plain initialization
 254   debug_only(_owned_locks = NULL;)
 255   debug_only(_allow_allocation_count = 0;)
 256   NOT_PRODUCT(_allow_safepoint_count = 0;)
 257   NOT_PRODUCT(_skip_gcalot = false;)
 258   _jvmti_env_iteration_count = 0;
 259   set_allocated_bytes(0);
 260   _vm_operation_started_count = 0;
 261   _vm_operation_completed_count = 0;
 262   _current_pending_monitor = NULL;
 263   _current_pending_monitor_is_from_java = true;
 264   _current_waiting_monitor = NULL;
 265   _num_nested_signal = 0;
 266   omFreeList = NULL;
 267   omFreeCount = 0;
 268   omFreeProvision = 32;
 269   omInUseList = NULL;
 270   omInUseCount = 0;
 271 
 272 #ifdef ASSERT
 273   _visited_for_critical_count = false;
 274 #endif
 275 
 276   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 277                          Monitor::_safepoint_check_sometimes);
 278   _suspend_flags = 0;
 279 
 280   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 281   _hashStateX = os::random();
 282   _hashStateY = 842502087;
 283   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 284   _hashStateW = 273326509;
 285 
 286   _OnTrap   = 0;
 287   _schedctl = NULL;
 288   _Stalled  = 0;
 289   _TypeTag  = 0x2BAD;
 290 
 291   // Many of the following fields are effectively final - immutable
 292   // Note that nascent threads can't use the Native Monitor-Mutex
 293   // construct until the _MutexEvent is initialized ...
 294   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 295   // we might instead use a stack of ParkEvents that we could provision on-demand.
 296   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 297   // and ::Release()
 298   _ParkEvent   = ParkEvent::Allocate(this);
 299   _SleepEvent  = ParkEvent::Allocate(this);
 300   _MutexEvent  = ParkEvent::Allocate(this);
 301   _MuxEvent    = ParkEvent::Allocate(this);
 302 
 303 #ifdef CHECK_UNHANDLED_OOPS
 304   if (CheckUnhandledOops) {
 305     _unhandled_oops = new UnhandledOops(this);
 306   }
 307 #endif // CHECK_UNHANDLED_OOPS
 308 #ifdef ASSERT
 309   if (UseBiasedLocking) {
 310     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 311     assert(this == _real_malloc_address ||
 312            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 313            "bug in forced alignment of thread objects");
 314   }
 315 #endif // ASSERT
 316 
 317   // Notify the barrier set that a thread is being created. Note that the
 318   // main thread is created before a barrier set is available. The call to
 319   // BarrierSet::on_thread_create() for the main thread is therefore deferred
 320   // until it calls BarrierSet::set_barrier_set().
 321   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 322   if (barrier_set != NULL) {
 323     barrier_set->on_thread_create(this);
 324   }
 325 }
 326 
 327 void Thread::initialize_thread_current() {
 328 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 329   assert(_thr_current == NULL, "Thread::current already initialized");
 330   _thr_current = this;
 331 #endif
 332   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 333   ThreadLocalStorage::set_thread(this);
 334   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 335 }
 336 
 337 void Thread::clear_thread_current() {
 338   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 339 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 340   _thr_current = NULL;
 341 #endif
 342   ThreadLocalStorage::set_thread(NULL);
 343 }
 344 
 345 void Thread::record_stack_base_and_size() {
 346   set_stack_base(os::current_stack_base());
 347   set_stack_size(os::current_stack_size());
 348   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 349   // in initialize_thread(). Without the adjustment, stack size is
 350   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 351   // So far, only Solaris has real implementation of initialize_thread().
 352   //
 353   // set up any platform-specific state.
 354   os::initialize_thread(this);
 355 
 356   // Set stack limits after thread is initialized.
 357   if (is_Java_thread()) {
 358     ((JavaThread*) this)->set_stack_overflow_limit();
 359     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 360   }
 361 #if INCLUDE_NMT
 362   // record thread's native stack, stack grows downward
 363   MemTracker::record_thread_stack(stack_end(), stack_size());
 364 #endif // INCLUDE_NMT
 365   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 366     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 367     os::current_thread_id(), p2i(stack_base() - stack_size()),
 368     p2i(stack_base()), stack_size()/1024);
 369 }
 370 
 371 
 372 Thread::~Thread() {
 373   JFR_ONLY(Jfr::on_thread_destruct(this);)
 374 
 375   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 376   // set might not be available if we encountered errors during bootstrapping.
 377   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 378   if (barrier_set != NULL) {
 379     barrier_set->on_thread_destroy(this);
 380   }
 381 
 382 
 383   // stack_base can be NULL if the thread is never started or exited before
 384   // record_stack_base_and_size called. Although, we would like to ensure
 385   // that all started threads do call record_stack_base_and_size(), there is
 386   // not proper way to enforce that.
 387 #if INCLUDE_NMT
 388   if (_stack_base != NULL) {
 389     MemTracker::release_thread_stack(stack_end(), stack_size());
 390 #ifdef ASSERT
 391     set_stack_base(NULL);
 392 #endif
 393   }
 394 #endif // INCLUDE_NMT
 395 
 396   // deallocate data structures
 397   delete resource_area();
 398   // since the handle marks are using the handle area, we have to deallocated the root
 399   // handle mark before deallocating the thread's handle area,
 400   assert(last_handle_mark() != NULL, "check we have an element");
 401   delete last_handle_mark();
 402   assert(last_handle_mark() == NULL, "check we have reached the end");
 403 
 404   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 405   // We NULL out the fields for good hygiene.
 406   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 407   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 408   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 409   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 410 
 411   delete handle_area();
 412   delete metadata_handles();
 413 
 414   // SR_handler uses this as a termination indicator -
 415   // needs to happen before os::free_thread()
 416   delete _SR_lock;
 417   _SR_lock = NULL;
 418 
 419   // osthread() can be NULL, if creation of thread failed.
 420   if (osthread() != NULL) os::free_thread(osthread());
 421 
 422   // clear Thread::current if thread is deleting itself.
 423   // Needed to ensure JNI correctly detects non-attached threads.
 424   if (this == Thread::current()) {
 425     clear_thread_current();
 426   }
 427 
 428   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 429 }
 430 
 431 // NOTE: dummy function for assertion purpose.
 432 void Thread::run() {
 433   ShouldNotReachHere();
 434 }
 435 
 436 #ifdef ASSERT
 437 // A JavaThread is considered "dangling" if it is not the current
 438 // thread, has been added the Threads list, the system is not at a
 439 // safepoint and the Thread is not "protected".
 440 //
 441 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 442   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 443          !((JavaThread *) thread)->on_thread_list() ||
 444          SafepointSynchronize::is_at_safepoint() ||
 445          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 446          "possibility of dangling Thread pointer");
 447 }
 448 #endif
 449 
 450 ThreadPriority Thread::get_priority(const Thread* const thread) {
 451   ThreadPriority priority;
 452   // Can return an error!
 453   (void)os::get_priority(thread, priority);
 454   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 455   return priority;
 456 }
 457 
 458 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 459   debug_only(check_for_dangling_thread_pointer(thread);)
 460   // Can return an error!
 461   (void)os::set_priority(thread, priority);
 462 }
 463 
 464 
 465 void Thread::start(Thread* thread) {
 466   // Start is different from resume in that its safety is guaranteed by context or
 467   // being called from a Java method synchronized on the Thread object.
 468   if (!DisableStartThread) {
 469     if (thread->is_Java_thread()) {
 470       // Initialize the thread state to RUNNABLE before starting this thread.
 471       // Can not set it after the thread started because we do not know the
 472       // exact thread state at that time. It could be in MONITOR_WAIT or
 473       // in SLEEPING or some other state.
 474       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 475                                           java_lang_Thread::RUNNABLE);
 476     }
 477     os::start_thread(thread);
 478   }
 479 }
 480 
 481 // Enqueue a VM_Operation to do the job for us - sometime later
 482 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 483   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 484   VMThread::execute(vm_stop);
 485 }
 486 
 487 
 488 // Check if an external suspend request has completed (or has been
 489 // cancelled). Returns true if the thread is externally suspended and
 490 // false otherwise.
 491 //
 492 // The bits parameter returns information about the code path through
 493 // the routine. Useful for debugging:
 494 //
 495 // set in is_ext_suspend_completed():
 496 // 0x00000001 - routine was entered
 497 // 0x00000010 - routine return false at end
 498 // 0x00000100 - thread exited (return false)
 499 // 0x00000200 - suspend request cancelled (return false)
 500 // 0x00000400 - thread suspended (return true)
 501 // 0x00001000 - thread is in a suspend equivalent state (return true)
 502 // 0x00002000 - thread is native and walkable (return true)
 503 // 0x00004000 - thread is native_trans and walkable (needed retry)
 504 //
 505 // set in wait_for_ext_suspend_completion():
 506 // 0x00010000 - routine was entered
 507 // 0x00020000 - suspend request cancelled before loop (return false)
 508 // 0x00040000 - thread suspended before loop (return true)
 509 // 0x00080000 - suspend request cancelled in loop (return false)
 510 // 0x00100000 - thread suspended in loop (return true)
 511 // 0x00200000 - suspend not completed during retry loop (return false)
 512 
 513 // Helper class for tracing suspend wait debug bits.
 514 //
 515 // 0x00000100 indicates that the target thread exited before it could
 516 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 517 // 0x00080000 each indicate a cancelled suspend request so they don't
 518 // count as wait failures either.
 519 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 520 
 521 class TraceSuspendDebugBits : public StackObj {
 522  private:
 523   JavaThread * jt;
 524   bool         is_wait;
 525   bool         called_by_wait;  // meaningful when !is_wait
 526   uint32_t *   bits;
 527 
 528  public:
 529   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 530                         uint32_t *_bits) {
 531     jt             = _jt;
 532     is_wait        = _is_wait;
 533     called_by_wait = _called_by_wait;
 534     bits           = _bits;
 535   }
 536 
 537   ~TraceSuspendDebugBits() {
 538     if (!is_wait) {
 539 #if 1
 540       // By default, don't trace bits for is_ext_suspend_completed() calls.
 541       // That trace is very chatty.
 542       return;
 543 #else
 544       if (!called_by_wait) {
 545         // If tracing for is_ext_suspend_completed() is enabled, then only
 546         // trace calls to it from wait_for_ext_suspend_completion()
 547         return;
 548       }
 549 #endif
 550     }
 551 
 552     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 553       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 554         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 555         ResourceMark rm;
 556 
 557         tty->print_cr(
 558                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 559                       jt->get_thread_name(), *bits);
 560 
 561         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 562       }
 563     }
 564   }
 565 };
 566 #undef DEBUG_FALSE_BITS
 567 
 568 
 569 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 570                                           uint32_t *bits) {
 571   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 572 
 573   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 574   bool do_trans_retry;           // flag to force the retry
 575 
 576   *bits |= 0x00000001;
 577 
 578   do {
 579     do_trans_retry = false;
 580 
 581     if (is_exiting()) {
 582       // Thread is in the process of exiting. This is always checked
 583       // first to reduce the risk of dereferencing a freed JavaThread.
 584       *bits |= 0x00000100;
 585       return false;
 586     }
 587 
 588     if (!is_external_suspend()) {
 589       // Suspend request is cancelled. This is always checked before
 590       // is_ext_suspended() to reduce the risk of a rogue resume
 591       // confusing the thread that made the suspend request.
 592       *bits |= 0x00000200;
 593       return false;
 594     }
 595 
 596     if (is_ext_suspended()) {
 597       // thread is suspended
 598       *bits |= 0x00000400;
 599       return true;
 600     }
 601 
 602     // Now that we no longer do hard suspends of threads running
 603     // native code, the target thread can be changing thread state
 604     // while we are in this routine:
 605     //
 606     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 607     //
 608     // We save a copy of the thread state as observed at this moment
 609     // and make our decision about suspend completeness based on the
 610     // copy. This closes the race where the thread state is seen as
 611     // _thread_in_native_trans in the if-thread_blocked check, but is
 612     // seen as _thread_blocked in if-thread_in_native_trans check.
 613     JavaThreadState save_state = thread_state();
 614 
 615     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 616       // If the thread's state is _thread_blocked and this blocking
 617       // condition is known to be equivalent to a suspend, then we can
 618       // consider the thread to be externally suspended. This means that
 619       // the code that sets _thread_blocked has been modified to do
 620       // self-suspension if the blocking condition releases. We also
 621       // used to check for CONDVAR_WAIT here, but that is now covered by
 622       // the _thread_blocked with self-suspension check.
 623       //
 624       // Return true since we wouldn't be here unless there was still an
 625       // external suspend request.
 626       *bits |= 0x00001000;
 627       return true;
 628     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 629       // Threads running native code will self-suspend on native==>VM/Java
 630       // transitions. If its stack is walkable (should always be the case
 631       // unless this function is called before the actual java_suspend()
 632       // call), then the wait is done.
 633       *bits |= 0x00002000;
 634       return true;
 635     } else if (!called_by_wait && !did_trans_retry &&
 636                save_state == _thread_in_native_trans &&
 637                frame_anchor()->walkable()) {
 638       // The thread is transitioning from thread_in_native to another
 639       // thread state. check_safepoint_and_suspend_for_native_trans()
 640       // will force the thread to self-suspend. If it hasn't gotten
 641       // there yet we may have caught the thread in-between the native
 642       // code check above and the self-suspend. Lucky us. If we were
 643       // called by wait_for_ext_suspend_completion(), then it
 644       // will be doing the retries so we don't have to.
 645       //
 646       // Since we use the saved thread state in the if-statement above,
 647       // there is a chance that the thread has already transitioned to
 648       // _thread_blocked by the time we get here. In that case, we will
 649       // make a single unnecessary pass through the logic below. This
 650       // doesn't hurt anything since we still do the trans retry.
 651 
 652       *bits |= 0x00004000;
 653 
 654       // Once the thread leaves thread_in_native_trans for another
 655       // thread state, we break out of this retry loop. We shouldn't
 656       // need this flag to prevent us from getting back here, but
 657       // sometimes paranoia is good.
 658       did_trans_retry = true;
 659 
 660       // We wait for the thread to transition to a more usable state.
 661       for (int i = 1; i <= SuspendRetryCount; i++) {
 662         // We used to do an "os::yield_all(i)" call here with the intention
 663         // that yielding would increase on each retry. However, the parameter
 664         // is ignored on Linux which means the yield didn't scale up. Waiting
 665         // on the SR_lock below provides a much more predictable scale up for
 666         // the delay. It also provides a simple/direct point to check for any
 667         // safepoint requests from the VMThread
 668 
 669         // temporarily drops SR_lock while doing wait with safepoint check
 670         // (if we're a JavaThread - the WatcherThread can also call this)
 671         // and increase delay with each retry
 672         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 673 
 674         // check the actual thread state instead of what we saved above
 675         if (thread_state() != _thread_in_native_trans) {
 676           // the thread has transitioned to another thread state so
 677           // try all the checks (except this one) one more time.
 678           do_trans_retry = true;
 679           break;
 680         }
 681       } // end retry loop
 682 
 683 
 684     }
 685   } while (do_trans_retry);
 686 
 687   *bits |= 0x00000010;
 688   return false;
 689 }
 690 
 691 // Wait for an external suspend request to complete (or be cancelled).
 692 // Returns true if the thread is externally suspended and false otherwise.
 693 //
 694 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 695                                                  uint32_t *bits) {
 696   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 697                              false /* !called_by_wait */, bits);
 698 
 699   // local flag copies to minimize SR_lock hold time
 700   bool is_suspended;
 701   bool pending;
 702   uint32_t reset_bits;
 703 
 704   // set a marker so is_ext_suspend_completed() knows we are the caller
 705   *bits |= 0x00010000;
 706 
 707   // We use reset_bits to reinitialize the bits value at the top of
 708   // each retry loop. This allows the caller to make use of any
 709   // unused bits for their own marking purposes.
 710   reset_bits = *bits;
 711 
 712   {
 713     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 714     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 715                                             delay, bits);
 716     pending = is_external_suspend();
 717   }
 718   // must release SR_lock to allow suspension to complete
 719 
 720   if (!pending) {
 721     // A cancelled suspend request is the only false return from
 722     // is_ext_suspend_completed() that keeps us from entering the
 723     // retry loop.
 724     *bits |= 0x00020000;
 725     return false;
 726   }
 727 
 728   if (is_suspended) {
 729     *bits |= 0x00040000;
 730     return true;
 731   }
 732 
 733   for (int i = 1; i <= retries; i++) {
 734     *bits = reset_bits;  // reinit to only track last retry
 735 
 736     // We used to do an "os::yield_all(i)" call here with the intention
 737     // that yielding would increase on each retry. However, the parameter
 738     // is ignored on Linux which means the yield didn't scale up. Waiting
 739     // on the SR_lock below provides a much more predictable scale up for
 740     // the delay. It also provides a simple/direct point to check for any
 741     // safepoint requests from the VMThread
 742 
 743     {
 744       MutexLocker ml(SR_lock());
 745       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 746       // can also call this)  and increase delay with each retry
 747       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 748 
 749       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 750                                               delay, bits);
 751 
 752       // It is possible for the external suspend request to be cancelled
 753       // (by a resume) before the actual suspend operation is completed.
 754       // Refresh our local copy to see if we still need to wait.
 755       pending = is_external_suspend();
 756     }
 757 
 758     if (!pending) {
 759       // A cancelled suspend request is the only false return from
 760       // is_ext_suspend_completed() that keeps us from staying in the
 761       // retry loop.
 762       *bits |= 0x00080000;
 763       return false;
 764     }
 765 
 766     if (is_suspended) {
 767       *bits |= 0x00100000;
 768       return true;
 769     }
 770   } // end retry loop
 771 
 772   // thread did not suspend after all our retries
 773   *bits |= 0x00200000;
 774   return false;
 775 }
 776 
 777 // Called from API entry points which perform stack walking. If the
 778 // associated JavaThread is the current thread, then wait_for_suspend
 779 // is not used. Otherwise, it determines if we should wait for the
 780 // "other" thread to complete external suspension. (NOTE: in future
 781 // releases the suspension mechanism should be reimplemented so this
 782 // is not necessary.)
 783 //
 784 bool
 785 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 786   if (this != JavaThread::current()) {
 787     // "other" threads require special handling.
 788     if (wait_for_suspend) {
 789       // We are allowed to wait for the external suspend to complete
 790       // so give the other thread a chance to get suspended.
 791       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 792                                            SuspendRetryDelay, bits)) {
 793         // Didn't make it so let the caller know.
 794         return false;
 795       }
 796     }
 797     // We aren't allowed to wait for the external suspend to complete
 798     // so if the other thread isn't externally suspended we need to
 799     // let the caller know.
 800     else if (!is_ext_suspend_completed_with_lock(bits)) {
 801       return false;
 802     }
 803   }
 804 
 805   return true;
 806 }
 807 
 808 #ifndef PRODUCT
 809 void JavaThread::record_jump(address target, address instr, const char* file,
 810                              int line) {
 811 
 812   // This should not need to be atomic as the only way for simultaneous
 813   // updates is via interrupts. Even then this should be rare or non-existent
 814   // and we don't care that much anyway.
 815 
 816   int index = _jmp_ring_index;
 817   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 818   _jmp_ring[index]._target = (intptr_t) target;
 819   _jmp_ring[index]._instruction = (intptr_t) instr;
 820   _jmp_ring[index]._file = file;
 821   _jmp_ring[index]._line = line;
 822 }
 823 #endif // PRODUCT
 824 
 825 void Thread::interrupt(Thread* thread) {
 826   debug_only(check_for_dangling_thread_pointer(thread);)
 827   os::interrupt(thread);
 828 }
 829 
 830 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 831   debug_only(check_for_dangling_thread_pointer(thread);)
 832   // Note:  If clear_interrupted==false, this simply fetches and
 833   // returns the value of the field osthread()->interrupted().
 834   return os::is_interrupted(thread, clear_interrupted);
 835 }
 836 
 837 
 838 // GC Support
 839 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 840   int thread_parity = _oops_do_parity;
 841   if (thread_parity != strong_roots_parity) {
 842     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 843     if (res == thread_parity) {
 844       return true;
 845     } else {
 846       guarantee(res == strong_roots_parity, "Or else what?");
 847       return false;
 848     }
 849   }
 850   return false;
 851 }
 852 
 853 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 854   active_handles()->oops_do(f);
 855   // Do oop for ThreadShadow
 856   f->do_oop((oop*)&_pending_exception);
 857   handle_area()->oops_do(f);
 858 
 859   if (MonitorInUseLists) {
 860     // When using thread local monitor lists, we scan them here,
 861     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 862     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 863   }
 864 }
 865 
 866 void Thread::metadata_handles_do(void f(Metadata*)) {
 867   // Only walk the Handles in Thread.
 868   if (metadata_handles() != NULL) {
 869     for (int i = 0; i< metadata_handles()->length(); i++) {
 870       f(metadata_handles()->at(i));
 871     }
 872   }
 873 }
 874 
 875 void Thread::print_on(outputStream* st) const {
 876   // get_priority assumes osthread initialized
 877   if (osthread() != NULL) {
 878     int os_prio;
 879     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 880       st->print("os_prio=%d ", os_prio);
 881     }
 882 
 883     if (PrintExtendedThreadInfo && os::is_thread_cpu_time_supported()) {
 884       st->print("cpu=%.2fms ",
 885                 os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 886         );
 887       st->print("elapsed=%.2fs ",
 888                 _statistic_info.getElepsedTime() / 1000.0);
 889     }
 890 
 891     if (PrintExtendedThreadInfo && is_Java_thread()) {
 892       jlong allocated_bytes = const_cast<Thread*>(this)->cooked_allocated_bytes();
 893       st->print("allocated=" JLONG_FORMAT "B ", allocated_bytes);
 894       st->print("defined_classes=" INT64_FORMAT " ", _statistic_info.getDefineClassCount());
 895     }
 896 
 897     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 898     osthread()->print_on(st);
 899   }
 900   ThreadsSMRSupport::print_info_on(this, st);
 901   st->print(" ");
 902   debug_only(if (WizardMode) print_owned_locks_on(st);)
 903 }
 904 
 905 // Thread::print_on_error() is called by fatal error handler. Don't use
 906 // any lock or allocate memory.
 907 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 908   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 909 
 910   if (is_VM_thread())                 { st->print("VMThread"); }
 911   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 912   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 913   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 914   else                                { st->print("Thread"); }
 915 
 916   if (is_Named_thread()) {
 917     st->print(" \"%s\"", name());
 918   }
 919 
 920   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 921             p2i(stack_end()), p2i(stack_base()));
 922 
 923   if (osthread()) {
 924     st->print(" [id=%d]", osthread()->thread_id());
 925   }
 926 
 927   ThreadsSMRSupport::print_info_on(this, st);
 928 }
 929 
 930 void Thread::print_value_on(outputStream* st) const {
 931   if (is_Named_thread()) {
 932     st->print(" \"%s\" ", name());
 933   }
 934   st->print(INTPTR_FORMAT, p2i(this));   // print address
 935 }
 936 
 937 #ifdef ASSERT
 938 void Thread::print_owned_locks_on(outputStream* st) const {
 939   Monitor *cur = _owned_locks;
 940   if (cur == NULL) {
 941     st->print(" (no locks) ");
 942   } else {
 943     st->print_cr(" Locks owned:");
 944     while (cur) {
 945       cur->print_on(st);
 946       cur = cur->next();
 947     }
 948   }
 949 }
 950 
 951 static int ref_use_count  = 0;
 952 
 953 bool Thread::owns_locks_but_compiled_lock() const {
 954   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 955     if (cur != Compile_lock) return true;
 956   }
 957   return false;
 958 }
 959 
 960 
 961 #endif
 962 
 963 #ifndef PRODUCT
 964 
 965 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
 966 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
 967 // no threads which allow_vm_block's are held
 968 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 969   // Check if current thread is allowed to block at a safepoint
 970   if (!(_allow_safepoint_count == 0)) {
 971     fatal("Possible safepoint reached by thread that does not allow it");
 972   }
 973   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 974     fatal("LEAF method calling lock?");
 975   }
 976 
 977 #ifdef ASSERT
 978   if (potential_vm_operation && is_Java_thread()
 979       && !Universe::is_bootstrapping()) {
 980     // Make sure we do not hold any locks that the VM thread also uses.
 981     // This could potentially lead to deadlocks
 982     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 983       // Threads_lock is special, since the safepoint synchronization will not start before this is
 984       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 985       // since it is used to transfer control between JavaThreads and the VMThread
 986       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 987       if ((cur->allow_vm_block() &&
 988            cur != Threads_lock &&
 989            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 990            cur != VMOperationRequest_lock &&
 991            cur != VMOperationQueue_lock) ||
 992            cur->rank() == Mutex::special) {
 993         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 994       }
 995     }
 996   }
 997 
 998   if (GCALotAtAllSafepoints) {
 999     // We could enter a safepoint here and thus have a gc
1000     InterfaceSupport::check_gc_alot();
1001   }
1002 #endif
1003 }
1004 #endif
1005 
1006 bool Thread::is_in_stack(address adr) const {
1007   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1008   address end = os::current_stack_pointer();
1009   // Allow non Java threads to call this without stack_base
1010   if (_stack_base == NULL) return true;
1011   if (stack_base() >= adr && adr >= end) return true;
1012 
1013   return false;
1014 }
1015 
1016 bool Thread::is_in_usable_stack(address adr) const {
1017   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1018   size_t usable_stack_size = _stack_size - stack_guard_size;
1019 
1020   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1021 }
1022 
1023 
1024 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1025 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1026 // used for compilation in the future. If that change is made, the need for these methods
1027 // should be revisited, and they should be removed if possible.
1028 
1029 bool Thread::is_lock_owned(address adr) const {
1030   return on_local_stack(adr);
1031 }
1032 
1033 bool Thread::set_as_starting_thread() {
1034   // NOTE: this must be called inside the main thread.
1035   return os::create_main_thread((JavaThread*)this);
1036 }
1037 
1038 static void initialize_class(Symbol* class_name, TRAPS) {
1039   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1040   InstanceKlass::cast(klass)->initialize(CHECK);
1041 }
1042 
1043 
1044 // Creates the initial ThreadGroup
1045 static Handle create_initial_thread_group(TRAPS) {
1046   Handle system_instance = JavaCalls::construct_new_instance(
1047                             SystemDictionary::ThreadGroup_klass(),
1048                             vmSymbols::void_method_signature(),
1049                             CHECK_NH);
1050   Universe::set_system_thread_group(system_instance());
1051 
1052   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1053   Handle main_instance = JavaCalls::construct_new_instance(
1054                             SystemDictionary::ThreadGroup_klass(),
1055                             vmSymbols::threadgroup_string_void_signature(),
1056                             system_instance,
1057                             string,
1058                             CHECK_NH);
1059   return main_instance;
1060 }
1061 
1062 // Creates the initial Thread
1063 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1064                                  TRAPS) {
1065   InstanceKlass* ik = SystemDictionary::Thread_klass();
1066   assert(ik->is_initialized(), "must be");
1067   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1068 
1069   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1070   // constructor calls Thread.current(), which must be set here for the
1071   // initial thread.
1072   java_lang_Thread::set_thread(thread_oop(), thread);
1073   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1074   thread->set_threadObj(thread_oop());
1075 
1076   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1077 
1078   JavaValue result(T_VOID);
1079   JavaCalls::call_special(&result, thread_oop,
1080                           ik,
1081                           vmSymbols::object_initializer_name(),
1082                           vmSymbols::threadgroup_string_void_signature(),
1083                           thread_group,
1084                           string,
1085                           CHECK_NULL);
1086   return thread_oop();
1087 }
1088 
1089 char java_runtime_name[128] = "";
1090 char java_runtime_version[128] = "";
1091 
1092 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1093 static const char* get_java_runtime_name(TRAPS) {
1094   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1095                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1096   fieldDescriptor fd;
1097   bool found = k != NULL &&
1098                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1099                                                         vmSymbols::string_signature(), &fd);
1100   if (found) {
1101     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1102     if (name_oop == NULL) {
1103       return NULL;
1104     }
1105     const char* name = java_lang_String::as_utf8_string(name_oop,
1106                                                         java_runtime_name,
1107                                                         sizeof(java_runtime_name));
1108     return name;
1109   } else {
1110     return NULL;
1111   }
1112 }
1113 
1114 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1115 static const char* get_java_runtime_version(TRAPS) {
1116   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1117                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1118   fieldDescriptor fd;
1119   bool found = k != NULL &&
1120                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1121                                                         vmSymbols::string_signature(), &fd);
1122   if (found) {
1123     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1124     if (name_oop == NULL) {
1125       return NULL;
1126     }
1127     const char* name = java_lang_String::as_utf8_string(name_oop,
1128                                                         java_runtime_version,
1129                                                         sizeof(java_runtime_version));
1130     return name;
1131   } else {
1132     return NULL;
1133   }
1134 }
1135 
1136 // General purpose hook into Java code, run once when the VM is initialized.
1137 // The Java library method itself may be changed independently from the VM.
1138 static void call_postVMInitHook(TRAPS) {
1139   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1140   if (klass != NULL) {
1141     JavaValue result(T_VOID);
1142     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1143                            vmSymbols::void_method_signature(),
1144                            CHECK);
1145   }
1146 }
1147 
1148 static void reset_vm_info_property(TRAPS) {
1149   // the vm info string
1150   ResourceMark rm(THREAD);
1151   const char *vm_info = VM_Version::vm_info_string();
1152 
1153   // java.lang.System class
1154   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1155 
1156   // setProperty arguments
1157   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1158   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1159 
1160   // return value
1161   JavaValue r(T_OBJECT);
1162 
1163   // public static String setProperty(String key, String value);
1164   JavaCalls::call_static(&r,
1165                          klass,
1166                          vmSymbols::setProperty_name(),
1167                          vmSymbols::string_string_string_signature(),
1168                          key_str,
1169                          value_str,
1170                          CHECK);
1171 }
1172 
1173 
1174 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1175                                     bool daemon, TRAPS) {
1176   assert(thread_group.not_null(), "thread group should be specified");
1177   assert(threadObj() == NULL, "should only create Java thread object once");
1178 
1179   InstanceKlass* ik = SystemDictionary::Thread_klass();
1180   assert(ik->is_initialized(), "must be");
1181   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1182 
1183   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1184   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1185   // constructor calls Thread.current(), which must be set here.
1186   java_lang_Thread::set_thread(thread_oop(), this);
1187   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1188   set_threadObj(thread_oop());
1189 
1190   JavaValue result(T_VOID);
1191   if (thread_name != NULL) {
1192     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1193     // Thread gets assigned specified name and null target
1194     JavaCalls::call_special(&result,
1195                             thread_oop,
1196                             ik,
1197                             vmSymbols::object_initializer_name(),
1198                             vmSymbols::threadgroup_string_void_signature(),
1199                             thread_group,
1200                             name,
1201                             THREAD);
1202   } else {
1203     // Thread gets assigned name "Thread-nnn" and null target
1204     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1205     JavaCalls::call_special(&result,
1206                             thread_oop,
1207                             ik,
1208                             vmSymbols::object_initializer_name(),
1209                             vmSymbols::threadgroup_runnable_void_signature(),
1210                             thread_group,
1211                             Handle(),
1212                             THREAD);
1213   }
1214 
1215 
1216   if (daemon) {
1217     java_lang_Thread::set_daemon(thread_oop());
1218   }
1219 
1220   if (HAS_PENDING_EXCEPTION) {
1221     return;
1222   }
1223 
1224   Klass* group =  SystemDictionary::ThreadGroup_klass();
1225   Handle threadObj(THREAD, this->threadObj());
1226 
1227   JavaCalls::call_special(&result,
1228                           thread_group,
1229                           group,
1230                           vmSymbols::add_method_name(),
1231                           vmSymbols::thread_void_signature(),
1232                           threadObj,          // Arg 1
1233                           THREAD);
1234 }
1235 
1236 // NamedThread --  non-JavaThread subclasses with multiple
1237 // uniquely named instances should derive from this.
1238 NamedThread::NamedThread() : Thread() {
1239   _name = NULL;
1240   _processed_thread = NULL;
1241   _gc_id = GCId::undefined();
1242 }
1243 
1244 NamedThread::~NamedThread() {
1245   if (_name != NULL) {
1246     FREE_C_HEAP_ARRAY(char, _name);
1247     _name = NULL;
1248   }
1249 }
1250 
1251 void NamedThread::set_name(const char* format, ...) {
1252   guarantee(_name == NULL, "Only get to set name once.");
1253   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1254   guarantee(_name != NULL, "alloc failure");
1255   va_list ap;
1256   va_start(ap, format);
1257   jio_vsnprintf(_name, max_name_len, format, ap);
1258   va_end(ap);
1259 }
1260 
1261 void NamedThread::initialize_named_thread() {
1262   set_native_thread_name(name());
1263 }
1264 
1265 void NamedThread::print_on(outputStream* st) const {
1266   st->print("\"%s\" ", name());
1267   Thread::print_on(st);
1268   st->cr();
1269 }
1270 
1271 
1272 // ======= WatcherThread ========
1273 
1274 // The watcher thread exists to simulate timer interrupts.  It should
1275 // be replaced by an abstraction over whatever native support for
1276 // timer interrupts exists on the platform.
1277 
1278 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1279 bool WatcherThread::_startable = false;
1280 volatile bool  WatcherThread::_should_terminate = false;
1281 
1282 WatcherThread::WatcherThread() : Thread() {
1283   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1284   if (os::create_thread(this, os::watcher_thread)) {
1285     _watcher_thread = this;
1286 
1287     // Set the watcher thread to the highest OS priority which should not be
1288     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1289     // is created. The only normal thread using this priority is the reference
1290     // handler thread, which runs for very short intervals only.
1291     // If the VMThread's priority is not lower than the WatcherThread profiling
1292     // will be inaccurate.
1293     os::set_priority(this, MaxPriority);
1294     if (!DisableStartThread) {
1295       os::start_thread(this);
1296     }
1297   }
1298 }
1299 
1300 int WatcherThread::sleep() const {
1301   // The WatcherThread does not participate in the safepoint protocol
1302   // for the PeriodicTask_lock because it is not a JavaThread.
1303   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1304 
1305   if (_should_terminate) {
1306     // check for termination before we do any housekeeping or wait
1307     return 0;  // we did not sleep.
1308   }
1309 
1310   // remaining will be zero if there are no tasks,
1311   // causing the WatcherThread to sleep until a task is
1312   // enrolled
1313   int remaining = PeriodicTask::time_to_wait();
1314   int time_slept = 0;
1315 
1316   // we expect this to timeout - we only ever get unparked when
1317   // we should terminate or when a new task has been enrolled
1318   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1319 
1320   jlong time_before_loop = os::javaTimeNanos();
1321 
1322   while (true) {
1323     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1324                                             remaining);
1325     jlong now = os::javaTimeNanos();
1326 
1327     if (remaining == 0) {
1328       // if we didn't have any tasks we could have waited for a long time
1329       // consider the time_slept zero and reset time_before_loop
1330       time_slept = 0;
1331       time_before_loop = now;
1332     } else {
1333       // need to recalculate since we might have new tasks in _tasks
1334       time_slept = (int) ((now - time_before_loop) / 1000000);
1335     }
1336 
1337     // Change to task list or spurious wakeup of some kind
1338     if (timedout || _should_terminate) {
1339       break;
1340     }
1341 
1342     remaining = PeriodicTask::time_to_wait();
1343     if (remaining == 0) {
1344       // Last task was just disenrolled so loop around and wait until
1345       // another task gets enrolled
1346       continue;
1347     }
1348 
1349     remaining -= time_slept;
1350     if (remaining <= 0) {
1351       break;
1352     }
1353   }
1354 
1355   return time_slept;
1356 }
1357 
1358 void WatcherThread::run() {
1359   assert(this == watcher_thread(), "just checking");
1360 
1361   this->record_stack_base_and_size();
1362   this->set_native_thread_name(this->name());
1363   this->set_active_handles(JNIHandleBlock::allocate_block());
1364   while (true) {
1365     assert(watcher_thread() == Thread::current(), "thread consistency check");
1366     assert(watcher_thread() == this, "thread consistency check");
1367 
1368     // Calculate how long it'll be until the next PeriodicTask work
1369     // should be done, and sleep that amount of time.
1370     int time_waited = sleep();
1371 
1372     if (VMError::is_error_reported()) {
1373       // A fatal error has happened, the error handler(VMError::report_and_die)
1374       // should abort JVM after creating an error log file. However in some
1375       // rare cases, the error handler itself might deadlock. Here periodically
1376       // check for error reporting timeouts, and if it happens, just proceed to
1377       // abort the VM.
1378 
1379       // This code is in WatcherThread because WatcherThread wakes up
1380       // periodically so the fatal error handler doesn't need to do anything;
1381       // also because the WatcherThread is less likely to crash than other
1382       // threads.
1383 
1384       for (;;) {
1385         // Note: we use naked sleep in this loop because we want to avoid using
1386         // any kind of VM infrastructure which may be broken at this point.
1387         if (VMError::check_timeout()) {
1388           // We hit error reporting timeout. Error reporting was interrupted and
1389           // will be wrapping things up now (closing files etc). Give it some more
1390           // time, then quit the VM.
1391           os::naked_short_sleep(200);
1392           // Print a message to stderr.
1393           fdStream err(defaultStream::output_fd());
1394           err.print_raw_cr("# [ timer expired, abort... ]");
1395           // skip atexit/vm_exit/vm_abort hooks
1396           os::die();
1397         }
1398 
1399         // Wait a second, then recheck for timeout.
1400         os::naked_short_sleep(999);
1401       }
1402     }
1403 
1404     if (_should_terminate) {
1405       // check for termination before posting the next tick
1406       break;
1407     }
1408 
1409     PeriodicTask::real_time_tick(time_waited);
1410   }
1411 
1412   // Signal that it is terminated
1413   {
1414     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1415     _watcher_thread = NULL;
1416     Terminator_lock->notify();
1417   }
1418 }
1419 
1420 void WatcherThread::start() {
1421   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1422 
1423   if (watcher_thread() == NULL && _startable) {
1424     _should_terminate = false;
1425     // Create the single instance of WatcherThread
1426     new WatcherThread();
1427   }
1428 }
1429 
1430 void WatcherThread::make_startable() {
1431   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1432   _startable = true;
1433 }
1434 
1435 void WatcherThread::stop() {
1436   {
1437     // Follow normal safepoint aware lock enter protocol since the
1438     // WatcherThread is stopped by another JavaThread.
1439     MutexLocker ml(PeriodicTask_lock);
1440     _should_terminate = true;
1441 
1442     WatcherThread* watcher = watcher_thread();
1443     if (watcher != NULL) {
1444       // unpark the WatcherThread so it can see that it should terminate
1445       watcher->unpark();
1446     }
1447   }
1448 
1449   MutexLocker mu(Terminator_lock);
1450 
1451   while (watcher_thread() != NULL) {
1452     // This wait should make safepoint checks, wait without a timeout,
1453     // and wait as a suspend-equivalent condition.
1454     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1455                           Mutex::_as_suspend_equivalent_flag);
1456   }
1457 }
1458 
1459 void WatcherThread::unpark() {
1460   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1461   PeriodicTask_lock->notify();
1462 }
1463 
1464 void WatcherThread::print_on(outputStream* st) const {
1465   st->print("\"%s\" ", name());
1466   Thread::print_on(st);
1467   st->cr();
1468 }
1469 
1470 // ======= JavaThread ========
1471 
1472 #if INCLUDE_JVMCI
1473 
1474 jlong* JavaThread::_jvmci_old_thread_counters;
1475 
1476 bool jvmci_counters_include(JavaThread* thread) {
1477   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1478 }
1479 
1480 void JavaThread::collect_counters(typeArrayOop array) {
1481   if (JVMCICounterSize > 0) {
1482     JavaThreadIteratorWithHandle jtiwh;
1483     for (int i = 0; i < array->length(); i++) {
1484       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1485     }
1486     for (; JavaThread *tp = jtiwh.next(); ) {
1487       if (jvmci_counters_include(tp)) {
1488         for (int i = 0; i < array->length(); i++) {
1489           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1490         }
1491       }
1492     }
1493   }
1494 }
1495 
1496 #endif // INCLUDE_JVMCI
1497 
1498 // A JavaThread is a normal Java thread
1499 
1500 void JavaThread::initialize() {
1501   // Initialize fields
1502 
1503   set_saved_exception_pc(NULL);
1504   set_threadObj(NULL);
1505   _anchor.clear();
1506   set_entry_point(NULL);
1507   set_jni_functions(jni_functions());
1508   set_callee_target(NULL);
1509   set_vm_result(NULL);
1510   set_vm_result_2(NULL);
1511   set_vframe_array_head(NULL);
1512   set_vframe_array_last(NULL);
1513   set_deferred_locals(NULL);
1514   set_deopt_mark(NULL);
1515   set_deopt_compiled_method(NULL);
1516   clear_must_deopt_id();
1517   set_monitor_chunks(NULL);
1518   set_next(NULL);
1519   _on_thread_list = false;
1520   set_thread_state(_thread_new);
1521   _terminated = _not_terminated;
1522   _privileged_stack_top = NULL;
1523   _array_for_gc = NULL;
1524   _suspend_equivalent = false;
1525   _in_deopt_handler = 0;
1526   _doing_unsafe_access = false;
1527   _stack_guard_state = stack_guard_unused;
1528 #if INCLUDE_JVMCI
1529   _pending_monitorenter = false;
1530   _pending_deoptimization = -1;
1531   _pending_failed_speculation = NULL;
1532   _pending_transfer_to_interpreter = false;
1533   _adjusting_comp_level = false;
1534   _jvmci._alternate_call_target = NULL;
1535   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1536   if (JVMCICounterSize > 0) {
1537     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1538     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1539   } else {
1540     _jvmci_counters = NULL;
1541   }
1542 #endif // INCLUDE_JVMCI
1543   _reserved_stack_activation = NULL;  // stack base not known yet
1544   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1545   _exception_pc  = 0;
1546   _exception_handler_pc = 0;
1547   _is_method_handle_return = 0;
1548   _jvmti_thread_state= NULL;
1549   _should_post_on_exceptions_flag = JNI_FALSE;
1550   _jvmti_get_loaded_classes_closure = NULL;
1551   _interp_only_mode    = 0;
1552   _special_runtime_exit_condition = _no_async_condition;
1553   _pending_async_exception = NULL;
1554   _thread_stat = NULL;
1555   _thread_stat = new ThreadStatistics();
1556   _blocked_on_compilation = false;
1557   _jni_active_critical = 0;
1558   _pending_jni_exception_check_fn = NULL;
1559   _do_not_unlock_if_synchronized = false;
1560   _cached_monitor_info = NULL;
1561   _parker = Parker::Allocate(this);
1562 
1563 #ifndef PRODUCT
1564   _jmp_ring_index = 0;
1565   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1566     record_jump(NULL, NULL, NULL, 0);
1567   }
1568 #endif // PRODUCT
1569 
1570   // Setup safepoint state info for this thread
1571   ThreadSafepointState::create(this);
1572 
1573   debug_only(_java_call_counter = 0);
1574 
1575   // JVMTI PopFrame support
1576   _popframe_condition = popframe_inactive;
1577   _popframe_preserved_args = NULL;
1578   _popframe_preserved_args_size = 0;
1579   _frames_to_pop_failed_realloc = 0;
1580 
1581   if (SafepointMechanism::uses_thread_local_poll()) {
1582     SafepointMechanism::initialize_header(this);
1583   }
1584 
1585   pd_initialize();
1586 }
1587 
1588 JavaThread::JavaThread(bool is_attaching_via_jni) :
1589                        Thread() {
1590   initialize();
1591   if (is_attaching_via_jni) {
1592     _jni_attach_state = _attaching_via_jni;
1593   } else {
1594     _jni_attach_state = _not_attaching_via_jni;
1595   }
1596   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1597 }
1598 
1599 bool JavaThread::reguard_stack(address cur_sp) {
1600   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1601       && _stack_guard_state != stack_guard_reserved_disabled) {
1602     return true; // Stack already guarded or guard pages not needed.
1603   }
1604 
1605   if (register_stack_overflow()) {
1606     // For those architectures which have separate register and
1607     // memory stacks, we must check the register stack to see if
1608     // it has overflowed.
1609     return false;
1610   }
1611 
1612   // Java code never executes within the yellow zone: the latter is only
1613   // there to provoke an exception during stack banging.  If java code
1614   // is executing there, either StackShadowPages should be larger, or
1615   // some exception code in c1, c2 or the interpreter isn't unwinding
1616   // when it should.
1617   guarantee(cur_sp > stack_reserved_zone_base(),
1618             "not enough space to reguard - increase StackShadowPages");
1619   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1620     enable_stack_yellow_reserved_zone();
1621     if (reserved_stack_activation() != stack_base()) {
1622       set_reserved_stack_activation(stack_base());
1623     }
1624   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1625     set_reserved_stack_activation(stack_base());
1626     enable_stack_reserved_zone();
1627   }
1628   return true;
1629 }
1630 
1631 bool JavaThread::reguard_stack(void) {
1632   return reguard_stack(os::current_stack_pointer());
1633 }
1634 
1635 
1636 void JavaThread::block_if_vm_exited() {
1637   if (_terminated == _vm_exited) {
1638     // _vm_exited is set at safepoint, and Threads_lock is never released
1639     // we will block here forever
1640     Threads_lock->lock_without_safepoint_check();
1641     ShouldNotReachHere();
1642   }
1643 }
1644 
1645 
1646 // Remove this ifdef when C1 is ported to the compiler interface.
1647 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1648 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1649 
1650 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1651                        Thread() {
1652   initialize();
1653   _jni_attach_state = _not_attaching_via_jni;
1654   set_entry_point(entry_point);
1655   // Create the native thread itself.
1656   // %note runtime_23
1657   os::ThreadType thr_type = os::java_thread;
1658   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1659                                                      os::java_thread;
1660   os::create_thread(this, thr_type, stack_sz);
1661   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1662   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1663   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1664   // the exception consists of creating the exception object & initializing it, initialization
1665   // will leave the VM via a JavaCall and then all locks must be unlocked).
1666   //
1667   // The thread is still suspended when we reach here. Thread must be explicit started
1668   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1669   // by calling Threads:add. The reason why this is not done here, is because the thread
1670   // object must be fully initialized (take a look at JVM_Start)
1671 }
1672 
1673 JavaThread::~JavaThread() {
1674 
1675   // JSR166 -- return the parker to the free list
1676   Parker::Release(_parker);
1677   _parker = NULL;
1678 
1679   // Free any remaining  previous UnrollBlock
1680   vframeArray* old_array = vframe_array_last();
1681 
1682   if (old_array != NULL) {
1683     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1684     old_array->set_unroll_block(NULL);
1685     delete old_info;
1686     delete old_array;
1687   }
1688 
1689   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1690   if (deferred != NULL) {
1691     // This can only happen if thread is destroyed before deoptimization occurs.
1692     assert(deferred->length() != 0, "empty array!");
1693     do {
1694       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1695       deferred->remove_at(0);
1696       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1697       delete dlv;
1698     } while (deferred->length() != 0);
1699     delete deferred;
1700   }
1701 
1702   // All Java related clean up happens in exit
1703   ThreadSafepointState::destroy(this);
1704   if (_thread_stat != NULL) delete _thread_stat;
1705 
1706 #if INCLUDE_JVMCI
1707   if (JVMCICounterSize > 0) {
1708     if (jvmci_counters_include(this)) {
1709       for (int i = 0; i < JVMCICounterSize; i++) {
1710         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1711       }
1712     }
1713     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1714   }
1715 #endif // INCLUDE_JVMCI
1716 }
1717 
1718 
1719 // The first routine called by a new Java thread
1720 void JavaThread::run() {
1721   // initialize thread-local alloc buffer related fields
1722   this->initialize_tlab();
1723 
1724   // used to test validity of stack trace backs
1725   this->record_base_of_stack_pointer();
1726 
1727   // Record real stack base and size.
1728   this->record_stack_base_and_size();
1729 
1730   this->create_stack_guard_pages();
1731 
1732   this->cache_global_variables();
1733 
1734   // Thread is now sufficient initialized to be handled by the safepoint code as being
1735   // in the VM. Change thread state from _thread_new to _thread_in_vm
1736   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1737 
1738   assert(JavaThread::current() == this, "sanity check");
1739   assert(!Thread::current()->owns_locks(), "sanity check");
1740 
1741   DTRACE_THREAD_PROBE(start, this);
1742 
1743   // This operation might block. We call that after all safepoint checks for a new thread has
1744   // been completed.
1745   this->set_active_handles(JNIHandleBlock::allocate_block());
1746 
1747   if (JvmtiExport::should_post_thread_life()) {
1748     JvmtiExport::post_thread_start(this);
1749   }
1750 
1751   EventThreadStart event;
1752   if (event.should_commit()) {
1753     event.set_thread(JFR_THREAD_ID(this));
1754     event.commit();
1755   }
1756 
1757   // We call another function to do the rest so we are sure that the stack addresses used
1758   // from there will be lower than the stack base just computed
1759   thread_main_inner();
1760 
1761   // Note, thread is no longer valid at this point!
1762 }
1763 
1764 
1765 void JavaThread::thread_main_inner() {
1766   assert(JavaThread::current() == this, "sanity check");
1767   assert(this->threadObj() != NULL, "just checking");
1768 
1769   // Execute thread entry point unless this thread has a pending exception
1770   // or has been stopped before starting.
1771   // Note: Due to JVM_StopThread we can have pending exceptions already!
1772   if (!this->has_pending_exception() &&
1773       !java_lang_Thread::is_stillborn(this->threadObj())) {
1774     {
1775       ResourceMark rm(this);
1776       this->set_native_thread_name(this->get_thread_name());
1777     }
1778     HandleMark hm(this);
1779     this->entry_point()(this, this);
1780   }
1781 
1782   DTRACE_THREAD_PROBE(stop, this);
1783 
1784   this->exit(false);
1785   this->smr_delete();
1786 }
1787 
1788 
1789 static void ensure_join(JavaThread* thread) {
1790   // We do not need to grab the Threads_lock, since we are operating on ourself.
1791   Handle threadObj(thread, thread->threadObj());
1792   assert(threadObj.not_null(), "java thread object must exist");
1793   ObjectLocker lock(threadObj, thread);
1794   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1795   thread->clear_pending_exception();
1796   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1797   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1798   // Clear the native thread instance - this makes isAlive return false and allows the join()
1799   // to complete once we've done the notify_all below
1800   java_lang_Thread::set_thread(threadObj(), NULL);
1801   lock.notify_all(thread);
1802   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1803   thread->clear_pending_exception();
1804 }
1805 
1806 
1807 // For any new cleanup additions, please check to see if they need to be applied to
1808 // cleanup_failed_attach_current_thread as well.
1809 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1810   assert(this == JavaThread::current(), "thread consistency check");
1811 
1812   elapsedTimer _timer_exit_phase1;
1813   elapsedTimer _timer_exit_phase2;
1814   elapsedTimer _timer_exit_phase3;
1815   elapsedTimer _timer_exit_phase4;
1816 
1817   if (log_is_enabled(Debug, os, thread, timer)) {
1818     _timer_exit_phase1.start();
1819   }
1820 
1821   HandleMark hm(this);
1822   Handle uncaught_exception(this, this->pending_exception());
1823   this->clear_pending_exception();
1824   Handle threadObj(this, this->threadObj());
1825   assert(threadObj.not_null(), "Java thread object should be created");
1826 
1827   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1828   {
1829     EXCEPTION_MARK;
1830 
1831     CLEAR_PENDING_EXCEPTION;
1832   }
1833   if (!destroy_vm) {
1834     if (uncaught_exception.not_null()) {
1835       EXCEPTION_MARK;
1836       // Call method Thread.dispatchUncaughtException().
1837       Klass* thread_klass = SystemDictionary::Thread_klass();
1838       JavaValue result(T_VOID);
1839       JavaCalls::call_virtual(&result,
1840                               threadObj, thread_klass,
1841                               vmSymbols::dispatchUncaughtException_name(),
1842                               vmSymbols::throwable_void_signature(),
1843                               uncaught_exception,
1844                               THREAD);
1845       if (HAS_PENDING_EXCEPTION) {
1846         ResourceMark rm(this);
1847         jio_fprintf(defaultStream::error_stream(),
1848                     "\nException: %s thrown from the UncaughtExceptionHandler"
1849                     " in thread \"%s\"\n",
1850                     pending_exception()->klass()->external_name(),
1851                     get_thread_name());
1852         CLEAR_PENDING_EXCEPTION;
1853       }
1854     }
1855 
1856     // Called before the java thread exit since we want to read info
1857     // from java_lang_Thread object
1858     EventThreadEnd event;
1859     if (event.should_commit()) {
1860       event.set_thread(JFR_THREAD_ID(this));
1861       event.commit();
1862     }
1863 
1864     // Call after last event on thread
1865     JFR_ONLY(Jfr::on_thread_exit(this);)
1866 
1867     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1868     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1869     // is deprecated anyhow.
1870     if (!is_Compiler_thread()) {
1871       int count = 3;
1872       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1873         EXCEPTION_MARK;
1874         JavaValue result(T_VOID);
1875         Klass* thread_klass = SystemDictionary::Thread_klass();
1876         JavaCalls::call_virtual(&result,
1877                                 threadObj, thread_klass,
1878                                 vmSymbols::exit_method_name(),
1879                                 vmSymbols::void_method_signature(),
1880                                 THREAD);
1881         CLEAR_PENDING_EXCEPTION;
1882       }
1883     }
1884     // notify JVMTI
1885     if (JvmtiExport::should_post_thread_life()) {
1886       JvmtiExport::post_thread_end(this);
1887     }
1888 
1889     // We have notified the agents that we are exiting, before we go on,
1890     // we must check for a pending external suspend request and honor it
1891     // in order to not surprise the thread that made the suspend request.
1892     while (true) {
1893       {
1894         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1895         if (!is_external_suspend()) {
1896           set_terminated(_thread_exiting);
1897           ThreadService::current_thread_exiting(this);
1898           break;
1899         }
1900         // Implied else:
1901         // Things get a little tricky here. We have a pending external
1902         // suspend request, but we are holding the SR_lock so we
1903         // can't just self-suspend. So we temporarily drop the lock
1904         // and then self-suspend.
1905       }
1906 
1907       ThreadBlockInVM tbivm(this);
1908       java_suspend_self();
1909 
1910       // We're done with this suspend request, but we have to loop around
1911       // and check again. Eventually we will get SR_lock without a pending
1912       // external suspend request and will be able to mark ourselves as
1913       // exiting.
1914     }
1915     // no more external suspends are allowed at this point
1916   } else {
1917     // before_exit() has already posted JVMTI THREAD_END events
1918   }
1919 
1920   if (log_is_enabled(Debug, os, thread, timer)) {
1921     _timer_exit_phase1.stop();
1922     _timer_exit_phase2.start();
1923   }
1924   // Notify waiters on thread object. This has to be done after exit() is called
1925   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1926   // group should have the destroyed bit set before waiters are notified).
1927   ensure_join(this);
1928   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1929 
1930   if (log_is_enabled(Debug, os, thread, timer)) {
1931     _timer_exit_phase2.stop();
1932     _timer_exit_phase3.start();
1933   }
1934   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1935   // held by this thread must be released. The spec does not distinguish
1936   // between JNI-acquired and regular Java monitors. We can only see
1937   // regular Java monitors here if monitor enter-exit matching is broken.
1938   //
1939   // Optionally release any monitors for regular JavaThread exits. This
1940   // is provided as a work around for any bugs in monitor enter-exit
1941   // matching. This can be expensive so it is not enabled by default.
1942   //
1943   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1944   // ObjectSynchronizer::release_monitors_owned_by_thread().
1945   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1946     // Sanity check even though JNI DetachCurrentThread() would have
1947     // returned JNI_ERR if there was a Java frame. JavaThread exit
1948     // should be done executing Java code by the time we get here.
1949     assert(!this->has_last_Java_frame(),
1950            "should not have a Java frame when detaching or exiting");
1951     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1952     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1953   }
1954 
1955   // These things needs to be done while we are still a Java Thread. Make sure that thread
1956   // is in a consistent state, in case GC happens
1957   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1958 
1959   if (active_handles() != NULL) {
1960     JNIHandleBlock* block = active_handles();
1961     set_active_handles(NULL);
1962     JNIHandleBlock::release_block(block);
1963   }
1964 
1965   if (free_handle_block() != NULL) {
1966     JNIHandleBlock* block = free_handle_block();
1967     set_free_handle_block(NULL);
1968     JNIHandleBlock::release_block(block);
1969   }
1970 
1971   // These have to be removed while this is still a valid thread.
1972   remove_stack_guard_pages();
1973 
1974   if (UseTLAB) {
1975     tlab().make_parsable(true);  // retire TLAB
1976   }
1977 
1978   if (JvmtiEnv::environments_might_exist()) {
1979     JvmtiExport::cleanup_thread(this);
1980   }
1981 
1982   // We must flush any deferred card marks and other various GC barrier
1983   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
1984   // before removing a thread from the list of active threads.
1985   BarrierSet::barrier_set()->on_thread_detach(this);
1986 
1987   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1988     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1989     os::current_thread_id());
1990 
1991   if (log_is_enabled(Debug, os, thread, timer)) {
1992     _timer_exit_phase3.stop();
1993     _timer_exit_phase4.start();
1994   }
1995   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1996   Threads::remove(this);
1997 
1998   if (log_is_enabled(Debug, os, thread, timer)) {
1999     _timer_exit_phase4.stop();
2000     ResourceMark rm(this);
2001     log_debug(os, thread, timer)("name='%s'"
2002                                  ", exit-phase1=" JLONG_FORMAT
2003                                  ", exit-phase2=" JLONG_FORMAT
2004                                  ", exit-phase3=" JLONG_FORMAT
2005                                  ", exit-phase4=" JLONG_FORMAT,
2006                                  get_thread_name(),
2007                                  _timer_exit_phase1.milliseconds(),
2008                                  _timer_exit_phase2.milliseconds(),
2009                                  _timer_exit_phase3.milliseconds(),
2010                                  _timer_exit_phase4.milliseconds());
2011   }
2012 }
2013 
2014 void JavaThread::cleanup_failed_attach_current_thread() {
2015   if (active_handles() != NULL) {
2016     JNIHandleBlock* block = active_handles();
2017     set_active_handles(NULL);
2018     JNIHandleBlock::release_block(block);
2019   }
2020 
2021   if (free_handle_block() != NULL) {
2022     JNIHandleBlock* block = free_handle_block();
2023     set_free_handle_block(NULL);
2024     JNIHandleBlock::release_block(block);
2025   }
2026 
2027   // These have to be removed while this is still a valid thread.
2028   remove_stack_guard_pages();
2029 
2030   if (UseTLAB) {
2031     tlab().make_parsable(true);  // retire TLAB, if any
2032   }
2033 
2034   BarrierSet::barrier_set()->on_thread_detach(this);
2035 
2036   Threads::remove(this);
2037   this->smr_delete();
2038 }
2039 
2040 JavaThread* JavaThread::active() {
2041   Thread* thread = Thread::current();
2042   if (thread->is_Java_thread()) {
2043     return (JavaThread*) thread;
2044   } else {
2045     assert(thread->is_VM_thread(), "this must be a vm thread");
2046     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2047     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2048     assert(ret->is_Java_thread(), "must be a Java thread");
2049     return ret;
2050   }
2051 }
2052 
2053 bool JavaThread::is_lock_owned(address adr) const {
2054   if (Thread::is_lock_owned(adr)) return true;
2055 
2056   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2057     if (chunk->contains(adr)) return true;
2058   }
2059 
2060   return false;
2061 }
2062 
2063 
2064 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2065   chunk->set_next(monitor_chunks());
2066   set_monitor_chunks(chunk);
2067 }
2068 
2069 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2070   guarantee(monitor_chunks() != NULL, "must be non empty");
2071   if (monitor_chunks() == chunk) {
2072     set_monitor_chunks(chunk->next());
2073   } else {
2074     MonitorChunk* prev = monitor_chunks();
2075     while (prev->next() != chunk) prev = prev->next();
2076     prev->set_next(chunk->next());
2077   }
2078 }
2079 
2080 // JVM support.
2081 
2082 // Note: this function shouldn't block if it's called in
2083 // _thread_in_native_trans state (such as from
2084 // check_special_condition_for_native_trans()).
2085 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2086 
2087   if (has_last_Java_frame() && has_async_condition()) {
2088     // If we are at a polling page safepoint (not a poll return)
2089     // then we must defer async exception because live registers
2090     // will be clobbered by the exception path. Poll return is
2091     // ok because the call we a returning from already collides
2092     // with exception handling registers and so there is no issue.
2093     // (The exception handling path kills call result registers but
2094     //  this is ok since the exception kills the result anyway).
2095 
2096     if (is_at_poll_safepoint()) {
2097       // if the code we are returning to has deoptimized we must defer
2098       // the exception otherwise live registers get clobbered on the
2099       // exception path before deoptimization is able to retrieve them.
2100       //
2101       RegisterMap map(this, false);
2102       frame caller_fr = last_frame().sender(&map);
2103       assert(caller_fr.is_compiled_frame(), "what?");
2104       if (caller_fr.is_deoptimized_frame()) {
2105         log_info(exceptions)("deferred async exception at compiled safepoint");
2106         return;
2107       }
2108     }
2109   }
2110 
2111   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2112   if (condition == _no_async_condition) {
2113     // Conditions have changed since has_special_runtime_exit_condition()
2114     // was called:
2115     // - if we were here only because of an external suspend request,
2116     //   then that was taken care of above (or cancelled) so we are done
2117     // - if we were here because of another async request, then it has
2118     //   been cleared between the has_special_runtime_exit_condition()
2119     //   and now so again we are done
2120     return;
2121   }
2122 
2123   // Check for pending async. exception
2124   if (_pending_async_exception != NULL) {
2125     // Only overwrite an already pending exception, if it is not a threadDeath.
2126     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2127 
2128       // We cannot call Exceptions::_throw(...) here because we cannot block
2129       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2130 
2131       LogTarget(Info, exceptions) lt;
2132       if (lt.is_enabled()) {
2133         ResourceMark rm;
2134         LogStream ls(lt);
2135         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2136           if (has_last_Java_frame()) {
2137             frame f = last_frame();
2138            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2139           }
2140         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2141       }
2142       _pending_async_exception = NULL;
2143       clear_has_async_exception();
2144     }
2145   }
2146 
2147   if (check_unsafe_error &&
2148       condition == _async_unsafe_access_error && !has_pending_exception()) {
2149     condition = _no_async_condition;  // done
2150     switch (thread_state()) {
2151     case _thread_in_vm: {
2152       JavaThread* THREAD = this;
2153       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2154     }
2155     case _thread_in_native: {
2156       ThreadInVMfromNative tiv(this);
2157       JavaThread* THREAD = this;
2158       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2159     }
2160     case _thread_in_Java: {
2161       ThreadInVMfromJava tiv(this);
2162       JavaThread* THREAD = this;
2163       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2164     }
2165     default:
2166       ShouldNotReachHere();
2167     }
2168   }
2169 
2170   assert(condition == _no_async_condition || has_pending_exception() ||
2171          (!check_unsafe_error && condition == _async_unsafe_access_error),
2172          "must have handled the async condition, if no exception");
2173 }
2174 
2175 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2176   //
2177   // Check for pending external suspend. Internal suspend requests do
2178   // not use handle_special_runtime_exit_condition().
2179   // If JNIEnv proxies are allowed, don't self-suspend if the target
2180   // thread is not the current thread. In older versions of jdbx, jdbx
2181   // threads could call into the VM with another thread's JNIEnv so we
2182   // can be here operating on behalf of a suspended thread (4432884).
2183   bool do_self_suspend = is_external_suspend_with_lock();
2184   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2185     //
2186     // Because thread is external suspended the safepoint code will count
2187     // thread as at a safepoint. This can be odd because we can be here
2188     // as _thread_in_Java which would normally transition to _thread_blocked
2189     // at a safepoint. We would like to mark the thread as _thread_blocked
2190     // before calling java_suspend_self like all other callers of it but
2191     // we must then observe proper safepoint protocol. (We can't leave
2192     // _thread_blocked with a safepoint in progress). However we can be
2193     // here as _thread_in_native_trans so we can't use a normal transition
2194     // constructor/destructor pair because they assert on that type of
2195     // transition. We could do something like:
2196     //
2197     // JavaThreadState state = thread_state();
2198     // set_thread_state(_thread_in_vm);
2199     // {
2200     //   ThreadBlockInVM tbivm(this);
2201     //   java_suspend_self()
2202     // }
2203     // set_thread_state(_thread_in_vm_trans);
2204     // if (safepoint) block;
2205     // set_thread_state(state);
2206     //
2207     // but that is pretty messy. Instead we just go with the way the
2208     // code has worked before and note that this is the only path to
2209     // java_suspend_self that doesn't put the thread in _thread_blocked
2210     // mode.
2211 
2212     frame_anchor()->make_walkable(this);
2213     java_suspend_self();
2214 
2215     // We might be here for reasons in addition to the self-suspend request
2216     // so check for other async requests.
2217   }
2218 
2219   if (check_asyncs) {
2220     check_and_handle_async_exceptions();
2221   }
2222 
2223   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2224 }
2225 
2226 void JavaThread::send_thread_stop(oop java_throwable)  {
2227   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2228   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2229   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2230 
2231   // Do not throw asynchronous exceptions against the compiler thread
2232   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2233   if (!can_call_java()) return;
2234 
2235   {
2236     // Actually throw the Throwable against the target Thread - however
2237     // only if there is no thread death exception installed already.
2238     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2239       // If the topmost frame is a runtime stub, then we are calling into
2240       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2241       // must deoptimize the caller before continuing, as the compiled  exception handler table
2242       // may not be valid
2243       if (has_last_Java_frame()) {
2244         frame f = last_frame();
2245         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2246           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2247           RegisterMap reg_map(this, UseBiasedLocking);
2248           frame compiled_frame = f.sender(&reg_map);
2249           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2250             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2251           }
2252         }
2253       }
2254 
2255       // Set async. pending exception in thread.
2256       set_pending_async_exception(java_throwable);
2257 
2258       if (log_is_enabled(Info, exceptions)) {
2259          ResourceMark rm;
2260         log_info(exceptions)("Pending Async. exception installed of type: %s",
2261                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2262       }
2263       // for AbortVMOnException flag
2264       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2265     }
2266   }
2267 
2268 
2269   // Interrupt thread so it will wake up from a potential wait()
2270   Thread::interrupt(this);
2271 }
2272 
2273 // External suspension mechanism.
2274 //
2275 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2276 // to any VM_locks and it is at a transition
2277 // Self-suspension will happen on the transition out of the vm.
2278 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2279 //
2280 // Guarantees on return:
2281 //   + Target thread will not execute any new bytecode (that's why we need to
2282 //     force a safepoint)
2283 //   + Target thread will not enter any new monitors
2284 //
2285 void JavaThread::java_suspend() {
2286   ThreadsListHandle tlh;
2287   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2288     return;
2289   }
2290 
2291   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2292     if (!is_external_suspend()) {
2293       // a racing resume has cancelled us; bail out now
2294       return;
2295     }
2296 
2297     // suspend is done
2298     uint32_t debug_bits = 0;
2299     // Warning: is_ext_suspend_completed() may temporarily drop the
2300     // SR_lock to allow the thread to reach a stable thread state if
2301     // it is currently in a transient thread state.
2302     if (is_ext_suspend_completed(false /* !called_by_wait */,
2303                                  SuspendRetryDelay, &debug_bits)) {
2304       return;
2305     }
2306   }
2307 
2308   VM_ThreadSuspend vm_suspend;
2309   VMThread::execute(&vm_suspend);
2310 }
2311 
2312 // Part II of external suspension.
2313 // A JavaThread self suspends when it detects a pending external suspend
2314 // request. This is usually on transitions. It is also done in places
2315 // where continuing to the next transition would surprise the caller,
2316 // e.g., monitor entry.
2317 //
2318 // Returns the number of times that the thread self-suspended.
2319 //
2320 // Note: DO NOT call java_suspend_self() when you just want to block current
2321 //       thread. java_suspend_self() is the second stage of cooperative
2322 //       suspension for external suspend requests and should only be used
2323 //       to complete an external suspend request.
2324 //
2325 int JavaThread::java_suspend_self() {
2326   int ret = 0;
2327 
2328   // we are in the process of exiting so don't suspend
2329   if (is_exiting()) {
2330     clear_external_suspend();
2331     return ret;
2332   }
2333 
2334   assert(_anchor.walkable() ||
2335          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2336          "must have walkable stack");
2337 
2338   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2339 
2340   assert(!this->is_ext_suspended(),
2341          "a thread trying to self-suspend should not already be suspended");
2342 
2343   if (this->is_suspend_equivalent()) {
2344     // If we are self-suspending as a result of the lifting of a
2345     // suspend equivalent condition, then the suspend_equivalent
2346     // flag is not cleared until we set the ext_suspended flag so
2347     // that wait_for_ext_suspend_completion() returns consistent
2348     // results.
2349     this->clear_suspend_equivalent();
2350   }
2351 
2352   // A racing resume may have cancelled us before we grabbed SR_lock
2353   // above. Or another external suspend request could be waiting for us
2354   // by the time we return from SR_lock()->wait(). The thread
2355   // that requested the suspension may already be trying to walk our
2356   // stack and if we return now, we can change the stack out from under
2357   // it. This would be a "bad thing (TM)" and cause the stack walker
2358   // to crash. We stay self-suspended until there are no more pending
2359   // external suspend requests.
2360   while (is_external_suspend()) {
2361     ret++;
2362     this->set_ext_suspended();
2363 
2364     // _ext_suspended flag is cleared by java_resume()
2365     while (is_ext_suspended()) {
2366       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2367     }
2368   }
2369 
2370   return ret;
2371 }
2372 
2373 #ifdef ASSERT
2374 // Verify the JavaThread has not yet been published in the Threads::list, and
2375 // hence doesn't need protection from concurrent access at this stage.
2376 void JavaThread::verify_not_published() {
2377   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2378   // since an unpublished JavaThread doesn't participate in the
2379   // Thread-SMR protocol for keeping a ThreadsList alive.
2380   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2381 }
2382 #endif
2383 
2384 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2385 // progress or when _suspend_flags is non-zero.
2386 // Current thread needs to self-suspend if there is a suspend request and/or
2387 // block if a safepoint is in progress.
2388 // Async exception ISN'T checked.
2389 // Note only the ThreadInVMfromNative transition can call this function
2390 // directly and when thread state is _thread_in_native_trans
2391 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2392   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2393 
2394   JavaThread *curJT = JavaThread::current();
2395   bool do_self_suspend = thread->is_external_suspend();
2396 
2397   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2398 
2399   // If JNIEnv proxies are allowed, don't self-suspend if the target
2400   // thread is not the current thread. In older versions of jdbx, jdbx
2401   // threads could call into the VM with another thread's JNIEnv so we
2402   // can be here operating on behalf of a suspended thread (4432884).
2403   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2404     JavaThreadState state = thread->thread_state();
2405 
2406     // We mark this thread_blocked state as a suspend-equivalent so
2407     // that a caller to is_ext_suspend_completed() won't be confused.
2408     // The suspend-equivalent state is cleared by java_suspend_self().
2409     thread->set_suspend_equivalent();
2410 
2411     // If the safepoint code sees the _thread_in_native_trans state, it will
2412     // wait until the thread changes to other thread state. There is no
2413     // guarantee on how soon we can obtain the SR_lock and complete the
2414     // self-suspend request. It would be a bad idea to let safepoint wait for
2415     // too long. Temporarily change the state to _thread_blocked to
2416     // let the VM thread know that this thread is ready for GC. The problem
2417     // of changing thread state is that safepoint could happen just after
2418     // java_suspend_self() returns after being resumed, and VM thread will
2419     // see the _thread_blocked state. We must check for safepoint
2420     // after restoring the state and make sure we won't leave while a safepoint
2421     // is in progress.
2422     thread->set_thread_state(_thread_blocked);
2423     thread->java_suspend_self();
2424     thread->set_thread_state(state);
2425 
2426     InterfaceSupport::serialize_thread_state_with_handler(thread);
2427   }
2428 
2429   SafepointMechanism::block_if_requested(curJT);
2430 
2431   if (thread->is_deopt_suspend()) {
2432     thread->clear_deopt_suspend();
2433     RegisterMap map(thread, false);
2434     frame f = thread->last_frame();
2435     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2436       f = f.sender(&map);
2437     }
2438     if (f.id() == thread->must_deopt_id()) {
2439       thread->clear_must_deopt_id();
2440       f.deoptimize(thread);
2441     } else {
2442       fatal("missed deoptimization!");
2443     }
2444   }
2445 
2446   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2447 }
2448 
2449 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2450 // progress or when _suspend_flags is non-zero.
2451 // Current thread needs to self-suspend if there is a suspend request and/or
2452 // block if a safepoint is in progress.
2453 // Also check for pending async exception (not including unsafe access error).
2454 // Note only the native==>VM/Java barriers can call this function and when
2455 // thread state is _thread_in_native_trans.
2456 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2457   check_safepoint_and_suspend_for_native_trans(thread);
2458 
2459   if (thread->has_async_exception()) {
2460     // We are in _thread_in_native_trans state, don't handle unsafe
2461     // access error since that may block.
2462     thread->check_and_handle_async_exceptions(false);
2463   }
2464 }
2465 
2466 // This is a variant of the normal
2467 // check_special_condition_for_native_trans with slightly different
2468 // semantics for use by critical native wrappers.  It does all the
2469 // normal checks but also performs the transition back into
2470 // thread_in_Java state.  This is required so that critical natives
2471 // can potentially block and perform a GC if they are the last thread
2472 // exiting the GCLocker.
2473 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2474   check_special_condition_for_native_trans(thread);
2475 
2476   // Finish the transition
2477   thread->set_thread_state(_thread_in_Java);
2478 
2479   if (thread->do_critical_native_unlock()) {
2480     ThreadInVMfromJavaNoAsyncException tiv(thread);
2481     GCLocker::unlock_critical(thread);
2482     thread->clear_critical_native_unlock();
2483   }
2484 }
2485 
2486 // We need to guarantee the Threads_lock here, since resumes are not
2487 // allowed during safepoint synchronization
2488 // Can only resume from an external suspension
2489 void JavaThread::java_resume() {
2490   assert_locked_or_safepoint(Threads_lock);
2491 
2492   // Sanity check: thread is gone, has started exiting or the thread
2493   // was not externally suspended.
2494   ThreadsListHandle tlh;
2495   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2496     return;
2497   }
2498 
2499   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2500 
2501   clear_external_suspend();
2502 
2503   if (is_ext_suspended()) {
2504     clear_ext_suspended();
2505     SR_lock()->notify_all();
2506   }
2507 }
2508 
2509 size_t JavaThread::_stack_red_zone_size = 0;
2510 size_t JavaThread::_stack_yellow_zone_size = 0;
2511 size_t JavaThread::_stack_reserved_zone_size = 0;
2512 size_t JavaThread::_stack_shadow_zone_size = 0;
2513 
2514 void JavaThread::create_stack_guard_pages() {
2515   if (!os::uses_stack_guard_pages() ||
2516       _stack_guard_state != stack_guard_unused ||
2517       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2518       log_info(os, thread)("Stack guard page creation for thread "
2519                            UINTX_FORMAT " disabled", os::current_thread_id());
2520     return;
2521   }
2522   address low_addr = stack_end();
2523   size_t len = stack_guard_zone_size();
2524 
2525   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2526   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2527 
2528   int must_commit = os::must_commit_stack_guard_pages();
2529   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2530 
2531   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2532     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2533     return;
2534   }
2535 
2536   if (os::guard_memory((char *) low_addr, len)) {
2537     _stack_guard_state = stack_guard_enabled;
2538   } else {
2539     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2540       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2541     if (os::uncommit_memory((char *) low_addr, len)) {
2542       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2543     }
2544     return;
2545   }
2546 
2547   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2548     PTR_FORMAT "-" PTR_FORMAT ".",
2549     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2550 }
2551 
2552 void JavaThread::remove_stack_guard_pages() {
2553   assert(Thread::current() == this, "from different thread");
2554   if (_stack_guard_state == stack_guard_unused) return;
2555   address low_addr = stack_end();
2556   size_t len = stack_guard_zone_size();
2557 
2558   if (os::must_commit_stack_guard_pages()) {
2559     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2560       _stack_guard_state = stack_guard_unused;
2561     } else {
2562       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2563         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2564       return;
2565     }
2566   } else {
2567     if (_stack_guard_state == stack_guard_unused) return;
2568     if (os::unguard_memory((char *) low_addr, len)) {
2569       _stack_guard_state = stack_guard_unused;
2570     } else {
2571       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2572         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2573       return;
2574     }
2575   }
2576 
2577   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2578     PTR_FORMAT "-" PTR_FORMAT ".",
2579     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2580 }
2581 
2582 void JavaThread::enable_stack_reserved_zone() {
2583   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2584   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2585 
2586   // The base notation is from the stack's point of view, growing downward.
2587   // We need to adjust it to work correctly with guard_memory()
2588   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2589 
2590   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2591   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2592 
2593   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2594     _stack_guard_state = stack_guard_enabled;
2595   } else {
2596     warning("Attempt to guard stack reserved zone failed.");
2597   }
2598   enable_register_stack_guard();
2599 }
2600 
2601 void JavaThread::disable_stack_reserved_zone() {
2602   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2603   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2604 
2605   // Simply return if called for a thread that does not use guard pages.
2606   if (_stack_guard_state == stack_guard_unused) return;
2607 
2608   // The base notation is from the stack's point of view, growing downward.
2609   // We need to adjust it to work correctly with guard_memory()
2610   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2611 
2612   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2613     _stack_guard_state = stack_guard_reserved_disabled;
2614   } else {
2615     warning("Attempt to unguard stack reserved zone failed.");
2616   }
2617   disable_register_stack_guard();
2618 }
2619 
2620 void JavaThread::enable_stack_yellow_reserved_zone() {
2621   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2622   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2623 
2624   // The base notation is from the stacks point of view, growing downward.
2625   // We need to adjust it to work correctly with guard_memory()
2626   address base = stack_red_zone_base();
2627 
2628   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2629   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2630 
2631   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2632     _stack_guard_state = stack_guard_enabled;
2633   } else {
2634     warning("Attempt to guard stack yellow zone failed.");
2635   }
2636   enable_register_stack_guard();
2637 }
2638 
2639 void JavaThread::disable_stack_yellow_reserved_zone() {
2640   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2641   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2642 
2643   // Simply return if called for a thread that does not use guard pages.
2644   if (_stack_guard_state == stack_guard_unused) return;
2645 
2646   // The base notation is from the stacks point of view, growing downward.
2647   // We need to adjust it to work correctly with guard_memory()
2648   address base = stack_red_zone_base();
2649 
2650   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2651     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2652   } else {
2653     warning("Attempt to unguard stack yellow zone failed.");
2654   }
2655   disable_register_stack_guard();
2656 }
2657 
2658 void JavaThread::enable_stack_red_zone() {
2659   // The base notation is from the stacks point of view, growing downward.
2660   // We need to adjust it to work correctly with guard_memory()
2661   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2662   address base = stack_red_zone_base() - stack_red_zone_size();
2663 
2664   guarantee(base < stack_base(), "Error calculating stack red zone");
2665   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2666 
2667   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2668     warning("Attempt to guard stack red zone failed.");
2669   }
2670 }
2671 
2672 void JavaThread::disable_stack_red_zone() {
2673   // The base notation is from the stacks point of view, growing downward.
2674   // We need to adjust it to work correctly with guard_memory()
2675   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2676   address base = stack_red_zone_base() - stack_red_zone_size();
2677   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2678     warning("Attempt to unguard stack red zone failed.");
2679   }
2680 }
2681 
2682 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2683   // ignore is there is no stack
2684   if (!has_last_Java_frame()) return;
2685   // traverse the stack frames. Starts from top frame.
2686   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2687     frame* fr = fst.current();
2688     f(fr, fst.register_map());
2689   }
2690 }
2691 
2692 
2693 #ifndef PRODUCT
2694 // Deoptimization
2695 // Function for testing deoptimization
2696 void JavaThread::deoptimize() {
2697   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2698   StackFrameStream fst(this, UseBiasedLocking);
2699   bool deopt = false;           // Dump stack only if a deopt actually happens.
2700   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2701   // Iterate over all frames in the thread and deoptimize
2702   for (; !fst.is_done(); fst.next()) {
2703     if (fst.current()->can_be_deoptimized()) {
2704 
2705       if (only_at) {
2706         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2707         // consists of comma or carriage return separated numbers so
2708         // search for the current bci in that string.
2709         address pc = fst.current()->pc();
2710         nmethod* nm =  (nmethod*) fst.current()->cb();
2711         ScopeDesc* sd = nm->scope_desc_at(pc);
2712         char buffer[8];
2713         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2714         size_t len = strlen(buffer);
2715         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2716         while (found != NULL) {
2717           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2718               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2719             // Check that the bci found is bracketed by terminators.
2720             break;
2721           }
2722           found = strstr(found + 1, buffer);
2723         }
2724         if (!found) {
2725           continue;
2726         }
2727       }
2728 
2729       if (DebugDeoptimization && !deopt) {
2730         deopt = true; // One-time only print before deopt
2731         tty->print_cr("[BEFORE Deoptimization]");
2732         trace_frames();
2733         trace_stack();
2734       }
2735       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2736     }
2737   }
2738 
2739   if (DebugDeoptimization && deopt) {
2740     tty->print_cr("[AFTER Deoptimization]");
2741     trace_frames();
2742   }
2743 }
2744 
2745 
2746 // Make zombies
2747 void JavaThread::make_zombies() {
2748   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2749     if (fst.current()->can_be_deoptimized()) {
2750       // it is a Java nmethod
2751       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2752       nm->make_not_entrant();
2753     }
2754   }
2755 }
2756 #endif // PRODUCT
2757 
2758 
2759 void JavaThread::deoptimized_wrt_marked_nmethods() {
2760   if (!has_last_Java_frame()) return;
2761   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2762   StackFrameStream fst(this, UseBiasedLocking);
2763   for (; !fst.is_done(); fst.next()) {
2764     if (fst.current()->should_be_deoptimized()) {
2765       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2766     }
2767   }
2768 }
2769 
2770 
2771 // If the caller is a NamedThread, then remember, in the current scope,
2772 // the given JavaThread in its _processed_thread field.
2773 class RememberProcessedThread: public StackObj {
2774   NamedThread* _cur_thr;
2775  public:
2776   RememberProcessedThread(JavaThread* jthr) {
2777     Thread* thread = Thread::current();
2778     if (thread->is_Named_thread()) {
2779       _cur_thr = (NamedThread *)thread;
2780       _cur_thr->set_processed_thread(jthr);
2781     } else {
2782       _cur_thr = NULL;
2783     }
2784   }
2785 
2786   ~RememberProcessedThread() {
2787     if (_cur_thr) {
2788       _cur_thr->set_processed_thread(NULL);
2789     }
2790   }
2791 };
2792 
2793 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2794   // Verify that the deferred card marks have been flushed.
2795   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2796 
2797   // Traverse the GCHandles
2798   Thread::oops_do(f, cf);
2799 
2800   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2801 
2802   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2803          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2804 
2805   if (has_last_Java_frame()) {
2806     // Record JavaThread to GC thread
2807     RememberProcessedThread rpt(this);
2808 
2809     // Traverse the privileged stack
2810     if (_privileged_stack_top != NULL) {
2811       _privileged_stack_top->oops_do(f);
2812     }
2813 
2814     // traverse the registered growable array
2815     if (_array_for_gc != NULL) {
2816       for (int index = 0; index < _array_for_gc->length(); index++) {
2817         f->do_oop(_array_for_gc->adr_at(index));
2818       }
2819     }
2820 
2821     // Traverse the monitor chunks
2822     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2823       chunk->oops_do(f);
2824     }
2825 
2826     // Traverse the execution stack
2827     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2828       fst.current()->oops_do(f, cf, fst.register_map());
2829     }
2830   }
2831 
2832   // callee_target is never live across a gc point so NULL it here should
2833   // it still contain a methdOop.
2834 
2835   set_callee_target(NULL);
2836 
2837   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2838   // If we have deferred set_locals there might be oops waiting to be
2839   // written
2840   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2841   if (list != NULL) {
2842     for (int i = 0; i < list->length(); i++) {
2843       list->at(i)->oops_do(f);
2844     }
2845   }
2846 
2847   // Traverse instance variables at the end since the GC may be moving things
2848   // around using this function
2849   f->do_oop((oop*) &_threadObj);
2850   f->do_oop((oop*) &_vm_result);
2851   f->do_oop((oop*) &_exception_oop);
2852   f->do_oop((oop*) &_pending_async_exception);
2853 
2854   if (jvmti_thread_state() != NULL) {
2855     jvmti_thread_state()->oops_do(f);
2856   }
2857 }
2858 
2859 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2860   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2861          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2862 
2863   if (has_last_Java_frame()) {
2864     // Traverse the execution stack
2865     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2866       fst.current()->nmethods_do(cf);
2867     }
2868   }
2869 }
2870 
2871 void JavaThread::metadata_do(void f(Metadata*)) {
2872   if (has_last_Java_frame()) {
2873     // Traverse the execution stack to call f() on the methods in the stack
2874     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2875       fst.current()->metadata_do(f);
2876     }
2877   } else if (is_Compiler_thread()) {
2878     // need to walk ciMetadata in current compile tasks to keep alive.
2879     CompilerThread* ct = (CompilerThread*)this;
2880     if (ct->env() != NULL) {
2881       ct->env()->metadata_do(f);
2882     }
2883     CompileTask* task = ct->task();
2884     if (task != NULL) {
2885       task->metadata_do(f);
2886     }
2887   }
2888 }
2889 
2890 // Printing
2891 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2892   switch (_thread_state) {
2893   case _thread_uninitialized:     return "_thread_uninitialized";
2894   case _thread_new:               return "_thread_new";
2895   case _thread_new_trans:         return "_thread_new_trans";
2896   case _thread_in_native:         return "_thread_in_native";
2897   case _thread_in_native_trans:   return "_thread_in_native_trans";
2898   case _thread_in_vm:             return "_thread_in_vm";
2899   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2900   case _thread_in_Java:           return "_thread_in_Java";
2901   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2902   case _thread_blocked:           return "_thread_blocked";
2903   case _thread_blocked_trans:     return "_thread_blocked_trans";
2904   default:                        return "unknown thread state";
2905   }
2906 }
2907 
2908 #ifndef PRODUCT
2909 void JavaThread::print_thread_state_on(outputStream *st) const {
2910   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2911 };
2912 void JavaThread::print_thread_state() const {
2913   print_thread_state_on(tty);
2914 }
2915 #endif // PRODUCT
2916 
2917 // Called by Threads::print() for VM_PrintThreads operation
2918 void JavaThread::print_on(outputStream *st) const {
2919   st->print_raw("\"");
2920   st->print_raw(get_thread_name());
2921   st->print_raw("\" ");
2922   oop thread_oop = threadObj();
2923   if (thread_oop != NULL) {
2924     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2925     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2926     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2927   }
2928   Thread::print_on(st);
2929   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2930   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2931   if (thread_oop != NULL) {
2932     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2933   }
2934 #ifndef PRODUCT
2935   print_thread_state_on(st);
2936   _safepoint_state->print_on(st);
2937 #endif // PRODUCT
2938   if (is_Compiler_thread()) {
2939     CompileTask *task = ((CompilerThread*)this)->task();
2940     if (task != NULL) {
2941       st->print("   Compiling: ");
2942       task->print(st, NULL, true, false);
2943     } else {
2944       st->print("   No compile task");
2945     }
2946     st->cr();
2947   }
2948 }
2949 
2950 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2951   st->print("%s", get_thread_name_string(buf, buflen));
2952 }
2953 
2954 // Called by fatal error handler. The difference between this and
2955 // JavaThread::print() is that we can't grab lock or allocate memory.
2956 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2957   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2958   oop thread_obj = threadObj();
2959   if (thread_obj != NULL) {
2960     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2961   }
2962   st->print(" [");
2963   st->print("%s", _get_thread_state_name(_thread_state));
2964   if (osthread()) {
2965     st->print(", id=%d", osthread()->thread_id());
2966   }
2967   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2968             p2i(stack_end()), p2i(stack_base()));
2969   st->print("]");
2970 
2971   ThreadsSMRSupport::print_info_on(this, st);
2972   return;
2973 }
2974 
2975 // Verification
2976 
2977 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2978 
2979 void JavaThread::verify() {
2980   // Verify oops in the thread.
2981   oops_do(&VerifyOopClosure::verify_oop, NULL);
2982 
2983   // Verify the stack frames.
2984   frames_do(frame_verify);
2985 }
2986 
2987 // CR 6300358 (sub-CR 2137150)
2988 // Most callers of this method assume that it can't return NULL but a
2989 // thread may not have a name whilst it is in the process of attaching to
2990 // the VM - see CR 6412693, and there are places where a JavaThread can be
2991 // seen prior to having it's threadObj set (eg JNI attaching threads and
2992 // if vm exit occurs during initialization). These cases can all be accounted
2993 // for such that this method never returns NULL.
2994 const char* JavaThread::get_thread_name() const {
2995 #ifdef ASSERT
2996   // early safepoints can hit while current thread does not yet have TLS
2997   if (!SafepointSynchronize::is_at_safepoint()) {
2998     Thread *cur = Thread::current();
2999     if (!(cur->is_Java_thread() && cur == this)) {
3000       // Current JavaThreads are allowed to get their own name without
3001       // the Threads_lock.
3002       assert_locked_or_safepoint(Threads_lock);
3003     }
3004   }
3005 #endif // ASSERT
3006   return get_thread_name_string();
3007 }
3008 
3009 // Returns a non-NULL representation of this thread's name, or a suitable
3010 // descriptive string if there is no set name
3011 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3012   const char* name_str;
3013   oop thread_obj = threadObj();
3014   if (thread_obj != NULL) {
3015     oop name = java_lang_Thread::name(thread_obj);
3016     if (name != NULL) {
3017       if (buf == NULL) {
3018         name_str = java_lang_String::as_utf8_string(name);
3019       } else {
3020         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3021       }
3022     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3023       name_str = "<no-name - thread is attaching>";
3024     } else {
3025       name_str = Thread::name();
3026     }
3027   } else {
3028     name_str = Thread::name();
3029   }
3030   assert(name_str != NULL, "unexpected NULL thread name");
3031   return name_str;
3032 }
3033 
3034 
3035 const char* JavaThread::get_threadgroup_name() const {
3036   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3037   oop thread_obj = threadObj();
3038   if (thread_obj != NULL) {
3039     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3040     if (thread_group != NULL) {
3041       // ThreadGroup.name can be null
3042       return java_lang_ThreadGroup::name(thread_group);
3043     }
3044   }
3045   return NULL;
3046 }
3047 
3048 const char* JavaThread::get_parent_name() const {
3049   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3050   oop thread_obj = threadObj();
3051   if (thread_obj != NULL) {
3052     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3053     if (thread_group != NULL) {
3054       oop parent = java_lang_ThreadGroup::parent(thread_group);
3055       if (parent != NULL) {
3056         // ThreadGroup.name can be null
3057         return java_lang_ThreadGroup::name(parent);
3058       }
3059     }
3060   }
3061   return NULL;
3062 }
3063 
3064 ThreadPriority JavaThread::java_priority() const {
3065   oop thr_oop = threadObj();
3066   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3067   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3068   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3069   return priority;
3070 }
3071 
3072 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3073 
3074   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3075   // Link Java Thread object <-> C++ Thread
3076 
3077   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3078   // and put it into a new Handle.  The Handle "thread_oop" can then
3079   // be used to pass the C++ thread object to other methods.
3080 
3081   // Set the Java level thread object (jthread) field of the
3082   // new thread (a JavaThread *) to C++ thread object using the
3083   // "thread_oop" handle.
3084 
3085   // Set the thread field (a JavaThread *) of the
3086   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3087 
3088   Handle thread_oop(Thread::current(),
3089                     JNIHandles::resolve_non_null(jni_thread));
3090   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3091          "must be initialized");
3092   set_threadObj(thread_oop());
3093   java_lang_Thread::set_thread(thread_oop(), this);
3094 
3095   if (prio == NoPriority) {
3096     prio = java_lang_Thread::priority(thread_oop());
3097     assert(prio != NoPriority, "A valid priority should be present");
3098   }
3099 
3100   // Push the Java priority down to the native thread; needs Threads_lock
3101   Thread::set_priority(this, prio);
3102 
3103   // Add the new thread to the Threads list and set it in motion.
3104   // We must have threads lock in order to call Threads::add.
3105   // It is crucial that we do not block before the thread is
3106   // added to the Threads list for if a GC happens, then the java_thread oop
3107   // will not be visited by GC.
3108   Threads::add(this);
3109 }
3110 
3111 oop JavaThread::current_park_blocker() {
3112   // Support for JSR-166 locks
3113   oop thread_oop = threadObj();
3114   if (thread_oop != NULL &&
3115       JDK_Version::current().supports_thread_park_blocker()) {
3116     return java_lang_Thread::park_blocker(thread_oop);
3117   }
3118   return NULL;
3119 }
3120 
3121 
3122 void JavaThread::print_stack_on(outputStream* st) {
3123   if (!has_last_Java_frame()) return;
3124   ResourceMark rm;
3125   HandleMark   hm;
3126 
3127   RegisterMap reg_map(this);
3128   vframe* start_vf = last_java_vframe(&reg_map);
3129   int count = 0;
3130   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3131     if (f->is_java_frame()) {
3132       javaVFrame* jvf = javaVFrame::cast(f);
3133       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3134 
3135       // Print out lock information
3136       if (JavaMonitorsInStackTrace) {
3137         jvf->print_lock_info_on(st, count);
3138       }
3139     } else {
3140       // Ignore non-Java frames
3141     }
3142 
3143     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3144     count++;
3145     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3146   }
3147 }
3148 
3149 
3150 // JVMTI PopFrame support
3151 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3152   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3153   if (in_bytes(size_in_bytes) != 0) {
3154     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3155     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3156     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3157   }
3158 }
3159 
3160 void* JavaThread::popframe_preserved_args() {
3161   return _popframe_preserved_args;
3162 }
3163 
3164 ByteSize JavaThread::popframe_preserved_args_size() {
3165   return in_ByteSize(_popframe_preserved_args_size);
3166 }
3167 
3168 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3169   int sz = in_bytes(popframe_preserved_args_size());
3170   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3171   return in_WordSize(sz / wordSize);
3172 }
3173 
3174 void JavaThread::popframe_free_preserved_args() {
3175   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3176   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3177   _popframe_preserved_args = NULL;
3178   _popframe_preserved_args_size = 0;
3179 }
3180 
3181 #ifndef PRODUCT
3182 
3183 void JavaThread::trace_frames() {
3184   tty->print_cr("[Describe stack]");
3185   int frame_no = 1;
3186   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3187     tty->print("  %d. ", frame_no++);
3188     fst.current()->print_value_on(tty, this);
3189     tty->cr();
3190   }
3191 }
3192 
3193 class PrintAndVerifyOopClosure: public OopClosure {
3194  protected:
3195   template <class T> inline void do_oop_work(T* p) {
3196     oop obj = RawAccess<>::oop_load(p);
3197     if (obj == NULL) return;
3198     tty->print(INTPTR_FORMAT ": ", p2i(p));
3199     if (oopDesc::is_oop_or_null(obj)) {
3200       if (obj->is_objArray()) {
3201         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3202       } else {
3203         obj->print();
3204       }
3205     } else {
3206       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3207     }
3208     tty->cr();
3209   }
3210  public:
3211   virtual void do_oop(oop* p) { do_oop_work(p); }
3212   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3213 };
3214 
3215 
3216 static void oops_print(frame* f, const RegisterMap *map) {
3217   PrintAndVerifyOopClosure print;
3218   f->print_value();
3219   f->oops_do(&print, NULL, (RegisterMap*)map);
3220 }
3221 
3222 // Print our all the locations that contain oops and whether they are
3223 // valid or not.  This useful when trying to find the oldest frame
3224 // where an oop has gone bad since the frame walk is from youngest to
3225 // oldest.
3226 void JavaThread::trace_oops() {
3227   tty->print_cr("[Trace oops]");
3228   frames_do(oops_print);
3229 }
3230 
3231 
3232 #ifdef ASSERT
3233 // Print or validate the layout of stack frames
3234 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3235   ResourceMark rm;
3236   PRESERVE_EXCEPTION_MARK;
3237   FrameValues values;
3238   int frame_no = 0;
3239   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3240     fst.current()->describe(values, ++frame_no);
3241     if (depth == frame_no) break;
3242   }
3243   if (validate_only) {
3244     values.validate();
3245   } else {
3246     tty->print_cr("[Describe stack layout]");
3247     values.print(this);
3248   }
3249 }
3250 #endif
3251 
3252 void JavaThread::trace_stack_from(vframe* start_vf) {
3253   ResourceMark rm;
3254   int vframe_no = 1;
3255   for (vframe* f = start_vf; f; f = f->sender()) {
3256     if (f->is_java_frame()) {
3257       javaVFrame::cast(f)->print_activation(vframe_no++);
3258     } else {
3259       f->print();
3260     }
3261     if (vframe_no > StackPrintLimit) {
3262       tty->print_cr("...<more frames>...");
3263       return;
3264     }
3265   }
3266 }
3267 
3268 
3269 void JavaThread::trace_stack() {
3270   if (!has_last_Java_frame()) return;
3271   ResourceMark rm;
3272   HandleMark   hm;
3273   RegisterMap reg_map(this);
3274   trace_stack_from(last_java_vframe(&reg_map));
3275 }
3276 
3277 
3278 #endif // PRODUCT
3279 
3280 
3281 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3282   assert(reg_map != NULL, "a map must be given");
3283   frame f = last_frame();
3284   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3285     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3286   }
3287   return NULL;
3288 }
3289 
3290 
3291 Klass* JavaThread::security_get_caller_class(int depth) {
3292   vframeStream vfst(this);
3293   vfst.security_get_caller_frame(depth);
3294   if (!vfst.at_end()) {
3295     return vfst.method()->method_holder();
3296   }
3297   return NULL;
3298 }
3299 
3300 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3301   assert(thread->is_Compiler_thread(), "must be compiler thread");
3302   CompileBroker::compiler_thread_loop();
3303 }
3304 
3305 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3306   NMethodSweeper::sweeper_loop();
3307 }
3308 
3309 // Create a CompilerThread
3310 CompilerThread::CompilerThread(CompileQueue* queue,
3311                                CompilerCounters* counters)
3312                                : JavaThread(&compiler_thread_entry) {
3313   _env   = NULL;
3314   _log   = NULL;
3315   _task  = NULL;
3316   _queue = queue;
3317   _counters = counters;
3318   _buffer_blob = NULL;
3319   _compiler = NULL;
3320 
3321   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3322   resource_area()->bias_to(mtCompiler);
3323 
3324 #ifndef PRODUCT
3325   _ideal_graph_printer = NULL;
3326 #endif
3327 }
3328 
3329 CompilerThread::~CompilerThread() {
3330   // Delete objects which were allocated on heap.
3331   delete _counters;
3332 }
3333 
3334 bool CompilerThread::can_call_java() const {
3335   return _compiler != NULL && _compiler->is_jvmci();
3336 }
3337 
3338 // Create sweeper thread
3339 CodeCacheSweeperThread::CodeCacheSweeperThread()
3340 : JavaThread(&sweeper_thread_entry) {
3341   _scanned_compiled_method = NULL;
3342 }
3343 
3344 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3345   JavaThread::oops_do(f, cf);
3346   if (_scanned_compiled_method != NULL && cf != NULL) {
3347     // Safepoints can occur when the sweeper is scanning an nmethod so
3348     // process it here to make sure it isn't unloaded in the middle of
3349     // a scan.
3350     cf->do_code_blob(_scanned_compiled_method);
3351   }
3352 }
3353 
3354 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3355   JavaThread::nmethods_do(cf);
3356   if (_scanned_compiled_method != NULL && cf != NULL) {
3357     // Safepoints can occur when the sweeper is scanning an nmethod so
3358     // process it here to make sure it isn't unloaded in the middle of
3359     // a scan.
3360     cf->do_code_blob(_scanned_compiled_method);
3361   }
3362 }
3363 
3364 
3365 // ======= Threads ========
3366 
3367 // The Threads class links together all active threads, and provides
3368 // operations over all threads. It is protected by the Threads_lock,
3369 // which is also used in other global contexts like safepointing.
3370 // ThreadsListHandles are used to safely perform operations on one
3371 // or more threads without the risk of the thread exiting during the
3372 // operation.
3373 //
3374 // Note: The Threads_lock is currently more widely used than we
3375 // would like. We are actively migrating Threads_lock uses to other
3376 // mechanisms in order to reduce Threads_lock contention.
3377 
3378 JavaThread* Threads::_thread_list = NULL;
3379 int         Threads::_number_of_threads = 0;
3380 int         Threads::_number_of_non_daemon_threads = 0;
3381 int         Threads::_return_code = 0;
3382 int         Threads::_thread_claim_parity = 0;
3383 size_t      JavaThread::_stack_size_at_create = 0;
3384 
3385 #ifdef ASSERT
3386 bool        Threads::_vm_complete = false;
3387 #endif
3388 
3389 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3390   Prefetch::read((void*)addr, prefetch_interval);
3391   return *addr;
3392 }
3393 
3394 // Possibly the ugliest for loop the world has seen. C++ does not allow
3395 // multiple types in the declaration section of the for loop. In this case
3396 // we are only dealing with pointers and hence can cast them. It looks ugly
3397 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3398 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3399     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3400              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3401              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3402              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3403              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3404          MACRO_current_p != MACRO_end;                                                                                    \
3405          MACRO_current_p++,                                                                                               \
3406              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3407 
3408 // All JavaThreads
3409 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3410 
3411 // All non-JavaThreads (i.e., every non-JavaThread in the system).
3412 void Threads::non_java_threads_do(ThreadClosure* tc) {
3413   // Someday we could have a table or list of all non-JavaThreads.
3414   // For now, just manually iterate through them.
3415   tc->do_thread(VMThread::vm_thread());
3416   if (Universe::heap() != NULL) {
3417     Universe::heap()->gc_threads_do(tc);
3418   }
3419   WatcherThread *wt = WatcherThread::watcher_thread();
3420   // Strictly speaking, the following NULL check isn't sufficient to make sure
3421   // the data for WatcherThread is still valid upon being examined. However,
3422   // considering that WatchThread terminates when the VM is on the way to
3423   // exit at safepoint, the chance of the above is extremely small. The right
3424   // way to prevent termination of WatcherThread would be to acquire
3425   // Terminator_lock, but we can't do that without violating the lock rank
3426   // checking in some cases.
3427   if (wt != NULL) {
3428     tc->do_thread(wt);
3429   }
3430 
3431 #if INCLUDE_JFR
3432   Thread* sampler_thread = Jfr::sampler_thread();
3433   if (sampler_thread != NULL) {
3434     tc->do_thread(sampler_thread);
3435   }
3436 
3437 #endif
3438 
3439   // If CompilerThreads ever become non-JavaThreads, add them here
3440 }
3441 
3442 // All JavaThreads
3443 void Threads::java_threads_do(ThreadClosure* tc) {
3444   assert_locked_or_safepoint(Threads_lock);
3445   // ALL_JAVA_THREADS iterates through all JavaThreads.
3446   ALL_JAVA_THREADS(p) {
3447     tc->do_thread(p);
3448   }
3449 }
3450 
3451 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3452   assert_locked_or_safepoint(Threads_lock);
3453   java_threads_do(tc);
3454   tc->do_thread(VMThread::vm_thread());
3455 }
3456 
3457 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3458 void Threads::threads_do(ThreadClosure* tc) {
3459   assert_locked_or_safepoint(Threads_lock);
3460   java_threads_do(tc);
3461   non_java_threads_do(tc);
3462 }
3463 
3464 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3465   int cp = Threads::thread_claim_parity();
3466   ALL_JAVA_THREADS(p) {
3467     if (p->claim_oops_do(is_par, cp)) {
3468       tc->do_thread(p);
3469     }
3470   }
3471   VMThread* vmt = VMThread::vm_thread();
3472   if (vmt->claim_oops_do(is_par, cp)) {
3473     tc->do_thread(vmt);
3474   }
3475 }
3476 
3477 // The system initialization in the library has three phases.
3478 //
3479 // Phase 1: java.lang.System class initialization
3480 //     java.lang.System is a primordial class loaded and initialized
3481 //     by the VM early during startup.  java.lang.System.<clinit>
3482 //     only does registerNatives and keeps the rest of the class
3483 //     initialization work later until thread initialization completes.
3484 //
3485 //     System.initPhase1 initializes the system properties, the static
3486 //     fields in, out, and err. Set up java signal handlers, OS-specific
3487 //     system settings, and thread group of the main thread.
3488 static void call_initPhase1(TRAPS) {
3489   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3490   JavaValue result(T_VOID);
3491   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3492                                          vmSymbols::void_method_signature(), CHECK);
3493 }
3494 
3495 // Phase 2. Module system initialization
3496 //     This will initialize the module system.  Only java.base classes
3497 //     can be loaded until phase 2 completes.
3498 //
3499 //     Call System.initPhase2 after the compiler initialization and jsr292
3500 //     classes get initialized because module initialization runs a lot of java
3501 //     code, that for performance reasons, should be compiled.  Also, this will
3502 //     enable the startup code to use lambda and other language features in this
3503 //     phase and onward.
3504 //
3505 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3506 static void call_initPhase2(TRAPS) {
3507   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3508 
3509   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3510 
3511   JavaValue result(T_INT);
3512   JavaCallArguments args;
3513   args.push_int(DisplayVMOutputToStderr);
3514   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3515   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3516                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3517   if (result.get_jint() != JNI_OK) {
3518     vm_exit_during_initialization(); // no message or exception
3519   }
3520 
3521   universe_post_module_init();
3522 }
3523 
3524 // Phase 3. final setup - set security manager, system class loader and TCCL
3525 //
3526 //     This will instantiate and set the security manager, set the system class
3527 //     loader as well as the thread context class loader.  The security manager
3528 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3529 //     other modules or the application's classpath.
3530 static void call_initPhase3(TRAPS) {
3531   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3532   JavaValue result(T_VOID);
3533   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3534                                          vmSymbols::void_method_signature(), CHECK);
3535 }
3536 
3537 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3538   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3539 
3540   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3541     create_vm_init_libraries();
3542   }
3543 
3544   initialize_class(vmSymbols::java_lang_String(), CHECK);
3545 
3546   // Inject CompactStrings value after the static initializers for String ran.
3547   java_lang_String::set_compact_strings(CompactStrings);
3548 
3549   // Initialize java_lang.System (needed before creating the thread)
3550   initialize_class(vmSymbols::java_lang_System(), CHECK);
3551   // The VM creates & returns objects of this class. Make sure it's initialized.
3552   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3553   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3554   Handle thread_group = create_initial_thread_group(CHECK);
3555   Universe::set_main_thread_group(thread_group());
3556   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3557   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3558   main_thread->set_threadObj(thread_object);
3559   // Set thread status to running since main thread has
3560   // been started and running.
3561   java_lang_Thread::set_thread_status(thread_object,
3562                                       java_lang_Thread::RUNNABLE);
3563 
3564   // The VM creates objects of this class.
3565   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3566 
3567   // The VM preresolves methods to these classes. Make sure that they get initialized
3568   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3569   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3570 
3571   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3572   call_initPhase1(CHECK);
3573 
3574   // get the Java runtime name after java.lang.System is initialized
3575   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3576   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3577 
3578   // an instance of OutOfMemory exception has been allocated earlier
3579   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3580   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3581   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3582   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3583   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3584   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3585   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3586   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3587 }
3588 
3589 void Threads::initialize_jsr292_core_classes(TRAPS) {
3590   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3591 
3592   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3593   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3594   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3595   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3596 }
3597 
3598 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3599   extern void JDK_Version_init();
3600 
3601   // Preinitialize version info.
3602   VM_Version::early_initialize();
3603 
3604   // Check version
3605   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3606 
3607   // Initialize library-based TLS
3608   ThreadLocalStorage::init();
3609 
3610   // Initialize the output stream module
3611   ostream_init();
3612 
3613   // Process java launcher properties.
3614   Arguments::process_sun_java_launcher_properties(args);
3615 
3616   // Initialize the os module
3617   os::init();
3618 
3619   // Record VM creation timing statistics
3620   TraceVmCreationTime create_vm_timer;
3621   create_vm_timer.start();
3622 
3623   // Initialize system properties.
3624   Arguments::init_system_properties();
3625 
3626   // So that JDK version can be used as a discriminator when parsing arguments
3627   JDK_Version_init();
3628 
3629   // Update/Initialize System properties after JDK version number is known
3630   Arguments::init_version_specific_system_properties();
3631 
3632   // Make sure to initialize log configuration *before* parsing arguments
3633   LogConfiguration::initialize(create_vm_timer.begin_time());
3634 
3635   // Parse arguments
3636   // Note: this internally calls os::init_container_support()
3637   jint parse_result = Arguments::parse(args);
3638   if (parse_result != JNI_OK) return parse_result;
3639 
3640   os::init_before_ergo();
3641 
3642   jint ergo_result = Arguments::apply_ergo();
3643   if (ergo_result != JNI_OK) return ergo_result;
3644 
3645   // Final check of all ranges after ergonomics which may change values.
3646   if (!JVMFlagRangeList::check_ranges()) {
3647     return JNI_EINVAL;
3648   }
3649 
3650   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3651   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3652   if (!constraint_result) {
3653     return JNI_EINVAL;
3654   }
3655 
3656   JVMFlagWriteableList::mark_startup();
3657 
3658   if (PauseAtStartup) {
3659     os::pause();
3660   }
3661 
3662   HOTSPOT_VM_INIT_BEGIN();
3663 
3664   // Timing (must come after argument parsing)
3665   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3666 
3667 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3668   // Initialize assert poison page mechanism.
3669   if (ShowRegistersOnAssert) {
3670     initialize_assert_poison();
3671   }
3672 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3673 
3674   // Initialize the os module after parsing the args
3675   jint os_init_2_result = os::init_2();
3676   if (os_init_2_result != JNI_OK) return os_init_2_result;
3677 
3678   SafepointMechanism::initialize();
3679 
3680   jint adjust_after_os_result = Arguments::adjust_after_os();
3681   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3682 
3683   // Initialize output stream logging
3684   ostream_init_log();
3685 
3686   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3687   // Must be before create_vm_init_agents()
3688   if (Arguments::init_libraries_at_startup()) {
3689     convert_vm_init_libraries_to_agents();
3690   }
3691 
3692   // Launch -agentlib/-agentpath and converted -Xrun agents
3693   if (Arguments::init_agents_at_startup()) {
3694     create_vm_init_agents();
3695   }
3696 
3697   // Initialize Threads state
3698   _thread_list = NULL;
3699   _number_of_threads = 0;
3700   _number_of_non_daemon_threads = 0;
3701 
3702   // Initialize global data structures and create system classes in heap
3703   vm_init_globals();
3704 
3705 #if INCLUDE_JVMCI
3706   if (JVMCICounterSize > 0) {
3707     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3708     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3709   } else {
3710     JavaThread::_jvmci_old_thread_counters = NULL;
3711   }
3712 #endif // INCLUDE_JVMCI
3713 
3714   // Attach the main thread to this os thread
3715   JavaThread* main_thread = new JavaThread();
3716   main_thread->set_thread_state(_thread_in_vm);
3717   main_thread->initialize_thread_current();
3718   // must do this before set_active_handles
3719   main_thread->record_stack_base_and_size();
3720   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3721 
3722   if (!main_thread->set_as_starting_thread()) {
3723     vm_shutdown_during_initialization(
3724                                       "Failed necessary internal allocation. Out of swap space");
3725     main_thread->smr_delete();
3726     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3727     return JNI_ENOMEM;
3728   }
3729 
3730   // Enable guard page *after* os::create_main_thread(), otherwise it would
3731   // crash Linux VM, see notes in os_linux.cpp.
3732   main_thread->create_stack_guard_pages();
3733 
3734   // Initialize Java-Level synchronization subsystem
3735   ObjectMonitor::Initialize();
3736 
3737   // Initialize global modules
3738   jint status = init_globals();
3739   if (status != JNI_OK) {
3740     main_thread->smr_delete();
3741     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3742     return status;
3743   }
3744 
3745   JFR_ONLY(Jfr::on_vm_init();)
3746 
3747   // Should be done after the heap is fully created
3748   main_thread->cache_global_variables();
3749 
3750   HandleMark hm;
3751 
3752   { MutexLocker mu(Threads_lock);
3753     Threads::add(main_thread);
3754   }
3755 
3756   // Any JVMTI raw monitors entered in onload will transition into
3757   // real raw monitor. VM is setup enough here for raw monitor enter.
3758   JvmtiExport::transition_pending_onload_raw_monitors();
3759 
3760   // Create the VMThread
3761   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3762 
3763   VMThread::create();
3764     Thread* vmthread = VMThread::vm_thread();
3765 
3766     if (!os::create_thread(vmthread, os::vm_thread)) {
3767       vm_exit_during_initialization("Cannot create VM thread. "
3768                                     "Out of system resources.");
3769     }
3770 
3771     // Wait for the VM thread to become ready, and VMThread::run to initialize
3772     // Monitors can have spurious returns, must always check another state flag
3773     {
3774       MutexLocker ml(Notify_lock);
3775       os::start_thread(vmthread);
3776       while (vmthread->active_handles() == NULL) {
3777         Notify_lock->wait();
3778       }
3779     }
3780   }
3781 
3782   assert(Universe::is_fully_initialized(), "not initialized");
3783   if (VerifyDuringStartup) {
3784     // Make sure we're starting with a clean slate.
3785     VM_Verify verify_op;
3786     VMThread::execute(&verify_op);
3787   }
3788 
3789   Thread* THREAD = Thread::current();
3790 
3791   // Always call even when there are not JVMTI environments yet, since environments
3792   // may be attached late and JVMTI must track phases of VM execution
3793   JvmtiExport::enter_early_start_phase();
3794 
3795   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3796   JvmtiExport::post_early_vm_start();
3797 
3798   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3799 
3800   // We need this for ClassDataSharing - the initial vm.info property is set
3801   // with the default value of CDS "sharing" which may be reset through
3802   // command line options.
3803   reset_vm_info_property(CHECK_JNI_ERR);
3804 
3805   quicken_jni_functions();
3806 
3807   // No more stub generation allowed after that point.
3808   StubCodeDesc::freeze();
3809 
3810   // Set flag that basic initialization has completed. Used by exceptions and various
3811   // debug stuff, that does not work until all basic classes have been initialized.
3812   set_init_completed();
3813 
3814   LogConfiguration::post_initialize();
3815   Metaspace::post_initialize();
3816 
3817   HOTSPOT_VM_INIT_END();
3818 
3819   // record VM initialization completion time
3820 #if INCLUDE_MANAGEMENT
3821   Management::record_vm_init_completed();
3822 #endif // INCLUDE_MANAGEMENT
3823 
3824   // Signal Dispatcher needs to be started before VMInit event is posted
3825   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3826 
3827   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3828   if (!DisableAttachMechanism) {
3829     AttachListener::vm_start();
3830     if (StartAttachListener || AttachListener::init_at_startup()) {
3831       AttachListener::init();
3832     }
3833   }
3834 
3835   // Launch -Xrun agents
3836   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3837   // back-end can launch with -Xdebug -Xrunjdwp.
3838   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3839     create_vm_init_libraries();
3840   }
3841 
3842   if (CleanChunkPoolAsync) {
3843     Chunk::start_chunk_pool_cleaner_task();
3844   }
3845 
3846   // initialize compiler(s)
3847 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3848 #if INCLUDE_JVMCI
3849   bool force_JVMCI_intialization = false;
3850   if (EnableJVMCI) {
3851     // Initialize JVMCI eagerly when it is explicitly requested.
3852     // Or when JVMCIPrintProperties is enabled.
3853     // The JVMCI Java initialization code will read this flag and
3854     // do the printing if it's set.
3855     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3856 
3857     if (!force_JVMCI_intialization) {
3858       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3859       // compilations via JVMCI will not actually block until JVMCI is initialized.
3860       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3861     }
3862   }
3863 #endif
3864   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3865   // Postpone completion of compiler initialization to after JVMCI
3866   // is initialized to avoid timeouts of blocking compilations.
3867   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3868     CompileBroker::compilation_init_phase2();
3869   }
3870 #endif
3871 
3872   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3873   // It is done after compilers are initialized, because otherwise compilations of
3874   // signature polymorphic MH intrinsics can be missed
3875   // (see SystemDictionary::find_method_handle_intrinsic).
3876   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3877 
3878   // This will initialize the module system.  Only java.base classes can be
3879   // loaded until phase 2 completes
3880   call_initPhase2(CHECK_JNI_ERR);
3881 
3882   // Always call even when there are not JVMTI environments yet, since environments
3883   // may be attached late and JVMTI must track phases of VM execution
3884   JvmtiExport::enter_start_phase();
3885 
3886   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3887   JvmtiExport::post_vm_start();
3888 
3889   // Final system initialization including security manager and system class loader
3890   call_initPhase3(CHECK_JNI_ERR);
3891 
3892   // cache the system and platform class loaders
3893   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3894 
3895 #if INCLUDE_CDS
3896   if (DumpSharedSpaces) {
3897     // capture the module path info from the ModuleEntryTable
3898     ClassLoader::initialize_module_path(THREAD);
3899   }
3900 #endif
3901 
3902 #if INCLUDE_JVMCI
3903   if (force_JVMCI_intialization) {
3904     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3905     CompileBroker::compilation_init_phase2();
3906   }
3907 #endif
3908 
3909   // Always call even when there are not JVMTI environments yet, since environments
3910   // may be attached late and JVMTI must track phases of VM execution
3911   JvmtiExport::enter_live_phase();
3912 
3913   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3914   JvmtiExport::post_vm_initialized();
3915 
3916   JFR_ONLY(Jfr::on_vm_start();)
3917 
3918 #if INCLUDE_MANAGEMENT
3919   Management::initialize(THREAD);
3920 
3921   if (HAS_PENDING_EXCEPTION) {
3922     // management agent fails to start possibly due to
3923     // configuration problem and is responsible for printing
3924     // stack trace if appropriate. Simply exit VM.
3925     vm_exit(1);
3926   }
3927 #endif // INCLUDE_MANAGEMENT
3928 
3929   if (MemProfiling)                   MemProfiler::engage();
3930   StatSampler::engage();
3931   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3932 
3933   BiasedLocking::init();
3934 
3935 #if INCLUDE_RTM_OPT
3936   RTMLockingCounters::init();
3937 #endif
3938 
3939   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3940     call_postVMInitHook(THREAD);
3941     // The Java side of PostVMInitHook.run must deal with all
3942     // exceptions and provide means of diagnosis.
3943     if (HAS_PENDING_EXCEPTION) {
3944       CLEAR_PENDING_EXCEPTION;
3945     }
3946   }
3947 
3948   {
3949     MutexLocker ml(PeriodicTask_lock);
3950     // Make sure the WatcherThread can be started by WatcherThread::start()
3951     // or by dynamic enrollment.
3952     WatcherThread::make_startable();
3953     // Start up the WatcherThread if there are any periodic tasks
3954     // NOTE:  All PeriodicTasks should be registered by now. If they
3955     //   aren't, late joiners might appear to start slowly (we might
3956     //   take a while to process their first tick).
3957     if (PeriodicTask::num_tasks() > 0) {
3958       WatcherThread::start();
3959     }
3960   }
3961 
3962   create_vm_timer.end();
3963 #ifdef ASSERT
3964   _vm_complete = true;
3965 #endif
3966 
3967   if (DumpSharedSpaces) {
3968     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3969     ShouldNotReachHere();
3970   }
3971 
3972   return JNI_OK;
3973 }
3974 
3975 // type for the Agent_OnLoad and JVM_OnLoad entry points
3976 extern "C" {
3977   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3978 }
3979 // Find a command line agent library and return its entry point for
3980 //         -agentlib:  -agentpath:   -Xrun
3981 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3982 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3983                                     const char *on_load_symbols[],
3984                                     size_t num_symbol_entries) {
3985   OnLoadEntry_t on_load_entry = NULL;
3986   void *library = NULL;
3987 
3988   if (!agent->valid()) {
3989     char buffer[JVM_MAXPATHLEN];
3990     char ebuf[1024] = "";
3991     const char *name = agent->name();
3992     const char *msg = "Could not find agent library ";
3993 
3994     // First check to see if agent is statically linked into executable
3995     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3996       library = agent->os_lib();
3997     } else if (agent->is_absolute_path()) {
3998       library = os::dll_load(name, ebuf, sizeof ebuf);
3999       if (library == NULL) {
4000         const char *sub_msg = " in absolute path, with error: ";
4001         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4002         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4003         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4004         // If we can't find the agent, exit.
4005         vm_exit_during_initialization(buf, NULL);
4006         FREE_C_HEAP_ARRAY(char, buf);
4007       }
4008     } else {
4009       // Try to load the agent from the standard dll directory
4010       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4011                              name)) {
4012         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4013       }
4014       if (library == NULL) { // Try the library path directory.
4015         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4016           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4017         }
4018         if (library == NULL) {
4019           const char *sub_msg = " on the library path, with error: ";
4020           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4021 
4022           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4023                        strlen(ebuf) + strlen(sub_msg2) + 1;
4024           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4025           if (!agent->is_instrument_lib()) {
4026             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4027           } else {
4028             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4029           }
4030           // If we can't find the agent, exit.
4031           vm_exit_during_initialization(buf, NULL);
4032           FREE_C_HEAP_ARRAY(char, buf);
4033         }
4034       }
4035     }
4036     agent->set_os_lib(library);
4037     agent->set_valid();
4038   }
4039 
4040   // Find the OnLoad function.
4041   on_load_entry =
4042     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4043                                                           false,
4044                                                           on_load_symbols,
4045                                                           num_symbol_entries));
4046   return on_load_entry;
4047 }
4048 
4049 // Find the JVM_OnLoad entry point
4050 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4051   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4052   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4053 }
4054 
4055 // Find the Agent_OnLoad entry point
4056 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4057   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4058   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4059 }
4060 
4061 // For backwards compatibility with -Xrun
4062 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4063 // treated like -agentpath:
4064 // Must be called before agent libraries are created
4065 void Threads::convert_vm_init_libraries_to_agents() {
4066   AgentLibrary* agent;
4067   AgentLibrary* next;
4068 
4069   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4070     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4071     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4072 
4073     // If there is an JVM_OnLoad function it will get called later,
4074     // otherwise see if there is an Agent_OnLoad
4075     if (on_load_entry == NULL) {
4076       on_load_entry = lookup_agent_on_load(agent);
4077       if (on_load_entry != NULL) {
4078         // switch it to the agent list -- so that Agent_OnLoad will be called,
4079         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4080         Arguments::convert_library_to_agent(agent);
4081       } else {
4082         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4083       }
4084     }
4085   }
4086 }
4087 
4088 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4089 // Invokes Agent_OnLoad
4090 // Called very early -- before JavaThreads exist
4091 void Threads::create_vm_init_agents() {
4092   extern struct JavaVM_ main_vm;
4093   AgentLibrary* agent;
4094 
4095   JvmtiExport::enter_onload_phase();
4096 
4097   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4098     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4099 
4100     if (on_load_entry != NULL) {
4101       // Invoke the Agent_OnLoad function
4102       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4103       if (err != JNI_OK) {
4104         vm_exit_during_initialization("agent library failed to init", agent->name());
4105       }
4106     } else {
4107       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4108     }
4109   }
4110   JvmtiExport::enter_primordial_phase();
4111 }
4112 
4113 extern "C" {
4114   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4115 }
4116 
4117 void Threads::shutdown_vm_agents() {
4118   // Send any Agent_OnUnload notifications
4119   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4120   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4121   extern struct JavaVM_ main_vm;
4122   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4123 
4124     // Find the Agent_OnUnload function.
4125     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4126                                                    os::find_agent_function(agent,
4127                                                    false,
4128                                                    on_unload_symbols,
4129                                                    num_symbol_entries));
4130 
4131     // Invoke the Agent_OnUnload function
4132     if (unload_entry != NULL) {
4133       JavaThread* thread = JavaThread::current();
4134       ThreadToNativeFromVM ttn(thread);
4135       HandleMark hm(thread);
4136       (*unload_entry)(&main_vm);
4137     }
4138   }
4139 }
4140 
4141 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4142 // Invokes JVM_OnLoad
4143 void Threads::create_vm_init_libraries() {
4144   extern struct JavaVM_ main_vm;
4145   AgentLibrary* agent;
4146 
4147   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4148     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4149 
4150     if (on_load_entry != NULL) {
4151       // Invoke the JVM_OnLoad function
4152       JavaThread* thread = JavaThread::current();
4153       ThreadToNativeFromVM ttn(thread);
4154       HandleMark hm(thread);
4155       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4156       if (err != JNI_OK) {
4157         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4158       }
4159     } else {
4160       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4161     }
4162   }
4163 }
4164 
4165 
4166 // Last thread running calls java.lang.Shutdown.shutdown()
4167 void JavaThread::invoke_shutdown_hooks() {
4168   HandleMark hm(this);
4169 
4170   // We could get here with a pending exception, if so clear it now.
4171   if (this->has_pending_exception()) {
4172     this->clear_pending_exception();
4173   }
4174 
4175   EXCEPTION_MARK;
4176   Klass* shutdown_klass =
4177     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4178                                       THREAD);
4179   if (shutdown_klass != NULL) {
4180     // SystemDictionary::resolve_or_null will return null if there was
4181     // an exception.  If we cannot load the Shutdown class, just don't
4182     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4183     // won't be run.  Note that if a shutdown hook was registered,
4184     // the Shutdown class would have already been loaded
4185     // (Runtime.addShutdownHook will load it).
4186     JavaValue result(T_VOID);
4187     JavaCalls::call_static(&result,
4188                            shutdown_klass,
4189                            vmSymbols::shutdown_method_name(),
4190                            vmSymbols::void_method_signature(),
4191                            THREAD);
4192   }
4193   CLEAR_PENDING_EXCEPTION;
4194 }
4195 
4196 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4197 // the program falls off the end of main(). Another VM exit path is through
4198 // vm_exit() when the program calls System.exit() to return a value or when
4199 // there is a serious error in VM. The two shutdown paths are not exactly
4200 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4201 // and VM_Exit op at VM level.
4202 //
4203 // Shutdown sequence:
4204 //   + Shutdown native memory tracking if it is on
4205 //   + Wait until we are the last non-daemon thread to execute
4206 //     <-- every thing is still working at this moment -->
4207 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4208 //        shutdown hooks
4209 //   + Call before_exit(), prepare for VM exit
4210 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4211 //        currently the only user of this mechanism is File.deleteOnExit())
4212 //      > stop StatSampler, watcher thread, CMS threads,
4213 //        post thread end and vm death events to JVMTI,
4214 //        stop signal thread
4215 //   + Call JavaThread::exit(), it will:
4216 //      > release JNI handle blocks, remove stack guard pages
4217 //      > remove this thread from Threads list
4218 //     <-- no more Java code from this thread after this point -->
4219 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4220 //     the compiler threads at safepoint
4221 //     <-- do not use anything that could get blocked by Safepoint -->
4222 //   + Disable tracing at JNI/JVM barriers
4223 //   + Set _vm_exited flag for threads that are still running native code
4224 //   + Delete this thread
4225 //   + Call exit_globals()
4226 //      > deletes tty
4227 //      > deletes PerfMemory resources
4228 //   + Return to caller
4229 
4230 bool Threads::destroy_vm() {
4231   JavaThread* thread = JavaThread::current();
4232 
4233 #ifdef ASSERT
4234   _vm_complete = false;
4235 #endif
4236   // Wait until we are the last non-daemon thread to execute
4237   { MutexLocker nu(Threads_lock);
4238     while (Threads::number_of_non_daemon_threads() > 1)
4239       // This wait should make safepoint checks, wait without a timeout,
4240       // and wait as a suspend-equivalent condition.
4241       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4242                          Mutex::_as_suspend_equivalent_flag);
4243   }
4244 
4245   EventShutdown e;
4246   if (e.should_commit()) {
4247     e.set_reason("No remaining non-daemon Java threads");
4248     e.commit();
4249   }
4250 
4251   // Hang forever on exit if we are reporting an error.
4252   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4253     os::infinite_sleep();
4254   }
4255   os::wait_for_keypress_at_exit();
4256 
4257   // run Java level shutdown hooks
4258   thread->invoke_shutdown_hooks();
4259 
4260   before_exit(thread);
4261 
4262   thread->exit(true);
4263 
4264   // Stop VM thread.
4265   {
4266     // 4945125 The vm thread comes to a safepoint during exit.
4267     // GC vm_operations can get caught at the safepoint, and the
4268     // heap is unparseable if they are caught. Grab the Heap_lock
4269     // to prevent this. The GC vm_operations will not be able to
4270     // queue until after the vm thread is dead. After this point,
4271     // we'll never emerge out of the safepoint before the VM exits.
4272 
4273     MutexLocker ml(Heap_lock);
4274 
4275     VMThread::wait_for_vm_thread_exit();
4276     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4277     VMThread::destroy();
4278   }
4279 
4280   // Now, all Java threads are gone except daemon threads. Daemon threads
4281   // running Java code or in VM are stopped by the Safepoint. However,
4282   // daemon threads executing native code are still running.  But they
4283   // will be stopped at native=>Java/VM barriers. Note that we can't
4284   // simply kill or suspend them, as it is inherently deadlock-prone.
4285 
4286   VM_Exit::set_vm_exited();
4287 
4288   // Clean up ideal graph printers after the VMThread has started
4289   // the final safepoint which will block all the Compiler threads.
4290   // Note that this Thread has already logically exited so the
4291   // clean_up() function's use of a JavaThreadIteratorWithHandle
4292   // would be a problem except set_vm_exited() has remembered the
4293   // shutdown thread which is granted a policy exception.
4294 #if defined(COMPILER2) && !defined(PRODUCT)
4295   IdealGraphPrinter::clean_up();
4296 #endif
4297 
4298   notify_vm_shutdown();
4299 
4300   // We are after VM_Exit::set_vm_exited() so we can't call
4301   // thread->smr_delete() or we will block on the Threads_lock.
4302   // Deleting the shutdown thread here is safe because another
4303   // JavaThread cannot have an active ThreadsListHandle for
4304   // this JavaThread.
4305   delete thread;
4306 
4307 #if INCLUDE_JVMCI
4308   if (JVMCICounterSize > 0) {
4309     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4310   }
4311 #endif
4312 
4313   // exit_globals() will delete tty
4314   exit_globals();
4315 
4316   LogConfiguration::finalize();
4317 
4318   return true;
4319 }
4320 
4321 
4322 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4323   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4324   return is_supported_jni_version(version);
4325 }
4326 
4327 
4328 jboolean Threads::is_supported_jni_version(jint version) {
4329   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4330   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4331   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4332   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4333   if (version == JNI_VERSION_9) return JNI_TRUE;
4334   if (version == JNI_VERSION_10) return JNI_TRUE;
4335   return JNI_FALSE;
4336 }
4337 
4338 
4339 void Threads::add(JavaThread* p, bool force_daemon) {
4340   // The threads lock must be owned at this point
4341   assert_locked_or_safepoint(Threads_lock);
4342 
4343   BarrierSet::barrier_set()->on_thread_attach(p);
4344 
4345   p->set_next(_thread_list);
4346   _thread_list = p;
4347 
4348   // Once a JavaThread is added to the Threads list, smr_delete() has
4349   // to be used to delete it. Otherwise we can just delete it directly.
4350   p->set_on_thread_list();
4351 
4352   _number_of_threads++;
4353   oop threadObj = p->threadObj();
4354   bool daemon = true;
4355   // Bootstrapping problem: threadObj can be null for initial
4356   // JavaThread (or for threads attached via JNI)
4357   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4358     _number_of_non_daemon_threads++;
4359     daemon = false;
4360   }
4361 
4362   ThreadService::add_thread(p, daemon);
4363 
4364   // Maintain fast thread list
4365   ThreadsSMRSupport::add_thread(p);
4366 
4367   // Possible GC point.
4368   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4369 }
4370 
4371 void Threads::remove(JavaThread* p) {
4372 
4373   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4374   ObjectSynchronizer::omFlush(p);
4375 
4376   // Extra scope needed for Thread_lock, so we can check
4377   // that we do not remove thread without safepoint code notice
4378   { MutexLocker ml(Threads_lock);
4379 
4380     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4381 
4382     // Maintain fast thread list
4383     ThreadsSMRSupport::remove_thread(p);
4384 
4385     JavaThread* current = _thread_list;
4386     JavaThread* prev    = NULL;
4387 
4388     while (current != p) {
4389       prev    = current;
4390       current = current->next();
4391     }
4392 
4393     if (prev) {
4394       prev->set_next(current->next());
4395     } else {
4396       _thread_list = p->next();
4397     }
4398 
4399     _number_of_threads--;
4400     oop threadObj = p->threadObj();
4401     bool daemon = true;
4402     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4403       _number_of_non_daemon_threads--;
4404       daemon = false;
4405 
4406       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4407       // on destroy_vm will wake up.
4408       if (number_of_non_daemon_threads() == 1) {
4409         Threads_lock->notify_all();
4410       }
4411     }
4412     ThreadService::remove_thread(p, daemon);
4413 
4414     // Make sure that safepoint code disregard this thread. This is needed since
4415     // the thread might mess around with locks after this point. This can cause it
4416     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4417     // of this thread since it is removed from the queue.
4418     p->set_terminated_value();
4419   } // unlock Threads_lock
4420 
4421   // Since Events::log uses a lock, we grab it outside the Threads_lock
4422   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4423 }
4424 
4425 // Operations on the Threads list for GC.  These are not explicitly locked,
4426 // but the garbage collector must provide a safe context for them to run.
4427 // In particular, these things should never be called when the Threads_lock
4428 // is held by some other thread. (Note: the Safepoint abstraction also
4429 // uses the Threads_lock to guarantee this property. It also makes sure that
4430 // all threads gets blocked when exiting or starting).
4431 
4432 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4433   ALL_JAVA_THREADS(p) {
4434     p->oops_do(f, cf);
4435   }
4436   VMThread::vm_thread()->oops_do(f, cf);
4437 }
4438 
4439 void Threads::change_thread_claim_parity() {
4440   // Set the new claim parity.
4441   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4442          "Not in range.");
4443   _thread_claim_parity++;
4444   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4445   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4446          "Not in range.");
4447 }
4448 
4449 #ifdef ASSERT
4450 void Threads::assert_all_threads_claimed() {
4451   ALL_JAVA_THREADS(p) {
4452     const int thread_parity = p->oops_do_parity();
4453     assert((thread_parity == _thread_claim_parity),
4454            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4455   }
4456   VMThread* vmt = VMThread::vm_thread();
4457   const int thread_parity = vmt->oops_do_parity();
4458   assert((thread_parity == _thread_claim_parity),
4459          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4460 }
4461 #endif // ASSERT
4462 
4463 class ParallelOopsDoThreadClosure : public ThreadClosure {
4464 private:
4465   OopClosure* _f;
4466   CodeBlobClosure* _cf;
4467 public:
4468   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4469   void do_thread(Thread* t) {
4470     t->oops_do(_f, _cf);
4471   }
4472 };
4473 
4474 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4475   ParallelOopsDoThreadClosure tc(f, cf);
4476   possibly_parallel_threads_do(is_par, &tc);
4477 }
4478 
4479 void Threads::nmethods_do(CodeBlobClosure* cf) {
4480   ALL_JAVA_THREADS(p) {
4481     // This is used by the code cache sweeper to mark nmethods that are active
4482     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4483     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4484     if(!p->is_Code_cache_sweeper_thread()) {
4485       p->nmethods_do(cf);
4486     }
4487   }
4488 }
4489 
4490 void Threads::metadata_do(void f(Metadata*)) {
4491   ALL_JAVA_THREADS(p) {
4492     p->metadata_do(f);
4493   }
4494 }
4495 
4496 class ThreadHandlesClosure : public ThreadClosure {
4497   void (*_f)(Metadata*);
4498  public:
4499   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4500   virtual void do_thread(Thread* thread) {
4501     thread->metadata_handles_do(_f);
4502   }
4503 };
4504 
4505 void Threads::metadata_handles_do(void f(Metadata*)) {
4506   // Only walk the Handles in Thread.
4507   ThreadHandlesClosure handles_closure(f);
4508   threads_do(&handles_closure);
4509 }
4510 
4511 void Threads::deoptimized_wrt_marked_nmethods() {
4512   ALL_JAVA_THREADS(p) {
4513     p->deoptimized_wrt_marked_nmethods();
4514   }
4515 }
4516 
4517 
4518 // Get count Java threads that are waiting to enter the specified monitor.
4519 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4520                                                          int count,
4521                                                          address monitor) {
4522   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4523 
4524   int i = 0;
4525   DO_JAVA_THREADS(t_list, p) {
4526     if (!p->can_call_java()) continue;
4527 
4528     address pending = (address)p->current_pending_monitor();
4529     if (pending == monitor) {             // found a match
4530       if (i < count) result->append(p);   // save the first count matches
4531       i++;
4532     }
4533   }
4534 
4535   return result;
4536 }
4537 
4538 
4539 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4540                                                       address owner) {
4541   // NULL owner means not locked so we can skip the search
4542   if (owner == NULL) return NULL;
4543 
4544   DO_JAVA_THREADS(t_list, p) {
4545     // first, see if owner is the address of a Java thread
4546     if (owner == (address)p) return p;
4547   }
4548 
4549   // Cannot assert on lack of success here since this function may be
4550   // used by code that is trying to report useful problem information
4551   // like deadlock detection.
4552   if (UseHeavyMonitors) return NULL;
4553 
4554   // If we didn't find a matching Java thread and we didn't force use of
4555   // heavyweight monitors, then the owner is the stack address of the
4556   // Lock Word in the owning Java thread's stack.
4557   //
4558   JavaThread* the_owner = NULL;
4559   DO_JAVA_THREADS(t_list, q) {
4560     if (q->is_lock_owned(owner)) {
4561       the_owner = q;
4562       break;
4563     }
4564   }
4565 
4566   // cannot assert on lack of success here; see above comment
4567   return the_owner;
4568 }
4569 
4570 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4571 void Threads::print_on(outputStream* st, bool print_stacks,
4572                        bool internal_format, bool print_concurrent_locks) {
4573   char buf[32];
4574   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4575 
4576   st->print_cr("Full thread dump %s (%s %s):",
4577                Abstract_VM_Version::vm_name(),
4578                Abstract_VM_Version::vm_release(),
4579                Abstract_VM_Version::vm_info_string());
4580   st->cr();
4581 
4582 #if INCLUDE_SERVICES
4583   // Dump concurrent locks
4584   ConcurrentLocksDump concurrent_locks;
4585   if (print_concurrent_locks) {
4586     concurrent_locks.dump_at_safepoint();
4587   }
4588 #endif // INCLUDE_SERVICES
4589 
4590   ThreadsSMRSupport::print_info_on(st);
4591   st->cr();
4592 
4593   ALL_JAVA_THREADS(p) {
4594     ResourceMark rm;
4595     p->print_on(st);
4596     if (print_stacks) {
4597       if (internal_format) {
4598         p->trace_stack();
4599       } else {
4600         p->print_stack_on(st);
4601       }
4602     }
4603     st->cr();
4604 #if INCLUDE_SERVICES
4605     if (print_concurrent_locks) {
4606       concurrent_locks.print_locks_on(p, st);
4607     }
4608 #endif // INCLUDE_SERVICES
4609   }
4610 
4611   VMThread::vm_thread()->print_on(st);
4612   st->cr();
4613   Universe::heap()->print_gc_threads_on(st);
4614   WatcherThread* wt = WatcherThread::watcher_thread();
4615   if (wt != NULL) {
4616     wt->print_on(st);
4617     st->cr();
4618   }
4619 
4620   st->flush();
4621 }
4622 
4623 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4624                              int buflen, bool* found_current) {
4625   if (this_thread != NULL) {
4626     bool is_current = (current == this_thread);
4627     *found_current = *found_current || is_current;
4628     st->print("%s", is_current ? "=>" : "  ");
4629 
4630     st->print(PTR_FORMAT, p2i(this_thread));
4631     st->print(" ");
4632     this_thread->print_on_error(st, buf, buflen);
4633     st->cr();
4634   }
4635 }
4636 
4637 class PrintOnErrorClosure : public ThreadClosure {
4638   outputStream* _st;
4639   Thread* _current;
4640   char* _buf;
4641   int _buflen;
4642   bool* _found_current;
4643  public:
4644   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4645                       int buflen, bool* found_current) :
4646    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4647 
4648   virtual void do_thread(Thread* thread) {
4649     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4650   }
4651 };
4652 
4653 // Threads::print_on_error() is called by fatal error handler. It's possible
4654 // that VM is not at safepoint and/or current thread is inside signal handler.
4655 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4656 // memory (even in resource area), it might deadlock the error handler.
4657 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4658                              int buflen) {
4659   ThreadsSMRSupport::print_info_on(st);
4660   st->cr();
4661 
4662   bool found_current = false;
4663   st->print_cr("Java Threads: ( => current thread )");
4664   ALL_JAVA_THREADS(thread) {
4665     print_on_error(thread, st, current, buf, buflen, &found_current);
4666   }
4667   st->cr();
4668 
4669   st->print_cr("Other Threads:");
4670   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4671   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4672 
4673   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4674   Universe::heap()->gc_threads_do(&print_closure);
4675 
4676   if (!found_current) {
4677     st->cr();
4678     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4679     current->print_on_error(st, buf, buflen);
4680     st->cr();
4681   }
4682   st->cr();
4683 
4684   st->print_cr("Threads with active compile tasks:");
4685   print_threads_compiling(st, buf, buflen);
4686 }
4687 
4688 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4689   ALL_JAVA_THREADS(thread) {
4690     if (thread->is_Compiler_thread()) {
4691       CompilerThread* ct = (CompilerThread*) thread;
4692 
4693       // Keep task in local variable for NULL check.
4694       // ct->_task might be set to NULL by concurring compiler thread
4695       // because it completed the compilation. The task is never freed,
4696       // though, just returned to a free list.
4697       CompileTask* task = ct->task();
4698       if (task != NULL) {
4699         thread->print_name_on_error(st, buf, buflen);
4700         task->print(st, NULL, true, true);
4701       }
4702     }
4703   }
4704 }
4705 
4706 
4707 // Internal SpinLock and Mutex
4708 // Based on ParkEvent
4709 
4710 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4711 //
4712 // We employ SpinLocks _only for low-contention, fixed-length
4713 // short-duration critical sections where we're concerned
4714 // about native mutex_t or HotSpot Mutex:: latency.
4715 // The mux construct provides a spin-then-block mutual exclusion
4716 // mechanism.
4717 //
4718 // Testing has shown that contention on the ListLock guarding gFreeList
4719 // is common.  If we implement ListLock as a simple SpinLock it's common
4720 // for the JVM to devolve to yielding with little progress.  This is true
4721 // despite the fact that the critical sections protected by ListLock are
4722 // extremely short.
4723 //
4724 // TODO-FIXME: ListLock should be of type SpinLock.
4725 // We should make this a 1st-class type, integrated into the lock
4726 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4727 // should have sufficient padding to avoid false-sharing and excessive
4728 // cache-coherency traffic.
4729 
4730 
4731 typedef volatile int SpinLockT;
4732 
4733 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4734   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4735     return;   // normal fast-path return
4736   }
4737 
4738   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4739   TEVENT(SpinAcquire - ctx);
4740   int ctr = 0;
4741   int Yields = 0;
4742   for (;;) {
4743     while (*adr != 0) {
4744       ++ctr;
4745       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4746         if (Yields > 5) {
4747           os::naked_short_sleep(1);
4748         } else {
4749           os::naked_yield();
4750           ++Yields;
4751         }
4752       } else {
4753         SpinPause();
4754       }
4755     }
4756     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4757   }
4758 }
4759 
4760 void Thread::SpinRelease(volatile int * adr) {
4761   assert(*adr != 0, "invariant");
4762   OrderAccess::fence();      // guarantee at least release consistency.
4763   // Roach-motel semantics.
4764   // It's safe if subsequent LDs and STs float "up" into the critical section,
4765   // but prior LDs and STs within the critical section can't be allowed
4766   // to reorder or float past the ST that releases the lock.
4767   // Loads and stores in the critical section - which appear in program
4768   // order before the store that releases the lock - must also appear
4769   // before the store that releases the lock in memory visibility order.
4770   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4771   // the ST of 0 into the lock-word which releases the lock, so fence
4772   // more than covers this on all platforms.
4773   *adr = 0;
4774 }
4775 
4776 // muxAcquire and muxRelease:
4777 //
4778 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4779 //    The LSB of the word is set IFF the lock is held.
4780 //    The remainder of the word points to the head of a singly-linked list
4781 //    of threads blocked on the lock.
4782 //
4783 // *  The current implementation of muxAcquire-muxRelease uses its own
4784 //    dedicated Thread._MuxEvent instance.  If we're interested in
4785 //    minimizing the peak number of extant ParkEvent instances then
4786 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4787 //    as certain invariants were satisfied.  Specifically, care would need
4788 //    to be taken with regards to consuming unpark() "permits".
4789 //    A safe rule of thumb is that a thread would never call muxAcquire()
4790 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4791 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4792 //    consume an unpark() permit intended for monitorenter, for instance.
4793 //    One way around this would be to widen the restricted-range semaphore
4794 //    implemented in park().  Another alternative would be to provide
4795 //    multiple instances of the PlatformEvent() for each thread.  One
4796 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4797 //
4798 // *  Usage:
4799 //    -- Only as leaf locks
4800 //    -- for short-term locking only as muxAcquire does not perform
4801 //       thread state transitions.
4802 //
4803 // Alternatives:
4804 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4805 //    but with parking or spin-then-park instead of pure spinning.
4806 // *  Use Taura-Oyama-Yonenzawa locks.
4807 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4808 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4809 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4810 //    acquiring threads use timers (ParkTimed) to detect and recover from
4811 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4812 //    boundaries by using placement-new.
4813 // *  Augment MCS with advisory back-link fields maintained with CAS().
4814 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4815 //    The validity of the backlinks must be ratified before we trust the value.
4816 //    If the backlinks are invalid the exiting thread must back-track through the
4817 //    the forward links, which are always trustworthy.
4818 // *  Add a successor indication.  The LockWord is currently encoded as
4819 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4820 //    to provide the usual futile-wakeup optimization.
4821 //    See RTStt for details.
4822 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4823 //
4824 
4825 
4826 const intptr_t LOCKBIT = 1;
4827 
4828 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4829   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4830   if (w == 0) return;
4831   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4832     return;
4833   }
4834 
4835   TEVENT(muxAcquire - Contention);
4836   ParkEvent * const Self = Thread::current()->_MuxEvent;
4837   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4838   for (;;) {
4839     int its = (os::is_MP() ? 100 : 0) + 1;
4840 
4841     // Optional spin phase: spin-then-park strategy
4842     while (--its >= 0) {
4843       w = *Lock;
4844       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4845         return;
4846       }
4847     }
4848 
4849     Self->reset();
4850     Self->OnList = intptr_t(Lock);
4851     // The following fence() isn't _strictly necessary as the subsequent
4852     // CAS() both serializes execution and ratifies the fetched *Lock value.
4853     OrderAccess::fence();
4854     for (;;) {
4855       w = *Lock;
4856       if ((w & LOCKBIT) == 0) {
4857         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4858           Self->OnList = 0;   // hygiene - allows stronger asserts
4859           return;
4860         }
4861         continue;      // Interference -- *Lock changed -- Just retry
4862       }
4863       assert(w & LOCKBIT, "invariant");
4864       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4865       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4866     }
4867 
4868     while (Self->OnList != 0) {
4869       Self->park();
4870     }
4871   }
4872 }
4873 
4874 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4875   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4876   if (w == 0) return;
4877   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4878     return;
4879   }
4880 
4881   TEVENT(muxAcquire - Contention);
4882   ParkEvent * ReleaseAfter = NULL;
4883   if (ev == NULL) {
4884     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4885   }
4886   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4887   for (;;) {
4888     guarantee(ev->OnList == 0, "invariant");
4889     int its = (os::is_MP() ? 100 : 0) + 1;
4890 
4891     // Optional spin phase: spin-then-park strategy
4892     while (--its >= 0) {
4893       w = *Lock;
4894       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4895         if (ReleaseAfter != NULL) {
4896           ParkEvent::Release(ReleaseAfter);
4897         }
4898         return;
4899       }
4900     }
4901 
4902     ev->reset();
4903     ev->OnList = intptr_t(Lock);
4904     // The following fence() isn't _strictly necessary as the subsequent
4905     // CAS() both serializes execution and ratifies the fetched *Lock value.
4906     OrderAccess::fence();
4907     for (;;) {
4908       w = *Lock;
4909       if ((w & LOCKBIT) == 0) {
4910         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4911           ev->OnList = 0;
4912           // We call ::Release while holding the outer lock, thus
4913           // artificially lengthening the critical section.
4914           // Consider deferring the ::Release() until the subsequent unlock(),
4915           // after we've dropped the outer lock.
4916           if (ReleaseAfter != NULL) {
4917             ParkEvent::Release(ReleaseAfter);
4918           }
4919           return;
4920         }
4921         continue;      // Interference -- *Lock changed -- Just retry
4922       }
4923       assert(w & LOCKBIT, "invariant");
4924       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4925       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4926     }
4927 
4928     while (ev->OnList != 0) {
4929       ev->park();
4930     }
4931   }
4932 }
4933 
4934 // Release() must extract a successor from the list and then wake that thread.
4935 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4936 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4937 // Release() would :
4938 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4939 // (B) Extract a successor from the private list "in-hand"
4940 // (C) attempt to CAS() the residual back into *Lock over null.
4941 //     If there were any newly arrived threads and the CAS() would fail.
4942 //     In that case Release() would detach the RATs, re-merge the list in-hand
4943 //     with the RATs and repeat as needed.  Alternately, Release() might
4944 //     detach and extract a successor, but then pass the residual list to the wakee.
4945 //     The wakee would be responsible for reattaching and remerging before it
4946 //     competed for the lock.
4947 //
4948 // Both "pop" and DMR are immune from ABA corruption -- there can be
4949 // multiple concurrent pushers, but only one popper or detacher.
4950 // This implementation pops from the head of the list.  This is unfair,
4951 // but tends to provide excellent throughput as hot threads remain hot.
4952 // (We wake recently run threads first).
4953 //
4954 // All paths through muxRelease() will execute a CAS.
4955 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4956 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4957 // executed within the critical section are complete and globally visible before the
4958 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4959 void Thread::muxRelease(volatile intptr_t * Lock)  {
4960   for (;;) {
4961     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
4962     assert(w & LOCKBIT, "invariant");
4963     if (w == LOCKBIT) return;
4964     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4965     assert(List != NULL, "invariant");
4966     assert(List->OnList == intptr_t(Lock), "invariant");
4967     ParkEvent * const nxt = List->ListNext;
4968     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4969 
4970     // The following CAS() releases the lock and pops the head element.
4971     // The CAS() also ratifies the previously fetched lock-word value.
4972     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
4973       continue;
4974     }
4975     List->OnList = 0;
4976     OrderAccess::fence();
4977     List->unpark();
4978     return;
4979   }
4980 }
4981 
4982 
4983 void Threads::verify() {
4984   ALL_JAVA_THREADS(p) {
4985     p->verify();
4986   }
4987   VMThread* thread = VMThread::vm_thread();
4988   if (thread != NULL) thread->verify();
4989 }