1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvmtifiles/jvmtiEnv.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logConfiguration.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/metaspaceShared.hpp"
  50 #include "memory/oopFactory.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "memory/universe.hpp"
  53 #include "oops/access.inline.hpp"
  54 #include "oops/instanceKlass.hpp"
  55 #include "oops/objArrayOop.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/symbol.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvm_misc.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/biasedLocking.hpp"
  66 #include "runtime/fieldDescriptor.inline.hpp"
  67 #include "runtime/flags/jvmFlagConstraintList.hpp"
  68 #include "runtime/flags/jvmFlagRangeList.hpp"
  69 #include "runtime/flags/jvmFlagWriteableList.hpp"
  70 #include "runtime/deoptimization.hpp"
  71 #include "runtime/frame.inline.hpp"
  72 #include "runtime/handshake.hpp"
  73 #include "runtime/init.hpp"
  74 #include "runtime/interfaceSupport.inline.hpp"
  75 #include "runtime/java.hpp"
  76 #include "runtime/javaCalls.hpp"
  77 #include "runtime/jniHandles.inline.hpp"
  78 #include "runtime/jniPeriodicChecker.hpp"
  79 #include "runtime/memprofiler.hpp"
  80 #include "runtime/mutexLocker.hpp"
  81 #include "runtime/objectMonitor.hpp"
  82 #include "runtime/orderAccess.hpp"
  83 #include "runtime/osThread.hpp"
  84 #include "runtime/prefetch.inline.hpp"
  85 #include "runtime/safepoint.hpp"
  86 #include "runtime/safepointMechanism.inline.hpp"
  87 #include "runtime/safepointVerifiers.hpp"
  88 #include "runtime/sharedRuntime.hpp"
  89 #include "runtime/statSampler.hpp"
  90 #include "runtime/stubRoutines.hpp"
  91 #include "runtime/sweeper.hpp"
  92 #include "runtime/task.hpp"
  93 #include "runtime/thread.inline.hpp"
  94 #include "runtime/threadCritical.hpp"
  95 #include "runtime/threadSMR.inline.hpp"
  96 #include "runtime/threadStatisticalInfo.hpp"
  97 #include "runtime/timer.hpp"
  98 #include "runtime/timerTrace.hpp"
  99 #include "runtime/vframe.inline.hpp"
 100 #include "runtime/vframeArray.hpp"
 101 #include "runtime/vframe_hp.hpp"
 102 #include "runtime/vmThread.hpp"
 103 #include "runtime/vmOperations.hpp"
 104 #include "runtime/vm_version.hpp"
 105 #include "services/attachListener.hpp"
 106 #include "services/management.hpp"
 107 #include "services/memTracker.hpp"
 108 #include "services/threadService.hpp"
 109 #include "utilities/align.hpp"
 110 #include "utilities/copy.hpp"
 111 #include "utilities/defaultStream.hpp"
 112 #include "utilities/dtrace.hpp"
 113 #include "utilities/events.hpp"
 114 #include "utilities/macros.hpp"
 115 #include "utilities/preserveException.hpp"
 116 #include "utilities/singleWriterSynchronizer.hpp"
 117 #include "utilities/vmError.hpp"
 118 #if INCLUDE_JVMCI
 119 #include "jvmci/jvmciCompiler.hpp"
 120 #include "jvmci/jvmciRuntime.hpp"
 121 #include "logging/logHandle.hpp"
 122 #endif
 123 #ifdef COMPILER1
 124 #include "c1/c1_Compiler.hpp"
 125 #endif
 126 #ifdef COMPILER2
 127 #include "opto/c2compiler.hpp"
 128 #include "opto/idealGraphPrinter.hpp"
 129 #endif
 130 #if INCLUDE_RTM_OPT
 131 #include "runtime/rtmLocking.hpp"
 132 #endif
 133 #if INCLUDE_JFR
 134 #include "jfr/jfr.hpp"
 135 #endif
 136 
 137 // Initialization after module runtime initialization
 138 void universe_post_module_init();  // must happen after call_initPhase2
 139 
 140 #ifdef DTRACE_ENABLED
 141 
 142 // Only bother with this argument setup if dtrace is available
 143 
 144   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 145   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 146 
 147   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 148     {                                                                      \
 149       ResourceMark rm(this);                                               \
 150       int len = 0;                                                         \
 151       const char* name = (javathread)->get_thread_name();                  \
 152       len = strlen(name);                                                  \
 153       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 154         (char *) name, len,                                                \
 155         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 156         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 157         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 158     }
 159 
 160 #else //  ndef DTRACE_ENABLED
 161 
 162   #define DTRACE_THREAD_PROBE(probe, javathread)
 163 
 164 #endif // ndef DTRACE_ENABLED
 165 
 166 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 167 // Current thread is maintained as a thread-local variable
 168 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 169 #endif
 170 
 171 // ======= Thread ========
 172 // Support for forcing alignment of thread objects for biased locking
 173 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 174   if (UseBiasedLocking) {
 175     const int alignment = markOopDesc::biased_lock_alignment;
 176     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 177     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 178                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 179                                                          AllocFailStrategy::RETURN_NULL);
 180     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 181     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 182            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 183            "JavaThread alignment code overflowed allocated storage");
 184     if (aligned_addr != real_malloc_addr) {
 185       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 186                               p2i(real_malloc_addr),
 187                               p2i(aligned_addr));
 188     }
 189     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 190     return aligned_addr;
 191   } else {
 192     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 193                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 194   }
 195 }
 196 
 197 void Thread::operator delete(void* p) {
 198   if (UseBiasedLocking) {
 199     FreeHeap(((Thread*) p)->_real_malloc_address);
 200   } else {
 201     FreeHeap(p);
 202   }
 203 }
 204 
 205 void JavaThread::smr_delete() {
 206   if (_on_thread_list) {
 207     ThreadsSMRSupport::smr_delete(this);
 208   } else {
 209     delete this;
 210   }
 211 }
 212 
 213 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 214 // JavaThread
 215 
 216 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 217 
 218 Thread::Thread() {
 219 
 220   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 221 
 222   // stack and get_thread
 223   set_stack_base(NULL);
 224   set_stack_size(0);
 225   set_self_raw_id(0);
 226   set_lgrp_id(-1);
 227   DEBUG_ONLY(clear_suspendible_thread();)
 228 
 229   // allocated data structures
 230   set_osthread(NULL);
 231   set_resource_area(new (mtThread)ResourceArea());
 232   DEBUG_ONLY(_current_resource_mark = NULL;)
 233   set_handle_area(new (mtThread) HandleArea(NULL));
 234   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 235   set_active_handles(NULL);
 236   set_free_handle_block(NULL);
 237   set_last_handle_mark(NULL);
 238   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 239 
 240   // This initial value ==> never claimed.
 241   _oops_do_parity = 0;
 242   _threads_hazard_ptr = NULL;
 243   _threads_list_ptr = NULL;
 244   _nested_threads_hazard_ptr_cnt = 0;
 245   _rcu_counter = 0;
 246 
 247   // the handle mark links itself to last_handle_mark
 248   new HandleMark(this);
 249 
 250   // plain initialization
 251   debug_only(_owned_locks = NULL;)
 252   debug_only(_allow_allocation_count = 0;)
 253   NOT_PRODUCT(_allow_safepoint_count = 0;)
 254   NOT_PRODUCT(_skip_gcalot = false;)
 255   _jvmti_env_iteration_count = 0;
 256   set_allocated_bytes(0);
 257   _vm_operation_started_count = 0;
 258   _vm_operation_completed_count = 0;
 259   _current_pending_monitor = NULL;
 260   _current_pending_monitor_is_from_java = true;
 261   _current_waiting_monitor = NULL;
 262   _num_nested_signal = 0;
 263   omFreeList = NULL;
 264   omFreeCount = 0;
 265   omFreeProvision = 32;
 266   omInUseList = NULL;
 267   omInUseCount = 0;
 268 
 269 #ifdef ASSERT
 270   _visited_for_critical_count = false;
 271 #endif
 272 
 273   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 274                          Monitor::_safepoint_check_sometimes);
 275   _suspend_flags = 0;
 276 
 277   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 278   _hashStateX = os::random();
 279   _hashStateY = 842502087;
 280   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 281   _hashStateW = 273326509;
 282 
 283   _OnTrap   = 0;
 284   _Stalled  = 0;
 285   _TypeTag  = 0x2BAD;
 286 
 287   // Many of the following fields are effectively final - immutable
 288   // Note that nascent threads can't use the Native Monitor-Mutex
 289   // construct until the _MutexEvent is initialized ...
 290   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 291   // we might instead use a stack of ParkEvents that we could provision on-demand.
 292   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 293   // and ::Release()
 294   _ParkEvent   = ParkEvent::Allocate(this);
 295   _SleepEvent  = ParkEvent::Allocate(this);
 296   _MutexEvent  = ParkEvent::Allocate(this);
 297   _MuxEvent    = ParkEvent::Allocate(this);
 298 
 299 #ifdef CHECK_UNHANDLED_OOPS
 300   if (CheckUnhandledOops) {
 301     _unhandled_oops = new UnhandledOops(this);
 302   }
 303 #endif // CHECK_UNHANDLED_OOPS
 304 #ifdef ASSERT
 305   if (UseBiasedLocking) {
 306     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 307     assert(this == _real_malloc_address ||
 308            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 309            "bug in forced alignment of thread objects");
 310   }
 311 #endif // ASSERT
 312 
 313   // Notify the barrier set that a thread is being created. The initial
 314   // thread is created before the barrier set is available.  The call to
 315   // BarrierSet::on_thread_create() for this thread is therefore deferred
 316   // to BarrierSet::set_barrier_set().
 317   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 318   if (barrier_set != NULL) {
 319     barrier_set->on_thread_create(this);
 320   } else {
 321     // Only the main thread should be created before the barrier set
 322     // and that happens just before Thread::current is set. No other thread
 323     // can attach as the VM is not created yet, so they can't execute this code.
 324     // If the main thread creates other threads before the barrier set that is an error.
 325     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 326   }
 327 }
 328 
 329 void Thread::initialize_thread_current() {
 330 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 331   assert(_thr_current == NULL, "Thread::current already initialized");
 332   _thr_current = this;
 333 #endif
 334   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 335   ThreadLocalStorage::set_thread(this);
 336   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 337 }
 338 
 339 void Thread::clear_thread_current() {
 340   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 341 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 342   _thr_current = NULL;
 343 #endif
 344   ThreadLocalStorage::set_thread(NULL);
 345 }
 346 
 347 void Thread::record_stack_base_and_size() {
 348   // Note: at this point, Thread object is not yet initialized. Do not rely on
 349   // any members being initialized. Do not rely on Thread::current() being set.
 350   // If possible, refrain from doing anything which may crash or assert since
 351   // quite probably those crash dumps will be useless.
 352   set_stack_base(os::current_stack_base());
 353   set_stack_size(os::current_stack_size());
 354 
 355 #ifdef SOLARIS
 356   if (os::is_primordial_thread()) {
 357     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 358   }
 359 #endif
 360 
 361   // Set stack limits after thread is initialized.
 362   if (is_Java_thread()) {
 363     ((JavaThread*) this)->set_stack_overflow_limit();
 364     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 365   }
 366 }
 367 
 368 #if INCLUDE_NMT
 369 void Thread::register_thread_stack_with_NMT() {
 370   MemTracker::record_thread_stack(stack_end(), stack_size());
 371 }
 372 #endif // INCLUDE_NMT
 373 
 374 void Thread::call_run() {
 375   DEBUG_ONLY(_run_state = CALL_RUN;)
 376 
 377   // At this point, Thread object should be fully initialized and
 378   // Thread::current() should be set.
 379 
 380   assert(Thread::current_or_null() != NULL, "current thread is unset");
 381   assert(Thread::current_or_null() == this, "current thread is wrong");
 382 
 383   // Perform common initialization actions
 384 
 385   register_thread_stack_with_NMT();
 386 
 387   JFR_ONLY(Jfr::on_thread_start(this);)
 388 
 389   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 390     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 391     os::current_thread_id(), p2i(stack_base() - stack_size()),
 392     p2i(stack_base()), stack_size()/1024);
 393 
 394   // Perform <ChildClass> initialization actions
 395   DEBUG_ONLY(_run_state = PRE_RUN;)
 396   this->pre_run();
 397 
 398   // Invoke <ChildClass>::run()
 399   DEBUG_ONLY(_run_state = RUN;)
 400   this->run();
 401   // Returned from <ChildClass>::run(). Thread finished.
 402 
 403   // Perform common tear-down actions
 404 
 405   assert(Thread::current_or_null() != NULL, "current thread is unset");
 406   assert(Thread::current_or_null() == this, "current thread is wrong");
 407 
 408   // Perform <ChildClass> tear-down actions
 409   DEBUG_ONLY(_run_state = POST_RUN;)
 410   this->post_run();
 411 
 412   // Note: at this point the thread object may already have deleted itself,
 413   // so from here on do not dereference *this*. Not all thread types currently
 414   // delete themselves when they terminate. But no thread should ever be deleted
 415   // asynchronously with respect to its termination - that is what _run_state can
 416   // be used to check.
 417 
 418   assert(Thread::current_or_null() == NULL, "current thread still present");
 419 }
 420 
 421 Thread::~Thread() {
 422 
 423   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 424   // get started due to errors etc. Any active thread should at least reach post_run
 425   // before it is deleted (usually in post_run()).
 426   assert(_run_state == PRE_CALL_RUN ||
 427          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 428          "_run_state=%d", (int)_run_state);
 429 
 430   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 431   // set might not be available if we encountered errors during bootstrapping.
 432   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 433   if (barrier_set != NULL) {
 434     barrier_set->on_thread_destroy(this);
 435   }
 436 
 437   // stack_base can be NULL if the thread is never started or exited before
 438   // record_stack_base_and_size called. Although, we would like to ensure
 439   // that all started threads do call record_stack_base_and_size(), there is
 440   // not proper way to enforce that.
 441 #if INCLUDE_NMT
 442   if (_stack_base != NULL) {
 443     MemTracker::release_thread_stack(stack_end(), stack_size());
 444 #ifdef ASSERT
 445     set_stack_base(NULL);
 446 #endif
 447   }
 448 #endif // INCLUDE_NMT
 449 
 450   // deallocate data structures
 451   delete resource_area();
 452   // since the handle marks are using the handle area, we have to deallocated the root
 453   // handle mark before deallocating the thread's handle area,
 454   assert(last_handle_mark() != NULL, "check we have an element");
 455   delete last_handle_mark();
 456   assert(last_handle_mark() == NULL, "check we have reached the end");
 457 
 458   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 459   // We NULL out the fields for good hygiene.
 460   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 461   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 462   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 463   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 464 
 465   delete handle_area();
 466   delete metadata_handles();
 467 
 468   // SR_handler uses this as a termination indicator -
 469   // needs to happen before os::free_thread()
 470   delete _SR_lock;
 471   _SR_lock = NULL;
 472 
 473   // osthread() can be NULL, if creation of thread failed.
 474   if (osthread() != NULL) os::free_thread(osthread());
 475 
 476   // Clear Thread::current if thread is deleting itself and it has not
 477   // already been done. This must be done before the memory is deallocated.
 478   // Needed to ensure JNI correctly detects non-attached threads.
 479   if (this == Thread::current_or_null()) {
 480     Thread::clear_thread_current();
 481   }
 482 
 483   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 484 }
 485 
 486 #ifdef ASSERT
 487 // A JavaThread is considered "dangling" if it is not the current
 488 // thread, has been added the Threads list, the system is not at a
 489 // safepoint and the Thread is not "protected".
 490 //
 491 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 492   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 493          !((JavaThread *) thread)->on_thread_list() ||
 494          SafepointSynchronize::is_at_safepoint() ||
 495          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 496          "possibility of dangling Thread pointer");
 497 }
 498 #endif
 499 
 500 ThreadPriority Thread::get_priority(const Thread* const thread) {
 501   ThreadPriority priority;
 502   // Can return an error!
 503   (void)os::get_priority(thread, priority);
 504   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 505   return priority;
 506 }
 507 
 508 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 509   debug_only(check_for_dangling_thread_pointer(thread);)
 510   // Can return an error!
 511   (void)os::set_priority(thread, priority);
 512 }
 513 
 514 
 515 void Thread::start(Thread* thread) {
 516   // Start is different from resume in that its safety is guaranteed by context or
 517   // being called from a Java method synchronized on the Thread object.
 518   if (!DisableStartThread) {
 519     if (thread->is_Java_thread()) {
 520       // Initialize the thread state to RUNNABLE before starting this thread.
 521       // Can not set it after the thread started because we do not know the
 522       // exact thread state at that time. It could be in MONITOR_WAIT or
 523       // in SLEEPING or some other state.
 524       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 525                                           java_lang_Thread::RUNNABLE);
 526     }
 527     os::start_thread(thread);
 528   }
 529 }
 530 
 531 // Enqueue a VM_Operation to do the job for us - sometime later
 532 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 533   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 534   VMThread::execute(vm_stop);
 535 }
 536 
 537 
 538 // Check if an external suspend request has completed (or has been
 539 // cancelled). Returns true if the thread is externally suspended and
 540 // false otherwise.
 541 //
 542 // The bits parameter returns information about the code path through
 543 // the routine. Useful for debugging:
 544 //
 545 // set in is_ext_suspend_completed():
 546 // 0x00000001 - routine was entered
 547 // 0x00000010 - routine return false at end
 548 // 0x00000100 - thread exited (return false)
 549 // 0x00000200 - suspend request cancelled (return false)
 550 // 0x00000400 - thread suspended (return true)
 551 // 0x00001000 - thread is in a suspend equivalent state (return true)
 552 // 0x00002000 - thread is native and walkable (return true)
 553 // 0x00004000 - thread is native_trans and walkable (needed retry)
 554 //
 555 // set in wait_for_ext_suspend_completion():
 556 // 0x00010000 - routine was entered
 557 // 0x00020000 - suspend request cancelled before loop (return false)
 558 // 0x00040000 - thread suspended before loop (return true)
 559 // 0x00080000 - suspend request cancelled in loop (return false)
 560 // 0x00100000 - thread suspended in loop (return true)
 561 // 0x00200000 - suspend not completed during retry loop (return false)
 562 
 563 // Helper class for tracing suspend wait debug bits.
 564 //
 565 // 0x00000100 indicates that the target thread exited before it could
 566 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 567 // 0x00080000 each indicate a cancelled suspend request so they don't
 568 // count as wait failures either.
 569 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 570 
 571 class TraceSuspendDebugBits : public StackObj {
 572  private:
 573   JavaThread * jt;
 574   bool         is_wait;
 575   bool         called_by_wait;  // meaningful when !is_wait
 576   uint32_t *   bits;
 577 
 578  public:
 579   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 580                         uint32_t *_bits) {
 581     jt             = _jt;
 582     is_wait        = _is_wait;
 583     called_by_wait = _called_by_wait;
 584     bits           = _bits;
 585   }
 586 
 587   ~TraceSuspendDebugBits() {
 588     if (!is_wait) {
 589 #if 1
 590       // By default, don't trace bits for is_ext_suspend_completed() calls.
 591       // That trace is very chatty.
 592       return;
 593 #else
 594       if (!called_by_wait) {
 595         // If tracing for is_ext_suspend_completed() is enabled, then only
 596         // trace calls to it from wait_for_ext_suspend_completion()
 597         return;
 598       }
 599 #endif
 600     }
 601 
 602     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 603       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 604         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 605         ResourceMark rm;
 606 
 607         tty->print_cr(
 608                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 609                       jt->get_thread_name(), *bits);
 610 
 611         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 612       }
 613     }
 614   }
 615 };
 616 #undef DEBUG_FALSE_BITS
 617 
 618 
 619 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 620                                           uint32_t *bits) {
 621   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 622 
 623   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 624   bool do_trans_retry;           // flag to force the retry
 625 
 626   *bits |= 0x00000001;
 627 
 628   do {
 629     do_trans_retry = false;
 630 
 631     if (is_exiting()) {
 632       // Thread is in the process of exiting. This is always checked
 633       // first to reduce the risk of dereferencing a freed JavaThread.
 634       *bits |= 0x00000100;
 635       return false;
 636     }
 637 
 638     if (!is_external_suspend()) {
 639       // Suspend request is cancelled. This is always checked before
 640       // is_ext_suspended() to reduce the risk of a rogue resume
 641       // confusing the thread that made the suspend request.
 642       *bits |= 0x00000200;
 643       return false;
 644     }
 645 
 646     if (is_ext_suspended()) {
 647       // thread is suspended
 648       *bits |= 0x00000400;
 649       return true;
 650     }
 651 
 652     // Now that we no longer do hard suspends of threads running
 653     // native code, the target thread can be changing thread state
 654     // while we are in this routine:
 655     //
 656     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 657     //
 658     // We save a copy of the thread state as observed at this moment
 659     // and make our decision about suspend completeness based on the
 660     // copy. This closes the race where the thread state is seen as
 661     // _thread_in_native_trans in the if-thread_blocked check, but is
 662     // seen as _thread_blocked in if-thread_in_native_trans check.
 663     JavaThreadState save_state = thread_state();
 664 
 665     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 666       // If the thread's state is _thread_blocked and this blocking
 667       // condition is known to be equivalent to a suspend, then we can
 668       // consider the thread to be externally suspended. This means that
 669       // the code that sets _thread_blocked has been modified to do
 670       // self-suspension if the blocking condition releases. We also
 671       // used to check for CONDVAR_WAIT here, but that is now covered by
 672       // the _thread_blocked with self-suspension check.
 673       //
 674       // Return true since we wouldn't be here unless there was still an
 675       // external suspend request.
 676       *bits |= 0x00001000;
 677       return true;
 678     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 679       // Threads running native code will self-suspend on native==>VM/Java
 680       // transitions. If its stack is walkable (should always be the case
 681       // unless this function is called before the actual java_suspend()
 682       // call), then the wait is done.
 683       *bits |= 0x00002000;
 684       return true;
 685     } else if (!called_by_wait && !did_trans_retry &&
 686                save_state == _thread_in_native_trans &&
 687                frame_anchor()->walkable()) {
 688       // The thread is transitioning from thread_in_native to another
 689       // thread state. check_safepoint_and_suspend_for_native_trans()
 690       // will force the thread to self-suspend. If it hasn't gotten
 691       // there yet we may have caught the thread in-between the native
 692       // code check above and the self-suspend. Lucky us. If we were
 693       // called by wait_for_ext_suspend_completion(), then it
 694       // will be doing the retries so we don't have to.
 695       //
 696       // Since we use the saved thread state in the if-statement above,
 697       // there is a chance that the thread has already transitioned to
 698       // _thread_blocked by the time we get here. In that case, we will
 699       // make a single unnecessary pass through the logic below. This
 700       // doesn't hurt anything since we still do the trans retry.
 701 
 702       *bits |= 0x00004000;
 703 
 704       // Once the thread leaves thread_in_native_trans for another
 705       // thread state, we break out of this retry loop. We shouldn't
 706       // need this flag to prevent us from getting back here, but
 707       // sometimes paranoia is good.
 708       did_trans_retry = true;
 709 
 710       // We wait for the thread to transition to a more usable state.
 711       for (int i = 1; i <= SuspendRetryCount; i++) {
 712         // We used to do an "os::yield_all(i)" call here with the intention
 713         // that yielding would increase on each retry. However, the parameter
 714         // is ignored on Linux which means the yield didn't scale up. Waiting
 715         // on the SR_lock below provides a much more predictable scale up for
 716         // the delay. It also provides a simple/direct point to check for any
 717         // safepoint requests from the VMThread
 718 
 719         // temporarily drops SR_lock while doing wait with safepoint check
 720         // (if we're a JavaThread - the WatcherThread can also call this)
 721         // and increase delay with each retry
 722         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 723 
 724         // check the actual thread state instead of what we saved above
 725         if (thread_state() != _thread_in_native_trans) {
 726           // the thread has transitioned to another thread state so
 727           // try all the checks (except this one) one more time.
 728           do_trans_retry = true;
 729           break;
 730         }
 731       } // end retry loop
 732 
 733 
 734     }
 735   } while (do_trans_retry);
 736 
 737   *bits |= 0x00000010;
 738   return false;
 739 }
 740 
 741 // Wait for an external suspend request to complete (or be cancelled).
 742 // Returns true if the thread is externally suspended and false otherwise.
 743 //
 744 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 745                                                  uint32_t *bits) {
 746   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 747                              false /* !called_by_wait */, bits);
 748 
 749   // local flag copies to minimize SR_lock hold time
 750   bool is_suspended;
 751   bool pending;
 752   uint32_t reset_bits;
 753 
 754   // set a marker so is_ext_suspend_completed() knows we are the caller
 755   *bits |= 0x00010000;
 756 
 757   // We use reset_bits to reinitialize the bits value at the top of
 758   // each retry loop. This allows the caller to make use of any
 759   // unused bits for their own marking purposes.
 760   reset_bits = *bits;
 761 
 762   {
 763     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 764     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 765                                             delay, bits);
 766     pending = is_external_suspend();
 767   }
 768   // must release SR_lock to allow suspension to complete
 769 
 770   if (!pending) {
 771     // A cancelled suspend request is the only false return from
 772     // is_ext_suspend_completed() that keeps us from entering the
 773     // retry loop.
 774     *bits |= 0x00020000;
 775     return false;
 776   }
 777 
 778   if (is_suspended) {
 779     *bits |= 0x00040000;
 780     return true;
 781   }
 782 
 783   for (int i = 1; i <= retries; i++) {
 784     *bits = reset_bits;  // reinit to only track last retry
 785 
 786     // We used to do an "os::yield_all(i)" call here with the intention
 787     // that yielding would increase on each retry. However, the parameter
 788     // is ignored on Linux which means the yield didn't scale up. Waiting
 789     // on the SR_lock below provides a much more predictable scale up for
 790     // the delay. It also provides a simple/direct point to check for any
 791     // safepoint requests from the VMThread
 792 
 793     {
 794       MutexLocker ml(SR_lock());
 795       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 796       // can also call this)  and increase delay with each retry
 797       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 798 
 799       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 800                                               delay, bits);
 801 
 802       // It is possible for the external suspend request to be cancelled
 803       // (by a resume) before the actual suspend operation is completed.
 804       // Refresh our local copy to see if we still need to wait.
 805       pending = is_external_suspend();
 806     }
 807 
 808     if (!pending) {
 809       // A cancelled suspend request is the only false return from
 810       // is_ext_suspend_completed() that keeps us from staying in the
 811       // retry loop.
 812       *bits |= 0x00080000;
 813       return false;
 814     }
 815 
 816     if (is_suspended) {
 817       *bits |= 0x00100000;
 818       return true;
 819     }
 820   } // end retry loop
 821 
 822   // thread did not suspend after all our retries
 823   *bits |= 0x00200000;
 824   return false;
 825 }
 826 
 827 // Called from API entry points which perform stack walking. If the
 828 // associated JavaThread is the current thread, then wait_for_suspend
 829 // is not used. Otherwise, it determines if we should wait for the
 830 // "other" thread to complete external suspension. (NOTE: in future
 831 // releases the suspension mechanism should be reimplemented so this
 832 // is not necessary.)
 833 //
 834 bool
 835 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 836   if (this != JavaThread::current()) {
 837     // "other" threads require special handling.
 838     if (wait_for_suspend) {
 839       // We are allowed to wait for the external suspend to complete
 840       // so give the other thread a chance to get suspended.
 841       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 842                                            SuspendRetryDelay, bits)) {
 843         // Didn't make it so let the caller know.
 844         return false;
 845       }
 846     }
 847     // We aren't allowed to wait for the external suspend to complete
 848     // so if the other thread isn't externally suspended we need to
 849     // let the caller know.
 850     else if (!is_ext_suspend_completed_with_lock(bits)) {
 851       return false;
 852     }
 853   }
 854 
 855   return true;
 856 }
 857 
 858 #ifndef PRODUCT
 859 void JavaThread::record_jump(address target, address instr, const char* file,
 860                              int line) {
 861 
 862   // This should not need to be atomic as the only way for simultaneous
 863   // updates is via interrupts. Even then this should be rare or non-existent
 864   // and we don't care that much anyway.
 865 
 866   int index = _jmp_ring_index;
 867   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 868   _jmp_ring[index]._target = (intptr_t) target;
 869   _jmp_ring[index]._instruction = (intptr_t) instr;
 870   _jmp_ring[index]._file = file;
 871   _jmp_ring[index]._line = line;
 872 }
 873 #endif // PRODUCT
 874 
 875 void Thread::interrupt(Thread* thread) {
 876   debug_only(check_for_dangling_thread_pointer(thread);)
 877   os::interrupt(thread);
 878 }
 879 
 880 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 881   debug_only(check_for_dangling_thread_pointer(thread);)
 882   // Note:  If clear_interrupted==false, this simply fetches and
 883   // returns the value of the field osthread()->interrupted().
 884   return os::is_interrupted(thread, clear_interrupted);
 885 }
 886 
 887 
 888 // GC Support
 889 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 890   int thread_parity = _oops_do_parity;
 891   if (thread_parity != strong_roots_parity) {
 892     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 893     if (res == thread_parity) {
 894       return true;
 895     } else {
 896       guarantee(res == strong_roots_parity, "Or else what?");
 897       return false;
 898     }
 899   }
 900   return false;
 901 }
 902 
 903 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 904   active_handles()->oops_do(f);
 905   // Do oop for ThreadShadow
 906   f->do_oop((oop*)&_pending_exception);
 907   handle_area()->oops_do(f);
 908 
 909   // We scan thread local monitor lists here, and the remaining global
 910   // monitors in ObjectSynchronizer::oops_do().
 911   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 912 }
 913 
 914 void Thread::metadata_handles_do(void f(Metadata*)) {
 915   // Only walk the Handles in Thread.
 916   if (metadata_handles() != NULL) {
 917     for (int i = 0; i< metadata_handles()->length(); i++) {
 918       f(metadata_handles()->at(i));
 919     }
 920   }
 921 }
 922 
 923 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 924   // get_priority assumes osthread initialized
 925   if (osthread() != NULL) {
 926     int os_prio;
 927     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 928       st->print("os_prio=%d ", os_prio);
 929     }
 930 
 931     st->print("cpu=%.2fms ",
 932               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 933               );
 934     st->print("elapsed=%.2fs ",
 935               _statistical_info.getElapsedTime() / 1000.0
 936               );
 937     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 938       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 939       st->print("allocated=" SIZE_FORMAT "%s ",
 940                 byte_size_in_proper_unit(allocated_bytes),
 941                 proper_unit_for_byte_size(allocated_bytes)
 942                 );
 943       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 944     }
 945 
 946     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 947     osthread()->print_on(st);
 948   }
 949   ThreadsSMRSupport::print_info_on(this, st);
 950   st->print(" ");
 951   debug_only(if (WizardMode) print_owned_locks_on(st);)
 952 }
 953 
 954 // Thread::print_on_error() is called by fatal error handler. Don't use
 955 // any lock or allocate memory.
 956 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 957   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 958 
 959   if (is_VM_thread())                 { st->print("VMThread"); }
 960   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 961   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 962   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 963   else                                { st->print("Thread"); }
 964 
 965   if (is_Named_thread()) {
 966     st->print(" \"%s\"", name());
 967   }
 968 
 969   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 970             p2i(stack_end()), p2i(stack_base()));
 971 
 972   if (osthread()) {
 973     st->print(" [id=%d]", osthread()->thread_id());
 974   }
 975 
 976   ThreadsSMRSupport::print_info_on(this, st);
 977 }
 978 
 979 void Thread::print_value_on(outputStream* st) const {
 980   if (is_Named_thread()) {
 981     st->print(" \"%s\" ", name());
 982   }
 983   st->print(INTPTR_FORMAT, p2i(this));   // print address
 984 }
 985 
 986 #ifdef ASSERT
 987 void Thread::print_owned_locks_on(outputStream* st) const {
 988   Monitor *cur = _owned_locks;
 989   if (cur == NULL) {
 990     st->print(" (no locks) ");
 991   } else {
 992     st->print_cr(" Locks owned:");
 993     while (cur) {
 994       cur->print_on(st);
 995       cur = cur->next();
 996     }
 997   }
 998 }
 999 
1000 static int ref_use_count  = 0;
1001 
1002 bool Thread::owns_locks_but_compiled_lock() const {
1003   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1004     if (cur != Compile_lock) return true;
1005   }
1006   return false;
1007 }
1008 
1009 
1010 #endif
1011 
1012 #ifndef PRODUCT
1013 
1014 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1015 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1016 // no locks which allow_vm_block's are held
1017 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1018   // Check if current thread is allowed to block at a safepoint
1019   if (!(_allow_safepoint_count == 0)) {
1020     fatal("Possible safepoint reached by thread that does not allow it");
1021   }
1022   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
1023     fatal("LEAF method calling lock?");
1024   }
1025 
1026 #ifdef ASSERT
1027   if (potential_vm_operation && is_Java_thread()
1028       && !Universe::is_bootstrapping()) {
1029     // Make sure we do not hold any locks that the VM thread also uses.
1030     // This could potentially lead to deadlocks
1031     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1032       // Threads_lock is special, since the safepoint synchronization will not start before this is
1033       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1034       // since it is used to transfer control between JavaThreads and the VMThread
1035       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1036       if ((cur->allow_vm_block() &&
1037            cur != Threads_lock &&
1038            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1039            cur != VMOperationRequest_lock &&
1040            cur != VMOperationQueue_lock) ||
1041            cur->rank() == Mutex::special) {
1042         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1043       }
1044     }
1045   }
1046 
1047   if (GCALotAtAllSafepoints) {
1048     // We could enter a safepoint here and thus have a gc
1049     InterfaceSupport::check_gc_alot();
1050   }
1051 #endif
1052 }
1053 #endif
1054 
1055 bool Thread::is_in_stack(address adr) const {
1056   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1057   address end = os::current_stack_pointer();
1058   // Allow non Java threads to call this without stack_base
1059   if (_stack_base == NULL) return true;
1060   if (stack_base() >= adr && adr >= end) return true;
1061 
1062   return false;
1063 }
1064 
1065 bool Thread::is_in_usable_stack(address adr) const {
1066   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1067   size_t usable_stack_size = _stack_size - stack_guard_size;
1068 
1069   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1070 }
1071 
1072 
1073 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1074 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1075 // used for compilation in the future. If that change is made, the need for these methods
1076 // should be revisited, and they should be removed if possible.
1077 
1078 bool Thread::is_lock_owned(address adr) const {
1079   return on_local_stack(adr);
1080 }
1081 
1082 bool Thread::set_as_starting_thread() {
1083   assert(_starting_thread == NULL, "already initialized: "
1084          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1085   // NOTE: this must be called inside the main thread.
1086   DEBUG_ONLY(_starting_thread = this;)
1087   return os::create_main_thread((JavaThread*)this);
1088 }
1089 
1090 static void initialize_class(Symbol* class_name, TRAPS) {
1091   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1092   InstanceKlass::cast(klass)->initialize(CHECK);
1093 }
1094 
1095 
1096 // Creates the initial ThreadGroup
1097 static Handle create_initial_thread_group(TRAPS) {
1098   Handle system_instance = JavaCalls::construct_new_instance(
1099                             SystemDictionary::ThreadGroup_klass(),
1100                             vmSymbols::void_method_signature(),
1101                             CHECK_NH);
1102   Universe::set_system_thread_group(system_instance());
1103 
1104   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1105   Handle main_instance = JavaCalls::construct_new_instance(
1106                             SystemDictionary::ThreadGroup_klass(),
1107                             vmSymbols::threadgroup_string_void_signature(),
1108                             system_instance,
1109                             string,
1110                             CHECK_NH);
1111   return main_instance;
1112 }
1113 
1114 // Creates the initial Thread
1115 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1116                                  TRAPS) {
1117   InstanceKlass* ik = SystemDictionary::Thread_klass();
1118   assert(ik->is_initialized(), "must be");
1119   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1120 
1121   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1122   // constructor calls Thread.current(), which must be set here for the
1123   // initial thread.
1124   java_lang_Thread::set_thread(thread_oop(), thread);
1125   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1126   thread->set_threadObj(thread_oop());
1127 
1128   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1129 
1130   JavaValue result(T_VOID);
1131   JavaCalls::call_special(&result, thread_oop,
1132                           ik,
1133                           vmSymbols::object_initializer_name(),
1134                           vmSymbols::threadgroup_string_void_signature(),
1135                           thread_group,
1136                           string,
1137                           CHECK_NULL);
1138   return thread_oop();
1139 }
1140 
1141 char java_runtime_name[128] = "";
1142 char java_runtime_version[128] = "";
1143 
1144 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1145 static const char* get_java_runtime_name(TRAPS) {
1146   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1147                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1148   fieldDescriptor fd;
1149   bool found = k != NULL &&
1150                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1151                                                         vmSymbols::string_signature(), &fd);
1152   if (found) {
1153     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1154     if (name_oop == NULL) {
1155       return NULL;
1156     }
1157     const char* name = java_lang_String::as_utf8_string(name_oop,
1158                                                         java_runtime_name,
1159                                                         sizeof(java_runtime_name));
1160     return name;
1161   } else {
1162     return NULL;
1163   }
1164 }
1165 
1166 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1167 static const char* get_java_runtime_version(TRAPS) {
1168   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1169                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1170   fieldDescriptor fd;
1171   bool found = k != NULL &&
1172                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1173                                                         vmSymbols::string_signature(), &fd);
1174   if (found) {
1175     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1176     if (name_oop == NULL) {
1177       return NULL;
1178     }
1179     const char* name = java_lang_String::as_utf8_string(name_oop,
1180                                                         java_runtime_version,
1181                                                         sizeof(java_runtime_version));
1182     return name;
1183   } else {
1184     return NULL;
1185   }
1186 }
1187 
1188 // General purpose hook into Java code, run once when the VM is initialized.
1189 // The Java library method itself may be changed independently from the VM.
1190 static void call_postVMInitHook(TRAPS) {
1191   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1192   if (klass != NULL) {
1193     JavaValue result(T_VOID);
1194     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1195                            vmSymbols::void_method_signature(),
1196                            CHECK);
1197   }
1198 }
1199 
1200 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1201                                     bool daemon, TRAPS) {
1202   assert(thread_group.not_null(), "thread group should be specified");
1203   assert(threadObj() == NULL, "should only create Java thread object once");
1204 
1205   InstanceKlass* ik = SystemDictionary::Thread_klass();
1206   assert(ik->is_initialized(), "must be");
1207   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1208 
1209   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1210   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1211   // constructor calls Thread.current(), which must be set here.
1212   java_lang_Thread::set_thread(thread_oop(), this);
1213   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1214   set_threadObj(thread_oop());
1215 
1216   JavaValue result(T_VOID);
1217   if (thread_name != NULL) {
1218     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1219     // Thread gets assigned specified name and null target
1220     JavaCalls::call_special(&result,
1221                             thread_oop,
1222                             ik,
1223                             vmSymbols::object_initializer_name(),
1224                             vmSymbols::threadgroup_string_void_signature(),
1225                             thread_group,
1226                             name,
1227                             THREAD);
1228   } else {
1229     // Thread gets assigned name "Thread-nnn" and null target
1230     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1231     JavaCalls::call_special(&result,
1232                             thread_oop,
1233                             ik,
1234                             vmSymbols::object_initializer_name(),
1235                             vmSymbols::threadgroup_runnable_void_signature(),
1236                             thread_group,
1237                             Handle(),
1238                             THREAD);
1239   }
1240 
1241 
1242   if (daemon) {
1243     java_lang_Thread::set_daemon(thread_oop());
1244   }
1245 
1246   if (HAS_PENDING_EXCEPTION) {
1247     return;
1248   }
1249 
1250   Klass* group =  SystemDictionary::ThreadGroup_klass();
1251   Handle threadObj(THREAD, this->threadObj());
1252 
1253   JavaCalls::call_special(&result,
1254                           thread_group,
1255                           group,
1256                           vmSymbols::add_method_name(),
1257                           vmSymbols::thread_void_signature(),
1258                           threadObj,          // Arg 1
1259                           THREAD);
1260 }
1261 
1262 // List of all NonJavaThreads and safe iteration over that list.
1263 
1264 class NonJavaThread::List {
1265 public:
1266   NonJavaThread* volatile _head;
1267   SingleWriterSynchronizer _protect;
1268 
1269   List() : _head(NULL), _protect() {}
1270 };
1271 
1272 NonJavaThread::List NonJavaThread::_the_list;
1273 
1274 NonJavaThread::Iterator::Iterator() :
1275   _protect_enter(_the_list._protect.enter()),
1276   _current(OrderAccess::load_acquire(&_the_list._head))
1277 {}
1278 
1279 NonJavaThread::Iterator::~Iterator() {
1280   _the_list._protect.exit(_protect_enter);
1281 }
1282 
1283 void NonJavaThread::Iterator::step() {
1284   assert(!end(), "precondition");
1285   _current = OrderAccess::load_acquire(&_current->_next);
1286 }
1287 
1288 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1289   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1290 }
1291 
1292 NonJavaThread::~NonJavaThread() { }
1293 
1294 void NonJavaThread::add_to_the_list() {
1295   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1296   _next = _the_list._head;
1297   OrderAccess::release_store(&_the_list._head, this);
1298 }
1299 
1300 void NonJavaThread::remove_from_the_list() {
1301   MutexLockerEx lock(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1302   NonJavaThread* volatile* p = &_the_list._head;
1303   for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1304     if (t == this) {
1305       *p = this->_next;
1306       // Wait for any in-progress iterators.  Concurrent synchronize is
1307       // not allowed, so do it while holding the list lock.
1308       _the_list._protect.synchronize();
1309       break;
1310     }
1311   }
1312 }
1313 
1314 void NonJavaThread::pre_run() {
1315   assert(BarrierSet::barrier_set() != NULL, "invariant");
1316   add_to_the_list();
1317 
1318   // This is slightly odd in that NamedThread is a subclass, but
1319   // in fact name() is defined in Thread
1320   assert(this->name() != NULL, "thread name was not set before it was started");
1321   this->set_native_thread_name(this->name());
1322 }
1323 
1324 void NonJavaThread::post_run() {
1325   JFR_ONLY(Jfr::on_thread_exit(this);)
1326   remove_from_the_list();
1327   // Ensure thread-local-storage is cleared before termination.
1328   Thread::clear_thread_current();
1329 }
1330 
1331 // NamedThread --  non-JavaThread subclasses with multiple
1332 // uniquely named instances should derive from this.
1333 NamedThread::NamedThread() :
1334   NonJavaThread(),
1335   _name(NULL),
1336   _processed_thread(NULL),
1337   _gc_id(GCId::undefined())
1338 {}
1339 
1340 NamedThread::~NamedThread() {
1341   if (_name != NULL) {
1342     FREE_C_HEAP_ARRAY(char, _name);
1343     _name = NULL;
1344   }
1345 }
1346 
1347 void NamedThread::set_name(const char* format, ...) {
1348   guarantee(_name == NULL, "Only get to set name once.");
1349   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1350   guarantee(_name != NULL, "alloc failure");
1351   va_list ap;
1352   va_start(ap, format);
1353   jio_vsnprintf(_name, max_name_len, format, ap);
1354   va_end(ap);
1355 }
1356 
1357 void NamedThread::print_on(outputStream* st) const {
1358   st->print("\"%s\" ", name());
1359   Thread::print_on(st);
1360   st->cr();
1361 }
1362 
1363 
1364 // ======= WatcherThread ========
1365 
1366 // The watcher thread exists to simulate timer interrupts.  It should
1367 // be replaced by an abstraction over whatever native support for
1368 // timer interrupts exists on the platform.
1369 
1370 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1371 bool WatcherThread::_startable = false;
1372 volatile bool  WatcherThread::_should_terminate = false;
1373 
1374 WatcherThread::WatcherThread() : NonJavaThread() {
1375   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1376   if (os::create_thread(this, os::watcher_thread)) {
1377     _watcher_thread = this;
1378 
1379     // Set the watcher thread to the highest OS priority which should not be
1380     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1381     // is created. The only normal thread using this priority is the reference
1382     // handler thread, which runs for very short intervals only.
1383     // If the VMThread's priority is not lower than the WatcherThread profiling
1384     // will be inaccurate.
1385     os::set_priority(this, MaxPriority);
1386     if (!DisableStartThread) {
1387       os::start_thread(this);
1388     }
1389   }
1390 }
1391 
1392 int WatcherThread::sleep() const {
1393   // The WatcherThread does not participate in the safepoint protocol
1394   // for the PeriodicTask_lock because it is not a JavaThread.
1395   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1396 
1397   if (_should_terminate) {
1398     // check for termination before we do any housekeeping or wait
1399     return 0;  // we did not sleep.
1400   }
1401 
1402   // remaining will be zero if there are no tasks,
1403   // causing the WatcherThread to sleep until a task is
1404   // enrolled
1405   int remaining = PeriodicTask::time_to_wait();
1406   int time_slept = 0;
1407 
1408   // we expect this to timeout - we only ever get unparked when
1409   // we should terminate or when a new task has been enrolled
1410   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1411 
1412   jlong time_before_loop = os::javaTimeNanos();
1413 
1414   while (true) {
1415     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1416                                             remaining);
1417     jlong now = os::javaTimeNanos();
1418 
1419     if (remaining == 0) {
1420       // if we didn't have any tasks we could have waited for a long time
1421       // consider the time_slept zero and reset time_before_loop
1422       time_slept = 0;
1423       time_before_loop = now;
1424     } else {
1425       // need to recalculate since we might have new tasks in _tasks
1426       time_slept = (int) ((now - time_before_loop) / 1000000);
1427     }
1428 
1429     // Change to task list or spurious wakeup of some kind
1430     if (timedout || _should_terminate) {
1431       break;
1432     }
1433 
1434     remaining = PeriodicTask::time_to_wait();
1435     if (remaining == 0) {
1436       // Last task was just disenrolled so loop around and wait until
1437       // another task gets enrolled
1438       continue;
1439     }
1440 
1441     remaining -= time_slept;
1442     if (remaining <= 0) {
1443       break;
1444     }
1445   }
1446 
1447   return time_slept;
1448 }
1449 
1450 void WatcherThread::run() {
1451   assert(this == watcher_thread(), "just checking");
1452 
1453   this->set_active_handles(JNIHandleBlock::allocate_block());
1454   while (true) {
1455     assert(watcher_thread() == Thread::current(), "thread consistency check");
1456     assert(watcher_thread() == this, "thread consistency check");
1457 
1458     // Calculate how long it'll be until the next PeriodicTask work
1459     // should be done, and sleep that amount of time.
1460     int time_waited = sleep();
1461 
1462     if (VMError::is_error_reported()) {
1463       // A fatal error has happened, the error handler(VMError::report_and_die)
1464       // should abort JVM after creating an error log file. However in some
1465       // rare cases, the error handler itself might deadlock. Here periodically
1466       // check for error reporting timeouts, and if it happens, just proceed to
1467       // abort the VM.
1468 
1469       // This code is in WatcherThread because WatcherThread wakes up
1470       // periodically so the fatal error handler doesn't need to do anything;
1471       // also because the WatcherThread is less likely to crash than other
1472       // threads.
1473 
1474       for (;;) {
1475         // Note: we use naked sleep in this loop because we want to avoid using
1476         // any kind of VM infrastructure which may be broken at this point.
1477         if (VMError::check_timeout()) {
1478           // We hit error reporting timeout. Error reporting was interrupted and
1479           // will be wrapping things up now (closing files etc). Give it some more
1480           // time, then quit the VM.
1481           os::naked_short_sleep(200);
1482           // Print a message to stderr.
1483           fdStream err(defaultStream::output_fd());
1484           err.print_raw_cr("# [ timer expired, abort... ]");
1485           // skip atexit/vm_exit/vm_abort hooks
1486           os::die();
1487         }
1488 
1489         // Wait a second, then recheck for timeout.
1490         os::naked_short_sleep(999);
1491       }
1492     }
1493 
1494     if (_should_terminate) {
1495       // check for termination before posting the next tick
1496       break;
1497     }
1498 
1499     PeriodicTask::real_time_tick(time_waited);
1500   }
1501 
1502   // Signal that it is terminated
1503   {
1504     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1505     _watcher_thread = NULL;
1506     Terminator_lock->notify();
1507   }
1508 }
1509 
1510 void WatcherThread::start() {
1511   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1512 
1513   if (watcher_thread() == NULL && _startable) {
1514     _should_terminate = false;
1515     // Create the single instance of WatcherThread
1516     new WatcherThread();
1517   }
1518 }
1519 
1520 void WatcherThread::make_startable() {
1521   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1522   _startable = true;
1523 }
1524 
1525 void WatcherThread::stop() {
1526   {
1527     // Follow normal safepoint aware lock enter protocol since the
1528     // WatcherThread is stopped by another JavaThread.
1529     MutexLocker ml(PeriodicTask_lock);
1530     _should_terminate = true;
1531 
1532     WatcherThread* watcher = watcher_thread();
1533     if (watcher != NULL) {
1534       // unpark the WatcherThread so it can see that it should terminate
1535       watcher->unpark();
1536     }
1537   }
1538 
1539   MutexLocker mu(Terminator_lock);
1540 
1541   while (watcher_thread() != NULL) {
1542     // This wait should make safepoint checks, wait without a timeout,
1543     // and wait as a suspend-equivalent condition.
1544     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1545                           Mutex::_as_suspend_equivalent_flag);
1546   }
1547 }
1548 
1549 void WatcherThread::unpark() {
1550   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1551   PeriodicTask_lock->notify();
1552 }
1553 
1554 void WatcherThread::print_on(outputStream* st) const {
1555   st->print("\"%s\" ", name());
1556   Thread::print_on(st);
1557   st->cr();
1558 }
1559 
1560 // ======= JavaThread ========
1561 
1562 #if INCLUDE_JVMCI
1563 
1564 jlong* JavaThread::_jvmci_old_thread_counters;
1565 
1566 bool jvmci_counters_include(JavaThread* thread) {
1567   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1568 }
1569 
1570 void JavaThread::collect_counters(typeArrayOop array) {
1571   if (JVMCICounterSize > 0) {
1572     JavaThreadIteratorWithHandle jtiwh;
1573     for (int i = 0; i < array->length(); i++) {
1574       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1575     }
1576     for (; JavaThread *tp = jtiwh.next(); ) {
1577       if (jvmci_counters_include(tp)) {
1578         for (int i = 0; i < array->length(); i++) {
1579           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1580         }
1581       }
1582     }
1583   }
1584 }
1585 
1586 #endif // INCLUDE_JVMCI
1587 
1588 // A JavaThread is a normal Java thread
1589 
1590 void JavaThread::initialize() {
1591   // Initialize fields
1592 
1593   set_saved_exception_pc(NULL);
1594   set_threadObj(NULL);
1595   _anchor.clear();
1596   set_entry_point(NULL);
1597   set_jni_functions(jni_functions());
1598   set_callee_target(NULL);
1599   set_vm_result(NULL);
1600   set_vm_result_2(NULL);
1601   set_vframe_array_head(NULL);
1602   set_vframe_array_last(NULL);
1603   set_deferred_locals(NULL);
1604   set_deopt_mark(NULL);
1605   set_deopt_compiled_method(NULL);
1606   clear_must_deopt_id();
1607   set_monitor_chunks(NULL);
1608   set_next(NULL);
1609   _on_thread_list = false;
1610   set_thread_state(_thread_new);
1611   _terminated = _not_terminated;
1612   _array_for_gc = NULL;
1613   _suspend_equivalent = false;
1614   _in_deopt_handler = 0;
1615   _doing_unsafe_access = false;
1616   _stack_guard_state = stack_guard_unused;
1617 #if INCLUDE_JVMCI
1618   _pending_monitorenter = false;
1619   _pending_deoptimization = -1;
1620   _pending_failed_speculation = 0;
1621   _pending_transfer_to_interpreter = false;
1622   _adjusting_comp_level = false;
1623   _in_retryable_allocation = false;
1624   _jvmci._alternate_call_target = NULL;
1625   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1626   if (JVMCICounterSize > 0) {
1627     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1628     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1629   } else {
1630     _jvmci_counters = NULL;
1631   }
1632 #endif // INCLUDE_JVMCI
1633   _reserved_stack_activation = NULL;  // stack base not known yet
1634   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1635   _exception_pc  = 0;
1636   _exception_handler_pc = 0;
1637   _is_method_handle_return = 0;
1638   _jvmti_thread_state= NULL;
1639   _should_post_on_exceptions_flag = JNI_FALSE;
1640   _interp_only_mode    = 0;
1641   _special_runtime_exit_condition = _no_async_condition;
1642   _pending_async_exception = NULL;
1643   _thread_stat = NULL;
1644   _thread_stat = new ThreadStatistics();
1645   _blocked_on_compilation = false;
1646   _jni_active_critical = 0;
1647   _pending_jni_exception_check_fn = NULL;
1648   _do_not_unlock_if_synchronized = false;
1649   _cached_monitor_info = NULL;
1650   _parker = Parker::Allocate(this);
1651 
1652 #ifndef PRODUCT
1653   _jmp_ring_index = 0;
1654   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1655     record_jump(NULL, NULL, NULL, 0);
1656   }
1657 #endif // PRODUCT
1658 
1659   // Setup safepoint state info for this thread
1660   ThreadSafepointState::create(this);
1661 
1662   debug_only(_java_call_counter = 0);
1663 
1664   // JVMTI PopFrame support
1665   _popframe_condition = popframe_inactive;
1666   _popframe_preserved_args = NULL;
1667   _popframe_preserved_args_size = 0;
1668   _frames_to_pop_failed_realloc = 0;
1669 
1670   if (SafepointMechanism::uses_thread_local_poll()) {
1671     SafepointMechanism::initialize_header(this);
1672   }
1673 
1674   pd_initialize();
1675 }
1676 
1677 JavaThread::JavaThread(bool is_attaching_via_jni) :
1678                        Thread() {
1679   initialize();
1680   if (is_attaching_via_jni) {
1681     _jni_attach_state = _attaching_via_jni;
1682   } else {
1683     _jni_attach_state = _not_attaching_via_jni;
1684   }
1685   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1686 }
1687 
1688 bool JavaThread::reguard_stack(address cur_sp) {
1689   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1690       && _stack_guard_state != stack_guard_reserved_disabled) {
1691     return true; // Stack already guarded or guard pages not needed.
1692   }
1693 
1694   if (register_stack_overflow()) {
1695     // For those architectures which have separate register and
1696     // memory stacks, we must check the register stack to see if
1697     // it has overflowed.
1698     return false;
1699   }
1700 
1701   // Java code never executes within the yellow zone: the latter is only
1702   // there to provoke an exception during stack banging.  If java code
1703   // is executing there, either StackShadowPages should be larger, or
1704   // some exception code in c1, c2 or the interpreter isn't unwinding
1705   // when it should.
1706   guarantee(cur_sp > stack_reserved_zone_base(),
1707             "not enough space to reguard - increase StackShadowPages");
1708   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1709     enable_stack_yellow_reserved_zone();
1710     if (reserved_stack_activation() != stack_base()) {
1711       set_reserved_stack_activation(stack_base());
1712     }
1713   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1714     set_reserved_stack_activation(stack_base());
1715     enable_stack_reserved_zone();
1716   }
1717   return true;
1718 }
1719 
1720 bool JavaThread::reguard_stack(void) {
1721   return reguard_stack(os::current_stack_pointer());
1722 }
1723 
1724 
1725 void JavaThread::block_if_vm_exited() {
1726   if (_terminated == _vm_exited) {
1727     // _vm_exited is set at safepoint, and Threads_lock is never released
1728     // we will block here forever
1729     Threads_lock->lock_without_safepoint_check();
1730     ShouldNotReachHere();
1731   }
1732 }
1733 
1734 
1735 // Remove this ifdef when C1 is ported to the compiler interface.
1736 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1737 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1738 
1739 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1740                        Thread() {
1741   initialize();
1742   _jni_attach_state = _not_attaching_via_jni;
1743   set_entry_point(entry_point);
1744   // Create the native thread itself.
1745   // %note runtime_23
1746   os::ThreadType thr_type = os::java_thread;
1747   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1748                                                      os::java_thread;
1749   os::create_thread(this, thr_type, stack_sz);
1750   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1751   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1752   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1753   // the exception consists of creating the exception object & initializing it, initialization
1754   // will leave the VM via a JavaCall and then all locks must be unlocked).
1755   //
1756   // The thread is still suspended when we reach here. Thread must be explicit started
1757   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1758   // by calling Threads:add. The reason why this is not done here, is because the thread
1759   // object must be fully initialized (take a look at JVM_Start)
1760 }
1761 
1762 JavaThread::~JavaThread() {
1763 
1764   // JSR166 -- return the parker to the free list
1765   Parker::Release(_parker);
1766   _parker = NULL;
1767 
1768   // Free any remaining  previous UnrollBlock
1769   vframeArray* old_array = vframe_array_last();
1770 
1771   if (old_array != NULL) {
1772     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1773     old_array->set_unroll_block(NULL);
1774     delete old_info;
1775     delete old_array;
1776   }
1777 
1778   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1779   if (deferred != NULL) {
1780     // This can only happen if thread is destroyed before deoptimization occurs.
1781     assert(deferred->length() != 0, "empty array!");
1782     do {
1783       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1784       deferred->remove_at(0);
1785       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1786       delete dlv;
1787     } while (deferred->length() != 0);
1788     delete deferred;
1789   }
1790 
1791   // All Java related clean up happens in exit
1792   ThreadSafepointState::destroy(this);
1793   if (_thread_stat != NULL) delete _thread_stat;
1794 
1795 #if INCLUDE_JVMCI
1796   if (JVMCICounterSize > 0) {
1797     if (jvmci_counters_include(this)) {
1798       for (int i = 0; i < JVMCICounterSize; i++) {
1799         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1800       }
1801     }
1802     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1803   }
1804 #endif // INCLUDE_JVMCI
1805 }
1806 
1807 
1808 // First JavaThread specific code executed by a new Java thread.
1809 void JavaThread::pre_run() {
1810   // empty - see comments in run()
1811 }
1812 
1813 // The main routine called by a new Java thread. This isn't overridden
1814 // by subclasses, instead different subclasses define a different "entry_point"
1815 // which defines the actual logic for that kind of thread.
1816 void JavaThread::run() {
1817   // initialize thread-local alloc buffer related fields
1818   this->initialize_tlab();
1819 
1820   // Used to test validity of stack trace backs.
1821   // This can't be moved into pre_run() else we invalidate
1822   // the requirement that thread_main_inner is lower on
1823   // the stack. Consequently all the initialization logic
1824   // stays here in run() rather than pre_run().
1825   this->record_base_of_stack_pointer();
1826 
1827   this->create_stack_guard_pages();
1828 
1829   this->cache_global_variables();
1830 
1831   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1832   // in the VM. Change thread state from _thread_new to _thread_in_vm
1833   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1834 
1835   assert(JavaThread::current() == this, "sanity check");
1836   assert(!Thread::current()->owns_locks(), "sanity check");
1837 
1838   DTRACE_THREAD_PROBE(start, this);
1839 
1840   // This operation might block. We call that after all safepoint checks for a new thread has
1841   // been completed.
1842   this->set_active_handles(JNIHandleBlock::allocate_block());
1843 
1844   if (JvmtiExport::should_post_thread_life()) {
1845     JvmtiExport::post_thread_start(this);
1846 
1847   }
1848 
1849   // We call another function to do the rest so we are sure that the stack addresses used
1850   // from there will be lower than the stack base just computed.
1851   thread_main_inner();
1852 }
1853 
1854 void JavaThread::thread_main_inner() {
1855   assert(JavaThread::current() == this, "sanity check");
1856   assert(this->threadObj() != NULL, "just checking");
1857 
1858   // Execute thread entry point unless this thread has a pending exception
1859   // or has been stopped before starting.
1860   // Note: Due to JVM_StopThread we can have pending exceptions already!
1861   if (!this->has_pending_exception() &&
1862       !java_lang_Thread::is_stillborn(this->threadObj())) {
1863     {
1864       ResourceMark rm(this);
1865       this->set_native_thread_name(this->get_thread_name());
1866     }
1867     HandleMark hm(this);
1868     this->entry_point()(this, this);
1869   }
1870 
1871   DTRACE_THREAD_PROBE(stop, this);
1872 
1873   // Cleanup is handled in post_run()
1874 }
1875 
1876 // Shared teardown for all JavaThreads
1877 void JavaThread::post_run() {
1878   this->exit(false);
1879   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1880   // for any shared tear-down.
1881   this->smr_delete();
1882 }
1883 
1884 static void ensure_join(JavaThread* thread) {
1885   // We do not need to grab the Threads_lock, since we are operating on ourself.
1886   Handle threadObj(thread, thread->threadObj());
1887   assert(threadObj.not_null(), "java thread object must exist");
1888   ObjectLocker lock(threadObj, thread);
1889   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1890   thread->clear_pending_exception();
1891   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1892   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1893   // Clear the native thread instance - this makes isAlive return false and allows the join()
1894   // to complete once we've done the notify_all below
1895   java_lang_Thread::set_thread(threadObj(), NULL);
1896   lock.notify_all(thread);
1897   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1898   thread->clear_pending_exception();
1899 }
1900 
1901 static bool is_daemon(oop threadObj) {
1902   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1903 }
1904 
1905 // For any new cleanup additions, please check to see if they need to be applied to
1906 // cleanup_failed_attach_current_thread as well.
1907 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1908   assert(this == JavaThread::current(), "thread consistency check");
1909 
1910   elapsedTimer _timer_exit_phase1;
1911   elapsedTimer _timer_exit_phase2;
1912   elapsedTimer _timer_exit_phase3;
1913   elapsedTimer _timer_exit_phase4;
1914 
1915   if (log_is_enabled(Debug, os, thread, timer)) {
1916     _timer_exit_phase1.start();
1917   }
1918 
1919   HandleMark hm(this);
1920   Handle uncaught_exception(this, this->pending_exception());
1921   this->clear_pending_exception();
1922   Handle threadObj(this, this->threadObj());
1923   assert(threadObj.not_null(), "Java thread object should be created");
1924 
1925   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1926   {
1927     EXCEPTION_MARK;
1928 
1929     CLEAR_PENDING_EXCEPTION;
1930   }
1931   if (!destroy_vm) {
1932     if (uncaught_exception.not_null()) {
1933       EXCEPTION_MARK;
1934       // Call method Thread.dispatchUncaughtException().
1935       Klass* thread_klass = SystemDictionary::Thread_klass();
1936       JavaValue result(T_VOID);
1937       JavaCalls::call_virtual(&result,
1938                               threadObj, thread_klass,
1939                               vmSymbols::dispatchUncaughtException_name(),
1940                               vmSymbols::throwable_void_signature(),
1941                               uncaught_exception,
1942                               THREAD);
1943       if (HAS_PENDING_EXCEPTION) {
1944         ResourceMark rm(this);
1945         jio_fprintf(defaultStream::error_stream(),
1946                     "\nException: %s thrown from the UncaughtExceptionHandler"
1947                     " in thread \"%s\"\n",
1948                     pending_exception()->klass()->external_name(),
1949                     get_thread_name());
1950         CLEAR_PENDING_EXCEPTION;
1951       }
1952     }
1953     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
1954 
1955     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1956     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1957     // is deprecated anyhow.
1958     if (!is_Compiler_thread()) {
1959       int count = 3;
1960       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1961         EXCEPTION_MARK;
1962         JavaValue result(T_VOID);
1963         Klass* thread_klass = SystemDictionary::Thread_klass();
1964         JavaCalls::call_virtual(&result,
1965                                 threadObj, thread_klass,
1966                                 vmSymbols::exit_method_name(),
1967                                 vmSymbols::void_method_signature(),
1968                                 THREAD);
1969         CLEAR_PENDING_EXCEPTION;
1970       }
1971     }
1972     // notify JVMTI
1973     if (JvmtiExport::should_post_thread_life()) {
1974       JvmtiExport::post_thread_end(this);
1975     }
1976 
1977     // We have notified the agents that we are exiting, before we go on,
1978     // we must check for a pending external suspend request and honor it
1979     // in order to not surprise the thread that made the suspend request.
1980     while (true) {
1981       {
1982         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1983         if (!is_external_suspend()) {
1984           set_terminated(_thread_exiting);
1985           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
1986           break;
1987         }
1988         // Implied else:
1989         // Things get a little tricky here. We have a pending external
1990         // suspend request, but we are holding the SR_lock so we
1991         // can't just self-suspend. So we temporarily drop the lock
1992         // and then self-suspend.
1993       }
1994 
1995       ThreadBlockInVM tbivm(this);
1996       java_suspend_self();
1997 
1998       // We're done with this suspend request, but we have to loop around
1999       // and check again. Eventually we will get SR_lock without a pending
2000       // external suspend request and will be able to mark ourselves as
2001       // exiting.
2002     }
2003     // no more external suspends are allowed at this point
2004   } else {
2005     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2006     // before_exit() has already posted JVMTI THREAD_END events
2007   }
2008 
2009   if (log_is_enabled(Debug, os, thread, timer)) {
2010     _timer_exit_phase1.stop();
2011     _timer_exit_phase2.start();
2012   }
2013   // Notify waiters on thread object. This has to be done after exit() is called
2014   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2015   // group should have the destroyed bit set before waiters are notified).
2016   ensure_join(this);
2017   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2018 
2019   if (log_is_enabled(Debug, os, thread, timer)) {
2020     _timer_exit_phase2.stop();
2021     _timer_exit_phase3.start();
2022   }
2023   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2024   // held by this thread must be released. The spec does not distinguish
2025   // between JNI-acquired and regular Java monitors. We can only see
2026   // regular Java monitors here if monitor enter-exit matching is broken.
2027   //
2028   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2029   // ObjectSynchronizer::release_monitors_owned_by_thread().
2030   if (exit_type == jni_detach) {
2031     // Sanity check even though JNI DetachCurrentThread() would have
2032     // returned JNI_ERR if there was a Java frame. JavaThread exit
2033     // should be done executing Java code by the time we get here.
2034     assert(!this->has_last_Java_frame(),
2035            "should not have a Java frame when detaching or exiting");
2036     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2037     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2038   }
2039 
2040   // These things needs to be done while we are still a Java Thread. Make sure that thread
2041   // is in a consistent state, in case GC happens
2042   JFR_ONLY(Jfr::on_thread_exit(this);)
2043 
2044   if (active_handles() != NULL) {
2045     JNIHandleBlock* block = active_handles();
2046     set_active_handles(NULL);
2047     JNIHandleBlock::release_block(block);
2048   }
2049 
2050   if (free_handle_block() != NULL) {
2051     JNIHandleBlock* block = free_handle_block();
2052     set_free_handle_block(NULL);
2053     JNIHandleBlock::release_block(block);
2054   }
2055 
2056   // These have to be removed while this is still a valid thread.
2057   remove_stack_guard_pages();
2058 
2059   if (UseTLAB) {
2060     tlab().retire();
2061   }
2062 
2063   if (JvmtiEnv::environments_might_exist()) {
2064     JvmtiExport::cleanup_thread(this);
2065   }
2066 
2067   // We must flush any deferred card marks and other various GC barrier
2068   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2069   // before removing a thread from the list of active threads.
2070   BarrierSet::barrier_set()->on_thread_detach(this);
2071 
2072   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2073     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2074     os::current_thread_id());
2075 
2076   if (log_is_enabled(Debug, os, thread, timer)) {
2077     _timer_exit_phase3.stop();
2078     _timer_exit_phase4.start();
2079   }
2080   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2081   Threads::remove(this);
2082 
2083   if (log_is_enabled(Debug, os, thread, timer)) {
2084     _timer_exit_phase4.stop();
2085     ResourceMark rm(this);
2086     log_debug(os, thread, timer)("name='%s'"
2087                                  ", exit-phase1=" JLONG_FORMAT
2088                                  ", exit-phase2=" JLONG_FORMAT
2089                                  ", exit-phase3=" JLONG_FORMAT
2090                                  ", exit-phase4=" JLONG_FORMAT,
2091                                  get_thread_name(),
2092                                  _timer_exit_phase1.milliseconds(),
2093                                  _timer_exit_phase2.milliseconds(),
2094                                  _timer_exit_phase3.milliseconds(),
2095                                  _timer_exit_phase4.milliseconds());
2096   }
2097 }
2098 
2099 void JavaThread::cleanup_failed_attach_current_thread() {
2100   if (active_handles() != NULL) {
2101     JNIHandleBlock* block = active_handles();
2102     set_active_handles(NULL);
2103     JNIHandleBlock::release_block(block);
2104   }
2105 
2106   if (free_handle_block() != NULL) {
2107     JNIHandleBlock* block = free_handle_block();
2108     set_free_handle_block(NULL);
2109     JNIHandleBlock::release_block(block);
2110   }
2111 
2112   // These have to be removed while this is still a valid thread.
2113   remove_stack_guard_pages();
2114 
2115   if (UseTLAB) {
2116     tlab().retire();
2117   }
2118 
2119   BarrierSet::barrier_set()->on_thread_detach(this);
2120 
2121   Threads::remove(this);
2122   this->smr_delete();
2123 }
2124 
2125 JavaThread* JavaThread::active() {
2126   Thread* thread = Thread::current();
2127   if (thread->is_Java_thread()) {
2128     return (JavaThread*) thread;
2129   } else {
2130     assert(thread->is_VM_thread(), "this must be a vm thread");
2131     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2132     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2133     assert(ret->is_Java_thread(), "must be a Java thread");
2134     return ret;
2135   }
2136 }
2137 
2138 bool JavaThread::is_lock_owned(address adr) const {
2139   if (Thread::is_lock_owned(adr)) return true;
2140 
2141   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2142     if (chunk->contains(adr)) return true;
2143   }
2144 
2145   return false;
2146 }
2147 
2148 
2149 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2150   chunk->set_next(monitor_chunks());
2151   set_monitor_chunks(chunk);
2152 }
2153 
2154 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2155   guarantee(monitor_chunks() != NULL, "must be non empty");
2156   if (monitor_chunks() == chunk) {
2157     set_monitor_chunks(chunk->next());
2158   } else {
2159     MonitorChunk* prev = monitor_chunks();
2160     while (prev->next() != chunk) prev = prev->next();
2161     prev->set_next(chunk->next());
2162   }
2163 }
2164 
2165 // JVM support.
2166 
2167 // Note: this function shouldn't block if it's called in
2168 // _thread_in_native_trans state (such as from
2169 // check_special_condition_for_native_trans()).
2170 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2171 
2172   if (has_last_Java_frame() && has_async_condition()) {
2173     // If we are at a polling page safepoint (not a poll return)
2174     // then we must defer async exception because live registers
2175     // will be clobbered by the exception path. Poll return is
2176     // ok because the call we a returning from already collides
2177     // with exception handling registers and so there is no issue.
2178     // (The exception handling path kills call result registers but
2179     //  this is ok since the exception kills the result anyway).
2180 
2181     if (is_at_poll_safepoint()) {
2182       // if the code we are returning to has deoptimized we must defer
2183       // the exception otherwise live registers get clobbered on the
2184       // exception path before deoptimization is able to retrieve them.
2185       //
2186       RegisterMap map(this, false);
2187       frame caller_fr = last_frame().sender(&map);
2188       assert(caller_fr.is_compiled_frame(), "what?");
2189       if (caller_fr.is_deoptimized_frame()) {
2190         log_info(exceptions)("deferred async exception at compiled safepoint");
2191         return;
2192       }
2193     }
2194   }
2195 
2196   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2197   if (condition == _no_async_condition) {
2198     // Conditions have changed since has_special_runtime_exit_condition()
2199     // was called:
2200     // - if we were here only because of an external suspend request,
2201     //   then that was taken care of above (or cancelled) so we are done
2202     // - if we were here because of another async request, then it has
2203     //   been cleared between the has_special_runtime_exit_condition()
2204     //   and now so again we are done
2205     return;
2206   }
2207 
2208   // Check for pending async. exception
2209   if (_pending_async_exception != NULL) {
2210     // Only overwrite an already pending exception, if it is not a threadDeath.
2211     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2212 
2213       // We cannot call Exceptions::_throw(...) here because we cannot block
2214       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2215 
2216       LogTarget(Info, exceptions) lt;
2217       if (lt.is_enabled()) {
2218         ResourceMark rm;
2219         LogStream ls(lt);
2220         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2221           if (has_last_Java_frame()) {
2222             frame f = last_frame();
2223            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2224           }
2225         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2226       }
2227       _pending_async_exception = NULL;
2228       clear_has_async_exception();
2229     }
2230   }
2231 
2232   if (check_unsafe_error &&
2233       condition == _async_unsafe_access_error && !has_pending_exception()) {
2234     condition = _no_async_condition;  // done
2235     switch (thread_state()) {
2236     case _thread_in_vm: {
2237       JavaThread* THREAD = this;
2238       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2239     }
2240     case _thread_in_native: {
2241       ThreadInVMfromNative tiv(this);
2242       JavaThread* THREAD = this;
2243       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2244     }
2245     case _thread_in_Java: {
2246       ThreadInVMfromJava tiv(this);
2247       JavaThread* THREAD = this;
2248       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2249     }
2250     default:
2251       ShouldNotReachHere();
2252     }
2253   }
2254 
2255   assert(condition == _no_async_condition || has_pending_exception() ||
2256          (!check_unsafe_error && condition == _async_unsafe_access_error),
2257          "must have handled the async condition, if no exception");
2258 }
2259 
2260 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2261   //
2262   // Check for pending external suspend. Internal suspend requests do
2263   // not use handle_special_runtime_exit_condition().
2264   // If JNIEnv proxies are allowed, don't self-suspend if the target
2265   // thread is not the current thread. In older versions of jdbx, jdbx
2266   // threads could call into the VM with another thread's JNIEnv so we
2267   // can be here operating on behalf of a suspended thread (4432884).
2268   bool do_self_suspend = is_external_suspend_with_lock();
2269   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2270     //
2271     // Because thread is external suspended the safepoint code will count
2272     // thread as at a safepoint. This can be odd because we can be here
2273     // as _thread_in_Java which would normally transition to _thread_blocked
2274     // at a safepoint. We would like to mark the thread as _thread_blocked
2275     // before calling java_suspend_self like all other callers of it but
2276     // we must then observe proper safepoint protocol. (We can't leave
2277     // _thread_blocked with a safepoint in progress). However we can be
2278     // here as _thread_in_native_trans so we can't use a normal transition
2279     // constructor/destructor pair because they assert on that type of
2280     // transition. We could do something like:
2281     //
2282     // JavaThreadState state = thread_state();
2283     // set_thread_state(_thread_in_vm);
2284     // {
2285     //   ThreadBlockInVM tbivm(this);
2286     //   java_suspend_self()
2287     // }
2288     // set_thread_state(_thread_in_vm_trans);
2289     // if (safepoint) block;
2290     // set_thread_state(state);
2291     //
2292     // but that is pretty messy. Instead we just go with the way the
2293     // code has worked before and note that this is the only path to
2294     // java_suspend_self that doesn't put the thread in _thread_blocked
2295     // mode.
2296 
2297     frame_anchor()->make_walkable(this);
2298     java_suspend_self();
2299 
2300     // We might be here for reasons in addition to the self-suspend request
2301     // so check for other async requests.
2302   }
2303 
2304   if (check_asyncs) {
2305     check_and_handle_async_exceptions();
2306   }
2307 
2308   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2309 }
2310 
2311 void JavaThread::send_thread_stop(oop java_throwable)  {
2312   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2313   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2314   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2315 
2316   // Do not throw asynchronous exceptions against the compiler thread
2317   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2318   if (!can_call_java()) return;
2319 
2320   {
2321     // Actually throw the Throwable against the target Thread - however
2322     // only if there is no thread death exception installed already.
2323     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2324       // If the topmost frame is a runtime stub, then we are calling into
2325       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2326       // must deoptimize the caller before continuing, as the compiled  exception handler table
2327       // may not be valid
2328       if (has_last_Java_frame()) {
2329         frame f = last_frame();
2330         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2331           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2332           RegisterMap reg_map(this, UseBiasedLocking);
2333           frame compiled_frame = f.sender(&reg_map);
2334           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2335             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2336           }
2337         }
2338       }
2339 
2340       // Set async. pending exception in thread.
2341       set_pending_async_exception(java_throwable);
2342 
2343       if (log_is_enabled(Info, exceptions)) {
2344          ResourceMark rm;
2345         log_info(exceptions)("Pending Async. exception installed of type: %s",
2346                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2347       }
2348       // for AbortVMOnException flag
2349       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2350     }
2351   }
2352 
2353 
2354   // Interrupt thread so it will wake up from a potential wait()
2355   Thread::interrupt(this);
2356 }
2357 
2358 // External suspension mechanism.
2359 //
2360 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2361 // to any VM_locks and it is at a transition
2362 // Self-suspension will happen on the transition out of the vm.
2363 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2364 //
2365 // Guarantees on return:
2366 //   + Target thread will not execute any new bytecode (that's why we need to
2367 //     force a safepoint)
2368 //   + Target thread will not enter any new monitors
2369 //
2370 void JavaThread::java_suspend() {
2371   ThreadsListHandle tlh;
2372   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2373     return;
2374   }
2375 
2376   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2377     if (!is_external_suspend()) {
2378       // a racing resume has cancelled us; bail out now
2379       return;
2380     }
2381 
2382     // suspend is done
2383     uint32_t debug_bits = 0;
2384     // Warning: is_ext_suspend_completed() may temporarily drop the
2385     // SR_lock to allow the thread to reach a stable thread state if
2386     // it is currently in a transient thread state.
2387     if (is_ext_suspend_completed(false /* !called_by_wait */,
2388                                  SuspendRetryDelay, &debug_bits)) {
2389       return;
2390     }
2391   }
2392 
2393   VM_ThreadSuspend vm_suspend;
2394   VMThread::execute(&vm_suspend);
2395 }
2396 
2397 // Part II of external suspension.
2398 // A JavaThread self suspends when it detects a pending external suspend
2399 // request. This is usually on transitions. It is also done in places
2400 // where continuing to the next transition would surprise the caller,
2401 // e.g., monitor entry.
2402 //
2403 // Returns the number of times that the thread self-suspended.
2404 //
2405 // Note: DO NOT call java_suspend_self() when you just want to block current
2406 //       thread. java_suspend_self() is the second stage of cooperative
2407 //       suspension for external suspend requests and should only be used
2408 //       to complete an external suspend request.
2409 //
2410 int JavaThread::java_suspend_self() {
2411   int ret = 0;
2412 
2413   // we are in the process of exiting so don't suspend
2414   if (is_exiting()) {
2415     clear_external_suspend();
2416     return ret;
2417   }
2418 
2419   assert(_anchor.walkable() ||
2420          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2421          "must have walkable stack");
2422 
2423   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2424 
2425   assert(!this->is_ext_suspended(),
2426          "a thread trying to self-suspend should not already be suspended");
2427 
2428   if (this->is_suspend_equivalent()) {
2429     // If we are self-suspending as a result of the lifting of a
2430     // suspend equivalent condition, then the suspend_equivalent
2431     // flag is not cleared until we set the ext_suspended flag so
2432     // that wait_for_ext_suspend_completion() returns consistent
2433     // results.
2434     this->clear_suspend_equivalent();
2435   }
2436 
2437   // A racing resume may have cancelled us before we grabbed SR_lock
2438   // above. Or another external suspend request could be waiting for us
2439   // by the time we return from SR_lock()->wait(). The thread
2440   // that requested the suspension may already be trying to walk our
2441   // stack and if we return now, we can change the stack out from under
2442   // it. This would be a "bad thing (TM)" and cause the stack walker
2443   // to crash. We stay self-suspended until there are no more pending
2444   // external suspend requests.
2445   while (is_external_suspend()) {
2446     ret++;
2447     this->set_ext_suspended();
2448 
2449     // _ext_suspended flag is cleared by java_resume()
2450     while (is_ext_suspended()) {
2451       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2452     }
2453   }
2454 
2455   return ret;
2456 }
2457 
2458 #ifdef ASSERT
2459 // Verify the JavaThread has not yet been published in the Threads::list, and
2460 // hence doesn't need protection from concurrent access at this stage.
2461 void JavaThread::verify_not_published() {
2462   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2463   // since an unpublished JavaThread doesn't participate in the
2464   // Thread-SMR protocol for keeping a ThreadsList alive.
2465   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2466 }
2467 #endif
2468 
2469 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2470 // progress or when _suspend_flags is non-zero.
2471 // Current thread needs to self-suspend if there is a suspend request and/or
2472 // block if a safepoint is in progress.
2473 // Async exception ISN'T checked.
2474 // Note only the ThreadInVMfromNative transition can call this function
2475 // directly and when thread state is _thread_in_native_trans
2476 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2477   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2478 
2479   JavaThread *curJT = JavaThread::current();
2480   bool do_self_suspend = thread->is_external_suspend();
2481 
2482   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2483 
2484   // If JNIEnv proxies are allowed, don't self-suspend if the target
2485   // thread is not the current thread. In older versions of jdbx, jdbx
2486   // threads could call into the VM with another thread's JNIEnv so we
2487   // can be here operating on behalf of a suspended thread (4432884).
2488   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2489     JavaThreadState state = thread->thread_state();
2490 
2491     // We mark this thread_blocked state as a suspend-equivalent so
2492     // that a caller to is_ext_suspend_completed() won't be confused.
2493     // The suspend-equivalent state is cleared by java_suspend_self().
2494     thread->set_suspend_equivalent();
2495 
2496     // If the safepoint code sees the _thread_in_native_trans state, it will
2497     // wait until the thread changes to other thread state. There is no
2498     // guarantee on how soon we can obtain the SR_lock and complete the
2499     // self-suspend request. It would be a bad idea to let safepoint wait for
2500     // too long. Temporarily change the state to _thread_blocked to
2501     // let the VM thread know that this thread is ready for GC. The problem
2502     // of changing thread state is that safepoint could happen just after
2503     // java_suspend_self() returns after being resumed, and VM thread will
2504     // see the _thread_blocked state. We must check for safepoint
2505     // after restoring the state and make sure we won't leave while a safepoint
2506     // is in progress.
2507     thread->set_thread_state(_thread_blocked);
2508     thread->java_suspend_self();
2509     thread->set_thread_state(state);
2510 
2511     InterfaceSupport::serialize_thread_state_with_handler(thread);
2512   }
2513 
2514   SafepointMechanism::block_if_requested(curJT);
2515 
2516   if (thread->is_deopt_suspend()) {
2517     thread->clear_deopt_suspend();
2518     RegisterMap map(thread, false);
2519     frame f = thread->last_frame();
2520     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2521       f = f.sender(&map);
2522     }
2523     if (f.id() == thread->must_deopt_id()) {
2524       thread->clear_must_deopt_id();
2525       f.deoptimize(thread);
2526     } else {
2527       fatal("missed deoptimization!");
2528     }
2529   }
2530 
2531   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2532 }
2533 
2534 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2535 // progress or when _suspend_flags is non-zero.
2536 // Current thread needs to self-suspend if there is a suspend request and/or
2537 // block if a safepoint is in progress.
2538 // Also check for pending async exception (not including unsafe access error).
2539 // Note only the native==>VM/Java barriers can call this function and when
2540 // thread state is _thread_in_native_trans.
2541 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2542   check_safepoint_and_suspend_for_native_trans(thread);
2543 
2544   if (thread->has_async_exception()) {
2545     // We are in _thread_in_native_trans state, don't handle unsafe
2546     // access error since that may block.
2547     thread->check_and_handle_async_exceptions(false);
2548   }
2549 }
2550 
2551 // This is a variant of the normal
2552 // check_special_condition_for_native_trans with slightly different
2553 // semantics for use by critical native wrappers.  It does all the
2554 // normal checks but also performs the transition back into
2555 // thread_in_Java state.  This is required so that critical natives
2556 // can potentially block and perform a GC if they are the last thread
2557 // exiting the GCLocker.
2558 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2559   check_special_condition_for_native_trans(thread);
2560 
2561   // Finish the transition
2562   thread->set_thread_state(_thread_in_Java);
2563 
2564   if (thread->do_critical_native_unlock()) {
2565     ThreadInVMfromJavaNoAsyncException tiv(thread);
2566     GCLocker::unlock_critical(thread);
2567     thread->clear_critical_native_unlock();
2568   }
2569 }
2570 
2571 // We need to guarantee the Threads_lock here, since resumes are not
2572 // allowed during safepoint synchronization
2573 // Can only resume from an external suspension
2574 void JavaThread::java_resume() {
2575   assert_locked_or_safepoint(Threads_lock);
2576 
2577   // Sanity check: thread is gone, has started exiting or the thread
2578   // was not externally suspended.
2579   ThreadsListHandle tlh;
2580   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2581     return;
2582   }
2583 
2584   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2585 
2586   clear_external_suspend();
2587 
2588   if (is_ext_suspended()) {
2589     clear_ext_suspended();
2590     SR_lock()->notify_all();
2591   }
2592 }
2593 
2594 size_t JavaThread::_stack_red_zone_size = 0;
2595 size_t JavaThread::_stack_yellow_zone_size = 0;
2596 size_t JavaThread::_stack_reserved_zone_size = 0;
2597 size_t JavaThread::_stack_shadow_zone_size = 0;
2598 
2599 void JavaThread::create_stack_guard_pages() {
2600   if (!os::uses_stack_guard_pages() ||
2601       _stack_guard_state != stack_guard_unused ||
2602       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2603       log_info(os, thread)("Stack guard page creation for thread "
2604                            UINTX_FORMAT " disabled", os::current_thread_id());
2605     return;
2606   }
2607   address low_addr = stack_end();
2608   size_t len = stack_guard_zone_size();
2609 
2610   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2611   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2612 
2613   int must_commit = os::must_commit_stack_guard_pages();
2614   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2615 
2616   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2617     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2618     return;
2619   }
2620 
2621   if (os::guard_memory((char *) low_addr, len)) {
2622     _stack_guard_state = stack_guard_enabled;
2623   } else {
2624     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2625       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2626     if (os::uncommit_memory((char *) low_addr, len)) {
2627       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2628     }
2629     return;
2630   }
2631 
2632   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2633     PTR_FORMAT "-" PTR_FORMAT ".",
2634     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2635 }
2636 
2637 void JavaThread::remove_stack_guard_pages() {
2638   assert(Thread::current() == this, "from different thread");
2639   if (_stack_guard_state == stack_guard_unused) return;
2640   address low_addr = stack_end();
2641   size_t len = stack_guard_zone_size();
2642 
2643   if (os::must_commit_stack_guard_pages()) {
2644     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2645       _stack_guard_state = stack_guard_unused;
2646     } else {
2647       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2648         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2649       return;
2650     }
2651   } else {
2652     if (_stack_guard_state == stack_guard_unused) return;
2653     if (os::unguard_memory((char *) low_addr, len)) {
2654       _stack_guard_state = stack_guard_unused;
2655     } else {
2656       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2657         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2658       return;
2659     }
2660   }
2661 
2662   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2663     PTR_FORMAT "-" PTR_FORMAT ".",
2664     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2665 }
2666 
2667 void JavaThread::enable_stack_reserved_zone() {
2668   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2669 
2670   // The base notation is from the stack's point of view, growing downward.
2671   // We need to adjust it to work correctly with guard_memory()
2672   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2673 
2674   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2675   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2676 
2677   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2678     _stack_guard_state = stack_guard_enabled;
2679   } else {
2680     warning("Attempt to guard stack reserved zone failed.");
2681   }
2682   enable_register_stack_guard();
2683 }
2684 
2685 void JavaThread::disable_stack_reserved_zone() {
2686   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2687 
2688   // Simply return if called for a thread that does not use guard pages.
2689   if (_stack_guard_state != stack_guard_enabled) return;
2690 
2691   // The base notation is from the stack's point of view, growing downward.
2692   // We need to adjust it to work correctly with guard_memory()
2693   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2694 
2695   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2696     _stack_guard_state = stack_guard_reserved_disabled;
2697   } else {
2698     warning("Attempt to unguard stack reserved zone failed.");
2699   }
2700   disable_register_stack_guard();
2701 }
2702 
2703 void JavaThread::enable_stack_yellow_reserved_zone() {
2704   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2705   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2706 
2707   // The base notation is from the stacks point of view, growing downward.
2708   // We need to adjust it to work correctly with guard_memory()
2709   address base = stack_red_zone_base();
2710 
2711   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2712   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2713 
2714   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2715     _stack_guard_state = stack_guard_enabled;
2716   } else {
2717     warning("Attempt to guard stack yellow zone failed.");
2718   }
2719   enable_register_stack_guard();
2720 }
2721 
2722 void JavaThread::disable_stack_yellow_reserved_zone() {
2723   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2724   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2725 
2726   // Simply return if called for a thread that does not use guard pages.
2727   if (_stack_guard_state == stack_guard_unused) return;
2728 
2729   // The base notation is from the stacks point of view, growing downward.
2730   // We need to adjust it to work correctly with guard_memory()
2731   address base = stack_red_zone_base();
2732 
2733   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2734     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2735   } else {
2736     warning("Attempt to unguard stack yellow zone failed.");
2737   }
2738   disable_register_stack_guard();
2739 }
2740 
2741 void JavaThread::enable_stack_red_zone() {
2742   // The base notation is from the stacks point of view, growing downward.
2743   // We need to adjust it to work correctly with guard_memory()
2744   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2745   address base = stack_red_zone_base() - stack_red_zone_size();
2746 
2747   guarantee(base < stack_base(), "Error calculating stack red zone");
2748   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2749 
2750   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2751     warning("Attempt to guard stack red zone failed.");
2752   }
2753 }
2754 
2755 void JavaThread::disable_stack_red_zone() {
2756   // The base notation is from the stacks point of view, growing downward.
2757   // We need to adjust it to work correctly with guard_memory()
2758   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2759   address base = stack_red_zone_base() - stack_red_zone_size();
2760   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2761     warning("Attempt to unguard stack red zone failed.");
2762   }
2763 }
2764 
2765 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2766   // ignore is there is no stack
2767   if (!has_last_Java_frame()) return;
2768   // traverse the stack frames. Starts from top frame.
2769   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2770     frame* fr = fst.current();
2771     f(fr, fst.register_map());
2772   }
2773 }
2774 
2775 
2776 #ifndef PRODUCT
2777 // Deoptimization
2778 // Function for testing deoptimization
2779 void JavaThread::deoptimize() {
2780   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2781   StackFrameStream fst(this, UseBiasedLocking);
2782   bool deopt = false;           // Dump stack only if a deopt actually happens.
2783   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2784   // Iterate over all frames in the thread and deoptimize
2785   for (; !fst.is_done(); fst.next()) {
2786     if (fst.current()->can_be_deoptimized()) {
2787 
2788       if (only_at) {
2789         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2790         // consists of comma or carriage return separated numbers so
2791         // search for the current bci in that string.
2792         address pc = fst.current()->pc();
2793         nmethod* nm =  (nmethod*) fst.current()->cb();
2794         ScopeDesc* sd = nm->scope_desc_at(pc);
2795         char buffer[8];
2796         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2797         size_t len = strlen(buffer);
2798         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2799         while (found != NULL) {
2800           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2801               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2802             // Check that the bci found is bracketed by terminators.
2803             break;
2804           }
2805           found = strstr(found + 1, buffer);
2806         }
2807         if (!found) {
2808           continue;
2809         }
2810       }
2811 
2812       if (DebugDeoptimization && !deopt) {
2813         deopt = true; // One-time only print before deopt
2814         tty->print_cr("[BEFORE Deoptimization]");
2815         trace_frames();
2816         trace_stack();
2817       }
2818       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2819     }
2820   }
2821 
2822   if (DebugDeoptimization && deopt) {
2823     tty->print_cr("[AFTER Deoptimization]");
2824     trace_frames();
2825   }
2826 }
2827 
2828 
2829 // Make zombies
2830 void JavaThread::make_zombies() {
2831   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2832     if (fst.current()->can_be_deoptimized()) {
2833       // it is a Java nmethod
2834       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2835       nm->make_not_entrant();
2836     }
2837   }
2838 }
2839 #endif // PRODUCT
2840 
2841 
2842 void JavaThread::deoptimized_wrt_marked_nmethods() {
2843   if (!has_last_Java_frame()) return;
2844   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2845   StackFrameStream fst(this, UseBiasedLocking);
2846   for (; !fst.is_done(); fst.next()) {
2847     if (fst.current()->should_be_deoptimized()) {
2848       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2849     }
2850   }
2851 }
2852 
2853 
2854 // If the caller is a NamedThread, then remember, in the current scope,
2855 // the given JavaThread in its _processed_thread field.
2856 class RememberProcessedThread: public StackObj {
2857   NamedThread* _cur_thr;
2858  public:
2859   RememberProcessedThread(JavaThread* jthr) {
2860     Thread* thread = Thread::current();
2861     if (thread->is_Named_thread()) {
2862       _cur_thr = (NamedThread *)thread;
2863       _cur_thr->set_processed_thread(jthr);
2864     } else {
2865       _cur_thr = NULL;
2866     }
2867   }
2868 
2869   ~RememberProcessedThread() {
2870     if (_cur_thr) {
2871       _cur_thr->set_processed_thread(NULL);
2872     }
2873   }
2874 };
2875 
2876 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2877   // Verify that the deferred card marks have been flushed.
2878   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2879 
2880   // Traverse the GCHandles
2881   Thread::oops_do(f, cf);
2882 
2883   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2884          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2885 
2886   if (has_last_Java_frame()) {
2887     // Record JavaThread to GC thread
2888     RememberProcessedThread rpt(this);
2889 
2890     // traverse the registered growable array
2891     if (_array_for_gc != NULL) {
2892       for (int index = 0; index < _array_for_gc->length(); index++) {
2893         f->do_oop(_array_for_gc->adr_at(index));
2894       }
2895     }
2896 
2897     // Traverse the monitor chunks
2898     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2899       chunk->oops_do(f);
2900     }
2901 
2902     // Traverse the execution stack
2903     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2904       fst.current()->oops_do(f, cf, fst.register_map());
2905     }
2906   }
2907 
2908   // callee_target is never live across a gc point so NULL it here should
2909   // it still contain a methdOop.
2910 
2911   set_callee_target(NULL);
2912 
2913   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2914   // If we have deferred set_locals there might be oops waiting to be
2915   // written
2916   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2917   if (list != NULL) {
2918     for (int i = 0; i < list->length(); i++) {
2919       list->at(i)->oops_do(f);
2920     }
2921   }
2922 
2923   // Traverse instance variables at the end since the GC may be moving things
2924   // around using this function
2925   f->do_oop((oop*) &_threadObj);
2926   f->do_oop((oop*) &_vm_result);
2927   f->do_oop((oop*) &_exception_oop);
2928   f->do_oop((oop*) &_pending_async_exception);
2929 
2930   if (jvmti_thread_state() != NULL) {
2931     jvmti_thread_state()->oops_do(f);
2932   }
2933 }
2934 
2935 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2936   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2937          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2938 
2939   if (has_last_Java_frame()) {
2940     // Traverse the execution stack
2941     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2942       fst.current()->nmethods_do(cf);
2943     }
2944   }
2945 }
2946 
2947 void JavaThread::metadata_do(void f(Metadata*)) {
2948   if (has_last_Java_frame()) {
2949     // Traverse the execution stack to call f() on the methods in the stack
2950     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2951       fst.current()->metadata_do(f);
2952     }
2953   } else if (is_Compiler_thread()) {
2954     // need to walk ciMetadata in current compile tasks to keep alive.
2955     CompilerThread* ct = (CompilerThread*)this;
2956     if (ct->env() != NULL) {
2957       ct->env()->metadata_do(f);
2958     }
2959     CompileTask* task = ct->task();
2960     if (task != NULL) {
2961       task->metadata_do(f);
2962     }
2963   }
2964 }
2965 
2966 // Printing
2967 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2968   switch (_thread_state) {
2969   case _thread_uninitialized:     return "_thread_uninitialized";
2970   case _thread_new:               return "_thread_new";
2971   case _thread_new_trans:         return "_thread_new_trans";
2972   case _thread_in_native:         return "_thread_in_native";
2973   case _thread_in_native_trans:   return "_thread_in_native_trans";
2974   case _thread_in_vm:             return "_thread_in_vm";
2975   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2976   case _thread_in_Java:           return "_thread_in_Java";
2977   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2978   case _thread_blocked:           return "_thread_blocked";
2979   case _thread_blocked_trans:     return "_thread_blocked_trans";
2980   default:                        return "unknown thread state";
2981   }
2982 }
2983 
2984 #ifndef PRODUCT
2985 void JavaThread::print_thread_state_on(outputStream *st) const {
2986   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2987 };
2988 void JavaThread::print_thread_state() const {
2989   print_thread_state_on(tty);
2990 }
2991 #endif // PRODUCT
2992 
2993 // Called by Threads::print() for VM_PrintThreads operation
2994 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
2995   st->print_raw("\"");
2996   st->print_raw(get_thread_name());
2997   st->print_raw("\" ");
2998   oop thread_oop = threadObj();
2999   if (thread_oop != NULL) {
3000     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3001     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3002     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3003   }
3004   Thread::print_on(st, print_extended_info);
3005   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3006   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3007   if (thread_oop != NULL) {
3008     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3009   }
3010 #ifndef PRODUCT
3011   _safepoint_state->print_on(st);
3012 #endif // PRODUCT
3013   if (is_Compiler_thread()) {
3014     CompileTask *task = ((CompilerThread*)this)->task();
3015     if (task != NULL) {
3016       st->print("   Compiling: ");
3017       task->print(st, NULL, true, false);
3018     } else {
3019       st->print("   No compile task");
3020     }
3021     st->cr();
3022   }
3023 }
3024 
3025 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3026   st->print("%s", get_thread_name_string(buf, buflen));
3027 }
3028 
3029 // Called by fatal error handler. The difference between this and
3030 // JavaThread::print() is that we can't grab lock or allocate memory.
3031 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3032   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3033   oop thread_obj = threadObj();
3034   if (thread_obj != NULL) {
3035     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3036   }
3037   st->print(" [");
3038   st->print("%s", _get_thread_state_name(_thread_state));
3039   if (osthread()) {
3040     st->print(", id=%d", osthread()->thread_id());
3041   }
3042   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3043             p2i(stack_end()), p2i(stack_base()));
3044   st->print("]");
3045 
3046   ThreadsSMRSupport::print_info_on(this, st);
3047   return;
3048 }
3049 
3050 // Verification
3051 
3052 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3053 
3054 void JavaThread::verify() {
3055   // Verify oops in the thread.
3056   oops_do(&VerifyOopClosure::verify_oop, NULL);
3057 
3058   // Verify the stack frames.
3059   frames_do(frame_verify);
3060 }
3061 
3062 // CR 6300358 (sub-CR 2137150)
3063 // Most callers of this method assume that it can't return NULL but a
3064 // thread may not have a name whilst it is in the process of attaching to
3065 // the VM - see CR 6412693, and there are places where a JavaThread can be
3066 // seen prior to having it's threadObj set (eg JNI attaching threads and
3067 // if vm exit occurs during initialization). These cases can all be accounted
3068 // for such that this method never returns NULL.
3069 const char* JavaThread::get_thread_name() const {
3070 #ifdef ASSERT
3071   // early safepoints can hit while current thread does not yet have TLS
3072   if (!SafepointSynchronize::is_at_safepoint()) {
3073     Thread *cur = Thread::current();
3074     if (!(cur->is_Java_thread() && cur == this)) {
3075       // Current JavaThreads are allowed to get their own name without
3076       // the Threads_lock.
3077       assert_locked_or_safepoint(Threads_lock);
3078     }
3079   }
3080 #endif // ASSERT
3081   return get_thread_name_string();
3082 }
3083 
3084 // Returns a non-NULL representation of this thread's name, or a suitable
3085 // descriptive string if there is no set name
3086 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3087   const char* name_str;
3088   oop thread_obj = threadObj();
3089   if (thread_obj != NULL) {
3090     oop name = java_lang_Thread::name(thread_obj);
3091     if (name != NULL) {
3092       if (buf == NULL) {
3093         name_str = java_lang_String::as_utf8_string(name);
3094       } else {
3095         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3096       }
3097     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3098       name_str = "<no-name - thread is attaching>";
3099     } else {
3100       name_str = Thread::name();
3101     }
3102   } else {
3103     name_str = Thread::name();
3104   }
3105   assert(name_str != NULL, "unexpected NULL thread name");
3106   return name_str;
3107 }
3108 
3109 
3110 const char* JavaThread::get_threadgroup_name() const {
3111   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3112   oop thread_obj = threadObj();
3113   if (thread_obj != NULL) {
3114     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3115     if (thread_group != NULL) {
3116       // ThreadGroup.name can be null
3117       return java_lang_ThreadGroup::name(thread_group);
3118     }
3119   }
3120   return NULL;
3121 }
3122 
3123 const char* JavaThread::get_parent_name() const {
3124   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3125   oop thread_obj = threadObj();
3126   if (thread_obj != NULL) {
3127     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3128     if (thread_group != NULL) {
3129       oop parent = java_lang_ThreadGroup::parent(thread_group);
3130       if (parent != NULL) {
3131         // ThreadGroup.name can be null
3132         return java_lang_ThreadGroup::name(parent);
3133       }
3134     }
3135   }
3136   return NULL;
3137 }
3138 
3139 ThreadPriority JavaThread::java_priority() const {
3140   oop thr_oop = threadObj();
3141   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3142   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3143   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3144   return priority;
3145 }
3146 
3147 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3148 
3149   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3150   // Link Java Thread object <-> C++ Thread
3151 
3152   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3153   // and put it into a new Handle.  The Handle "thread_oop" can then
3154   // be used to pass the C++ thread object to other methods.
3155 
3156   // Set the Java level thread object (jthread) field of the
3157   // new thread (a JavaThread *) to C++ thread object using the
3158   // "thread_oop" handle.
3159 
3160   // Set the thread field (a JavaThread *) of the
3161   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3162 
3163   Handle thread_oop(Thread::current(),
3164                     JNIHandles::resolve_non_null(jni_thread));
3165   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3166          "must be initialized");
3167   set_threadObj(thread_oop());
3168   java_lang_Thread::set_thread(thread_oop(), this);
3169 
3170   if (prio == NoPriority) {
3171     prio = java_lang_Thread::priority(thread_oop());
3172     assert(prio != NoPriority, "A valid priority should be present");
3173   }
3174 
3175   // Push the Java priority down to the native thread; needs Threads_lock
3176   Thread::set_priority(this, prio);
3177 
3178   // Add the new thread to the Threads list and set it in motion.
3179   // We must have threads lock in order to call Threads::add.
3180   // It is crucial that we do not block before the thread is
3181   // added to the Threads list for if a GC happens, then the java_thread oop
3182   // will not be visited by GC.
3183   Threads::add(this);
3184 }
3185 
3186 oop JavaThread::current_park_blocker() {
3187   // Support for JSR-166 locks
3188   oop thread_oop = threadObj();
3189   if (thread_oop != NULL &&
3190       JDK_Version::current().supports_thread_park_blocker()) {
3191     return java_lang_Thread::park_blocker(thread_oop);
3192   }
3193   return NULL;
3194 }
3195 
3196 
3197 void JavaThread::print_stack_on(outputStream* st) {
3198   if (!has_last_Java_frame()) return;
3199   ResourceMark rm;
3200   HandleMark   hm;
3201 
3202   RegisterMap reg_map(this);
3203   vframe* start_vf = last_java_vframe(&reg_map);
3204   int count = 0;
3205   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3206     if (f->is_java_frame()) {
3207       javaVFrame* jvf = javaVFrame::cast(f);
3208       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3209 
3210       // Print out lock information
3211       if (JavaMonitorsInStackTrace) {
3212         jvf->print_lock_info_on(st, count);
3213       }
3214     } else {
3215       // Ignore non-Java frames
3216     }
3217 
3218     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3219     count++;
3220     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3221   }
3222 }
3223 
3224 
3225 // JVMTI PopFrame support
3226 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3227   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3228   if (in_bytes(size_in_bytes) != 0) {
3229     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3230     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3231     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3232   }
3233 }
3234 
3235 void* JavaThread::popframe_preserved_args() {
3236   return _popframe_preserved_args;
3237 }
3238 
3239 ByteSize JavaThread::popframe_preserved_args_size() {
3240   return in_ByteSize(_popframe_preserved_args_size);
3241 }
3242 
3243 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3244   int sz = in_bytes(popframe_preserved_args_size());
3245   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3246   return in_WordSize(sz / wordSize);
3247 }
3248 
3249 void JavaThread::popframe_free_preserved_args() {
3250   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3251   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3252   _popframe_preserved_args = NULL;
3253   _popframe_preserved_args_size = 0;
3254 }
3255 
3256 #ifndef PRODUCT
3257 
3258 void JavaThread::trace_frames() {
3259   tty->print_cr("[Describe stack]");
3260   int frame_no = 1;
3261   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3262     tty->print("  %d. ", frame_no++);
3263     fst.current()->print_value_on(tty, this);
3264     tty->cr();
3265   }
3266 }
3267 
3268 class PrintAndVerifyOopClosure: public OopClosure {
3269  protected:
3270   template <class T> inline void do_oop_work(T* p) {
3271     oop obj = RawAccess<>::oop_load(p);
3272     if (obj == NULL) return;
3273     tty->print(INTPTR_FORMAT ": ", p2i(p));
3274     if (oopDesc::is_oop_or_null(obj)) {
3275       if (obj->is_objArray()) {
3276         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3277       } else {
3278         obj->print();
3279       }
3280     } else {
3281       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3282     }
3283     tty->cr();
3284   }
3285  public:
3286   virtual void do_oop(oop* p) { do_oop_work(p); }
3287   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3288 };
3289 
3290 
3291 static void oops_print(frame* f, const RegisterMap *map) {
3292   PrintAndVerifyOopClosure print;
3293   f->print_value();
3294   f->oops_do(&print, NULL, (RegisterMap*)map);
3295 }
3296 
3297 // Print our all the locations that contain oops and whether they are
3298 // valid or not.  This useful when trying to find the oldest frame
3299 // where an oop has gone bad since the frame walk is from youngest to
3300 // oldest.
3301 void JavaThread::trace_oops() {
3302   tty->print_cr("[Trace oops]");
3303   frames_do(oops_print);
3304 }
3305 
3306 
3307 #ifdef ASSERT
3308 // Print or validate the layout of stack frames
3309 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3310   ResourceMark rm;
3311   PRESERVE_EXCEPTION_MARK;
3312   FrameValues values;
3313   int frame_no = 0;
3314   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3315     fst.current()->describe(values, ++frame_no);
3316     if (depth == frame_no) break;
3317   }
3318   if (validate_only) {
3319     values.validate();
3320   } else {
3321     tty->print_cr("[Describe stack layout]");
3322     values.print(this);
3323   }
3324 }
3325 #endif
3326 
3327 void JavaThread::trace_stack_from(vframe* start_vf) {
3328   ResourceMark rm;
3329   int vframe_no = 1;
3330   for (vframe* f = start_vf; f; f = f->sender()) {
3331     if (f->is_java_frame()) {
3332       javaVFrame::cast(f)->print_activation(vframe_no++);
3333     } else {
3334       f->print();
3335     }
3336     if (vframe_no > StackPrintLimit) {
3337       tty->print_cr("...<more frames>...");
3338       return;
3339     }
3340   }
3341 }
3342 
3343 
3344 void JavaThread::trace_stack() {
3345   if (!has_last_Java_frame()) return;
3346   ResourceMark rm;
3347   HandleMark   hm;
3348   RegisterMap reg_map(this);
3349   trace_stack_from(last_java_vframe(&reg_map));
3350 }
3351 
3352 
3353 #endif // PRODUCT
3354 
3355 
3356 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3357   assert(reg_map != NULL, "a map must be given");
3358   frame f = last_frame();
3359   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3360     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3361   }
3362   return NULL;
3363 }
3364 
3365 
3366 Klass* JavaThread::security_get_caller_class(int depth) {
3367   vframeStream vfst(this);
3368   vfst.security_get_caller_frame(depth);
3369   if (!vfst.at_end()) {
3370     return vfst.method()->method_holder();
3371   }
3372   return NULL;
3373 }
3374 
3375 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3376   assert(thread->is_Compiler_thread(), "must be compiler thread");
3377   CompileBroker::compiler_thread_loop();
3378 }
3379 
3380 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3381   NMethodSweeper::sweeper_loop();
3382 }
3383 
3384 // Create a CompilerThread
3385 CompilerThread::CompilerThread(CompileQueue* queue,
3386                                CompilerCounters* counters)
3387                                : JavaThread(&compiler_thread_entry) {
3388   _env   = NULL;
3389   _log   = NULL;
3390   _task  = NULL;
3391   _queue = queue;
3392   _counters = counters;
3393   _buffer_blob = NULL;
3394   _compiler = NULL;
3395 
3396   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3397   resource_area()->bias_to(mtCompiler);
3398 
3399 #ifndef PRODUCT
3400   _ideal_graph_printer = NULL;
3401 #endif
3402 }
3403 
3404 CompilerThread::~CompilerThread() {
3405   // Delete objects which were allocated on heap.
3406   delete _counters;
3407 }
3408 
3409 bool CompilerThread::can_call_java() const {
3410   return _compiler != NULL && _compiler->is_jvmci();
3411 }
3412 
3413 // Create sweeper thread
3414 CodeCacheSweeperThread::CodeCacheSweeperThread()
3415 : JavaThread(&sweeper_thread_entry) {
3416   _scanned_compiled_method = NULL;
3417 }
3418 
3419 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3420   JavaThread::oops_do(f, cf);
3421   if (_scanned_compiled_method != NULL && cf != NULL) {
3422     // Safepoints can occur when the sweeper is scanning an nmethod so
3423     // process it here to make sure it isn't unloaded in the middle of
3424     // a scan.
3425     cf->do_code_blob(_scanned_compiled_method);
3426   }
3427 }
3428 
3429 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3430   JavaThread::nmethods_do(cf);
3431   if (_scanned_compiled_method != NULL && cf != NULL) {
3432     // Safepoints can occur when the sweeper is scanning an nmethod so
3433     // process it here to make sure it isn't unloaded in the middle of
3434     // a scan.
3435     cf->do_code_blob(_scanned_compiled_method);
3436   }
3437 }
3438 
3439 
3440 // ======= Threads ========
3441 
3442 // The Threads class links together all active threads, and provides
3443 // operations over all threads. It is protected by the Threads_lock,
3444 // which is also used in other global contexts like safepointing.
3445 // ThreadsListHandles are used to safely perform operations on one
3446 // or more threads without the risk of the thread exiting during the
3447 // operation.
3448 //
3449 // Note: The Threads_lock is currently more widely used than we
3450 // would like. We are actively migrating Threads_lock uses to other
3451 // mechanisms in order to reduce Threads_lock contention.
3452 
3453 JavaThread* Threads::_thread_list = NULL;
3454 int         Threads::_number_of_threads = 0;
3455 int         Threads::_number_of_non_daemon_threads = 0;
3456 int         Threads::_return_code = 0;
3457 int         Threads::_thread_claim_parity = 0;
3458 size_t      JavaThread::_stack_size_at_create = 0;
3459 
3460 #ifdef ASSERT
3461 bool        Threads::_vm_complete = false;
3462 #endif
3463 
3464 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3465   Prefetch::read((void*)addr, prefetch_interval);
3466   return *addr;
3467 }
3468 
3469 // Possibly the ugliest for loop the world has seen. C++ does not allow
3470 // multiple types in the declaration section of the for loop. In this case
3471 // we are only dealing with pointers and hence can cast them. It looks ugly
3472 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3473 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3474     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3475              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3476              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3477              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3478              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3479          MACRO_current_p != MACRO_end;                                                                                    \
3480          MACRO_current_p++,                                                                                               \
3481              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3482 
3483 // All JavaThreads
3484 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3485 
3486 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3487 void Threads::non_java_threads_do(ThreadClosure* tc) {
3488   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3489   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3490     tc->do_thread(njti.current());
3491   }
3492 }
3493 
3494 // All JavaThreads
3495 void Threads::java_threads_do(ThreadClosure* tc) {
3496   assert_locked_or_safepoint(Threads_lock);
3497   // ALL_JAVA_THREADS iterates through all JavaThreads.
3498   ALL_JAVA_THREADS(p) {
3499     tc->do_thread(p);
3500   }
3501 }
3502 
3503 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3504   assert_locked_or_safepoint(Threads_lock);
3505   java_threads_do(tc);
3506   tc->do_thread(VMThread::vm_thread());
3507 }
3508 
3509 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3510 void Threads::threads_do(ThreadClosure* tc) {
3511   assert_locked_or_safepoint(Threads_lock);
3512   java_threads_do(tc);
3513   non_java_threads_do(tc);
3514 }
3515 
3516 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3517   int cp = Threads::thread_claim_parity();
3518   ALL_JAVA_THREADS(p) {
3519     if (p->claim_oops_do(is_par, cp)) {
3520       tc->do_thread(p);
3521     }
3522   }
3523   VMThread* vmt = VMThread::vm_thread();
3524   if (vmt->claim_oops_do(is_par, cp)) {
3525     tc->do_thread(vmt);
3526   }
3527 }
3528 
3529 // The system initialization in the library has three phases.
3530 //
3531 // Phase 1: java.lang.System class initialization
3532 //     java.lang.System is a primordial class loaded and initialized
3533 //     by the VM early during startup.  java.lang.System.<clinit>
3534 //     only does registerNatives and keeps the rest of the class
3535 //     initialization work later until thread initialization completes.
3536 //
3537 //     System.initPhase1 initializes the system properties, the static
3538 //     fields in, out, and err. Set up java signal handlers, OS-specific
3539 //     system settings, and thread group of the main thread.
3540 static void call_initPhase1(TRAPS) {
3541   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3542   JavaValue result(T_VOID);
3543   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3544                                          vmSymbols::void_method_signature(), CHECK);
3545 }
3546 
3547 // Phase 2. Module system initialization
3548 //     This will initialize the module system.  Only java.base classes
3549 //     can be loaded until phase 2 completes.
3550 //
3551 //     Call System.initPhase2 after the compiler initialization and jsr292
3552 //     classes get initialized because module initialization runs a lot of java
3553 //     code, that for performance reasons, should be compiled.  Also, this will
3554 //     enable the startup code to use lambda and other language features in this
3555 //     phase and onward.
3556 //
3557 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3558 static void call_initPhase2(TRAPS) {
3559   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3560 
3561   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3562 
3563   JavaValue result(T_INT);
3564   JavaCallArguments args;
3565   args.push_int(DisplayVMOutputToStderr);
3566   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3567   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3568                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3569   if (result.get_jint() != JNI_OK) {
3570     vm_exit_during_initialization(); // no message or exception
3571   }
3572 
3573   universe_post_module_init();
3574 }
3575 
3576 // Phase 3. final setup - set security manager, system class loader and TCCL
3577 //
3578 //     This will instantiate and set the security manager, set the system class
3579 //     loader as well as the thread context class loader.  The security manager
3580 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3581 //     other modules or the application's classpath.
3582 static void call_initPhase3(TRAPS) {
3583   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3584   JavaValue result(T_VOID);
3585   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3586                                          vmSymbols::void_method_signature(), CHECK);
3587 }
3588 
3589 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3590   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3591 
3592   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3593     create_vm_init_libraries();
3594   }
3595 
3596   initialize_class(vmSymbols::java_lang_String(), CHECK);
3597 
3598   // Inject CompactStrings value after the static initializers for String ran.
3599   java_lang_String::set_compact_strings(CompactStrings);
3600 
3601   // Initialize java_lang.System (needed before creating the thread)
3602   initialize_class(vmSymbols::java_lang_System(), CHECK);
3603   // The VM creates & returns objects of this class. Make sure it's initialized.
3604   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3605   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3606   Handle thread_group = create_initial_thread_group(CHECK);
3607   Universe::set_main_thread_group(thread_group());
3608   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3609   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3610   main_thread->set_threadObj(thread_object);
3611   // Set thread status to running since main thread has
3612   // been started and running.
3613   java_lang_Thread::set_thread_status(thread_object,
3614                                       java_lang_Thread::RUNNABLE);
3615 
3616   // The VM creates objects of this class.
3617   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3618 
3619   // The VM preresolves methods to these classes. Make sure that they get initialized
3620   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3621   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3622 
3623   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3624   call_initPhase1(CHECK);
3625 
3626   // get the Java runtime name after java.lang.System is initialized
3627   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3628   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3629 
3630   // an instance of OutOfMemory exception has been allocated earlier
3631   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3632   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3633   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3634   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3635   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3636   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3637   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3638   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3639 }
3640 
3641 void Threads::initialize_jsr292_core_classes(TRAPS) {
3642   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3643 
3644   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3645   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3646   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3647   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3648 }
3649 
3650 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3651   extern void JDK_Version_init();
3652 
3653   // Preinitialize version info.
3654   VM_Version::early_initialize();
3655 
3656   // Check version
3657   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3658 
3659   // Initialize library-based TLS
3660   ThreadLocalStorage::init();
3661 
3662   // Initialize the output stream module
3663   ostream_init();
3664 
3665   // Process java launcher properties.
3666   Arguments::process_sun_java_launcher_properties(args);
3667 
3668   // Initialize the os module
3669   os::init();
3670 
3671   // Record VM creation timing statistics
3672   TraceVmCreationTime create_vm_timer;
3673   create_vm_timer.start();
3674 
3675   // Initialize system properties.
3676   Arguments::init_system_properties();
3677 
3678   // So that JDK version can be used as a discriminator when parsing arguments
3679   JDK_Version_init();
3680 
3681   // Update/Initialize System properties after JDK version number is known
3682   Arguments::init_version_specific_system_properties();
3683 
3684   // Make sure to initialize log configuration *before* parsing arguments
3685   LogConfiguration::initialize(create_vm_timer.begin_time());
3686 
3687   // Parse arguments
3688   // Note: this internally calls os::init_container_support()
3689   jint parse_result = Arguments::parse(args);
3690   if (parse_result != JNI_OK) return parse_result;
3691 
3692   os::init_before_ergo();
3693 
3694   jint ergo_result = Arguments::apply_ergo();
3695   if (ergo_result != JNI_OK) return ergo_result;
3696 
3697   // Final check of all ranges after ergonomics which may change values.
3698   if (!JVMFlagRangeList::check_ranges()) {
3699     return JNI_EINVAL;
3700   }
3701 
3702   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3703   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3704   if (!constraint_result) {
3705     return JNI_EINVAL;
3706   }
3707 
3708   JVMFlagWriteableList::mark_startup();
3709 
3710   if (PauseAtStartup) {
3711     os::pause();
3712   }
3713 
3714   HOTSPOT_VM_INIT_BEGIN();
3715 
3716   // Timing (must come after argument parsing)
3717   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3718 
3719 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3720   // Initialize assert poison page mechanism.
3721   if (ShowRegistersOnAssert) {
3722     initialize_assert_poison();
3723   }
3724 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3725 
3726   // Initialize the os module after parsing the args
3727   jint os_init_2_result = os::init_2();
3728   if (os_init_2_result != JNI_OK) return os_init_2_result;
3729 
3730   SafepointMechanism::initialize();
3731 
3732   jint adjust_after_os_result = Arguments::adjust_after_os();
3733   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3734 
3735   // Initialize output stream logging
3736   ostream_init_log();
3737 
3738   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3739   // Must be before create_vm_init_agents()
3740   if (Arguments::init_libraries_at_startup()) {
3741     convert_vm_init_libraries_to_agents();
3742   }
3743 
3744   // Launch -agentlib/-agentpath and converted -Xrun agents
3745   if (Arguments::init_agents_at_startup()) {
3746     create_vm_init_agents();
3747   }
3748 
3749   // Initialize Threads state
3750   _thread_list = NULL;
3751   _number_of_threads = 0;
3752   _number_of_non_daemon_threads = 0;
3753 
3754   // Initialize global data structures and create system classes in heap
3755   vm_init_globals();
3756 
3757 #if INCLUDE_JVMCI
3758   if (JVMCICounterSize > 0) {
3759     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3760     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3761   } else {
3762     JavaThread::_jvmci_old_thread_counters = NULL;
3763   }
3764 #endif // INCLUDE_JVMCI
3765 
3766   // Attach the main thread to this os thread
3767   JavaThread* main_thread = new JavaThread();
3768   main_thread->set_thread_state(_thread_in_vm);
3769   main_thread->initialize_thread_current();
3770   // must do this before set_active_handles
3771   main_thread->record_stack_base_and_size();
3772   main_thread->register_thread_stack_with_NMT();
3773   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3774 
3775   if (!main_thread->set_as_starting_thread()) {
3776     vm_shutdown_during_initialization(
3777                                       "Failed necessary internal allocation. Out of swap space");
3778     main_thread->smr_delete();
3779     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3780     return JNI_ENOMEM;
3781   }
3782 
3783   // Enable guard page *after* os::create_main_thread(), otherwise it would
3784   // crash Linux VM, see notes in os_linux.cpp.
3785   main_thread->create_stack_guard_pages();
3786 
3787   // Initialize Java-Level synchronization subsystem
3788   ObjectMonitor::Initialize();
3789 
3790   // Initialize global modules
3791   jint status = init_globals();
3792   if (status != JNI_OK) {
3793     main_thread->smr_delete();
3794     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3795     return status;
3796   }
3797 
3798   JFR_ONLY(Jfr::on_vm_init();)
3799 
3800   // Should be done after the heap is fully created
3801   main_thread->cache_global_variables();
3802 
3803   HandleMark hm;
3804 
3805   { MutexLocker mu(Threads_lock);
3806     Threads::add(main_thread);
3807   }
3808 
3809   // Any JVMTI raw monitors entered in onload will transition into
3810   // real raw monitor. VM is setup enough here for raw monitor enter.
3811   JvmtiExport::transition_pending_onload_raw_monitors();
3812 
3813   // Create the VMThread
3814   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3815 
3816   VMThread::create();
3817     Thread* vmthread = VMThread::vm_thread();
3818 
3819     if (!os::create_thread(vmthread, os::vm_thread)) {
3820       vm_exit_during_initialization("Cannot create VM thread. "
3821                                     "Out of system resources.");
3822     }
3823 
3824     // Wait for the VM thread to become ready, and VMThread::run to initialize
3825     // Monitors can have spurious returns, must always check another state flag
3826     {
3827       MutexLocker ml(Notify_lock);
3828       os::start_thread(vmthread);
3829       while (vmthread->active_handles() == NULL) {
3830         Notify_lock->wait();
3831       }
3832     }
3833   }
3834 
3835   assert(Universe::is_fully_initialized(), "not initialized");
3836   if (VerifyDuringStartup) {
3837     // Make sure we're starting with a clean slate.
3838     VM_Verify verify_op;
3839     VMThread::execute(&verify_op);
3840   }
3841 
3842   // We need this to update the java.vm.info property in case any flags used
3843   // to initially define it have been changed. This is needed for both CDS and
3844   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3845   // is initially computed. See Abstract_VM_Version::vm_info_string().
3846   // This update must happen before we initialize the java classes, but
3847   // after any initialization logic that might modify the flags.
3848   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3849 
3850   Thread* THREAD = Thread::current();
3851 
3852   // Always call even when there are not JVMTI environments yet, since environments
3853   // may be attached late and JVMTI must track phases of VM execution
3854   JvmtiExport::enter_early_start_phase();
3855 
3856   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3857   JvmtiExport::post_early_vm_start();
3858 
3859   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3860 
3861   quicken_jni_functions();
3862 
3863   // No more stub generation allowed after that point.
3864   StubCodeDesc::freeze();
3865 
3866   // Set flag that basic initialization has completed. Used by exceptions and various
3867   // debug stuff, that does not work until all basic classes have been initialized.
3868   set_init_completed();
3869 
3870   LogConfiguration::post_initialize();
3871   Metaspace::post_initialize();
3872 
3873   HOTSPOT_VM_INIT_END();
3874 
3875   // record VM initialization completion time
3876 #if INCLUDE_MANAGEMENT
3877   Management::record_vm_init_completed();
3878 #endif // INCLUDE_MANAGEMENT
3879 
3880   // Signal Dispatcher needs to be started before VMInit event is posted
3881   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3882 
3883   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3884   if (!DisableAttachMechanism) {
3885     AttachListener::vm_start();
3886     if (StartAttachListener || AttachListener::init_at_startup()) {
3887       AttachListener::init();
3888     }
3889   }
3890 
3891   // Launch -Xrun agents
3892   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3893   // back-end can launch with -Xdebug -Xrunjdwp.
3894   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3895     create_vm_init_libraries();
3896   }
3897 
3898   if (CleanChunkPoolAsync) {
3899     Chunk::start_chunk_pool_cleaner_task();
3900   }
3901 
3902   // initialize compiler(s)
3903 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3904 #if INCLUDE_JVMCI
3905   bool force_JVMCI_intialization = false;
3906   if (EnableJVMCI) {
3907     // Initialize JVMCI eagerly when it is explicitly requested.
3908     // Or when JVMCIPrintProperties is enabled.
3909     // The JVMCI Java initialization code will read this flag and
3910     // do the printing if it's set.
3911     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3912 
3913     if (!force_JVMCI_intialization) {
3914       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3915       // compilations via JVMCI will not actually block until JVMCI is initialized.
3916       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3917     }
3918   }
3919 #endif
3920   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3921   // Postpone completion of compiler initialization to after JVMCI
3922   // is initialized to avoid timeouts of blocking compilations.
3923   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3924     CompileBroker::compilation_init_phase2();
3925   }
3926 #endif
3927 
3928   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3929   // It is done after compilers are initialized, because otherwise compilations of
3930   // signature polymorphic MH intrinsics can be missed
3931   // (see SystemDictionary::find_method_handle_intrinsic).
3932   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3933 
3934   // This will initialize the module system.  Only java.base classes can be
3935   // loaded until phase 2 completes
3936   call_initPhase2(CHECK_JNI_ERR);
3937 
3938   // Always call even when there are not JVMTI environments yet, since environments
3939   // may be attached late and JVMTI must track phases of VM execution
3940   JvmtiExport::enter_start_phase();
3941 
3942   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3943   JvmtiExport::post_vm_start();
3944 
3945   // Final system initialization including security manager and system class loader
3946   call_initPhase3(CHECK_JNI_ERR);
3947 
3948   // cache the system and platform class loaders
3949   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3950 
3951 #if INCLUDE_CDS
3952   if (DumpSharedSpaces) {
3953     // capture the module path info from the ModuleEntryTable
3954     ClassLoader::initialize_module_path(THREAD);
3955   }
3956 #endif
3957 
3958 #if INCLUDE_JVMCI
3959   if (force_JVMCI_intialization) {
3960     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3961     CompileBroker::compilation_init_phase2();
3962   }
3963 #endif
3964 
3965   // Always call even when there are not JVMTI environments yet, since environments
3966   // may be attached late and JVMTI must track phases of VM execution
3967   JvmtiExport::enter_live_phase();
3968 
3969   // Make perfmemory accessible
3970   PerfMemory::set_accessible(true);
3971 
3972   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3973   JvmtiExport::post_vm_initialized();
3974 
3975   JFR_ONLY(Jfr::on_vm_start();)
3976 
3977 #if INCLUDE_MANAGEMENT
3978   Management::initialize(THREAD);
3979 
3980   if (HAS_PENDING_EXCEPTION) {
3981     // management agent fails to start possibly due to
3982     // configuration problem and is responsible for printing
3983     // stack trace if appropriate. Simply exit VM.
3984     vm_exit(1);
3985   }
3986 #endif // INCLUDE_MANAGEMENT
3987 
3988   if (MemProfiling)                   MemProfiler::engage();
3989   StatSampler::engage();
3990   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3991 
3992   BiasedLocking::init();
3993 
3994 #if INCLUDE_RTM_OPT
3995   RTMLockingCounters::init();
3996 #endif
3997 
3998   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3999     call_postVMInitHook(THREAD);
4000     // The Java side of PostVMInitHook.run must deal with all
4001     // exceptions and provide means of diagnosis.
4002     if (HAS_PENDING_EXCEPTION) {
4003       CLEAR_PENDING_EXCEPTION;
4004     }
4005   }
4006 
4007   {
4008     MutexLocker ml(PeriodicTask_lock);
4009     // Make sure the WatcherThread can be started by WatcherThread::start()
4010     // or by dynamic enrollment.
4011     WatcherThread::make_startable();
4012     // Start up the WatcherThread if there are any periodic tasks
4013     // NOTE:  All PeriodicTasks should be registered by now. If they
4014     //   aren't, late joiners might appear to start slowly (we might
4015     //   take a while to process their first tick).
4016     if (PeriodicTask::num_tasks() > 0) {
4017       WatcherThread::start();
4018     }
4019   }
4020 
4021   create_vm_timer.end();
4022 #ifdef ASSERT
4023   _vm_complete = true;
4024 #endif
4025 
4026   if (DumpSharedSpaces) {
4027     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4028     ShouldNotReachHere();
4029   }
4030 
4031   return JNI_OK;
4032 }
4033 
4034 // type for the Agent_OnLoad and JVM_OnLoad entry points
4035 extern "C" {
4036   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4037 }
4038 // Find a command line agent library and return its entry point for
4039 //         -agentlib:  -agentpath:   -Xrun
4040 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4041 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4042                                     const char *on_load_symbols[],
4043                                     size_t num_symbol_entries) {
4044   OnLoadEntry_t on_load_entry = NULL;
4045   void *library = NULL;
4046 
4047   if (!agent->valid()) {
4048     char buffer[JVM_MAXPATHLEN];
4049     char ebuf[1024] = "";
4050     const char *name = agent->name();
4051     const char *msg = "Could not find agent library ";
4052 
4053     // First check to see if agent is statically linked into executable
4054     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4055       library = agent->os_lib();
4056     } else if (agent->is_absolute_path()) {
4057       library = os::dll_load(name, ebuf, sizeof ebuf);
4058       if (library == NULL) {
4059         const char *sub_msg = " in absolute path, with error: ";
4060         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4061         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4062         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4063         // If we can't find the agent, exit.
4064         vm_exit_during_initialization(buf, NULL);
4065         FREE_C_HEAP_ARRAY(char, buf);
4066       }
4067     } else {
4068       // Try to load the agent from the standard dll directory
4069       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4070                              name)) {
4071         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4072       }
4073       if (library == NULL) { // Try the library path directory.
4074         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4075           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4076         }
4077         if (library == NULL) {
4078           const char *sub_msg = " on the library path, with error: ";
4079           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4080 
4081           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4082                        strlen(ebuf) + strlen(sub_msg2) + 1;
4083           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4084           if (!agent->is_instrument_lib()) {
4085             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4086           } else {
4087             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4088           }
4089           // If we can't find the agent, exit.
4090           vm_exit_during_initialization(buf, NULL);
4091           FREE_C_HEAP_ARRAY(char, buf);
4092         }
4093       }
4094     }
4095     agent->set_os_lib(library);
4096     agent->set_valid();
4097   }
4098 
4099   // Find the OnLoad function.
4100   on_load_entry =
4101     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4102                                                           false,
4103                                                           on_load_symbols,
4104                                                           num_symbol_entries));
4105   return on_load_entry;
4106 }
4107 
4108 // Find the JVM_OnLoad entry point
4109 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4110   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4111   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4112 }
4113 
4114 // Find the Agent_OnLoad entry point
4115 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4116   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4117   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4118 }
4119 
4120 // For backwards compatibility with -Xrun
4121 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4122 // treated like -agentpath:
4123 // Must be called before agent libraries are created
4124 void Threads::convert_vm_init_libraries_to_agents() {
4125   AgentLibrary* agent;
4126   AgentLibrary* next;
4127 
4128   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4129     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4130     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4131 
4132     // If there is an JVM_OnLoad function it will get called later,
4133     // otherwise see if there is an Agent_OnLoad
4134     if (on_load_entry == NULL) {
4135       on_load_entry = lookup_agent_on_load(agent);
4136       if (on_load_entry != NULL) {
4137         // switch it to the agent list -- so that Agent_OnLoad will be called,
4138         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4139         Arguments::convert_library_to_agent(agent);
4140       } else {
4141         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4142       }
4143     }
4144   }
4145 }
4146 
4147 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4148 // Invokes Agent_OnLoad
4149 // Called very early -- before JavaThreads exist
4150 void Threads::create_vm_init_agents() {
4151   extern struct JavaVM_ main_vm;
4152   AgentLibrary* agent;
4153 
4154   JvmtiExport::enter_onload_phase();
4155 
4156   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4157     // CDS dumping does not support native JVMTI agent.
4158     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4159     if (DumpSharedSpaces) {
4160       if(!agent->is_instrument_lib()) {
4161         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4162       } else if (!AllowArchivingWithJavaAgent) {
4163         vm_exit_during_cds_dumping(
4164           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4165       }
4166     }
4167 
4168     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4169 
4170     if (on_load_entry != NULL) {
4171       // Invoke the Agent_OnLoad function
4172       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4173       if (err != JNI_OK) {
4174         vm_exit_during_initialization("agent library failed to init", agent->name());
4175       }
4176     } else {
4177       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4178     }
4179   }
4180 
4181   JvmtiExport::enter_primordial_phase();
4182 }
4183 
4184 extern "C" {
4185   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4186 }
4187 
4188 void Threads::shutdown_vm_agents() {
4189   // Send any Agent_OnUnload notifications
4190   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4191   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4192   extern struct JavaVM_ main_vm;
4193   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4194 
4195     // Find the Agent_OnUnload function.
4196     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4197                                                    os::find_agent_function(agent,
4198                                                    false,
4199                                                    on_unload_symbols,
4200                                                    num_symbol_entries));
4201 
4202     // Invoke the Agent_OnUnload function
4203     if (unload_entry != NULL) {
4204       JavaThread* thread = JavaThread::current();
4205       ThreadToNativeFromVM ttn(thread);
4206       HandleMark hm(thread);
4207       (*unload_entry)(&main_vm);
4208     }
4209   }
4210 }
4211 
4212 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4213 // Invokes JVM_OnLoad
4214 void Threads::create_vm_init_libraries() {
4215   extern struct JavaVM_ main_vm;
4216   AgentLibrary* agent;
4217 
4218   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4219     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4220 
4221     if (on_load_entry != NULL) {
4222       // Invoke the JVM_OnLoad function
4223       JavaThread* thread = JavaThread::current();
4224       ThreadToNativeFromVM ttn(thread);
4225       HandleMark hm(thread);
4226       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4227       if (err != JNI_OK) {
4228         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4229       }
4230     } else {
4231       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4232     }
4233   }
4234 }
4235 
4236 
4237 // Last thread running calls java.lang.Shutdown.shutdown()
4238 void JavaThread::invoke_shutdown_hooks() {
4239   HandleMark hm(this);
4240 
4241   // We could get here with a pending exception, if so clear it now.
4242   if (this->has_pending_exception()) {
4243     this->clear_pending_exception();
4244   }
4245 
4246   EXCEPTION_MARK;
4247   Klass* shutdown_klass =
4248     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4249                                       THREAD);
4250   if (shutdown_klass != NULL) {
4251     // SystemDictionary::resolve_or_null will return null if there was
4252     // an exception.  If we cannot load the Shutdown class, just don't
4253     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4254     // won't be run.  Note that if a shutdown hook was registered,
4255     // the Shutdown class would have already been loaded
4256     // (Runtime.addShutdownHook will load it).
4257     JavaValue result(T_VOID);
4258     JavaCalls::call_static(&result,
4259                            shutdown_klass,
4260                            vmSymbols::shutdown_method_name(),
4261                            vmSymbols::void_method_signature(),
4262                            THREAD);
4263   }
4264   CLEAR_PENDING_EXCEPTION;
4265 }
4266 
4267 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4268 // the program falls off the end of main(). Another VM exit path is through
4269 // vm_exit() when the program calls System.exit() to return a value or when
4270 // there is a serious error in VM. The two shutdown paths are not exactly
4271 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4272 // and VM_Exit op at VM level.
4273 //
4274 // Shutdown sequence:
4275 //   + Shutdown native memory tracking if it is on
4276 //   + Wait until we are the last non-daemon thread to execute
4277 //     <-- every thing is still working at this moment -->
4278 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4279 //        shutdown hooks
4280 //   + Call before_exit(), prepare for VM exit
4281 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4282 //        currently the only user of this mechanism is File.deleteOnExit())
4283 //      > stop StatSampler, watcher thread, CMS threads,
4284 //        post thread end and vm death events to JVMTI,
4285 //        stop signal thread
4286 //   + Call JavaThread::exit(), it will:
4287 //      > release JNI handle blocks, remove stack guard pages
4288 //      > remove this thread from Threads list
4289 //     <-- no more Java code from this thread after this point -->
4290 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4291 //     the compiler threads at safepoint
4292 //     <-- do not use anything that could get blocked by Safepoint -->
4293 //   + Disable tracing at JNI/JVM barriers
4294 //   + Set _vm_exited flag for threads that are still running native code
4295 //   + Call exit_globals()
4296 //      > deletes tty
4297 //      > deletes PerfMemory resources
4298 //   + Delete this thread
4299 //   + Return to caller
4300 
4301 bool Threads::destroy_vm() {
4302   JavaThread* thread = JavaThread::current();
4303 
4304 #ifdef ASSERT
4305   _vm_complete = false;
4306 #endif
4307   // Wait until we are the last non-daemon thread to execute
4308   { MutexLocker nu(Threads_lock);
4309     while (Threads::number_of_non_daemon_threads() > 1)
4310       // This wait should make safepoint checks, wait without a timeout,
4311       // and wait as a suspend-equivalent condition.
4312       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4313                          Mutex::_as_suspend_equivalent_flag);
4314   }
4315 
4316   EventShutdown e;
4317   if (e.should_commit()) {
4318     e.set_reason("No remaining non-daemon Java threads");
4319     e.commit();
4320   }
4321 
4322   // Hang forever on exit if we are reporting an error.
4323   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4324     os::infinite_sleep();
4325   }
4326   os::wait_for_keypress_at_exit();
4327 
4328   // run Java level shutdown hooks
4329   thread->invoke_shutdown_hooks();
4330 
4331   before_exit(thread);
4332 
4333   thread->exit(true);
4334 
4335   // Stop VM thread.
4336   {
4337     // 4945125 The vm thread comes to a safepoint during exit.
4338     // GC vm_operations can get caught at the safepoint, and the
4339     // heap is unparseable if they are caught. Grab the Heap_lock
4340     // to prevent this. The GC vm_operations will not be able to
4341     // queue until after the vm thread is dead. After this point,
4342     // we'll never emerge out of the safepoint before the VM exits.
4343 
4344     MutexLockerEx ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4345 
4346     VMThread::wait_for_vm_thread_exit();
4347     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4348     VMThread::destroy();
4349   }
4350 
4351   // Now, all Java threads are gone except daemon threads. Daemon threads
4352   // running Java code or in VM are stopped by the Safepoint. However,
4353   // daemon threads executing native code are still running.  But they
4354   // will be stopped at native=>Java/VM barriers. Note that we can't
4355   // simply kill or suspend them, as it is inherently deadlock-prone.
4356 
4357   VM_Exit::set_vm_exited();
4358 
4359   // Clean up ideal graph printers after the VMThread has started
4360   // the final safepoint which will block all the Compiler threads.
4361   // Note that this Thread has already logically exited so the
4362   // clean_up() function's use of a JavaThreadIteratorWithHandle
4363   // would be a problem except set_vm_exited() has remembered the
4364   // shutdown thread which is granted a policy exception.
4365 #if defined(COMPILER2) && !defined(PRODUCT)
4366   IdealGraphPrinter::clean_up();
4367 #endif
4368 
4369   notify_vm_shutdown();
4370 
4371   // exit_globals() will delete tty
4372   exit_globals();
4373 
4374   // We are after VM_Exit::set_vm_exited() so we can't call
4375   // thread->smr_delete() or we will block on the Threads_lock.
4376   // Deleting the shutdown thread here is safe because another
4377   // JavaThread cannot have an active ThreadsListHandle for
4378   // this JavaThread.
4379   delete thread;
4380 
4381 #if INCLUDE_JVMCI
4382   if (JVMCICounterSize > 0) {
4383     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4384   }
4385 #endif
4386 
4387   LogConfiguration::finalize();
4388 
4389   return true;
4390 }
4391 
4392 
4393 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4394   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4395   return is_supported_jni_version(version);
4396 }
4397 
4398 
4399 jboolean Threads::is_supported_jni_version(jint version) {
4400   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4401   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4402   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4403   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4404   if (version == JNI_VERSION_9) return JNI_TRUE;
4405   if (version == JNI_VERSION_10) return JNI_TRUE;
4406   return JNI_FALSE;
4407 }
4408 
4409 
4410 void Threads::add(JavaThread* p, bool force_daemon) {
4411   // The threads lock must be owned at this point
4412   assert(Threads_lock->owned_by_self(), "must have threads lock");
4413 
4414   BarrierSet::barrier_set()->on_thread_attach(p);
4415 
4416   p->set_next(_thread_list);
4417   _thread_list = p;
4418 
4419   // Once a JavaThread is added to the Threads list, smr_delete() has
4420   // to be used to delete it. Otherwise we can just delete it directly.
4421   p->set_on_thread_list();
4422 
4423   _number_of_threads++;
4424   oop threadObj = p->threadObj();
4425   bool daemon = true;
4426   // Bootstrapping problem: threadObj can be null for initial
4427   // JavaThread (or for threads attached via JNI)
4428   if ((!force_daemon) && !is_daemon((threadObj))) {
4429     _number_of_non_daemon_threads++;
4430     daemon = false;
4431   }
4432 
4433   ThreadService::add_thread(p, daemon);
4434 
4435   // Maintain fast thread list
4436   ThreadsSMRSupport::add_thread(p);
4437 
4438   // Possible GC point.
4439   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4440 }
4441 
4442 void Threads::remove(JavaThread* p) {
4443 
4444   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4445   ObjectSynchronizer::omFlush(p);
4446 
4447   // Extra scope needed for Thread_lock, so we can check
4448   // that we do not remove thread without safepoint code notice
4449   { MutexLocker ml(Threads_lock);
4450 
4451     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4452 
4453     // Maintain fast thread list
4454     ThreadsSMRSupport::remove_thread(p);
4455 
4456     JavaThread* current = _thread_list;
4457     JavaThread* prev    = NULL;
4458 
4459     while (current != p) {
4460       prev    = current;
4461       current = current->next();
4462     }
4463 
4464     if (prev) {
4465       prev->set_next(current->next());
4466     } else {
4467       _thread_list = p->next();
4468     }
4469 
4470     _number_of_threads--;
4471     oop threadObj = p->threadObj();
4472     bool daemon = true;
4473     if (!is_daemon(threadObj)) {
4474       _number_of_non_daemon_threads--;
4475       daemon = false;
4476 
4477       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4478       // on destroy_vm will wake up.
4479       if (number_of_non_daemon_threads() == 1) {
4480         Threads_lock->notify_all();
4481       }
4482     }
4483     ThreadService::remove_thread(p, daemon);
4484 
4485     // Make sure that safepoint code disregard this thread. This is needed since
4486     // the thread might mess around with locks after this point. This can cause it
4487     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4488     // of this thread since it is removed from the queue.
4489     p->set_terminated_value();
4490   } // unlock Threads_lock
4491 
4492   // Since Events::log uses a lock, we grab it outside the Threads_lock
4493   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4494 }
4495 
4496 // Operations on the Threads list for GC.  These are not explicitly locked,
4497 // but the garbage collector must provide a safe context for them to run.
4498 // In particular, these things should never be called when the Threads_lock
4499 // is held by some other thread. (Note: the Safepoint abstraction also
4500 // uses the Threads_lock to guarantee this property. It also makes sure that
4501 // all threads gets blocked when exiting or starting).
4502 
4503 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4504   ALL_JAVA_THREADS(p) {
4505     p->oops_do(f, cf);
4506   }
4507   VMThread::vm_thread()->oops_do(f, cf);
4508 }
4509 
4510 void Threads::change_thread_claim_parity() {
4511   // Set the new claim parity.
4512   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4513          "Not in range.");
4514   _thread_claim_parity++;
4515   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4516   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4517          "Not in range.");
4518 }
4519 
4520 #ifdef ASSERT
4521 void Threads::assert_all_threads_claimed() {
4522   ALL_JAVA_THREADS(p) {
4523     const int thread_parity = p->oops_do_parity();
4524     assert((thread_parity == _thread_claim_parity),
4525            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4526   }
4527   VMThread* vmt = VMThread::vm_thread();
4528   const int thread_parity = vmt->oops_do_parity();
4529   assert((thread_parity == _thread_claim_parity),
4530          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4531 }
4532 #endif // ASSERT
4533 
4534 class ParallelOopsDoThreadClosure : public ThreadClosure {
4535 private:
4536   OopClosure* _f;
4537   CodeBlobClosure* _cf;
4538 public:
4539   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4540   void do_thread(Thread* t) {
4541     t->oops_do(_f, _cf);
4542   }
4543 };
4544 
4545 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4546   ParallelOopsDoThreadClosure tc(f, cf);
4547   possibly_parallel_threads_do(is_par, &tc);
4548 }
4549 
4550 void Threads::nmethods_do(CodeBlobClosure* cf) {
4551   ALL_JAVA_THREADS(p) {
4552     // This is used by the code cache sweeper to mark nmethods that are active
4553     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4554     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4555     if(!p->is_Code_cache_sweeper_thread()) {
4556       p->nmethods_do(cf);
4557     }
4558   }
4559 }
4560 
4561 void Threads::metadata_do(void f(Metadata*)) {
4562   ALL_JAVA_THREADS(p) {
4563     p->metadata_do(f);
4564   }
4565 }
4566 
4567 class ThreadHandlesClosure : public ThreadClosure {
4568   void (*_f)(Metadata*);
4569  public:
4570   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4571   virtual void do_thread(Thread* thread) {
4572     thread->metadata_handles_do(_f);
4573   }
4574 };
4575 
4576 void Threads::metadata_handles_do(void f(Metadata*)) {
4577   // Only walk the Handles in Thread.
4578   ThreadHandlesClosure handles_closure(f);
4579   threads_do(&handles_closure);
4580 }
4581 
4582 void Threads::deoptimized_wrt_marked_nmethods() {
4583   ALL_JAVA_THREADS(p) {
4584     p->deoptimized_wrt_marked_nmethods();
4585   }
4586 }
4587 
4588 
4589 // Get count Java threads that are waiting to enter the specified monitor.
4590 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4591                                                          int count,
4592                                                          address monitor) {
4593   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4594 
4595   int i = 0;
4596   DO_JAVA_THREADS(t_list, p) {
4597     if (!p->can_call_java()) continue;
4598 
4599     address pending = (address)p->current_pending_monitor();
4600     if (pending == monitor) {             // found a match
4601       if (i < count) result->append(p);   // save the first count matches
4602       i++;
4603     }
4604   }
4605 
4606   return result;
4607 }
4608 
4609 
4610 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4611                                                       address owner) {
4612   // NULL owner means not locked so we can skip the search
4613   if (owner == NULL) return NULL;
4614 
4615   DO_JAVA_THREADS(t_list, p) {
4616     // first, see if owner is the address of a Java thread
4617     if (owner == (address)p) return p;
4618   }
4619 
4620   // Cannot assert on lack of success here since this function may be
4621   // used by code that is trying to report useful problem information
4622   // like deadlock detection.
4623   if (UseHeavyMonitors) return NULL;
4624 
4625   // If we didn't find a matching Java thread and we didn't force use of
4626   // heavyweight monitors, then the owner is the stack address of the
4627   // Lock Word in the owning Java thread's stack.
4628   //
4629   JavaThread* the_owner = NULL;
4630   DO_JAVA_THREADS(t_list, q) {
4631     if (q->is_lock_owned(owner)) {
4632       the_owner = q;
4633       break;
4634     }
4635   }
4636 
4637   // cannot assert on lack of success here; see above comment
4638   return the_owner;
4639 }
4640 
4641 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4642 void Threads::print_on(outputStream* st, bool print_stacks,
4643                        bool internal_format, bool print_concurrent_locks,
4644                        bool print_extended_info) {
4645   char buf[32];
4646   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4647 
4648   st->print_cr("Full thread dump %s (%s %s):",
4649                VM_Version::vm_name(),
4650                VM_Version::vm_release(),
4651                VM_Version::vm_info_string());
4652   st->cr();
4653 
4654 #if INCLUDE_SERVICES
4655   // Dump concurrent locks
4656   ConcurrentLocksDump concurrent_locks;
4657   if (print_concurrent_locks) {
4658     concurrent_locks.dump_at_safepoint();
4659   }
4660 #endif // INCLUDE_SERVICES
4661 
4662   ThreadsSMRSupport::print_info_on(st);
4663   st->cr();
4664 
4665   ALL_JAVA_THREADS(p) {
4666     ResourceMark rm;
4667     p->print_on(st, print_extended_info);
4668     if (print_stacks) {
4669       if (internal_format) {
4670         p->trace_stack();
4671       } else {
4672         p->print_stack_on(st);
4673       }
4674     }
4675     st->cr();
4676 #if INCLUDE_SERVICES
4677     if (print_concurrent_locks) {
4678       concurrent_locks.print_locks_on(p, st);
4679     }
4680 #endif // INCLUDE_SERVICES
4681   }
4682 
4683   VMThread::vm_thread()->print_on(st);
4684   st->cr();
4685   Universe::heap()->print_gc_threads_on(st);
4686   WatcherThread* wt = WatcherThread::watcher_thread();
4687   if (wt != NULL) {
4688     wt->print_on(st);
4689     st->cr();
4690   }
4691 
4692   st->flush();
4693 }
4694 
4695 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4696                              int buflen, bool* found_current) {
4697   if (this_thread != NULL) {
4698     bool is_current = (current == this_thread);
4699     *found_current = *found_current || is_current;
4700     st->print("%s", is_current ? "=>" : "  ");
4701 
4702     st->print(PTR_FORMAT, p2i(this_thread));
4703     st->print(" ");
4704     this_thread->print_on_error(st, buf, buflen);
4705     st->cr();
4706   }
4707 }
4708 
4709 class PrintOnErrorClosure : public ThreadClosure {
4710   outputStream* _st;
4711   Thread* _current;
4712   char* _buf;
4713   int _buflen;
4714   bool* _found_current;
4715  public:
4716   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4717                       int buflen, bool* found_current) :
4718    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4719 
4720   virtual void do_thread(Thread* thread) {
4721     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4722   }
4723 };
4724 
4725 // Threads::print_on_error() is called by fatal error handler. It's possible
4726 // that VM is not at safepoint and/or current thread is inside signal handler.
4727 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4728 // memory (even in resource area), it might deadlock the error handler.
4729 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4730                              int buflen) {
4731   ThreadsSMRSupport::print_info_on(st);
4732   st->cr();
4733 
4734   bool found_current = false;
4735   st->print_cr("Java Threads: ( => current thread )");
4736   ALL_JAVA_THREADS(thread) {
4737     print_on_error(thread, st, current, buf, buflen, &found_current);
4738   }
4739   st->cr();
4740 
4741   st->print_cr("Other Threads:");
4742   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4743   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4744 
4745   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4746   Universe::heap()->gc_threads_do(&print_closure);
4747 
4748   if (!found_current) {
4749     st->cr();
4750     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4751     current->print_on_error(st, buf, buflen);
4752     st->cr();
4753   }
4754   st->cr();
4755 
4756   st->print_cr("Threads with active compile tasks:");
4757   print_threads_compiling(st, buf, buflen);
4758 }
4759 
4760 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4761   ALL_JAVA_THREADS(thread) {
4762     if (thread->is_Compiler_thread()) {
4763       CompilerThread* ct = (CompilerThread*) thread;
4764 
4765       // Keep task in local variable for NULL check.
4766       // ct->_task might be set to NULL by concurring compiler thread
4767       // because it completed the compilation. The task is never freed,
4768       // though, just returned to a free list.
4769       CompileTask* task = ct->task();
4770       if (task != NULL) {
4771         thread->print_name_on_error(st, buf, buflen);
4772         st->print("  ");
4773         task->print(st, NULL, true, true);
4774       }
4775     }
4776   }
4777 }
4778 
4779 
4780 // Internal SpinLock and Mutex
4781 // Based on ParkEvent
4782 
4783 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4784 //
4785 // We employ SpinLocks _only for low-contention, fixed-length
4786 // short-duration critical sections where we're concerned
4787 // about native mutex_t or HotSpot Mutex:: latency.
4788 // The mux construct provides a spin-then-block mutual exclusion
4789 // mechanism.
4790 //
4791 // Testing has shown that contention on the ListLock guarding gFreeList
4792 // is common.  If we implement ListLock as a simple SpinLock it's common
4793 // for the JVM to devolve to yielding with little progress.  This is true
4794 // despite the fact that the critical sections protected by ListLock are
4795 // extremely short.
4796 //
4797 // TODO-FIXME: ListLock should be of type SpinLock.
4798 // We should make this a 1st-class type, integrated into the lock
4799 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4800 // should have sufficient padding to avoid false-sharing and excessive
4801 // cache-coherency traffic.
4802 
4803 
4804 typedef volatile int SpinLockT;
4805 
4806 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4807   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4808     return;   // normal fast-path return
4809   }
4810 
4811   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4812   int ctr = 0;
4813   int Yields = 0;
4814   for (;;) {
4815     while (*adr != 0) {
4816       ++ctr;
4817       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4818         if (Yields > 5) {
4819           os::naked_short_sleep(1);
4820         } else {
4821           os::naked_yield();
4822           ++Yields;
4823         }
4824       } else {
4825         SpinPause();
4826       }
4827     }
4828     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4829   }
4830 }
4831 
4832 void Thread::SpinRelease(volatile int * adr) {
4833   assert(*adr != 0, "invariant");
4834   OrderAccess::fence();      // guarantee at least release consistency.
4835   // Roach-motel semantics.
4836   // It's safe if subsequent LDs and STs float "up" into the critical section,
4837   // but prior LDs and STs within the critical section can't be allowed
4838   // to reorder or float past the ST that releases the lock.
4839   // Loads and stores in the critical section - which appear in program
4840   // order before the store that releases the lock - must also appear
4841   // before the store that releases the lock in memory visibility order.
4842   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4843   // the ST of 0 into the lock-word which releases the lock, so fence
4844   // more than covers this on all platforms.
4845   *adr = 0;
4846 }
4847 
4848 // muxAcquire and muxRelease:
4849 //
4850 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4851 //    The LSB of the word is set IFF the lock is held.
4852 //    The remainder of the word points to the head of a singly-linked list
4853 //    of threads blocked on the lock.
4854 //
4855 // *  The current implementation of muxAcquire-muxRelease uses its own
4856 //    dedicated Thread._MuxEvent instance.  If we're interested in
4857 //    minimizing the peak number of extant ParkEvent instances then
4858 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4859 //    as certain invariants were satisfied.  Specifically, care would need
4860 //    to be taken with regards to consuming unpark() "permits".
4861 //    A safe rule of thumb is that a thread would never call muxAcquire()
4862 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4863 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4864 //    consume an unpark() permit intended for monitorenter, for instance.
4865 //    One way around this would be to widen the restricted-range semaphore
4866 //    implemented in park().  Another alternative would be to provide
4867 //    multiple instances of the PlatformEvent() for each thread.  One
4868 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4869 //
4870 // *  Usage:
4871 //    -- Only as leaf locks
4872 //    -- for short-term locking only as muxAcquire does not perform
4873 //       thread state transitions.
4874 //
4875 // Alternatives:
4876 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4877 //    but with parking or spin-then-park instead of pure spinning.
4878 // *  Use Taura-Oyama-Yonenzawa locks.
4879 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4880 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4881 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4882 //    acquiring threads use timers (ParkTimed) to detect and recover from
4883 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4884 //    boundaries by using placement-new.
4885 // *  Augment MCS with advisory back-link fields maintained with CAS().
4886 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4887 //    The validity of the backlinks must be ratified before we trust the value.
4888 //    If the backlinks are invalid the exiting thread must back-track through the
4889 //    the forward links, which are always trustworthy.
4890 // *  Add a successor indication.  The LockWord is currently encoded as
4891 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4892 //    to provide the usual futile-wakeup optimization.
4893 //    See RTStt for details.
4894 //
4895 
4896 
4897 const intptr_t LOCKBIT = 1;
4898 
4899 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4900   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4901   if (w == 0) return;
4902   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4903     return;
4904   }
4905 
4906   ParkEvent * const Self = Thread::current()->_MuxEvent;
4907   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4908   for (;;) {
4909     int its = (os::is_MP() ? 100 : 0) + 1;
4910 
4911     // Optional spin phase: spin-then-park strategy
4912     while (--its >= 0) {
4913       w = *Lock;
4914       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4915         return;
4916       }
4917     }
4918 
4919     Self->reset();
4920     Self->OnList = intptr_t(Lock);
4921     // The following fence() isn't _strictly necessary as the subsequent
4922     // CAS() both serializes execution and ratifies the fetched *Lock value.
4923     OrderAccess::fence();
4924     for (;;) {
4925       w = *Lock;
4926       if ((w & LOCKBIT) == 0) {
4927         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4928           Self->OnList = 0;   // hygiene - allows stronger asserts
4929           return;
4930         }
4931         continue;      // Interference -- *Lock changed -- Just retry
4932       }
4933       assert(w & LOCKBIT, "invariant");
4934       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4935       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4936     }
4937 
4938     while (Self->OnList != 0) {
4939       Self->park();
4940     }
4941   }
4942 }
4943 
4944 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4945   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4946   if (w == 0) return;
4947   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4948     return;
4949   }
4950 
4951   ParkEvent * ReleaseAfter = NULL;
4952   if (ev == NULL) {
4953     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4954   }
4955   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4956   for (;;) {
4957     guarantee(ev->OnList == 0, "invariant");
4958     int its = (os::is_MP() ? 100 : 0) + 1;
4959 
4960     // Optional spin phase: spin-then-park strategy
4961     while (--its >= 0) {
4962       w = *Lock;
4963       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4964         if (ReleaseAfter != NULL) {
4965           ParkEvent::Release(ReleaseAfter);
4966         }
4967         return;
4968       }
4969     }
4970 
4971     ev->reset();
4972     ev->OnList = intptr_t(Lock);
4973     // The following fence() isn't _strictly necessary as the subsequent
4974     // CAS() both serializes execution and ratifies the fetched *Lock value.
4975     OrderAccess::fence();
4976     for (;;) {
4977       w = *Lock;
4978       if ((w & LOCKBIT) == 0) {
4979         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4980           ev->OnList = 0;
4981           // We call ::Release while holding the outer lock, thus
4982           // artificially lengthening the critical section.
4983           // Consider deferring the ::Release() until the subsequent unlock(),
4984           // after we've dropped the outer lock.
4985           if (ReleaseAfter != NULL) {
4986             ParkEvent::Release(ReleaseAfter);
4987           }
4988           return;
4989         }
4990         continue;      // Interference -- *Lock changed -- Just retry
4991       }
4992       assert(w & LOCKBIT, "invariant");
4993       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4994       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4995     }
4996 
4997     while (ev->OnList != 0) {
4998       ev->park();
4999     }
5000   }
5001 }
5002 
5003 // Release() must extract a successor from the list and then wake that thread.
5004 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5005 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5006 // Release() would :
5007 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5008 // (B) Extract a successor from the private list "in-hand"
5009 // (C) attempt to CAS() the residual back into *Lock over null.
5010 //     If there were any newly arrived threads and the CAS() would fail.
5011 //     In that case Release() would detach the RATs, re-merge the list in-hand
5012 //     with the RATs and repeat as needed.  Alternately, Release() might
5013 //     detach and extract a successor, but then pass the residual list to the wakee.
5014 //     The wakee would be responsible for reattaching and remerging before it
5015 //     competed for the lock.
5016 //
5017 // Both "pop" and DMR are immune from ABA corruption -- there can be
5018 // multiple concurrent pushers, but only one popper or detacher.
5019 // This implementation pops from the head of the list.  This is unfair,
5020 // but tends to provide excellent throughput as hot threads remain hot.
5021 // (We wake recently run threads first).
5022 //
5023 // All paths through muxRelease() will execute a CAS.
5024 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5025 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5026 // executed within the critical section are complete and globally visible before the
5027 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5028 void Thread::muxRelease(volatile intptr_t * Lock)  {
5029   for (;;) {
5030     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5031     assert(w & LOCKBIT, "invariant");
5032     if (w == LOCKBIT) return;
5033     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5034     assert(List != NULL, "invariant");
5035     assert(List->OnList == intptr_t(Lock), "invariant");
5036     ParkEvent * const nxt = List->ListNext;
5037     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5038 
5039     // The following CAS() releases the lock and pops the head element.
5040     // The CAS() also ratifies the previously fetched lock-word value.
5041     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5042       continue;
5043     }
5044     List->OnList = 0;
5045     OrderAccess::fence();
5046     List->unpark();
5047     return;
5048   }
5049 }
5050 
5051 
5052 void Threads::verify() {
5053   ALL_JAVA_THREADS(p) {
5054     p->verify();
5055   }
5056   VMThread* thread = VMThread::vm_thread();
5057   if (thread != NULL) thread->verify();
5058 }