1 //
   2 // Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  78 // allocator, and only shows up in the encodings.
  79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  81 // Ok so here's the trick FPR1 is really st(0) except in the midst
  82 // of emission of assembly for a machnode. During the emission the fpu stack
  83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  84 // the stack will not have this element so FPR1 == st(0) from the
  85 // oopMap viewpoint. This same weirdness with numbering causes
  86 // instruction encoding to have to play games with the register
  87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  88 // where it does flt->flt moves to see an example
  89 //
  90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
  97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
  98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
  99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 104 
 105 // Specify priority of register selection within phases of register
 106 // allocation.  Highest priority is first.  A useful heuristic is to
 107 // give registers a low priority when they are required by machine
 108 // instructions, like EAX and EDX.  Registers which are used as
 109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 110 // For the Intel integer registers, the equivalent Long pairs are
 111 // EDX:EAX, EBX:ECX, and EDI:EBP.
 112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 115                     FPR6L, FPR6H, FPR7L, FPR7H );
 116 
 117 
 118 //----------Architecture Description Register Classes--------------------------
 119 // Several register classes are automatically defined based upon information in
 120 // this architecture description.
 121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 125 //
 126 // Class for all registers
 127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 128 // Class for general registers
 129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 130 // Class for general registers which may be used for implicit null checks on win95
 131 // Also safe for use by tailjump. We don't want to allocate in rbp,
 132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
 133 // Class of "X" registers
 134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
 135 // Class of registers that can appear in an address with no offset.
 136 // EBP and ESP require an extra instruction byte for zero offset.
 137 // Used in fast-unlock
 138 reg_class p_reg(EDX, EDI, ESI, EBX);
 139 // Class for general registers not including ECX
 140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
 141 // Class for general registers not including EAX
 142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 143 // Class for general registers not including EAX or EBX.
 144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
 145 // Class of EAX (for multiply and divide operations)
 146 reg_class eax_reg(EAX);
 147 // Class of EBX (for atomic add)
 148 reg_class ebx_reg(EBX);
 149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 150 reg_class ecx_reg(ECX);
 151 // Class of EDX (for multiply and divide operations)
 152 reg_class edx_reg(EDX);
 153 // Class of EDI (for synchronization)
 154 reg_class edi_reg(EDI);
 155 // Class of ESI (for synchronization)
 156 reg_class esi_reg(ESI);
 157 // Singleton class for interpreter's stack pointer
 158 reg_class ebp_reg(EBP);
 159 // Singleton class for stack pointer
 160 reg_class sp_reg(ESP);
 161 // Singleton class for instruction pointer
 162 // reg_class ip_reg(EIP);
 163 // Class of integer register pairs
 164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
 165 // Class of integer register pairs that aligns with calling convention
 166 reg_class eadx_reg( EAX,EDX );
 167 reg_class ebcx_reg( ECX,EBX );
 168 // Not AX or DX, used in divides
 169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
 170 
 171 // Floating point registers.  Notice FPR0 is not a choice.
 172 // FPR0 is not ever allocated; we use clever encodings to fake
 173 // a 2-address instructions out of Intels FP stack.
 174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 175 
 176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 178                       FPR7L,FPR7H );
 179 
 180 reg_class fp_flt_reg0( FPR1L );
 181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
 182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
 183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 185 
 186 %}
 187 
 188 
 189 //----------SOURCE BLOCK-------------------------------------------------------
 190 // This is a block of C++ code which provides values, functions, and
 191 // definitions necessary in the rest of the architecture description
 192 source_hpp %{
 193 // Must be visible to the DFA in dfa_x86_32.cpp
 194 extern bool is_operand_hi32_zero(Node* n);
 195 %}
 196 
 197 source %{
 198 #define   RELOC_IMM32    Assembler::imm_operand
 199 #define   RELOC_DISP32   Assembler::disp32_operand
 200 
 201 #define __ _masm.
 202 
 203 // How to find the high register of a Long pair, given the low register
 204 #define   HIGH_FROM_LOW(x) ((x)+2)
 205 
 206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 208 // fast versions of NegF/NegD and AbsF/AbsD.
 209 
 210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 213   // of 128-bits operands for SSE instructions.
 214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 215   // Store the value to a 128-bits operand.
 216   operand[0] = lo;
 217   operand[1] = hi;
 218   return operand;
 219 }
 220 
 221 // Buffer for 128-bits masks used by SSE instructions.
 222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 223 
 224 // Static initialization during VM startup.
 225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 229 
 230 // Offset hacking within calls.
 231 static int pre_call_resets_size() {
 232   int size = 0;
 233   Compile* C = Compile::current();
 234   if (C->in_24_bit_fp_mode()) {
 235     size += 6; // fldcw
 236   }
 237   if (C->max_vector_size() > 16) {
 238     size += 3; // vzeroupper
 239   }
 240   return size;
 241 }
 242 
 243 static int preserve_SP_size() {
 244   return 2;  // op, rm(reg/reg)
 245 }
 246 
 247 // !!!!! Special hack to get all type of calls to specify the byte offset
 248 //       from the start of the call to the point where the return address
 249 //       will point.
 250 int MachCallStaticJavaNode::ret_addr_offset() {
 251   int offset = 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points
 252   if (_method_handle_invoke)
 253     offset += preserve_SP_size();
 254   return offset;
 255 }
 256 
 257 int MachCallDynamicJavaNode::ret_addr_offset() {
 258   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
 259 }
 260 
 261 static int sizeof_FFree_Float_Stack_All = -1;
 262 
 263 int MachCallRuntimeNode::ret_addr_offset() {
 264   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 265   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
 266 }
 267 
 268 // Indicate if the safepoint node needs the polling page as an input.
 269 // Since x86 does have absolute addressing, it doesn't.
 270 bool SafePointNode::needs_polling_address_input() {
 271   return false;
 272 }
 273 
 274 //
 275 // Compute padding required for nodes which need alignment
 276 //
 277 
 278 // The address of the call instruction needs to be 4-byte aligned to
 279 // ensure that it does not span a cache line so that it can be patched.
 280 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 281   current_offset += pre_call_resets_size();  // skip fldcw, if any
 282   current_offset += 1;      // skip call opcode byte
 283   return round_to(current_offset, alignment_required()) - current_offset;
 284 }
 285 
 286 // The address of the call instruction needs to be 4-byte aligned to
 287 // ensure that it does not span a cache line so that it can be patched.
 288 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
 289   current_offset += pre_call_resets_size();  // skip fldcw, if any
 290   current_offset += preserve_SP_size();   // skip mov rbp, rsp
 291   current_offset += 1;      // skip call opcode byte
 292   return round_to(current_offset, alignment_required()) - current_offset;
 293 }
 294 
 295 // The address of the call instruction needs to be 4-byte aligned to
 296 // ensure that it does not span a cache line so that it can be patched.
 297 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 298   current_offset += pre_call_resets_size();  // skip fldcw, if any
 299   current_offset += 5;      // skip MOV instruction
 300   current_offset += 1;      // skip call opcode byte
 301   return round_to(current_offset, alignment_required()) - current_offset;
 302 }
 303 
 304 // EMIT_RM()
 305 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 306   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 307   cbuf.insts()->emit_int8(c);
 308 }
 309 
 310 // EMIT_CC()
 311 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 312   unsigned char c = (unsigned char)( f1 | f2 );
 313   cbuf.insts()->emit_int8(c);
 314 }
 315 
 316 // EMIT_OPCODE()
 317 void emit_opcode(CodeBuffer &cbuf, int code) {
 318   cbuf.insts()->emit_int8((unsigned char) code);
 319 }
 320 
 321 // EMIT_OPCODE() w/ relocation information
 322 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 323   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
 324   emit_opcode(cbuf, code);
 325 }
 326 
 327 // EMIT_D8()
 328 void emit_d8(CodeBuffer &cbuf, int d8) {
 329   cbuf.insts()->emit_int8((unsigned char) d8);
 330 }
 331 
 332 // EMIT_D16()
 333 void emit_d16(CodeBuffer &cbuf, int d16) {
 334   cbuf.insts()->emit_int16(d16);
 335 }
 336 
 337 // EMIT_D32()
 338 void emit_d32(CodeBuffer &cbuf, int d32) {
 339   cbuf.insts()->emit_int32(d32);
 340 }
 341 
 342 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 343 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 344         int format) {
 345   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 346   cbuf.insts()->emit_int32(d32);
 347 }
 348 
 349 // emit 32 bit value and construct relocation entry from RelocationHolder
 350 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 351         int format) {
 352 #ifdef ASSERT
 353   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 354     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 355   }
 356 #endif
 357   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 358   cbuf.insts()->emit_int32(d32);
 359 }
 360 
 361 // Access stack slot for load or store
 362 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 363   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 364   if( -128 <= disp && disp <= 127 ) {
 365     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 366     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 367     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 368   } else {
 369     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 370     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 371     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 372   }
 373 }
 374 
 375    // rRegI ereg, memory mem) %{    // emit_reg_mem
 376 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
 377   // There is no index & no scale, use form without SIB byte
 378   if ((index == 0x4) &&
 379       (scale == 0) && (base != ESP_enc)) {
 380     // If no displacement, mode is 0x0; unless base is [EBP]
 381     if ( (displace == 0) && (base != EBP_enc) ) {
 382       emit_rm(cbuf, 0x0, reg_encoding, base);
 383     }
 384     else {                    // If 8-bit displacement, mode 0x1
 385       if ((displace >= -128) && (displace <= 127)
 386           && (disp_reloc == relocInfo::none) ) {
 387         emit_rm(cbuf, 0x1, reg_encoding, base);
 388         emit_d8(cbuf, displace);
 389       }
 390       else {                  // If 32-bit displacement
 391         if (base == -1) { // Special flag for absolute address
 392           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 393           // (manual lies; no SIB needed here)
 394           if ( disp_reloc != relocInfo::none ) {
 395             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 396           } else {
 397             emit_d32      (cbuf, displace);
 398           }
 399         }
 400         else {                // Normal base + offset
 401           emit_rm(cbuf, 0x2, reg_encoding, base);
 402           if ( disp_reloc != relocInfo::none ) {
 403             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 404           } else {
 405             emit_d32      (cbuf, displace);
 406           }
 407         }
 408       }
 409     }
 410   }
 411   else {                      // Else, encode with the SIB byte
 412     // If no displacement, mode is 0x0; unless base is [EBP]
 413     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 414       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 415       emit_rm(cbuf, scale, index, base);
 416     }
 417     else {                    // If 8-bit displacement, mode 0x1
 418       if ((displace >= -128) && (displace <= 127)
 419           && (disp_reloc == relocInfo::none) ) {
 420         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 421         emit_rm(cbuf, scale, index, base);
 422         emit_d8(cbuf, displace);
 423       }
 424       else {                  // If 32-bit displacement
 425         if (base == 0x04 ) {
 426           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 427           emit_rm(cbuf, scale, index, 0x04);
 428         } else {
 429           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 430           emit_rm(cbuf, scale, index, base);
 431         }
 432         if ( disp_reloc != relocInfo::none ) {
 433           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 434         } else {
 435           emit_d32      (cbuf, displace);
 436         }
 437       }
 438     }
 439   }
 440 }
 441 
 442 
 443 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 444   if( dst_encoding == src_encoding ) {
 445     // reg-reg copy, use an empty encoding
 446   } else {
 447     emit_opcode( cbuf, 0x8B );
 448     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 449   }
 450 }
 451 
 452 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 453   Label exit;
 454   __ jccb(Assembler::noParity, exit);
 455   __ pushf();
 456   //
 457   // comiss/ucomiss instructions set ZF,PF,CF flags and
 458   // zero OF,AF,SF for NaN values.
 459   // Fixup flags by zeroing ZF,PF so that compare of NaN
 460   // values returns 'less than' result (CF is set).
 461   // Leave the rest of flags unchanged.
 462   //
 463   //    7 6 5 4 3 2 1 0
 464   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 465   //    0 0 1 0 1 0 1 1   (0x2B)
 466   //
 467   __ andl(Address(rsp, 0), 0xffffff2b);
 468   __ popf();
 469   __ bind(exit);
 470 }
 471 
 472 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 473   Label done;
 474   __ movl(dst, -1);
 475   __ jcc(Assembler::parity, done);
 476   __ jcc(Assembler::below, done);
 477   __ setb(Assembler::notEqual, dst);
 478   __ movzbl(dst, dst);
 479   __ bind(done);
 480 }
 481 
 482 
 483 //=============================================================================
 484 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 485 
 486 int Compile::ConstantTable::calculate_table_base_offset() const {
 487   return 0;  // absolute addressing, no offset
 488 }
 489 
 490 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 491   // Empty encoding
 492 }
 493 
 494 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 495   return 0;
 496 }
 497 
 498 #ifndef PRODUCT
 499 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 500   st->print("# MachConstantBaseNode (empty encoding)");
 501 }
 502 #endif
 503 
 504 
 505 //=============================================================================
 506 #ifndef PRODUCT
 507 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 508   Compile* C = ra_->C;
 509 
 510   int framesize = C->frame_slots() << LogBytesPerInt;
 511   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 512   // Remove wordSize for return addr which is already pushed.
 513   framesize -= wordSize;
 514 
 515   if (C->need_stack_bang(framesize)) {
 516     framesize -= wordSize;
 517     st->print("# stack bang");
 518     st->print("\n\t");
 519     st->print("PUSH   EBP\t# Save EBP");
 520     if (framesize) {
 521       st->print("\n\t");
 522       st->print("SUB    ESP, #%d\t# Create frame",framesize);
 523     }
 524   } else {
 525     st->print("SUB    ESP, #%d\t# Create frame",framesize);
 526     st->print("\n\t");
 527     framesize -= wordSize;
 528     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
 529   }
 530 
 531   if (VerifyStackAtCalls) {
 532     st->print("\n\t");
 533     framesize -= wordSize;
 534     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
 535   }
 536 
 537   if( C->in_24_bit_fp_mode() ) {
 538     st->print("\n\t");
 539     st->print("FLDCW  \t# load 24 bit fpu control word");
 540   }
 541   if (UseSSE >= 2 && VerifyFPU) {
 542     st->print("\n\t");
 543     st->print("# verify FPU stack (must be clean on entry)");
 544   }
 545 
 546 #ifdef ASSERT
 547   if (VerifyStackAtCalls) {
 548     st->print("\n\t");
 549     st->print("# stack alignment check");
 550   }
 551 #endif
 552   st->cr();
 553 }
 554 #endif
 555 
 556 
 557 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 558   Compile* C = ra_->C;
 559   MacroAssembler _masm(&cbuf);
 560 
 561   int framesize = C->frame_slots() << LogBytesPerInt;
 562 
 563   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
 564 
 565   C->set_frame_complete(cbuf.insts_size());
 566 
 567   if (C->has_mach_constant_base_node()) {
 568     // NOTE: We set the table base offset here because users might be
 569     // emitted before MachConstantBaseNode.
 570     Compile::ConstantTable& constant_table = C->constant_table();
 571     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 572   }
 573 }
 574 
 575 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 576   return MachNode::size(ra_); // too many variables; just compute it the hard way
 577 }
 578 
 579 int MachPrologNode::reloc() const {
 580   return 0; // a large enough number
 581 }
 582 
 583 //=============================================================================
 584 #ifndef PRODUCT
 585 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 586   Compile *C = ra_->C;
 587   int framesize = C->frame_slots() << LogBytesPerInt;
 588   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 589   // Remove two words for return addr and rbp,
 590   framesize -= 2*wordSize;
 591 
 592   if (C->max_vector_size() > 16) {
 593     st->print("VZEROUPPER");
 594     st->cr(); st->print("\t");
 595   }
 596   if (C->in_24_bit_fp_mode()) {
 597     st->print("FLDCW  standard control word");
 598     st->cr(); st->print("\t");
 599   }
 600   if (framesize) {
 601     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 602     st->cr(); st->print("\t");
 603   }
 604   st->print_cr("POPL   EBP"); st->print("\t");
 605   if (do_polling() && C->is_method_compilation()) {
 606     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 607     st->cr(); st->print("\t");
 608   }
 609 }
 610 #endif
 611 
 612 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 613   Compile *C = ra_->C;
 614 
 615   if (C->max_vector_size() > 16) {
 616     // Clear upper bits of YMM registers when current compiled code uses
 617     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 618     MacroAssembler masm(&cbuf);
 619     masm.vzeroupper();
 620   }
 621   // If method set FPU control word, restore to standard control word
 622   if (C->in_24_bit_fp_mode()) {
 623     MacroAssembler masm(&cbuf);
 624     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 625   }
 626 
 627   int framesize = C->frame_slots() << LogBytesPerInt;
 628   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 629   // Remove two words for return addr and rbp,
 630   framesize -= 2*wordSize;
 631 
 632   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 633 
 634   if (framesize >= 128) {
 635     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 636     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 637     emit_d32(cbuf, framesize);
 638   } else if (framesize) {
 639     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 640     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 641     emit_d8(cbuf, framesize);
 642   }
 643 
 644   emit_opcode(cbuf, 0x58 | EBP_enc);
 645 
 646   if (do_polling() && C->is_method_compilation()) {
 647     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
 648     emit_opcode(cbuf,0x85);
 649     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 650     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 651   }
 652 }
 653 
 654 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 655   Compile *C = ra_->C;
 656   // If method set FPU control word, restore to standard control word
 657   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 658   if (C->max_vector_size() > 16) size += 3; // vzeroupper
 659   if (do_polling() && C->is_method_compilation()) size += 6;
 660 
 661   int framesize = C->frame_slots() << LogBytesPerInt;
 662   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 663   // Remove two words for return addr and rbp,
 664   framesize -= 2*wordSize;
 665 
 666   size++; // popl rbp,
 667 
 668   if (framesize >= 128) {
 669     size += 6;
 670   } else {
 671     size += framesize ? 3 : 0;
 672   }
 673   return size;
 674 }
 675 
 676 int MachEpilogNode::reloc() const {
 677   return 0; // a large enough number
 678 }
 679 
 680 const Pipeline * MachEpilogNode::pipeline() const {
 681   return MachNode::pipeline_class();
 682 }
 683 
 684 int MachEpilogNode::safepoint_offset() const { return 0; }
 685 
 686 //=============================================================================
 687 
 688 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 689 static enum RC rc_class( OptoReg::Name reg ) {
 690 
 691   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 692   if (OptoReg::is_stack(reg)) return rc_stack;
 693 
 694   VMReg r = OptoReg::as_VMReg(reg);
 695   if (r->is_Register()) return rc_int;
 696   if (r->is_FloatRegister()) {
 697     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 698     return rc_float;
 699   }
 700   assert(r->is_XMMRegister(), "must be");
 701   return rc_xmm;
 702 }
 703 
 704 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 705                         int opcode, const char *op_str, int size, outputStream* st ) {
 706   if( cbuf ) {
 707     emit_opcode  (*cbuf, opcode );
 708     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
 709 #ifndef PRODUCT
 710   } else if( !do_size ) {
 711     if( size != 0 ) st->print("\n\t");
 712     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 713       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 714       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 715     } else { // FLD, FST, PUSH, POP
 716       st->print("%s [ESP + #%d]",op_str,offset);
 717     }
 718 #endif
 719   }
 720   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 721   return size+3+offset_size;
 722 }
 723 
 724 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 725 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 726                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 727   if (cbuf) {
 728     MacroAssembler _masm(cbuf);
 729     if (reg_lo+1 == reg_hi) { // double move?
 730       if (is_load) {
 731         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 732       } else {
 733         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 734       }
 735     } else {
 736       if (is_load) {
 737         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 738       } else {
 739         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 740       }
 741     }
 742 #ifndef PRODUCT
 743   } else if (!do_size) {
 744     if (size != 0) st->print("\n\t");
 745     if (reg_lo+1 == reg_hi) { // double move?
 746       if (is_load) st->print("%s %s,[ESP + #%d]",
 747                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 748                               Matcher::regName[reg_lo], offset);
 749       else         st->print("MOVSD  [ESP + #%d],%s",
 750                               offset, Matcher::regName[reg_lo]);
 751     } else {
 752       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
 753                               Matcher::regName[reg_lo], offset);
 754       else         st->print("MOVSS  [ESP + #%d],%s",
 755                               offset, Matcher::regName[reg_lo]);
 756     }
 757 #endif
 758   }
 759   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 760   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
 761   return size+5+offset_size;
 762 }
 763 
 764 
 765 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 766                             int src_hi, int dst_hi, int size, outputStream* st ) {
 767   if (cbuf) {
 768     MacroAssembler _masm(cbuf);
 769     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 770       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 771                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 772     } else {
 773       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 774                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 775     }
 776 #ifndef PRODUCT
 777   } else if (!do_size) {
 778     if (size != 0) st->print("\n\t");
 779     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
 780       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 781         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 782       } else {
 783         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 784       }
 785     } else {
 786       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 787         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 788       } else {
 789         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 790       }
 791     }
 792 #endif
 793   }
 794   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
 795   // Only MOVAPS SSE prefix uses 1 byte.
 796   int sz = 4;
 797   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
 798       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
 799   return size + sz;
 800 }
 801 
 802 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 803                             int src_hi, int dst_hi, int size, outputStream* st ) {
 804   // 32-bit
 805   if (cbuf) {
 806     MacroAssembler _masm(cbuf);
 807     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 808              as_Register(Matcher::_regEncode[src_lo]));
 809 #ifndef PRODUCT
 810   } else if (!do_size) {
 811     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 812 #endif
 813   }
 814   return 4;
 815 }
 816 
 817 
 818 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 819                                  int src_hi, int dst_hi, int size, outputStream* st ) {
 820   // 32-bit
 821   if (cbuf) {
 822     MacroAssembler _masm(cbuf);
 823     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
 824              as_XMMRegister(Matcher::_regEncode[src_lo]));
 825 #ifndef PRODUCT
 826   } else if (!do_size) {
 827     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 828 #endif
 829   }
 830   return 4;
 831 }
 832 
 833 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 834   if( cbuf ) {
 835     emit_opcode(*cbuf, 0x8B );
 836     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 837 #ifndef PRODUCT
 838   } else if( !do_size ) {
 839     if( size != 0 ) st->print("\n\t");
 840     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 841 #endif
 842   }
 843   return size+2;
 844 }
 845 
 846 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 847                                  int offset, int size, outputStream* st ) {
 848   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 849     if( cbuf ) {
 850       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 851       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 852 #ifndef PRODUCT
 853     } else if( !do_size ) {
 854       if( size != 0 ) st->print("\n\t");
 855       st->print("FLD    %s",Matcher::regName[src_lo]);
 856 #endif
 857     }
 858     size += 2;
 859   }
 860 
 861   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 862   const char *op_str;
 863   int op;
 864   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 865     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 866     op = 0xDD;
 867   } else {                   // 32-bit store
 868     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 869     op = 0xD9;
 870     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 871   }
 872 
 873   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 874 }
 875 
 876 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
 877 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 878                           int src_hi, int dst_hi, uint ireg, outputStream* st);
 879 
 880 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
 881                             int stack_offset, int reg, uint ireg, outputStream* st);
 882 
 883 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
 884                                      int dst_offset, uint ireg, outputStream* st) {
 885   int calc_size = 0;
 886   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 887   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 888   switch (ireg) {
 889   case Op_VecS:
 890     calc_size = 3+src_offset_size + 3+dst_offset_size;
 891     break;
 892   case Op_VecD:
 893     calc_size = 3+src_offset_size + 3+dst_offset_size;
 894     src_offset += 4;
 895     dst_offset += 4;
 896     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 897     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 898     calc_size += 3+src_offset_size + 3+dst_offset_size;
 899     break;
 900   case Op_VecX:
 901     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 902     break;
 903   case Op_VecY:
 904     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 905     break;
 906   default:
 907     ShouldNotReachHere();
 908   }
 909   if (cbuf) {
 910     MacroAssembler _masm(cbuf);
 911     int offset = __ offset();
 912     switch (ireg) {
 913     case Op_VecS:
 914       __ pushl(Address(rsp, src_offset));
 915       __ popl (Address(rsp, dst_offset));
 916       break;
 917     case Op_VecD:
 918       __ pushl(Address(rsp, src_offset));
 919       __ popl (Address(rsp, dst_offset));
 920       __ pushl(Address(rsp, src_offset+4));
 921       __ popl (Address(rsp, dst_offset+4));
 922       break;
 923     case Op_VecX:
 924       __ movdqu(Address(rsp, -16), xmm0);
 925       __ movdqu(xmm0, Address(rsp, src_offset));
 926       __ movdqu(Address(rsp, dst_offset), xmm0);
 927       __ movdqu(xmm0, Address(rsp, -16));
 928       break;
 929     case Op_VecY:
 930       __ vmovdqu(Address(rsp, -32), xmm0);
 931       __ vmovdqu(xmm0, Address(rsp, src_offset));
 932       __ vmovdqu(Address(rsp, dst_offset), xmm0);
 933       __ vmovdqu(xmm0, Address(rsp, -32));
 934       break;
 935     default:
 936       ShouldNotReachHere();
 937     }
 938     int size = __ offset() - offset;
 939     assert(size == calc_size, "incorrect size calculattion");
 940     return size;
 941 #ifndef PRODUCT
 942   } else if (!do_size) {
 943     switch (ireg) {
 944     case Op_VecS:
 945       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
 946                 "popl    [rsp + #%d]",
 947                 src_offset, dst_offset);
 948       break;
 949     case Op_VecD:
 950       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
 951                 "popq    [rsp + #%d]\n\t"
 952                 "pushl   [rsp + #%d]\n\t"
 953                 "popq    [rsp + #%d]",
 954                 src_offset, dst_offset, src_offset+4, dst_offset+4);
 955       break;
 956      case Op_VecX:
 957       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
 958                 "movdqu  xmm0, [rsp + #%d]\n\t"
 959                 "movdqu  [rsp + #%d], xmm0\n\t"
 960                 "movdqu  xmm0, [rsp - #16]",
 961                 src_offset, dst_offset);
 962       break;
 963     case Op_VecY:
 964       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
 965                 "vmovdqu xmm0, [rsp + #%d]\n\t"
 966                 "vmovdqu [rsp + #%d], xmm0\n\t"
 967                 "vmovdqu xmm0, [rsp - #32]",
 968                 src_offset, dst_offset);
 969       break;
 970     default:
 971       ShouldNotReachHere();
 972     }
 973 #endif
 974   }
 975   return calc_size;
 976 }
 977 
 978 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
 979   // Get registers to move
 980   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 981   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 982   OptoReg::Name dst_second = ra_->get_reg_second(this );
 983   OptoReg::Name dst_first = ra_->get_reg_first(this );
 984 
 985   enum RC src_second_rc = rc_class(src_second);
 986   enum RC src_first_rc = rc_class(src_first);
 987   enum RC dst_second_rc = rc_class(dst_second);
 988   enum RC dst_first_rc = rc_class(dst_first);
 989 
 990   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
 991 
 992   // Generate spill code!
 993   int size = 0;
 994 
 995   if( src_first == dst_first && src_second == dst_second )
 996     return size;            // Self copy, no move
 997 
 998   if (bottom_type()->isa_vect() != NULL) {
 999     uint ireg = ideal_reg();
1000     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1001     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
1002     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
1003     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1004       // mem -> mem
1005       int src_offset = ra_->reg2offset(src_first);
1006       int dst_offset = ra_->reg2offset(dst_first);
1007       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
1008     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1009       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
1010     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1011       int stack_offset = ra_->reg2offset(dst_first);
1012       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
1013     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
1014       int stack_offset = ra_->reg2offset(src_first);
1015       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
1016     } else {
1017       ShouldNotReachHere();
1018     }
1019   }
1020 
1021   // --------------------------------------
1022   // Check for mem-mem move.  push/pop to move.
1023   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1024     if( src_second == dst_first ) { // overlapping stack copy ranges
1025       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
1026       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1027       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1028       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
1029     }
1030     // move low bits
1031     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
1032     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
1033     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
1034       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1035       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1036     }
1037     return size;
1038   }
1039 
1040   // --------------------------------------
1041   // Check for integer reg-reg copy
1042   if( src_first_rc == rc_int && dst_first_rc == rc_int )
1043     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
1044 
1045   // Check for integer store
1046   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
1047     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
1048 
1049   // Check for integer load
1050   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
1051     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
1052 
1053   // Check for integer reg-xmm reg copy
1054   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
1055     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1056             "no 64 bit integer-float reg moves" );
1057     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1058   }
1059   // --------------------------------------
1060   // Check for float reg-reg copy
1061   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1062     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1063             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1064     if( cbuf ) {
1065 
1066       // Note the mucking with the register encode to compensate for the 0/1
1067       // indexing issue mentioned in a comment in the reg_def sections
1068       // for FPR registers many lines above here.
1069 
1070       if( src_first != FPR1L_num ) {
1071         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1072         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1073         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1074         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1075      } else {
1076         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1077         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1078      }
1079 #ifndef PRODUCT
1080     } else if( !do_size ) {
1081       if( size != 0 ) st->print("\n\t");
1082       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1083       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1084 #endif
1085     }
1086     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1087   }
1088 
1089   // Check for float store
1090   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1091     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1092   }
1093 
1094   // Check for float load
1095   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1096     int offset = ra_->reg2offset(src_first);
1097     const char *op_str;
1098     int op;
1099     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1100       op_str = "FLD_D";
1101       op = 0xDD;
1102     } else {                   // 32-bit load
1103       op_str = "FLD_S";
1104       op = 0xD9;
1105       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1106     }
1107     if( cbuf ) {
1108       emit_opcode  (*cbuf, op );
1109       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
1110       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1111       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1112 #ifndef PRODUCT
1113     } else if( !do_size ) {
1114       if( size != 0 ) st->print("\n\t");
1115       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1116 #endif
1117     }
1118     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1119     return size + 3+offset_size+2;
1120   }
1121 
1122   // Check for xmm reg-reg copy
1123   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1124     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1125             (src_first+1 == src_second && dst_first+1 == dst_second),
1126             "no non-adjacent float-moves" );
1127     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1128   }
1129 
1130   // Check for xmm reg-integer reg copy
1131   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1132     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1133             "no 64 bit float-integer reg moves" );
1134     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1135   }
1136 
1137   // Check for xmm store
1138   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1139     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1140   }
1141 
1142   // Check for float xmm load
1143   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1144     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1145   }
1146 
1147   // Copy from float reg to xmm reg
1148   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1149     // copy to the top of stack from floating point reg
1150     // and use LEA to preserve flags
1151     if( cbuf ) {
1152       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1153       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1154       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1155       emit_d8(*cbuf,0xF8);
1156 #ifndef PRODUCT
1157     } else if( !do_size ) {
1158       if( size != 0 ) st->print("\n\t");
1159       st->print("LEA    ESP,[ESP-8]");
1160 #endif
1161     }
1162     size += 4;
1163 
1164     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1165 
1166     // Copy from the temp memory to the xmm reg.
1167     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1168 
1169     if( cbuf ) {
1170       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1171       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1172       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1173       emit_d8(*cbuf,0x08);
1174 #ifndef PRODUCT
1175     } else if( !do_size ) {
1176       if( size != 0 ) st->print("\n\t");
1177       st->print("LEA    ESP,[ESP+8]");
1178 #endif
1179     }
1180     size += 4;
1181     return size;
1182   }
1183 
1184   assert( size > 0, "missed a case" );
1185 
1186   // --------------------------------------------------------------------
1187   // Check for second bits still needing moving.
1188   if( src_second == dst_second )
1189     return size;               // Self copy; no move
1190   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1191 
1192   // Check for second word int-int move
1193   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1194     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1195 
1196   // Check for second word integer store
1197   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1198     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1199 
1200   // Check for second word integer load
1201   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1202     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1203 
1204 
1205   Unimplemented();
1206 }
1207 
1208 #ifndef PRODUCT
1209 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1210   implementation( NULL, ra_, false, st );
1211 }
1212 #endif
1213 
1214 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1215   implementation( &cbuf, ra_, false, NULL );
1216 }
1217 
1218 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1219   return implementation( NULL, ra_, true, NULL );
1220 }
1221 
1222 
1223 //=============================================================================
1224 #ifndef PRODUCT
1225 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1226   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1227   int reg = ra_->get_reg_first(this);
1228   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1229 }
1230 #endif
1231 
1232 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1233   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1234   int reg = ra_->get_encode(this);
1235   if( offset >= 128 ) {
1236     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1237     emit_rm(cbuf, 0x2, reg, 0x04);
1238     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1239     emit_d32(cbuf, offset);
1240   }
1241   else {
1242     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1243     emit_rm(cbuf, 0x1, reg, 0x04);
1244     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1245     emit_d8(cbuf, offset);
1246   }
1247 }
1248 
1249 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1250   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1251   if( offset >= 128 ) {
1252     return 7;
1253   }
1254   else {
1255     return 4;
1256   }
1257 }
1258 
1259 //=============================================================================
1260 #ifndef PRODUCT
1261 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1262   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1263   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1264   st->print_cr("\tNOP");
1265   st->print_cr("\tNOP");
1266   if( !OptoBreakpoint )
1267     st->print_cr("\tNOP");
1268 }
1269 #endif
1270 
1271 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1272   MacroAssembler masm(&cbuf);
1273 #ifdef ASSERT
1274   uint insts_size = cbuf.insts_size();
1275 #endif
1276   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1277   masm.jump_cc(Assembler::notEqual,
1278                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1279   /* WARNING these NOPs are critical so that verified entry point is properly
1280      aligned for patching by NativeJump::patch_verified_entry() */
1281   int nops_cnt = 2;
1282   if( !OptoBreakpoint ) // Leave space for int3
1283      nops_cnt += 1;
1284   masm.nop(nops_cnt);
1285 
1286   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1287 }
1288 
1289 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1290   return OptoBreakpoint ? 11 : 12;
1291 }
1292 
1293 
1294 //=============================================================================
1295 uint size_exception_handler() {
1296   // NativeCall instruction size is the same as NativeJump.
1297   // exception handler starts out as jump and can be patched to
1298   // a call be deoptimization.  (4932387)
1299   // Note that this value is also credited (in output.cpp) to
1300   // the size of the code section.
1301   return NativeJump::instruction_size;
1302 }
1303 
1304 // Emit exception handler code.  Stuff framesize into a register
1305 // and call a VM stub routine.
1306 int emit_exception_handler(CodeBuffer& cbuf) {
1307 
1308   // Note that the code buffer's insts_mark is always relative to insts.
1309   // That's why we must use the macroassembler to generate a handler.
1310   MacroAssembler _masm(&cbuf);
1311   address base =
1312   __ start_a_stub(size_exception_handler());
1313   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1314   int offset = __ offset();
1315   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1316   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1317   __ end_a_stub();
1318   return offset;
1319 }
1320 
1321 uint size_deopt_handler() {
1322   // NativeCall instruction size is the same as NativeJump.
1323   // exception handler starts out as jump and can be patched to
1324   // a call be deoptimization.  (4932387)
1325   // Note that this value is also credited (in output.cpp) to
1326   // the size of the code section.
1327   return 5 + NativeJump::instruction_size; // pushl(); jmp;
1328 }
1329 
1330 // Emit deopt handler code.
1331 int emit_deopt_handler(CodeBuffer& cbuf) {
1332 
1333   // Note that the code buffer's insts_mark is always relative to insts.
1334   // That's why we must use the macroassembler to generate a handler.
1335   MacroAssembler _masm(&cbuf);
1336   address base =
1337   __ start_a_stub(size_exception_handler());
1338   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1339   int offset = __ offset();
1340   InternalAddress here(__ pc());
1341   __ pushptr(here.addr());
1342 
1343   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1344   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1345   __ end_a_stub();
1346   return offset;
1347 }
1348 
1349 int Matcher::regnum_to_fpu_offset(int regnum) {
1350   return regnum - 32; // The FP registers are in the second chunk
1351 }
1352 
1353 // This is UltraSparc specific, true just means we have fast l2f conversion
1354 const bool Matcher::convL2FSupported(void) {
1355   return true;
1356 }
1357 
1358 // Is this branch offset short enough that a short branch can be used?
1359 //
1360 // NOTE: If the platform does not provide any short branch variants, then
1361 //       this method should return false for offset 0.
1362 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1363   // The passed offset is relative to address of the branch.
1364   // On 86 a branch displacement is calculated relative to address
1365   // of a next instruction.
1366   offset -= br_size;
1367 
1368   // the short version of jmpConUCF2 contains multiple branches,
1369   // making the reach slightly less
1370   if (rule == jmpConUCF2_rule)
1371     return (-126 <= offset && offset <= 125);
1372   return (-128 <= offset && offset <= 127);
1373 }
1374 
1375 const bool Matcher::isSimpleConstant64(jlong value) {
1376   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1377   return false;
1378 }
1379 
1380 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1381 const bool Matcher::init_array_count_is_in_bytes = false;
1382 
1383 // Threshold size for cleararray.
1384 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1385 
1386 // Needs 2 CMOV's for longs.
1387 const int Matcher::long_cmove_cost() { return 1; }
1388 
1389 // No CMOVF/CMOVD with SSE/SSE2
1390 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
1391 
1392 // Should the Matcher clone shifts on addressing modes, expecting them to
1393 // be subsumed into complex addressing expressions or compute them into
1394 // registers?  True for Intel but false for most RISCs
1395 const bool Matcher::clone_shift_expressions = true;
1396 
1397 // Do we need to mask the count passed to shift instructions or does
1398 // the cpu only look at the lower 5/6 bits anyway?
1399 const bool Matcher::need_masked_shift_count = false;
1400 
1401 bool Matcher::narrow_oop_use_complex_address() {
1402   ShouldNotCallThis();
1403   return true;
1404 }
1405 
1406 bool Matcher::narrow_klass_use_complex_address() {
1407   ShouldNotCallThis();
1408   return true;
1409 }
1410 
1411 
1412 // Is it better to copy float constants, or load them directly from memory?
1413 // Intel can load a float constant from a direct address, requiring no
1414 // extra registers.  Most RISCs will have to materialize an address into a
1415 // register first, so they would do better to copy the constant from stack.
1416 const bool Matcher::rematerialize_float_constants = true;
1417 
1418 // If CPU can load and store mis-aligned doubles directly then no fixup is
1419 // needed.  Else we split the double into 2 integer pieces and move it
1420 // piece-by-piece.  Only happens when passing doubles into C code as the
1421 // Java calling convention forces doubles to be aligned.
1422 const bool Matcher::misaligned_doubles_ok = true;
1423 
1424 
1425 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1426   // Get the memory operand from the node
1427   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1428   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1429   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1430   uint opcnt     = 1;                 // First operand
1431   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1432   while( idx >= skipped+num_edges ) {
1433     skipped += num_edges;
1434     opcnt++;                          // Bump operand count
1435     assert( opcnt < numopnds, "Accessing non-existent operand" );
1436     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1437   }
1438 
1439   MachOper *memory = node->_opnds[opcnt];
1440   MachOper *new_memory = NULL;
1441   switch (memory->opcode()) {
1442   case DIRECT:
1443   case INDOFFSET32X:
1444     // No transformation necessary.
1445     return;
1446   case INDIRECT:
1447     new_memory = new (C) indirect_win95_safeOper( );
1448     break;
1449   case INDOFFSET8:
1450     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1451     break;
1452   case INDOFFSET32:
1453     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1454     break;
1455   case INDINDEXOFFSET:
1456     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1457     break;
1458   case INDINDEXSCALE:
1459     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1460     break;
1461   case INDINDEXSCALEOFFSET:
1462     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1463     break;
1464   case LOAD_LONG_INDIRECT:
1465   case LOAD_LONG_INDOFFSET32:
1466     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1467     return;
1468   default:
1469     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1470     return;
1471   }
1472   node->_opnds[opcnt] = new_memory;
1473 }
1474 
1475 // Advertise here if the CPU requires explicit rounding operations
1476 // to implement the UseStrictFP mode.
1477 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1478 
1479 // Are floats conerted to double when stored to stack during deoptimization?
1480 // On x32 it is stored with convertion only when FPU is used for floats.
1481 bool Matcher::float_in_double() { return (UseSSE == 0); }
1482 
1483 // Do ints take an entire long register or just half?
1484 const bool Matcher::int_in_long = false;
1485 
1486 // Return whether or not this register is ever used as an argument.  This
1487 // function is used on startup to build the trampoline stubs in generateOptoStub.
1488 // Registers not mentioned will be killed by the VM call in the trampoline, and
1489 // arguments in those registers not be available to the callee.
1490 bool Matcher::can_be_java_arg( int reg ) {
1491   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1492   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
1493   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1494   return false;
1495 }
1496 
1497 bool Matcher::is_spillable_arg( int reg ) {
1498   return can_be_java_arg(reg);
1499 }
1500 
1501 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1502   // Use hardware integer DIV instruction when
1503   // it is faster than a code which use multiply.
1504   // Only when constant divisor fits into 32 bit
1505   // (min_jint is excluded to get only correct
1506   // positive 32 bit values from negative).
1507   return VM_Version::has_fast_idiv() &&
1508          (divisor == (int)divisor && divisor != min_jint);
1509 }
1510 
1511 // Register for DIVI projection of divmodI
1512 RegMask Matcher::divI_proj_mask() {
1513   return EAX_REG_mask();
1514 }
1515 
1516 // Register for MODI projection of divmodI
1517 RegMask Matcher::modI_proj_mask() {
1518   return EDX_REG_mask();
1519 }
1520 
1521 // Register for DIVL projection of divmodL
1522 RegMask Matcher::divL_proj_mask() {
1523   ShouldNotReachHere();
1524   return RegMask();
1525 }
1526 
1527 // Register for MODL projection of divmodL
1528 RegMask Matcher::modL_proj_mask() {
1529   ShouldNotReachHere();
1530   return RegMask();
1531 }
1532 
1533 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1534   return EBP_REG_mask();
1535 }
1536 
1537 // Returns true if the high 32 bits of the value is known to be zero.
1538 bool is_operand_hi32_zero(Node* n) {
1539   int opc = n->Opcode();
1540   if (opc == Op_AndL) {
1541     Node* o2 = n->in(2);
1542     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1543       return true;
1544     }
1545   }
1546   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1547     return true;
1548   }
1549   return false;
1550 }
1551 
1552 %}
1553 
1554 //----------ENCODING BLOCK-----------------------------------------------------
1555 // This block specifies the encoding classes used by the compiler to output
1556 // byte streams.  Encoding classes generate functions which are called by
1557 // Machine Instruction Nodes in order to generate the bit encoding of the
1558 // instruction.  Operands specify their base encoding interface with the
1559 // interface keyword.  There are currently supported four interfaces,
1560 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1561 // operand to generate a function which returns its register number when
1562 // queried.   CONST_INTER causes an operand to generate a function which
1563 // returns the value of the constant when queried.  MEMORY_INTER causes an
1564 // operand to generate four functions which return the Base Register, the
1565 // Index Register, the Scale Value, and the Offset Value of the operand when
1566 // queried.  COND_INTER causes an operand to generate six functions which
1567 // return the encoding code (ie - encoding bits for the instruction)
1568 // associated with each basic boolean condition for a conditional instruction.
1569 // Instructions specify two basic values for encoding.  They use the
1570 // ins_encode keyword to specify their encoding class (which must be one of
1571 // the class names specified in the encoding block), and they use the
1572 // opcode keyword to specify, in order, their primary, secondary, and
1573 // tertiary opcode.  Only the opcode sections which a particular instruction
1574 // needs for encoding need to be specified.
1575 encode %{
1576   // Build emit functions for each basic byte or larger field in the intel
1577   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1578   // code in the enc_class source block.  Emit functions will live in the
1579   // main source block for now.  In future, we can generalize this by
1580   // adding a syntax that specifies the sizes of fields in an order,
1581   // so that the adlc can build the emit functions automagically
1582 
1583   // Emit primary opcode
1584   enc_class OpcP %{
1585     emit_opcode(cbuf, $primary);
1586   %}
1587 
1588   // Emit secondary opcode
1589   enc_class OpcS %{
1590     emit_opcode(cbuf, $secondary);
1591   %}
1592 
1593   // Emit opcode directly
1594   enc_class Opcode(immI d8) %{
1595     emit_opcode(cbuf, $d8$$constant);
1596   %}
1597 
1598   enc_class SizePrefix %{
1599     emit_opcode(cbuf,0x66);
1600   %}
1601 
1602   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1603     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1604   %}
1605 
1606   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
1607     emit_opcode(cbuf,$opcode$$constant);
1608     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1609   %}
1610 
1611   enc_class mov_r32_imm0( rRegI dst ) %{
1612     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1613     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1614   %}
1615 
1616   enc_class cdq_enc %{
1617     // Full implementation of Java idiv and irem; checks for
1618     // special case as described in JVM spec., p.243 & p.271.
1619     //
1620     //         normal case                           special case
1621     //
1622     // input : rax,: dividend                         min_int
1623     //         reg: divisor                          -1
1624     //
1625     // output: rax,: quotient  (= rax, idiv reg)       min_int
1626     //         rdx: remainder (= rax, irem reg)       0
1627     //
1628     //  Code sequnce:
1629     //
1630     //  81 F8 00 00 00 80    cmp         rax,80000000h
1631     //  0F 85 0B 00 00 00    jne         normal_case
1632     //  33 D2                xor         rdx,edx
1633     //  83 F9 FF             cmp         rcx,0FFh
1634     //  0F 84 03 00 00 00    je          done
1635     //                  normal_case:
1636     //  99                   cdq
1637     //  F7 F9                idiv        rax,ecx
1638     //                  done:
1639     //
1640     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1641     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1642     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1643     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1644     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1645     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1646     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1647     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1648     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1649     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1650     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1651     // normal_case:
1652     emit_opcode(cbuf,0x99);                                         // cdq
1653     // idiv (note: must be emitted by the user of this rule)
1654     // normal:
1655   %}
1656 
1657   // Dense encoding for older common ops
1658   enc_class Opc_plus(immI opcode, rRegI reg) %{
1659     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1660   %}
1661 
1662 
1663   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1664   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1665     // Check for 8-bit immediate, and set sign extend bit in opcode
1666     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1667       emit_opcode(cbuf, $primary | 0x02);
1668     }
1669     else {                          // If 32-bit immediate
1670       emit_opcode(cbuf, $primary);
1671     }
1672   %}
1673 
1674   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
1675     // Emit primary opcode and set sign-extend bit
1676     // Check for 8-bit immediate, and set sign extend bit in opcode
1677     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1678       emit_opcode(cbuf, $primary | 0x02);    }
1679     else {                          // If 32-bit immediate
1680       emit_opcode(cbuf, $primary);
1681     }
1682     // Emit r/m byte with secondary opcode, after primary opcode.
1683     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1684   %}
1685 
1686   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1687     // Check for 8-bit immediate, and set sign extend bit in opcode
1688     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1689       $$$emit8$imm$$constant;
1690     }
1691     else {                          // If 32-bit immediate
1692       // Output immediate
1693       $$$emit32$imm$$constant;
1694     }
1695   %}
1696 
1697   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1698     // Emit primary opcode and set sign-extend bit
1699     // Check for 8-bit immediate, and set sign extend bit in opcode
1700     int con = (int)$imm$$constant; // Throw away top bits
1701     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1702     // Emit r/m byte with secondary opcode, after primary opcode.
1703     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1704     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1705     else                               emit_d32(cbuf,con);
1706   %}
1707 
1708   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1709     // Emit primary opcode and set sign-extend bit
1710     // Check for 8-bit immediate, and set sign extend bit in opcode
1711     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1712     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1713     // Emit r/m byte with tertiary opcode, after primary opcode.
1714     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1715     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1716     else                               emit_d32(cbuf,con);
1717   %}
1718 
1719   enc_class OpcSReg (rRegI dst) %{    // BSWAP
1720     emit_cc(cbuf, $secondary, $dst$$reg );
1721   %}
1722 
1723   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1724     int destlo = $dst$$reg;
1725     int desthi = HIGH_FROM_LOW(destlo);
1726     // bswap lo
1727     emit_opcode(cbuf, 0x0F);
1728     emit_cc(cbuf, 0xC8, destlo);
1729     // bswap hi
1730     emit_opcode(cbuf, 0x0F);
1731     emit_cc(cbuf, 0xC8, desthi);
1732     // xchg lo and hi
1733     emit_opcode(cbuf, 0x87);
1734     emit_rm(cbuf, 0x3, destlo, desthi);
1735   %}
1736 
1737   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1738     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1739   %}
1740 
1741   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1742     $$$emit8$primary;
1743     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1744   %}
1745 
1746   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
1747     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1748     emit_d8(cbuf, op >> 8 );
1749     emit_d8(cbuf, op & 255);
1750   %}
1751 
1752   // emulate a CMOV with a conditional branch around a MOV
1753   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1754     // Invert sense of branch from sense of CMOV
1755     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1756     emit_d8( cbuf, $brOffs$$constant );
1757   %}
1758 
1759   enc_class enc_PartialSubtypeCheck( ) %{
1760     Register Redi = as_Register(EDI_enc); // result register
1761     Register Reax = as_Register(EAX_enc); // super class
1762     Register Recx = as_Register(ECX_enc); // killed
1763     Register Resi = as_Register(ESI_enc); // sub class
1764     Label miss;
1765 
1766     MacroAssembler _masm(&cbuf);
1767     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1768                                      NULL, &miss,
1769                                      /*set_cond_codes:*/ true);
1770     if ($primary) {
1771       __ xorptr(Redi, Redi);
1772     }
1773     __ bind(miss);
1774   %}
1775 
1776   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1777     MacroAssembler masm(&cbuf);
1778     int start = masm.offset();
1779     if (UseSSE >= 2) {
1780       if (VerifyFPU) {
1781         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1782       }
1783     } else {
1784       // External c_calling_convention expects the FPU stack to be 'clean'.
1785       // Compiled code leaves it dirty.  Do cleanup now.
1786       masm.empty_FPU_stack();
1787     }
1788     if (sizeof_FFree_Float_Stack_All == -1) {
1789       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1790     } else {
1791       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1792     }
1793   %}
1794 
1795   enc_class Verify_FPU_For_Leaf %{
1796     if( VerifyFPU ) {
1797       MacroAssembler masm(&cbuf);
1798       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1799     }
1800   %}
1801 
1802   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1803     // This is the instruction starting address for relocation info.
1804     cbuf.set_insts_mark();
1805     $$$emit8$primary;
1806     // CALL directly to the runtime
1807     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1808                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1809 
1810     if (UseSSE >= 2) {
1811       MacroAssembler _masm(&cbuf);
1812       BasicType rt = tf()->return_type();
1813 
1814       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1815         // A C runtime call where the return value is unused.  In SSE2+
1816         // mode the result needs to be removed from the FPU stack.  It's
1817         // likely that this function call could be removed by the
1818         // optimizer if the C function is a pure function.
1819         __ ffree(0);
1820       } else if (rt == T_FLOAT) {
1821         __ lea(rsp, Address(rsp, -4));
1822         __ fstp_s(Address(rsp, 0));
1823         __ movflt(xmm0, Address(rsp, 0));
1824         __ lea(rsp, Address(rsp,  4));
1825       } else if (rt == T_DOUBLE) {
1826         __ lea(rsp, Address(rsp, -8));
1827         __ fstp_d(Address(rsp, 0));
1828         __ movdbl(xmm0, Address(rsp, 0));
1829         __ lea(rsp, Address(rsp,  8));
1830       }
1831     }
1832   %}
1833 
1834 
1835   enc_class pre_call_resets %{
1836     // If method sets FPU control word restore it here
1837     debug_only(int off0 = cbuf.insts_size());
1838     if (ra_->C->in_24_bit_fp_mode()) {
1839       MacroAssembler _masm(&cbuf);
1840       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1841     }
1842     if (ra_->C->max_vector_size() > 16) {
1843       // Clear upper bits of YMM registers when current compiled code uses
1844       // wide vectors to avoid AVX <-> SSE transition penalty during call.
1845       MacroAssembler _masm(&cbuf);
1846       __ vzeroupper();
1847     }
1848     debug_only(int off1 = cbuf.insts_size());
1849     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
1850   %}
1851 
1852   enc_class post_call_FPU %{
1853     // If method sets FPU control word do it here also
1854     if (Compile::current()->in_24_bit_fp_mode()) {
1855       MacroAssembler masm(&cbuf);
1856       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1857     }
1858   %}
1859 
1860   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1861     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1862     // who we intended to call.
1863     cbuf.set_insts_mark();
1864     $$$emit8$primary;
1865     if (!_method) {
1866       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1867                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1868     } else if (_optimized_virtual) {
1869       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1870                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1871     } else {
1872       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1873                      static_call_Relocation::spec(), RELOC_IMM32 );
1874     }
1875     if (_method) {  // Emit stub for static call.
1876       CompiledStaticCall::emit_to_interp_stub(cbuf);
1877     }
1878   %}
1879 
1880   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1881     MacroAssembler _masm(&cbuf);
1882     __ ic_call((address)$meth$$method);
1883   %}
1884 
1885   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1886     int disp = in_bytes(Method::from_compiled_offset());
1887     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1888 
1889     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
1890     cbuf.set_insts_mark();
1891     $$$emit8$primary;
1892     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1893     emit_d8(cbuf, disp);             // Displacement
1894 
1895   %}
1896 
1897 //   Following encoding is no longer used, but may be restored if calling
1898 //   convention changes significantly.
1899 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1900 //
1901 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1902 //     // int ic_reg     = Matcher::inline_cache_reg();
1903 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1904 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1905 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1906 //
1907 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1908 //     // // so we load it immediately before the call
1909 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1910 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1911 //
1912 //     // xor rbp,ebp
1913 //     emit_opcode(cbuf, 0x33);
1914 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1915 //
1916 //     // CALL to interpreter.
1917 //     cbuf.set_insts_mark();
1918 //     $$$emit8$primary;
1919 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1920 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1921 //   %}
1922 
1923   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1924     $$$emit8$primary;
1925     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1926     $$$emit8$shift$$constant;
1927   %}
1928 
1929   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
1930     // Load immediate does not have a zero or sign extended version
1931     // for 8-bit immediates
1932     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1933     $$$emit32$src$$constant;
1934   %}
1935 
1936   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
1937     // Load immediate does not have a zero or sign extended version
1938     // for 8-bit immediates
1939     emit_opcode(cbuf, $primary + $dst$$reg);
1940     $$$emit32$src$$constant;
1941   %}
1942 
1943   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1944     // Load immediate does not have a zero or sign extended version
1945     // for 8-bit immediates
1946     int dst_enc = $dst$$reg;
1947     int src_con = $src$$constant & 0x0FFFFFFFFL;
1948     if (src_con == 0) {
1949       // xor dst, dst
1950       emit_opcode(cbuf, 0x33);
1951       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1952     } else {
1953       emit_opcode(cbuf, $primary + dst_enc);
1954       emit_d32(cbuf, src_con);
1955     }
1956   %}
1957 
1958   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1959     // Load immediate does not have a zero or sign extended version
1960     // for 8-bit immediates
1961     int dst_enc = $dst$$reg + 2;
1962     int src_con = ((julong)($src$$constant)) >> 32;
1963     if (src_con == 0) {
1964       // xor dst, dst
1965       emit_opcode(cbuf, 0x33);
1966       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1967     } else {
1968       emit_opcode(cbuf, $primary + dst_enc);
1969       emit_d32(cbuf, src_con);
1970     }
1971   %}
1972 
1973 
1974   // Encode a reg-reg copy.  If it is useless, then empty encoding.
1975   enc_class enc_Copy( rRegI dst, rRegI src ) %{
1976     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1977   %}
1978 
1979   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
1980     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1981   %}
1982 
1983   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1984     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1985   %}
1986 
1987   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
1988     $$$emit8$primary;
1989     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1990   %}
1991 
1992   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
1993     $$$emit8$secondary;
1994     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
1995   %}
1996 
1997   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
1998     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1999   %}
2000 
2001   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2002     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2003   %}
2004 
2005   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
2006     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2007   %}
2008 
2009   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2010     // Output immediate
2011     $$$emit32$src$$constant;
2012   %}
2013 
2014   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
2015     // Output Float immediate bits
2016     jfloat jf = $src$$constant;
2017     int    jf_as_bits = jint_cast( jf );
2018     emit_d32(cbuf, jf_as_bits);
2019   %}
2020 
2021   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
2022     // Output Float immediate bits
2023     jfloat jf = $src$$constant;
2024     int    jf_as_bits = jint_cast( jf );
2025     emit_d32(cbuf, jf_as_bits);
2026   %}
2027 
2028   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2029     // Output immediate
2030     $$$emit16$src$$constant;
2031   %}
2032 
2033   enc_class Con_d32(immI src) %{
2034     emit_d32(cbuf,$src$$constant);
2035   %}
2036 
2037   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2038     // Output immediate memory reference
2039     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2040     emit_d32(cbuf, 0x00);
2041   %}
2042 
2043   enc_class lock_prefix( ) %{
2044     if( os::is_MP() )
2045       emit_opcode(cbuf,0xF0);         // [Lock]
2046   %}
2047 
2048   // Cmp-xchg long value.
2049   // Note: we need to swap rbx, and rcx before and after the
2050   //       cmpxchg8 instruction because the instruction uses
2051   //       rcx as the high order word of the new value to store but
2052   //       our register encoding uses rbx,.
2053   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2054 
2055     // XCHG  rbx,ecx
2056     emit_opcode(cbuf,0x87);
2057     emit_opcode(cbuf,0xD9);
2058     // [Lock]
2059     if( os::is_MP() )
2060       emit_opcode(cbuf,0xF0);
2061     // CMPXCHG8 [Eptr]
2062     emit_opcode(cbuf,0x0F);
2063     emit_opcode(cbuf,0xC7);
2064     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2065     // XCHG  rbx,ecx
2066     emit_opcode(cbuf,0x87);
2067     emit_opcode(cbuf,0xD9);
2068   %}
2069 
2070   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2071     // [Lock]
2072     if( os::is_MP() )
2073       emit_opcode(cbuf,0xF0);
2074 
2075     // CMPXCHG [Eptr]
2076     emit_opcode(cbuf,0x0F);
2077     emit_opcode(cbuf,0xB1);
2078     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2079   %}
2080 
2081   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2082     int res_encoding = $res$$reg;
2083 
2084     // MOV  res,0
2085     emit_opcode( cbuf, 0xB8 + res_encoding);
2086     emit_d32( cbuf, 0 );
2087     // JNE,s  fail
2088     emit_opcode(cbuf,0x75);
2089     emit_d8(cbuf, 5 );
2090     // MOV  res,1
2091     emit_opcode( cbuf, 0xB8 + res_encoding);
2092     emit_d32( cbuf, 1 );
2093     // fail:
2094   %}
2095 
2096   enc_class set_instruction_start( ) %{
2097     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2098   %}
2099 
2100   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
2101     int reg_encoding = $ereg$$reg;
2102     int base  = $mem$$base;
2103     int index = $mem$$index;
2104     int scale = $mem$$scale;
2105     int displace = $mem$$disp;
2106     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2107     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2108   %}
2109 
2110   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2111     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2112     int base  = $mem$$base;
2113     int index = $mem$$index;
2114     int scale = $mem$$scale;
2115     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2116     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
2117     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
2118   %}
2119 
2120   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2121     int r1, r2;
2122     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2123     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2124     emit_opcode(cbuf,0x0F);
2125     emit_opcode(cbuf,$tertiary);
2126     emit_rm(cbuf, 0x3, r1, r2);
2127     emit_d8(cbuf,$cnt$$constant);
2128     emit_d8(cbuf,$primary);
2129     emit_rm(cbuf, 0x3, $secondary, r1);
2130     emit_d8(cbuf,$cnt$$constant);
2131   %}
2132 
2133   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2134     emit_opcode( cbuf, 0x8B ); // Move
2135     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2136     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2137       emit_d8(cbuf,$primary);
2138       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2139       emit_d8(cbuf,$cnt$$constant-32);
2140     }
2141     emit_d8(cbuf,$primary);
2142     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2143     emit_d8(cbuf,31);
2144   %}
2145 
2146   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2147     int r1, r2;
2148     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2149     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2150 
2151     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2152     emit_rm(cbuf, 0x3, r1, r2);
2153     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2154       emit_opcode(cbuf,$primary);
2155       emit_rm(cbuf, 0x3, $secondary, r1);
2156       emit_d8(cbuf,$cnt$$constant-32);
2157     }
2158     emit_opcode(cbuf,0x33);  // XOR r2,r2
2159     emit_rm(cbuf, 0x3, r2, r2);
2160   %}
2161 
2162   // Clone of RegMem but accepts an extra parameter to access each
2163   // half of a double in memory; it never needs relocation info.
2164   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
2165     emit_opcode(cbuf,$opcode$$constant);
2166     int reg_encoding = $rm_reg$$reg;
2167     int base     = $mem$$base;
2168     int index    = $mem$$index;
2169     int scale    = $mem$$scale;
2170     int displace = $mem$$disp + $disp_for_half$$constant;
2171     relocInfo::relocType disp_reloc = relocInfo::none;
2172     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2173   %}
2174 
2175   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2176   //
2177   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2178   // and it never needs relocation information.
2179   // Frequently used to move data between FPU's Stack Top and memory.
2180   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2181     int rm_byte_opcode = $rm_opcode$$constant;
2182     int base     = $mem$$base;
2183     int index    = $mem$$index;
2184     int scale    = $mem$$scale;
2185     int displace = $mem$$disp;
2186     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
2187     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
2188   %}
2189 
2190   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2191     int rm_byte_opcode = $rm_opcode$$constant;
2192     int base     = $mem$$base;
2193     int index    = $mem$$index;
2194     int scale    = $mem$$scale;
2195     int displace = $mem$$disp;
2196     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2197     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
2198   %}
2199 
2200   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
2201     int reg_encoding = $dst$$reg;
2202     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2203     int index        = 0x04;            // 0x04 indicates no index
2204     int scale        = 0x00;            // 0x00 indicates no scale
2205     int displace     = $src1$$constant; // 0x00 indicates no displacement
2206     relocInfo::relocType disp_reloc = relocInfo::none;
2207     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2208   %}
2209 
2210   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
2211     // Compare dst,src
2212     emit_opcode(cbuf,0x3B);
2213     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2214     // jmp dst < src around move
2215     emit_opcode(cbuf,0x7C);
2216     emit_d8(cbuf,2);
2217     // move dst,src
2218     emit_opcode(cbuf,0x8B);
2219     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2220   %}
2221 
2222   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
2223     // Compare dst,src
2224     emit_opcode(cbuf,0x3B);
2225     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2226     // jmp dst > src around move
2227     emit_opcode(cbuf,0x7F);
2228     emit_d8(cbuf,2);
2229     // move dst,src
2230     emit_opcode(cbuf,0x8B);
2231     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2232   %}
2233 
2234   enc_class enc_FPR_store(memory mem, regDPR src) %{
2235     // If src is FPR1, we can just FST to store it.
2236     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2237     int reg_encoding = 0x2; // Just store
2238     int base  = $mem$$base;
2239     int index = $mem$$index;
2240     int scale = $mem$$scale;
2241     int displace = $mem$$disp;
2242     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2243     if( $src$$reg != FPR1L_enc ) {
2244       reg_encoding = 0x3;  // Store & pop
2245       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2246       emit_d8( cbuf, 0xC0-1+$src$$reg );
2247     }
2248     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2249     emit_opcode(cbuf,$primary);
2250     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2251   %}
2252 
2253   enc_class neg_reg(rRegI dst) %{
2254     // NEG $dst
2255     emit_opcode(cbuf,0xF7);
2256     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2257   %}
2258 
2259   enc_class setLT_reg(eCXRegI dst) %{
2260     // SETLT $dst
2261     emit_opcode(cbuf,0x0F);
2262     emit_opcode(cbuf,0x9C);
2263     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2264   %}
2265 
2266   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2267     int tmpReg = $tmp$$reg;
2268 
2269     // SUB $p,$q
2270     emit_opcode(cbuf,0x2B);
2271     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2272     // SBB $tmp,$tmp
2273     emit_opcode(cbuf,0x1B);
2274     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2275     // AND $tmp,$y
2276     emit_opcode(cbuf,0x23);
2277     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2278     // ADD $p,$tmp
2279     emit_opcode(cbuf,0x03);
2280     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2281   %}
2282 
2283   enc_class enc_cmpLTP_mem(rRegI p, rRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2284     int tmpReg = $tmp$$reg;
2285 
2286     // SUB $p,$q
2287     emit_opcode(cbuf,0x2B);
2288     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2289     // SBB $tmp,$tmp
2290     emit_opcode(cbuf,0x1B);
2291     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2292     // AND $tmp,$y
2293     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2294     emit_opcode(cbuf,0x23);
2295     int reg_encoding = tmpReg;
2296     int base  = $mem$$base;
2297     int index = $mem$$index;
2298     int scale = $mem$$scale;
2299     int displace = $mem$$disp;
2300     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2301     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2302     // ADD $p,$tmp
2303     emit_opcode(cbuf,0x03);
2304     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2305   %}
2306 
2307   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2308     // TEST shift,32
2309     emit_opcode(cbuf,0xF7);
2310     emit_rm(cbuf, 0x3, 0, ECX_enc);
2311     emit_d32(cbuf,0x20);
2312     // JEQ,s small
2313     emit_opcode(cbuf, 0x74);
2314     emit_d8(cbuf, 0x04);
2315     // MOV    $dst.hi,$dst.lo
2316     emit_opcode( cbuf, 0x8B );
2317     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2318     // CLR    $dst.lo
2319     emit_opcode(cbuf, 0x33);
2320     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2321 // small:
2322     // SHLD   $dst.hi,$dst.lo,$shift
2323     emit_opcode(cbuf,0x0F);
2324     emit_opcode(cbuf,0xA5);
2325     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2326     // SHL    $dst.lo,$shift"
2327     emit_opcode(cbuf,0xD3);
2328     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2329   %}
2330 
2331   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2332     // TEST shift,32
2333     emit_opcode(cbuf,0xF7);
2334     emit_rm(cbuf, 0x3, 0, ECX_enc);
2335     emit_d32(cbuf,0x20);
2336     // JEQ,s small
2337     emit_opcode(cbuf, 0x74);
2338     emit_d8(cbuf, 0x04);
2339     // MOV    $dst.lo,$dst.hi
2340     emit_opcode( cbuf, 0x8B );
2341     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2342     // CLR    $dst.hi
2343     emit_opcode(cbuf, 0x33);
2344     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2345 // small:
2346     // SHRD   $dst.lo,$dst.hi,$shift
2347     emit_opcode(cbuf,0x0F);
2348     emit_opcode(cbuf,0xAD);
2349     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2350     // SHR    $dst.hi,$shift"
2351     emit_opcode(cbuf,0xD3);
2352     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2353   %}
2354 
2355   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2356     // TEST shift,32
2357     emit_opcode(cbuf,0xF7);
2358     emit_rm(cbuf, 0x3, 0, ECX_enc);
2359     emit_d32(cbuf,0x20);
2360     // JEQ,s small
2361     emit_opcode(cbuf, 0x74);
2362     emit_d8(cbuf, 0x05);
2363     // MOV    $dst.lo,$dst.hi
2364     emit_opcode( cbuf, 0x8B );
2365     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2366     // SAR    $dst.hi,31
2367     emit_opcode(cbuf, 0xC1);
2368     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2369     emit_d8(cbuf, 0x1F );
2370 // small:
2371     // SHRD   $dst.lo,$dst.hi,$shift
2372     emit_opcode(cbuf,0x0F);
2373     emit_opcode(cbuf,0xAD);
2374     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2375     // SAR    $dst.hi,$shift"
2376     emit_opcode(cbuf,0xD3);
2377     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2378   %}
2379 
2380 
2381   // ----------------- Encodings for floating point unit -----------------
2382   // May leave result in FPU-TOS or FPU reg depending on opcodes
2383   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
2384     $$$emit8$primary;
2385     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2386   %}
2387 
2388   // Pop argument in FPR0 with FSTP ST(0)
2389   enc_class PopFPU() %{
2390     emit_opcode( cbuf, 0xDD );
2391     emit_d8( cbuf, 0xD8 );
2392   %}
2393 
2394   // !!!!! equivalent to Pop_Reg_F
2395   enc_class Pop_Reg_DPR( regDPR dst ) %{
2396     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2397     emit_d8( cbuf, 0xD8+$dst$$reg );
2398   %}
2399 
2400   enc_class Push_Reg_DPR( regDPR dst ) %{
2401     emit_opcode( cbuf, 0xD9 );
2402     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2403   %}
2404 
2405   enc_class strictfp_bias1( regDPR dst ) %{
2406     emit_opcode( cbuf, 0xDB );           // FLD m80real
2407     emit_opcode( cbuf, 0x2D );
2408     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2409     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2410     emit_opcode( cbuf, 0xC8+$dst$$reg );
2411   %}
2412 
2413   enc_class strictfp_bias2( regDPR dst ) %{
2414     emit_opcode( cbuf, 0xDB );           // FLD m80real
2415     emit_opcode( cbuf, 0x2D );
2416     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2417     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2418     emit_opcode( cbuf, 0xC8+$dst$$reg );
2419   %}
2420 
2421   // Special case for moving an integer register to a stack slot.
2422   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2423     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2424   %}
2425 
2426   // Special case for moving a register to a stack slot.
2427   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2428     // Opcode already emitted
2429     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2430     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2431     emit_d32(cbuf, $dst$$disp);   // Displacement
2432   %}
2433 
2434   // Push the integer in stackSlot 'src' onto FP-stack
2435   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2436     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2437   %}
2438 
2439   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2440   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2441     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2442   %}
2443 
2444   // Same as Pop_Mem_F except for opcode
2445   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2446   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2447     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2448   %}
2449 
2450   enc_class Pop_Reg_FPR( regFPR dst ) %{
2451     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2452     emit_d8( cbuf, 0xD8+$dst$$reg );
2453   %}
2454 
2455   enc_class Push_Reg_FPR( regFPR dst ) %{
2456     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2457     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2458   %}
2459 
2460   // Push FPU's float to a stack-slot, and pop FPU-stack
2461   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
2462     int pop = 0x02;
2463     if ($src$$reg != FPR1L_enc) {
2464       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2465       emit_d8( cbuf, 0xC0-1+$src$$reg );
2466       pop = 0x03;
2467     }
2468     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2469   %}
2470 
2471   // Push FPU's double to a stack-slot, and pop FPU-stack
2472   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
2473     int pop = 0x02;
2474     if ($src$$reg != FPR1L_enc) {
2475       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2476       emit_d8( cbuf, 0xC0-1+$src$$reg );
2477       pop = 0x03;
2478     }
2479     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2480   %}
2481 
2482   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2483   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
2484     int pop = 0xD0 - 1; // -1 since we skip FLD
2485     if ($src$$reg != FPR1L_enc) {
2486       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2487       emit_d8( cbuf, 0xC0-1+$src$$reg );
2488       pop = 0xD8;
2489     }
2490     emit_opcode( cbuf, 0xDD );
2491     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2492   %}
2493 
2494 
2495   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
2496     // load dst in FPR0
2497     emit_opcode( cbuf, 0xD9 );
2498     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2499     if ($src$$reg != FPR1L_enc) {
2500       // fincstp
2501       emit_opcode (cbuf, 0xD9);
2502       emit_opcode (cbuf, 0xF7);
2503       // swap src with FPR1:
2504       // FXCH FPR1 with src
2505       emit_opcode(cbuf, 0xD9);
2506       emit_d8(cbuf, 0xC8-1+$src$$reg );
2507       // fdecstp
2508       emit_opcode (cbuf, 0xD9);
2509       emit_opcode (cbuf, 0xF6);
2510     }
2511   %}
2512 
2513   enc_class Push_ModD_encoding(regD src0, regD src1) %{
2514     MacroAssembler _masm(&cbuf);
2515     __ subptr(rsp, 8);
2516     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
2517     __ fld_d(Address(rsp, 0));
2518     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
2519     __ fld_d(Address(rsp, 0));
2520   %}
2521 
2522   enc_class Push_ModF_encoding(regF src0, regF src1) %{
2523     MacroAssembler _masm(&cbuf);
2524     __ subptr(rsp, 4);
2525     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
2526     __ fld_s(Address(rsp, 0));
2527     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
2528     __ fld_s(Address(rsp, 0));
2529   %}
2530 
2531   enc_class Push_ResultD(regD dst) %{
2532     MacroAssembler _masm(&cbuf);
2533     __ fstp_d(Address(rsp, 0));
2534     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2535     __ addptr(rsp, 8);
2536   %}
2537 
2538   enc_class Push_ResultF(regF dst, immI d8) %{
2539     MacroAssembler _masm(&cbuf);
2540     __ fstp_s(Address(rsp, 0));
2541     __ movflt($dst$$XMMRegister, Address(rsp, 0));
2542     __ addptr(rsp, $d8$$constant);
2543   %}
2544 
2545   enc_class Push_SrcD(regD src) %{
2546     MacroAssembler _masm(&cbuf);
2547     __ subptr(rsp, 8);
2548     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2549     __ fld_d(Address(rsp, 0));
2550   %}
2551 
2552   enc_class push_stack_temp_qword() %{
2553     MacroAssembler _masm(&cbuf);
2554     __ subptr(rsp, 8);
2555   %}
2556 
2557   enc_class pop_stack_temp_qword() %{
2558     MacroAssembler _masm(&cbuf);
2559     __ addptr(rsp, 8);
2560   %}
2561 
2562   enc_class push_xmm_to_fpr1(regD src) %{
2563     MacroAssembler _masm(&cbuf);
2564     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2565     __ fld_d(Address(rsp, 0));
2566   %}
2567 
2568   enc_class Push_Result_Mod_DPR( regDPR src) %{
2569     if ($src$$reg != FPR1L_enc) {
2570       // fincstp
2571       emit_opcode (cbuf, 0xD9);
2572       emit_opcode (cbuf, 0xF7);
2573       // FXCH FPR1 with src
2574       emit_opcode(cbuf, 0xD9);
2575       emit_d8(cbuf, 0xC8-1+$src$$reg );
2576       // fdecstp
2577       emit_opcode (cbuf, 0xD9);
2578       emit_opcode (cbuf, 0xF6);
2579     }
2580     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2581     // // FSTP   FPR$dst$$reg
2582     // emit_opcode( cbuf, 0xDD );
2583     // emit_d8( cbuf, 0xD8+$dst$$reg );
2584   %}
2585 
2586   enc_class fnstsw_sahf_skip_parity() %{
2587     // fnstsw ax
2588     emit_opcode( cbuf, 0xDF );
2589     emit_opcode( cbuf, 0xE0 );
2590     // sahf
2591     emit_opcode( cbuf, 0x9E );
2592     // jnp  ::skip
2593     emit_opcode( cbuf, 0x7B );
2594     emit_opcode( cbuf, 0x05 );
2595   %}
2596 
2597   enc_class emitModDPR() %{
2598     // fprem must be iterative
2599     // :: loop
2600     // fprem
2601     emit_opcode( cbuf, 0xD9 );
2602     emit_opcode( cbuf, 0xF8 );
2603     // wait
2604     emit_opcode( cbuf, 0x9b );
2605     // fnstsw ax
2606     emit_opcode( cbuf, 0xDF );
2607     emit_opcode( cbuf, 0xE0 );
2608     // sahf
2609     emit_opcode( cbuf, 0x9E );
2610     // jp  ::loop
2611     emit_opcode( cbuf, 0x0F );
2612     emit_opcode( cbuf, 0x8A );
2613     emit_opcode( cbuf, 0xF4 );
2614     emit_opcode( cbuf, 0xFF );
2615     emit_opcode( cbuf, 0xFF );
2616     emit_opcode( cbuf, 0xFF );
2617   %}
2618 
2619   enc_class fpu_flags() %{
2620     // fnstsw_ax
2621     emit_opcode( cbuf, 0xDF);
2622     emit_opcode( cbuf, 0xE0);
2623     // test ax,0x0400
2624     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2625     emit_opcode( cbuf, 0xA9 );
2626     emit_d16   ( cbuf, 0x0400 );
2627     // // // This sequence works, but stalls for 12-16 cycles on PPro
2628     // // test rax,0x0400
2629     // emit_opcode( cbuf, 0xA9 );
2630     // emit_d32   ( cbuf, 0x00000400 );
2631     //
2632     // jz exit (no unordered comparison)
2633     emit_opcode( cbuf, 0x74 );
2634     emit_d8    ( cbuf, 0x02 );
2635     // mov ah,1 - treat as LT case (set carry flag)
2636     emit_opcode( cbuf, 0xB4 );
2637     emit_d8    ( cbuf, 0x01 );
2638     // sahf
2639     emit_opcode( cbuf, 0x9E);
2640   %}
2641 
2642   enc_class cmpF_P6_fixup() %{
2643     // Fixup the integer flags in case comparison involved a NaN
2644     //
2645     // JNP exit (no unordered comparison, P-flag is set by NaN)
2646     emit_opcode( cbuf, 0x7B );
2647     emit_d8    ( cbuf, 0x03 );
2648     // MOV AH,1 - treat as LT case (set carry flag)
2649     emit_opcode( cbuf, 0xB4 );
2650     emit_d8    ( cbuf, 0x01 );
2651     // SAHF
2652     emit_opcode( cbuf, 0x9E);
2653     // NOP     // target for branch to avoid branch to branch
2654     emit_opcode( cbuf, 0x90);
2655   %}
2656 
2657 //     fnstsw_ax();
2658 //     sahf();
2659 //     movl(dst, nan_result);
2660 //     jcc(Assembler::parity, exit);
2661 //     movl(dst, less_result);
2662 //     jcc(Assembler::below, exit);
2663 //     movl(dst, equal_result);
2664 //     jcc(Assembler::equal, exit);
2665 //     movl(dst, greater_result);
2666 
2667 // less_result     =  1;
2668 // greater_result  = -1;
2669 // equal_result    = 0;
2670 // nan_result      = -1;
2671 
2672   enc_class CmpF_Result(rRegI dst) %{
2673     // fnstsw_ax();
2674     emit_opcode( cbuf, 0xDF);
2675     emit_opcode( cbuf, 0xE0);
2676     // sahf
2677     emit_opcode( cbuf, 0x9E);
2678     // movl(dst, nan_result);
2679     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2680     emit_d32( cbuf, -1 );
2681     // jcc(Assembler::parity, exit);
2682     emit_opcode( cbuf, 0x7A );
2683     emit_d8    ( cbuf, 0x13 );
2684     // movl(dst, less_result);
2685     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2686     emit_d32( cbuf, -1 );
2687     // jcc(Assembler::below, exit);
2688     emit_opcode( cbuf, 0x72 );
2689     emit_d8    ( cbuf, 0x0C );
2690     // movl(dst, equal_result);
2691     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2692     emit_d32( cbuf, 0 );
2693     // jcc(Assembler::equal, exit);
2694     emit_opcode( cbuf, 0x74 );
2695     emit_d8    ( cbuf, 0x05 );
2696     // movl(dst, greater_result);
2697     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2698     emit_d32( cbuf, 1 );
2699   %}
2700 
2701 
2702   // Compare the longs and set flags
2703   // BROKEN!  Do Not use as-is
2704   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2705     // CMP    $src1.hi,$src2.hi
2706     emit_opcode( cbuf, 0x3B );
2707     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2708     // JNE,s  done
2709     emit_opcode(cbuf,0x75);
2710     emit_d8(cbuf, 2 );
2711     // CMP    $src1.lo,$src2.lo
2712     emit_opcode( cbuf, 0x3B );
2713     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2714 // done:
2715   %}
2716 
2717   enc_class convert_int_long( regL dst, rRegI src ) %{
2718     // mov $dst.lo,$src
2719     int dst_encoding = $dst$$reg;
2720     int src_encoding = $src$$reg;
2721     encode_Copy( cbuf, dst_encoding  , src_encoding );
2722     // mov $dst.hi,$src
2723     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2724     // sar $dst.hi,31
2725     emit_opcode( cbuf, 0xC1 );
2726     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2727     emit_d8(cbuf, 0x1F );
2728   %}
2729 
2730   enc_class convert_long_double( eRegL src ) %{
2731     // push $src.hi
2732     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2733     // push $src.lo
2734     emit_opcode(cbuf, 0x50+$src$$reg  );
2735     // fild 64-bits at [SP]
2736     emit_opcode(cbuf,0xdf);
2737     emit_d8(cbuf, 0x6C);
2738     emit_d8(cbuf, 0x24);
2739     emit_d8(cbuf, 0x00);
2740     // pop stack
2741     emit_opcode(cbuf, 0x83); // add  SP, #8
2742     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2743     emit_d8(cbuf, 0x8);
2744   %}
2745 
2746   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2747     // IMUL   EDX:EAX,$src1
2748     emit_opcode( cbuf, 0xF7 );
2749     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2750     // SAR    EDX,$cnt-32
2751     int shift_count = ((int)$cnt$$constant) - 32;
2752     if (shift_count > 0) {
2753       emit_opcode(cbuf, 0xC1);
2754       emit_rm(cbuf, 0x3, 7, $dst$$reg );
2755       emit_d8(cbuf, shift_count);
2756     }
2757   %}
2758 
2759   // this version doesn't have add sp, 8
2760   enc_class convert_long_double2( eRegL src ) %{
2761     // push $src.hi
2762     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2763     // push $src.lo
2764     emit_opcode(cbuf, 0x50+$src$$reg  );
2765     // fild 64-bits at [SP]
2766     emit_opcode(cbuf,0xdf);
2767     emit_d8(cbuf, 0x6C);
2768     emit_d8(cbuf, 0x24);
2769     emit_d8(cbuf, 0x00);
2770   %}
2771 
2772   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2773     // Basic idea: long = (long)int * (long)int
2774     // IMUL EDX:EAX, src
2775     emit_opcode( cbuf, 0xF7 );
2776     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2777   %}
2778 
2779   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2780     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2781     // MUL EDX:EAX, src
2782     emit_opcode( cbuf, 0xF7 );
2783     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2784   %}
2785 
2786   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
2787     // Basic idea: lo(result) = lo(x_lo * y_lo)
2788     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2789     // MOV    $tmp,$src.lo
2790     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2791     // IMUL   $tmp,EDX
2792     emit_opcode( cbuf, 0x0F );
2793     emit_opcode( cbuf, 0xAF );
2794     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2795     // MOV    EDX,$src.hi
2796     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
2797     // IMUL   EDX,EAX
2798     emit_opcode( cbuf, 0x0F );
2799     emit_opcode( cbuf, 0xAF );
2800     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2801     // ADD    $tmp,EDX
2802     emit_opcode( cbuf, 0x03 );
2803     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2804     // MUL   EDX:EAX,$src.lo
2805     emit_opcode( cbuf, 0xF7 );
2806     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
2807     // ADD    EDX,ESI
2808     emit_opcode( cbuf, 0x03 );
2809     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
2810   %}
2811 
2812   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
2813     // Basic idea: lo(result) = lo(src * y_lo)
2814     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
2815     // IMUL   $tmp,EDX,$src
2816     emit_opcode( cbuf, 0x6B );
2817     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2818     emit_d8( cbuf, (int)$src$$constant );
2819     // MOV    EDX,$src
2820     emit_opcode(cbuf, 0xB8 + EDX_enc);
2821     emit_d32( cbuf, (int)$src$$constant );
2822     // MUL   EDX:EAX,EDX
2823     emit_opcode( cbuf, 0xF7 );
2824     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
2825     // ADD    EDX,ESI
2826     emit_opcode( cbuf, 0x03 );
2827     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
2828   %}
2829 
2830   enc_class long_div( eRegL src1, eRegL src2 ) %{
2831     // PUSH src1.hi
2832     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2833     // PUSH src1.lo
2834     emit_opcode(cbuf,               0x50+$src1$$reg  );
2835     // PUSH src2.hi
2836     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2837     // PUSH src2.lo
2838     emit_opcode(cbuf,               0x50+$src2$$reg  );
2839     // CALL directly to the runtime
2840     cbuf.set_insts_mark();
2841     emit_opcode(cbuf,0xE8);       // Call into runtime
2842     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2843     // Restore stack
2844     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2845     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2846     emit_d8(cbuf, 4*4);
2847   %}
2848 
2849   enc_class long_mod( eRegL src1, eRegL src2 ) %{
2850     // PUSH src1.hi
2851     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2852     // PUSH src1.lo
2853     emit_opcode(cbuf,               0x50+$src1$$reg  );
2854     // PUSH src2.hi
2855     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2856     // PUSH src2.lo
2857     emit_opcode(cbuf,               0x50+$src2$$reg  );
2858     // CALL directly to the runtime
2859     cbuf.set_insts_mark();
2860     emit_opcode(cbuf,0xE8);       // Call into runtime
2861     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2862     // Restore stack
2863     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2864     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2865     emit_d8(cbuf, 4*4);
2866   %}
2867 
2868   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
2869     // MOV   $tmp,$src.lo
2870     emit_opcode(cbuf, 0x8B);
2871     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2872     // OR    $tmp,$src.hi
2873     emit_opcode(cbuf, 0x0B);
2874     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2875   %}
2876 
2877   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
2878     // CMP    $src1.lo,$src2.lo
2879     emit_opcode( cbuf, 0x3B );
2880     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2881     // JNE,s  skip
2882     emit_cc(cbuf, 0x70, 0x5);
2883     emit_d8(cbuf,2);
2884     // CMP    $src1.hi,$src2.hi
2885     emit_opcode( cbuf, 0x3B );
2886     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2887   %}
2888 
2889   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
2890     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
2891     emit_opcode( cbuf, 0x3B );
2892     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2893     // MOV    $tmp,$src1.hi
2894     emit_opcode( cbuf, 0x8B );
2895     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
2896     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
2897     emit_opcode( cbuf, 0x1B );
2898     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
2899   %}
2900 
2901   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
2902     // XOR    $tmp,$tmp
2903     emit_opcode(cbuf,0x33);  // XOR
2904     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
2905     // CMP    $tmp,$src.lo
2906     emit_opcode( cbuf, 0x3B );
2907     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
2908     // SBB    $tmp,$src.hi
2909     emit_opcode( cbuf, 0x1B );
2910     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
2911   %}
2912 
2913  // Sniff, sniff... smells like Gnu Superoptimizer
2914   enc_class neg_long( eRegL dst ) %{
2915     emit_opcode(cbuf,0xF7);    // NEG hi
2916     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2917     emit_opcode(cbuf,0xF7);    // NEG lo
2918     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
2919     emit_opcode(cbuf,0x83);    // SBB hi,0
2920     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2921     emit_d8    (cbuf,0 );
2922   %}
2923 
2924 
2925   // Because the transitions from emitted code to the runtime
2926   // monitorenter/exit helper stubs are so slow it's critical that
2927   // we inline both the stack-locking fast-path and the inflated fast path.
2928   //
2929   // See also: cmpFastLock and cmpFastUnlock.
2930   //
2931   // What follows is a specialized inline transliteration of the code
2932   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
2933   // another option would be to emit TrySlowEnter and TrySlowExit methods
2934   // at startup-time.  These methods would accept arguments as
2935   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
2936   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
2937   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
2938   // In practice, however, the # of lock sites is bounded and is usually small.
2939   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
2940   // if the processor uses simple bimodal branch predictors keyed by EIP
2941   // Since the helper routines would be called from multiple synchronization
2942   // sites.
2943   //
2944   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
2945   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
2946   // to those specialized methods.  That'd give us a mostly platform-independent
2947   // implementation that the JITs could optimize and inline at their pleasure.
2948   // Done correctly, the only time we'd need to cross to native could would be
2949   // to park() or unpark() threads.  We'd also need a few more unsafe operators
2950   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
2951   // (b) explicit barriers or fence operations.
2952   //
2953   // TODO:
2954   //
2955   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
2956   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
2957   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
2958   //    the lock operators would typically be faster than reifying Self.
2959   //
2960   // *  Ideally I'd define the primitives as:
2961   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
2962   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
2963   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
2964   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
2965   //    Furthermore the register assignments are overconstrained, possibly resulting in
2966   //    sub-optimal code near the synchronization site.
2967   //
2968   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
2969   //    Alternately, use a better sp-proximity test.
2970   //
2971   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
2972   //    Either one is sufficient to uniquely identify a thread.
2973   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
2974   //
2975   // *  Intrinsify notify() and notifyAll() for the common cases where the
2976   //    object is locked by the calling thread but the waitlist is empty.
2977   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
2978   //
2979   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
2980   //    But beware of excessive branch density on AMD Opterons.
2981   //
2982   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
2983   //    or failure of the fast-path.  If the fast-path fails then we pass
2984   //    control to the slow-path, typically in C.  In Fast_Lock and
2985   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
2986   //    will emit a conditional branch immediately after the node.
2987   //    So we have branches to branches and lots of ICC.ZF games.
2988   //    Instead, it might be better to have C2 pass a "FailureLabel"
2989   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
2990   //    will drop through the node.  ICC.ZF is undefined at exit.
2991   //    In the case of failure, the node will branch directly to the
2992   //    FailureLabel
2993 
2994 
2995   // obj: object to lock
2996   // box: on-stack box address (displaced header location) - KILLED
2997   // rax,: tmp -- KILLED
2998   // scr: tmp -- KILLED
2999   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3000 
3001     Register objReg = as_Register($obj$$reg);
3002     Register boxReg = as_Register($box$$reg);
3003     Register tmpReg = as_Register($tmp$$reg);
3004     Register scrReg = as_Register($scr$$reg);
3005 
3006     // Ensure the register assignents are disjoint
3007     guarantee (objReg != boxReg, "") ;
3008     guarantee (objReg != tmpReg, "") ;
3009     guarantee (objReg != scrReg, "") ;
3010     guarantee (boxReg != tmpReg, "") ;
3011     guarantee (boxReg != scrReg, "") ;
3012     guarantee (tmpReg == as_Register(EAX_enc), "") ;
3013 
3014     MacroAssembler masm(&cbuf);
3015 
3016     if (_counters != NULL) {
3017       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3018     }
3019     if (EmitSync & 1) {
3020         // set box->dhw = unused_mark (3)
3021         // Force all sync thru slow-path: slow_enter() and slow_exit() 
3022         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3023         masm.cmpptr (rsp, (int32_t)0) ;                        
3024     } else 
3025     if (EmitSync & 2) { 
3026         Label DONE_LABEL ;           
3027         if (UseBiasedLocking) {
3028            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3029            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3030         }
3031 
3032         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3033         masm.orptr (tmpReg, 0x1);
3034         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3035         if (os::is_MP()) { masm.lock();  }
3036         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3037         masm.jcc(Assembler::equal, DONE_LABEL);
3038         // Recursive locking
3039         masm.subptr(tmpReg, rsp);
3040         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3041         masm.movptr(Address(boxReg, 0), tmpReg);
3042         masm.bind(DONE_LABEL) ; 
3043     } else {  
3044       // Possible cases that we'll encounter in fast_lock 
3045       // ------------------------------------------------
3046       // * Inflated
3047       //    -- unlocked
3048       //    -- Locked
3049       //       = by self
3050       //       = by other
3051       // * biased
3052       //    -- by Self
3053       //    -- by other
3054       // * neutral
3055       // * stack-locked
3056       //    -- by self
3057       //       = sp-proximity test hits
3058       //       = sp-proximity test generates false-negative
3059       //    -- by other
3060       //
3061 
3062       Label IsInflated, DONE_LABEL, PopDone ;
3063 
3064       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3065       // order to reduce the number of conditional branches in the most common cases.
3066       // Beware -- there's a subtle invariant that fetch of the markword
3067       // at [FETCH], below, will never observe a biased encoding (*101b).
3068       // If this invariant is not held we risk exclusion (safety) failure.
3069       if (UseBiasedLocking && !UseOptoBiasInlining) {
3070         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3071       }
3072 
3073       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3074       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3075       masm.jccb  (Assembler::notZero, IsInflated) ;
3076 
3077       // Attempt stack-locking ...
3078       masm.orptr (tmpReg, 0x1);
3079       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3080       if (os::is_MP()) { masm.lock();  }
3081       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3082       if (_counters != NULL) {
3083         masm.cond_inc32(Assembler::equal,
3084                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3085       }
3086       masm.jccb (Assembler::equal, DONE_LABEL);
3087 
3088       // Recursive locking
3089       masm.subptr(tmpReg, rsp);
3090       masm.andptr(tmpReg, 0xFFFFF003 );
3091       masm.movptr(Address(boxReg, 0), tmpReg);
3092       if (_counters != NULL) {
3093         masm.cond_inc32(Assembler::equal,
3094                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3095       }
3096       masm.jmp  (DONE_LABEL) ;
3097 
3098       masm.bind (IsInflated) ;
3099 
3100       // The object is inflated.
3101       //
3102       // TODO-FIXME: eliminate the ugly use of manifest constants:
3103       //   Use markOopDesc::monitor_value instead of "2".
3104       //   use markOop::unused_mark() instead of "3".
3105       // The tmpReg value is an objectMonitor reference ORed with
3106       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3107       // objectmonitor pointer by masking off the "2" bit or we can just
3108       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3109       // field offsets with "-2" to compensate for and annul the low-order tag bit.
3110       //
3111       // I use the latter as it avoids AGI stalls.
3112       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3113       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3114       //
3115       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3116 
3117       // boxReg refers to the on-stack BasicLock in the current frame.
3118       // We'd like to write:
3119       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3120       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3121       // additional latency as we have another ST in the store buffer that must drain.
3122 
3123       if (EmitSync & 8192) { 
3124          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3125          masm.get_thread (scrReg) ; 
3126          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3127          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3128          if (os::is_MP()) { masm.lock(); } 
3129          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3130       } else 
3131       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3132          masm.movptr(scrReg, boxReg) ; 
3133          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3134 
3135          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3136          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3137             // prefetchw [eax + Offset(_owner)-2]
3138             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3139          }
3140 
3141          if ((EmitSync & 64) == 0) {
3142            // Optimistic form: consider XORL tmpReg,tmpReg
3143            masm.movptr(tmpReg, NULL_WORD) ; 
3144          } else { 
3145            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3146            // Test-And-CAS instead of CAS
3147            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3148            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3149            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3150          }
3151 
3152          // Appears unlocked - try to swing _owner from null to non-null.
3153          // Ideally, I'd manifest "Self" with get_thread and then attempt
3154          // to CAS the register containing Self into m->Owner.
3155          // But we don't have enough registers, so instead we can either try to CAS
3156          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3157          // we later store "Self" into m->Owner.  Transiently storing a stack address
3158          // (rsp or the address of the box) into  m->owner is harmless.
3159          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3160          if (os::is_MP()) { masm.lock();  }
3161          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3162          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3163          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3164          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3165          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3166          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3167                        
3168          // If the CAS fails we can either retry or pass control to the slow-path.  
3169          // We use the latter tactic.  
3170          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3171          // If the CAS was successful ...
3172          //   Self has acquired the lock
3173          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3174          // Intentional fall-through into DONE_LABEL ...
3175       } else {
3176          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3177          masm.movptr(boxReg, tmpReg) ; 
3178 
3179          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3180          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3181             // prefetchw [eax + Offset(_owner)-2]
3182             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3183          }
3184 
3185          if ((EmitSync & 64) == 0) {
3186            // Optimistic form
3187            masm.xorptr  (tmpReg, tmpReg) ; 
3188          } else { 
3189            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3190            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3191            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3192            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3193          }
3194 
3195          // Appears unlocked - try to swing _owner from null to non-null.
3196          // Use either "Self" (in scr) or rsp as thread identity in _owner.
3197          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3198          masm.get_thread (scrReg) ;
3199          if (os::is_MP()) { masm.lock(); }
3200          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3201 
3202          // If the CAS fails we can either retry or pass control to the slow-path.
3203          // We use the latter tactic.
3204          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3205          // If the CAS was successful ...
3206          //   Self has acquired the lock
3207          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3208          // Intentional fall-through into DONE_LABEL ...
3209       }
3210 
3211       // DONE_LABEL is a hot target - we'd really like to place it at the
3212       // start of cache line by padding with NOPs.
3213       // See the AMD and Intel software optimization manuals for the
3214       // most efficient "long" NOP encodings.
3215       // Unfortunately none of our alignment mechanisms suffice.
3216       masm.bind(DONE_LABEL);
3217 
3218       // Avoid branch-to-branch on AMD processors
3219       // This appears to be superstition.
3220       if (EmitSync & 32) masm.nop() ;
3221 
3222 
3223       // At DONE_LABEL the icc ZFlag is set as follows ...
3224       // Fast_Unlock uses the same protocol.
3225       // ZFlag == 1 -> Success
3226       // ZFlag == 0 -> Failure - force control through the slow-path
3227     }
3228   %}
3229 
3230   // obj: object to unlock
3231   // box: box address (displaced header location), killed.  Must be EAX.
3232   // rbx,: killed tmp; cannot be obj nor box.
3233   //
3234   // Some commentary on balanced locking:
3235   //
3236   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3237   // Methods that don't have provably balanced locking are forced to run in the
3238   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3239   // The interpreter provides two properties:
3240   // I1:  At return-time the interpreter automatically and quietly unlocks any
3241   //      objects acquired the current activation (frame).  Recall that the
3242   //      interpreter maintains an on-stack list of locks currently held by
3243   //      a frame.
3244   // I2:  If a method attempts to unlock an object that is not held by the
3245   //      the frame the interpreter throws IMSX.
3246   //
3247   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3248   // B() doesn't have provably balanced locking so it runs in the interpreter.
3249   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3250   // is still locked by A().
3251   //
3252   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3253   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3254   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3255   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3256 
3257   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3258 
3259     Register objReg = as_Register($obj$$reg);
3260     Register boxReg = as_Register($box$$reg);
3261     Register tmpReg = as_Register($tmp$$reg);
3262 
3263     guarantee (objReg != boxReg, "") ;
3264     guarantee (objReg != tmpReg, "") ;
3265     guarantee (boxReg != tmpReg, "") ;
3266     guarantee (boxReg == as_Register(EAX_enc), "") ;
3267     MacroAssembler masm(&cbuf);
3268 
3269     if (EmitSync & 4) {
3270       // Disable - inhibit all inlining.  Force control through the slow-path
3271       masm.cmpptr (rsp, 0) ; 
3272     } else 
3273     if (EmitSync & 8) {
3274       Label DONE_LABEL ;
3275       if (UseBiasedLocking) {
3276          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3277       }
3278       // classic stack-locking code ...
3279       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3280       masm.testptr(tmpReg, tmpReg) ;
3281       masm.jcc   (Assembler::zero, DONE_LABEL) ;
3282       if (os::is_MP()) { masm.lock(); }
3283       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3284       masm.bind(DONE_LABEL);
3285     } else {
3286       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3287 
3288       // Critically, the biased locking test must have precedence over
3289       // and appear before the (box->dhw == 0) recursive stack-lock test.
3290       if (UseBiasedLocking && !UseOptoBiasInlining) {
3291          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3292       }
3293       
3294       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3295       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3296       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3297 
3298       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3299       masm.jccb  (Assembler::zero, Stacked) ;
3300 
3301       masm.bind  (Inflated) ;
3302       // It's inflated.
3303       // Despite our balanced locking property we still check that m->_owner == Self
3304       // as java routines or native JNI code called by this thread might
3305       // have released the lock.
3306       // Refer to the comments in synchronizer.cpp for how we might encode extra
3307       // state in _succ so we can avoid fetching EntryList|cxq.
3308       //
3309       // I'd like to add more cases in fast_lock() and fast_unlock() --
3310       // such as recursive enter and exit -- but we have to be wary of
3311       // I$ bloat, T$ effects and BP$ effects.
3312       //
3313       // If there's no contention try a 1-0 exit.  That is, exit without
3314       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3315       // we detect and recover from the race that the 1-0 exit admits.
3316       //
3317       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3318       // before it STs null into _owner, releasing the lock.  Updates
3319       // to data protected by the critical section must be visible before
3320       // we drop the lock (and thus before any other thread could acquire
3321       // the lock and observe the fields protected by the lock).
3322       // IA32's memory-model is SPO, so STs are ordered with respect to
3323       // each other and there's no need for an explicit barrier (fence).
3324       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3325 
3326       masm.get_thread (boxReg) ;
3327       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3328         // prefetchw [ebx + Offset(_owner)-2]
3329         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3330       }
3331 
3332       // Note that we could employ various encoding schemes to reduce
3333       // the number of loads below (currently 4) to just 2 or 3.
3334       // Refer to the comments in synchronizer.cpp.
3335       // In practice the chain of fetches doesn't seem to impact performance, however.
3336       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3337          // Attempt to reduce branch density - AMD's branch predictor.
3338          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3339          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3340          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3341          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3342          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3343          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3344          masm.jmpb  (DONE_LABEL) ; 
3345       } else { 
3346          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3347          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3348          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3349          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3350          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3351          masm.jccb  (Assembler::notZero, CheckSucc) ; 
3352          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3353          masm.jmpb  (DONE_LABEL) ; 
3354       }
3355 
3356       // The Following code fragment (EmitSync & 65536) improves the performance of
3357       // contended applications and contended synchronization microbenchmarks.
3358       // Unfortunately the emission of the code - even though not executed - causes regressions
3359       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3360       // with an equal number of never-executed NOPs results in the same regression.
3361       // We leave it off by default.
3362 
3363       if ((EmitSync & 65536) != 0) {
3364          Label LSuccess, LGoSlowPath ;
3365 
3366          masm.bind  (CheckSucc) ;
3367 
3368          // Optional pre-test ... it's safe to elide this
3369          if ((EmitSync & 16) == 0) { 
3370             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3371             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3372          }
3373 
3374          // We have a classic Dekker-style idiom:
3375          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3376          // There are a number of ways to implement the barrier:
3377          // (1) lock:andl &m->_owner, 0
3378          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3379          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3380          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3381          // (2) If supported, an explicit MFENCE is appealing.
3382          //     In older IA32 processors MFENCE is slower than lock:add or xchg
3383          //     particularly if the write-buffer is full as might be the case if
3384          //     if stores closely precede the fence or fence-equivalent instruction.
3385          //     In more modern implementations MFENCE appears faster, however.
3386          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3387          //     The $lines underlying the top-of-stack should be in M-state.
3388          //     The locked add instruction is serializing, of course.
3389          // (4) Use xchg, which is serializing
3390          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3391          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3392          //     The integer condition codes will tell us if succ was 0.
3393          //     Since _succ and _owner should reside in the same $line and
3394          //     we just stored into _owner, it's likely that the $line
3395          //     remains in M-state for the lock:orl.
3396          //
3397          // We currently use (3), although it's likely that switching to (2)
3398          // is correct for the future.
3399             
3400          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3401          if (os::is_MP()) { 
3402             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3403               masm.mfence();
3404             } else { 
3405               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3406             }
3407          }
3408          // Ratify _succ remains non-null
3409          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3410          masm.jccb  (Assembler::notZero, LSuccess) ; 
3411 
3412          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3413          if (os::is_MP()) { masm.lock(); }
3414          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3415          masm.jccb  (Assembler::notEqual, LSuccess) ;
3416          // Since we're low on registers we installed rsp as a placeholding in _owner.
3417          // Now install Self over rsp.  This is safe as we're transitioning from
3418          // non-null to non=null
3419          masm.get_thread (boxReg) ;
3420          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3421          // Intentional fall-through into LGoSlowPath ...
3422 
3423          masm.bind  (LGoSlowPath) ; 
3424          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3425          masm.jmpb  (DONE_LABEL) ; 
3426 
3427          masm.bind  (LSuccess) ; 
3428          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3429          masm.jmpb  (DONE_LABEL) ; 
3430       }
3431 
3432       masm.bind (Stacked) ;
3433       // It's not inflated and it's not recursively stack-locked and it's not biased.
3434       // It must be stack-locked.
3435       // Try to reset the header to displaced header.
3436       // The "box" value on the stack is stable, so we can reload
3437       // and be assured we observe the same value as above.
3438       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3439       if (os::is_MP()) {   masm.lock();    }
3440       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3441       // Intention fall-thru into DONE_LABEL
3442 
3443 
3444       // DONE_LABEL is a hot target - we'd really like to place it at the
3445       // start of cache line by padding with NOPs.
3446       // See the AMD and Intel software optimization manuals for the
3447       // most efficient "long" NOP encodings.
3448       // Unfortunately none of our alignment mechanisms suffice.
3449       if ((EmitSync & 65536) == 0) {
3450          masm.bind (CheckSucc) ;
3451       }
3452       masm.bind(DONE_LABEL);
3453 
3454       // Avoid branch to branch on AMD processors
3455       if (EmitSync & 32768) { masm.nop() ; }
3456     }
3457   %}
3458 
3459 
3460   enc_class enc_pop_rdx() %{
3461     emit_opcode(cbuf,0x5A);
3462   %}
3463 
3464   enc_class enc_rethrow() %{
3465     cbuf.set_insts_mark();
3466     emit_opcode(cbuf, 0xE9);        // jmp    entry
3467     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
3468                    runtime_call_Relocation::spec(), RELOC_IMM32 );
3469   %}
3470 
3471 
3472   // Convert a double to an int.  Java semantics require we do complex
3473   // manglelations in the corner cases.  So we set the rounding mode to
3474   // 'zero', store the darned double down as an int, and reset the
3475   // rounding mode to 'nearest'.  The hardware throws an exception which
3476   // patches up the correct value directly to the stack.
3477   enc_class DPR2I_encoding( regDPR src ) %{
3478     // Flip to round-to-zero mode.  We attempted to allow invalid-op
3479     // exceptions here, so that a NAN or other corner-case value will
3480     // thrown an exception (but normal values get converted at full speed).
3481     // However, I2C adapters and other float-stack manglers leave pending
3482     // invalid-op exceptions hanging.  We would have to clear them before
3483     // enabling them and that is more expensive than just testing for the
3484     // invalid value Intel stores down in the corner cases.
3485     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3486     emit_opcode(cbuf,0x2D);
3487     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3488     // Allocate a word
3489     emit_opcode(cbuf,0x83);            // SUB ESP,4
3490     emit_opcode(cbuf,0xEC);
3491     emit_d8(cbuf,0x04);
3492     // Encoding assumes a double has been pushed into FPR0.
3493     // Store down the double as an int, popping the FPU stack
3494     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3495     emit_opcode(cbuf,0x1C);
3496     emit_d8(cbuf,0x24);
3497     // Restore the rounding mode; mask the exception
3498     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3499     emit_opcode(cbuf,0x2D);
3500     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3501         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3502         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3503 
3504     // Load the converted int; adjust CPU stack
3505     emit_opcode(cbuf,0x58);       // POP EAX
3506     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3507     emit_d32   (cbuf,0x80000000); //         0x80000000
3508     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3509     emit_d8    (cbuf,0x07);       // Size of slow_call
3510     // Push src onto stack slow-path
3511     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3512     emit_d8    (cbuf,0xC0-1+$src$$reg );
3513     // CALL directly to the runtime
3514     cbuf.set_insts_mark();
3515     emit_opcode(cbuf,0xE8);       // Call into runtime
3516     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3517     // Carry on here...
3518   %}
3519 
3520   enc_class DPR2L_encoding( regDPR src ) %{
3521     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3522     emit_opcode(cbuf,0x2D);
3523     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3524     // Allocate a word
3525     emit_opcode(cbuf,0x83);            // SUB ESP,8
3526     emit_opcode(cbuf,0xEC);
3527     emit_d8(cbuf,0x08);
3528     // Encoding assumes a double has been pushed into FPR0.
3529     // Store down the double as a long, popping the FPU stack
3530     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3531     emit_opcode(cbuf,0x3C);
3532     emit_d8(cbuf,0x24);
3533     // Restore the rounding mode; mask the exception
3534     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3535     emit_opcode(cbuf,0x2D);
3536     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3537         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3538         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3539 
3540     // Load the converted int; adjust CPU stack
3541     emit_opcode(cbuf,0x58);       // POP EAX
3542     emit_opcode(cbuf,0x5A);       // POP EDX
3543     emit_opcode(cbuf,0x81);       // CMP EDX,imm
3544     emit_d8    (cbuf,0xFA);       // rdx
3545     emit_d32   (cbuf,0x80000000); //         0x80000000
3546     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3547     emit_d8    (cbuf,0x07+4);     // Size of slow_call
3548     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3549     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3550     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3551     emit_d8    (cbuf,0x07);       // Size of slow_call
3552     // Push src onto stack slow-path
3553     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3554     emit_d8    (cbuf,0xC0-1+$src$$reg );
3555     // CALL directly to the runtime
3556     cbuf.set_insts_mark();
3557     emit_opcode(cbuf,0xE8);       // Call into runtime
3558     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3559     // Carry on here...
3560   %}
3561 
3562   enc_class FMul_ST_reg( eRegFPR src1 ) %{
3563     // Operand was loaded from memory into fp ST (stack top)
3564     // FMUL   ST,$src  /* D8 C8+i */
3565     emit_opcode(cbuf, 0xD8);
3566     emit_opcode(cbuf, 0xC8 + $src1$$reg);
3567   %}
3568 
3569   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
3570     // FADDP  ST,src2  /* D8 C0+i */
3571     emit_opcode(cbuf, 0xD8);
3572     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3573     //could use FADDP  src2,fpST  /* DE C0+i */
3574   %}
3575 
3576   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
3577     // FADDP  src2,ST  /* DE C0+i */
3578     emit_opcode(cbuf, 0xDE);
3579     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3580   %}
3581 
3582   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
3583     // Operand has been loaded into fp ST (stack top)
3584       // FSUB   ST,$src1
3585       emit_opcode(cbuf, 0xD8);
3586       emit_opcode(cbuf, 0xE0 + $src1$$reg);
3587 
3588       // FDIV
3589       emit_opcode(cbuf, 0xD8);
3590       emit_opcode(cbuf, 0xF0 + $src2$$reg);
3591   %}
3592 
3593   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
3594     // Operand was loaded from memory into fp ST (stack top)
3595     // FADD   ST,$src  /* D8 C0+i */
3596     emit_opcode(cbuf, 0xD8);
3597     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3598 
3599     // FMUL  ST,src2  /* D8 C*+i */
3600     emit_opcode(cbuf, 0xD8);
3601     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3602   %}
3603 
3604 
3605   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
3606     // Operand was loaded from memory into fp ST (stack top)
3607     // FADD   ST,$src  /* D8 C0+i */
3608     emit_opcode(cbuf, 0xD8);
3609     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3610 
3611     // FMULP  src2,ST  /* DE C8+i */
3612     emit_opcode(cbuf, 0xDE);
3613     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3614   %}
3615 
3616   // Atomically load the volatile long
3617   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
3618     emit_opcode(cbuf,0xDF);
3619     int rm_byte_opcode = 0x05;
3620     int base     = $mem$$base;
3621     int index    = $mem$$index;
3622     int scale    = $mem$$scale;
3623     int displace = $mem$$disp;
3624     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3625     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3626     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
3627   %}
3628 
3629   // Volatile Store Long.  Must be atomic, so move it into
3630   // the FP TOS and then do a 64-bit FIST.  Has to probe the
3631   // target address before the store (for null-ptr checks)
3632   // so the memory operand is used twice in the encoding.
3633   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
3634     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
3635     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
3636     emit_opcode(cbuf,0xDF);
3637     int rm_byte_opcode = 0x07;
3638     int base     = $mem$$base;
3639     int index    = $mem$$index;
3640     int scale    = $mem$$scale;
3641     int displace = $mem$$disp;
3642     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3643     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3644   %}
3645 
3646   // Safepoint Poll.  This polls the safepoint page, and causes an
3647   // exception if it is not readable. Unfortunately, it kills the condition code
3648   // in the process
3649   // We current use TESTL [spp],EDI
3650   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
3651 
3652   enc_class Safepoint_Poll() %{
3653     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
3654     emit_opcode(cbuf,0x85);
3655     emit_rm (cbuf, 0x0, 0x7, 0x5);
3656     emit_d32(cbuf, (intptr_t)os::get_polling_page());
3657   %}
3658 %}
3659 
3660 
3661 //----------FRAME--------------------------------------------------------------
3662 // Definition of frame structure and management information.
3663 //
3664 //  S T A C K   L A Y O U T    Allocators stack-slot number
3665 //                             |   (to get allocators register number
3666 //  G  Owned by    |        |  v    add OptoReg::stack0())
3667 //  r   CALLER     |        |
3668 //  o     |        +--------+      pad to even-align allocators stack-slot
3669 //  w     V        |  pad0  |        numbers; owned by CALLER
3670 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3671 //  h     ^        |   in   |  5
3672 //        |        |  args  |  4   Holes in incoming args owned by SELF
3673 //  |     |        |        |  3
3674 //  |     |        +--------+
3675 //  V     |        | old out|      Empty on Intel, window on Sparc
3676 //        |    old |preserve|      Must be even aligned.
3677 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
3678 //        |        |   in   |  3   area for Intel ret address
3679 //     Owned by    |preserve|      Empty on Sparc.
3680 //       SELF      +--------+
3681 //        |        |  pad2  |  2   pad to align old SP
3682 //        |        +--------+  1
3683 //        |        | locks  |  0
3684 //        |        +--------+----> OptoReg::stack0(), even aligned
3685 //        |        |  pad1  | 11   pad to align new SP
3686 //        |        +--------+
3687 //        |        |        | 10
3688 //        |        | spills |  9   spills
3689 //        V        |        |  8   (pad0 slot for callee)
3690 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3691 //        ^        |  out   |  7
3692 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3693 //     Owned by    +--------+
3694 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3695 //        |    new |preserve|      Must be even-aligned.
3696 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3697 //        |        |        |
3698 //
3699 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3700 //         known from SELF's arguments and the Java calling convention.
3701 //         Region 6-7 is determined per call site.
3702 // Note 2: If the calling convention leaves holes in the incoming argument
3703 //         area, those holes are owned by SELF.  Holes in the outgoing area
3704 //         are owned by the CALLEE.  Holes should not be nessecary in the
3705 //         incoming area, as the Java calling convention is completely under
3706 //         the control of the AD file.  Doubles can be sorted and packed to
3707 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3708 //         varargs C calling conventions.
3709 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3710 //         even aligned with pad0 as needed.
3711 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3712 //         region 6-11 is even aligned; it may be padded out more so that
3713 //         the region from SP to FP meets the minimum stack alignment.
3714 
3715 frame %{
3716   // What direction does stack grow in (assumed to be same for C & Java)
3717   stack_direction(TOWARDS_LOW);
3718 
3719   // These three registers define part of the calling convention
3720   // between compiled code and the interpreter.
3721   inline_cache_reg(EAX);                // Inline Cache Register
3722   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
3723 
3724   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3725   cisc_spilling_operand_name(indOffset32);
3726 
3727   // Number of stack slots consumed by locking an object
3728   sync_stack_slots(1);
3729 
3730   // Compiled code's Frame Pointer
3731   frame_pointer(ESP);
3732   // Interpreter stores its frame pointer in a register which is
3733   // stored to the stack by I2CAdaptors.
3734   // I2CAdaptors convert from interpreted java to compiled java.
3735   interpreter_frame_pointer(EBP);
3736 
3737   // Stack alignment requirement
3738   // Alignment size in bytes (128-bit -> 16 bytes)
3739   stack_alignment(StackAlignmentInBytes);
3740 
3741   // Number of stack slots between incoming argument block and the start of
3742   // a new frame.  The PROLOG must add this many slots to the stack.  The
3743   // EPILOG must remove this many slots.  Intel needs one slot for
3744   // return address and one for rbp, (must save rbp)
3745   in_preserve_stack_slots(2+VerifyStackAtCalls);
3746 
3747   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3748   // for calls to C.  Supports the var-args backing area for register parms.
3749   varargs_C_out_slots_killed(0);
3750 
3751   // The after-PROLOG location of the return address.  Location of
3752   // return address specifies a type (REG or STACK) and a number
3753   // representing the register number (i.e. - use a register name) or
3754   // stack slot.
3755   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
3756   // Otherwise, it is above the locks and verification slot and alignment word
3757   return_addr(STACK - 1 +
3758               round_to((Compile::current()->in_preserve_stack_slots() +
3759                         Compile::current()->fixed_slots()),
3760                        stack_alignment_in_slots()));
3761 
3762   // Body of function which returns an integer array locating
3763   // arguments either in registers or in stack slots.  Passed an array
3764   // of ideal registers called "sig" and a "length" count.  Stack-slot
3765   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3766   // arguments for a CALLEE.  Incoming stack arguments are
3767   // automatically biased by the preserve_stack_slots field above.
3768   calling_convention %{
3769     // No difference between ingoing/outgoing just pass false
3770     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3771   %}
3772 
3773 
3774   // Body of function which returns an integer array locating
3775   // arguments either in registers or in stack slots.  Passed an array
3776   // of ideal registers called "sig" and a "length" count.  Stack-slot
3777   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3778   // arguments for a CALLEE.  Incoming stack arguments are
3779   // automatically biased by the preserve_stack_slots field above.
3780   c_calling_convention %{
3781     // This is obviously always outgoing
3782     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3783   %}
3784 
3785   // Location of C & interpreter return values
3786   c_return_value %{
3787     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3788     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3789     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3790 
3791     // in SSE2+ mode we want to keep the FPU stack clean so pretend
3792     // that C functions return float and double results in XMM0.
3793     if( ideal_reg == Op_RegD && UseSSE>=2 )
3794       return OptoRegPair(XMM0b_num,XMM0_num);
3795     if( ideal_reg == Op_RegF && UseSSE>=2 )
3796       return OptoRegPair(OptoReg::Bad,XMM0_num);
3797 
3798     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3799   %}
3800 
3801   // Location of return values
3802   return_value %{
3803     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3804     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3805     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3806     if( ideal_reg == Op_RegD && UseSSE>=2 )
3807       return OptoRegPair(XMM0b_num,XMM0_num);
3808     if( ideal_reg == Op_RegF && UseSSE>=1 )
3809       return OptoRegPair(OptoReg::Bad,XMM0_num);
3810     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3811   %}
3812 
3813 %}
3814 
3815 //----------ATTRIBUTES---------------------------------------------------------
3816 //----------Operand Attributes-------------------------------------------------
3817 op_attrib op_cost(0);        // Required cost attribute
3818 
3819 //----------Instruction Attributes---------------------------------------------
3820 ins_attrib ins_cost(100);       // Required cost attribute
3821 ins_attrib ins_size(8);         // Required size attribute (in bits)
3822 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3823                                 // non-matching short branch variant of some
3824                                                             // long branch?
3825 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
3826                                 // specifies the alignment that some part of the instruction (not
3827                                 // necessarily the start) requires.  If > 1, a compute_padding()
3828                                 // function must be provided for the instruction
3829 
3830 //----------OPERANDS-----------------------------------------------------------
3831 // Operand definitions must precede instruction definitions for correct parsing
3832 // in the ADLC because operands constitute user defined types which are used in
3833 // instruction definitions.
3834 
3835 //----------Simple Operands----------------------------------------------------
3836 // Immediate Operands
3837 // Integer Immediate
3838 operand immI() %{
3839   match(ConI);
3840 
3841   op_cost(10);
3842   format %{ %}
3843   interface(CONST_INTER);
3844 %}
3845 
3846 // Constant for test vs zero
3847 operand immI0() %{
3848   predicate(n->get_int() == 0);
3849   match(ConI);
3850 
3851   op_cost(0);
3852   format %{ %}
3853   interface(CONST_INTER);
3854 %}
3855 
3856 // Constant for increment
3857 operand immI1() %{
3858   predicate(n->get_int() == 1);
3859   match(ConI);
3860 
3861   op_cost(0);
3862   format %{ %}
3863   interface(CONST_INTER);
3864 %}
3865 
3866 // Constant for decrement
3867 operand immI_M1() %{
3868   predicate(n->get_int() == -1);
3869   match(ConI);
3870 
3871   op_cost(0);
3872   format %{ %}
3873   interface(CONST_INTER);
3874 %}
3875 
3876 // Valid scale values for addressing modes
3877 operand immI2() %{
3878   predicate(0 <= n->get_int() && (n->get_int() <= 3));
3879   match(ConI);
3880 
3881   format %{ %}
3882   interface(CONST_INTER);
3883 %}
3884 
3885 operand immI8() %{
3886   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
3887   match(ConI);
3888 
3889   op_cost(5);
3890   format %{ %}
3891   interface(CONST_INTER);
3892 %}
3893 
3894 operand immI16() %{
3895   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
3896   match(ConI);
3897 
3898   op_cost(10);
3899   format %{ %}
3900   interface(CONST_INTER);
3901 %}
3902 
3903 // Constant for long shifts
3904 operand immI_32() %{
3905   predicate( n->get_int() == 32 );
3906   match(ConI);
3907 
3908   op_cost(0);
3909   format %{ %}
3910   interface(CONST_INTER);
3911 %}
3912 
3913 operand immI_1_31() %{
3914   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
3915   match(ConI);
3916 
3917   op_cost(0);
3918   format %{ %}
3919   interface(CONST_INTER);
3920 %}
3921 
3922 operand immI_32_63() %{
3923   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
3924   match(ConI);
3925   op_cost(0);
3926 
3927   format %{ %}
3928   interface(CONST_INTER);
3929 %}
3930 
3931 operand immI_1() %{
3932   predicate( n->get_int() == 1 );
3933   match(ConI);
3934 
3935   op_cost(0);
3936   format %{ %}
3937   interface(CONST_INTER);
3938 %}
3939 
3940 operand immI_2() %{
3941   predicate( n->get_int() == 2 );
3942   match(ConI);
3943 
3944   op_cost(0);
3945   format %{ %}
3946   interface(CONST_INTER);
3947 %}
3948 
3949 operand immI_3() %{
3950   predicate( n->get_int() == 3 );
3951   match(ConI);
3952 
3953   op_cost(0);
3954   format %{ %}
3955   interface(CONST_INTER);
3956 %}
3957 
3958 // Pointer Immediate
3959 operand immP() %{
3960   match(ConP);
3961 
3962   op_cost(10);
3963   format %{ %}
3964   interface(CONST_INTER);
3965 %}
3966 
3967 // NULL Pointer Immediate
3968 operand immP0() %{
3969   predicate( n->get_ptr() == 0 );
3970   match(ConP);
3971   op_cost(0);
3972 
3973   format %{ %}
3974   interface(CONST_INTER);
3975 %}
3976 
3977 // Long Immediate
3978 operand immL() %{
3979   match(ConL);
3980 
3981   op_cost(20);
3982   format %{ %}
3983   interface(CONST_INTER);
3984 %}
3985 
3986 // Long Immediate zero
3987 operand immL0() %{
3988   predicate( n->get_long() == 0L );
3989   match(ConL);
3990   op_cost(0);
3991 
3992   format %{ %}
3993   interface(CONST_INTER);
3994 %}
3995 
3996 // Long Immediate zero
3997 operand immL_M1() %{
3998   predicate( n->get_long() == -1L );
3999   match(ConL);
4000   op_cost(0);
4001 
4002   format %{ %}
4003   interface(CONST_INTER);
4004 %}
4005 
4006 // Long immediate from 0 to 127.
4007 // Used for a shorter form of long mul by 10.
4008 operand immL_127() %{
4009   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4010   match(ConL);
4011   op_cost(0);
4012 
4013   format %{ %}
4014   interface(CONST_INTER);
4015 %}
4016 
4017 // Long Immediate: low 32-bit mask
4018 operand immL_32bits() %{
4019   predicate(n->get_long() == 0xFFFFFFFFL);
4020   match(ConL);
4021   op_cost(0);
4022 
4023   format %{ %}
4024   interface(CONST_INTER);
4025 %}
4026 
4027 // Long Immediate: low 32-bit mask
4028 operand immL32() %{
4029   predicate(n->get_long() == (int)(n->get_long()));
4030   match(ConL);
4031   op_cost(20);
4032 
4033   format %{ %}
4034   interface(CONST_INTER);
4035 %}
4036 
4037 //Double Immediate zero
4038 operand immDPR0() %{
4039   // Do additional (and counter-intuitive) test against NaN to work around VC++
4040   // bug that generates code such that NaNs compare equal to 0.0
4041   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4042   match(ConD);
4043 
4044   op_cost(5);
4045   format %{ %}
4046   interface(CONST_INTER);
4047 %}
4048 
4049 // Double Immediate one
4050 operand immDPR1() %{
4051   predicate( UseSSE<=1 && n->getd() == 1.0 );
4052   match(ConD);
4053 
4054   op_cost(5);
4055   format %{ %}
4056   interface(CONST_INTER);
4057 %}
4058 
4059 // Double Immediate
4060 operand immDPR() %{
4061   predicate(UseSSE<=1);
4062   match(ConD);
4063 
4064   op_cost(5);
4065   format %{ %}
4066   interface(CONST_INTER);
4067 %}
4068 
4069 operand immD() %{
4070   predicate(UseSSE>=2);
4071   match(ConD);
4072 
4073   op_cost(5);
4074   format %{ %}
4075   interface(CONST_INTER);
4076 %}
4077 
4078 // Double Immediate zero
4079 operand immD0() %{
4080   // Do additional (and counter-intuitive) test against NaN to work around VC++
4081   // bug that generates code such that NaNs compare equal to 0.0 AND do not
4082   // compare equal to -0.0.
4083   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4084   match(ConD);
4085 
4086   format %{ %}
4087   interface(CONST_INTER);
4088 %}
4089 
4090 // Float Immediate zero
4091 operand immFPR0() %{
4092   predicate(UseSSE == 0 && n->getf() == 0.0F);
4093   match(ConF);
4094 
4095   op_cost(5);
4096   format %{ %}
4097   interface(CONST_INTER);
4098 %}
4099 
4100 // Float Immediate one
4101 operand immFPR1() %{
4102   predicate(UseSSE == 0 && n->getf() == 1.0F);
4103   match(ConF);
4104 
4105   op_cost(5);
4106   format %{ %}
4107   interface(CONST_INTER);
4108 %}
4109 
4110 // Float Immediate
4111 operand immFPR() %{
4112   predicate( UseSSE == 0 );
4113   match(ConF);
4114 
4115   op_cost(5);
4116   format %{ %}
4117   interface(CONST_INTER);
4118 %}
4119 
4120 // Float Immediate
4121 operand immF() %{
4122   predicate(UseSSE >= 1);
4123   match(ConF);
4124 
4125   op_cost(5);
4126   format %{ %}
4127   interface(CONST_INTER);
4128 %}
4129 
4130 // Float Immediate zero.  Zero and not -0.0
4131 operand immF0() %{
4132   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4133   match(ConF);
4134 
4135   op_cost(5);
4136   format %{ %}
4137   interface(CONST_INTER);
4138 %}
4139 
4140 // Immediates for special shifts (sign extend)
4141 
4142 // Constants for increment
4143 operand immI_16() %{
4144   predicate( n->get_int() == 16 );
4145   match(ConI);
4146 
4147   format %{ %}
4148   interface(CONST_INTER);
4149 %}
4150 
4151 operand immI_24() %{
4152   predicate( n->get_int() == 24 );
4153   match(ConI);
4154 
4155   format %{ %}
4156   interface(CONST_INTER);
4157 %}
4158 
4159 // Constant for byte-wide masking
4160 operand immI_255() %{
4161   predicate( n->get_int() == 255 );
4162   match(ConI);
4163 
4164   format %{ %}
4165   interface(CONST_INTER);
4166 %}
4167 
4168 // Constant for short-wide masking
4169 operand immI_65535() %{
4170   predicate(n->get_int() == 65535);
4171   match(ConI);
4172 
4173   format %{ %}
4174   interface(CONST_INTER);
4175 %}
4176 
4177 // Register Operands
4178 // Integer Register
4179 operand rRegI() %{
4180   constraint(ALLOC_IN_RC(int_reg));
4181   match(RegI);
4182   match(xRegI);
4183   match(eAXRegI);
4184   match(eBXRegI);
4185   match(eCXRegI);
4186   match(eDXRegI);
4187   match(eDIRegI);
4188   match(eSIRegI);
4189 
4190   format %{ %}
4191   interface(REG_INTER);
4192 %}
4193 
4194 // Subset of Integer Register
4195 operand xRegI(rRegI reg) %{
4196   constraint(ALLOC_IN_RC(int_x_reg));
4197   match(reg);
4198   match(eAXRegI);
4199   match(eBXRegI);
4200   match(eCXRegI);
4201   match(eDXRegI);
4202 
4203   format %{ %}
4204   interface(REG_INTER);
4205 %}
4206 
4207 // Special Registers
4208 operand eAXRegI(xRegI reg) %{
4209   constraint(ALLOC_IN_RC(eax_reg));
4210   match(reg);
4211   match(rRegI);
4212 
4213   format %{ "EAX" %}
4214   interface(REG_INTER);
4215 %}
4216 
4217 // Special Registers
4218 operand eBXRegI(xRegI reg) %{
4219   constraint(ALLOC_IN_RC(ebx_reg));
4220   match(reg);
4221   match(rRegI);
4222 
4223   format %{ "EBX" %}
4224   interface(REG_INTER);
4225 %}
4226 
4227 operand eCXRegI(xRegI reg) %{
4228   constraint(ALLOC_IN_RC(ecx_reg));
4229   match(reg);
4230   match(rRegI);
4231 
4232   format %{ "ECX" %}
4233   interface(REG_INTER);
4234 %}
4235 
4236 operand eDXRegI(xRegI reg) %{
4237   constraint(ALLOC_IN_RC(edx_reg));
4238   match(reg);
4239   match(rRegI);
4240 
4241   format %{ "EDX" %}
4242   interface(REG_INTER);
4243 %}
4244 
4245 operand eDIRegI(xRegI reg) %{
4246   constraint(ALLOC_IN_RC(edi_reg));
4247   match(reg);
4248   match(rRegI);
4249 
4250   format %{ "EDI" %}
4251   interface(REG_INTER);
4252 %}
4253 
4254 operand naxRegI() %{
4255   constraint(ALLOC_IN_RC(nax_reg));
4256   match(RegI);
4257   match(eCXRegI);
4258   match(eDXRegI);
4259   match(eSIRegI);
4260   match(eDIRegI);
4261 
4262   format %{ %}
4263   interface(REG_INTER);
4264 %}
4265 
4266 operand nadxRegI() %{
4267   constraint(ALLOC_IN_RC(nadx_reg));
4268   match(RegI);
4269   match(eBXRegI);
4270   match(eCXRegI);
4271   match(eSIRegI);
4272   match(eDIRegI);
4273 
4274   format %{ %}
4275   interface(REG_INTER);
4276 %}
4277 
4278 operand ncxRegI() %{
4279   constraint(ALLOC_IN_RC(ncx_reg));
4280   match(RegI);
4281   match(eAXRegI);
4282   match(eDXRegI);
4283   match(eSIRegI);
4284   match(eDIRegI);
4285 
4286   format %{ %}
4287   interface(REG_INTER);
4288 %}
4289 
4290 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4291 // //
4292 operand eSIRegI(xRegI reg) %{
4293    constraint(ALLOC_IN_RC(esi_reg));
4294    match(reg);
4295    match(rRegI);
4296 
4297    format %{ "ESI" %}
4298    interface(REG_INTER);
4299 %}
4300 
4301 // Pointer Register
4302 operand anyRegP() %{
4303   constraint(ALLOC_IN_RC(any_reg));
4304   match(RegP);
4305   match(eAXRegP);
4306   match(eBXRegP);
4307   match(eCXRegP);
4308   match(eDIRegP);
4309   match(eRegP);
4310 
4311   format %{ %}
4312   interface(REG_INTER);
4313 %}
4314 
4315 operand eRegP() %{
4316   constraint(ALLOC_IN_RC(int_reg));
4317   match(RegP);
4318   match(eAXRegP);
4319   match(eBXRegP);
4320   match(eCXRegP);
4321   match(eDIRegP);
4322 
4323   format %{ %}
4324   interface(REG_INTER);
4325 %}
4326 
4327 // On windows95, EBP is not safe to use for implicit null tests.
4328 operand eRegP_no_EBP() %{
4329   constraint(ALLOC_IN_RC(int_reg_no_rbp));
4330   match(RegP);
4331   match(eAXRegP);
4332   match(eBXRegP);
4333   match(eCXRegP);
4334   match(eDIRegP);
4335 
4336   op_cost(100);
4337   format %{ %}
4338   interface(REG_INTER);
4339 %}
4340 
4341 operand naxRegP() %{
4342   constraint(ALLOC_IN_RC(nax_reg));
4343   match(RegP);
4344   match(eBXRegP);
4345   match(eDXRegP);
4346   match(eCXRegP);
4347   match(eSIRegP);
4348   match(eDIRegP);
4349 
4350   format %{ %}
4351   interface(REG_INTER);
4352 %}
4353 
4354 operand nabxRegP() %{
4355   constraint(ALLOC_IN_RC(nabx_reg));
4356   match(RegP);
4357   match(eCXRegP);
4358   match(eDXRegP);
4359   match(eSIRegP);
4360   match(eDIRegP);
4361 
4362   format %{ %}
4363   interface(REG_INTER);
4364 %}
4365 
4366 operand pRegP() %{
4367   constraint(ALLOC_IN_RC(p_reg));
4368   match(RegP);
4369   match(eBXRegP);
4370   match(eDXRegP);
4371   match(eSIRegP);
4372   match(eDIRegP);
4373 
4374   format %{ %}
4375   interface(REG_INTER);
4376 %}
4377 
4378 // Special Registers
4379 // Return a pointer value
4380 operand eAXRegP(eRegP reg) %{
4381   constraint(ALLOC_IN_RC(eax_reg));
4382   match(reg);
4383   format %{ "EAX" %}
4384   interface(REG_INTER);
4385 %}
4386 
4387 // Used in AtomicAdd
4388 operand eBXRegP(eRegP reg) %{
4389   constraint(ALLOC_IN_RC(ebx_reg));
4390   match(reg);
4391   format %{ "EBX" %}
4392   interface(REG_INTER);
4393 %}
4394 
4395 // Tail-call (interprocedural jump) to interpreter
4396 operand eCXRegP(eRegP reg) %{
4397   constraint(ALLOC_IN_RC(ecx_reg));
4398   match(reg);
4399   format %{ "ECX" %}
4400   interface(REG_INTER);
4401 %}
4402 
4403 operand eSIRegP(eRegP reg) %{
4404   constraint(ALLOC_IN_RC(esi_reg));
4405   match(reg);
4406   format %{ "ESI" %}
4407   interface(REG_INTER);
4408 %}
4409 
4410 // Used in rep stosw
4411 operand eDIRegP(eRegP reg) %{
4412   constraint(ALLOC_IN_RC(edi_reg));
4413   match(reg);
4414   format %{ "EDI" %}
4415   interface(REG_INTER);
4416 %}
4417 
4418 operand eBPRegP() %{
4419   constraint(ALLOC_IN_RC(ebp_reg));
4420   match(RegP);
4421   format %{ "EBP" %}
4422   interface(REG_INTER);
4423 %}
4424 
4425 operand eRegL() %{
4426   constraint(ALLOC_IN_RC(long_reg));
4427   match(RegL);
4428   match(eADXRegL);
4429 
4430   format %{ %}
4431   interface(REG_INTER);
4432 %}
4433 
4434 operand eADXRegL( eRegL reg ) %{
4435   constraint(ALLOC_IN_RC(eadx_reg));
4436   match(reg);
4437 
4438   format %{ "EDX:EAX" %}
4439   interface(REG_INTER);
4440 %}
4441 
4442 operand eBCXRegL( eRegL reg ) %{
4443   constraint(ALLOC_IN_RC(ebcx_reg));
4444   match(reg);
4445 
4446   format %{ "EBX:ECX" %}
4447   interface(REG_INTER);
4448 %}
4449 
4450 // Special case for integer high multiply
4451 operand eADXRegL_low_only() %{
4452   constraint(ALLOC_IN_RC(eadx_reg));
4453   match(RegL);
4454 
4455   format %{ "EAX" %}
4456   interface(REG_INTER);
4457 %}
4458 
4459 // Flags register, used as output of compare instructions
4460 operand eFlagsReg() %{
4461   constraint(ALLOC_IN_RC(int_flags));
4462   match(RegFlags);
4463 
4464   format %{ "EFLAGS" %}
4465   interface(REG_INTER);
4466 %}
4467 
4468 // Flags register, used as output of FLOATING POINT compare instructions
4469 operand eFlagsRegU() %{
4470   constraint(ALLOC_IN_RC(int_flags));
4471   match(RegFlags);
4472 
4473   format %{ "EFLAGS_U" %}
4474   interface(REG_INTER);
4475 %}
4476 
4477 operand eFlagsRegUCF() %{
4478   constraint(ALLOC_IN_RC(int_flags));
4479   match(RegFlags);
4480   predicate(false);
4481 
4482   format %{ "EFLAGS_U_CF" %}
4483   interface(REG_INTER);
4484 %}
4485 
4486 // Condition Code Register used by long compare
4487 operand flagsReg_long_LTGE() %{
4488   constraint(ALLOC_IN_RC(int_flags));
4489   match(RegFlags);
4490   format %{ "FLAGS_LTGE" %}
4491   interface(REG_INTER);
4492 %}
4493 operand flagsReg_long_EQNE() %{
4494   constraint(ALLOC_IN_RC(int_flags));
4495   match(RegFlags);
4496   format %{ "FLAGS_EQNE" %}
4497   interface(REG_INTER);
4498 %}
4499 operand flagsReg_long_LEGT() %{
4500   constraint(ALLOC_IN_RC(int_flags));
4501   match(RegFlags);
4502   format %{ "FLAGS_LEGT" %}
4503   interface(REG_INTER);
4504 %}
4505 
4506 // Float register operands
4507 operand regDPR() %{
4508   predicate( UseSSE < 2 );
4509   constraint(ALLOC_IN_RC(fp_dbl_reg));
4510   match(RegD);
4511   match(regDPR1);
4512   match(regDPR2);
4513   format %{ %}
4514   interface(REG_INTER);
4515 %}
4516 
4517 operand regDPR1(regDPR reg) %{
4518   predicate( UseSSE < 2 );
4519   constraint(ALLOC_IN_RC(fp_dbl_reg0));
4520   match(reg);
4521   format %{ "FPR1" %}
4522   interface(REG_INTER);
4523 %}
4524 
4525 operand regDPR2(regDPR reg) %{
4526   predicate( UseSSE < 2 );
4527   constraint(ALLOC_IN_RC(fp_dbl_reg1));
4528   match(reg);
4529   format %{ "FPR2" %}
4530   interface(REG_INTER);
4531 %}
4532 
4533 operand regnotDPR1(regDPR reg) %{
4534   predicate( UseSSE < 2 );
4535   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
4536   match(reg);
4537   format %{ %}
4538   interface(REG_INTER);
4539 %}
4540 
4541 // Float register operands
4542 operand regFPR() %{
4543   predicate( UseSSE < 2 );
4544   constraint(ALLOC_IN_RC(fp_flt_reg));
4545   match(RegF);
4546   match(regFPR1);
4547   format %{ %}
4548   interface(REG_INTER);
4549 %}
4550 
4551 // Float register operands
4552 operand regFPR1(regFPR reg) %{
4553   predicate( UseSSE < 2 );
4554   constraint(ALLOC_IN_RC(fp_flt_reg0));
4555   match(reg);
4556   format %{ "FPR1" %}
4557   interface(REG_INTER);
4558 %}
4559 
4560 // XMM Float register operands
4561 operand regF() %{
4562   predicate( UseSSE>=1 );
4563   constraint(ALLOC_IN_RC(float_reg));
4564   match(RegF);
4565   format %{ %}
4566   interface(REG_INTER);
4567 %}
4568 
4569 // XMM Double register operands
4570 operand regD() %{
4571   predicate( UseSSE>=2 );
4572   constraint(ALLOC_IN_RC(double_reg));
4573   match(RegD);
4574   format %{ %}
4575   interface(REG_INTER);
4576 %}
4577 
4578 
4579 //----------Memory Operands----------------------------------------------------
4580 // Direct Memory Operand
4581 operand direct(immP addr) %{
4582   match(addr);
4583 
4584   format %{ "[$addr]" %}
4585   interface(MEMORY_INTER) %{
4586     base(0xFFFFFFFF);
4587     index(0x4);
4588     scale(0x0);
4589     disp($addr);
4590   %}
4591 %}
4592 
4593 // Indirect Memory Operand
4594 operand indirect(eRegP reg) %{
4595   constraint(ALLOC_IN_RC(int_reg));
4596   match(reg);
4597 
4598   format %{ "[$reg]" %}
4599   interface(MEMORY_INTER) %{
4600     base($reg);
4601     index(0x4);
4602     scale(0x0);
4603     disp(0x0);
4604   %}
4605 %}
4606 
4607 // Indirect Memory Plus Short Offset Operand
4608 operand indOffset8(eRegP reg, immI8 off) %{
4609   match(AddP reg off);
4610 
4611   format %{ "[$reg + $off]" %}
4612   interface(MEMORY_INTER) %{
4613     base($reg);
4614     index(0x4);
4615     scale(0x0);
4616     disp($off);
4617   %}
4618 %}
4619 
4620 // Indirect Memory Plus Long Offset Operand
4621 operand indOffset32(eRegP reg, immI off) %{
4622   match(AddP reg off);
4623 
4624   format %{ "[$reg + $off]" %}
4625   interface(MEMORY_INTER) %{
4626     base($reg);
4627     index(0x4);
4628     scale(0x0);
4629     disp($off);
4630   %}
4631 %}
4632 
4633 // Indirect Memory Plus Long Offset Operand
4634 operand indOffset32X(rRegI reg, immP off) %{
4635   match(AddP off reg);
4636 
4637   format %{ "[$reg + $off]" %}
4638   interface(MEMORY_INTER) %{
4639     base($reg);
4640     index(0x4);
4641     scale(0x0);
4642     disp($off);
4643   %}
4644 %}
4645 
4646 // Indirect Memory Plus Index Register Plus Offset Operand
4647 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
4648   match(AddP (AddP reg ireg) off);
4649 
4650   op_cost(10);
4651   format %{"[$reg + $off + $ireg]" %}
4652   interface(MEMORY_INTER) %{
4653     base($reg);
4654     index($ireg);
4655     scale(0x0);
4656     disp($off);
4657   %}
4658 %}
4659 
4660 // Indirect Memory Plus Index Register Plus Offset Operand
4661 operand indIndex(eRegP reg, rRegI ireg) %{
4662   match(AddP reg ireg);
4663 
4664   op_cost(10);
4665   format %{"[$reg + $ireg]" %}
4666   interface(MEMORY_INTER) %{
4667     base($reg);
4668     index($ireg);
4669     scale(0x0);
4670     disp(0x0);
4671   %}
4672 %}
4673 
4674 // // -------------------------------------------------------------------------
4675 // // 486 architecture doesn't support "scale * index + offset" with out a base
4676 // // -------------------------------------------------------------------------
4677 // // Scaled Memory Operands
4678 // // Indirect Memory Times Scale Plus Offset Operand
4679 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
4680 //   match(AddP off (LShiftI ireg scale));
4681 //
4682 //   op_cost(10);
4683 //   format %{"[$off + $ireg << $scale]" %}
4684 //   interface(MEMORY_INTER) %{
4685 //     base(0x4);
4686 //     index($ireg);
4687 //     scale($scale);
4688 //     disp($off);
4689 //   %}
4690 // %}
4691 
4692 // Indirect Memory Times Scale Plus Index Register
4693 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
4694   match(AddP reg (LShiftI ireg scale));
4695 
4696   op_cost(10);
4697   format %{"[$reg + $ireg << $scale]" %}
4698   interface(MEMORY_INTER) %{
4699     base($reg);
4700     index($ireg);
4701     scale($scale);
4702     disp(0x0);
4703   %}
4704 %}
4705 
4706 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4707 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
4708   match(AddP (AddP reg (LShiftI ireg scale)) off);
4709 
4710   op_cost(10);
4711   format %{"[$reg + $off + $ireg << $scale]" %}
4712   interface(MEMORY_INTER) %{
4713     base($reg);
4714     index($ireg);
4715     scale($scale);
4716     disp($off);
4717   %}
4718 %}
4719 
4720 //----------Load Long Memory Operands------------------------------------------
4721 // The load-long idiom will use it's address expression again after loading
4722 // the first word of the long.  If the load-long destination overlaps with
4723 // registers used in the addressing expression, the 2nd half will be loaded
4724 // from a clobbered address.  Fix this by requiring that load-long use
4725 // address registers that do not overlap with the load-long target.
4726 
4727 // load-long support
4728 operand load_long_RegP() %{
4729   constraint(ALLOC_IN_RC(esi_reg));
4730   match(RegP);
4731   match(eSIRegP);
4732   op_cost(100);
4733   format %{  %}
4734   interface(REG_INTER);
4735 %}
4736 
4737 // Indirect Memory Operand Long
4738 operand load_long_indirect(load_long_RegP reg) %{
4739   constraint(ALLOC_IN_RC(esi_reg));
4740   match(reg);
4741 
4742   format %{ "[$reg]" %}
4743   interface(MEMORY_INTER) %{
4744     base($reg);
4745     index(0x4);
4746     scale(0x0);
4747     disp(0x0);
4748   %}
4749 %}
4750 
4751 // Indirect Memory Plus Long Offset Operand
4752 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
4753   match(AddP reg off);
4754 
4755   format %{ "[$reg + $off]" %}
4756   interface(MEMORY_INTER) %{
4757     base($reg);
4758     index(0x4);
4759     scale(0x0);
4760     disp($off);
4761   %}
4762 %}
4763 
4764 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
4765 
4766 
4767 //----------Special Memory Operands--------------------------------------------
4768 // Stack Slot Operand - This operand is used for loading and storing temporary
4769 //                      values on the stack where a match requires a value to
4770 //                      flow through memory.
4771 operand stackSlotP(sRegP reg) %{
4772   constraint(ALLOC_IN_RC(stack_slots));
4773   // No match rule because this operand is only generated in matching
4774   format %{ "[$reg]" %}
4775   interface(MEMORY_INTER) %{
4776     base(0x4);   // ESP
4777     index(0x4);  // No Index
4778     scale(0x0);  // No Scale
4779     disp($reg);  // Stack Offset
4780   %}
4781 %}
4782 
4783 operand stackSlotI(sRegI reg) %{
4784   constraint(ALLOC_IN_RC(stack_slots));
4785   // No match rule because this operand is only generated in matching
4786   format %{ "[$reg]" %}
4787   interface(MEMORY_INTER) %{
4788     base(0x4);   // ESP
4789     index(0x4);  // No Index
4790     scale(0x0);  // No Scale
4791     disp($reg);  // Stack Offset
4792   %}
4793 %}
4794 
4795 operand stackSlotF(sRegF reg) %{
4796   constraint(ALLOC_IN_RC(stack_slots));
4797   // No match rule because this operand is only generated in matching
4798   format %{ "[$reg]" %}
4799   interface(MEMORY_INTER) %{
4800     base(0x4);   // ESP
4801     index(0x4);  // No Index
4802     scale(0x0);  // No Scale
4803     disp($reg);  // Stack Offset
4804   %}
4805 %}
4806 
4807 operand stackSlotD(sRegD reg) %{
4808   constraint(ALLOC_IN_RC(stack_slots));
4809   // No match rule because this operand is only generated in matching
4810   format %{ "[$reg]" %}
4811   interface(MEMORY_INTER) %{
4812     base(0x4);   // ESP
4813     index(0x4);  // No Index
4814     scale(0x0);  // No Scale
4815     disp($reg);  // Stack Offset
4816   %}
4817 %}
4818 
4819 operand stackSlotL(sRegL reg) %{
4820   constraint(ALLOC_IN_RC(stack_slots));
4821   // No match rule because this operand is only generated in matching
4822   format %{ "[$reg]" %}
4823   interface(MEMORY_INTER) %{
4824     base(0x4);   // ESP
4825     index(0x4);  // No Index
4826     scale(0x0);  // No Scale
4827     disp($reg);  // Stack Offset
4828   %}
4829 %}
4830 
4831 //----------Memory Operands - Win95 Implicit Null Variants----------------
4832 // Indirect Memory Operand
4833 operand indirect_win95_safe(eRegP_no_EBP reg)
4834 %{
4835   constraint(ALLOC_IN_RC(int_reg));
4836   match(reg);
4837 
4838   op_cost(100);
4839   format %{ "[$reg]" %}
4840   interface(MEMORY_INTER) %{
4841     base($reg);
4842     index(0x4);
4843     scale(0x0);
4844     disp(0x0);
4845   %}
4846 %}
4847 
4848 // Indirect Memory Plus Short Offset Operand
4849 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
4850 %{
4851   match(AddP reg off);
4852 
4853   op_cost(100);
4854   format %{ "[$reg + $off]" %}
4855   interface(MEMORY_INTER) %{
4856     base($reg);
4857     index(0x4);
4858     scale(0x0);
4859     disp($off);
4860   %}
4861 %}
4862 
4863 // Indirect Memory Plus Long Offset Operand
4864 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
4865 %{
4866   match(AddP reg off);
4867 
4868   op_cost(100);
4869   format %{ "[$reg + $off]" %}
4870   interface(MEMORY_INTER) %{
4871     base($reg);
4872     index(0x4);
4873     scale(0x0);
4874     disp($off);
4875   %}
4876 %}
4877 
4878 // Indirect Memory Plus Index Register Plus Offset Operand
4879 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
4880 %{
4881   match(AddP (AddP reg ireg) off);
4882 
4883   op_cost(100);
4884   format %{"[$reg + $off + $ireg]" %}
4885   interface(MEMORY_INTER) %{
4886     base($reg);
4887     index($ireg);
4888     scale(0x0);
4889     disp($off);
4890   %}
4891 %}
4892 
4893 // Indirect Memory Times Scale Plus Index Register
4894 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
4895 %{
4896   match(AddP reg (LShiftI ireg scale));
4897 
4898   op_cost(100);
4899   format %{"[$reg + $ireg << $scale]" %}
4900   interface(MEMORY_INTER) %{
4901     base($reg);
4902     index($ireg);
4903     scale($scale);
4904     disp(0x0);
4905   %}
4906 %}
4907 
4908 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4909 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
4910 %{
4911   match(AddP (AddP reg (LShiftI ireg scale)) off);
4912 
4913   op_cost(100);
4914   format %{"[$reg + $off + $ireg << $scale]" %}
4915   interface(MEMORY_INTER) %{
4916     base($reg);
4917     index($ireg);
4918     scale($scale);
4919     disp($off);
4920   %}
4921 %}
4922 
4923 //----------Conditional Branch Operands----------------------------------------
4924 // Comparison Op  - This is the operation of the comparison, and is limited to
4925 //                  the following set of codes:
4926 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4927 //
4928 // Other attributes of the comparison, such as unsignedness, are specified
4929 // by the comparison instruction that sets a condition code flags register.
4930 // That result is represented by a flags operand whose subtype is appropriate
4931 // to the unsignedness (etc.) of the comparison.
4932 //
4933 // Later, the instruction which matches both the Comparison Op (a Bool) and
4934 // the flags (produced by the Cmp) specifies the coding of the comparison op
4935 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4936 
4937 // Comparision Code
4938 operand cmpOp() %{
4939   match(Bool);
4940 
4941   format %{ "" %}
4942   interface(COND_INTER) %{
4943     equal(0x4, "e");
4944     not_equal(0x5, "ne");
4945     less(0xC, "l");
4946     greater_equal(0xD, "ge");
4947     less_equal(0xE, "le");
4948     greater(0xF, "g");
4949   %}
4950 %}
4951 
4952 // Comparison Code, unsigned compare.  Used by FP also, with
4953 // C2 (unordered) turned into GT or LT already.  The other bits
4954 // C0 and C3 are turned into Carry & Zero flags.
4955 operand cmpOpU() %{
4956   match(Bool);
4957 
4958   format %{ "" %}
4959   interface(COND_INTER) %{
4960     equal(0x4, "e");
4961     not_equal(0x5, "ne");
4962     less(0x2, "b");
4963     greater_equal(0x3, "nb");
4964     less_equal(0x6, "be");
4965     greater(0x7, "nbe");
4966   %}
4967 %}
4968 
4969 // Floating comparisons that don't require any fixup for the unordered case
4970 operand cmpOpUCF() %{
4971   match(Bool);
4972   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4973             n->as_Bool()->_test._test == BoolTest::ge ||
4974             n->as_Bool()->_test._test == BoolTest::le ||
4975             n->as_Bool()->_test._test == BoolTest::gt);
4976   format %{ "" %}
4977   interface(COND_INTER) %{
4978     equal(0x4, "e");
4979     not_equal(0x5, "ne");
4980     less(0x2, "b");
4981     greater_equal(0x3, "nb");
4982     less_equal(0x6, "be");
4983     greater(0x7, "nbe");
4984   %}
4985 %}
4986 
4987 
4988 // Floating comparisons that can be fixed up with extra conditional jumps
4989 operand cmpOpUCF2() %{
4990   match(Bool);
4991   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4992             n->as_Bool()->_test._test == BoolTest::eq);
4993   format %{ "" %}
4994   interface(COND_INTER) %{
4995     equal(0x4, "e");
4996     not_equal(0x5, "ne");
4997     less(0x2, "b");
4998     greater_equal(0x3, "nb");
4999     less_equal(0x6, "be");
5000     greater(0x7, "nbe");
5001   %}
5002 %}
5003 
5004 // Comparison Code for FP conditional move
5005 operand cmpOp_fcmov() %{
5006   match(Bool);
5007 
5008   format %{ "" %}
5009   interface(COND_INTER) %{
5010     equal        (0x0C8);
5011     not_equal    (0x1C8);
5012     less         (0x0C0);
5013     greater_equal(0x1C0);
5014     less_equal   (0x0D0);
5015     greater      (0x1D0);
5016   %}
5017 %}
5018 
5019 // Comparision Code used in long compares
5020 operand cmpOp_commute() %{
5021   match(Bool);
5022 
5023   format %{ "" %}
5024   interface(COND_INTER) %{
5025     equal(0x4, "e");
5026     not_equal(0x5, "ne");
5027     less(0xF, "g");
5028     greater_equal(0xE, "le");
5029     less_equal(0xD, "ge");
5030     greater(0xC, "l");
5031   %}
5032 %}
5033 
5034 //----------OPERAND CLASSES----------------------------------------------------
5035 // Operand Classes are groups of operands that are used as to simplify
5036 // instruction definitions by not requiring the AD writer to specify separate
5037 // instructions for every form of operand when the instruction accepts
5038 // multiple operand types with the same basic encoding and format.  The classic
5039 // case of this is memory operands.
5040 
5041 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5042                indIndex, indIndexScale, indIndexScaleOffset);
5043 
5044 // Long memory operations are encoded in 2 instructions and a +4 offset.
5045 // This means some kind of offset is always required and you cannot use
5046 // an oop as the offset (done when working on static globals).
5047 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5048                     indIndex, indIndexScale, indIndexScaleOffset);
5049 
5050 
5051 //----------PIPELINE-----------------------------------------------------------
5052 // Rules which define the behavior of the target architectures pipeline.
5053 pipeline %{
5054 
5055 //----------ATTRIBUTES---------------------------------------------------------
5056 attributes %{
5057   variable_size_instructions;        // Fixed size instructions
5058   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5059   instruction_unit_size = 1;         // An instruction is 1 bytes long
5060   instruction_fetch_unit_size = 16;  // The processor fetches one line
5061   instruction_fetch_units = 1;       // of 16 bytes
5062 
5063   // List of nop instructions
5064   nops( MachNop );
5065 %}
5066 
5067 //----------RESOURCES----------------------------------------------------------
5068 // Resources are the functional units available to the machine
5069 
5070 // Generic P2/P3 pipeline
5071 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5072 // 3 instructions decoded per cycle.
5073 // 2 load/store ops per cycle, 1 branch, 1 FPU,
5074 // 2 ALU op, only ALU0 handles mul/div instructions.
5075 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5076            MS0, MS1, MEM = MS0 | MS1,
5077            BR, FPU,
5078            ALU0, ALU1, ALU = ALU0 | ALU1 );
5079 
5080 //----------PIPELINE DESCRIPTION-----------------------------------------------
5081 // Pipeline Description specifies the stages in the machine's pipeline
5082 
5083 // Generic P2/P3 pipeline
5084 pipe_desc(S0, S1, S2, S3, S4, S5);
5085 
5086 //----------PIPELINE CLASSES---------------------------------------------------
5087 // Pipeline Classes describe the stages in which input and output are
5088 // referenced by the hardware pipeline.
5089 
5090 // Naming convention: ialu or fpu
5091 // Then: _reg
5092 // Then: _reg if there is a 2nd register
5093 // Then: _long if it's a pair of instructions implementing a long
5094 // Then: _fat if it requires the big decoder
5095 //   Or: _mem if it requires the big decoder and a memory unit.
5096 
5097 // Integer ALU reg operation
5098 pipe_class ialu_reg(rRegI dst) %{
5099     single_instruction;
5100     dst    : S4(write);
5101     dst    : S3(read);
5102     DECODE : S0;        // any decoder
5103     ALU    : S3;        // any alu
5104 %}
5105 
5106 // Long ALU reg operation
5107 pipe_class ialu_reg_long(eRegL dst) %{
5108     instruction_count(2);
5109     dst    : S4(write);
5110     dst    : S3(read);
5111     DECODE : S0(2);     // any 2 decoders
5112     ALU    : S3(2);     // both alus
5113 %}
5114 
5115 // Integer ALU reg operation using big decoder
5116 pipe_class ialu_reg_fat(rRegI dst) %{
5117     single_instruction;
5118     dst    : S4(write);
5119     dst    : S3(read);
5120     D0     : S0;        // big decoder only
5121     ALU    : S3;        // any alu
5122 %}
5123 
5124 // Long ALU reg operation using big decoder
5125 pipe_class ialu_reg_long_fat(eRegL dst) %{
5126     instruction_count(2);
5127     dst    : S4(write);
5128     dst    : S3(read);
5129     D0     : S0(2);     // big decoder only; twice
5130     ALU    : S3(2);     // any 2 alus
5131 %}
5132 
5133 // Integer ALU reg-reg operation
5134 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
5135     single_instruction;
5136     dst    : S4(write);
5137     src    : S3(read);
5138     DECODE : S0;        // any decoder
5139     ALU    : S3;        // any alu
5140 %}
5141 
5142 // Long ALU reg-reg operation
5143 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5144     instruction_count(2);
5145     dst    : S4(write);
5146     src    : S3(read);
5147     DECODE : S0(2);     // any 2 decoders
5148     ALU    : S3(2);     // both alus
5149 %}
5150 
5151 // Integer ALU reg-reg operation
5152 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
5153     single_instruction;
5154     dst    : S4(write);
5155     src    : S3(read);
5156     D0     : S0;        // big decoder only
5157     ALU    : S3;        // any alu
5158 %}
5159 
5160 // Long ALU reg-reg operation
5161 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5162     instruction_count(2);
5163     dst    : S4(write);
5164     src    : S3(read);
5165     D0     : S0(2);     // big decoder only; twice
5166     ALU    : S3(2);     // both alus
5167 %}
5168 
5169 // Integer ALU reg-mem operation
5170 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
5171     single_instruction;
5172     dst    : S5(write);
5173     mem    : S3(read);
5174     D0     : S0;        // big decoder only
5175     ALU    : S4;        // any alu
5176     MEM    : S3;        // any mem
5177 %}
5178 
5179 // Long ALU reg-mem operation
5180 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5181     instruction_count(2);
5182     dst    : S5(write);
5183     mem    : S3(read);
5184     D0     : S0(2);     // big decoder only; twice
5185     ALU    : S4(2);     // any 2 alus
5186     MEM    : S3(2);     // both mems
5187 %}
5188 
5189 // Integer mem operation (prefetch)
5190 pipe_class ialu_mem(memory mem)
5191 %{
5192     single_instruction;
5193     mem    : S3(read);
5194     D0     : S0;        // big decoder only
5195     MEM    : S3;        // any mem
5196 %}
5197 
5198 // Integer Store to Memory
5199 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
5200     single_instruction;
5201     mem    : S3(read);
5202     src    : S5(read);
5203     D0     : S0;        // big decoder only
5204     ALU    : S4;        // any alu
5205     MEM    : S3;
5206 %}
5207 
5208 // Long Store to Memory
5209 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5210     instruction_count(2);
5211     mem    : S3(read);
5212     src    : S5(read);
5213     D0     : S0(2);     // big decoder only; twice
5214     ALU    : S4(2);     // any 2 alus
5215     MEM    : S3(2);     // Both mems
5216 %}
5217 
5218 // Integer Store to Memory
5219 pipe_class ialu_mem_imm(memory mem) %{
5220     single_instruction;
5221     mem    : S3(read);
5222     D0     : S0;        // big decoder only
5223     ALU    : S4;        // any alu
5224     MEM    : S3;
5225 %}
5226 
5227 // Integer ALU0 reg-reg operation
5228 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
5229     single_instruction;
5230     dst    : S4(write);
5231     src    : S3(read);
5232     D0     : S0;        // Big decoder only
5233     ALU0   : S3;        // only alu0
5234 %}
5235 
5236 // Integer ALU0 reg-mem operation
5237 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
5238     single_instruction;
5239     dst    : S5(write);
5240     mem    : S3(read);
5241     D0     : S0;        // big decoder only
5242     ALU0   : S4;        // ALU0 only
5243     MEM    : S3;        // any mem
5244 %}
5245 
5246 // Integer ALU reg-reg operation
5247 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
5248     single_instruction;
5249     cr     : S4(write);
5250     src1   : S3(read);
5251     src2   : S3(read);
5252     DECODE : S0;        // any decoder
5253     ALU    : S3;        // any alu
5254 %}
5255 
5256 // Integer ALU reg-imm operation
5257 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
5258     single_instruction;
5259     cr     : S4(write);
5260     src1   : S3(read);
5261     DECODE : S0;        // any decoder
5262     ALU    : S3;        // any alu
5263 %}
5264 
5265 // Integer ALU reg-mem operation
5266 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
5267     single_instruction;
5268     cr     : S4(write);
5269     src1   : S3(read);
5270     src2   : S3(read);
5271     D0     : S0;        // big decoder only
5272     ALU    : S4;        // any alu
5273     MEM    : S3;
5274 %}
5275 
5276 // Conditional move reg-reg
5277 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
5278     instruction_count(4);
5279     y      : S4(read);
5280     q      : S3(read);
5281     p      : S3(read);
5282     DECODE : S0(4);     // any decoder
5283 %}
5284 
5285 // Conditional move reg-reg
5286 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
5287     single_instruction;
5288     dst    : S4(write);
5289     src    : S3(read);
5290     cr     : S3(read);
5291     DECODE : S0;        // any decoder
5292 %}
5293 
5294 // Conditional move reg-mem
5295 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
5296     single_instruction;
5297     dst    : S4(write);
5298     src    : S3(read);
5299     cr     : S3(read);
5300     DECODE : S0;        // any decoder
5301     MEM    : S3;
5302 %}
5303 
5304 // Conditional move reg-reg long
5305 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
5306     single_instruction;
5307     dst    : S4(write);
5308     src    : S3(read);
5309     cr     : S3(read);
5310     DECODE : S0(2);     // any 2 decoders
5311 %}
5312 
5313 // Conditional move double reg-reg
5314 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
5315     single_instruction;
5316     dst    : S4(write);
5317     src    : S3(read);
5318     cr     : S3(read);
5319     DECODE : S0;        // any decoder
5320 %}
5321 
5322 // Float reg-reg operation
5323 pipe_class fpu_reg(regDPR dst) %{
5324     instruction_count(2);
5325     dst    : S3(read);
5326     DECODE : S0(2);     // any 2 decoders
5327     FPU    : S3;
5328 %}
5329 
5330 // Float reg-reg operation
5331 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
5332     instruction_count(2);
5333     dst    : S4(write);
5334     src    : S3(read);
5335     DECODE : S0(2);     // any 2 decoders
5336     FPU    : S3;
5337 %}
5338 
5339 // Float reg-reg operation
5340 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
5341     instruction_count(3);
5342     dst    : S4(write);
5343     src1   : S3(read);
5344     src2   : S3(read);
5345     DECODE : S0(3);     // any 3 decoders
5346     FPU    : S3(2);
5347 %}
5348 
5349 // Float reg-reg operation
5350 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
5351     instruction_count(4);
5352     dst    : S4(write);
5353     src1   : S3(read);
5354     src2   : S3(read);
5355     src3   : S3(read);
5356     DECODE : S0(4);     // any 3 decoders
5357     FPU    : S3(2);
5358 %}
5359 
5360 // Float reg-reg operation
5361 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
5362     instruction_count(4);
5363     dst    : S4(write);
5364     src1   : S3(read);
5365     src2   : S3(read);
5366     src3   : S3(read);
5367     DECODE : S1(3);     // any 3 decoders
5368     D0     : S0;        // Big decoder only
5369     FPU    : S3(2);
5370     MEM    : S3;
5371 %}
5372 
5373 // Float reg-mem operation
5374 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
5375     instruction_count(2);
5376     dst    : S5(write);
5377     mem    : S3(read);
5378     D0     : S0;        // big decoder only
5379     DECODE : S1;        // any decoder for FPU POP
5380     FPU    : S4;
5381     MEM    : S3;        // any mem
5382 %}
5383 
5384 // Float reg-mem operation
5385 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
5386     instruction_count(3);
5387     dst    : S5(write);
5388     src1   : S3(read);
5389     mem    : S3(read);
5390     D0     : S0;        // big decoder only
5391     DECODE : S1(2);     // any decoder for FPU POP
5392     FPU    : S4;
5393     MEM    : S3;        // any mem
5394 %}
5395 
5396 // Float mem-reg operation
5397 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
5398     instruction_count(2);
5399     src    : S5(read);
5400     mem    : S3(read);
5401     DECODE : S0;        // any decoder for FPU PUSH
5402     D0     : S1;        // big decoder only
5403     FPU    : S4;
5404     MEM    : S3;        // any mem
5405 %}
5406 
5407 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
5408     instruction_count(3);
5409     src1   : S3(read);
5410     src2   : S3(read);
5411     mem    : S3(read);
5412     DECODE : S0(2);     // any decoder for FPU PUSH
5413     D0     : S1;        // big decoder only
5414     FPU    : S4;
5415     MEM    : S3;        // any mem
5416 %}
5417 
5418 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
5419     instruction_count(3);
5420     src1   : S3(read);
5421     src2   : S3(read);
5422     mem    : S4(read);
5423     DECODE : S0;        // any decoder for FPU PUSH
5424     D0     : S0(2);     // big decoder only
5425     FPU    : S4;
5426     MEM    : S3(2);     // any mem
5427 %}
5428 
5429 pipe_class fpu_mem_mem(memory dst, memory src1) %{
5430     instruction_count(2);
5431     src1   : S3(read);
5432     dst    : S4(read);
5433     D0     : S0(2);     // big decoder only
5434     MEM    : S3(2);     // any mem
5435 %}
5436 
5437 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
5438     instruction_count(3);
5439     src1   : S3(read);
5440     src2   : S3(read);
5441     dst    : S4(read);
5442     D0     : S0(3);     // big decoder only
5443     FPU    : S4;
5444     MEM    : S3(3);     // any mem
5445 %}
5446 
5447 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
5448     instruction_count(3);
5449     src1   : S4(read);
5450     mem    : S4(read);
5451     DECODE : S0;        // any decoder for FPU PUSH
5452     D0     : S0(2);     // big decoder only
5453     FPU    : S4;
5454     MEM    : S3(2);     // any mem
5455 %}
5456 
5457 // Float load constant
5458 pipe_class fpu_reg_con(regDPR dst) %{
5459     instruction_count(2);
5460     dst    : S5(write);
5461     D0     : S0;        // big decoder only for the load
5462     DECODE : S1;        // any decoder for FPU POP
5463     FPU    : S4;
5464     MEM    : S3;        // any mem
5465 %}
5466 
5467 // Float load constant
5468 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
5469     instruction_count(3);
5470     dst    : S5(write);
5471     src    : S3(read);
5472     D0     : S0;        // big decoder only for the load
5473     DECODE : S1(2);     // any decoder for FPU POP
5474     FPU    : S4;
5475     MEM    : S3;        // any mem
5476 %}
5477 
5478 // UnConditional branch
5479 pipe_class pipe_jmp( label labl ) %{
5480     single_instruction;
5481     BR   : S3;
5482 %}
5483 
5484 // Conditional branch
5485 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
5486     single_instruction;
5487     cr    : S1(read);
5488     BR    : S3;
5489 %}
5490 
5491 // Allocation idiom
5492 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
5493     instruction_count(1); force_serialization;
5494     fixed_latency(6);
5495     heap_ptr : S3(read);
5496     DECODE   : S0(3);
5497     D0       : S2;
5498     MEM      : S3;
5499     ALU      : S3(2);
5500     dst      : S5(write);
5501     BR       : S5;
5502 %}
5503 
5504 // Generic big/slow expanded idiom
5505 pipe_class pipe_slow(  ) %{
5506     instruction_count(10); multiple_bundles; force_serialization;
5507     fixed_latency(100);
5508     D0  : S0(2);
5509     MEM : S3(2);
5510 %}
5511 
5512 // The real do-nothing guy
5513 pipe_class empty( ) %{
5514     instruction_count(0);
5515 %}
5516 
5517 // Define the class for the Nop node
5518 define %{
5519    MachNop = empty;
5520 %}
5521 
5522 %}
5523 
5524 //----------INSTRUCTIONS-------------------------------------------------------
5525 //
5526 // match      -- States which machine-independent subtree may be replaced
5527 //               by this instruction.
5528 // ins_cost   -- The estimated cost of this instruction is used by instruction
5529 //               selection to identify a minimum cost tree of machine
5530 //               instructions that matches a tree of machine-independent
5531 //               instructions.
5532 // format     -- A string providing the disassembly for this instruction.
5533 //               The value of an instruction's operand may be inserted
5534 //               by referring to it with a '$' prefix.
5535 // opcode     -- Three instruction opcodes may be provided.  These are referred
5536 //               to within an encode class as $primary, $secondary, and $tertiary
5537 //               respectively.  The primary opcode is commonly used to
5538 //               indicate the type of machine instruction, while secondary
5539 //               and tertiary are often used for prefix options or addressing
5540 //               modes.
5541 // ins_encode -- A list of encode classes with parameters. The encode class
5542 //               name must have been defined in an 'enc_class' specification
5543 //               in the encode section of the architecture description.
5544 
5545 //----------BSWAP-Instruction--------------------------------------------------
5546 instruct bytes_reverse_int(rRegI dst) %{
5547   match(Set dst (ReverseBytesI dst));
5548 
5549   format %{ "BSWAP  $dst" %}
5550   opcode(0x0F, 0xC8);
5551   ins_encode( OpcP, OpcSReg(dst) );
5552   ins_pipe( ialu_reg );
5553 %}
5554 
5555 instruct bytes_reverse_long(eRegL dst) %{
5556   match(Set dst (ReverseBytesL dst));
5557 
5558   format %{ "BSWAP  $dst.lo\n\t"
5559             "BSWAP  $dst.hi\n\t"
5560             "XCHG   $dst.lo $dst.hi" %}
5561 
5562   ins_cost(125);
5563   ins_encode( bswap_long_bytes(dst) );
5564   ins_pipe( ialu_reg_reg);
5565 %}
5566 
5567 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
5568   match(Set dst (ReverseBytesUS dst));
5569   effect(KILL cr);
5570 
5571   format %{ "BSWAP  $dst\n\t" 
5572             "SHR    $dst,16\n\t" %}
5573   ins_encode %{
5574     __ bswapl($dst$$Register);
5575     __ shrl($dst$$Register, 16); 
5576   %}
5577   ins_pipe( ialu_reg );
5578 %}
5579 
5580 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
5581   match(Set dst (ReverseBytesS dst));
5582   effect(KILL cr);
5583 
5584   format %{ "BSWAP  $dst\n\t" 
5585             "SAR    $dst,16\n\t" %}
5586   ins_encode %{
5587     __ bswapl($dst$$Register);
5588     __ sarl($dst$$Register, 16); 
5589   %}
5590   ins_pipe( ialu_reg );
5591 %}
5592 
5593 
5594 //---------- Zeros Count Instructions ------------------------------------------
5595 
5596 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5597   predicate(UseCountLeadingZerosInstruction);
5598   match(Set dst (CountLeadingZerosI src));
5599   effect(KILL cr);
5600 
5601   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
5602   ins_encode %{
5603     __ lzcntl($dst$$Register, $src$$Register);
5604   %}
5605   ins_pipe(ialu_reg);
5606 %}
5607 
5608 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
5609   predicate(!UseCountLeadingZerosInstruction);
5610   match(Set dst (CountLeadingZerosI src));
5611   effect(KILL cr);
5612 
5613   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
5614             "JNZ    skip\n\t"
5615             "MOV    $dst, -1\n"
5616       "skip:\n\t"
5617             "NEG    $dst\n\t"
5618             "ADD    $dst, 31" %}
5619   ins_encode %{
5620     Register Rdst = $dst$$Register;
5621     Register Rsrc = $src$$Register;
5622     Label skip;
5623     __ bsrl(Rdst, Rsrc);
5624     __ jccb(Assembler::notZero, skip);
5625     __ movl(Rdst, -1);
5626     __ bind(skip);
5627     __ negl(Rdst);
5628     __ addl(Rdst, BitsPerInt - 1);
5629   %}
5630   ins_pipe(ialu_reg);
5631 %}
5632 
5633 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5634   predicate(UseCountLeadingZerosInstruction);
5635   match(Set dst (CountLeadingZerosL src));
5636   effect(TEMP dst, KILL cr);
5637 
5638   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
5639             "JNC    done\n\t"
5640             "LZCNT  $dst, $src.lo\n\t"
5641             "ADD    $dst, 32\n"
5642       "done:" %}
5643   ins_encode %{
5644     Register Rdst = $dst$$Register;
5645     Register Rsrc = $src$$Register;
5646     Label done;
5647     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5648     __ jccb(Assembler::carryClear, done);
5649     __ lzcntl(Rdst, Rsrc);
5650     __ addl(Rdst, BitsPerInt);
5651     __ bind(done);
5652   %}
5653   ins_pipe(ialu_reg);
5654 %}
5655 
5656 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
5657   predicate(!UseCountLeadingZerosInstruction);
5658   match(Set dst (CountLeadingZerosL src));
5659   effect(TEMP dst, KILL cr);
5660 
5661   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
5662             "JZ     msw_is_zero\n\t"
5663             "ADD    $dst, 32\n\t"
5664             "JMP    not_zero\n"
5665       "msw_is_zero:\n\t"
5666             "BSR    $dst, $src.lo\n\t"
5667             "JNZ    not_zero\n\t"
5668             "MOV    $dst, -1\n"
5669       "not_zero:\n\t"
5670             "NEG    $dst\n\t"
5671             "ADD    $dst, 63\n" %}
5672  ins_encode %{
5673     Register Rdst = $dst$$Register;
5674     Register Rsrc = $src$$Register;
5675     Label msw_is_zero;
5676     Label not_zero;
5677     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
5678     __ jccb(Assembler::zero, msw_is_zero);
5679     __ addl(Rdst, BitsPerInt);
5680     __ jmpb(not_zero);
5681     __ bind(msw_is_zero);
5682     __ bsrl(Rdst, Rsrc);
5683     __ jccb(Assembler::notZero, not_zero);
5684     __ movl(Rdst, -1);
5685     __ bind(not_zero);
5686     __ negl(Rdst);
5687     __ addl(Rdst, BitsPerLong - 1);
5688   %}
5689   ins_pipe(ialu_reg);
5690 %}
5691 
5692 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5693   match(Set dst (CountTrailingZerosI src));
5694   effect(KILL cr);
5695 
5696   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
5697             "JNZ    done\n\t"
5698             "MOV    $dst, 32\n"
5699       "done:" %}
5700   ins_encode %{
5701     Register Rdst = $dst$$Register;
5702     Label done;
5703     __ bsfl(Rdst, $src$$Register);
5704     __ jccb(Assembler::notZero, done);
5705     __ movl(Rdst, BitsPerInt);
5706     __ bind(done);
5707   %}
5708   ins_pipe(ialu_reg);
5709 %}
5710 
5711 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5712   match(Set dst (CountTrailingZerosL src));
5713   effect(TEMP dst, KILL cr);
5714 
5715   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
5716             "JNZ    done\n\t"
5717             "BSF    $dst, $src.hi\n\t"
5718             "JNZ    msw_not_zero\n\t"
5719             "MOV    $dst, 32\n"
5720       "msw_not_zero:\n\t"
5721             "ADD    $dst, 32\n"
5722       "done:" %}
5723   ins_encode %{
5724     Register Rdst = $dst$$Register;
5725     Register Rsrc = $src$$Register;
5726     Label msw_not_zero;
5727     Label done;
5728     __ bsfl(Rdst, Rsrc);
5729     __ jccb(Assembler::notZero, done);
5730     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
5731     __ jccb(Assembler::notZero, msw_not_zero);
5732     __ movl(Rdst, BitsPerInt);
5733     __ bind(msw_not_zero);
5734     __ addl(Rdst, BitsPerInt);
5735     __ bind(done);
5736   %}
5737   ins_pipe(ialu_reg);
5738 %}
5739 
5740 
5741 //---------- Population Count Instructions -------------------------------------
5742 
5743 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
5744   predicate(UsePopCountInstruction);
5745   match(Set dst (PopCountI src));
5746   effect(KILL cr);
5747 
5748   format %{ "POPCNT $dst, $src" %}
5749   ins_encode %{
5750     __ popcntl($dst$$Register, $src$$Register);
5751   %}
5752   ins_pipe(ialu_reg);
5753 %}
5754 
5755 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
5756   predicate(UsePopCountInstruction);
5757   match(Set dst (PopCountI (LoadI mem)));
5758   effect(KILL cr);
5759 
5760   format %{ "POPCNT $dst, $mem" %}
5761   ins_encode %{
5762     __ popcntl($dst$$Register, $mem$$Address);
5763   %}
5764   ins_pipe(ialu_reg);
5765 %}
5766 
5767 // Note: Long.bitCount(long) returns an int.
5768 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
5769   predicate(UsePopCountInstruction);
5770   match(Set dst (PopCountL src));
5771   effect(KILL cr, TEMP tmp, TEMP dst);
5772 
5773   format %{ "POPCNT $dst, $src.lo\n\t"
5774             "POPCNT $tmp, $src.hi\n\t"
5775             "ADD    $dst, $tmp" %}
5776   ins_encode %{
5777     __ popcntl($dst$$Register, $src$$Register);
5778     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
5779     __ addl($dst$$Register, $tmp$$Register);
5780   %}
5781   ins_pipe(ialu_reg);
5782 %}
5783 
5784 // Note: Long.bitCount(long) returns an int.
5785 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
5786   predicate(UsePopCountInstruction);
5787   match(Set dst (PopCountL (LoadL mem)));
5788   effect(KILL cr, TEMP tmp, TEMP dst);
5789 
5790   format %{ "POPCNT $dst, $mem\n\t"
5791             "POPCNT $tmp, $mem+4\n\t"
5792             "ADD    $dst, $tmp" %}
5793   ins_encode %{
5794     //__ popcntl($dst$$Register, $mem$$Address$$first);
5795     //__ popcntl($tmp$$Register, $mem$$Address$$second);
5796     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
5797     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
5798     __ addl($dst$$Register, $tmp$$Register);
5799   %}
5800   ins_pipe(ialu_reg);
5801 %}
5802 
5803 
5804 //----------Load/Store/Move Instructions---------------------------------------
5805 //----------Load Instructions--------------------------------------------------
5806 // Load Byte (8bit signed)
5807 instruct loadB(xRegI dst, memory mem) %{
5808   match(Set dst (LoadB mem));
5809 
5810   ins_cost(125);
5811   format %{ "MOVSX8 $dst,$mem\t# byte" %}
5812 
5813   ins_encode %{
5814     __ movsbl($dst$$Register, $mem$$Address);
5815   %}
5816 
5817   ins_pipe(ialu_reg_mem);
5818 %}
5819 
5820 // Load Byte (8bit signed) into Long Register
5821 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5822   match(Set dst (ConvI2L (LoadB mem)));
5823   effect(KILL cr);
5824 
5825   ins_cost(375);
5826   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
5827             "MOV    $dst.hi,$dst.lo\n\t"
5828             "SAR    $dst.hi,7" %}
5829 
5830   ins_encode %{
5831     __ movsbl($dst$$Register, $mem$$Address);
5832     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5833     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
5834   %}
5835 
5836   ins_pipe(ialu_reg_mem);
5837 %}
5838 
5839 // Load Unsigned Byte (8bit UNsigned)
5840 instruct loadUB(xRegI dst, memory mem) %{
5841   match(Set dst (LoadUB mem));
5842 
5843   ins_cost(125);
5844   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
5845 
5846   ins_encode %{
5847     __ movzbl($dst$$Register, $mem$$Address);
5848   %}
5849 
5850   ins_pipe(ialu_reg_mem);
5851 %}
5852 
5853 // Load Unsigned Byte (8 bit UNsigned) into Long Register
5854 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5855   match(Set dst (ConvI2L (LoadUB mem)));
5856   effect(KILL cr);
5857 
5858   ins_cost(250);
5859   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
5860             "XOR    $dst.hi,$dst.hi" %}
5861 
5862   ins_encode %{
5863     Register Rdst = $dst$$Register;
5864     __ movzbl(Rdst, $mem$$Address);
5865     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5866   %}
5867 
5868   ins_pipe(ialu_reg_mem);
5869 %}
5870 
5871 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
5872 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
5873   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5874   effect(KILL cr);
5875 
5876   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
5877             "XOR    $dst.hi,$dst.hi\n\t"
5878             "AND    $dst.lo,$mask" %}
5879   ins_encode %{
5880     Register Rdst = $dst$$Register;
5881     __ movzbl(Rdst, $mem$$Address);
5882     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5883     __ andl(Rdst, $mask$$constant);
5884   %}
5885   ins_pipe(ialu_reg_mem);
5886 %}
5887 
5888 // Load Short (16bit signed)
5889 instruct loadS(rRegI dst, memory mem) %{
5890   match(Set dst (LoadS mem));
5891 
5892   ins_cost(125);
5893   format %{ "MOVSX  $dst,$mem\t# short" %}
5894 
5895   ins_encode %{
5896     __ movswl($dst$$Register, $mem$$Address);
5897   %}
5898 
5899   ins_pipe(ialu_reg_mem);
5900 %}
5901 
5902 // Load Short (16 bit signed) to Byte (8 bit signed)
5903 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5904   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5905 
5906   ins_cost(125);
5907   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
5908   ins_encode %{
5909     __ movsbl($dst$$Register, $mem$$Address);
5910   %}
5911   ins_pipe(ialu_reg_mem);
5912 %}
5913 
5914 // Load Short (16bit signed) into Long Register
5915 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5916   match(Set dst (ConvI2L (LoadS mem)));
5917   effect(KILL cr);
5918 
5919   ins_cost(375);
5920   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
5921             "MOV    $dst.hi,$dst.lo\n\t"
5922             "SAR    $dst.hi,15" %}
5923 
5924   ins_encode %{
5925     __ movswl($dst$$Register, $mem$$Address);
5926     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5927     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
5928   %}
5929 
5930   ins_pipe(ialu_reg_mem);
5931 %}
5932 
5933 // Load Unsigned Short/Char (16bit unsigned)
5934 instruct loadUS(rRegI dst, memory mem) %{
5935   match(Set dst (LoadUS mem));
5936 
5937   ins_cost(125);
5938   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
5939 
5940   ins_encode %{
5941     __ movzwl($dst$$Register, $mem$$Address);
5942   %}
5943 
5944   ins_pipe(ialu_reg_mem);
5945 %}
5946 
5947 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5948 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5949   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5950 
5951   ins_cost(125);
5952   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
5953   ins_encode %{
5954     __ movsbl($dst$$Register, $mem$$Address);
5955   %}
5956   ins_pipe(ialu_reg_mem);
5957 %}
5958 
5959 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
5960 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5961   match(Set dst (ConvI2L (LoadUS mem)));
5962   effect(KILL cr);
5963 
5964   ins_cost(250);
5965   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
5966             "XOR    $dst.hi,$dst.hi" %}
5967 
5968   ins_encode %{
5969     __ movzwl($dst$$Register, $mem$$Address);
5970     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
5971   %}
5972 
5973   ins_pipe(ialu_reg_mem);
5974 %}
5975 
5976 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
5977 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
5978   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5979   effect(KILL cr);
5980 
5981   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
5982             "XOR    $dst.hi,$dst.hi" %}
5983   ins_encode %{
5984     Register Rdst = $dst$$Register;
5985     __ movzbl(Rdst, $mem$$Address);
5986     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5987   %}
5988   ins_pipe(ialu_reg_mem);
5989 %}
5990 
5991 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
5992 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
5993   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5994   effect(KILL cr);
5995 
5996   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
5997             "XOR    $dst.hi,$dst.hi\n\t"
5998             "AND    $dst.lo,$mask" %}
5999   ins_encode %{
6000     Register Rdst = $dst$$Register;
6001     __ movzwl(Rdst, $mem$$Address);
6002     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6003     __ andl(Rdst, $mask$$constant);
6004   %}
6005   ins_pipe(ialu_reg_mem);
6006 %}
6007 
6008 // Load Integer
6009 instruct loadI(rRegI dst, memory mem) %{
6010   match(Set dst (LoadI mem));
6011 
6012   ins_cost(125);
6013   format %{ "MOV    $dst,$mem\t# int" %}
6014 
6015   ins_encode %{
6016     __ movl($dst$$Register, $mem$$Address);
6017   %}
6018 
6019   ins_pipe(ialu_reg_mem);
6020 %}
6021 
6022 // Load Integer (32 bit signed) to Byte (8 bit signed)
6023 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
6024   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6025 
6026   ins_cost(125);
6027   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6028   ins_encode %{
6029     __ movsbl($dst$$Register, $mem$$Address);
6030   %}
6031   ins_pipe(ialu_reg_mem);
6032 %}
6033 
6034 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6035 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
6036   match(Set dst (AndI (LoadI mem) mask));
6037 
6038   ins_cost(125);
6039   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6040   ins_encode %{
6041     __ movzbl($dst$$Register, $mem$$Address);
6042   %}
6043   ins_pipe(ialu_reg_mem);
6044 %}
6045 
6046 // Load Integer (32 bit signed) to Short (16 bit signed)
6047 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
6048   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6049 
6050   ins_cost(125);
6051   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6052   ins_encode %{
6053     __ movswl($dst$$Register, $mem$$Address);
6054   %}
6055   ins_pipe(ialu_reg_mem);
6056 %}
6057 
6058 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6059 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
6060   match(Set dst (AndI (LoadI mem) mask));
6061 
6062   ins_cost(125);
6063   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6064   ins_encode %{
6065     __ movzwl($dst$$Register, $mem$$Address);
6066   %}
6067   ins_pipe(ialu_reg_mem);
6068 %}
6069 
6070 // Load Integer into Long Register
6071 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6072   match(Set dst (ConvI2L (LoadI mem)));
6073   effect(KILL cr);
6074 
6075   ins_cost(375);
6076   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6077             "MOV    $dst.hi,$dst.lo\n\t"
6078             "SAR    $dst.hi,31" %}
6079 
6080   ins_encode %{
6081     __ movl($dst$$Register, $mem$$Address);
6082     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6083     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6084   %}
6085 
6086   ins_pipe(ialu_reg_mem);
6087 %}
6088 
6089 // Load Integer with mask 0xFF into Long Register
6090 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6091   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6092   effect(KILL cr);
6093 
6094   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6095             "XOR    $dst.hi,$dst.hi" %}
6096   ins_encode %{
6097     Register Rdst = $dst$$Register;
6098     __ movzbl(Rdst, $mem$$Address);
6099     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6100   %}
6101   ins_pipe(ialu_reg_mem);
6102 %}
6103 
6104 // Load Integer with mask 0xFFFF into Long Register
6105 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6106   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6107   effect(KILL cr);
6108 
6109   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6110             "XOR    $dst.hi,$dst.hi" %}
6111   ins_encode %{
6112     Register Rdst = $dst$$Register;
6113     __ movzwl(Rdst, $mem$$Address);
6114     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6115   %}
6116   ins_pipe(ialu_reg_mem);
6117 %}
6118 
6119 // Load Integer with 32-bit mask into Long Register
6120 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
6121   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6122   effect(KILL cr);
6123 
6124   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
6125             "XOR    $dst.hi,$dst.hi\n\t"
6126             "AND    $dst.lo,$mask" %}
6127   ins_encode %{
6128     Register Rdst = $dst$$Register;
6129     __ movl(Rdst, $mem$$Address);
6130     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6131     __ andl(Rdst, $mask$$constant);
6132   %}
6133   ins_pipe(ialu_reg_mem);
6134 %}
6135 
6136 // Load Unsigned Integer into Long Register
6137 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
6138   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
6139   effect(KILL cr);
6140 
6141   ins_cost(250);
6142   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6143             "XOR    $dst.hi,$dst.hi" %}
6144 
6145   ins_encode %{
6146     __ movl($dst$$Register, $mem$$Address);
6147     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6148   %}
6149 
6150   ins_pipe(ialu_reg_mem);
6151 %}
6152 
6153 // Load Long.  Cannot clobber address while loading, so restrict address
6154 // register to ESI
6155 instruct loadL(eRegL dst, load_long_memory mem) %{
6156   predicate(!((LoadLNode*)n)->require_atomic_access());
6157   match(Set dst (LoadL mem));
6158 
6159   ins_cost(250);
6160   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6161             "MOV    $dst.hi,$mem+4" %}
6162 
6163   ins_encode %{
6164     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
6165     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
6166     __ movl($dst$$Register, Amemlo);
6167     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6168   %}
6169 
6170   ins_pipe(ialu_reg_long_mem);
6171 %}
6172 
6173 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
6174 // then store it down to the stack and reload on the int
6175 // side.
6176 instruct loadL_volatile(stackSlotL dst, memory mem) %{
6177   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6178   match(Set dst (LoadL mem));
6179 
6180   ins_cost(200);
6181   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6182             "FISTp  $dst" %}
6183   ins_encode(enc_loadL_volatile(mem,dst));
6184   ins_pipe( fpu_reg_mem );
6185 %}
6186 
6187 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
6188   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6189   match(Set dst (LoadL mem));
6190   effect(TEMP tmp);
6191   ins_cost(180);
6192   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6193             "MOVSD  $dst,$tmp" %}
6194   ins_encode %{
6195     __ movdbl($tmp$$XMMRegister, $mem$$Address);
6196     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
6197   %}
6198   ins_pipe( pipe_slow );
6199 %}
6200 
6201 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
6202   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6203   match(Set dst (LoadL mem));
6204   effect(TEMP tmp);
6205   ins_cost(160);
6206   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6207             "MOVD   $dst.lo,$tmp\n\t"
6208             "PSRLQ  $tmp,32\n\t"
6209             "MOVD   $dst.hi,$tmp" %}
6210   ins_encode %{
6211     __ movdbl($tmp$$XMMRegister, $mem$$Address);
6212     __ movdl($dst$$Register, $tmp$$XMMRegister);
6213     __ psrlq($tmp$$XMMRegister, 32);
6214     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
6215   %}
6216   ins_pipe( pipe_slow );
6217 %}
6218 
6219 // Load Range
6220 instruct loadRange(rRegI dst, memory mem) %{
6221   match(Set dst (LoadRange mem));
6222 
6223   ins_cost(125);
6224   format %{ "MOV    $dst,$mem" %}
6225   opcode(0x8B);
6226   ins_encode( OpcP, RegMem(dst,mem));
6227   ins_pipe( ialu_reg_mem );
6228 %}
6229 
6230 
6231 // Load Pointer
6232 instruct loadP(eRegP dst, memory mem) %{
6233   match(Set dst (LoadP mem));
6234 
6235   ins_cost(125);
6236   format %{ "MOV    $dst,$mem" %}
6237   opcode(0x8B);
6238   ins_encode( OpcP, RegMem(dst,mem));
6239   ins_pipe( ialu_reg_mem );
6240 %}
6241 
6242 // Load Klass Pointer
6243 instruct loadKlass(eRegP dst, memory mem) %{
6244   match(Set dst (LoadKlass mem));
6245 
6246   ins_cost(125);
6247   format %{ "MOV    $dst,$mem" %}
6248   opcode(0x8B);
6249   ins_encode( OpcP, RegMem(dst,mem));
6250   ins_pipe( ialu_reg_mem );
6251 %}
6252 
6253 // Load Double
6254 instruct loadDPR(regDPR dst, memory mem) %{
6255   predicate(UseSSE<=1);
6256   match(Set dst (LoadD mem));
6257 
6258   ins_cost(150);
6259   format %{ "FLD_D  ST,$mem\n\t"
6260             "FSTP   $dst" %}
6261   opcode(0xDD);               /* DD /0 */
6262   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6263               Pop_Reg_DPR(dst) );
6264   ins_pipe( fpu_reg_mem );
6265 %}
6266 
6267 // Load Double to XMM
6268 instruct loadD(regD dst, memory mem) %{
6269   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6270   match(Set dst (LoadD mem));
6271   ins_cost(145);
6272   format %{ "MOVSD  $dst,$mem" %}
6273   ins_encode %{
6274     __ movdbl ($dst$$XMMRegister, $mem$$Address);
6275   %}
6276   ins_pipe( pipe_slow );
6277 %}
6278 
6279 instruct loadD_partial(regD dst, memory mem) %{
6280   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6281   match(Set dst (LoadD mem));
6282   ins_cost(145);
6283   format %{ "MOVLPD $dst,$mem" %}
6284   ins_encode %{
6285     __ movdbl ($dst$$XMMRegister, $mem$$Address);
6286   %}
6287   ins_pipe( pipe_slow );
6288 %}
6289 
6290 // Load to XMM register (single-precision floating point)
6291 // MOVSS instruction
6292 instruct loadF(regF dst, memory mem) %{
6293   predicate(UseSSE>=1);
6294   match(Set dst (LoadF mem));
6295   ins_cost(145);
6296   format %{ "MOVSS  $dst,$mem" %}
6297   ins_encode %{
6298     __ movflt ($dst$$XMMRegister, $mem$$Address);
6299   %}
6300   ins_pipe( pipe_slow );
6301 %}
6302 
6303 // Load Float
6304 instruct loadFPR(regFPR dst, memory mem) %{
6305   predicate(UseSSE==0);
6306   match(Set dst (LoadF mem));
6307 
6308   ins_cost(150);
6309   format %{ "FLD_S  ST,$mem\n\t"
6310             "FSTP   $dst" %}
6311   opcode(0xD9);               /* D9 /0 */
6312   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6313               Pop_Reg_FPR(dst) );
6314   ins_pipe( fpu_reg_mem );
6315 %}
6316 
6317 // Load Effective Address
6318 instruct leaP8(eRegP dst, indOffset8 mem) %{
6319   match(Set dst mem);
6320 
6321   ins_cost(110);
6322   format %{ "LEA    $dst,$mem" %}
6323   opcode(0x8D);
6324   ins_encode( OpcP, RegMem(dst,mem));
6325   ins_pipe( ialu_reg_reg_fat );
6326 %}
6327 
6328 instruct leaP32(eRegP dst, indOffset32 mem) %{
6329   match(Set dst mem);
6330 
6331   ins_cost(110);
6332   format %{ "LEA    $dst,$mem" %}
6333   opcode(0x8D);
6334   ins_encode( OpcP, RegMem(dst,mem));
6335   ins_pipe( ialu_reg_reg_fat );
6336 %}
6337 
6338 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
6339   match(Set dst mem);
6340 
6341   ins_cost(110);
6342   format %{ "LEA    $dst,$mem" %}
6343   opcode(0x8D);
6344   ins_encode( OpcP, RegMem(dst,mem));
6345   ins_pipe( ialu_reg_reg_fat );
6346 %}
6347 
6348 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
6349   match(Set dst mem);
6350 
6351   ins_cost(110);
6352   format %{ "LEA    $dst,$mem" %}
6353   opcode(0x8D);
6354   ins_encode( OpcP, RegMem(dst,mem));
6355   ins_pipe( ialu_reg_reg_fat );
6356 %}
6357 
6358 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
6359   match(Set dst mem);
6360 
6361   ins_cost(110);
6362   format %{ "LEA    $dst,$mem" %}
6363   opcode(0x8D);
6364   ins_encode( OpcP, RegMem(dst,mem));
6365   ins_pipe( ialu_reg_reg_fat );
6366 %}
6367 
6368 // Load Constant
6369 instruct loadConI(rRegI dst, immI src) %{
6370   match(Set dst src);
6371 
6372   format %{ "MOV    $dst,$src" %}
6373   ins_encode( LdImmI(dst, src) );
6374   ins_pipe( ialu_reg_fat );
6375 %}
6376 
6377 // Load Constant zero
6378 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
6379   match(Set dst src);
6380   effect(KILL cr);
6381 
6382   ins_cost(50);
6383   format %{ "XOR    $dst,$dst" %}
6384   opcode(0x33);  /* + rd */
6385   ins_encode( OpcP, RegReg( dst, dst ) );
6386   ins_pipe( ialu_reg );
6387 %}
6388 
6389 instruct loadConP(eRegP dst, immP src) %{
6390   match(Set dst src);
6391 
6392   format %{ "MOV    $dst,$src" %}
6393   opcode(0xB8);  /* + rd */
6394   ins_encode( LdImmP(dst, src) );
6395   ins_pipe( ialu_reg_fat );
6396 %}
6397 
6398 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
6399   match(Set dst src);
6400   effect(KILL cr);
6401   ins_cost(200);
6402   format %{ "MOV    $dst.lo,$src.lo\n\t"
6403             "MOV    $dst.hi,$src.hi" %}
6404   opcode(0xB8);
6405   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
6406   ins_pipe( ialu_reg_long_fat );
6407 %}
6408 
6409 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
6410   match(Set dst src);
6411   effect(KILL cr);
6412   ins_cost(150);
6413   format %{ "XOR    $dst.lo,$dst.lo\n\t"
6414             "XOR    $dst.hi,$dst.hi" %}
6415   opcode(0x33,0x33);
6416   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
6417   ins_pipe( ialu_reg_long );
6418 %}
6419 
6420 // The instruction usage is guarded by predicate in operand immFPR().
6421 instruct loadConFPR(regFPR dst, immFPR con) %{
6422   match(Set dst con);
6423   ins_cost(125);
6424   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
6425             "FSTP   $dst" %}
6426   ins_encode %{
6427     __ fld_s($constantaddress($con));
6428     __ fstp_d($dst$$reg);
6429   %}
6430   ins_pipe(fpu_reg_con);
6431 %}
6432 
6433 // The instruction usage is guarded by predicate in operand immFPR0().
6434 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
6435   match(Set dst con);
6436   ins_cost(125);
6437   format %{ "FLDZ   ST\n\t"
6438             "FSTP   $dst" %}
6439   ins_encode %{
6440     __ fldz();
6441     __ fstp_d($dst$$reg);
6442   %}
6443   ins_pipe(fpu_reg_con);
6444 %}
6445 
6446 // The instruction usage is guarded by predicate in operand immFPR1().
6447 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
6448   match(Set dst con);
6449   ins_cost(125);
6450   format %{ "FLD1   ST\n\t"
6451             "FSTP   $dst" %}
6452   ins_encode %{
6453     __ fld1();
6454     __ fstp_d($dst$$reg);
6455   %}
6456   ins_pipe(fpu_reg_con);
6457 %}
6458 
6459 // The instruction usage is guarded by predicate in operand immF().
6460 instruct loadConF(regF dst, immF con) %{
6461   match(Set dst con);
6462   ins_cost(125);
6463   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
6464   ins_encode %{
6465     __ movflt($dst$$XMMRegister, $constantaddress($con));
6466   %}
6467   ins_pipe(pipe_slow);
6468 %}
6469 
6470 // The instruction usage is guarded by predicate in operand immF0().
6471 instruct loadConF0(regF dst, immF0 src) %{
6472   match(Set dst src);
6473   ins_cost(100);
6474   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
6475   ins_encode %{
6476     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
6477   %}
6478   ins_pipe(pipe_slow);
6479 %}
6480 
6481 // The instruction usage is guarded by predicate in operand immDPR().
6482 instruct loadConDPR(regDPR dst, immDPR con) %{
6483   match(Set dst con);
6484   ins_cost(125);
6485 
6486   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
6487             "FSTP   $dst" %}
6488   ins_encode %{
6489     __ fld_d($constantaddress($con));
6490     __ fstp_d($dst$$reg);
6491   %}
6492   ins_pipe(fpu_reg_con);
6493 %}
6494 
6495 // The instruction usage is guarded by predicate in operand immDPR0().
6496 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
6497   match(Set dst con);
6498   ins_cost(125);
6499 
6500   format %{ "FLDZ   ST\n\t"
6501             "FSTP   $dst" %}
6502   ins_encode %{
6503     __ fldz();
6504     __ fstp_d($dst$$reg);
6505   %}
6506   ins_pipe(fpu_reg_con);
6507 %}
6508 
6509 // The instruction usage is guarded by predicate in operand immDPR1().
6510 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
6511   match(Set dst con);
6512   ins_cost(125);
6513 
6514   format %{ "FLD1   ST\n\t"
6515             "FSTP   $dst" %}
6516   ins_encode %{
6517     __ fld1();
6518     __ fstp_d($dst$$reg);
6519   %}
6520   ins_pipe(fpu_reg_con);
6521 %}
6522 
6523 // The instruction usage is guarded by predicate in operand immD().
6524 instruct loadConD(regD dst, immD con) %{
6525   match(Set dst con);
6526   ins_cost(125);
6527   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
6528   ins_encode %{
6529     __ movdbl($dst$$XMMRegister, $constantaddress($con));
6530   %}
6531   ins_pipe(pipe_slow);
6532 %}
6533 
6534 // The instruction usage is guarded by predicate in operand immD0().
6535 instruct loadConD0(regD dst, immD0 src) %{
6536   match(Set dst src);
6537   ins_cost(100);
6538   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
6539   ins_encode %{
6540     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
6541   %}
6542   ins_pipe( pipe_slow );
6543 %}
6544 
6545 // Load Stack Slot
6546 instruct loadSSI(rRegI dst, stackSlotI src) %{
6547   match(Set dst src);
6548   ins_cost(125);
6549 
6550   format %{ "MOV    $dst,$src" %}
6551   opcode(0x8B);
6552   ins_encode( OpcP, RegMem(dst,src));
6553   ins_pipe( ialu_reg_mem );
6554 %}
6555 
6556 instruct loadSSL(eRegL dst, stackSlotL src) %{
6557   match(Set dst src);
6558 
6559   ins_cost(200);
6560   format %{ "MOV    $dst,$src.lo\n\t"
6561             "MOV    $dst+4,$src.hi" %}
6562   opcode(0x8B, 0x8B);
6563   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6564   ins_pipe( ialu_mem_long_reg );
6565 %}
6566 
6567 // Load Stack Slot
6568 instruct loadSSP(eRegP dst, stackSlotP src) %{
6569   match(Set dst src);
6570   ins_cost(125);
6571 
6572   format %{ "MOV    $dst,$src" %}
6573   opcode(0x8B);
6574   ins_encode( OpcP, RegMem(dst,src));
6575   ins_pipe( ialu_reg_mem );
6576 %}
6577 
6578 // Load Stack Slot
6579 instruct loadSSF(regFPR dst, stackSlotF src) %{
6580   match(Set dst src);
6581   ins_cost(125);
6582 
6583   format %{ "FLD_S  $src\n\t"
6584             "FSTP   $dst" %}
6585   opcode(0xD9);               /* D9 /0, FLD m32real */
6586   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6587               Pop_Reg_FPR(dst) );
6588   ins_pipe( fpu_reg_mem );
6589 %}
6590 
6591 // Load Stack Slot
6592 instruct loadSSD(regDPR dst, stackSlotD src) %{
6593   match(Set dst src);
6594   ins_cost(125);
6595 
6596   format %{ "FLD_D  $src\n\t"
6597             "FSTP   $dst" %}
6598   opcode(0xDD);               /* DD /0, FLD m64real */
6599   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6600               Pop_Reg_DPR(dst) );
6601   ins_pipe( fpu_reg_mem );
6602 %}
6603 
6604 // Prefetch instructions.
6605 // Must be safe to execute with invalid address (cannot fault).
6606 
6607 instruct prefetchr0( memory mem ) %{
6608   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6609   match(PrefetchRead mem);
6610   ins_cost(0);
6611   size(0);
6612   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
6613   ins_encode();
6614   ins_pipe(empty);
6615 %}
6616 
6617 instruct prefetchr( memory mem ) %{
6618   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
6619   match(PrefetchRead mem);
6620   ins_cost(100);
6621 
6622   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
6623   ins_encode %{
6624     __ prefetchr($mem$$Address);
6625   %}
6626   ins_pipe(ialu_mem);
6627 %}
6628 
6629 instruct prefetchrNTA( memory mem ) %{
6630   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
6631   match(PrefetchRead mem);
6632   ins_cost(100);
6633 
6634   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
6635   ins_encode %{
6636     __ prefetchnta($mem$$Address);
6637   %}
6638   ins_pipe(ialu_mem);
6639 %}
6640 
6641 instruct prefetchrT0( memory mem ) %{
6642   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
6643   match(PrefetchRead mem);
6644   ins_cost(100);
6645 
6646   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
6647   ins_encode %{
6648     __ prefetcht0($mem$$Address);
6649   %}
6650   ins_pipe(ialu_mem);
6651 %}
6652 
6653 instruct prefetchrT2( memory mem ) %{
6654   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
6655   match(PrefetchRead mem);
6656   ins_cost(100);
6657 
6658   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
6659   ins_encode %{
6660     __ prefetcht2($mem$$Address);
6661   %}
6662   ins_pipe(ialu_mem);
6663 %}
6664 
6665 instruct prefetchw0( memory mem ) %{
6666   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6667   match(PrefetchWrite mem);
6668   ins_cost(0);
6669   size(0);
6670   format %{ "Prefetch (non-SSE is empty encoding)" %}
6671   ins_encode();
6672   ins_pipe(empty);
6673 %}
6674 
6675 instruct prefetchw( memory mem ) %{
6676   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
6677   match( PrefetchWrite mem );
6678   ins_cost(100);
6679 
6680   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
6681   ins_encode %{
6682     __ prefetchw($mem$$Address);
6683   %}
6684   ins_pipe(ialu_mem);
6685 %}
6686 
6687 instruct prefetchwNTA( memory mem ) %{
6688   predicate(UseSSE>=1);
6689   match(PrefetchWrite mem);
6690   ins_cost(100);
6691 
6692   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
6693   ins_encode %{
6694     __ prefetchnta($mem$$Address);
6695   %}
6696   ins_pipe(ialu_mem);
6697 %}
6698 
6699 // Prefetch instructions for allocation.
6700 
6701 instruct prefetchAlloc0( memory mem ) %{
6702   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
6703   match(PrefetchAllocation mem);
6704   ins_cost(0);
6705   size(0);
6706   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
6707   ins_encode();
6708   ins_pipe(empty);
6709 %}
6710 
6711 instruct prefetchAlloc( memory mem ) %{
6712   predicate(AllocatePrefetchInstr==3);
6713   match( PrefetchAllocation mem );
6714   ins_cost(100);
6715 
6716   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
6717   ins_encode %{
6718     __ prefetchw($mem$$Address);
6719   %}
6720   ins_pipe(ialu_mem);
6721 %}
6722 
6723 instruct prefetchAllocNTA( memory mem ) %{
6724   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6725   match(PrefetchAllocation mem);
6726   ins_cost(100);
6727 
6728   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
6729   ins_encode %{
6730     __ prefetchnta($mem$$Address);
6731   %}
6732   ins_pipe(ialu_mem);
6733 %}
6734 
6735 instruct prefetchAllocT0( memory mem ) %{
6736   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6737   match(PrefetchAllocation mem);
6738   ins_cost(100);
6739 
6740   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
6741   ins_encode %{
6742     __ prefetcht0($mem$$Address);
6743   %}
6744   ins_pipe(ialu_mem);
6745 %}
6746 
6747 instruct prefetchAllocT2( memory mem ) %{
6748   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6749   match(PrefetchAllocation mem);
6750   ins_cost(100);
6751 
6752   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
6753   ins_encode %{
6754     __ prefetcht2($mem$$Address);
6755   %}
6756   ins_pipe(ialu_mem);
6757 %}
6758 
6759 //----------Store Instructions-------------------------------------------------
6760 
6761 // Store Byte
6762 instruct storeB(memory mem, xRegI src) %{
6763   match(Set mem (StoreB mem src));
6764 
6765   ins_cost(125);
6766   format %{ "MOV8   $mem,$src" %}
6767   opcode(0x88);
6768   ins_encode( OpcP, RegMem( src, mem ) );
6769   ins_pipe( ialu_mem_reg );
6770 %}
6771 
6772 // Store Char/Short
6773 instruct storeC(memory mem, rRegI src) %{
6774   match(Set mem (StoreC mem src));
6775 
6776   ins_cost(125);
6777   format %{ "MOV16  $mem,$src" %}
6778   opcode(0x89, 0x66);
6779   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6780   ins_pipe( ialu_mem_reg );
6781 %}
6782 
6783 // Store Integer
6784 instruct storeI(memory mem, rRegI src) %{
6785   match(Set mem (StoreI mem src));
6786 
6787   ins_cost(125);
6788   format %{ "MOV    $mem,$src" %}
6789   opcode(0x89);
6790   ins_encode( OpcP, RegMem( src, mem ) );
6791   ins_pipe( ialu_mem_reg );
6792 %}
6793 
6794 // Store Long
6795 instruct storeL(long_memory mem, eRegL src) %{
6796   predicate(!((StoreLNode*)n)->require_atomic_access());
6797   match(Set mem (StoreL mem src));
6798 
6799   ins_cost(200);
6800   format %{ "MOV    $mem,$src.lo\n\t"
6801             "MOV    $mem+4,$src.hi" %}
6802   opcode(0x89, 0x89);
6803   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
6804   ins_pipe( ialu_mem_long_reg );
6805 %}
6806 
6807 // Store Long to Integer
6808 instruct storeL2I(memory mem, eRegL src) %{
6809   match(Set mem (StoreI mem (ConvL2I src)));
6810 
6811   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
6812   ins_encode %{
6813     __ movl($mem$$Address, $src$$Register);
6814   %}
6815   ins_pipe(ialu_mem_reg);
6816 %}
6817 
6818 // Volatile Store Long.  Must be atomic, so move it into
6819 // the FP TOS and then do a 64-bit FIST.  Has to probe the
6820 // target address before the store (for null-ptr checks)
6821 // so the memory operand is used twice in the encoding.
6822 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
6823   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
6824   match(Set mem (StoreL mem src));
6825   effect( KILL cr );
6826   ins_cost(400);
6827   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6828             "FILD   $src\n\t"
6829             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
6830   opcode(0x3B);
6831   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
6832   ins_pipe( fpu_reg_mem );
6833 %}
6834 
6835 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
6836   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6837   match(Set mem (StoreL mem src));
6838   effect( TEMP tmp, KILL cr );
6839   ins_cost(380);
6840   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6841             "MOVSD  $tmp,$src\n\t"
6842             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6843   ins_encode %{
6844     __ cmpl(rax, $mem$$Address);
6845     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
6846     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6847   %}
6848   ins_pipe( pipe_slow );
6849 %}
6850 
6851 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
6852   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6853   match(Set mem (StoreL mem src));
6854   effect( TEMP tmp2 , TEMP tmp, KILL cr );
6855   ins_cost(360);
6856   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6857             "MOVD   $tmp,$src.lo\n\t"
6858             "MOVD   $tmp2,$src.hi\n\t"
6859             "PUNPCKLDQ $tmp,$tmp2\n\t"
6860             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6861   ins_encode %{
6862     __ cmpl(rax, $mem$$Address);
6863     __ movdl($tmp$$XMMRegister, $src$$Register);
6864     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
6865     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
6866     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6867   %}
6868   ins_pipe( pipe_slow );
6869 %}
6870 
6871 // Store Pointer; for storing unknown oops and raw pointers
6872 instruct storeP(memory mem, anyRegP src) %{
6873   match(Set mem (StoreP mem src));
6874 
6875   ins_cost(125);
6876   format %{ "MOV    $mem,$src" %}
6877   opcode(0x89);
6878   ins_encode( OpcP, RegMem( src, mem ) );
6879   ins_pipe( ialu_mem_reg );
6880 %}
6881 
6882 // Store Integer Immediate
6883 instruct storeImmI(memory mem, immI src) %{
6884   match(Set mem (StoreI mem src));
6885 
6886   ins_cost(150);
6887   format %{ "MOV    $mem,$src" %}
6888   opcode(0xC7);               /* C7 /0 */
6889   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6890   ins_pipe( ialu_mem_imm );
6891 %}
6892 
6893 // Store Short/Char Immediate
6894 instruct storeImmI16(memory mem, immI16 src) %{
6895   predicate(UseStoreImmI16);
6896   match(Set mem (StoreC mem src));
6897 
6898   ins_cost(150);
6899   format %{ "MOV16  $mem,$src" %}
6900   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
6901   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
6902   ins_pipe( ialu_mem_imm );
6903 %}
6904 
6905 // Store Pointer Immediate; null pointers or constant oops that do not
6906 // need card-mark barriers.
6907 instruct storeImmP(memory mem, immP src) %{
6908   match(Set mem (StoreP mem src));
6909 
6910   ins_cost(150);
6911   format %{ "MOV    $mem,$src" %}
6912   opcode(0xC7);               /* C7 /0 */
6913   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6914   ins_pipe( ialu_mem_imm );
6915 %}
6916 
6917 // Store Byte Immediate
6918 instruct storeImmB(memory mem, immI8 src) %{
6919   match(Set mem (StoreB mem src));
6920 
6921   ins_cost(150);
6922   format %{ "MOV8   $mem,$src" %}
6923   opcode(0xC6);               /* C6 /0 */
6924   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6925   ins_pipe( ialu_mem_imm );
6926 %}
6927 
6928 // Store CMS card-mark Immediate
6929 instruct storeImmCM(memory mem, immI8 src) %{
6930   match(Set mem (StoreCM mem src));
6931 
6932   ins_cost(150);
6933   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
6934   opcode(0xC6);               /* C6 /0 */
6935   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6936   ins_pipe( ialu_mem_imm );
6937 %}
6938 
6939 // Store Double
6940 instruct storeDPR( memory mem, regDPR1 src) %{
6941   predicate(UseSSE<=1);
6942   match(Set mem (StoreD mem src));
6943 
6944   ins_cost(100);
6945   format %{ "FST_D  $mem,$src" %}
6946   opcode(0xDD);       /* DD /2 */
6947   ins_encode( enc_FPR_store(mem,src) );
6948   ins_pipe( fpu_mem_reg );
6949 %}
6950 
6951 // Store double does rounding on x86
6952 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
6953   predicate(UseSSE<=1);
6954   match(Set mem (StoreD mem (RoundDouble src)));
6955 
6956   ins_cost(100);
6957   format %{ "FST_D  $mem,$src\t# round" %}
6958   opcode(0xDD);       /* DD /2 */
6959   ins_encode( enc_FPR_store(mem,src) );
6960   ins_pipe( fpu_mem_reg );
6961 %}
6962 
6963 // Store XMM register to memory (double-precision floating points)
6964 // MOVSD instruction
6965 instruct storeD(memory mem, regD src) %{
6966   predicate(UseSSE>=2);
6967   match(Set mem (StoreD mem src));
6968   ins_cost(95);
6969   format %{ "MOVSD  $mem,$src" %}
6970   ins_encode %{
6971     __ movdbl($mem$$Address, $src$$XMMRegister);
6972   %}
6973   ins_pipe( pipe_slow );
6974 %}
6975 
6976 // Store XMM register to memory (single-precision floating point)
6977 // MOVSS instruction
6978 instruct storeF(memory mem, regF src) %{
6979   predicate(UseSSE>=1);
6980   match(Set mem (StoreF mem src));
6981   ins_cost(95);
6982   format %{ "MOVSS  $mem,$src" %}
6983   ins_encode %{
6984     __ movflt($mem$$Address, $src$$XMMRegister);
6985   %}
6986   ins_pipe( pipe_slow );
6987 %}
6988 
6989 // Store Float
6990 instruct storeFPR( memory mem, regFPR1 src) %{
6991   predicate(UseSSE==0);
6992   match(Set mem (StoreF mem src));
6993 
6994   ins_cost(100);
6995   format %{ "FST_S  $mem,$src" %}
6996   opcode(0xD9);       /* D9 /2 */
6997   ins_encode( enc_FPR_store(mem,src) );
6998   ins_pipe( fpu_mem_reg );
6999 %}
7000 
7001 // Store Float does rounding on x86
7002 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
7003   predicate(UseSSE==0);
7004   match(Set mem (StoreF mem (RoundFloat src)));
7005 
7006   ins_cost(100);
7007   format %{ "FST_S  $mem,$src\t# round" %}
7008   opcode(0xD9);       /* D9 /2 */
7009   ins_encode( enc_FPR_store(mem,src) );
7010   ins_pipe( fpu_mem_reg );
7011 %}
7012 
7013 // Store Float does rounding on x86
7014 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
7015   predicate(UseSSE<=1);
7016   match(Set mem (StoreF mem (ConvD2F src)));
7017 
7018   ins_cost(100);
7019   format %{ "FST_S  $mem,$src\t# D-round" %}
7020   opcode(0xD9);       /* D9 /2 */
7021   ins_encode( enc_FPR_store(mem,src) );
7022   ins_pipe( fpu_mem_reg );
7023 %}
7024 
7025 // Store immediate Float value (it is faster than store from FPU register)
7026 // The instruction usage is guarded by predicate in operand immFPR().
7027 instruct storeFPR_imm( memory mem, immFPR src) %{
7028   match(Set mem (StoreF mem src));
7029 
7030   ins_cost(50);
7031   format %{ "MOV    $mem,$src\t# store float" %}
7032   opcode(0xC7);               /* C7 /0 */
7033   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
7034   ins_pipe( ialu_mem_imm );
7035 %}
7036 
7037 // Store immediate Float value (it is faster than store from XMM register)
7038 // The instruction usage is guarded by predicate in operand immF().
7039 instruct storeF_imm( memory mem, immF src) %{
7040   match(Set mem (StoreF mem src));
7041 
7042   ins_cost(50);
7043   format %{ "MOV    $mem,$src\t# store float" %}
7044   opcode(0xC7);               /* C7 /0 */
7045   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7046   ins_pipe( ialu_mem_imm );
7047 %}
7048 
7049 // Store Integer to stack slot
7050 instruct storeSSI(stackSlotI dst, rRegI src) %{
7051   match(Set dst src);
7052 
7053   ins_cost(100);
7054   format %{ "MOV    $dst,$src" %}
7055   opcode(0x89);
7056   ins_encode( OpcPRegSS( dst, src ) );
7057   ins_pipe( ialu_mem_reg );
7058 %}
7059 
7060 // Store Integer to stack slot
7061 instruct storeSSP(stackSlotP dst, eRegP src) %{
7062   match(Set dst src);
7063 
7064   ins_cost(100);
7065   format %{ "MOV    $dst,$src" %}
7066   opcode(0x89);
7067   ins_encode( OpcPRegSS( dst, src ) );
7068   ins_pipe( ialu_mem_reg );
7069 %}
7070 
7071 // Store Long to stack slot
7072 instruct storeSSL(stackSlotL dst, eRegL src) %{
7073   match(Set dst src);
7074 
7075   ins_cost(200);
7076   format %{ "MOV    $dst,$src.lo\n\t"
7077             "MOV    $dst+4,$src.hi" %}
7078   opcode(0x89, 0x89);
7079   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7080   ins_pipe( ialu_mem_long_reg );
7081 %}
7082 
7083 //----------MemBar Instructions-----------------------------------------------
7084 // Memory barrier flavors
7085 
7086 instruct membar_acquire() %{
7087   match(MemBarAcquire);
7088   ins_cost(400);
7089 
7090   size(0);
7091   format %{ "MEMBAR-acquire ! (empty encoding)" %}
7092   ins_encode();
7093   ins_pipe(empty);
7094 %}
7095 
7096 instruct membar_acquire_lock() %{
7097   match(MemBarAcquireLock);
7098   ins_cost(0);
7099 
7100   size(0);
7101   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7102   ins_encode( );
7103   ins_pipe(empty);
7104 %}
7105 
7106 instruct membar_release() %{
7107   match(MemBarRelease);
7108   ins_cost(400);
7109 
7110   size(0);
7111   format %{ "MEMBAR-release ! (empty encoding)" %}
7112   ins_encode( );
7113   ins_pipe(empty);
7114 %}
7115 
7116 instruct membar_release_lock() %{
7117   match(MemBarReleaseLock);
7118   ins_cost(0);
7119 
7120   size(0);
7121   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7122   ins_encode( );
7123   ins_pipe(empty);
7124 %}
7125 
7126 instruct membar_volatile(eFlagsReg cr) %{
7127   match(MemBarVolatile);
7128   effect(KILL cr);
7129   ins_cost(400);
7130 
7131   format %{ 
7132     $$template
7133     if (os::is_MP()) {
7134       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7135     } else {
7136       $$emit$$"MEMBAR-volatile ! (empty encoding)"
7137     }
7138   %}
7139   ins_encode %{
7140     __ membar(Assembler::StoreLoad);
7141   %}
7142   ins_pipe(pipe_slow);
7143 %}
7144 
7145 instruct unnecessary_membar_volatile() %{
7146   match(MemBarVolatile);
7147   predicate(Matcher::post_store_load_barrier(n));
7148   ins_cost(0);
7149 
7150   size(0);
7151   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7152   ins_encode( );
7153   ins_pipe(empty);
7154 %}
7155 
7156 instruct membar_storestore() %{
7157   match(MemBarStoreStore);
7158   ins_cost(0);
7159 
7160   size(0);
7161   format %{ "MEMBAR-storestore (empty encoding)" %}
7162   ins_encode( );
7163   ins_pipe(empty);
7164 %}
7165 
7166 //----------Move Instructions--------------------------------------------------
7167 instruct castX2P(eAXRegP dst, eAXRegI src) %{
7168   match(Set dst (CastX2P src));
7169   format %{ "# X2P  $dst, $src" %}
7170   ins_encode( /*empty encoding*/ );
7171   ins_cost(0);
7172   ins_pipe(empty);
7173 %}
7174 
7175 instruct castP2X(rRegI dst, eRegP src ) %{
7176   match(Set dst (CastP2X src));
7177   ins_cost(50);
7178   format %{ "MOV    $dst, $src\t# CastP2X" %}
7179   ins_encode( enc_Copy( dst, src) );
7180   ins_pipe( ialu_reg_reg );
7181 %}
7182 
7183 //----------Conditional Move---------------------------------------------------
7184 // Conditional move
7185 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
7186   predicate(!VM_Version::supports_cmov() );
7187   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7188   ins_cost(200);
7189   format %{ "J$cop,us skip\t# signed cmove\n\t"
7190             "MOV    $dst,$src\n"
7191       "skip:" %}
7192   ins_encode %{
7193     Label Lskip;
7194     // Invert sense of branch from sense of CMOV
7195     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7196     __ movl($dst$$Register, $src$$Register);
7197     __ bind(Lskip);
7198   %}
7199   ins_pipe( pipe_cmov_reg );
7200 %}
7201 
7202 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
7203   predicate(!VM_Version::supports_cmov() );
7204   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7205   ins_cost(200);
7206   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
7207             "MOV    $dst,$src\n"
7208       "skip:" %}
7209   ins_encode %{
7210     Label Lskip;
7211     // Invert sense of branch from sense of CMOV
7212     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7213     __ movl($dst$$Register, $src$$Register);
7214     __ bind(Lskip);
7215   %}
7216   ins_pipe( pipe_cmov_reg );
7217 %}
7218 
7219 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
7220   predicate(VM_Version::supports_cmov() );
7221   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7222   ins_cost(200);
7223   format %{ "CMOV$cop $dst,$src" %}
7224   opcode(0x0F,0x40);
7225   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7226   ins_pipe( pipe_cmov_reg );
7227 %}
7228 
7229 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
7230   predicate(VM_Version::supports_cmov() );
7231   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7232   ins_cost(200);
7233   format %{ "CMOV$cop $dst,$src" %}
7234   opcode(0x0F,0x40);
7235   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7236   ins_pipe( pipe_cmov_reg );
7237 %}
7238 
7239 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
7240   predicate(VM_Version::supports_cmov() );
7241   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7242   ins_cost(200);
7243   expand %{
7244     cmovI_regU(cop, cr, dst, src);
7245   %}
7246 %}
7247 
7248 // Conditional move
7249 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
7250   predicate(VM_Version::supports_cmov() );
7251   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7252   ins_cost(250);
7253   format %{ "CMOV$cop $dst,$src" %}
7254   opcode(0x0F,0x40);
7255   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7256   ins_pipe( pipe_cmov_mem );
7257 %}
7258 
7259 // Conditional move
7260 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
7261   predicate(VM_Version::supports_cmov() );
7262   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7263   ins_cost(250);
7264   format %{ "CMOV$cop $dst,$src" %}
7265   opcode(0x0F,0x40);
7266   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7267   ins_pipe( pipe_cmov_mem );
7268 %}
7269 
7270 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
7271   predicate(VM_Version::supports_cmov() );
7272   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7273   ins_cost(250);
7274   expand %{
7275     cmovI_memU(cop, cr, dst, src);
7276   %}
7277 %}
7278 
7279 // Conditional move
7280 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7281   predicate(VM_Version::supports_cmov() );
7282   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7283   ins_cost(200);
7284   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7285   opcode(0x0F,0x40);
7286   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7287   ins_pipe( pipe_cmov_reg );
7288 %}
7289 
7290 // Conditional move (non-P6 version)
7291 // Note:  a CMoveP is generated for  stubs and native wrappers
7292 //        regardless of whether we are on a P6, so we
7293 //        emulate a cmov here
7294 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7295   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7296   ins_cost(300);
7297   format %{ "Jn$cop   skip\n\t"
7298           "MOV    $dst,$src\t# pointer\n"
7299       "skip:" %}
7300   opcode(0x8b);
7301   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7302   ins_pipe( pipe_cmov_reg );
7303 %}
7304 
7305 // Conditional move
7306 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7307   predicate(VM_Version::supports_cmov() );
7308   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7309   ins_cost(200);
7310   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7311   opcode(0x0F,0x40);
7312   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7313   ins_pipe( pipe_cmov_reg );
7314 %}
7315 
7316 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7317   predicate(VM_Version::supports_cmov() );
7318   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7319   ins_cost(200);
7320   expand %{
7321     cmovP_regU(cop, cr, dst, src);
7322   %}
7323 %}
7324 
7325 // DISABLED: Requires the ADLC to emit a bottom_type call that
7326 // correctly meets the two pointer arguments; one is an incoming
7327 // register but the other is a memory operand.  ALSO appears to
7328 // be buggy with implicit null checks.
7329 //
7330 //// Conditional move
7331 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7332 //  predicate(VM_Version::supports_cmov() );
7333 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7334 //  ins_cost(250);
7335 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7336 //  opcode(0x0F,0x40);
7337 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7338 //  ins_pipe( pipe_cmov_mem );
7339 //%}
7340 //
7341 //// Conditional move
7342 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7343 //  predicate(VM_Version::supports_cmov() );
7344 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7345 //  ins_cost(250);
7346 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7347 //  opcode(0x0F,0x40);
7348 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7349 //  ins_pipe( pipe_cmov_mem );
7350 //%}
7351 
7352 // Conditional move
7353 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
7354   predicate(UseSSE<=1);
7355   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7356   ins_cost(200);
7357   format %{ "FCMOV$cop $dst,$src\t# double" %}
7358   opcode(0xDA);
7359   ins_encode( enc_cmov_dpr(cop,src) );
7360   ins_pipe( pipe_cmovDPR_reg );
7361 %}
7362 
7363 // Conditional move
7364 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
7365   predicate(UseSSE==0);
7366   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7367   ins_cost(200);
7368   format %{ "FCMOV$cop $dst,$src\t# float" %}
7369   opcode(0xDA);
7370   ins_encode( enc_cmov_dpr(cop,src) );
7371   ins_pipe( pipe_cmovDPR_reg );
7372 %}
7373 
7374 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7375 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
7376   predicate(UseSSE<=1);
7377   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7378   ins_cost(200);
7379   format %{ "Jn$cop   skip\n\t"
7380             "MOV    $dst,$src\t# double\n"
7381       "skip:" %}
7382   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7383   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
7384   ins_pipe( pipe_cmovDPR_reg );
7385 %}
7386 
7387 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7388 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
7389   predicate(UseSSE==0);
7390   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7391   ins_cost(200);
7392   format %{ "Jn$cop    skip\n\t"
7393             "MOV    $dst,$src\t# float\n"
7394       "skip:" %}
7395   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7396   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
7397   ins_pipe( pipe_cmovDPR_reg );
7398 %}
7399 
7400 // No CMOVE with SSE/SSE2
7401 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
7402   predicate (UseSSE>=1);
7403   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7404   ins_cost(200);
7405   format %{ "Jn$cop   skip\n\t"
7406             "MOVSS  $dst,$src\t# float\n"
7407       "skip:" %}
7408   ins_encode %{
7409     Label skip;
7410     // Invert sense of branch from sense of CMOV
7411     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7412     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7413     __ bind(skip);
7414   %}
7415   ins_pipe( pipe_slow );
7416 %}
7417 
7418 // No CMOVE with SSE/SSE2
7419 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7420   predicate (UseSSE>=2);
7421   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7422   ins_cost(200);
7423   format %{ "Jn$cop   skip\n\t"
7424             "MOVSD  $dst,$src\t# float\n"
7425       "skip:" %}
7426   ins_encode %{
7427     Label skip;
7428     // Invert sense of branch from sense of CMOV
7429     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7430     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7431     __ bind(skip);
7432   %}
7433   ins_pipe( pipe_slow );
7434 %}
7435 
7436 // unsigned version
7437 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
7438   predicate (UseSSE>=1);
7439   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7440   ins_cost(200);
7441   format %{ "Jn$cop   skip\n\t"
7442             "MOVSS  $dst,$src\t# float\n"
7443       "skip:" %}
7444   ins_encode %{
7445     Label skip;
7446     // Invert sense of branch from sense of CMOV
7447     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7448     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7449     __ bind(skip);
7450   %}
7451   ins_pipe( pipe_slow );
7452 %}
7453 
7454 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
7455   predicate (UseSSE>=1);
7456   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7457   ins_cost(200);
7458   expand %{
7459     fcmovF_regU(cop, cr, dst, src);
7460   %}
7461 %}
7462 
7463 // unsigned version
7464 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
7465   predicate (UseSSE>=2);
7466   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7467   ins_cost(200);
7468   format %{ "Jn$cop   skip\n\t"
7469             "MOVSD  $dst,$src\t# float\n"
7470       "skip:" %}
7471   ins_encode %{
7472     Label skip;
7473     // Invert sense of branch from sense of CMOV
7474     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7475     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7476     __ bind(skip);
7477   %}
7478   ins_pipe( pipe_slow );
7479 %}
7480 
7481 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
7482   predicate (UseSSE>=2);
7483   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7484   ins_cost(200);
7485   expand %{
7486     fcmovD_regU(cop, cr, dst, src);
7487   %}
7488 %}
7489 
7490 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
7491   predicate(VM_Version::supports_cmov() );
7492   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7493   ins_cost(200);
7494   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7495             "CMOV$cop $dst.hi,$src.hi" %}
7496   opcode(0x0F,0x40);
7497   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7498   ins_pipe( pipe_cmov_reg_long );
7499 %}
7500 
7501 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
7502   predicate(VM_Version::supports_cmov() );
7503   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7504   ins_cost(200);
7505   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7506             "CMOV$cop $dst.hi,$src.hi" %}
7507   opcode(0x0F,0x40);
7508   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7509   ins_pipe( pipe_cmov_reg_long );
7510 %}
7511 
7512 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
7513   predicate(VM_Version::supports_cmov() );
7514   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7515   ins_cost(200);
7516   expand %{
7517     cmovL_regU(cop, cr, dst, src);
7518   %}
7519 %}
7520 
7521 //----------Arithmetic Instructions--------------------------------------------
7522 //----------Addition Instructions----------------------------------------------
7523 // Integer Addition Instructions
7524 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7525   match(Set dst (AddI dst src));
7526   effect(KILL cr);
7527 
7528   size(2);
7529   format %{ "ADD    $dst,$src" %}
7530   opcode(0x03);
7531   ins_encode( OpcP, RegReg( dst, src) );
7532   ins_pipe( ialu_reg_reg );
7533 %}
7534 
7535 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7536   match(Set dst (AddI dst src));
7537   effect(KILL cr);
7538 
7539   format %{ "ADD    $dst,$src" %}
7540   opcode(0x81, 0x00); /* /0 id */
7541   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7542   ins_pipe( ialu_reg );
7543 %}
7544 
7545 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
7546   predicate(UseIncDec);
7547   match(Set dst (AddI dst src));
7548   effect(KILL cr);
7549 
7550   size(1);
7551   format %{ "INC    $dst" %}
7552   opcode(0x40); /*  */
7553   ins_encode( Opc_plus( primary, dst ) );
7554   ins_pipe( ialu_reg );
7555 %}
7556 
7557 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
7558   match(Set dst (AddI src0 src1));
7559   ins_cost(110);
7560 
7561   format %{ "LEA    $dst,[$src0 + $src1]" %}
7562   opcode(0x8D); /* 0x8D /r */
7563   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7564   ins_pipe( ialu_reg_reg );
7565 %}
7566 
7567 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
7568   match(Set dst (AddP src0 src1));
7569   ins_cost(110);
7570 
7571   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
7572   opcode(0x8D); /* 0x8D /r */
7573   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7574   ins_pipe( ialu_reg_reg );
7575 %}
7576 
7577 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
7578   predicate(UseIncDec);
7579   match(Set dst (AddI dst src));
7580   effect(KILL cr);
7581 
7582   size(1);
7583   format %{ "DEC    $dst" %}
7584   opcode(0x48); /*  */
7585   ins_encode( Opc_plus( primary, dst ) );
7586   ins_pipe( ialu_reg );
7587 %}
7588 
7589 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
7590   match(Set dst (AddP dst src));
7591   effect(KILL cr);
7592 
7593   size(2);
7594   format %{ "ADD    $dst,$src" %}
7595   opcode(0x03);
7596   ins_encode( OpcP, RegReg( dst, src) );
7597   ins_pipe( ialu_reg_reg );
7598 %}
7599 
7600 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
7601   match(Set dst (AddP dst src));
7602   effect(KILL cr);
7603 
7604   format %{ "ADD    $dst,$src" %}
7605   opcode(0x81,0x00); /* Opcode 81 /0 id */
7606   // ins_encode( RegImm( dst, src) );
7607   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7608   ins_pipe( ialu_reg );
7609 %}
7610 
7611 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7612   match(Set dst (AddI dst (LoadI src)));
7613   effect(KILL cr);
7614 
7615   ins_cost(125);
7616   format %{ "ADD    $dst,$src" %}
7617   opcode(0x03);
7618   ins_encode( OpcP, RegMem( dst, src) );
7619   ins_pipe( ialu_reg_mem );
7620 %}
7621 
7622 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7623   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7624   effect(KILL cr);
7625 
7626   ins_cost(150);
7627   format %{ "ADD    $dst,$src" %}
7628   opcode(0x01);  /* Opcode 01 /r */
7629   ins_encode( OpcP, RegMem( src, dst ) );
7630   ins_pipe( ialu_mem_reg );
7631 %}
7632 
7633 // Add Memory with Immediate
7634 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7635   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7636   effect(KILL cr);
7637 
7638   ins_cost(125);
7639   format %{ "ADD    $dst,$src" %}
7640   opcode(0x81);               /* Opcode 81 /0 id */
7641   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7642   ins_pipe( ialu_mem_imm );
7643 %}
7644 
7645 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7646   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7647   effect(KILL cr);
7648 
7649   ins_cost(125);
7650   format %{ "INC    $dst" %}
7651   opcode(0xFF);               /* Opcode FF /0 */
7652   ins_encode( OpcP, RMopc_Mem(0x00,dst));
7653   ins_pipe( ialu_mem_imm );
7654 %}
7655 
7656 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7657   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7658   effect(KILL cr);
7659 
7660   ins_cost(125);
7661   format %{ "DEC    $dst" %}
7662   opcode(0xFF);               /* Opcode FF /1 */
7663   ins_encode( OpcP, RMopc_Mem(0x01,dst));
7664   ins_pipe( ialu_mem_imm );
7665 %}
7666 
7667 
7668 instruct checkCastPP( eRegP dst ) %{
7669   match(Set dst (CheckCastPP dst));
7670 
7671   size(0);
7672   format %{ "#checkcastPP of $dst" %}
7673   ins_encode( /*empty encoding*/ );
7674   ins_pipe( empty );
7675 %}
7676 
7677 instruct castPP( eRegP dst ) %{
7678   match(Set dst (CastPP dst));
7679   format %{ "#castPP of $dst" %}
7680   ins_encode( /*empty encoding*/ );
7681   ins_pipe( empty );
7682 %}
7683 
7684 instruct castII( rRegI dst ) %{
7685   match(Set dst (CastII dst));
7686   format %{ "#castII of $dst" %}
7687   ins_encode( /*empty encoding*/ );
7688   ins_cost(0);
7689   ins_pipe( empty );
7690 %}
7691 
7692 
7693 // Load-locked - same as a regular pointer load when used with compare-swap
7694 instruct loadPLocked(eRegP dst, memory mem) %{
7695   match(Set dst (LoadPLocked mem));
7696 
7697   ins_cost(125);
7698   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7699   opcode(0x8B);
7700   ins_encode( OpcP, RegMem(dst,mem));
7701   ins_pipe( ialu_reg_mem );
7702 %}
7703 
7704 // Conditional-store of the updated heap-top.
7705 // Used during allocation of the shared heap.
7706 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7707 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7708   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7709   // EAX is killed if there is contention, but then it's also unused.
7710   // In the common case of no contention, EAX holds the new oop address.
7711   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7712   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7713   ins_pipe( pipe_cmpxchg );
7714 %}
7715 
7716 // Conditional-store of an int value.
7717 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
7718 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
7719   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7720   effect(KILL oldval);
7721   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
7722   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
7723   ins_pipe( pipe_cmpxchg );
7724 %}
7725 
7726 // Conditional-store of a long value.
7727 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
7728 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7729   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7730   effect(KILL oldval);
7731   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
7732             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
7733             "XCHG   EBX,ECX"
7734   %}
7735   ins_encode %{
7736     // Note: we need to swap rbx, and rcx before and after the
7737     //       cmpxchg8 instruction because the instruction uses
7738     //       rcx as the high order word of the new value to store but
7739     //       our register encoding uses rbx.
7740     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7741     if( os::is_MP() )
7742       __ lock();
7743     __ cmpxchg8($mem$$Address);
7744     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7745   %}
7746   ins_pipe( pipe_cmpxchg );
7747 %}
7748 
7749 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7750 
7751 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7752   predicate(VM_Version::supports_cx8());
7753   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7754   effect(KILL cr, KILL oldval);
7755   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7756             "MOV    $res,0\n\t"
7757             "JNE,s  fail\n\t"
7758             "MOV    $res,1\n"
7759           "fail:" %}
7760   ins_encode( enc_cmpxchg8(mem_ptr),
7761               enc_flags_ne_to_boolean(res) );
7762   ins_pipe( pipe_cmpxchg );
7763 %}
7764 
7765 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7766   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7767   effect(KILL cr, KILL oldval);
7768   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7769             "MOV    $res,0\n\t"
7770             "JNE,s  fail\n\t"
7771             "MOV    $res,1\n"
7772           "fail:" %}
7773   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7774   ins_pipe( pipe_cmpxchg );
7775 %}
7776 
7777 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7778   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7779   effect(KILL cr, KILL oldval);
7780   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7781             "MOV    $res,0\n\t"
7782             "JNE,s  fail\n\t"
7783             "MOV    $res,1\n"
7784           "fail:" %}
7785   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7786   ins_pipe( pipe_cmpxchg );
7787 %}
7788 
7789 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
7790   predicate(n->as_LoadStore()->result_not_used());
7791   match(Set dummy (GetAndAddI mem add));
7792   effect(KILL cr);
7793   format %{ "ADDL  [$mem],$add" %}
7794   ins_encode %{
7795     if (os::is_MP()) { __ lock(); }
7796     __ addl($mem$$Address, $add$$constant);
7797   %}
7798   ins_pipe( pipe_cmpxchg );
7799 %}
7800 
7801 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
7802   match(Set newval (GetAndAddI mem newval));
7803   effect(KILL cr);
7804   format %{ "XADDL  [$mem],$newval" %}
7805   ins_encode %{
7806     if (os::is_MP()) { __ lock(); }
7807     __ xaddl($mem$$Address, $newval$$Register);
7808   %}
7809   ins_pipe( pipe_cmpxchg );
7810 %}
7811 
7812 instruct xchgI( memory mem, rRegI newval) %{
7813   match(Set newval (GetAndSetI mem newval));
7814   format %{ "XCHGL  $newval,[$mem]" %}
7815   ins_encode %{
7816     __ xchgl($newval$$Register, $mem$$Address);
7817   %}
7818   ins_pipe( pipe_cmpxchg );
7819 %}
7820 
7821 instruct xchgP( memory mem, pRegP newval) %{
7822   match(Set newval (GetAndSetP mem newval));
7823   format %{ "XCHGL  $newval,[$mem]" %}
7824   ins_encode %{
7825     __ xchgl($newval$$Register, $mem$$Address);
7826   %}
7827   ins_pipe( pipe_cmpxchg );
7828 %}
7829 
7830 //----------Subtraction Instructions-------------------------------------------
7831 // Integer Subtraction Instructions
7832 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7833   match(Set dst (SubI dst src));
7834   effect(KILL cr);
7835 
7836   size(2);
7837   format %{ "SUB    $dst,$src" %}
7838   opcode(0x2B);
7839   ins_encode( OpcP, RegReg( dst, src) );
7840   ins_pipe( ialu_reg_reg );
7841 %}
7842 
7843 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7844   match(Set dst (SubI dst src));
7845   effect(KILL cr);
7846 
7847   format %{ "SUB    $dst,$src" %}
7848   opcode(0x81,0x05);  /* Opcode 81 /5 */
7849   // ins_encode( RegImm( dst, src) );
7850   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7851   ins_pipe( ialu_reg );
7852 %}
7853 
7854 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7855   match(Set dst (SubI dst (LoadI src)));
7856   effect(KILL cr);
7857 
7858   ins_cost(125);
7859   format %{ "SUB    $dst,$src" %}
7860   opcode(0x2B);
7861   ins_encode( OpcP, RegMem( dst, src) );
7862   ins_pipe( ialu_reg_mem );
7863 %}
7864 
7865 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7866   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7867   effect(KILL cr);
7868 
7869   ins_cost(150);
7870   format %{ "SUB    $dst,$src" %}
7871   opcode(0x29);  /* Opcode 29 /r */
7872   ins_encode( OpcP, RegMem( src, dst ) );
7873   ins_pipe( ialu_mem_reg );
7874 %}
7875 
7876 // Subtract from a pointer
7877 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
7878   match(Set dst (AddP dst (SubI zero src)));
7879   effect(KILL cr);
7880 
7881   size(2);
7882   format %{ "SUB    $dst,$src" %}
7883   opcode(0x2B);
7884   ins_encode( OpcP, RegReg( dst, src) );
7885   ins_pipe( ialu_reg_reg );
7886 %}
7887 
7888 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
7889   match(Set dst (SubI zero dst));
7890   effect(KILL cr);
7891 
7892   size(2);
7893   format %{ "NEG    $dst" %}
7894   opcode(0xF7,0x03);  // Opcode F7 /3
7895   ins_encode( OpcP, RegOpc( dst ) );
7896   ins_pipe( ialu_reg );
7897 %}
7898 
7899 
7900 //----------Multiplication/Division Instructions-------------------------------
7901 // Integer Multiplication Instructions
7902 // Multiply Register
7903 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7904   match(Set dst (MulI dst src));
7905   effect(KILL cr);
7906 
7907   size(3);
7908   ins_cost(300);
7909   format %{ "IMUL   $dst,$src" %}
7910   opcode(0xAF, 0x0F);
7911   ins_encode( OpcS, OpcP, RegReg( dst, src) );
7912   ins_pipe( ialu_reg_reg_alu0 );
7913 %}
7914 
7915 // Multiply 32-bit Immediate
7916 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
7917   match(Set dst (MulI src imm));
7918   effect(KILL cr);
7919 
7920   ins_cost(300);
7921   format %{ "IMUL   $dst,$src,$imm" %}
7922   opcode(0x69);  /* 69 /r id */
7923   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
7924   ins_pipe( ialu_reg_reg_alu0 );
7925 %}
7926 
7927 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
7928   match(Set dst src);
7929   effect(KILL cr);
7930 
7931   // Note that this is artificially increased to make it more expensive than loadConL
7932   ins_cost(250);
7933   format %{ "MOV    EAX,$src\t// low word only" %}
7934   opcode(0xB8);
7935   ins_encode( LdImmL_Lo(dst, src) );
7936   ins_pipe( ialu_reg_fat );
7937 %}
7938 
7939 // Multiply by 32-bit Immediate, taking the shifted high order results
7940 //  (special case for shift by 32)
7941 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
7942   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7943   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7944              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7945              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7946   effect(USE src1, KILL cr);
7947 
7948   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7949   ins_cost(0*100 + 1*400 - 150);
7950   format %{ "IMUL   EDX:EAX,$src1" %}
7951   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7952   ins_pipe( pipe_slow );
7953 %}
7954 
7955 // Multiply by 32-bit Immediate, taking the shifted high order results
7956 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
7957   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7958   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7959              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7960              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7961   effect(USE src1, KILL cr);
7962 
7963   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7964   ins_cost(1*100 + 1*400 - 150);
7965   format %{ "IMUL   EDX:EAX,$src1\n\t"
7966             "SAR    EDX,$cnt-32" %}
7967   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7968   ins_pipe( pipe_slow );
7969 %}
7970 
7971 // Multiply Memory 32-bit Immediate
7972 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
7973   match(Set dst (MulI (LoadI src) imm));
7974   effect(KILL cr);
7975 
7976   ins_cost(300);
7977   format %{ "IMUL   $dst,$src,$imm" %}
7978   opcode(0x69);  /* 69 /r id */
7979   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
7980   ins_pipe( ialu_reg_mem_alu0 );
7981 %}
7982 
7983 // Multiply Memory
7984 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
7985   match(Set dst (MulI dst (LoadI src)));
7986   effect(KILL cr);
7987 
7988   ins_cost(350);
7989   format %{ "IMUL   $dst,$src" %}
7990   opcode(0xAF, 0x0F);
7991   ins_encode( OpcS, OpcP, RegMem( dst, src) );
7992   ins_pipe( ialu_reg_mem_alu0 );
7993 %}
7994 
7995 // Multiply Register Int to Long
7996 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
7997   // Basic Idea: long = (long)int * (long)int
7998   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
7999   effect(DEF dst, USE src, USE src1, KILL flags);
8000 
8001   ins_cost(300);
8002   format %{ "IMUL   $dst,$src1" %}
8003 
8004   ins_encode( long_int_multiply( dst, src1 ) );
8005   ins_pipe( ialu_reg_reg_alu0 );
8006 %}
8007 
8008 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8009   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8010   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8011   effect(KILL flags);
8012 
8013   ins_cost(300);
8014   format %{ "MUL    $dst,$src1" %}
8015 
8016   ins_encode( long_uint_multiply(dst, src1) );
8017   ins_pipe( ialu_reg_reg_alu0 );
8018 %}
8019 
8020 // Multiply Register Long
8021 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8022   match(Set dst (MulL dst src));
8023   effect(KILL cr, TEMP tmp);
8024   ins_cost(4*100+3*400);
8025 // Basic idea: lo(result) = lo(x_lo * y_lo)
8026 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8027   format %{ "MOV    $tmp,$src.lo\n\t"
8028             "IMUL   $tmp,EDX\n\t"
8029             "MOV    EDX,$src.hi\n\t"
8030             "IMUL   EDX,EAX\n\t"
8031             "ADD    $tmp,EDX\n\t"
8032             "MUL    EDX:EAX,$src.lo\n\t"
8033             "ADD    EDX,$tmp" %}
8034   ins_encode( long_multiply( dst, src, tmp ) );
8035   ins_pipe( pipe_slow );
8036 %}
8037 
8038 // Multiply Register Long where the left operand's high 32 bits are zero
8039 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8040   predicate(is_operand_hi32_zero(n->in(1)));
8041   match(Set dst (MulL dst src));
8042   effect(KILL cr, TEMP tmp);
8043   ins_cost(2*100+2*400);
8044 // Basic idea: lo(result) = lo(x_lo * y_lo)
8045 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8046   format %{ "MOV    $tmp,$src.hi\n\t"
8047             "IMUL   $tmp,EAX\n\t"
8048             "MUL    EDX:EAX,$src.lo\n\t"
8049             "ADD    EDX,$tmp" %}
8050   ins_encode %{
8051     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8052     __ imull($tmp$$Register, rax);
8053     __ mull($src$$Register);
8054     __ addl(rdx, $tmp$$Register);
8055   %}
8056   ins_pipe( pipe_slow );
8057 %}
8058 
8059 // Multiply Register Long where the right operand's high 32 bits are zero
8060 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8061   predicate(is_operand_hi32_zero(n->in(2)));
8062   match(Set dst (MulL dst src));
8063   effect(KILL cr, TEMP tmp);
8064   ins_cost(2*100+2*400);
8065 // Basic idea: lo(result) = lo(x_lo * y_lo)
8066 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8067   format %{ "MOV    $tmp,$src.lo\n\t"
8068             "IMUL   $tmp,EDX\n\t"
8069             "MUL    EDX:EAX,$src.lo\n\t"
8070             "ADD    EDX,$tmp" %}
8071   ins_encode %{
8072     __ movl($tmp$$Register, $src$$Register);
8073     __ imull($tmp$$Register, rdx);
8074     __ mull($src$$Register);
8075     __ addl(rdx, $tmp$$Register);
8076   %}
8077   ins_pipe( pipe_slow );
8078 %}
8079 
8080 // Multiply Register Long where the left and the right operands' high 32 bits are zero
8081 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8082   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8083   match(Set dst (MulL dst src));
8084   effect(KILL cr);
8085   ins_cost(1*400);
8086 // Basic idea: lo(result) = lo(x_lo * y_lo)
8087 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8088   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8089   ins_encode %{
8090     __ mull($src$$Register);
8091   %}
8092   ins_pipe( pipe_slow );
8093 %}
8094 
8095 // Multiply Register Long by small constant
8096 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
8097   match(Set dst (MulL dst src));
8098   effect(KILL cr, TEMP tmp);
8099   ins_cost(2*100+2*400);
8100   size(12);
8101 // Basic idea: lo(result) = lo(src * EAX)
8102 //             hi(result) = hi(src * EAX) + lo(src * EDX)
8103   format %{ "IMUL   $tmp,EDX,$src\n\t"
8104             "MOV    EDX,$src\n\t"
8105             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8106             "ADD    EDX,$tmp" %}
8107   ins_encode( long_multiply_con( dst, src, tmp ) );
8108   ins_pipe( pipe_slow );
8109 %}
8110 
8111 // Integer DIV with Register
8112 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8113   match(Set rax (DivI rax div));
8114   effect(KILL rdx, KILL cr);
8115   size(26);
8116   ins_cost(30*100+10*100);
8117   format %{ "CMP    EAX,0x80000000\n\t"
8118             "JNE,s  normal\n\t"
8119             "XOR    EDX,EDX\n\t"
8120             "CMP    ECX,-1\n\t"
8121             "JE,s   done\n"
8122     "normal: CDQ\n\t"
8123             "IDIV   $div\n\t"
8124     "done:"        %}
8125   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8126   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8127   ins_pipe( ialu_reg_reg_alu0 );
8128 %}
8129 
8130 // Divide Register Long
8131 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8132   match(Set dst (DivL src1 src2));
8133   effect( KILL cr, KILL cx, KILL bx );
8134   ins_cost(10000);
8135   format %{ "PUSH   $src1.hi\n\t"
8136             "PUSH   $src1.lo\n\t"
8137             "PUSH   $src2.hi\n\t"
8138             "PUSH   $src2.lo\n\t"
8139             "CALL   SharedRuntime::ldiv\n\t"
8140             "ADD    ESP,16" %}
8141   ins_encode( long_div(src1,src2) );
8142   ins_pipe( pipe_slow );
8143 %}
8144 
8145 // Integer DIVMOD with Register, both quotient and mod results
8146 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8147   match(DivModI rax div);
8148   effect(KILL cr);
8149   size(26);
8150   ins_cost(30*100+10*100);
8151   format %{ "CMP    EAX,0x80000000\n\t"
8152             "JNE,s  normal\n\t"
8153             "XOR    EDX,EDX\n\t"
8154             "CMP    ECX,-1\n\t"
8155             "JE,s   done\n"
8156     "normal: CDQ\n\t"
8157             "IDIV   $div\n\t"
8158     "done:"        %}
8159   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8160   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8161   ins_pipe( pipe_slow );
8162 %}
8163 
8164 // Integer MOD with Register
8165 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8166   match(Set rdx (ModI rax div));
8167   effect(KILL rax, KILL cr);
8168 
8169   size(26);
8170   ins_cost(300);
8171   format %{ "CDQ\n\t"
8172             "IDIV   $div" %}
8173   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8174   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8175   ins_pipe( ialu_reg_reg_alu0 );
8176 %}
8177 
8178 // Remainder Register Long
8179 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8180   match(Set dst (ModL src1 src2));
8181   effect( KILL cr, KILL cx, KILL bx );
8182   ins_cost(10000);
8183   format %{ "PUSH   $src1.hi\n\t"
8184             "PUSH   $src1.lo\n\t"
8185             "PUSH   $src2.hi\n\t"
8186             "PUSH   $src2.lo\n\t"
8187             "CALL   SharedRuntime::lrem\n\t"
8188             "ADD    ESP,16" %}
8189   ins_encode( long_mod(src1,src2) );
8190   ins_pipe( pipe_slow );
8191 %}
8192 
8193 // Divide Register Long (no special case since divisor != -1)
8194 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8195   match(Set dst (DivL dst imm));
8196   effect( TEMP tmp, TEMP tmp2, KILL cr );
8197   ins_cost(1000);
8198   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
8199             "XOR    $tmp2,$tmp2\n\t"
8200             "CMP    $tmp,EDX\n\t"
8201             "JA,s   fast\n\t"
8202             "MOV    $tmp2,EAX\n\t"
8203             "MOV    EAX,EDX\n\t"
8204             "MOV    EDX,0\n\t"
8205             "JLE,s  pos\n\t"
8206             "LNEG   EAX : $tmp2\n\t"
8207             "DIV    $tmp # unsigned division\n\t"
8208             "XCHG   EAX,$tmp2\n\t"
8209             "DIV    $tmp\n\t"
8210             "LNEG   $tmp2 : EAX\n\t"
8211             "JMP,s  done\n"
8212     "pos:\n\t"
8213             "DIV    $tmp\n\t"
8214             "XCHG   EAX,$tmp2\n"
8215     "fast:\n\t"
8216             "DIV    $tmp\n"
8217     "done:\n\t"
8218             "MOV    EDX,$tmp2\n\t"
8219             "NEG    EDX:EAX # if $imm < 0" %}
8220   ins_encode %{
8221     int con = (int)$imm$$constant;
8222     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8223     int pcon = (con > 0) ? con : -con;
8224     Label Lfast, Lpos, Ldone;
8225 
8226     __ movl($tmp$$Register, pcon);
8227     __ xorl($tmp2$$Register,$tmp2$$Register);
8228     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8229     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
8230 
8231     __ movl($tmp2$$Register, $dst$$Register); // save
8232     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8233     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8234     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8235 
8236     // Negative dividend.
8237     // convert value to positive to use unsigned division
8238     __ lneg($dst$$Register, $tmp2$$Register);
8239     __ divl($tmp$$Register);
8240     __ xchgl($dst$$Register, $tmp2$$Register);
8241     __ divl($tmp$$Register);
8242     // revert result back to negative
8243     __ lneg($tmp2$$Register, $dst$$Register);
8244     __ jmpb(Ldone);
8245 
8246     __ bind(Lpos);
8247     __ divl($tmp$$Register); // Use unsigned division
8248     __ xchgl($dst$$Register, $tmp2$$Register);
8249     // Fallthrow for final divide, tmp2 has 32 bit hi result
8250 
8251     __ bind(Lfast);
8252     // fast path: src is positive
8253     __ divl($tmp$$Register); // Use unsigned division
8254 
8255     __ bind(Ldone);
8256     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
8257     if (con < 0) {
8258       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
8259     }
8260   %}
8261   ins_pipe( pipe_slow );
8262 %}
8263 
8264 // Remainder Register Long (remainder fit into 32 bits)
8265 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8266   match(Set dst (ModL dst imm));
8267   effect( TEMP tmp, TEMP tmp2, KILL cr );
8268   ins_cost(1000);
8269   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
8270             "CMP    $tmp,EDX\n\t"
8271             "JA,s   fast\n\t"
8272             "MOV    $tmp2,EAX\n\t"
8273             "MOV    EAX,EDX\n\t"
8274             "MOV    EDX,0\n\t"
8275             "JLE,s  pos\n\t"
8276             "LNEG   EAX : $tmp2\n\t"
8277             "DIV    $tmp # unsigned division\n\t"
8278             "MOV    EAX,$tmp2\n\t"
8279             "DIV    $tmp\n\t"
8280             "NEG    EDX\n\t"
8281             "JMP,s  done\n"
8282     "pos:\n\t"
8283             "DIV    $tmp\n\t"
8284             "MOV    EAX,$tmp2\n"
8285     "fast:\n\t"
8286             "DIV    $tmp\n"
8287     "done:\n\t"
8288             "MOV    EAX,EDX\n\t"
8289             "SAR    EDX,31\n\t" %}
8290   ins_encode %{
8291     int con = (int)$imm$$constant;
8292     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8293     int pcon = (con > 0) ? con : -con;
8294     Label  Lfast, Lpos, Ldone;
8295 
8296     __ movl($tmp$$Register, pcon);
8297     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8298     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
8299 
8300     __ movl($tmp2$$Register, $dst$$Register); // save
8301     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8302     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8303     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8304 
8305     // Negative dividend.
8306     // convert value to positive to use unsigned division
8307     __ lneg($dst$$Register, $tmp2$$Register);
8308     __ divl($tmp$$Register);
8309     __ movl($dst$$Register, $tmp2$$Register);
8310     __ divl($tmp$$Register);
8311     // revert remainder back to negative
8312     __ negl(HIGH_FROM_LOW($dst$$Register));
8313     __ jmpb(Ldone);
8314 
8315     __ bind(Lpos);
8316     __ divl($tmp$$Register);
8317     __ movl($dst$$Register, $tmp2$$Register);
8318 
8319     __ bind(Lfast);
8320     // fast path: src is positive
8321     __ divl($tmp$$Register);
8322 
8323     __ bind(Ldone);
8324     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8325     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
8326 
8327   %}
8328   ins_pipe( pipe_slow );
8329 %}
8330 
8331 // Integer Shift Instructions
8332 // Shift Left by one
8333 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8334   match(Set dst (LShiftI dst shift));
8335   effect(KILL cr);
8336 
8337   size(2);
8338   format %{ "SHL    $dst,$shift" %}
8339   opcode(0xD1, 0x4);  /* D1 /4 */
8340   ins_encode( OpcP, RegOpc( dst ) );
8341   ins_pipe( ialu_reg );
8342 %}
8343 
8344 // Shift Left by 8-bit immediate
8345 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8346   match(Set dst (LShiftI dst shift));
8347   effect(KILL cr);
8348 
8349   size(3);
8350   format %{ "SHL    $dst,$shift" %}
8351   opcode(0xC1, 0x4);  /* C1 /4 ib */
8352   ins_encode( RegOpcImm( dst, shift) );
8353   ins_pipe( ialu_reg );
8354 %}
8355 
8356 // Shift Left by variable
8357 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8358   match(Set dst (LShiftI dst shift));
8359   effect(KILL cr);
8360 
8361   size(2);
8362   format %{ "SHL    $dst,$shift" %}
8363   opcode(0xD3, 0x4);  /* D3 /4 */
8364   ins_encode( OpcP, RegOpc( dst ) );
8365   ins_pipe( ialu_reg_reg );
8366 %}
8367 
8368 // Arithmetic shift right by one
8369 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8370   match(Set dst (RShiftI dst shift));
8371   effect(KILL cr);
8372 
8373   size(2);
8374   format %{ "SAR    $dst,$shift" %}
8375   opcode(0xD1, 0x7);  /* D1 /7 */
8376   ins_encode( OpcP, RegOpc( dst ) );
8377   ins_pipe( ialu_reg );
8378 %}
8379 
8380 // Arithmetic shift right by one
8381 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8382   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8383   effect(KILL cr);
8384   format %{ "SAR    $dst,$shift" %}
8385   opcode(0xD1, 0x7);  /* D1 /7 */
8386   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8387   ins_pipe( ialu_mem_imm );
8388 %}
8389 
8390 // Arithmetic Shift Right by 8-bit immediate
8391 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8392   match(Set dst (RShiftI dst shift));
8393   effect(KILL cr);
8394 
8395   size(3);
8396   format %{ "SAR    $dst,$shift" %}
8397   opcode(0xC1, 0x7);  /* C1 /7 ib */
8398   ins_encode( RegOpcImm( dst, shift ) );
8399   ins_pipe( ialu_mem_imm );
8400 %}
8401 
8402 // Arithmetic Shift Right by 8-bit immediate
8403 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8404   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8405   effect(KILL cr);
8406 
8407   format %{ "SAR    $dst,$shift" %}
8408   opcode(0xC1, 0x7);  /* C1 /7 ib */
8409   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8410   ins_pipe( ialu_mem_imm );
8411 %}
8412 
8413 // Arithmetic Shift Right by variable
8414 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8415   match(Set dst (RShiftI dst shift));
8416   effect(KILL cr);
8417 
8418   size(2);
8419   format %{ "SAR    $dst,$shift" %}
8420   opcode(0xD3, 0x7);  /* D3 /7 */
8421   ins_encode( OpcP, RegOpc( dst ) );
8422   ins_pipe( ialu_reg_reg );
8423 %}
8424 
8425 // Logical shift right by one
8426 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8427   match(Set dst (URShiftI dst shift));
8428   effect(KILL cr);
8429 
8430   size(2);
8431   format %{ "SHR    $dst,$shift" %}
8432   opcode(0xD1, 0x5);  /* D1 /5 */
8433   ins_encode( OpcP, RegOpc( dst ) );
8434   ins_pipe( ialu_reg );
8435 %}
8436 
8437 // Logical Shift Right by 8-bit immediate
8438 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8439   match(Set dst (URShiftI dst shift));
8440   effect(KILL cr);
8441 
8442   size(3);
8443   format %{ "SHR    $dst,$shift" %}
8444   opcode(0xC1, 0x5);  /* C1 /5 ib */
8445   ins_encode( RegOpcImm( dst, shift) );
8446   ins_pipe( ialu_reg );
8447 %}
8448 
8449 
8450 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8451 // This idiom is used by the compiler for the i2b bytecode.
8452 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
8453   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8454 
8455   size(3);
8456   format %{ "MOVSX  $dst,$src :8" %}
8457   ins_encode %{
8458     __ movsbl($dst$$Register, $src$$Register);
8459   %}
8460   ins_pipe(ialu_reg_reg);
8461 %}
8462 
8463 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8464 // This idiom is used by the compiler the i2s bytecode.
8465 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
8466   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8467 
8468   size(3);
8469   format %{ "MOVSX  $dst,$src :16" %}
8470   ins_encode %{
8471     __ movswl($dst$$Register, $src$$Register);
8472   %}
8473   ins_pipe(ialu_reg_reg);
8474 %}
8475 
8476 
8477 // Logical Shift Right by variable
8478 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8479   match(Set dst (URShiftI dst shift));
8480   effect(KILL cr);
8481 
8482   size(2);
8483   format %{ "SHR    $dst,$shift" %}
8484   opcode(0xD3, 0x5);  /* D3 /5 */
8485   ins_encode( OpcP, RegOpc( dst ) );
8486   ins_pipe( ialu_reg_reg );
8487 %}
8488 
8489 
8490 //----------Logical Instructions-----------------------------------------------
8491 //----------Integer Logical Instructions---------------------------------------
8492 // And Instructions
8493 // And Register with Register
8494 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8495   match(Set dst (AndI dst src));
8496   effect(KILL cr);
8497 
8498   size(2);
8499   format %{ "AND    $dst,$src" %}
8500   opcode(0x23);
8501   ins_encode( OpcP, RegReg( dst, src) );
8502   ins_pipe( ialu_reg_reg );
8503 %}
8504 
8505 // And Register with Immediate
8506 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8507   match(Set dst (AndI dst src));
8508   effect(KILL cr);
8509 
8510   format %{ "AND    $dst,$src" %}
8511   opcode(0x81,0x04);  /* Opcode 81 /4 */
8512   // ins_encode( RegImm( dst, src) );
8513   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8514   ins_pipe( ialu_reg );
8515 %}
8516 
8517 // And Register with Memory
8518 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8519   match(Set dst (AndI dst (LoadI src)));
8520   effect(KILL cr);
8521 
8522   ins_cost(125);
8523   format %{ "AND    $dst,$src" %}
8524   opcode(0x23);
8525   ins_encode( OpcP, RegMem( dst, src) );
8526   ins_pipe( ialu_reg_mem );
8527 %}
8528 
8529 // And Memory with Register
8530 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8531   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8532   effect(KILL cr);
8533 
8534   ins_cost(150);
8535   format %{ "AND    $dst,$src" %}
8536   opcode(0x21);  /* Opcode 21 /r */
8537   ins_encode( OpcP, RegMem( src, dst ) );
8538   ins_pipe( ialu_mem_reg );
8539 %}
8540 
8541 // And Memory with Immediate
8542 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8543   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8544   effect(KILL cr);
8545 
8546   ins_cost(125);
8547   format %{ "AND    $dst,$src" %}
8548   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8549   // ins_encode( MemImm( dst, src) );
8550   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8551   ins_pipe( ialu_mem_imm );
8552 %}
8553 
8554 // Or Instructions
8555 // Or Register with Register
8556 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8557   match(Set dst (OrI dst src));
8558   effect(KILL cr);
8559 
8560   size(2);
8561   format %{ "OR     $dst,$src" %}
8562   opcode(0x0B);
8563   ins_encode( OpcP, RegReg( dst, src) );
8564   ins_pipe( ialu_reg_reg );
8565 %}
8566 
8567 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
8568   match(Set dst (OrI dst (CastP2X src)));
8569   effect(KILL cr);
8570 
8571   size(2);
8572   format %{ "OR     $dst,$src" %}
8573   opcode(0x0B);
8574   ins_encode( OpcP, RegReg( dst, src) );
8575   ins_pipe( ialu_reg_reg );
8576 %}
8577 
8578 
8579 // Or Register with Immediate
8580 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8581   match(Set dst (OrI dst src));
8582   effect(KILL cr);
8583 
8584   format %{ "OR     $dst,$src" %}
8585   opcode(0x81,0x01);  /* Opcode 81 /1 id */
8586   // ins_encode( RegImm( dst, src) );
8587   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8588   ins_pipe( ialu_reg );
8589 %}
8590 
8591 // Or Register with Memory
8592 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8593   match(Set dst (OrI dst (LoadI src)));
8594   effect(KILL cr);
8595 
8596   ins_cost(125);
8597   format %{ "OR     $dst,$src" %}
8598   opcode(0x0B);
8599   ins_encode( OpcP, RegMem( dst, src) );
8600   ins_pipe( ialu_reg_mem );
8601 %}
8602 
8603 // Or Memory with Register
8604 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8605   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8606   effect(KILL cr);
8607 
8608   ins_cost(150);
8609   format %{ "OR     $dst,$src" %}
8610   opcode(0x09);  /* Opcode 09 /r */
8611   ins_encode( OpcP, RegMem( src, dst ) );
8612   ins_pipe( ialu_mem_reg );
8613 %}
8614 
8615 // Or Memory with Immediate
8616 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8617   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8618   effect(KILL cr);
8619 
8620   ins_cost(125);
8621   format %{ "OR     $dst,$src" %}
8622   opcode(0x81,0x1);  /* Opcode 81 /1 id */
8623   // ins_encode( MemImm( dst, src) );
8624   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8625   ins_pipe( ialu_mem_imm );
8626 %}
8627 
8628 // ROL/ROR
8629 // ROL expand
8630 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8631   effect(USE_DEF dst, USE shift, KILL cr);
8632 
8633   format %{ "ROL    $dst, $shift" %}
8634   opcode(0xD1, 0x0); /* Opcode D1 /0 */
8635   ins_encode( OpcP, RegOpc( dst ));
8636   ins_pipe( ialu_reg );
8637 %}
8638 
8639 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8640   effect(USE_DEF dst, USE shift, KILL cr);
8641 
8642   format %{ "ROL    $dst, $shift" %}
8643   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8644   ins_encode( RegOpcImm(dst, shift) );
8645   ins_pipe(ialu_reg);
8646 %}
8647 
8648 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8649   effect(USE_DEF dst, USE shift, KILL cr);
8650 
8651   format %{ "ROL    $dst, $shift" %}
8652   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8653   ins_encode(OpcP, RegOpc(dst));
8654   ins_pipe( ialu_reg_reg );
8655 %}
8656 // end of ROL expand
8657 
8658 // ROL 32bit by one once
8659 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8660   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8661 
8662   expand %{
8663     rolI_eReg_imm1(dst, lshift, cr);
8664   %}
8665 %}
8666 
8667 // ROL 32bit var by imm8 once
8668 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8669   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8670   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8671 
8672   expand %{
8673     rolI_eReg_imm8(dst, lshift, cr);
8674   %}
8675 %}
8676 
8677 // ROL 32bit var by var once
8678 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8679   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8680 
8681   expand %{
8682     rolI_eReg_CL(dst, shift, cr);
8683   %}
8684 %}
8685 
8686 // ROL 32bit var by var once
8687 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8688   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8689 
8690   expand %{
8691     rolI_eReg_CL(dst, shift, cr);
8692   %}
8693 %}
8694 
8695 // ROR expand
8696 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8697   effect(USE_DEF dst, USE shift, KILL cr);
8698 
8699   format %{ "ROR    $dst, $shift" %}
8700   opcode(0xD1,0x1);  /* Opcode D1 /1 */
8701   ins_encode( OpcP, RegOpc( dst ) );
8702   ins_pipe( ialu_reg );
8703 %}
8704 
8705 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8706   effect (USE_DEF dst, USE shift, KILL cr);
8707 
8708   format %{ "ROR    $dst, $shift" %}
8709   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
8710   ins_encode( RegOpcImm(dst, shift) );
8711   ins_pipe( ialu_reg );
8712 %}
8713 
8714 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
8715   effect(USE_DEF dst, USE shift, KILL cr);
8716 
8717   format %{ "ROR    $dst, $shift" %}
8718   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
8719   ins_encode(OpcP, RegOpc(dst));
8720   ins_pipe( ialu_reg_reg );
8721 %}
8722 // end of ROR expand
8723 
8724 // ROR right once
8725 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
8726   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8727 
8728   expand %{
8729     rorI_eReg_imm1(dst, rshift, cr);
8730   %}
8731 %}
8732 
8733 // ROR 32bit by immI8 once
8734 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
8735   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8736   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8737 
8738   expand %{
8739     rorI_eReg_imm8(dst, rshift, cr);
8740   %}
8741 %}
8742 
8743 // ROR 32bit var by var once
8744 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8745   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8746 
8747   expand %{
8748     rorI_eReg_CL(dst, shift, cr);
8749   %}
8750 %}
8751 
8752 // ROR 32bit var by var once
8753 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8754   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8755 
8756   expand %{
8757     rorI_eReg_CL(dst, shift, cr);
8758   %}
8759 %}
8760 
8761 // Xor Instructions
8762 // Xor Register with Register
8763 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8764   match(Set dst (XorI dst src));
8765   effect(KILL cr);
8766 
8767   size(2);
8768   format %{ "XOR    $dst,$src" %}
8769   opcode(0x33);
8770   ins_encode( OpcP, RegReg( dst, src) );
8771   ins_pipe( ialu_reg_reg );
8772 %}
8773 
8774 // Xor Register with Immediate -1
8775 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
8776   match(Set dst (XorI dst imm));  
8777 
8778   size(2);
8779   format %{ "NOT    $dst" %}  
8780   ins_encode %{
8781      __ notl($dst$$Register);
8782   %}
8783   ins_pipe( ialu_reg );
8784 %}
8785 
8786 // Xor Register with Immediate
8787 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8788   match(Set dst (XorI dst src));
8789   effect(KILL cr);
8790 
8791   format %{ "XOR    $dst,$src" %}
8792   opcode(0x81,0x06);  /* Opcode 81 /6 id */
8793   // ins_encode( RegImm( dst, src) );
8794   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8795   ins_pipe( ialu_reg );
8796 %}
8797 
8798 // Xor Register with Memory
8799 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8800   match(Set dst (XorI dst (LoadI src)));
8801   effect(KILL cr);
8802 
8803   ins_cost(125);
8804   format %{ "XOR    $dst,$src" %}
8805   opcode(0x33);
8806   ins_encode( OpcP, RegMem(dst, src) );
8807   ins_pipe( ialu_reg_mem );
8808 %}
8809 
8810 // Xor Memory with Register
8811 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8812   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8813   effect(KILL cr);
8814 
8815   ins_cost(150);
8816   format %{ "XOR    $dst,$src" %}
8817   opcode(0x31);  /* Opcode 31 /r */
8818   ins_encode( OpcP, RegMem( src, dst ) );
8819   ins_pipe( ialu_mem_reg );
8820 %}
8821 
8822 // Xor Memory with Immediate
8823 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8824   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8825   effect(KILL cr);
8826 
8827   ins_cost(125);
8828   format %{ "XOR    $dst,$src" %}
8829   opcode(0x81,0x6);  /* Opcode 81 /6 id */
8830   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8831   ins_pipe( ialu_mem_imm );
8832 %}
8833 
8834 //----------Convert Int to Boolean---------------------------------------------
8835 
8836 instruct movI_nocopy(rRegI dst, rRegI src) %{
8837   effect( DEF dst, USE src );
8838   format %{ "MOV    $dst,$src" %}
8839   ins_encode( enc_Copy( dst, src) );
8840   ins_pipe( ialu_reg_reg );
8841 %}
8842 
8843 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
8844   effect( USE_DEF dst, USE src, KILL cr );
8845 
8846   size(4);
8847   format %{ "NEG    $dst\n\t"
8848             "ADC    $dst,$src" %}
8849   ins_encode( neg_reg(dst),
8850               OpcRegReg(0x13,dst,src) );
8851   ins_pipe( ialu_reg_reg_long );
8852 %}
8853 
8854 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
8855   match(Set dst (Conv2B src));
8856 
8857   expand %{
8858     movI_nocopy(dst,src);
8859     ci2b(dst,src,cr);
8860   %}
8861 %}
8862 
8863 instruct movP_nocopy(rRegI dst, eRegP src) %{
8864   effect( DEF dst, USE src );
8865   format %{ "MOV    $dst,$src" %}
8866   ins_encode( enc_Copy( dst, src) );
8867   ins_pipe( ialu_reg_reg );
8868 %}
8869 
8870 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
8871   effect( USE_DEF dst, USE src, KILL cr );
8872   format %{ "NEG    $dst\n\t"
8873             "ADC    $dst,$src" %}
8874   ins_encode( neg_reg(dst),
8875               OpcRegReg(0x13,dst,src) );
8876   ins_pipe( ialu_reg_reg_long );
8877 %}
8878 
8879 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
8880   match(Set dst (Conv2B src));
8881 
8882   expand %{
8883     movP_nocopy(dst,src);
8884     cp2b(dst,src,cr);
8885   %}
8886 %}
8887 
8888 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
8889   match(Set dst (CmpLTMask p q));
8890   effect( KILL cr );
8891   ins_cost(400);
8892 
8893   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
8894   format %{ "XOR    $dst,$dst\n\t"
8895             "CMP    $p,$q\n\t"
8896             "SETlt  $dst\n\t"
8897             "NEG    $dst" %}
8898   ins_encode( OpcRegReg(0x33,dst,dst),
8899               OpcRegReg(0x3B,p,q),
8900               setLT_reg(dst), neg_reg(dst) );
8901   ins_pipe( pipe_slow );
8902 %}
8903 
8904 instruct cmpLTMask0( rRegI dst, immI0 zero, eFlagsReg cr ) %{
8905   match(Set dst (CmpLTMask dst zero));
8906   effect( DEF dst, KILL cr );
8907   ins_cost(100);
8908 
8909   format %{ "SAR    $dst,31" %}
8910   opcode(0xC1, 0x7);  /* C1 /7 ib */
8911   ins_encode( RegOpcImm( dst, 0x1F ) );
8912   ins_pipe( ialu_reg );
8913 %}
8914 
8915 
8916 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
8917   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8918   effect( KILL tmp, KILL cr );
8919   ins_cost(400);
8920   // annoyingly, $tmp has no edges so you cant ask for it in
8921   // any format or encoding
8922   format %{ "SUB    $p,$q\n\t"
8923             "SBB    ECX,ECX\n\t"
8924             "AND    ECX,$y\n\t"
8925             "ADD    $p,ECX" %}
8926   ins_encode( enc_cmpLTP(p,q,y,tmp) );
8927   ins_pipe( pipe_cmplt );
8928 %}
8929 
8930 /* If I enable this, I encourage spilling in the inner loop of compress.
8931 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
8932   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
8933   effect( USE_KILL tmp, KILL cr );
8934   ins_cost(400);
8935 
8936   format %{ "SUB    $p,$q\n\t"
8937             "SBB    ECX,ECX\n\t"
8938             "AND    ECX,$y\n\t"
8939             "ADD    $p,ECX" %}
8940   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
8941 %}
8942 */
8943 
8944 //----------Long Instructions------------------------------------------------
8945 // Add Long Register with Register
8946 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8947   match(Set dst (AddL dst src));
8948   effect(KILL cr);
8949   ins_cost(200);
8950   format %{ "ADD    $dst.lo,$src.lo\n\t"
8951             "ADC    $dst.hi,$src.hi" %}
8952   opcode(0x03, 0x13);
8953   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8954   ins_pipe( ialu_reg_reg_long );
8955 %}
8956 
8957 // Add Long Register with Immediate
8958 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8959   match(Set dst (AddL dst src));
8960   effect(KILL cr);
8961   format %{ "ADD    $dst.lo,$src.lo\n\t"
8962             "ADC    $dst.hi,$src.hi" %}
8963   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
8964   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8965   ins_pipe( ialu_reg_long );
8966 %}
8967 
8968 // Add Long Register with Memory
8969 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8970   match(Set dst (AddL dst (LoadL mem)));
8971   effect(KILL cr);
8972   ins_cost(125);
8973   format %{ "ADD    $dst.lo,$mem\n\t"
8974             "ADC    $dst.hi,$mem+4" %}
8975   opcode(0x03, 0x13);
8976   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8977   ins_pipe( ialu_reg_long_mem );
8978 %}
8979 
8980 // Subtract Long Register with Register.
8981 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8982   match(Set dst (SubL dst src));
8983   effect(KILL cr);
8984   ins_cost(200);
8985   format %{ "SUB    $dst.lo,$src.lo\n\t"
8986             "SBB    $dst.hi,$src.hi" %}
8987   opcode(0x2B, 0x1B);
8988   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8989   ins_pipe( ialu_reg_reg_long );
8990 %}
8991 
8992 // Subtract Long Register with Immediate
8993 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8994   match(Set dst (SubL dst src));
8995   effect(KILL cr);
8996   format %{ "SUB    $dst.lo,$src.lo\n\t"
8997             "SBB    $dst.hi,$src.hi" %}
8998   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
8999   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9000   ins_pipe( ialu_reg_long );
9001 %}
9002 
9003 // Subtract Long Register with Memory
9004 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9005   match(Set dst (SubL dst (LoadL mem)));
9006   effect(KILL cr);
9007   ins_cost(125);
9008   format %{ "SUB    $dst.lo,$mem\n\t"
9009             "SBB    $dst.hi,$mem+4" %}
9010   opcode(0x2B, 0x1B);
9011   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9012   ins_pipe( ialu_reg_long_mem );
9013 %}
9014 
9015 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9016   match(Set dst (SubL zero dst));
9017   effect(KILL cr);
9018   ins_cost(300);
9019   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9020   ins_encode( neg_long(dst) );
9021   ins_pipe( ialu_reg_reg_long );
9022 %}
9023 
9024 // And Long Register with Register
9025 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9026   match(Set dst (AndL dst src));
9027   effect(KILL cr);
9028   format %{ "AND    $dst.lo,$src.lo\n\t"
9029             "AND    $dst.hi,$src.hi" %}
9030   opcode(0x23,0x23);
9031   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9032   ins_pipe( ialu_reg_reg_long );
9033 %}
9034 
9035 // And Long Register with Immediate
9036 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9037   match(Set dst (AndL dst src));
9038   effect(KILL cr);
9039   format %{ "AND    $dst.lo,$src.lo\n\t"
9040             "AND    $dst.hi,$src.hi" %}
9041   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9042   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9043   ins_pipe( ialu_reg_long );
9044 %}
9045 
9046 // And Long Register with Memory
9047 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9048   match(Set dst (AndL dst (LoadL mem)));
9049   effect(KILL cr);
9050   ins_cost(125);
9051   format %{ "AND    $dst.lo,$mem\n\t"
9052             "AND    $dst.hi,$mem+4" %}
9053   opcode(0x23, 0x23);
9054   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9055   ins_pipe( ialu_reg_long_mem );
9056 %}
9057 
9058 // Or Long Register with Register
9059 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9060   match(Set dst (OrL dst src));
9061   effect(KILL cr);
9062   format %{ "OR     $dst.lo,$src.lo\n\t"
9063             "OR     $dst.hi,$src.hi" %}
9064   opcode(0x0B,0x0B);
9065   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9066   ins_pipe( ialu_reg_reg_long );
9067 %}
9068 
9069 // Or Long Register with Immediate
9070 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9071   match(Set dst (OrL dst src));
9072   effect(KILL cr);
9073   format %{ "OR     $dst.lo,$src.lo\n\t"
9074             "OR     $dst.hi,$src.hi" %}
9075   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9076   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9077   ins_pipe( ialu_reg_long );
9078 %}
9079 
9080 // Or Long Register with Memory
9081 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9082   match(Set dst (OrL dst (LoadL mem)));
9083   effect(KILL cr);
9084   ins_cost(125);
9085   format %{ "OR     $dst.lo,$mem\n\t"
9086             "OR     $dst.hi,$mem+4" %}
9087   opcode(0x0B,0x0B);
9088   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9089   ins_pipe( ialu_reg_long_mem );
9090 %}
9091 
9092 // Xor Long Register with Register
9093 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9094   match(Set dst (XorL dst src));
9095   effect(KILL cr);
9096   format %{ "XOR    $dst.lo,$src.lo\n\t"
9097             "XOR    $dst.hi,$src.hi" %}
9098   opcode(0x33,0x33);
9099   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9100   ins_pipe( ialu_reg_reg_long );
9101 %}
9102 
9103 // Xor Long Register with Immediate -1
9104 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9105   match(Set dst (XorL dst imm));  
9106   format %{ "NOT    $dst.lo\n\t"
9107             "NOT    $dst.hi" %}
9108   ins_encode %{
9109      __ notl($dst$$Register);
9110      __ notl(HIGH_FROM_LOW($dst$$Register));
9111   %}
9112   ins_pipe( ialu_reg_long );
9113 %}
9114 
9115 // Xor Long Register with Immediate
9116 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9117   match(Set dst (XorL dst src));
9118   effect(KILL cr);
9119   format %{ "XOR    $dst.lo,$src.lo\n\t"
9120             "XOR    $dst.hi,$src.hi" %}
9121   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9122   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9123   ins_pipe( ialu_reg_long );
9124 %}
9125 
9126 // Xor Long Register with Memory
9127 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9128   match(Set dst (XorL dst (LoadL mem)));
9129   effect(KILL cr);
9130   ins_cost(125);
9131   format %{ "XOR    $dst.lo,$mem\n\t"
9132             "XOR    $dst.hi,$mem+4" %}
9133   opcode(0x33,0x33);
9134   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9135   ins_pipe( ialu_reg_long_mem );
9136 %}
9137 
9138 // Shift Left Long by 1
9139 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9140   predicate(UseNewLongLShift);
9141   match(Set dst (LShiftL dst cnt));
9142   effect(KILL cr);
9143   ins_cost(100);
9144   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9145             "ADC    $dst.hi,$dst.hi" %}
9146   ins_encode %{
9147     __ addl($dst$$Register,$dst$$Register);
9148     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9149   %}
9150   ins_pipe( ialu_reg_long );
9151 %}
9152 
9153 // Shift Left Long by 2
9154 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9155   predicate(UseNewLongLShift);
9156   match(Set dst (LShiftL dst cnt));
9157   effect(KILL cr);
9158   ins_cost(100);
9159   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9160             "ADC    $dst.hi,$dst.hi\n\t" 
9161             "ADD    $dst.lo,$dst.lo\n\t"
9162             "ADC    $dst.hi,$dst.hi" %}
9163   ins_encode %{
9164     __ addl($dst$$Register,$dst$$Register);
9165     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9166     __ addl($dst$$Register,$dst$$Register);
9167     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9168   %}
9169   ins_pipe( ialu_reg_long );
9170 %}
9171 
9172 // Shift Left Long by 3
9173 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9174   predicate(UseNewLongLShift);
9175   match(Set dst (LShiftL dst cnt));
9176   effect(KILL cr);
9177   ins_cost(100);
9178   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9179             "ADC    $dst.hi,$dst.hi\n\t" 
9180             "ADD    $dst.lo,$dst.lo\n\t"
9181             "ADC    $dst.hi,$dst.hi\n\t" 
9182             "ADD    $dst.lo,$dst.lo\n\t"
9183             "ADC    $dst.hi,$dst.hi" %}
9184   ins_encode %{
9185     __ addl($dst$$Register,$dst$$Register);
9186     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9187     __ addl($dst$$Register,$dst$$Register);
9188     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9189     __ addl($dst$$Register,$dst$$Register);
9190     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9191   %}
9192   ins_pipe( ialu_reg_long );
9193 %}
9194 
9195 // Shift Left Long by 1-31
9196 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9197   match(Set dst (LShiftL dst cnt));
9198   effect(KILL cr);
9199   ins_cost(200);
9200   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9201             "SHL    $dst.lo,$cnt" %}
9202   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9203   ins_encode( move_long_small_shift(dst,cnt) );
9204   ins_pipe( ialu_reg_long );
9205 %}
9206 
9207 // Shift Left Long by 32-63
9208 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9209   match(Set dst (LShiftL dst cnt));
9210   effect(KILL cr);
9211   ins_cost(300);
9212   format %{ "MOV    $dst.hi,$dst.lo\n"
9213           "\tSHL    $dst.hi,$cnt-32\n"
9214           "\tXOR    $dst.lo,$dst.lo" %}
9215   opcode(0xC1, 0x4);  /* C1 /4 ib */
9216   ins_encode( move_long_big_shift_clr(dst,cnt) );
9217   ins_pipe( ialu_reg_long );
9218 %}
9219 
9220 // Shift Left Long by variable
9221 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9222   match(Set dst (LShiftL dst shift));
9223   effect(KILL cr);
9224   ins_cost(500+200);
9225   size(17);
9226   format %{ "TEST   $shift,32\n\t"
9227             "JEQ,s  small\n\t"
9228             "MOV    $dst.hi,$dst.lo\n\t"
9229             "XOR    $dst.lo,$dst.lo\n"
9230     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9231             "SHL    $dst.lo,$shift" %}
9232   ins_encode( shift_left_long( dst, shift ) );
9233   ins_pipe( pipe_slow );
9234 %}
9235 
9236 // Shift Right Long by 1-31
9237 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9238   match(Set dst (URShiftL dst cnt));
9239   effect(KILL cr);
9240   ins_cost(200);
9241   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9242             "SHR    $dst.hi,$cnt" %}
9243   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9244   ins_encode( move_long_small_shift(dst,cnt) );
9245   ins_pipe( ialu_reg_long );
9246 %}
9247 
9248 // Shift Right Long by 32-63
9249 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9250   match(Set dst (URShiftL dst cnt));
9251   effect(KILL cr);
9252   ins_cost(300);
9253   format %{ "MOV    $dst.lo,$dst.hi\n"
9254           "\tSHR    $dst.lo,$cnt-32\n"
9255           "\tXOR    $dst.hi,$dst.hi" %}
9256   opcode(0xC1, 0x5);  /* C1 /5 ib */
9257   ins_encode( move_long_big_shift_clr(dst,cnt) );
9258   ins_pipe( ialu_reg_long );
9259 %}
9260 
9261 // Shift Right Long by variable
9262 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9263   match(Set dst (URShiftL dst shift));
9264   effect(KILL cr);
9265   ins_cost(600);
9266   size(17);
9267   format %{ "TEST   $shift,32\n\t"
9268             "JEQ,s  small\n\t"
9269             "MOV    $dst.lo,$dst.hi\n\t"
9270             "XOR    $dst.hi,$dst.hi\n"
9271     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9272             "SHR    $dst.hi,$shift" %}
9273   ins_encode( shift_right_long( dst, shift ) );
9274   ins_pipe( pipe_slow );
9275 %}
9276 
9277 // Shift Right Long by 1-31
9278 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9279   match(Set dst (RShiftL dst cnt));
9280   effect(KILL cr);
9281   ins_cost(200);
9282   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9283             "SAR    $dst.hi,$cnt" %}
9284   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9285   ins_encode( move_long_small_shift(dst,cnt) );
9286   ins_pipe( ialu_reg_long );
9287 %}
9288 
9289 // Shift Right Long by 32-63
9290 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9291   match(Set dst (RShiftL dst cnt));
9292   effect(KILL cr);
9293   ins_cost(300);
9294   format %{ "MOV    $dst.lo,$dst.hi\n"
9295           "\tSAR    $dst.lo,$cnt-32\n"
9296           "\tSAR    $dst.hi,31" %}
9297   opcode(0xC1, 0x7);  /* C1 /7 ib */
9298   ins_encode( move_long_big_shift_sign(dst,cnt) );
9299   ins_pipe( ialu_reg_long );
9300 %}
9301 
9302 // Shift Right arithmetic Long by variable
9303 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9304   match(Set dst (RShiftL dst shift));
9305   effect(KILL cr);
9306   ins_cost(600);
9307   size(18);
9308   format %{ "TEST   $shift,32\n\t"
9309             "JEQ,s  small\n\t"
9310             "MOV    $dst.lo,$dst.hi\n\t"
9311             "SAR    $dst.hi,31\n"
9312     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9313             "SAR    $dst.hi,$shift" %}
9314   ins_encode( shift_right_arith_long( dst, shift ) );
9315   ins_pipe( pipe_slow );
9316 %}
9317 
9318 
9319 //----------Double Instructions------------------------------------------------
9320 // Double Math
9321 
9322 // Compare & branch
9323 
9324 // P6 version of float compare, sets condition codes in EFLAGS
9325 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9326   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9327   match(Set cr (CmpD src1 src2));
9328   effect(KILL rax);
9329   ins_cost(150);
9330   format %{ "FLD    $src1\n\t"
9331             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9332             "JNP    exit\n\t"
9333             "MOV    ah,1       // saw a NaN, set CF\n\t"
9334             "SAHF\n"
9335      "exit:\tNOP               // avoid branch to branch" %}
9336   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9337   ins_encode( Push_Reg_DPR(src1),
9338               OpcP, RegOpc(src2),
9339               cmpF_P6_fixup );
9340   ins_pipe( pipe_slow );
9341 %}
9342 
9343 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
9344   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9345   match(Set cr (CmpD src1 src2));
9346   ins_cost(150);
9347   format %{ "FLD    $src1\n\t"
9348             "FUCOMIP ST,$src2  // P6 instruction" %}
9349   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9350   ins_encode( Push_Reg_DPR(src1),
9351               OpcP, RegOpc(src2));
9352   ins_pipe( pipe_slow );
9353 %}
9354 
9355 // Compare & branch
9356 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9357   predicate(UseSSE<=1);
9358   match(Set cr (CmpD src1 src2));
9359   effect(KILL rax);
9360   ins_cost(200);
9361   format %{ "FLD    $src1\n\t"
9362             "FCOMp  $src2\n\t"
9363             "FNSTSW AX\n\t"
9364             "TEST   AX,0x400\n\t"
9365             "JZ,s   flags\n\t"
9366             "MOV    AH,1\t# unordered treat as LT\n"
9367     "flags:\tSAHF" %}
9368   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9369   ins_encode( Push_Reg_DPR(src1),
9370               OpcP, RegOpc(src2),
9371               fpu_flags);
9372   ins_pipe( pipe_slow );
9373 %}
9374 
9375 // Compare vs zero into -1,0,1
9376 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
9377   predicate(UseSSE<=1);
9378   match(Set dst (CmpD3 src1 zero));
9379   effect(KILL cr, KILL rax);
9380   ins_cost(280);
9381   format %{ "FTSTD  $dst,$src1" %}
9382   opcode(0xE4, 0xD9);
9383   ins_encode( Push_Reg_DPR(src1),
9384               OpcS, OpcP, PopFPU,
9385               CmpF_Result(dst));
9386   ins_pipe( pipe_slow );
9387 %}
9388 
9389 // Compare into -1,0,1
9390 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
9391   predicate(UseSSE<=1);
9392   match(Set dst (CmpD3 src1 src2));
9393   effect(KILL cr, KILL rax);
9394   ins_cost(300);
9395   format %{ "FCMPD  $dst,$src1,$src2" %}
9396   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9397   ins_encode( Push_Reg_DPR(src1),
9398               OpcP, RegOpc(src2),
9399               CmpF_Result(dst));
9400   ins_pipe( pipe_slow );
9401 %}
9402 
9403 // float compare and set condition codes in EFLAGS by XMM regs
9404 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
9405   predicate(UseSSE>=2);
9406   match(Set cr (CmpD src1 src2));
9407   ins_cost(145);
9408   format %{ "UCOMISD $src1,$src2\n\t"
9409             "JNP,s   exit\n\t"
9410             "PUSHF\t# saw NaN, set CF\n\t"
9411             "AND     [rsp], #0xffffff2b\n\t"
9412             "POPF\n"
9413     "exit:" %}
9414   ins_encode %{
9415     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9416     emit_cmpfp_fixup(_masm);
9417   %}
9418   ins_pipe( pipe_slow );
9419 %}
9420 
9421 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
9422   predicate(UseSSE>=2);
9423   match(Set cr (CmpD src1 src2));
9424   ins_cost(100);
9425   format %{ "UCOMISD $src1,$src2" %}
9426   ins_encode %{
9427     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9428   %}
9429   ins_pipe( pipe_slow );
9430 %}
9431 
9432 // float compare and set condition codes in EFLAGS by XMM regs
9433 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
9434   predicate(UseSSE>=2);
9435   match(Set cr (CmpD src1 (LoadD src2)));
9436   ins_cost(145);
9437   format %{ "UCOMISD $src1,$src2\n\t"
9438             "JNP,s   exit\n\t"
9439             "PUSHF\t# saw NaN, set CF\n\t"
9440             "AND     [rsp], #0xffffff2b\n\t"
9441             "POPF\n"
9442     "exit:" %}
9443   ins_encode %{
9444     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9445     emit_cmpfp_fixup(_masm);
9446   %}
9447   ins_pipe( pipe_slow );
9448 %}
9449 
9450 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
9451   predicate(UseSSE>=2);
9452   match(Set cr (CmpD src1 (LoadD src2)));
9453   ins_cost(100);
9454   format %{ "UCOMISD $src1,$src2" %}
9455   ins_encode %{
9456     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9457   %}
9458   ins_pipe( pipe_slow );
9459 %}
9460 
9461 // Compare into -1,0,1 in XMM
9462 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
9463   predicate(UseSSE>=2);
9464   match(Set dst (CmpD3 src1 src2));
9465   effect(KILL cr);
9466   ins_cost(255);
9467   format %{ "UCOMISD $src1, $src2\n\t"
9468             "MOV     $dst, #-1\n\t"
9469             "JP,s    done\n\t"
9470             "JB,s    done\n\t"
9471             "SETNE   $dst\n\t"
9472             "MOVZB   $dst, $dst\n"
9473     "done:" %}
9474   ins_encode %{
9475     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9476     emit_cmpfp3(_masm, $dst$$Register);
9477   %}
9478   ins_pipe( pipe_slow );
9479 %}
9480 
9481 // Compare into -1,0,1 in XMM and memory
9482 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
9483   predicate(UseSSE>=2);
9484   match(Set dst (CmpD3 src1 (LoadD src2)));
9485   effect(KILL cr);
9486   ins_cost(275);
9487   format %{ "UCOMISD $src1, $src2\n\t"
9488             "MOV     $dst, #-1\n\t"
9489             "JP,s    done\n\t"
9490             "JB,s    done\n\t"
9491             "SETNE   $dst\n\t"
9492             "MOVZB   $dst, $dst\n"
9493     "done:" %}
9494   ins_encode %{
9495     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9496     emit_cmpfp3(_masm, $dst$$Register);
9497   %}
9498   ins_pipe( pipe_slow );
9499 %}
9500 
9501 
9502 instruct subDPR_reg(regDPR dst, regDPR src) %{
9503   predicate (UseSSE <=1);
9504   match(Set dst (SubD dst src));
9505 
9506   format %{ "FLD    $src\n\t"
9507             "DSUBp  $dst,ST" %}
9508   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9509   ins_cost(150);
9510   ins_encode( Push_Reg_DPR(src),
9511               OpcP, RegOpc(dst) );
9512   ins_pipe( fpu_reg_reg );
9513 %}
9514 
9515 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9516   predicate (UseSSE <=1);
9517   match(Set dst (RoundDouble (SubD src1 src2)));
9518   ins_cost(250);
9519 
9520   format %{ "FLD    $src2\n\t"
9521             "DSUB   ST,$src1\n\t"
9522             "FSTP_D $dst\t# D-round" %}
9523   opcode(0xD8, 0x5);
9524   ins_encode( Push_Reg_DPR(src2),
9525               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9526   ins_pipe( fpu_mem_reg_reg );
9527 %}
9528 
9529 
9530 instruct subDPR_reg_mem(regDPR dst, memory src) %{
9531   predicate (UseSSE <=1);
9532   match(Set dst (SubD dst (LoadD src)));
9533   ins_cost(150);
9534 
9535   format %{ "FLD    $src\n\t"
9536             "DSUBp  $dst,ST" %}
9537   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9538   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9539               OpcP, RegOpc(dst) );
9540   ins_pipe( fpu_reg_mem );
9541 %}
9542 
9543 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
9544   predicate (UseSSE<=1);
9545   match(Set dst (AbsD src));
9546   ins_cost(100);
9547   format %{ "FABS" %}
9548   opcode(0xE1, 0xD9);
9549   ins_encode( OpcS, OpcP );
9550   ins_pipe( fpu_reg_reg );
9551 %}
9552 
9553 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
9554   predicate(UseSSE<=1);
9555   match(Set dst (NegD src));
9556   ins_cost(100);
9557   format %{ "FCHS" %}
9558   opcode(0xE0, 0xD9);
9559   ins_encode( OpcS, OpcP );
9560   ins_pipe( fpu_reg_reg );
9561 %}
9562 
9563 instruct addDPR_reg(regDPR dst, regDPR src) %{
9564   predicate(UseSSE<=1);
9565   match(Set dst (AddD dst src));
9566   format %{ "FLD    $src\n\t"
9567             "DADD   $dst,ST" %}
9568   size(4);
9569   ins_cost(150);
9570   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9571   ins_encode( Push_Reg_DPR(src),
9572               OpcP, RegOpc(dst) );
9573   ins_pipe( fpu_reg_reg );
9574 %}
9575 
9576 
9577 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9578   predicate(UseSSE<=1);
9579   match(Set dst (RoundDouble (AddD src1 src2)));
9580   ins_cost(250);
9581 
9582   format %{ "FLD    $src2\n\t"
9583             "DADD   ST,$src1\n\t"
9584             "FSTP_D $dst\t# D-round" %}
9585   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9586   ins_encode( Push_Reg_DPR(src2),
9587               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9588   ins_pipe( fpu_mem_reg_reg );
9589 %}
9590 
9591 
9592 instruct addDPR_reg_mem(regDPR dst, memory src) %{
9593   predicate(UseSSE<=1);
9594   match(Set dst (AddD dst (LoadD src)));
9595   ins_cost(150);
9596 
9597   format %{ "FLD    $src\n\t"
9598             "DADDp  $dst,ST" %}
9599   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9600   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9601               OpcP, RegOpc(dst) );
9602   ins_pipe( fpu_reg_mem );
9603 %}
9604 
9605 // add-to-memory
9606 instruct addDPR_mem_reg(memory dst, regDPR src) %{
9607   predicate(UseSSE<=1);
9608   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9609   ins_cost(150);
9610 
9611   format %{ "FLD_D  $dst\n\t"
9612             "DADD   ST,$src\n\t"
9613             "FST_D  $dst" %}
9614   opcode(0xDD, 0x0);
9615   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9616               Opcode(0xD8), RegOpc(src),
9617               set_instruction_start,
9618               Opcode(0xDD), RMopc_Mem(0x03,dst) );
9619   ins_pipe( fpu_reg_mem );
9620 %}
9621 
9622 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
9623   predicate(UseSSE<=1);
9624   match(Set dst (AddD dst con));
9625   ins_cost(125);
9626   format %{ "FLD1\n\t"
9627             "DADDp  $dst,ST" %}
9628   ins_encode %{
9629     __ fld1();
9630     __ faddp($dst$$reg);
9631   %}
9632   ins_pipe(fpu_reg);
9633 %}
9634 
9635 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
9636   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9637   match(Set dst (AddD dst con));
9638   ins_cost(200);
9639   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9640             "DADDp  $dst,ST" %}
9641   ins_encode %{
9642     __ fld_d($constantaddress($con));
9643     __ faddp($dst$$reg);
9644   %}
9645   ins_pipe(fpu_reg_mem);
9646 %}
9647 
9648 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
9649   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9650   match(Set dst (RoundDouble (AddD src con)));
9651   ins_cost(200);
9652   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9653             "DADD   ST,$src\n\t"
9654             "FSTP_D $dst\t# D-round" %}
9655   ins_encode %{
9656     __ fld_d($constantaddress($con));
9657     __ fadd($src$$reg);
9658     __ fstp_d(Address(rsp, $dst$$disp));
9659   %}
9660   ins_pipe(fpu_mem_reg_con);
9661 %}
9662 
9663 instruct mulDPR_reg(regDPR dst, regDPR src) %{
9664   predicate(UseSSE<=1);
9665   match(Set dst (MulD dst src));
9666   format %{ "FLD    $src\n\t"
9667             "DMULp  $dst,ST" %}
9668   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9669   ins_cost(150);
9670   ins_encode( Push_Reg_DPR(src),
9671               OpcP, RegOpc(dst) );
9672   ins_pipe( fpu_reg_reg );
9673 %}
9674 
9675 // Strict FP instruction biases argument before multiply then
9676 // biases result to avoid double rounding of subnormals.
9677 //
9678 // scale arg1 by multiplying arg1 by 2^(-15360)
9679 // load arg2
9680 // multiply scaled arg1 by arg2
9681 // rescale product by 2^(15360)
9682 //
9683 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9684   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9685   match(Set dst (MulD dst src));
9686   ins_cost(1);   // Select this instruction for all strict FP double multiplies
9687 
9688   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9689             "DMULp  $dst,ST\n\t"
9690             "FLD    $src\n\t"
9691             "DMULp  $dst,ST\n\t"
9692             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9693             "DMULp  $dst,ST\n\t" %}
9694   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9695   ins_encode( strictfp_bias1(dst),
9696               Push_Reg_DPR(src),
9697               OpcP, RegOpc(dst),
9698               strictfp_bias2(dst) );
9699   ins_pipe( fpu_reg_reg );
9700 %}
9701 
9702 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
9703   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9704   match(Set dst (MulD dst con));
9705   ins_cost(200);
9706   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9707             "DMULp  $dst,ST" %}
9708   ins_encode %{
9709     __ fld_d($constantaddress($con));
9710     __ fmulp($dst$$reg);
9711   %}
9712   ins_pipe(fpu_reg_mem);
9713 %}
9714 
9715 
9716 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
9717   predicate( UseSSE<=1 );
9718   match(Set dst (MulD dst (LoadD src)));
9719   ins_cost(200);
9720   format %{ "FLD_D  $src\n\t"
9721             "DMULp  $dst,ST" %}
9722   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
9723   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9724               OpcP, RegOpc(dst) );
9725   ins_pipe( fpu_reg_mem );
9726 %}
9727 
9728 //
9729 // Cisc-alternate to reg-reg multiply
9730 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
9731   predicate( UseSSE<=1 );
9732   match(Set dst (MulD src (LoadD mem)));
9733   ins_cost(250);
9734   format %{ "FLD_D  $mem\n\t"
9735             "DMUL   ST,$src\n\t"
9736             "FSTP_D $dst" %}
9737   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
9738   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
9739               OpcReg_FPR(src),
9740               Pop_Reg_DPR(dst) );
9741   ins_pipe( fpu_reg_reg_mem );
9742 %}
9743 
9744 
9745 // MACRO3 -- addDPR a mulDPR
9746 // This instruction is a '2-address' instruction in that the result goes
9747 // back to src2.  This eliminates a move from the macro; possibly the
9748 // register allocator will have to add it back (and maybe not).
9749 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9750   predicate( UseSSE<=1 );
9751   match(Set src2 (AddD (MulD src0 src1) src2));
9752   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9753             "DMUL   ST,$src1\n\t"
9754             "DADDp  $src2,ST" %}
9755   ins_cost(250);
9756   opcode(0xDD); /* LoadD DD /0 */
9757   ins_encode( Push_Reg_FPR(src0),
9758               FMul_ST_reg(src1),
9759               FAddP_reg_ST(src2) );
9760   ins_pipe( fpu_reg_reg_reg );
9761 %}
9762 
9763 
9764 // MACRO3 -- subDPR a mulDPR
9765 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9766   predicate( UseSSE<=1 );
9767   match(Set src2 (SubD (MulD src0 src1) src2));
9768   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9769             "DMUL   ST,$src1\n\t"
9770             "DSUBRp $src2,ST" %}
9771   ins_cost(250);
9772   ins_encode( Push_Reg_FPR(src0),
9773               FMul_ST_reg(src1),
9774               Opcode(0xDE), Opc_plus(0xE0,src2));
9775   ins_pipe( fpu_reg_reg_reg );
9776 %}
9777 
9778 
9779 instruct divDPR_reg(regDPR dst, regDPR src) %{
9780   predicate( UseSSE<=1 );
9781   match(Set dst (DivD dst src));
9782 
9783   format %{ "FLD    $src\n\t"
9784             "FDIVp  $dst,ST" %}
9785   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9786   ins_cost(150);
9787   ins_encode( Push_Reg_DPR(src),
9788               OpcP, RegOpc(dst) );
9789   ins_pipe( fpu_reg_reg );
9790 %}
9791 
9792 // Strict FP instruction biases argument before division then
9793 // biases result, to avoid double rounding of subnormals.
9794 //
9795 // scale dividend by multiplying dividend by 2^(-15360)
9796 // load divisor
9797 // divide scaled dividend by divisor
9798 // rescale quotient by 2^(15360)
9799 //
9800 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9801   predicate (UseSSE<=1);
9802   match(Set dst (DivD dst src));
9803   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9804   ins_cost(01);
9805 
9806   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9807             "DMULp  $dst,ST\n\t"
9808             "FLD    $src\n\t"
9809             "FDIVp  $dst,ST\n\t"
9810             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9811             "DMULp  $dst,ST\n\t" %}
9812   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9813   ins_encode( strictfp_bias1(dst),
9814               Push_Reg_DPR(src),
9815               OpcP, RegOpc(dst),
9816               strictfp_bias2(dst) );
9817   ins_pipe( fpu_reg_reg );
9818 %}
9819 
9820 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9821   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
9822   match(Set dst (RoundDouble (DivD src1 src2)));
9823 
9824   format %{ "FLD    $src1\n\t"
9825             "FDIV   ST,$src2\n\t"
9826             "FSTP_D $dst\t# D-round" %}
9827   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
9828   ins_encode( Push_Reg_DPR(src1),
9829               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
9830   ins_pipe( fpu_mem_reg_reg );
9831 %}
9832 
9833 
9834 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
9835   predicate(UseSSE<=1);
9836   match(Set dst (ModD dst src));
9837   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
9838 
9839   format %{ "DMOD   $dst,$src" %}
9840   ins_cost(250);
9841   ins_encode(Push_Reg_Mod_DPR(dst, src),
9842               emitModDPR(),
9843               Push_Result_Mod_DPR(src),
9844               Pop_Reg_DPR(dst));
9845   ins_pipe( pipe_slow );
9846 %}
9847 
9848 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
9849   predicate(UseSSE>=2);
9850   match(Set dst (ModD src0 src1));
9851   effect(KILL rax, KILL cr);
9852 
9853   format %{ "SUB    ESP,8\t # DMOD\n"
9854           "\tMOVSD  [ESP+0],$src1\n"
9855           "\tFLD_D  [ESP+0]\n"
9856           "\tMOVSD  [ESP+0],$src0\n"
9857           "\tFLD_D  [ESP+0]\n"
9858      "loop:\tFPREM\n"
9859           "\tFWAIT\n"
9860           "\tFNSTSW AX\n"
9861           "\tSAHF\n"
9862           "\tJP     loop\n"
9863           "\tFSTP_D [ESP+0]\n"
9864           "\tMOVSD  $dst,[ESP+0]\n"
9865           "\tADD    ESP,8\n"
9866           "\tFSTP   ST0\t # Restore FPU Stack"
9867     %}
9868   ins_cost(250);
9869   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
9870   ins_pipe( pipe_slow );
9871 %}
9872 
9873 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
9874   predicate (UseSSE<=1);
9875   match(Set dst (SinD src));
9876   ins_cost(1800);
9877   format %{ "DSIN   $dst" %}
9878   opcode(0xD9, 0xFE);
9879   ins_encode( OpcP, OpcS );
9880   ins_pipe( pipe_slow );
9881 %}
9882 
9883 instruct sinD_reg(regD dst, eFlagsReg cr) %{
9884   predicate (UseSSE>=2);
9885   match(Set dst (SinD dst));
9886   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9887   ins_cost(1800);
9888   format %{ "DSIN   $dst" %}
9889   opcode(0xD9, 0xFE);
9890   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9891   ins_pipe( pipe_slow );
9892 %}
9893 
9894 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
9895   predicate (UseSSE<=1);
9896   match(Set dst (CosD src));
9897   ins_cost(1800);
9898   format %{ "DCOS   $dst" %}
9899   opcode(0xD9, 0xFF);
9900   ins_encode( OpcP, OpcS );
9901   ins_pipe( pipe_slow );
9902 %}
9903 
9904 instruct cosD_reg(regD dst, eFlagsReg cr) %{
9905   predicate (UseSSE>=2);
9906   match(Set dst (CosD dst));
9907   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9908   ins_cost(1800);
9909   format %{ "DCOS   $dst" %}
9910   opcode(0xD9, 0xFF);
9911   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9912   ins_pipe( pipe_slow );
9913 %}
9914 
9915 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
9916   predicate (UseSSE<=1);
9917   match(Set dst(TanD src));
9918   format %{ "DTAN   $dst" %}
9919   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
9920               Opcode(0xDD), Opcode(0xD8));   // fstp st
9921   ins_pipe( pipe_slow );
9922 %}
9923 
9924 instruct tanD_reg(regD dst, eFlagsReg cr) %{
9925   predicate (UseSSE>=2);
9926   match(Set dst(TanD dst));
9927   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9928   format %{ "DTAN   $dst" %}
9929   ins_encode( Push_SrcD(dst),
9930               Opcode(0xD9), Opcode(0xF2),    // fptan
9931               Opcode(0xDD), Opcode(0xD8),   // fstp st
9932               Push_ResultD(dst) );
9933   ins_pipe( pipe_slow );
9934 %}
9935 
9936 instruct atanDPR_reg(regDPR dst, regDPR src) %{
9937   predicate (UseSSE<=1);
9938   match(Set dst(AtanD dst src));
9939   format %{ "DATA   $dst,$src" %}
9940   opcode(0xD9, 0xF3);
9941   ins_encode( Push_Reg_DPR(src),
9942               OpcP, OpcS, RegOpc(dst) );
9943   ins_pipe( pipe_slow );
9944 %}
9945 
9946 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
9947   predicate (UseSSE>=2);
9948   match(Set dst(AtanD dst src));
9949   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9950   format %{ "DATA   $dst,$src" %}
9951   opcode(0xD9, 0xF3);
9952   ins_encode( Push_SrcD(src),
9953               OpcP, OpcS, Push_ResultD(dst) );
9954   ins_pipe( pipe_slow );
9955 %}
9956 
9957 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
9958   predicate (UseSSE<=1);
9959   match(Set dst (SqrtD src));
9960   format %{ "DSQRT  $dst,$src" %}
9961   opcode(0xFA, 0xD9);
9962   ins_encode( Push_Reg_DPR(src),
9963               OpcS, OpcP, Pop_Reg_DPR(dst) );
9964   ins_pipe( pipe_slow );
9965 %}
9966 
9967 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9968   predicate (UseSSE<=1);
9969   match(Set Y (PowD X Y));  // Raise X to the Yth power
9970   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9971   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
9972   ins_encode %{
9973     __ subptr(rsp, 8);
9974     __ fld_s($X$$reg - 1);
9975     __ fast_pow();
9976     __ addptr(rsp, 8);
9977   %}
9978   ins_pipe( pipe_slow );
9979 %}
9980 
9981 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9982   predicate (UseSSE>=2);
9983   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
9984   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9985   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
9986   ins_encode %{
9987     __ subptr(rsp, 8);
9988     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
9989     __ fld_d(Address(rsp, 0));
9990     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
9991     __ fld_d(Address(rsp, 0));
9992     __ fast_pow();
9993     __ fstp_d(Address(rsp, 0));
9994     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
9995     __ addptr(rsp, 8);
9996   %}
9997   ins_pipe( pipe_slow );
9998 %}
9999 
10000 
10001 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10002   predicate (UseSSE<=1);
10003   match(Set dpr1 (ExpD dpr1));
10004   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
10005   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
10006   ins_encode %{
10007     __ fast_exp();
10008   %}
10009   ins_pipe( pipe_slow );
10010 %}
10011 
10012 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10013   predicate (UseSSE>=2);
10014   match(Set dst (ExpD src));
10015   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
10016   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
10017   ins_encode %{
10018     __ subptr(rsp, 8);
10019     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10020     __ fld_d(Address(rsp, 0));
10021     __ fast_exp();
10022     __ fstp_d(Address(rsp, 0));
10023     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
10024     __ addptr(rsp, 8);
10025   %}
10026   ins_pipe( pipe_slow );
10027 %}
10028 
10029 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
10030   predicate (UseSSE<=1);
10031   // The source Double operand on FPU stack
10032   match(Set dst (Log10D src));
10033   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10034   // fxch         ; swap ST(0) with ST(1)
10035   // fyl2x        ; compute log_10(2) * log_2(x)
10036   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10037             "FXCH   \n\t"
10038             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10039          %}
10040   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10041               Opcode(0xD9), Opcode(0xC9),   // fxch
10042               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10043 
10044   ins_pipe( pipe_slow );
10045 %}
10046 
10047 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
10048   predicate (UseSSE>=2);
10049   effect(KILL cr);
10050   match(Set dst (Log10D src));
10051   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10052   // fyl2x        ; compute log_10(2) * log_2(x)
10053   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10054             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10055          %}
10056   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10057               Push_SrcD(src),
10058               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10059               Push_ResultD(dst));
10060 
10061   ins_pipe( pipe_slow );
10062 %}
10063 
10064 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
10065   predicate (UseSSE<=1);
10066   // The source Double operand on FPU stack
10067   match(Set dst (LogD src));
10068   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10069   // fxch         ; swap ST(0) with ST(1)
10070   // fyl2x        ; compute log_e(2) * log_2(x)
10071   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10072             "FXCH   \n\t"
10073             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10074          %}
10075   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10076               Opcode(0xD9), Opcode(0xC9),   // fxch
10077               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10078 
10079   ins_pipe( pipe_slow );
10080 %}
10081 
10082 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
10083   predicate (UseSSE>=2);
10084   effect(KILL cr);
10085   // The source and result Double operands in XMM registers
10086   match(Set dst (LogD src));
10087   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10088   // fyl2x        ; compute log_e(2) * log_2(x)
10089   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10090             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10091          %}
10092   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10093               Push_SrcD(src),
10094               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10095               Push_ResultD(dst));
10096   ins_pipe( pipe_slow );
10097 %}
10098 
10099 //-------------Float Instructions-------------------------------
10100 // Float Math
10101 
10102 // Code for float compare:
10103 //     fcompp();
10104 //     fwait(); fnstsw_ax();
10105 //     sahf();
10106 //     movl(dst, unordered_result);
10107 //     jcc(Assembler::parity, exit);
10108 //     movl(dst, less_result);
10109 //     jcc(Assembler::below, exit);
10110 //     movl(dst, equal_result);
10111 //     jcc(Assembler::equal, exit);
10112 //     movl(dst, greater_result);
10113 //   exit:
10114 
10115 // P6 version of float compare, sets condition codes in EFLAGS
10116 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10117   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10118   match(Set cr (CmpF src1 src2));
10119   effect(KILL rax);
10120   ins_cost(150);
10121   format %{ "FLD    $src1\n\t"
10122             "FUCOMIP ST,$src2  // P6 instruction\n\t"
10123             "JNP    exit\n\t"
10124             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10125             "SAHF\n"
10126      "exit:\tNOP               // avoid branch to branch" %}
10127   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10128   ins_encode( Push_Reg_DPR(src1),
10129               OpcP, RegOpc(src2),
10130               cmpF_P6_fixup );
10131   ins_pipe( pipe_slow );
10132 %}
10133 
10134 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
10135   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10136   match(Set cr (CmpF src1 src2));
10137   ins_cost(100);
10138   format %{ "FLD    $src1\n\t"
10139             "FUCOMIP ST,$src2  // P6 instruction" %}
10140   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10141   ins_encode( Push_Reg_DPR(src1),
10142               OpcP, RegOpc(src2));
10143   ins_pipe( pipe_slow );
10144 %}
10145 
10146 
10147 // Compare & branch
10148 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10149   predicate(UseSSE == 0);
10150   match(Set cr (CmpF src1 src2));
10151   effect(KILL rax);
10152   ins_cost(200);
10153   format %{ "FLD    $src1\n\t"
10154             "FCOMp  $src2\n\t"
10155             "FNSTSW AX\n\t"
10156             "TEST   AX,0x400\n\t"
10157             "JZ,s   flags\n\t"
10158             "MOV    AH,1\t# unordered treat as LT\n"
10159     "flags:\tSAHF" %}
10160   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10161   ins_encode( Push_Reg_DPR(src1),
10162               OpcP, RegOpc(src2),
10163               fpu_flags);
10164   ins_pipe( pipe_slow );
10165 %}
10166 
10167 // Compare vs zero into -1,0,1
10168 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
10169   predicate(UseSSE == 0);
10170   match(Set dst (CmpF3 src1 zero));
10171   effect(KILL cr, KILL rax);
10172   ins_cost(280);
10173   format %{ "FTSTF  $dst,$src1" %}
10174   opcode(0xE4, 0xD9);
10175   ins_encode( Push_Reg_DPR(src1),
10176               OpcS, OpcP, PopFPU,
10177               CmpF_Result(dst));
10178   ins_pipe( pipe_slow );
10179 %}
10180 
10181 // Compare into -1,0,1
10182 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10183   predicate(UseSSE == 0);
10184   match(Set dst (CmpF3 src1 src2));
10185   effect(KILL cr, KILL rax);
10186   ins_cost(300);
10187   format %{ "FCMPF  $dst,$src1,$src2" %}
10188   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10189   ins_encode( Push_Reg_DPR(src1),
10190               OpcP, RegOpc(src2),
10191               CmpF_Result(dst));
10192   ins_pipe( pipe_slow );
10193 %}
10194 
10195 // float compare and set condition codes in EFLAGS by XMM regs
10196 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
10197   predicate(UseSSE>=1);
10198   match(Set cr (CmpF src1 src2));
10199   ins_cost(145);
10200   format %{ "UCOMISS $src1,$src2\n\t"
10201             "JNP,s   exit\n\t"
10202             "PUSHF\t# saw NaN, set CF\n\t"
10203             "AND     [rsp], #0xffffff2b\n\t"
10204             "POPF\n"
10205     "exit:" %}
10206   ins_encode %{
10207     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10208     emit_cmpfp_fixup(_masm);
10209   %}
10210   ins_pipe( pipe_slow );
10211 %}
10212 
10213 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
10214   predicate(UseSSE>=1);
10215   match(Set cr (CmpF src1 src2));
10216   ins_cost(100);
10217   format %{ "UCOMISS $src1,$src2" %}
10218   ins_encode %{
10219     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10220   %}
10221   ins_pipe( pipe_slow );
10222 %}
10223 
10224 // float compare and set condition codes in EFLAGS by XMM regs
10225 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
10226   predicate(UseSSE>=1);
10227   match(Set cr (CmpF src1 (LoadF src2)));
10228   ins_cost(165);
10229   format %{ "UCOMISS $src1,$src2\n\t"
10230             "JNP,s   exit\n\t"
10231             "PUSHF\t# saw NaN, set CF\n\t"
10232             "AND     [rsp], #0xffffff2b\n\t"
10233             "POPF\n"
10234     "exit:" %}
10235   ins_encode %{
10236     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10237     emit_cmpfp_fixup(_masm);
10238   %}
10239   ins_pipe( pipe_slow );
10240 %}
10241 
10242 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
10243   predicate(UseSSE>=1);
10244   match(Set cr (CmpF src1 (LoadF src2)));
10245   ins_cost(100);
10246   format %{ "UCOMISS $src1,$src2" %}
10247   ins_encode %{
10248     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10249   %}
10250   ins_pipe( pipe_slow );
10251 %}
10252 
10253 // Compare into -1,0,1 in XMM
10254 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
10255   predicate(UseSSE>=1);
10256   match(Set dst (CmpF3 src1 src2));
10257   effect(KILL cr);
10258   ins_cost(255);
10259   format %{ "UCOMISS $src1, $src2\n\t"
10260             "MOV     $dst, #-1\n\t"
10261             "JP,s    done\n\t"
10262             "JB,s    done\n\t"
10263             "SETNE   $dst\n\t"
10264             "MOVZB   $dst, $dst\n"
10265     "done:" %}
10266   ins_encode %{
10267     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10268     emit_cmpfp3(_masm, $dst$$Register);
10269   %}
10270   ins_pipe( pipe_slow );
10271 %}
10272 
10273 // Compare into -1,0,1 in XMM and memory
10274 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
10275   predicate(UseSSE>=1);
10276   match(Set dst (CmpF3 src1 (LoadF src2)));
10277   effect(KILL cr);
10278   ins_cost(275);
10279   format %{ "UCOMISS $src1, $src2\n\t"
10280             "MOV     $dst, #-1\n\t"
10281             "JP,s    done\n\t"
10282             "JB,s    done\n\t"
10283             "SETNE   $dst\n\t"
10284             "MOVZB   $dst, $dst\n"
10285     "done:" %}
10286   ins_encode %{
10287     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10288     emit_cmpfp3(_masm, $dst$$Register);
10289   %}
10290   ins_pipe( pipe_slow );
10291 %}
10292 
10293 // Spill to obtain 24-bit precision
10294 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10295   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10296   match(Set dst (SubF src1 src2));
10297 
10298   format %{ "FSUB   $dst,$src1 - $src2" %}
10299   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10300   ins_encode( Push_Reg_FPR(src1),
10301               OpcReg_FPR(src2),
10302               Pop_Mem_FPR(dst) );
10303   ins_pipe( fpu_mem_reg_reg );
10304 %}
10305 //
10306 // This instruction does not round to 24-bits
10307 instruct subFPR_reg(regFPR dst, regFPR src) %{
10308   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10309   match(Set dst (SubF dst src));
10310 
10311   format %{ "FSUB   $dst,$src" %}
10312   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10313   ins_encode( Push_Reg_FPR(src),
10314               OpcP, RegOpc(dst) );
10315   ins_pipe( fpu_reg_reg );
10316 %}
10317 
10318 // Spill to obtain 24-bit precision
10319 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10320   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10321   match(Set dst (AddF src1 src2));
10322 
10323   format %{ "FADD   $dst,$src1,$src2" %}
10324   opcode(0xD8, 0x0); /* D8 C0+i */
10325   ins_encode( Push_Reg_FPR(src2),
10326               OpcReg_FPR(src1),
10327               Pop_Mem_FPR(dst) );
10328   ins_pipe( fpu_mem_reg_reg );
10329 %}
10330 //
10331 // This instruction does not round to 24-bits
10332 instruct addFPR_reg(regFPR dst, regFPR src) %{
10333   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10334   match(Set dst (AddF dst src));
10335 
10336   format %{ "FLD    $src\n\t"
10337             "FADDp  $dst,ST" %}
10338   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10339   ins_encode( Push_Reg_FPR(src),
10340               OpcP, RegOpc(dst) );
10341   ins_pipe( fpu_reg_reg );
10342 %}
10343 
10344 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
10345   predicate(UseSSE==0);
10346   match(Set dst (AbsF src));
10347   ins_cost(100);
10348   format %{ "FABS" %}
10349   opcode(0xE1, 0xD9);
10350   ins_encode( OpcS, OpcP );
10351   ins_pipe( fpu_reg_reg );
10352 %}
10353 
10354 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
10355   predicate(UseSSE==0);
10356   match(Set dst (NegF src));
10357   ins_cost(100);
10358   format %{ "FCHS" %}
10359   opcode(0xE0, 0xD9);
10360   ins_encode( OpcS, OpcP );
10361   ins_pipe( fpu_reg_reg );
10362 %}
10363 
10364 // Cisc-alternate to addFPR_reg
10365 // Spill to obtain 24-bit precision
10366 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10367   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10368   match(Set dst (AddF src1 (LoadF src2)));
10369 
10370   format %{ "FLD    $src2\n\t"
10371             "FADD   ST,$src1\n\t"
10372             "FSTP_S $dst" %}
10373   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10374   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10375               OpcReg_FPR(src1),
10376               Pop_Mem_FPR(dst) );
10377   ins_pipe( fpu_mem_reg_mem );
10378 %}
10379 //
10380 // Cisc-alternate to addFPR_reg
10381 // This instruction does not round to 24-bits
10382 instruct addFPR_reg_mem(regFPR dst, memory src) %{
10383   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10384   match(Set dst (AddF dst (LoadF src)));
10385 
10386   format %{ "FADD   $dst,$src" %}
10387   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10388   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10389               OpcP, RegOpc(dst) );
10390   ins_pipe( fpu_reg_mem );
10391 %}
10392 
10393 // // Following two instructions for _222_mpegaudio
10394 // Spill to obtain 24-bit precision
10395 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
10396   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10397   match(Set dst (AddF src1 src2));
10398 
10399   format %{ "FADD   $dst,$src1,$src2" %}
10400   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10401   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10402               OpcReg_FPR(src2),
10403               Pop_Mem_FPR(dst) );
10404   ins_pipe( fpu_mem_reg_mem );
10405 %}
10406 
10407 // Cisc-spill variant
10408 // Spill to obtain 24-bit precision
10409 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10410   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10411   match(Set dst (AddF src1 (LoadF src2)));
10412 
10413   format %{ "FADD   $dst,$src1,$src2 cisc" %}
10414   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10415   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10416               set_instruction_start,
10417               OpcP, RMopc_Mem(secondary,src1),
10418               Pop_Mem_FPR(dst) );
10419   ins_pipe( fpu_mem_mem_mem );
10420 %}
10421 
10422 // Spill to obtain 24-bit precision
10423 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10424   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10425   match(Set dst (AddF src1 src2));
10426 
10427   format %{ "FADD   $dst,$src1,$src2" %}
10428   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10429   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10430               set_instruction_start,
10431               OpcP, RMopc_Mem(secondary,src1),
10432               Pop_Mem_FPR(dst) );
10433   ins_pipe( fpu_mem_mem_mem );
10434 %}
10435 
10436 
10437 // Spill to obtain 24-bit precision
10438 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10439   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10440   match(Set dst (AddF src con));
10441   format %{ "FLD    $src\n\t"
10442             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10443             "FSTP_S $dst"  %}
10444   ins_encode %{
10445     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10446     __ fadd_s($constantaddress($con));
10447     __ fstp_s(Address(rsp, $dst$$disp));
10448   %}
10449   ins_pipe(fpu_mem_reg_con);
10450 %}
10451 //
10452 // This instruction does not round to 24-bits
10453 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10454   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10455   match(Set dst (AddF src con));
10456   format %{ "FLD    $src\n\t"
10457             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10458             "FSTP   $dst"  %}
10459   ins_encode %{
10460     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10461     __ fadd_s($constantaddress($con));
10462     __ fstp_d($dst$$reg);
10463   %}
10464   ins_pipe(fpu_reg_reg_con);
10465 %}
10466 
10467 // Spill to obtain 24-bit precision
10468 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10469   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10470   match(Set dst (MulF src1 src2));
10471 
10472   format %{ "FLD    $src1\n\t"
10473             "FMUL   $src2\n\t"
10474             "FSTP_S $dst"  %}
10475   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
10476   ins_encode( Push_Reg_FPR(src1),
10477               OpcReg_FPR(src2),
10478               Pop_Mem_FPR(dst) );
10479   ins_pipe( fpu_mem_reg_reg );
10480 %}
10481 //
10482 // This instruction does not round to 24-bits
10483 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
10484   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10485   match(Set dst (MulF src1 src2));
10486 
10487   format %{ "FLD    $src1\n\t"
10488             "FMUL   $src2\n\t"
10489             "FSTP_S $dst"  %}
10490   opcode(0xD8, 0x1); /* D8 C8+i */
10491   ins_encode( Push_Reg_FPR(src2),
10492               OpcReg_FPR(src1),
10493               Pop_Reg_FPR(dst) );
10494   ins_pipe( fpu_reg_reg_reg );
10495 %}
10496 
10497 
10498 // Spill to obtain 24-bit precision
10499 // Cisc-alternate to reg-reg multiply
10500 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10501   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10502   match(Set dst (MulF src1 (LoadF src2)));
10503 
10504   format %{ "FLD_S  $src2\n\t"
10505             "FMUL   $src1\n\t"
10506             "FSTP_S $dst"  %}
10507   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
10508   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10509               OpcReg_FPR(src1),
10510               Pop_Mem_FPR(dst) );
10511   ins_pipe( fpu_mem_reg_mem );
10512 %}
10513 //
10514 // This instruction does not round to 24-bits
10515 // Cisc-alternate to reg-reg multiply
10516 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
10517   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10518   match(Set dst (MulF src1 (LoadF src2)));
10519 
10520   format %{ "FMUL   $dst,$src1,$src2" %}
10521   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
10522   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10523               OpcReg_FPR(src1),
10524               Pop_Reg_FPR(dst) );
10525   ins_pipe( fpu_reg_reg_mem );
10526 %}
10527 
10528 // Spill to obtain 24-bit precision
10529 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10530   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10531   match(Set dst (MulF src1 src2));
10532 
10533   format %{ "FMUL   $dst,$src1,$src2" %}
10534   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
10535   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10536               set_instruction_start,
10537               OpcP, RMopc_Mem(secondary,src1),
10538               Pop_Mem_FPR(dst) );
10539   ins_pipe( fpu_mem_mem_mem );
10540 %}
10541 
10542 // Spill to obtain 24-bit precision
10543 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10544   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10545   match(Set dst (MulF src con));
10546 
10547   format %{ "FLD    $src\n\t"
10548             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10549             "FSTP_S $dst"  %}
10550   ins_encode %{
10551     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10552     __ fmul_s($constantaddress($con));
10553     __ fstp_s(Address(rsp, $dst$$disp));
10554   %}
10555   ins_pipe(fpu_mem_reg_con);
10556 %}
10557 //
10558 // This instruction does not round to 24-bits
10559 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10560   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10561   match(Set dst (MulF src con));
10562 
10563   format %{ "FLD    $src\n\t"
10564             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10565             "FSTP   $dst"  %}
10566   ins_encode %{
10567     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10568     __ fmul_s($constantaddress($con));
10569     __ fstp_d($dst$$reg);
10570   %}
10571   ins_pipe(fpu_reg_reg_con);
10572 %}
10573 
10574 
10575 //
10576 // MACRO1 -- subsume unshared load into mulFPR
10577 // This instruction does not round to 24-bits
10578 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
10579   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10580   match(Set dst (MulF (LoadF mem1) src));
10581 
10582   format %{ "FLD    $mem1    ===MACRO1===\n\t"
10583             "FMUL   ST,$src\n\t"
10584             "FSTP   $dst" %}
10585   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
10586   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
10587               OpcReg_FPR(src),
10588               Pop_Reg_FPR(dst) );
10589   ins_pipe( fpu_reg_reg_mem );
10590 %}
10591 //
10592 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
10593 // This instruction does not round to 24-bits
10594 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
10595   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10596   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
10597   ins_cost(95);
10598 
10599   format %{ "FLD    $mem1     ===MACRO2===\n\t"
10600             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
10601             "FADD   ST,$src2\n\t"
10602             "FSTP   $dst" %}
10603   opcode(0xD9); /* LoadF D9 /0 */
10604   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
10605               FMul_ST_reg(src1),
10606               FAdd_ST_reg(src2),
10607               Pop_Reg_FPR(dst) );
10608   ins_pipe( fpu_reg_mem_reg_reg );
10609 %}
10610 
10611 // MACRO3 -- addFPR a mulFPR
10612 // This instruction does not round to 24-bits.  It is a '2-address'
10613 // instruction in that the result goes back to src2.  This eliminates
10614 // a move from the macro; possibly the register allocator will have
10615 // to add it back (and maybe not).
10616 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
10617   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10618   match(Set src2 (AddF (MulF src0 src1) src2));
10619 
10620   format %{ "FLD    $src0     ===MACRO3===\n\t"
10621             "FMUL   ST,$src1\n\t"
10622             "FADDP  $src2,ST" %}
10623   opcode(0xD9); /* LoadF D9 /0 */
10624   ins_encode( Push_Reg_FPR(src0),
10625               FMul_ST_reg(src1),
10626               FAddP_reg_ST(src2) );
10627   ins_pipe( fpu_reg_reg_reg );
10628 %}
10629 
10630 // MACRO4 -- divFPR subFPR
10631 // This instruction does not round to 24-bits
10632 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
10633   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10634   match(Set dst (DivF (SubF src2 src1) src3));
10635 
10636   format %{ "FLD    $src2   ===MACRO4===\n\t"
10637             "FSUB   ST,$src1\n\t"
10638             "FDIV   ST,$src3\n\t"
10639             "FSTP  $dst" %}
10640   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10641   ins_encode( Push_Reg_FPR(src2),
10642               subFPR_divFPR_encode(src1,src3),
10643               Pop_Reg_FPR(dst) );
10644   ins_pipe( fpu_reg_reg_reg_reg );
10645 %}
10646 
10647 // Spill to obtain 24-bit precision
10648 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10649   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10650   match(Set dst (DivF src1 src2));
10651 
10652   format %{ "FDIV   $dst,$src1,$src2" %}
10653   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
10654   ins_encode( Push_Reg_FPR(src1),
10655               OpcReg_FPR(src2),
10656               Pop_Mem_FPR(dst) );
10657   ins_pipe( fpu_mem_reg_reg );
10658 %}
10659 //
10660 // This instruction does not round to 24-bits
10661 instruct divFPR_reg(regFPR dst, regFPR src) %{
10662   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10663   match(Set dst (DivF dst src));
10664 
10665   format %{ "FDIV   $dst,$src" %}
10666   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10667   ins_encode( Push_Reg_FPR(src),
10668               OpcP, RegOpc(dst) );
10669   ins_pipe( fpu_reg_reg );
10670 %}
10671 
10672 
10673 // Spill to obtain 24-bit precision
10674 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10675   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10676   match(Set dst (ModF src1 src2));
10677   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10678 
10679   format %{ "FMOD   $dst,$src1,$src2" %}
10680   ins_encode( Push_Reg_Mod_DPR(src1, src2),
10681               emitModDPR(),
10682               Push_Result_Mod_DPR(src2),
10683               Pop_Mem_FPR(dst));
10684   ins_pipe( pipe_slow );
10685 %}
10686 //
10687 // This instruction does not round to 24-bits
10688 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
10689   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
10690   match(Set dst (ModF dst src));
10691   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10692 
10693   format %{ "FMOD   $dst,$src" %}
10694   ins_encode(Push_Reg_Mod_DPR(dst, src),
10695               emitModDPR(),
10696               Push_Result_Mod_DPR(src),
10697               Pop_Reg_FPR(dst));
10698   ins_pipe( pipe_slow );
10699 %}
10700 
10701 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
10702   predicate(UseSSE>=1);
10703   match(Set dst (ModF src0 src1));
10704   effect(KILL rax, KILL cr);
10705   format %{ "SUB    ESP,4\t # FMOD\n"
10706           "\tMOVSS  [ESP+0],$src1\n"
10707           "\tFLD_S  [ESP+0]\n"
10708           "\tMOVSS  [ESP+0],$src0\n"
10709           "\tFLD_S  [ESP+0]\n"
10710      "loop:\tFPREM\n"
10711           "\tFWAIT\n"
10712           "\tFNSTSW AX\n"
10713           "\tSAHF\n"
10714           "\tJP     loop\n"
10715           "\tFSTP_S [ESP+0]\n"
10716           "\tMOVSS  $dst,[ESP+0]\n"
10717           "\tADD    ESP,4\n"
10718           "\tFSTP   ST0\t # Restore FPU Stack"
10719     %}
10720   ins_cost(250);
10721   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
10722   ins_pipe( pipe_slow );
10723 %}
10724 
10725 
10726 //----------Arithmetic Conversion Instructions---------------------------------
10727 // The conversions operations are all Alpha sorted.  Please keep it that way!
10728 
10729 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
10730   predicate(UseSSE==0);
10731   match(Set dst (RoundFloat src));
10732   ins_cost(125);
10733   format %{ "FST_S  $dst,$src\t# F-round" %}
10734   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
10735   ins_pipe( fpu_mem_reg );
10736 %}
10737 
10738 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
10739   predicate(UseSSE<=1);
10740   match(Set dst (RoundDouble src));
10741   ins_cost(125);
10742   format %{ "FST_D  $dst,$src\t# D-round" %}
10743   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
10744   ins_pipe( fpu_mem_reg );
10745 %}
10746 
10747 // Force rounding to 24-bit precision and 6-bit exponent
10748 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
10749   predicate(UseSSE==0);
10750   match(Set dst (ConvD2F src));
10751   format %{ "FST_S  $dst,$src\t# F-round" %}
10752   expand %{
10753     roundFloat_mem_reg(dst,src);
10754   %}
10755 %}
10756 
10757 // Force rounding to 24-bit precision and 6-bit exponent
10758 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
10759   predicate(UseSSE==1);
10760   match(Set dst (ConvD2F src));
10761   effect( KILL cr );
10762   format %{ "SUB    ESP,4\n\t"
10763             "FST_S  [ESP],$src\t# F-round\n\t"
10764             "MOVSS  $dst,[ESP]\n\t"
10765             "ADD ESP,4" %}
10766   ins_encode %{
10767     __ subptr(rsp, 4);
10768     if ($src$$reg != FPR1L_enc) {
10769       __ fld_s($src$$reg-1);
10770       __ fstp_s(Address(rsp, 0));
10771     } else {
10772       __ fst_s(Address(rsp, 0));
10773     }
10774     __ movflt($dst$$XMMRegister, Address(rsp, 0));
10775     __ addptr(rsp, 4);
10776   %}
10777   ins_pipe( pipe_slow );
10778 %}
10779 
10780 // Force rounding double precision to single precision
10781 instruct convD2F_reg(regF dst, regD src) %{
10782   predicate(UseSSE>=2);
10783   match(Set dst (ConvD2F src));
10784   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
10785   ins_encode %{
10786     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10787   %}
10788   ins_pipe( pipe_slow );
10789 %}
10790 
10791 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
10792   predicate(UseSSE==0);
10793   match(Set dst (ConvF2D src));
10794   format %{ "FST_S  $dst,$src\t# D-round" %}
10795   ins_encode( Pop_Reg_Reg_DPR(dst, src));
10796   ins_pipe( fpu_reg_reg );
10797 %}
10798 
10799 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
10800   predicate(UseSSE==1);
10801   match(Set dst (ConvF2D src));
10802   format %{ "FST_D  $dst,$src\t# D-round" %}
10803   expand %{
10804     roundDouble_mem_reg(dst,src);
10805   %}
10806 %}
10807 
10808 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
10809   predicate(UseSSE==1);
10810   match(Set dst (ConvF2D src));
10811   effect( KILL cr );
10812   format %{ "SUB    ESP,4\n\t"
10813             "MOVSS  [ESP] $src\n\t"
10814             "FLD_S  [ESP]\n\t"
10815             "ADD    ESP,4\n\t"
10816             "FSTP   $dst\t# D-round" %}
10817   ins_encode %{
10818     __ subptr(rsp, 4);
10819     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10820     __ fld_s(Address(rsp, 0));
10821     __ addptr(rsp, 4);
10822     __ fstp_d($dst$$reg);
10823   %}
10824   ins_pipe( pipe_slow );
10825 %}
10826 
10827 instruct convF2D_reg(regD dst, regF src) %{
10828   predicate(UseSSE>=2);
10829   match(Set dst (ConvF2D src));
10830   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
10831   ins_encode %{
10832     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10833   %}
10834   ins_pipe( pipe_slow );
10835 %}
10836 
10837 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10838 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
10839   predicate(UseSSE<=1);
10840   match(Set dst (ConvD2I src));
10841   effect( KILL tmp, KILL cr );
10842   format %{ "FLD    $src\t# Convert double to int \n\t"
10843             "FLDCW  trunc mode\n\t"
10844             "SUB    ESP,4\n\t"
10845             "FISTp  [ESP + #0]\n\t"
10846             "FLDCW  std/24-bit mode\n\t"
10847             "POP    EAX\n\t"
10848             "CMP    EAX,0x80000000\n\t"
10849             "JNE,s  fast\n\t"
10850             "FLD_D  $src\n\t"
10851             "CALL   d2i_wrapper\n"
10852       "fast:" %}
10853   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
10854   ins_pipe( pipe_slow );
10855 %}
10856 
10857 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10858 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
10859   predicate(UseSSE>=2);
10860   match(Set dst (ConvD2I src));
10861   effect( KILL tmp, KILL cr );
10862   format %{ "CVTTSD2SI $dst, $src\n\t"
10863             "CMP    $dst,0x80000000\n\t"
10864             "JNE,s  fast\n\t"
10865             "SUB    ESP, 8\n\t"
10866             "MOVSD  [ESP], $src\n\t"
10867             "FLD_D  [ESP]\n\t"
10868             "ADD    ESP, 8\n\t"
10869             "CALL   d2i_wrapper\n"
10870       "fast:" %}
10871   ins_encode %{
10872     Label fast;
10873     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
10874     __ cmpl($dst$$Register, 0x80000000);
10875     __ jccb(Assembler::notEqual, fast);
10876     __ subptr(rsp, 8);
10877     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10878     __ fld_d(Address(rsp, 0));
10879     __ addptr(rsp, 8);
10880     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
10881     __ bind(fast);
10882   %}
10883   ins_pipe( pipe_slow );
10884 %}
10885 
10886 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
10887   predicate(UseSSE<=1);
10888   match(Set dst (ConvD2L src));
10889   effect( KILL cr );
10890   format %{ "FLD    $src\t# Convert double to long\n\t"
10891             "FLDCW  trunc mode\n\t"
10892             "SUB    ESP,8\n\t"
10893             "FISTp  [ESP + #0]\n\t"
10894             "FLDCW  std/24-bit mode\n\t"
10895             "POP    EAX\n\t"
10896             "POP    EDX\n\t"
10897             "CMP    EDX,0x80000000\n\t"
10898             "JNE,s  fast\n\t"
10899             "TEST   EAX,EAX\n\t"
10900             "JNE,s  fast\n\t"
10901             "FLD    $src\n\t"
10902             "CALL   d2l_wrapper\n"
10903       "fast:" %}
10904   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
10905   ins_pipe( pipe_slow );
10906 %}
10907 
10908 // XMM lacks a float/double->long conversion, so use the old FPU stack.
10909 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
10910   predicate (UseSSE>=2);
10911   match(Set dst (ConvD2L src));
10912   effect( KILL cr );
10913   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
10914             "MOVSD  [ESP],$src\n\t"
10915             "FLD_D  [ESP]\n\t"
10916             "FLDCW  trunc mode\n\t"
10917             "FISTp  [ESP + #0]\n\t"
10918             "FLDCW  std/24-bit mode\n\t"
10919             "POP    EAX\n\t"
10920             "POP    EDX\n\t"
10921             "CMP    EDX,0x80000000\n\t"
10922             "JNE,s  fast\n\t"
10923             "TEST   EAX,EAX\n\t"
10924             "JNE,s  fast\n\t"
10925             "SUB    ESP,8\n\t"
10926             "MOVSD  [ESP],$src\n\t"
10927             "FLD_D  [ESP]\n\t"
10928             "ADD    ESP,8\n\t"
10929             "CALL   d2l_wrapper\n"
10930       "fast:" %}
10931   ins_encode %{
10932     Label fast;
10933     __ subptr(rsp, 8);
10934     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10935     __ fld_d(Address(rsp, 0));
10936     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
10937     __ fistp_d(Address(rsp, 0));
10938     // Restore the rounding mode, mask the exception
10939     if (Compile::current()->in_24_bit_fp_mode()) {
10940       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
10941     } else {
10942       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
10943     }
10944     // Load the converted long, adjust CPU stack
10945     __ pop(rax);
10946     __ pop(rdx);
10947     __ cmpl(rdx, 0x80000000);
10948     __ jccb(Assembler::notEqual, fast);
10949     __ testl(rax, rax);
10950     __ jccb(Assembler::notEqual, fast);
10951     __ subptr(rsp, 8);
10952     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10953     __ fld_d(Address(rsp, 0));
10954     __ addptr(rsp, 8);
10955     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
10956     __ bind(fast);
10957   %}
10958   ins_pipe( pipe_slow );
10959 %}
10960 
10961 // Convert a double to an int.  Java semantics require we do complex
10962 // manglations in the corner cases.  So we set the rounding mode to
10963 // 'zero', store the darned double down as an int, and reset the
10964 // rounding mode to 'nearest'.  The hardware stores a flag value down
10965 // if we would overflow or converted a NAN; we check for this and
10966 // and go the slow path if needed.
10967 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
10968   predicate(UseSSE==0);
10969   match(Set dst (ConvF2I src));
10970   effect( KILL tmp, KILL cr );
10971   format %{ "FLD    $src\t# Convert float to int \n\t"
10972             "FLDCW  trunc mode\n\t"
10973             "SUB    ESP,4\n\t"
10974             "FISTp  [ESP + #0]\n\t"
10975             "FLDCW  std/24-bit mode\n\t"
10976             "POP    EAX\n\t"
10977             "CMP    EAX,0x80000000\n\t"
10978             "JNE,s  fast\n\t"
10979             "FLD    $src\n\t"
10980             "CALL   d2i_wrapper\n"
10981       "fast:" %}
10982   // DPR2I_encoding works for FPR2I
10983   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
10984   ins_pipe( pipe_slow );
10985 %}
10986 
10987 // Convert a float in xmm to an int reg.
10988 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
10989   predicate(UseSSE>=1);
10990   match(Set dst (ConvF2I src));
10991   effect( KILL tmp, KILL cr );
10992   format %{ "CVTTSS2SI $dst, $src\n\t"
10993             "CMP    $dst,0x80000000\n\t"
10994             "JNE,s  fast\n\t"
10995             "SUB    ESP, 4\n\t"
10996             "MOVSS  [ESP], $src\n\t"
10997             "FLD    [ESP]\n\t"
10998             "ADD    ESP, 4\n\t"
10999             "CALL   d2i_wrapper\n"
11000       "fast:" %}
11001   ins_encode %{
11002     Label fast;
11003     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
11004     __ cmpl($dst$$Register, 0x80000000);
11005     __ jccb(Assembler::notEqual, fast);
11006     __ subptr(rsp, 4);
11007     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11008     __ fld_s(Address(rsp, 0));
11009     __ addptr(rsp, 4);
11010     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
11011     __ bind(fast);
11012   %}
11013   ins_pipe( pipe_slow );
11014 %}
11015 
11016 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
11017   predicate(UseSSE==0);
11018   match(Set dst (ConvF2L src));
11019   effect( KILL cr );
11020   format %{ "FLD    $src\t# Convert float to long\n\t"
11021             "FLDCW  trunc mode\n\t"
11022             "SUB    ESP,8\n\t"
11023             "FISTp  [ESP + #0]\n\t"
11024             "FLDCW  std/24-bit mode\n\t"
11025             "POP    EAX\n\t"
11026             "POP    EDX\n\t"
11027             "CMP    EDX,0x80000000\n\t"
11028             "JNE,s  fast\n\t"
11029             "TEST   EAX,EAX\n\t"
11030             "JNE,s  fast\n\t"
11031             "FLD    $src\n\t"
11032             "CALL   d2l_wrapper\n"
11033       "fast:" %}
11034   // DPR2L_encoding works for FPR2L
11035   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
11036   ins_pipe( pipe_slow );
11037 %}
11038 
11039 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11040 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11041   predicate (UseSSE>=1);
11042   match(Set dst (ConvF2L src));
11043   effect( KILL cr );
11044   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11045             "MOVSS  [ESP],$src\n\t"
11046             "FLD_S  [ESP]\n\t"
11047             "FLDCW  trunc mode\n\t"
11048             "FISTp  [ESP + #0]\n\t"
11049             "FLDCW  std/24-bit mode\n\t"
11050             "POP    EAX\n\t"
11051             "POP    EDX\n\t"
11052             "CMP    EDX,0x80000000\n\t"
11053             "JNE,s  fast\n\t"
11054             "TEST   EAX,EAX\n\t"
11055             "JNE,s  fast\n\t"
11056             "SUB    ESP,4\t# Convert float to long\n\t"
11057             "MOVSS  [ESP],$src\n\t"
11058             "FLD_S  [ESP]\n\t"
11059             "ADD    ESP,4\n\t"
11060             "CALL   d2l_wrapper\n"
11061       "fast:" %}
11062   ins_encode %{
11063     Label fast;
11064     __ subptr(rsp, 8);
11065     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11066     __ fld_s(Address(rsp, 0));
11067     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
11068     __ fistp_d(Address(rsp, 0));
11069     // Restore the rounding mode, mask the exception
11070     if (Compile::current()->in_24_bit_fp_mode()) {
11071       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
11072     } else {
11073       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
11074     }
11075     // Load the converted long, adjust CPU stack
11076     __ pop(rax);
11077     __ pop(rdx);
11078     __ cmpl(rdx, 0x80000000);
11079     __ jccb(Assembler::notEqual, fast);
11080     __ testl(rax, rax);
11081     __ jccb(Assembler::notEqual, fast);
11082     __ subptr(rsp, 4);
11083     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11084     __ fld_s(Address(rsp, 0));
11085     __ addptr(rsp, 4);
11086     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
11087     __ bind(fast);
11088   %}
11089   ins_pipe( pipe_slow );
11090 %}
11091 
11092 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
11093   predicate( UseSSE<=1 );
11094   match(Set dst (ConvI2D src));
11095   format %{ "FILD   $src\n\t"
11096             "FSTP   $dst" %}
11097   opcode(0xDB, 0x0);  /* DB /0 */
11098   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
11099   ins_pipe( fpu_reg_mem );
11100 %}
11101 
11102 instruct convI2D_reg(regD dst, rRegI src) %{
11103   predicate( UseSSE>=2 && !UseXmmI2D );
11104   match(Set dst (ConvI2D src));
11105   format %{ "CVTSI2SD $dst,$src" %}
11106   ins_encode %{
11107     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
11108   %}
11109   ins_pipe( pipe_slow );
11110 %}
11111 
11112 instruct convI2D_mem(regD dst, memory mem) %{
11113   predicate( UseSSE>=2 );
11114   match(Set dst (ConvI2D (LoadI mem)));
11115   format %{ "CVTSI2SD $dst,$mem" %}
11116   ins_encode %{
11117     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
11118   %}
11119   ins_pipe( pipe_slow );
11120 %}
11121 
11122 instruct convXI2D_reg(regD dst, rRegI src)
11123 %{
11124   predicate( UseSSE>=2 && UseXmmI2D );
11125   match(Set dst (ConvI2D src));
11126 
11127   format %{ "MOVD  $dst,$src\n\t"
11128             "CVTDQ2PD $dst,$dst\t# i2d" %}
11129   ins_encode %{
11130     __ movdl($dst$$XMMRegister, $src$$Register);
11131     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11132   %}
11133   ins_pipe(pipe_slow); // XXX
11134 %}
11135 
11136 instruct convI2DPR_mem(regDPR dst, memory mem) %{
11137   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11138   match(Set dst (ConvI2D (LoadI mem)));
11139   format %{ "FILD   $mem\n\t"
11140             "FSTP   $dst" %}
11141   opcode(0xDB);      /* DB /0 */
11142   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11143               Pop_Reg_DPR(dst));
11144   ins_pipe( fpu_reg_mem );
11145 %}
11146 
11147 // Convert a byte to a float; no rounding step needed.
11148 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
11149   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11150   match(Set dst (ConvI2F src));
11151   format %{ "FILD   $src\n\t"
11152             "FSTP   $dst" %}
11153 
11154   opcode(0xDB, 0x0);  /* DB /0 */
11155   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
11156   ins_pipe( fpu_reg_mem );
11157 %}
11158 
11159 // In 24-bit mode, force exponent rounding by storing back out
11160 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
11161   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11162   match(Set dst (ConvI2F src));
11163   ins_cost(200);
11164   format %{ "FILD   $src\n\t"
11165             "FSTP_S $dst" %}
11166   opcode(0xDB, 0x0);  /* DB /0 */
11167   ins_encode( Push_Mem_I(src),
11168               Pop_Mem_FPR(dst));
11169   ins_pipe( fpu_mem_mem );
11170 %}
11171 
11172 // In 24-bit mode, force exponent rounding by storing back out
11173 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
11174   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11175   match(Set dst (ConvI2F (LoadI mem)));
11176   ins_cost(200);
11177   format %{ "FILD   $mem\n\t"
11178             "FSTP_S $dst" %}
11179   opcode(0xDB);  /* DB /0 */
11180   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11181               Pop_Mem_FPR(dst));
11182   ins_pipe( fpu_mem_mem );
11183 %}
11184 
11185 // This instruction does not round to 24-bits
11186 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
11187   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11188   match(Set dst (ConvI2F src));
11189   format %{ "FILD   $src\n\t"
11190             "FSTP   $dst" %}
11191   opcode(0xDB, 0x0);  /* DB /0 */
11192   ins_encode( Push_Mem_I(src),
11193               Pop_Reg_FPR(dst));
11194   ins_pipe( fpu_reg_mem );
11195 %}
11196 
11197 // This instruction does not round to 24-bits
11198 instruct convI2FPR_mem(regFPR dst, memory mem) %{
11199   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11200   match(Set dst (ConvI2F (LoadI mem)));
11201   format %{ "FILD   $mem\n\t"
11202             "FSTP   $dst" %}
11203   opcode(0xDB);      /* DB /0 */
11204   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11205               Pop_Reg_FPR(dst));
11206   ins_pipe( fpu_reg_mem );
11207 %}
11208 
11209 // Convert an int to a float in xmm; no rounding step needed.
11210 instruct convI2F_reg(regF dst, rRegI src) %{
11211   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11212   match(Set dst (ConvI2F src));
11213   format %{ "CVTSI2SS $dst, $src" %}
11214   ins_encode %{
11215     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
11216   %}
11217   ins_pipe( pipe_slow );
11218 %}
11219 
11220  instruct convXI2F_reg(regF dst, rRegI src)
11221 %{
11222   predicate( UseSSE>=2 && UseXmmI2F );
11223   match(Set dst (ConvI2F src));
11224 
11225   format %{ "MOVD  $dst,$src\n\t"
11226             "CVTDQ2PS $dst,$dst\t# i2f" %}
11227   ins_encode %{
11228     __ movdl($dst$$XMMRegister, $src$$Register);
11229     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11230   %}
11231   ins_pipe(pipe_slow); // XXX
11232 %}
11233 
11234 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
11235   match(Set dst (ConvI2L src));
11236   effect(KILL cr);
11237   ins_cost(375);
11238   format %{ "MOV    $dst.lo,$src\n\t"
11239             "MOV    $dst.hi,$src\n\t"
11240             "SAR    $dst.hi,31" %}
11241   ins_encode(convert_int_long(dst,src));
11242   ins_pipe( ialu_reg_reg_long );
11243 %}
11244 
11245 // Zero-extend convert int to long
11246 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
11247   match(Set dst (AndL (ConvI2L src) mask) );
11248   effect( KILL flags );
11249   ins_cost(250);
11250   format %{ "MOV    $dst.lo,$src\n\t"
11251             "XOR    $dst.hi,$dst.hi" %}
11252   opcode(0x33); // XOR
11253   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11254   ins_pipe( ialu_reg_reg_long );
11255 %}
11256 
11257 // Zero-extend long
11258 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11259   match(Set dst (AndL src mask) );
11260   effect( KILL flags );
11261   ins_cost(250);
11262   format %{ "MOV    $dst.lo,$src.lo\n\t"
11263             "XOR    $dst.hi,$dst.hi\n\t" %}
11264   opcode(0x33); // XOR
11265   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11266   ins_pipe( ialu_reg_reg_long );
11267 %}
11268 
11269 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11270   predicate (UseSSE<=1);
11271   match(Set dst (ConvL2D src));
11272   effect( KILL cr );
11273   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11274             "PUSH   $src.lo\n\t"
11275             "FILD   ST,[ESP + #0]\n\t"
11276             "ADD    ESP,8\n\t"
11277             "FSTP_D $dst\t# D-round" %}
11278   opcode(0xDF, 0x5);  /* DF /5 */
11279   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
11280   ins_pipe( pipe_slow );
11281 %}
11282 
11283 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
11284   predicate (UseSSE>=2);
11285   match(Set dst (ConvL2D src));
11286   effect( KILL cr );
11287   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11288             "PUSH   $src.lo\n\t"
11289             "FILD_D [ESP]\n\t"
11290             "FSTP_D [ESP]\n\t"
11291             "MOVSD  $dst,[ESP]\n\t"
11292             "ADD    ESP,8" %}
11293   opcode(0xDF, 0x5);  /* DF /5 */
11294   ins_encode(convert_long_double2(src), Push_ResultD(dst));
11295   ins_pipe( pipe_slow );
11296 %}
11297 
11298 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
11299   predicate (UseSSE>=1);
11300   match(Set dst (ConvL2F src));
11301   effect( KILL cr );
11302   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11303             "PUSH   $src.lo\n\t"
11304             "FILD_D [ESP]\n\t"
11305             "FSTP_S [ESP]\n\t"
11306             "MOVSS  $dst,[ESP]\n\t"
11307             "ADD    ESP,8" %}
11308   opcode(0xDF, 0x5);  /* DF /5 */
11309   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
11310   ins_pipe( pipe_slow );
11311 %}
11312 
11313 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11314   match(Set dst (ConvL2F src));
11315   effect( KILL cr );
11316   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11317             "PUSH   $src.lo\n\t"
11318             "FILD   ST,[ESP + #0]\n\t"
11319             "ADD    ESP,8\n\t"
11320             "FSTP_S $dst\t# F-round" %}
11321   opcode(0xDF, 0x5);  /* DF /5 */
11322   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
11323   ins_pipe( pipe_slow );
11324 %}
11325 
11326 instruct convL2I_reg( rRegI dst, eRegL src ) %{
11327   match(Set dst (ConvL2I src));
11328   effect( DEF dst, USE src );
11329   format %{ "MOV    $dst,$src.lo" %}
11330   ins_encode(enc_CopyL_Lo(dst,src));
11331   ins_pipe( ialu_reg_reg );
11332 %}
11333 
11334 
11335 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
11336   match(Set dst (MoveF2I src));
11337   effect( DEF dst, USE src );
11338   ins_cost(100);
11339   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11340   ins_encode %{
11341     __ movl($dst$$Register, Address(rsp, $src$$disp));
11342   %}
11343   ins_pipe( ialu_reg_mem );
11344 %}
11345 
11346 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
11347   predicate(UseSSE==0);
11348   match(Set dst (MoveF2I src));
11349   effect( DEF dst, USE src );
11350 
11351   ins_cost(125);
11352   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11353   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
11354   ins_pipe( fpu_mem_reg );
11355 %}
11356 
11357 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
11358   predicate(UseSSE>=1);
11359   match(Set dst (MoveF2I src));
11360   effect( DEF dst, USE src );
11361 
11362   ins_cost(95);
11363   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11364   ins_encode %{
11365     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
11366   %}
11367   ins_pipe( pipe_slow );
11368 %}
11369 
11370 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
11371   predicate(UseSSE>=2);
11372   match(Set dst (MoveF2I src));
11373   effect( DEF dst, USE src );
11374   ins_cost(85);
11375   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11376   ins_encode %{
11377     __ movdl($dst$$Register, $src$$XMMRegister);
11378   %}
11379   ins_pipe( pipe_slow );
11380 %}
11381 
11382 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
11383   match(Set dst (MoveI2F src));
11384   effect( DEF dst, USE src );
11385 
11386   ins_cost(100);
11387   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11388   ins_encode %{
11389     __ movl(Address(rsp, $dst$$disp), $src$$Register);
11390   %}
11391   ins_pipe( ialu_mem_reg );
11392 %}
11393 
11394 
11395 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
11396   predicate(UseSSE==0);
11397   match(Set dst (MoveI2F src));
11398   effect(DEF dst, USE src);
11399 
11400   ins_cost(125);
11401   format %{ "FLD_S  $src\n\t"
11402             "FSTP   $dst\t# MoveI2F_stack_reg" %}
11403   opcode(0xD9);               /* D9 /0, FLD m32real */
11404   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11405               Pop_Reg_FPR(dst) );
11406   ins_pipe( fpu_reg_mem );
11407 %}
11408 
11409 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
11410   predicate(UseSSE>=1);
11411   match(Set dst (MoveI2F src));
11412   effect( DEF dst, USE src );
11413 
11414   ins_cost(95);
11415   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11416   ins_encode %{
11417     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
11418   %}
11419   ins_pipe( pipe_slow );
11420 %}
11421 
11422 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
11423   predicate(UseSSE>=2);
11424   match(Set dst (MoveI2F src));
11425   effect( DEF dst, USE src );
11426 
11427   ins_cost(85);
11428   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11429   ins_encode %{
11430     __ movdl($dst$$XMMRegister, $src$$Register);
11431   %}
11432   ins_pipe( pipe_slow );
11433 %}
11434 
11435 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11436   match(Set dst (MoveD2L src));
11437   effect(DEF dst, USE src);
11438 
11439   ins_cost(250);
11440   format %{ "MOV    $dst.lo,$src\n\t"
11441             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11442   opcode(0x8B, 0x8B);
11443   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11444   ins_pipe( ialu_mem_long_reg );
11445 %}
11446 
11447 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
11448   predicate(UseSSE<=1);
11449   match(Set dst (MoveD2L src));
11450   effect(DEF dst, USE src);
11451 
11452   ins_cost(125);
11453   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11454   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
11455   ins_pipe( fpu_mem_reg );
11456 %}
11457 
11458 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
11459   predicate(UseSSE>=2);
11460   match(Set dst (MoveD2L src));
11461   effect(DEF dst, USE src);
11462   ins_cost(95);
11463   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
11464   ins_encode %{
11465     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
11466   %}
11467   ins_pipe( pipe_slow );
11468 %}
11469 
11470 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
11471   predicate(UseSSE>=2);
11472   match(Set dst (MoveD2L src));
11473   effect(DEF dst, USE src, TEMP tmp);
11474   ins_cost(85);
11475   format %{ "MOVD   $dst.lo,$src\n\t"
11476             "PSHUFLW $tmp,$src,0x4E\n\t"
11477             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
11478   ins_encode %{
11479     __ movdl($dst$$Register, $src$$XMMRegister);
11480     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
11481     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
11482   %}
11483   ins_pipe( pipe_slow );
11484 %}
11485 
11486 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
11487   match(Set dst (MoveL2D src));
11488   effect(DEF dst, USE src);
11489 
11490   ins_cost(200);
11491   format %{ "MOV    $dst,$src.lo\n\t"
11492             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
11493   opcode(0x89, 0x89);
11494   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
11495   ins_pipe( ialu_mem_long_reg );
11496 %}
11497 
11498 
11499 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
11500   predicate(UseSSE<=1);
11501   match(Set dst (MoveL2D src));
11502   effect(DEF dst, USE src);
11503   ins_cost(125);
11504 
11505   format %{ "FLD_D  $src\n\t"
11506             "FSTP   $dst\t# MoveL2D_stack_reg" %}
11507   opcode(0xDD);               /* DD /0, FLD m64real */
11508   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11509               Pop_Reg_DPR(dst) );
11510   ins_pipe( fpu_reg_mem );
11511 %}
11512 
11513 
11514 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
11515   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
11516   match(Set dst (MoveL2D src));
11517   effect(DEF dst, USE src);
11518 
11519   ins_cost(95);
11520   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
11521   ins_encode %{
11522     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11523   %}
11524   ins_pipe( pipe_slow );
11525 %}
11526 
11527 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
11528   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
11529   match(Set dst (MoveL2D src));
11530   effect(DEF dst, USE src);
11531 
11532   ins_cost(95);
11533   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
11534   ins_encode %{
11535     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11536   %}
11537   ins_pipe( pipe_slow );
11538 %}
11539 
11540 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
11541   predicate(UseSSE>=2);
11542   match(Set dst (MoveL2D src));
11543   effect(TEMP dst, USE src, TEMP tmp);
11544   ins_cost(85);
11545   format %{ "MOVD   $dst,$src.lo\n\t"
11546             "MOVD   $tmp,$src.hi\n\t"
11547             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
11548   ins_encode %{
11549     __ movdl($dst$$XMMRegister, $src$$Register);
11550     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
11551     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
11552   %}
11553   ins_pipe( pipe_slow );
11554 %}
11555 
11556 
11557 // =======================================================================
11558 // fast clearing of an array
11559 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11560   predicate(!UseFastStosb);
11561   match(Set dummy (ClearArray cnt base));
11562   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11563   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11564             "SHL    ECX,1\t# Convert doublewords to words\n\t"
11565             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
11566   ins_encode %{ 
11567     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11568   %}
11569   ins_pipe( pipe_slow );
11570 %}
11571 
11572 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11573   predicate(UseFastStosb);
11574   match(Set dummy (ClearArray cnt base));
11575   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11576   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11577             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
11578             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
11579   ins_encode %{ 
11580     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11581   %}
11582   ins_pipe( pipe_slow );
11583 %}
11584 
11585 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
11586                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
11587   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11588   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11589 
11590   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11591   ins_encode %{
11592     __ string_compare($str1$$Register, $str2$$Register,
11593                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11594                       $tmp1$$XMMRegister);
11595   %}
11596   ins_pipe( pipe_slow );
11597 %}
11598 
11599 // fast string equals
11600 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
11601                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
11602   match(Set result (StrEquals (Binary str1 str2) cnt));
11603   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11604 
11605   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11606   ins_encode %{
11607     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
11608                           $cnt$$Register, $result$$Register, $tmp3$$Register,
11609                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11610   %}
11611   ins_pipe( pipe_slow );
11612 %}
11613 
11614 // fast search of substring with known size.
11615 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
11616                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
11617   predicate(UseSSE42Intrinsics);
11618   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11619   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11620 
11621   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11622   ins_encode %{
11623     int icnt2 = (int)$int_cnt2$$constant;
11624     if (icnt2 >= 8) {
11625       // IndexOf for constant substrings with size >= 8 elements
11626       // which don't need to be loaded through stack.
11627       __ string_indexofC8($str1$$Register, $str2$$Register,
11628                           $cnt1$$Register, $cnt2$$Register,
11629                           icnt2, $result$$Register,
11630                           $vec$$XMMRegister, $tmp$$Register);
11631     } else {
11632       // Small strings are loaded through stack if they cross page boundary.
11633       __ string_indexof($str1$$Register, $str2$$Register,
11634                         $cnt1$$Register, $cnt2$$Register,
11635                         icnt2, $result$$Register,
11636                         $vec$$XMMRegister, $tmp$$Register);
11637     }
11638   %}
11639   ins_pipe( pipe_slow );
11640 %}
11641 
11642 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
11643                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
11644   predicate(UseSSE42Intrinsics);
11645   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11646   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11647 
11648   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11649   ins_encode %{
11650     __ string_indexof($str1$$Register, $str2$$Register,
11651                       $cnt1$$Register, $cnt2$$Register,
11652                       (-1), $result$$Register,
11653                       $vec$$XMMRegister, $tmp$$Register);
11654   %}
11655   ins_pipe( pipe_slow );
11656 %}
11657 
11658 // fast array equals
11659 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
11660                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
11661 %{
11662   match(Set result (AryEq ary1 ary2));
11663   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11664   //ins_cost(300);
11665 
11666   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11667   ins_encode %{
11668     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
11669                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
11670                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11671   %}
11672   ins_pipe( pipe_slow );
11673 %}
11674 
11675 // encode char[] to byte[] in ISO_8859_1
11676 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
11677                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
11678                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
11679   match(Set result (EncodeISOArray src (Binary dst len)));
11680   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11681 
11682   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
11683   ins_encode %{
11684     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11685                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11686                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11687   %}
11688   ins_pipe( pipe_slow );
11689 %}
11690 
11691 
11692 //----------Control Flow Instructions------------------------------------------
11693 // Signed compare Instructions
11694 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
11695   match(Set cr (CmpI op1 op2));
11696   effect( DEF cr, USE op1, USE op2 );
11697   format %{ "CMP    $op1,$op2" %}
11698   opcode(0x3B);  /* Opcode 3B /r */
11699   ins_encode( OpcP, RegReg( op1, op2) );
11700   ins_pipe( ialu_cr_reg_reg );
11701 %}
11702 
11703 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
11704   match(Set cr (CmpI op1 op2));
11705   effect( DEF cr, USE op1 );
11706   format %{ "CMP    $op1,$op2" %}
11707   opcode(0x81,0x07);  /* Opcode 81 /7 */
11708   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
11709   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11710   ins_pipe( ialu_cr_reg_imm );
11711 %}
11712 
11713 // Cisc-spilled version of cmpI_eReg
11714 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
11715   match(Set cr (CmpI op1 (LoadI op2)));
11716 
11717   format %{ "CMP    $op1,$op2" %}
11718   ins_cost(500);
11719   opcode(0x3B);  /* Opcode 3B /r */
11720   ins_encode( OpcP, RegMem( op1, op2) );
11721   ins_pipe( ialu_cr_reg_mem );
11722 %}
11723 
11724 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
11725   match(Set cr (CmpI src zero));
11726   effect( DEF cr, USE src );
11727 
11728   format %{ "TEST   $src,$src" %}
11729   opcode(0x85);
11730   ins_encode( OpcP, RegReg( src, src ) );
11731   ins_pipe( ialu_cr_reg_imm );
11732 %}
11733 
11734 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
11735   match(Set cr (CmpI (AndI src con) zero));
11736 
11737   format %{ "TEST   $src,$con" %}
11738   opcode(0xF7,0x00);
11739   ins_encode( OpcP, RegOpc(src), Con32(con) );
11740   ins_pipe( ialu_cr_reg_imm );
11741 %}
11742 
11743 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
11744   match(Set cr (CmpI (AndI src mem) zero));
11745 
11746   format %{ "TEST   $src,$mem" %}
11747   opcode(0x85);
11748   ins_encode( OpcP, RegMem( src, mem ) );
11749   ins_pipe( ialu_cr_reg_mem );
11750 %}
11751 
11752 // Unsigned compare Instructions; really, same as signed except they
11753 // produce an eFlagsRegU instead of eFlagsReg.
11754 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
11755   match(Set cr (CmpU op1 op2));
11756 
11757   format %{ "CMPu   $op1,$op2" %}
11758   opcode(0x3B);  /* Opcode 3B /r */
11759   ins_encode( OpcP, RegReg( op1, op2) );
11760   ins_pipe( ialu_cr_reg_reg );
11761 %}
11762 
11763 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
11764   match(Set cr (CmpU op1 op2));
11765 
11766   format %{ "CMPu   $op1,$op2" %}
11767   opcode(0x81,0x07);  /* Opcode 81 /7 */
11768   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11769   ins_pipe( ialu_cr_reg_imm );
11770 %}
11771 
11772 // // Cisc-spilled version of cmpU_eReg
11773 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
11774   match(Set cr (CmpU op1 (LoadI op2)));
11775 
11776   format %{ "CMPu   $op1,$op2" %}
11777   ins_cost(500);
11778   opcode(0x3B);  /* Opcode 3B /r */
11779   ins_encode( OpcP, RegMem( op1, op2) );
11780   ins_pipe( ialu_cr_reg_mem );
11781 %}
11782 
11783 // // Cisc-spilled version of cmpU_eReg
11784 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
11785 //  match(Set cr (CmpU (LoadI op1) op2));
11786 //
11787 //  format %{ "CMPu   $op1,$op2" %}
11788 //  ins_cost(500);
11789 //  opcode(0x39);  /* Opcode 39 /r */
11790 //  ins_encode( OpcP, RegMem( op1, op2) );
11791 //%}
11792 
11793 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
11794   match(Set cr (CmpU src zero));
11795 
11796   format %{ "TESTu  $src,$src" %}
11797   opcode(0x85);
11798   ins_encode( OpcP, RegReg( src, src ) );
11799   ins_pipe( ialu_cr_reg_imm );
11800 %}
11801 
11802 // Unsigned pointer compare Instructions
11803 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
11804   match(Set cr (CmpP op1 op2));
11805 
11806   format %{ "CMPu   $op1,$op2" %}
11807   opcode(0x3B);  /* Opcode 3B /r */
11808   ins_encode( OpcP, RegReg( op1, op2) );
11809   ins_pipe( ialu_cr_reg_reg );
11810 %}
11811 
11812 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
11813   match(Set cr (CmpP op1 op2));
11814 
11815   format %{ "CMPu   $op1,$op2" %}
11816   opcode(0x81,0x07);  /* Opcode 81 /7 */
11817   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11818   ins_pipe( ialu_cr_reg_imm );
11819 %}
11820 
11821 // // Cisc-spilled version of cmpP_eReg
11822 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
11823   match(Set cr (CmpP op1 (LoadP op2)));
11824 
11825   format %{ "CMPu   $op1,$op2" %}
11826   ins_cost(500);
11827   opcode(0x3B);  /* Opcode 3B /r */
11828   ins_encode( OpcP, RegMem( op1, op2) );
11829   ins_pipe( ialu_cr_reg_mem );
11830 %}
11831 
11832 // // Cisc-spilled version of cmpP_eReg
11833 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
11834 //  match(Set cr (CmpP (LoadP op1) op2));
11835 //
11836 //  format %{ "CMPu   $op1,$op2" %}
11837 //  ins_cost(500);
11838 //  opcode(0x39);  /* Opcode 39 /r */
11839 //  ins_encode( OpcP, RegMem( op1, op2) );
11840 //%}
11841 
11842 // Compare raw pointer (used in out-of-heap check).
11843 // Only works because non-oop pointers must be raw pointers
11844 // and raw pointers have no anti-dependencies.
11845 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
11846   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
11847   match(Set cr (CmpP op1 (LoadP op2)));
11848 
11849   format %{ "CMPu   $op1,$op2" %}
11850   opcode(0x3B);  /* Opcode 3B /r */
11851   ins_encode( OpcP, RegMem( op1, op2) );
11852   ins_pipe( ialu_cr_reg_mem );
11853 %}
11854 
11855 //
11856 // This will generate a signed flags result. This should be ok
11857 // since any compare to a zero should be eq/neq.
11858 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
11859   match(Set cr (CmpP src zero));
11860 
11861   format %{ "TEST   $src,$src" %}
11862   opcode(0x85);
11863   ins_encode( OpcP, RegReg( src, src ) );
11864   ins_pipe( ialu_cr_reg_imm );
11865 %}
11866 
11867 // Cisc-spilled version of testP_reg
11868 // This will generate a signed flags result. This should be ok
11869 // since any compare to a zero should be eq/neq.
11870 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
11871   match(Set cr (CmpP (LoadP op) zero));
11872 
11873   format %{ "TEST   $op,0xFFFFFFFF" %}
11874   ins_cost(500);
11875   opcode(0xF7);               /* Opcode F7 /0 */
11876   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
11877   ins_pipe( ialu_cr_reg_imm );
11878 %}
11879 
11880 // Yanked all unsigned pointer compare operations.
11881 // Pointer compares are done with CmpP which is already unsigned.
11882 
11883 //----------Max and Min--------------------------------------------------------
11884 // Min Instructions
11885 ////
11886 //   *** Min and Max using the conditional move are slower than the
11887 //   *** branch version on a Pentium III.
11888 // // Conditional move for min
11889 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11890 //  effect( USE_DEF op2, USE op1, USE cr );
11891 //  format %{ "CMOVlt $op2,$op1\t! min" %}
11892 //  opcode(0x4C,0x0F);
11893 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11894 //  ins_pipe( pipe_cmov_reg );
11895 //%}
11896 //
11897 //// Min Register with Register (P6 version)
11898 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
11899 //  predicate(VM_Version::supports_cmov() );
11900 //  match(Set op2 (MinI op1 op2));
11901 //  ins_cost(200);
11902 //  expand %{
11903 //    eFlagsReg cr;
11904 //    compI_eReg(cr,op1,op2);
11905 //    cmovI_reg_lt(op2,op1,cr);
11906 //  %}
11907 //%}
11908 
11909 // Min Register with Register (generic version)
11910 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11911   match(Set dst (MinI dst src));
11912   effect(KILL flags);
11913   ins_cost(300);
11914 
11915   format %{ "MIN    $dst,$src" %}
11916   opcode(0xCC);
11917   ins_encode( min_enc(dst,src) );
11918   ins_pipe( pipe_slow );
11919 %}
11920 
11921 // Max Register with Register
11922 //   *** Min and Max using the conditional move are slower than the
11923 //   *** branch version on a Pentium III.
11924 // // Conditional move for max
11925 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11926 //  effect( USE_DEF op2, USE op1, USE cr );
11927 //  format %{ "CMOVgt $op2,$op1\t! max" %}
11928 //  opcode(0x4F,0x0F);
11929 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11930 //  ins_pipe( pipe_cmov_reg );
11931 //%}
11932 //
11933 // // Max Register with Register (P6 version)
11934 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
11935 //  predicate(VM_Version::supports_cmov() );
11936 //  match(Set op2 (MaxI op1 op2));
11937 //  ins_cost(200);
11938 //  expand %{
11939 //    eFlagsReg cr;
11940 //    compI_eReg(cr,op1,op2);
11941 //    cmovI_reg_gt(op2,op1,cr);
11942 //  %}
11943 //%}
11944 
11945 // Max Register with Register (generic version)
11946 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11947   match(Set dst (MaxI dst src));
11948   effect(KILL flags);
11949   ins_cost(300);
11950 
11951   format %{ "MAX    $dst,$src" %}
11952   opcode(0xCC);
11953   ins_encode( max_enc(dst,src) );
11954   ins_pipe( pipe_slow );
11955 %}
11956 
11957 // ============================================================================
11958 // Counted Loop limit node which represents exact final iterator value.
11959 // Note: the resulting value should fit into integer range since
11960 // counted loops have limit check on overflow.
11961 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
11962   match(Set limit (LoopLimit (Binary init limit) stride));
11963   effect(TEMP limit_hi, TEMP tmp, KILL flags);
11964   ins_cost(300);
11965 
11966   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
11967   ins_encode %{
11968     int strd = (int)$stride$$constant;
11969     assert(strd != 1 && strd != -1, "sanity");
11970     int m1 = (strd > 0) ? 1 : -1;
11971     // Convert limit to long (EAX:EDX)
11972     __ cdql();
11973     // Convert init to long (init:tmp)
11974     __ movl($tmp$$Register, $init$$Register);
11975     __ sarl($tmp$$Register, 31);
11976     // $limit - $init
11977     __ subl($limit$$Register, $init$$Register);
11978     __ sbbl($limit_hi$$Register, $tmp$$Register);
11979     // + ($stride - 1)
11980     if (strd > 0) {
11981       __ addl($limit$$Register, (strd - 1));
11982       __ adcl($limit_hi$$Register, 0);
11983       __ movl($tmp$$Register, strd);
11984     } else {
11985       __ addl($limit$$Register, (strd + 1));
11986       __ adcl($limit_hi$$Register, -1);
11987       __ lneg($limit_hi$$Register, $limit$$Register);
11988       __ movl($tmp$$Register, -strd);
11989     }
11990     // signed devision: (EAX:EDX) / pos_stride
11991     __ idivl($tmp$$Register);
11992     if (strd < 0) {
11993       // restore sign
11994       __ negl($tmp$$Register);
11995     }
11996     // (EAX) * stride
11997     __ mull($tmp$$Register);
11998     // + init (ignore upper bits)
11999     __ addl($limit$$Register, $init$$Register);
12000   %}
12001   ins_pipe( pipe_slow );
12002 %}
12003 
12004 // ============================================================================
12005 // Branch Instructions
12006 // Jump Table
12007 instruct jumpXtnd(rRegI switch_val) %{
12008   match(Jump switch_val);
12009   ins_cost(350);
12010   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
12011   ins_encode %{
12012     // Jump to Address(table_base + switch_reg)
12013     Address index(noreg, $switch_val$$Register, Address::times_1);
12014     __ jump(ArrayAddress($constantaddress, index));
12015   %}
12016   ins_pipe(pipe_jmp);
12017 %}
12018 
12019 // Jump Direct - Label defines a relative address from JMP+1
12020 instruct jmpDir(label labl) %{
12021   match(Goto);
12022   effect(USE labl);
12023 
12024   ins_cost(300);
12025   format %{ "JMP    $labl" %}
12026   size(5);
12027   ins_encode %{
12028     Label* L = $labl$$label;
12029     __ jmp(*L, false); // Always long jump
12030   %}
12031   ins_pipe( pipe_jmp );
12032 %}
12033 
12034 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12035 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
12036   match(If cop cr);
12037   effect(USE labl);
12038 
12039   ins_cost(300);
12040   format %{ "J$cop    $labl" %}
12041   size(6);
12042   ins_encode %{
12043     Label* L = $labl$$label;
12044     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12045   %}
12046   ins_pipe( pipe_jcc );
12047 %}
12048 
12049 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12050 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12051   match(CountedLoopEnd cop cr);
12052   effect(USE labl);
12053 
12054   ins_cost(300);
12055   format %{ "J$cop    $labl\t# Loop end" %}
12056   size(6);
12057   ins_encode %{
12058     Label* L = $labl$$label;
12059     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12060   %}
12061   ins_pipe( pipe_jcc );
12062 %}
12063 
12064 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12065 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12066   match(CountedLoopEnd cop cmp);
12067   effect(USE labl);
12068 
12069   ins_cost(300);
12070   format %{ "J$cop,u  $labl\t# Loop end" %}
12071   size(6);
12072   ins_encode %{
12073     Label* L = $labl$$label;
12074     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12075   %}
12076   ins_pipe( pipe_jcc );
12077 %}
12078 
12079 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12080   match(CountedLoopEnd cop cmp);
12081   effect(USE labl);
12082 
12083   ins_cost(200);
12084   format %{ "J$cop,u  $labl\t# Loop end" %}
12085   size(6);
12086   ins_encode %{
12087     Label* L = $labl$$label;
12088     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12089   %}
12090   ins_pipe( pipe_jcc );
12091 %}
12092 
12093 // Jump Direct Conditional - using unsigned comparison
12094 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12095   match(If cop cmp);
12096   effect(USE labl);
12097 
12098   ins_cost(300);
12099   format %{ "J$cop,u  $labl" %}
12100   size(6);
12101   ins_encode %{
12102     Label* L = $labl$$label;
12103     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12104   %}
12105   ins_pipe(pipe_jcc);
12106 %}
12107 
12108 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12109   match(If cop cmp);
12110   effect(USE labl);
12111 
12112   ins_cost(200);
12113   format %{ "J$cop,u  $labl" %}
12114   size(6);
12115   ins_encode %{
12116     Label* L = $labl$$label;
12117     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12118   %}
12119   ins_pipe(pipe_jcc);
12120 %}
12121 
12122 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12123   match(If cop cmp);
12124   effect(USE labl);
12125 
12126   ins_cost(200);
12127   format %{ $$template
12128     if ($cop$$cmpcode == Assembler::notEqual) {
12129       $$emit$$"JP,u   $labl\n\t"
12130       $$emit$$"J$cop,u   $labl"
12131     } else {
12132       $$emit$$"JP,u   done\n\t"
12133       $$emit$$"J$cop,u   $labl\n\t"
12134       $$emit$$"done:"
12135     }
12136   %}
12137   ins_encode %{
12138     Label* l = $labl$$label;
12139     if ($cop$$cmpcode == Assembler::notEqual) {
12140       __ jcc(Assembler::parity, *l, false);
12141       __ jcc(Assembler::notEqual, *l, false);
12142     } else if ($cop$$cmpcode == Assembler::equal) {
12143       Label done;
12144       __ jccb(Assembler::parity, done);
12145       __ jcc(Assembler::equal, *l, false);
12146       __ bind(done);
12147     } else {
12148        ShouldNotReachHere();
12149     }
12150   %}
12151   ins_pipe(pipe_jcc);
12152 %}
12153 
12154 // ============================================================================
12155 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12156 // array for an instance of the superklass.  Set a hidden internal cache on a
12157 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
12158 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12159 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12160   match(Set result (PartialSubtypeCheck sub super));
12161   effect( KILL rcx, KILL cr );
12162 
12163   ins_cost(1100);  // slightly larger than the next version
12164   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12165             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12166             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12167             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12168             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12169             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12170             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12171      "miss:\t" %}
12172 
12173   opcode(0x1); // Force a XOR of EDI
12174   ins_encode( enc_PartialSubtypeCheck() );
12175   ins_pipe( pipe_slow );
12176 %}
12177 
12178 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12179   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12180   effect( KILL rcx, KILL result );
12181 
12182   ins_cost(1000);
12183   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12184             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12185             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12186             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12187             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12188             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12189      "miss:\t" %}
12190 
12191   opcode(0x0);  // No need to XOR EDI
12192   ins_encode( enc_PartialSubtypeCheck() );
12193   ins_pipe( pipe_slow );
12194 %}
12195 
12196 // ============================================================================
12197 // Branch Instructions -- short offset versions
12198 //
12199 // These instructions are used to replace jumps of a long offset (the default
12200 // match) with jumps of a shorter offset.  These instructions are all tagged
12201 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12202 // match rules in general matching.  Instead, the ADLC generates a conversion
12203 // method in the MachNode which can be used to do in-place replacement of the
12204 // long variant with the shorter variant.  The compiler will determine if a
12205 // branch can be taken by the is_short_branch_offset() predicate in the machine
12206 // specific code section of the file.
12207 
12208 // Jump Direct - Label defines a relative address from JMP+1
12209 instruct jmpDir_short(label labl) %{
12210   match(Goto);
12211   effect(USE labl);
12212 
12213   ins_cost(300);
12214   format %{ "JMP,s  $labl" %}
12215   size(2);
12216   ins_encode %{
12217     Label* L = $labl$$label;
12218     __ jmpb(*L);
12219   %}
12220   ins_pipe( pipe_jmp );
12221   ins_short_branch(1);
12222 %}
12223 
12224 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12225 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12226   match(If cop cr);
12227   effect(USE labl);
12228 
12229   ins_cost(300);
12230   format %{ "J$cop,s  $labl" %}
12231   size(2);
12232   ins_encode %{
12233     Label* L = $labl$$label;
12234     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12235   %}
12236   ins_pipe( pipe_jcc );
12237   ins_short_branch(1);
12238 %}
12239 
12240 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12241 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12242   match(CountedLoopEnd cop cr);
12243   effect(USE labl);
12244 
12245   ins_cost(300);
12246   format %{ "J$cop,s  $labl\t# Loop end" %}
12247   size(2);
12248   ins_encode %{
12249     Label* L = $labl$$label;
12250     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12251   %}
12252   ins_pipe( pipe_jcc );
12253   ins_short_branch(1);
12254 %}
12255 
12256 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12257 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12258   match(CountedLoopEnd cop cmp);
12259   effect(USE labl);
12260 
12261   ins_cost(300);
12262   format %{ "J$cop,us $labl\t# Loop end" %}
12263   size(2);
12264   ins_encode %{
12265     Label* L = $labl$$label;
12266     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12267   %}
12268   ins_pipe( pipe_jcc );
12269   ins_short_branch(1);
12270 %}
12271 
12272 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12273   match(CountedLoopEnd cop cmp);
12274   effect(USE labl);
12275 
12276   ins_cost(300);
12277   format %{ "J$cop,us $labl\t# Loop end" %}
12278   size(2);
12279   ins_encode %{
12280     Label* L = $labl$$label;
12281     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12282   %}
12283   ins_pipe( pipe_jcc );
12284   ins_short_branch(1);
12285 %}
12286 
12287 // Jump Direct Conditional - using unsigned comparison
12288 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12289   match(If cop cmp);
12290   effect(USE labl);
12291 
12292   ins_cost(300);
12293   format %{ "J$cop,us $labl" %}
12294   size(2);
12295   ins_encode %{
12296     Label* L = $labl$$label;
12297     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12298   %}
12299   ins_pipe( pipe_jcc );
12300   ins_short_branch(1);
12301 %}
12302 
12303 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12304   match(If cop cmp);
12305   effect(USE labl);
12306 
12307   ins_cost(300);
12308   format %{ "J$cop,us $labl" %}
12309   size(2);
12310   ins_encode %{
12311     Label* L = $labl$$label;
12312     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12313   %}
12314   ins_pipe( pipe_jcc );
12315   ins_short_branch(1);
12316 %}
12317 
12318 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12319   match(If cop cmp);
12320   effect(USE labl);
12321 
12322   ins_cost(300);
12323   format %{ $$template
12324     if ($cop$$cmpcode == Assembler::notEqual) {
12325       $$emit$$"JP,u,s   $labl\n\t"
12326       $$emit$$"J$cop,u,s   $labl"
12327     } else {
12328       $$emit$$"JP,u,s   done\n\t"
12329       $$emit$$"J$cop,u,s  $labl\n\t"
12330       $$emit$$"done:"
12331     }
12332   %}
12333   size(4);
12334   ins_encode %{
12335     Label* l = $labl$$label;
12336     if ($cop$$cmpcode == Assembler::notEqual) {
12337       __ jccb(Assembler::parity, *l);
12338       __ jccb(Assembler::notEqual, *l);
12339     } else if ($cop$$cmpcode == Assembler::equal) {
12340       Label done;
12341       __ jccb(Assembler::parity, done);
12342       __ jccb(Assembler::equal, *l);
12343       __ bind(done);
12344     } else {
12345        ShouldNotReachHere();
12346     }
12347   %}
12348   ins_pipe(pipe_jcc);
12349   ins_short_branch(1);
12350 %}
12351 
12352 // ============================================================================
12353 // Long Compare
12354 //
12355 // Currently we hold longs in 2 registers.  Comparing such values efficiently
12356 // is tricky.  The flavor of compare used depends on whether we are testing
12357 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12358 // The GE test is the negated LT test.  The LE test can be had by commuting
12359 // the operands (yielding a GE test) and then negating; negate again for the
12360 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12361 // NE test is negated from that.
12362 
12363 // Due to a shortcoming in the ADLC, it mixes up expressions like:
12364 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12365 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12366 // are collapsed internally in the ADLC's dfa-gen code.  The match for
12367 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12368 // foo match ends up with the wrong leaf.  One fix is to not match both
12369 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12370 // both forms beat the trinary form of long-compare and both are very useful
12371 // on Intel which has so few registers.
12372 
12373 // Manifest a CmpL result in an integer register.  Very painful.
12374 // This is the test to avoid.
12375 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12376   match(Set dst (CmpL3 src1 src2));
12377   effect( KILL flags );
12378   ins_cost(1000);
12379   format %{ "XOR    $dst,$dst\n\t"
12380             "CMP    $src1.hi,$src2.hi\n\t"
12381             "JLT,s  m_one\n\t"
12382             "JGT,s  p_one\n\t"
12383             "CMP    $src1.lo,$src2.lo\n\t"
12384             "JB,s   m_one\n\t"
12385             "JEQ,s  done\n"
12386     "p_one:\tINC    $dst\n\t"
12387             "JMP,s  done\n"
12388     "m_one:\tDEC    $dst\n"
12389      "done:" %}
12390   ins_encode %{
12391     Label p_one, m_one, done;
12392     __ xorptr($dst$$Register, $dst$$Register);
12393     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12394     __ jccb(Assembler::less,    m_one);
12395     __ jccb(Assembler::greater, p_one);
12396     __ cmpl($src1$$Register, $src2$$Register);
12397     __ jccb(Assembler::below,   m_one);
12398     __ jccb(Assembler::equal,   done);
12399     __ bind(p_one);
12400     __ incrementl($dst$$Register);
12401     __ jmpb(done);
12402     __ bind(m_one);
12403     __ decrementl($dst$$Register);
12404     __ bind(done);
12405   %}
12406   ins_pipe( pipe_slow );
12407 %}
12408 
12409 //======
12410 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12411 // compares.  Can be used for LE or GT compares by reversing arguments.
12412 // NOT GOOD FOR EQ/NE tests.
12413 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12414   match( Set flags (CmpL src zero ));
12415   ins_cost(100);
12416   format %{ "TEST   $src.hi,$src.hi" %}
12417   opcode(0x85);
12418   ins_encode( OpcP, RegReg_Hi2( src, src ) );
12419   ins_pipe( ialu_cr_reg_reg );
12420 %}
12421 
12422 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12423 // compares.  Can be used for LE or GT compares by reversing arguments.
12424 // NOT GOOD FOR EQ/NE tests.
12425 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12426   match( Set flags (CmpL src1 src2 ));
12427   effect( TEMP tmp );
12428   ins_cost(300);
12429   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12430             "MOV    $tmp,$src1.hi\n\t"
12431             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12432   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12433   ins_pipe( ialu_cr_reg_reg );
12434 %}
12435 
12436 // Long compares reg < zero/req OR reg >= zero/req.
12437 // Just a wrapper for a normal branch, plus the predicate test.
12438 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12439   match(If cmp flags);
12440   effect(USE labl);
12441   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12442   expand %{
12443     jmpCon(cmp,flags,labl);    // JLT or JGE...
12444   %}
12445 %}
12446 
12447 // Compare 2 longs and CMOVE longs.
12448 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12449   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12450   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12451   ins_cost(400);
12452   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12453             "CMOV$cmp $dst.hi,$src.hi" %}
12454   opcode(0x0F,0x40);
12455   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12456   ins_pipe( pipe_cmov_reg_long );
12457 %}
12458 
12459 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
12460   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12461   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12462   ins_cost(500);
12463   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12464             "CMOV$cmp $dst.hi,$src.hi" %}
12465   opcode(0x0F,0x40);
12466   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12467   ins_pipe( pipe_cmov_reg_long );
12468 %}
12469 
12470 // Compare 2 longs and CMOVE ints.
12471 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
12472   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12473   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12474   ins_cost(200);
12475   format %{ "CMOV$cmp $dst,$src" %}
12476   opcode(0x0F,0x40);
12477   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12478   ins_pipe( pipe_cmov_reg );
12479 %}
12480 
12481 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
12482   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12483   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12484   ins_cost(250);
12485   format %{ "CMOV$cmp $dst,$src" %}
12486   opcode(0x0F,0x40);
12487   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12488   ins_pipe( pipe_cmov_mem );
12489 %}
12490 
12491 // Compare 2 longs and CMOVE ints.
12492 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
12493   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12494   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12495   ins_cost(200);
12496   format %{ "CMOV$cmp $dst,$src" %}
12497   opcode(0x0F,0x40);
12498   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12499   ins_pipe( pipe_cmov_reg );
12500 %}
12501 
12502 // Compare 2 longs and CMOVE doubles
12503 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
12504   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12505   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12506   ins_cost(200);
12507   expand %{
12508     fcmovDPR_regS(cmp,flags,dst,src);
12509   %}
12510 %}
12511 
12512 // Compare 2 longs and CMOVE doubles
12513 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
12514   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12515   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12516   ins_cost(200);
12517   expand %{
12518     fcmovD_regS(cmp,flags,dst,src);
12519   %}
12520 %}
12521 
12522 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
12523   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12524   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12525   ins_cost(200);
12526   expand %{
12527     fcmovFPR_regS(cmp,flags,dst,src);
12528   %}
12529 %}
12530 
12531 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
12532   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12533   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12534   ins_cost(200);
12535   expand %{
12536     fcmovF_regS(cmp,flags,dst,src);
12537   %}
12538 %}
12539 
12540 //======
12541 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12542 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
12543   match( Set flags (CmpL src zero ));
12544   effect(TEMP tmp);
12545   ins_cost(200);
12546   format %{ "MOV    $tmp,$src.lo\n\t"
12547             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
12548   ins_encode( long_cmp_flags0( src, tmp ) );
12549   ins_pipe( ialu_reg_reg_long );
12550 %}
12551 
12552 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12553 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
12554   match( Set flags (CmpL src1 src2 ));
12555   ins_cost(200+300);
12556   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12557             "JNE,s  skip\n\t"
12558             "CMP    $src1.hi,$src2.hi\n\t"
12559      "skip:\t" %}
12560   ins_encode( long_cmp_flags1( src1, src2 ) );
12561   ins_pipe( ialu_cr_reg_reg );
12562 %}
12563 
12564 // Long compare reg == zero/reg OR reg != zero/reg
12565 // Just a wrapper for a normal branch, plus the predicate test.
12566 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
12567   match(If cmp flags);
12568   effect(USE labl);
12569   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12570   expand %{
12571     jmpCon(cmp,flags,labl);    // JEQ or JNE...
12572   %}
12573 %}
12574 
12575 // Compare 2 longs and CMOVE longs.
12576 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
12577   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12578   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12579   ins_cost(400);
12580   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12581             "CMOV$cmp $dst.hi,$src.hi" %}
12582   opcode(0x0F,0x40);
12583   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12584   ins_pipe( pipe_cmov_reg_long );
12585 %}
12586 
12587 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
12588   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12589   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12590   ins_cost(500);
12591   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12592             "CMOV$cmp $dst.hi,$src.hi" %}
12593   opcode(0x0F,0x40);
12594   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12595   ins_pipe( pipe_cmov_reg_long );
12596 %}
12597 
12598 // Compare 2 longs and CMOVE ints.
12599 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
12600   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12601   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12602   ins_cost(200);
12603   format %{ "CMOV$cmp $dst,$src" %}
12604   opcode(0x0F,0x40);
12605   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12606   ins_pipe( pipe_cmov_reg );
12607 %}
12608 
12609 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
12610   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12611   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12612   ins_cost(250);
12613   format %{ "CMOV$cmp $dst,$src" %}
12614   opcode(0x0F,0x40);
12615   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12616   ins_pipe( pipe_cmov_mem );
12617 %}
12618 
12619 // Compare 2 longs and CMOVE ints.
12620 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
12621   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12622   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12623   ins_cost(200);
12624   format %{ "CMOV$cmp $dst,$src" %}
12625   opcode(0x0F,0x40);
12626   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12627   ins_pipe( pipe_cmov_reg );
12628 %}
12629 
12630 // Compare 2 longs and CMOVE doubles
12631 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
12632   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12633   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12634   ins_cost(200);
12635   expand %{
12636     fcmovDPR_regS(cmp,flags,dst,src);
12637   %}
12638 %}
12639 
12640 // Compare 2 longs and CMOVE doubles
12641 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
12642   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12643   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12644   ins_cost(200);
12645   expand %{
12646     fcmovD_regS(cmp,flags,dst,src);
12647   %}
12648 %}
12649 
12650 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
12651   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12652   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12653   ins_cost(200);
12654   expand %{
12655     fcmovFPR_regS(cmp,flags,dst,src);
12656   %}
12657 %}
12658 
12659 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
12660   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12661   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12662   ins_cost(200);
12663   expand %{
12664     fcmovF_regS(cmp,flags,dst,src);
12665   %}
12666 %}
12667 
12668 //======
12669 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12670 // Same as cmpL_reg_flags_LEGT except must negate src
12671 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
12672   match( Set flags (CmpL src zero ));
12673   effect( TEMP tmp );
12674   ins_cost(300);
12675   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
12676             "CMP    $tmp,$src.lo\n\t"
12677             "SBB    $tmp,$src.hi\n\t" %}
12678   ins_encode( long_cmp_flags3(src, tmp) );
12679   ins_pipe( ialu_reg_reg_long );
12680 %}
12681 
12682 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12683 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
12684 // requires a commuted test to get the same result.
12685 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12686   match( Set flags (CmpL src1 src2 ));
12687   effect( TEMP tmp );
12688   ins_cost(300);
12689   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
12690             "MOV    $tmp,$src2.hi\n\t"
12691             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
12692   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
12693   ins_pipe( ialu_cr_reg_reg );
12694 %}
12695 
12696 // Long compares reg < zero/req OR reg >= zero/req.
12697 // Just a wrapper for a normal branch, plus the predicate test
12698 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
12699   match(If cmp flags);
12700   effect(USE labl);
12701   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
12702   ins_cost(300);
12703   expand %{
12704     jmpCon(cmp,flags,labl);    // JGT or JLE...
12705   %}
12706 %}
12707 
12708 // Compare 2 longs and CMOVE longs.
12709 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
12710   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12711   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12712   ins_cost(400);
12713   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12714             "CMOV$cmp $dst.hi,$src.hi" %}
12715   opcode(0x0F,0x40);
12716   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12717   ins_pipe( pipe_cmov_reg_long );
12718 %}
12719 
12720 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
12721   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12722   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12723   ins_cost(500);
12724   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12725             "CMOV$cmp $dst.hi,$src.hi+4" %}
12726   opcode(0x0F,0x40);
12727   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12728   ins_pipe( pipe_cmov_reg_long );
12729 %}
12730 
12731 // Compare 2 longs and CMOVE ints.
12732 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
12733   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12734   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12735   ins_cost(200);
12736   format %{ "CMOV$cmp $dst,$src" %}
12737   opcode(0x0F,0x40);
12738   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12739   ins_pipe( pipe_cmov_reg );
12740 %}
12741 
12742 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
12743   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12744   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12745   ins_cost(250);
12746   format %{ "CMOV$cmp $dst,$src" %}
12747   opcode(0x0F,0x40);
12748   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12749   ins_pipe( pipe_cmov_mem );
12750 %}
12751 
12752 // Compare 2 longs and CMOVE ptrs.
12753 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
12754   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12755   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12756   ins_cost(200);
12757   format %{ "CMOV$cmp $dst,$src" %}
12758   opcode(0x0F,0x40);
12759   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12760   ins_pipe( pipe_cmov_reg );
12761 %}
12762 
12763 // Compare 2 longs and CMOVE doubles
12764 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
12765   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12766   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12767   ins_cost(200);
12768   expand %{
12769     fcmovDPR_regS(cmp,flags,dst,src);
12770   %}
12771 %}
12772 
12773 // Compare 2 longs and CMOVE doubles
12774 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
12775   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12776   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12777   ins_cost(200);
12778   expand %{
12779     fcmovD_regS(cmp,flags,dst,src);
12780   %}
12781 %}
12782 
12783 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
12784   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12785   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12786   ins_cost(200);
12787   expand %{
12788     fcmovFPR_regS(cmp,flags,dst,src);
12789   %}
12790 %}
12791 
12792 
12793 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
12794   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12795   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12796   ins_cost(200);
12797   expand %{
12798     fcmovF_regS(cmp,flags,dst,src);
12799   %}
12800 %}
12801 
12802 
12803 // ============================================================================
12804 // Procedure Call/Return Instructions
12805 // Call Java Static Instruction
12806 // Note: If this code changes, the corresponding ret_addr_offset() and
12807 //       compute_padding() functions will have to be adjusted.
12808 instruct CallStaticJavaDirect(method meth) %{
12809   match(CallStaticJava);
12810   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
12811   effect(USE meth);
12812 
12813   ins_cost(300);
12814   format %{ "CALL,static " %}
12815   opcode(0xE8); /* E8 cd */
12816   ins_encode( pre_call_resets,
12817               Java_Static_Call( meth ),
12818               call_epilog,
12819               post_call_FPU );
12820   ins_pipe( pipe_slow );
12821   ins_alignment(4);
12822 %}
12823 
12824 // Call Java Static Instruction (method handle version)
12825 // Note: If this code changes, the corresponding ret_addr_offset() and
12826 //       compute_padding() functions will have to be adjusted.
12827 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
12828   match(CallStaticJava);
12829   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
12830   effect(USE meth);
12831   // EBP is saved by all callees (for interpreter stack correction).
12832   // We use it here for a similar purpose, in {preserve,restore}_SP.
12833 
12834   ins_cost(300);
12835   format %{ "CALL,static/MethodHandle " %}
12836   opcode(0xE8); /* E8 cd */
12837   ins_encode( pre_call_resets,
12838               preserve_SP,
12839               Java_Static_Call( meth ),
12840               restore_SP,
12841               call_epilog,
12842               post_call_FPU );
12843   ins_pipe( pipe_slow );
12844   ins_alignment(4);
12845 %}
12846 
12847 // Call Java Dynamic Instruction
12848 // Note: If this code changes, the corresponding ret_addr_offset() and
12849 //       compute_padding() functions will have to be adjusted.
12850 instruct CallDynamicJavaDirect(method meth) %{
12851   match(CallDynamicJava);
12852   effect(USE meth);
12853 
12854   ins_cost(300);
12855   format %{ "MOV    EAX,(oop)-1\n\t"
12856             "CALL,dynamic" %}
12857   opcode(0xE8); /* E8 cd */
12858   ins_encode( pre_call_resets,
12859               Java_Dynamic_Call( meth ),
12860               call_epilog,
12861               post_call_FPU );
12862   ins_pipe( pipe_slow );
12863   ins_alignment(4);
12864 %}
12865 
12866 // Call Runtime Instruction
12867 instruct CallRuntimeDirect(method meth) %{
12868   match(CallRuntime );
12869   effect(USE meth);
12870 
12871   ins_cost(300);
12872   format %{ "CALL,runtime " %}
12873   opcode(0xE8); /* E8 cd */
12874   // Use FFREEs to clear entries in float stack
12875   ins_encode( pre_call_resets,
12876               FFree_Float_Stack_All,
12877               Java_To_Runtime( meth ),
12878               post_call_FPU );
12879   ins_pipe( pipe_slow );
12880 %}
12881 
12882 // Call runtime without safepoint
12883 instruct CallLeafDirect(method meth) %{
12884   match(CallLeaf);
12885   effect(USE meth);
12886 
12887   ins_cost(300);
12888   format %{ "CALL_LEAF,runtime " %}
12889   opcode(0xE8); /* E8 cd */
12890   ins_encode( pre_call_resets,
12891               FFree_Float_Stack_All,
12892               Java_To_Runtime( meth ),
12893               Verify_FPU_For_Leaf, post_call_FPU );
12894   ins_pipe( pipe_slow );
12895 %}
12896 
12897 instruct CallLeafNoFPDirect(method meth) %{
12898   match(CallLeafNoFP);
12899   effect(USE meth);
12900 
12901   ins_cost(300);
12902   format %{ "CALL_LEAF_NOFP,runtime " %}
12903   opcode(0xE8); /* E8 cd */
12904   ins_encode(Java_To_Runtime(meth));
12905   ins_pipe( pipe_slow );
12906 %}
12907 
12908 
12909 // Return Instruction
12910 // Remove the return address & jump to it.
12911 instruct Ret() %{
12912   match(Return);
12913   format %{ "RET" %}
12914   opcode(0xC3);
12915   ins_encode(OpcP);
12916   ins_pipe( pipe_jmp );
12917 %}
12918 
12919 // Tail Call; Jump from runtime stub to Java code.
12920 // Also known as an 'interprocedural jump'.
12921 // Target of jump will eventually return to caller.
12922 // TailJump below removes the return address.
12923 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
12924   match(TailCall jump_target method_oop );
12925   ins_cost(300);
12926   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
12927   opcode(0xFF, 0x4);  /* Opcode FF /4 */
12928   ins_encode( OpcP, RegOpc(jump_target) );
12929   ins_pipe( pipe_jmp );
12930 %}
12931 
12932 
12933 // Tail Jump; remove the return address; jump to target.
12934 // TailCall above leaves the return address around.
12935 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
12936   match( TailJump jump_target ex_oop );
12937   ins_cost(300);
12938   format %{ "POP    EDX\t# pop return address into dummy\n\t"
12939             "JMP    $jump_target " %}
12940   opcode(0xFF, 0x4);  /* Opcode FF /4 */
12941   ins_encode( enc_pop_rdx,
12942               OpcP, RegOpc(jump_target) );
12943   ins_pipe( pipe_jmp );
12944 %}
12945 
12946 // Create exception oop: created by stack-crawling runtime code.
12947 // Created exception is now available to this handler, and is setup
12948 // just prior to jumping to this handler.  No code emitted.
12949 instruct CreateException( eAXRegP ex_oop )
12950 %{
12951   match(Set ex_oop (CreateEx));
12952 
12953   size(0);
12954   // use the following format syntax
12955   format %{ "# exception oop is in EAX; no code emitted" %}
12956   ins_encode();
12957   ins_pipe( empty );
12958 %}
12959 
12960 
12961 // Rethrow exception:
12962 // The exception oop will come in the first argument position.
12963 // Then JUMP (not call) to the rethrow stub code.
12964 instruct RethrowException()
12965 %{
12966   match(Rethrow);
12967 
12968   // use the following format syntax
12969   format %{ "JMP    rethrow_stub" %}
12970   ins_encode(enc_rethrow);
12971   ins_pipe( pipe_jmp );
12972 %}
12973 
12974 // inlined locking and unlocking
12975 
12976 
12977 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
12978   match( Set cr (FastLock object box) );
12979   effect( TEMP tmp, TEMP scr, USE_KILL box );
12980   ins_cost(300);
12981   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
12982   ins_encode( Fast_Lock(object,box,tmp,scr) );
12983   ins_pipe( pipe_slow );
12984 %}
12985 
12986 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
12987   match( Set cr (FastUnlock object box) );
12988   effect( TEMP tmp, USE_KILL box );
12989   ins_cost(300);
12990   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
12991   ins_encode( Fast_Unlock(object,box,tmp) );
12992   ins_pipe( pipe_slow );
12993 %}
12994 
12995 
12996 
12997 // ============================================================================
12998 // Safepoint Instruction
12999 instruct safePoint_poll(eFlagsReg cr) %{
13000   match(SafePoint);
13001   effect(KILL cr);
13002 
13003   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
13004   // On SPARC that might be acceptable as we can generate the address with
13005   // just a sethi, saving an or.  By polling at offset 0 we can end up
13006   // putting additional pressure on the index-0 in the D$.  Because of
13007   // alignment (just like the situation at hand) the lower indices tend
13008   // to see more traffic.  It'd be better to change the polling address
13009   // to offset 0 of the last $line in the polling page.
13010 
13011   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
13012   ins_cost(125);
13013   size(6) ;
13014   ins_encode( Safepoint_Poll() );
13015   ins_pipe( ialu_reg_mem );
13016 %}
13017 
13018 
13019 // ============================================================================
13020 // This name is KNOWN by the ADLC and cannot be changed.
13021 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
13022 // for this guy.
13023 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
13024   match(Set dst (ThreadLocal));
13025   effect(DEF dst, KILL cr);
13026 
13027   format %{ "MOV    $dst, Thread::current()" %}
13028   ins_encode %{
13029     Register dstReg = as_Register($dst$$reg);
13030     __ get_thread(dstReg);
13031   %}
13032   ins_pipe( ialu_reg_fat );
13033 %}
13034 
13035 
13036 
13037 //----------PEEPHOLE RULES-----------------------------------------------------
13038 // These must follow all instruction definitions as they use the names
13039 // defined in the instructions definitions.
13040 //
13041 // peepmatch ( root_instr_name [preceding_instruction]* );
13042 //
13043 // peepconstraint %{
13044 // (instruction_number.operand_name relational_op instruction_number.operand_name
13045 //  [, ...] );
13046 // // instruction numbers are zero-based using left to right order in peepmatch
13047 //
13048 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
13049 // // provide an instruction_number.operand_name for each operand that appears
13050 // // in the replacement instruction's match rule
13051 //
13052 // ---------VM FLAGS---------------------------------------------------------
13053 //
13054 // All peephole optimizations can be turned off using -XX:-OptoPeephole
13055 //
13056 // Each peephole rule is given an identifying number starting with zero and
13057 // increasing by one in the order seen by the parser.  An individual peephole
13058 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
13059 // on the command-line.
13060 //
13061 // ---------CURRENT LIMITATIONS----------------------------------------------
13062 //
13063 // Only match adjacent instructions in same basic block
13064 // Only equality constraints
13065 // Only constraints between operands, not (0.dest_reg == EAX_enc)
13066 // Only one replacement instruction
13067 //
13068 // ---------EXAMPLE----------------------------------------------------------
13069 //
13070 // // pertinent parts of existing instructions in architecture description
13071 // instruct movI(rRegI dst, rRegI src) %{
13072 //   match(Set dst (CopyI src));
13073 // %}
13074 //
13075 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
13076 //   match(Set dst (AddI dst src));
13077 //   effect(KILL cr);
13078 // %}
13079 //
13080 // // Change (inc mov) to lea
13081 // peephole %{
13082 //   // increment preceeded by register-register move
13083 //   peepmatch ( incI_eReg movI );
13084 //   // require that the destination register of the increment
13085 //   // match the destination register of the move
13086 //   peepconstraint ( 0.dst == 1.dst );
13087 //   // construct a replacement instruction that sets
13088 //   // the destination to ( move's source register + one )
13089 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13090 // %}
13091 //
13092 // Implementation no longer uses movX instructions since
13093 // machine-independent system no longer uses CopyX nodes.
13094 //
13095 // peephole %{
13096 //   peepmatch ( incI_eReg movI );
13097 //   peepconstraint ( 0.dst == 1.dst );
13098 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13099 // %}
13100 //
13101 // peephole %{
13102 //   peepmatch ( decI_eReg movI );
13103 //   peepconstraint ( 0.dst == 1.dst );
13104 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13105 // %}
13106 //
13107 // peephole %{
13108 //   peepmatch ( addI_eReg_imm movI );
13109 //   peepconstraint ( 0.dst == 1.dst );
13110 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13111 // %}
13112 //
13113 // peephole %{
13114 //   peepmatch ( addP_eReg_imm movP );
13115 //   peepconstraint ( 0.dst == 1.dst );
13116 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13117 // %}
13118 
13119 // // Change load of spilled value to only a spill
13120 // instruct storeI(memory mem, rRegI src) %{
13121 //   match(Set mem (StoreI mem src));
13122 // %}
13123 //
13124 // instruct loadI(rRegI dst, memory mem) %{
13125 //   match(Set dst (LoadI mem));
13126 // %}
13127 //
13128 peephole %{
13129   peepmatch ( loadI storeI );
13130   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13131   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13132 %}
13133 
13134 //----------SMARTSPILL RULES---------------------------------------------------
13135 // These must follow all instruction definitions as they use the names
13136 // defined in the instructions definitions.