1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "code/compiledIC.hpp"
  28 #include "code/debugInfo.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "memory/allocation.inline.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/output.hpp"
  38 #include "opto/regalloc.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/type.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "utilities/xmlstream.hpp"
  44 
  45 extern uint size_exception_handler();
  46 extern uint size_deopt_handler();
  47 
  48 #ifndef PRODUCT
  49 #define DEBUG_ARG(x) , x
  50 #else
  51 #define DEBUG_ARG(x)
  52 #endif
  53 
  54 extern int emit_exception_handler(CodeBuffer &cbuf);
  55 extern int emit_deopt_handler(CodeBuffer &cbuf);
  56 
  57 //------------------------------Output-----------------------------------------
  58 // Convert Nodes to instruction bits and pass off to the VM
  59 void Compile::Output() {
  60   // RootNode goes
  61   assert( _cfg->_broot->_nodes.size() == 0, "" );
  62 
  63   // The number of new nodes (mostly MachNop) is proportional to
  64   // the number of java calls and inner loops which are aligned.
  65   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  66                             C->inner_loops()*(OptoLoopAlignment-1)),
  67                            "out of nodes before code generation" ) ) {
  68     return;
  69   }
  70   // Make sure I can find the Start Node
  71   Block_Array& bbs = _cfg->_bbs;
  72   Block *entry = _cfg->_blocks[1];
  73   Block *broot = _cfg->_broot;
  74 
  75   const StartNode *start = entry->_nodes[0]->as_Start();
  76 
  77   // Replace StartNode with prolog
  78   MachPrologNode *prolog = new (this) MachPrologNode();
  79   entry->_nodes.map( 0, prolog );
  80   bbs.map( prolog->_idx, entry );
  81   bbs.map( start->_idx, NULL ); // start is no longer in any block
  82 
  83   // Virtual methods need an unverified entry point
  84 
  85   if( is_osr_compilation() ) {
  86     if( PoisonOSREntry ) {
  87       // TODO: Should use a ShouldNotReachHereNode...
  88       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  89     }
  90   } else {
  91     if( _method && !_method->flags().is_static() ) {
  92       // Insert unvalidated entry point
  93       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  94     }
  95 
  96   }
  97 
  98 
  99   // Break before main entry point
 100   if( (_method && _method->break_at_execute())
 101 #ifndef PRODUCT
 102     ||(OptoBreakpoint && is_method_compilation())
 103     ||(OptoBreakpointOSR && is_osr_compilation())
 104     ||(OptoBreakpointC2R && !_method)
 105 #endif
 106     ) {
 107     // checking for _method means that OptoBreakpoint does not apply to
 108     // runtime stubs or frame converters
 109     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
 110   }
 111 
 112   // Insert epilogs before every return
 113   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 114     Block *b = _cfg->_blocks[i];
 115     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
 116       Node *m = b->end();
 117       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
 118         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 119         b->add_inst( epilog );
 120         bbs.map(epilog->_idx, b);
 121         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
 122       }
 123     }
 124   }
 125 
 126 # ifdef ENABLE_ZAP_DEAD_LOCALS
 127   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
 128 # endif
 129 
 130   uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
 131   blk_starts[0]    = 0;
 132 
 133   // Initialize code buffer and process short branches.
 134   CodeBuffer* cb = init_buffer(blk_starts);
 135 
 136   if (cb == NULL || failing())  return;
 137 
 138   ScheduleAndBundle();
 139 
 140 #ifndef PRODUCT
 141   if (trace_opto_output()) {
 142     tty->print("\n---- After ScheduleAndBundle ----\n");
 143     for (uint i = 0; i < _cfg->_num_blocks; i++) {
 144       tty->print("\nBB#%03d:\n", i);
 145       Block *bb = _cfg->_blocks[i];
 146       for (uint j = 0; j < bb->_nodes.size(); j++) {
 147         Node *n = bb->_nodes[j];
 148         OptoReg::Name reg = _regalloc->get_reg_first(n);
 149         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 150         n->dump();
 151       }
 152     }
 153   }
 154 #endif
 155 
 156   if (failing())  return;
 157 
 158   BuildOopMaps();
 159 
 160   if (failing())  return;
 161 
 162   fill_buffer(cb, blk_starts);
 163 }
 164 
 165 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 166   // Determine if we need to generate a stack overflow check.
 167   // Do it if the method is not a stub function and
 168   // has java calls or has frame size > vm_page_size/8.
 169   return (UseStackBanging && stub_function() == NULL &&
 170           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
 171 }
 172 
 173 bool Compile::need_register_stack_bang() const {
 174   // Determine if we need to generate a register stack overflow check.
 175   // This is only used on architectures which have split register
 176   // and memory stacks (ie. IA64).
 177   // Bang if the method is not a stub function and has java calls
 178   return (stub_function() == NULL && has_java_calls());
 179 }
 180 
 181 # ifdef ENABLE_ZAP_DEAD_LOCALS
 182 
 183 
 184 // In order to catch compiler oop-map bugs, we have implemented
 185 // a debugging mode called ZapDeadCompilerLocals.
 186 // This mode causes the compiler to insert a call to a runtime routine,
 187 // "zap_dead_locals", right before each place in compiled code
 188 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 189 // The runtime routine checks that locations mapped as oops are really
 190 // oops, that locations mapped as values do not look like oops,
 191 // and that locations mapped as dead are not used later
 192 // (by zapping them to an invalid address).
 193 
 194 int Compile::_CompiledZap_count = 0;
 195 
 196 void Compile::Insert_zap_nodes() {
 197   bool skip = false;
 198 
 199 
 200   // Dink with static counts because code code without the extra
 201   // runtime calls is MUCH faster for debugging purposes
 202 
 203        if ( CompileZapFirst  ==  0  ) ; // nothing special
 204   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 205   else if ( CompileZapFirst  == CompiledZap_count() )
 206     warning("starting zap compilation after skipping");
 207 
 208        if ( CompileZapLast  ==  -1  ) ; // nothing special
 209   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 210   else if ( CompileZapLast  ==  CompiledZap_count() )
 211     warning("about to compile last zap");
 212 
 213   ++_CompiledZap_count; // counts skipped zaps, too
 214 
 215   if ( skip )  return;
 216 
 217 
 218   if ( _method == NULL )
 219     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 220 
 221   // Insert call to zap runtime stub before every node with an oop map
 222   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 223     Block *b = _cfg->_blocks[i];
 224     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
 225       Node *n = b->_nodes[j];
 226 
 227       // Determining if we should insert a zap-a-lot node in output.
 228       // We do that for all nodes that has oopmap info, except for calls
 229       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 230       // and expect the C code to reset it.  Hence, there can be no safepoints between
 231       // the inlined-allocation and the call to new_Java, etc.
 232       // We also cannot zap monitor calls, as they must hold the microlock
 233       // during the call to Zap, which also wants to grab the microlock.
 234       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 235       if ( insert ) { // it is MachSafePoint
 236         if ( !n->is_MachCall() ) {
 237           insert = false;
 238         } else if ( n->is_MachCall() ) {
 239           MachCallNode* call = n->as_MachCall();
 240           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 241               call->entry_point() == OptoRuntime::new_array_Java() ||
 242               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 243               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 244               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 245               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 246               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 247               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 248               ) {
 249             insert = false;
 250           }
 251         }
 252         if (insert) {
 253           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 254           b->_nodes.insert( j, zap );
 255           _cfg->_bbs.map( zap->_idx, b );
 256           ++j;
 257         }
 258       }
 259     }
 260   }
 261 }
 262 
 263 
 264 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 265   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 266   CallStaticJavaNode* ideal_node =
 267     new (this) CallStaticJavaNode( tf,
 268          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 269                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
 270   // We need to copy the OopMap from the site we're zapping at.
 271   // We have to make a copy, because the zap site might not be
 272   // a call site, and zap_dead is a call site.
 273   OopMap* clone = node_to_check->oop_map()->deep_copy();
 274 
 275   // Add the cloned OopMap to the zap node
 276   ideal_node->set_oop_map(clone);
 277   return _matcher->match_sfpt(ideal_node);
 278 }
 279 
 280 //------------------------------is_node_getting_a_safepoint--------------------
 281 bool Compile::is_node_getting_a_safepoint( Node* n) {
 282   // This code duplicates the logic prior to the call of add_safepoint
 283   // below in this file.
 284   if( n->is_MachSafePoint() ) return true;
 285   return false;
 286 }
 287 
 288 # endif // ENABLE_ZAP_DEAD_LOCALS
 289 
 290 //------------------------------compute_loop_first_inst_sizes------------------
 291 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 292 // of a loop. When aligning a loop we need to provide enough instructions
 293 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 294 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 295 // By default, the size is set to 999999 by Block's constructor so that
 296 // a loop will be aligned if the size is not reset here.
 297 //
 298 // Note: Mach instructions could contain several HW instructions
 299 // so the size is estimated only.
 300 //
 301 void Compile::compute_loop_first_inst_sizes() {
 302   // The next condition is used to gate the loop alignment optimization.
 303   // Don't aligned a loop if there are enough instructions at the head of a loop
 304   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 305   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 306   // equal to 11 bytes which is the largest address NOP instruction.
 307   if( MaxLoopPad < OptoLoopAlignment-1 ) {
 308     uint last_block = _cfg->_num_blocks-1;
 309     for( uint i=1; i <= last_block; i++ ) {
 310       Block *b = _cfg->_blocks[i];
 311       // Check the first loop's block which requires an alignment.
 312       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
 313         uint sum_size = 0;
 314         uint inst_cnt = NumberOfLoopInstrToAlign;
 315         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 316 
 317         // Check subsequent fallthrough blocks if the loop's first
 318         // block(s) does not have enough instructions.
 319         Block *nb = b;
 320         while( inst_cnt > 0 &&
 321                i < last_block &&
 322                !_cfg->_blocks[i+1]->has_loop_alignment() &&
 323                !nb->has_successor(b) ) {
 324           i++;
 325           nb = _cfg->_blocks[i];
 326           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 327         } // while( inst_cnt > 0 && i < last_block  )
 328 
 329         b->set_first_inst_size(sum_size);
 330       } // f( b->head()->is_Loop() )
 331     } // for( i <= last_block )
 332   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 333 }
 334 
 335 //----------------------shorten_branches---------------------------------------
 336 // The architecture description provides short branch variants for some long
 337 // branch instructions. Replace eligible long branches with short branches.
 338 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
 339 
 340   // ------------------
 341   // Compute size of each block, method size, and relocation information size
 342   uint nblocks  = _cfg->_num_blocks;
 343 
 344   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 345   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 346   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 347   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 348   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 349 
 350   bool has_short_branch_candidate = false;
 351 
 352   // Initialize the sizes to 0
 353   code_size  = 0;          // Size in bytes of generated code
 354   stub_size  = 0;          // Size in bytes of all stub entries
 355   // Size in bytes of all relocation entries, including those in local stubs.
 356   // Start with 2-bytes of reloc info for the unvalidated entry point
 357   reloc_size = 1;          // Number of relocation entries
 358 
 359   // Make three passes.  The first computes pessimistic blk_starts,
 360   // relative jmp_offset and reloc_size information.  The second performs
 361   // short branch substitution using the pessimistic sizing.  The
 362   // third inserts nops where needed.
 363 
 364   // Step one, perform a pessimistic sizing pass.
 365   uint last_call_adr = max_uint;
 366   uint last_avoid_back_to_back_adr = max_uint;
 367   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 368   for (uint i = 0; i < nblocks; i++) { // For all blocks
 369     Block *b = _cfg->_blocks[i];
 370 
 371     // During short branch replacement, we store the relative (to blk_starts)
 372     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 373     // This is so that we do not need to recompute sizes of all nodes when
 374     // we compute correct blk_starts in our next sizing pass.
 375     jmp_offset[i] = 0;
 376     jmp_size[i]   = 0;
 377     jmp_nidx[i]   = -1;
 378     DEBUG_ONLY( jmp_target[i] = 0; )
 379     DEBUG_ONLY( jmp_rule[i]   = 0; )
 380 
 381     // Sum all instruction sizes to compute block size
 382     uint last_inst = b->_nodes.size();
 383     uint blk_size = 0;
 384     for (uint j = 0; j < last_inst; j++) {
 385       Node* nj = b->_nodes[j];
 386       // Handle machine instruction nodes
 387       if (nj->is_Mach()) {
 388         MachNode *mach = nj->as_Mach();
 389         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 390         reloc_size += mach->reloc();
 391         if (mach->is_MachCall()) {
 392           MachCallNode *mcall = mach->as_MachCall();
 393           // This destination address is NOT PC-relative
 394 
 395           mcall->method_set((intptr_t)mcall->entry_point());
 396 
 397           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 398             stub_size  += CompiledStaticCall::to_interp_stub_size();
 399             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 400           }
 401         } else if (mach->is_MachSafePoint()) {
 402           // If call/safepoint are adjacent, account for possible
 403           // nop to disambiguate the two safepoints.
 404           // ScheduleAndBundle() can rearrange nodes in a block,
 405           // check for all offsets inside this block.
 406           if (last_call_adr >= blk_starts[i]) {
 407             blk_size += nop_size;
 408           }
 409         }
 410         if (mach->avoid_back_to_back()) {
 411           // Nop is inserted between "avoid back to back" instructions.
 412           // ScheduleAndBundle() can rearrange nodes in a block,
 413           // check for all offsets inside this block.
 414           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 415             blk_size += nop_size;
 416           }
 417         }
 418         if (mach->may_be_short_branch()) {
 419           if (!nj->is_MachBranch()) {
 420 #ifndef PRODUCT
 421             nj->dump(3);
 422 #endif
 423             Unimplemented();
 424           }
 425           assert(jmp_nidx[i] == -1, "block should have only one branch");
 426           jmp_offset[i] = blk_size;
 427           jmp_size[i]   = nj->size(_regalloc);
 428           jmp_nidx[i]   = j;
 429           has_short_branch_candidate = true;
 430         }
 431       }
 432       blk_size += nj->size(_regalloc);
 433       // Remember end of call offset
 434       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 435         last_call_adr = blk_starts[i]+blk_size;
 436       }
 437       // Remember end of avoid_back_to_back offset
 438       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
 439         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 440       }
 441     }
 442 
 443     // When the next block starts a loop, we may insert pad NOP
 444     // instructions.  Since we cannot know our future alignment,
 445     // assume the worst.
 446     if (i< nblocks-1) {
 447       Block *nb = _cfg->_blocks[i+1];
 448       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 449       if (max_loop_pad > 0) {
 450         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 451         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 452         // If either is the last instruction in this block, bump by
 453         // max_loop_pad in lock-step with blk_size, so sizing
 454         // calculations in subsequent blocks still can conservatively
 455         // detect that it may the last instruction in this block.
 456         if (last_call_adr == blk_starts[i]+blk_size) {
 457           last_call_adr += max_loop_pad;
 458         }
 459         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 460           last_avoid_back_to_back_adr += max_loop_pad;
 461         }
 462         blk_size += max_loop_pad;
 463       }
 464     }
 465 
 466     // Save block size; update total method size
 467     blk_starts[i+1] = blk_starts[i]+blk_size;
 468   }
 469 
 470   // Step two, replace eligible long jumps.
 471   bool progress = true;
 472   uint last_may_be_short_branch_adr = max_uint;
 473   while (has_short_branch_candidate && progress) {
 474     progress = false;
 475     has_short_branch_candidate = false;
 476     int adjust_block_start = 0;
 477     for (uint i = 0; i < nblocks; i++) {
 478       Block *b = _cfg->_blocks[i];
 479       int idx = jmp_nidx[i];
 480       MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach();
 481       if (mach != NULL && mach->may_be_short_branch()) {
 482 #ifdef ASSERT
 483         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 484         int j;
 485         // Find the branch; ignore trailing NOPs.
 486         for (j = b->_nodes.size()-1; j>=0; j--) {
 487           Node* n = b->_nodes[j];
 488           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 489             break;
 490         }
 491         assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity");
 492 #endif
 493         int br_size = jmp_size[i];
 494         int br_offs = blk_starts[i] + jmp_offset[i];
 495 
 496         // This requires the TRUE branch target be in succs[0]
 497         uint bnum = b->non_connector_successor(0)->_pre_order;
 498         int offset = blk_starts[bnum] - br_offs;
 499         if (bnum > i) { // adjust following block's offset
 500           offset -= adjust_block_start;
 501         }
 502         // In the following code a nop could be inserted before
 503         // the branch which will increase the backward distance.
 504         bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
 505         if (needs_padding && offset <= 0)
 506           offset -= nop_size;
 507 
 508         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
 509           // We've got a winner.  Replace this branch.
 510           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
 511 
 512           // Update the jmp_size.
 513           int new_size = replacement->size(_regalloc);
 514           int diff     = br_size - new_size;
 515           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 516           // Conservatively take into accound padding between
 517           // avoid_back_to_back branches. Previous branch could be
 518           // converted into avoid_back_to_back branch during next
 519           // rounds.
 520           if (needs_padding && replacement->avoid_back_to_back()) {
 521             jmp_offset[i] += nop_size;
 522             diff -= nop_size;
 523           }
 524           adjust_block_start += diff;
 525           b->_nodes.map(idx, replacement);
 526           mach->subsume_by(replacement, C);
 527           mach = replacement;
 528           progress = true;
 529 
 530           jmp_size[i] = new_size;
 531           DEBUG_ONLY( jmp_target[i] = bnum; );
 532           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 533         } else {
 534           // The jump distance is not short, try again during next iteration.
 535           has_short_branch_candidate = true;
 536         }
 537       } // (mach->may_be_short_branch())
 538       if (mach != NULL && (mach->may_be_short_branch() ||
 539                            mach->avoid_back_to_back())) {
 540         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 541       }
 542       blk_starts[i+1] -= adjust_block_start;
 543     }
 544   }
 545 
 546 #ifdef ASSERT
 547   for (uint i = 0; i < nblocks; i++) { // For all blocks
 548     if (jmp_target[i] != 0) {
 549       int br_size = jmp_size[i];
 550       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 551       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 552         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 553       }
 554       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 555     }
 556   }
 557 #endif
 558 
 559   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 560   // after ScheduleAndBundle().
 561 
 562   // ------------------
 563   // Compute size for code buffer
 564   code_size = blk_starts[nblocks];
 565 
 566   // Relocation records
 567   reloc_size += 1;              // Relo entry for exception handler
 568 
 569   // Adjust reloc_size to number of record of relocation info
 570   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 571   // a relocation index.
 572   // The CodeBuffer will expand the locs array if this estimate is too low.
 573   reloc_size *= 10 / sizeof(relocInfo);
 574 }
 575 
 576 //------------------------------FillLocArray-----------------------------------
 577 // Create a bit of debug info and append it to the array.  The mapping is from
 578 // Java local or expression stack to constant, register or stack-slot.  For
 579 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 580 // entry has been taken care of and caller should skip it).
 581 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 582   // This should never have accepted Bad before
 583   assert(OptoReg::is_valid(regnum), "location must be valid");
 584   return (OptoReg::is_reg(regnum))
 585     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 586     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 587 }
 588 
 589 
 590 ObjectValue*
 591 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 592   for (int i = 0; i < objs->length(); i++) {
 593     assert(objs->at(i)->is_object(), "corrupt object cache");
 594     ObjectValue* sv = (ObjectValue*) objs->at(i);
 595     if (sv->id() == id) {
 596       return sv;
 597     }
 598   }
 599   // Otherwise..
 600   return NULL;
 601 }
 602 
 603 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 604                                      ObjectValue* sv ) {
 605   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 606   objs->append(sv);
 607 }
 608 
 609 
 610 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 611                             GrowableArray<ScopeValue*> *array,
 612                             GrowableArray<ScopeValue*> *objs ) {
 613   assert( local, "use _top instead of null" );
 614   if (array->length() != idx) {
 615     assert(array->length() == idx + 1, "Unexpected array count");
 616     // Old functionality:
 617     //   return
 618     // New functionality:
 619     //   Assert if the local is not top. In product mode let the new node
 620     //   override the old entry.
 621     assert(local == top(), "LocArray collision");
 622     if (local == top()) {
 623       return;
 624     }
 625     array->pop();
 626   }
 627   const Type *t = local->bottom_type();
 628 
 629   // Is it a safepoint scalar object node?
 630   if (local->is_SafePointScalarObject()) {
 631     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 632 
 633     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 634     if (sv == NULL) {
 635       ciKlass* cik = t->is_oopptr()->klass();
 636       assert(cik->is_instance_klass() ||
 637              cik->is_array_klass(), "Not supported allocation.");
 638       sv = new ObjectValue(spobj->_idx,
 639                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 640       Compile::set_sv_for_object_node(objs, sv);
 641 
 642       uint first_ind = spobj->first_index();
 643       for (uint i = 0; i < spobj->n_fields(); i++) {
 644         Node* fld_node = sfpt->in(first_ind+i);
 645         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 646       }
 647     }
 648     array->append(sv);
 649     return;
 650   }
 651 
 652   // Grab the register number for the local
 653   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 654   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 655     // Record the double as two float registers.
 656     // The register mask for such a value always specifies two adjacent
 657     // float registers, with the lower register number even.
 658     // Normally, the allocation of high and low words to these registers
 659     // is irrelevant, because nearly all operations on register pairs
 660     // (e.g., StoreD) treat them as a single unit.
 661     // Here, we assume in addition that the words in these two registers
 662     // stored "naturally" (by operations like StoreD and double stores
 663     // within the interpreter) such that the lower-numbered register
 664     // is written to the lower memory address.  This may seem like
 665     // a machine dependency, but it is not--it is a requirement on
 666     // the author of the <arch>.ad file to ensure that, for every
 667     // even/odd double-register pair to which a double may be allocated,
 668     // the word in the even single-register is stored to the first
 669     // memory word.  (Note that register numbers are completely
 670     // arbitrary, and are not tied to any machine-level encodings.)
 671 #ifdef _LP64
 672     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 673       array->append(new ConstantIntValue(0));
 674       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 675     } else if ( t->base() == Type::Long ) {
 676       array->append(new ConstantIntValue(0));
 677       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 678     } else if ( t->base() == Type::RawPtr ) {
 679       // jsr/ret return address which must be restored into a the full
 680       // width 64-bit stack slot.
 681       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 682     }
 683 #else //_LP64
 684 #ifdef SPARC
 685     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 686       // For SPARC we have to swap high and low words for
 687       // long values stored in a single-register (g0-g7).
 688       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 689       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 690     } else
 691 #endif //SPARC
 692     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 693       // Repack the double/long as two jints.
 694       // The convention the interpreter uses is that the second local
 695       // holds the first raw word of the native double representation.
 696       // This is actually reasonable, since locals and stack arrays
 697       // grow downwards in all implementations.
 698       // (If, on some machine, the interpreter's Java locals or stack
 699       // were to grow upwards, the embedded doubles would be word-swapped.)
 700       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 701       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 702     }
 703 #endif //_LP64
 704     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 705                OptoReg::is_reg(regnum) ) {
 706       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 707                                    ? Location::float_in_dbl : Location::normal ));
 708     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 709       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 710                                    ? Location::int_in_long : Location::normal ));
 711     } else if( t->base() == Type::NarrowOop ) {
 712       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 713     } else {
 714       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 715     }
 716     return;
 717   }
 718 
 719   // No register.  It must be constant data.
 720   switch (t->base()) {
 721   case Type::Half:              // Second half of a double
 722     ShouldNotReachHere();       // Caller should skip 2nd halves
 723     break;
 724   case Type::AnyPtr:
 725     array->append(new ConstantOopWriteValue(NULL));
 726     break;
 727   case Type::AryPtr:
 728   case Type::InstPtr:          // fall through
 729     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 730     break;
 731   case Type::NarrowOop:
 732     if (t == TypeNarrowOop::NULL_PTR) {
 733       array->append(new ConstantOopWriteValue(NULL));
 734     } else {
 735       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 736     }
 737     break;
 738   case Type::Int:
 739     array->append(new ConstantIntValue(t->is_int()->get_con()));
 740     break;
 741   case Type::RawPtr:
 742     // A return address (T_ADDRESS).
 743     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 744 #ifdef _LP64
 745     // Must be restored to the full-width 64-bit stack slot.
 746     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 747 #else
 748     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 749 #endif
 750     break;
 751   case Type::FloatCon: {
 752     float f = t->is_float_constant()->getf();
 753     array->append(new ConstantIntValue(jint_cast(f)));
 754     break;
 755   }
 756   case Type::DoubleCon: {
 757     jdouble d = t->is_double_constant()->getd();
 758 #ifdef _LP64
 759     array->append(new ConstantIntValue(0));
 760     array->append(new ConstantDoubleValue(d));
 761 #else
 762     // Repack the double as two jints.
 763     // The convention the interpreter uses is that the second local
 764     // holds the first raw word of the native double representation.
 765     // This is actually reasonable, since locals and stack arrays
 766     // grow downwards in all implementations.
 767     // (If, on some machine, the interpreter's Java locals or stack
 768     // were to grow upwards, the embedded doubles would be word-swapped.)
 769     jint   *dp = (jint*)&d;
 770     array->append(new ConstantIntValue(dp[1]));
 771     array->append(new ConstantIntValue(dp[0]));
 772 #endif
 773     break;
 774   }
 775   case Type::Long: {
 776     jlong d = t->is_long()->get_con();
 777 #ifdef _LP64
 778     array->append(new ConstantIntValue(0));
 779     array->append(new ConstantLongValue(d));
 780 #else
 781     // Repack the long as two jints.
 782     // The convention the interpreter uses is that the second local
 783     // holds the first raw word of the native double representation.
 784     // This is actually reasonable, since locals and stack arrays
 785     // grow downwards in all implementations.
 786     // (If, on some machine, the interpreter's Java locals or stack
 787     // were to grow upwards, the embedded doubles would be word-swapped.)
 788     jint *dp = (jint*)&d;
 789     array->append(new ConstantIntValue(dp[1]));
 790     array->append(new ConstantIntValue(dp[0]));
 791 #endif
 792     break;
 793   }
 794   case Type::Top:               // Add an illegal value here
 795     array->append(new LocationValue(Location()));
 796     break;
 797   default:
 798     ShouldNotReachHere();
 799     break;
 800   }
 801 }
 802 
 803 // Determine if this node starts a bundle
 804 bool Compile::starts_bundle(const Node *n) const {
 805   return (_node_bundling_limit > n->_idx &&
 806           _node_bundling_base[n->_idx].starts_bundle());
 807 }
 808 
 809 //--------------------------Process_OopMap_Node--------------------------------
 810 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 811 
 812   // Handle special safepoint nodes for synchronization
 813   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 814   MachCallNode      *mcall;
 815 
 816 #ifdef ENABLE_ZAP_DEAD_LOCALS
 817   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 818 #endif
 819 
 820   int safepoint_pc_offset = current_offset;
 821   bool is_method_handle_invoke = false;
 822   bool return_oop = false;
 823 
 824   // Add the safepoint in the DebugInfoRecorder
 825   if( !mach->is_MachCall() ) {
 826     mcall = NULL;
 827     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 828   } else {
 829     mcall = mach->as_MachCall();
 830 
 831     // Is the call a MethodHandle call?
 832     if (mcall->is_MachCallJava()) {
 833       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 834         assert(has_method_handle_invokes(), "must have been set during call generation");
 835         is_method_handle_invoke = true;
 836       }
 837     }
 838 
 839     // Check if a call returns an object.
 840     if (mcall->return_value_is_used() &&
 841         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
 842       return_oop = true;
 843     }
 844     safepoint_pc_offset += mcall->ret_addr_offset();
 845     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 846   }
 847 
 848   // Loop over the JVMState list to add scope information
 849   // Do not skip safepoints with a NULL method, they need monitor info
 850   JVMState* youngest_jvms = sfn->jvms();
 851   int max_depth = youngest_jvms->depth();
 852 
 853   // Allocate the object pool for scalar-replaced objects -- the map from
 854   // small-integer keys (which can be recorded in the local and ostack
 855   // arrays) to descriptions of the object state.
 856   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 857 
 858   // Visit scopes from oldest to youngest.
 859   for (int depth = 1; depth <= max_depth; depth++) {
 860     JVMState* jvms = youngest_jvms->of_depth(depth);
 861     int idx;
 862     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 863     // Safepoints that do not have method() set only provide oop-map and monitor info
 864     // to support GC; these do not support deoptimization.
 865     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 866     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 867     int num_mon  = jvms->nof_monitors();
 868     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 869            "JVMS local count must match that of the method");
 870 
 871     // Add Local and Expression Stack Information
 872 
 873     // Insert locals into the locarray
 874     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 875     for( idx = 0; idx < num_locs; idx++ ) {
 876       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 877     }
 878 
 879     // Insert expression stack entries into the exparray
 880     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 881     for( idx = 0; idx < num_exps; idx++ ) {
 882       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 883     }
 884 
 885     // Add in mappings of the monitors
 886     assert( !method ||
 887             !method->is_synchronized() ||
 888             method->is_native() ||
 889             num_mon > 0 ||
 890             !GenerateSynchronizationCode,
 891             "monitors must always exist for synchronized methods");
 892 
 893     // Build the growable array of ScopeValues for exp stack
 894     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 895 
 896     // Loop over monitors and insert into array
 897     for(idx = 0; idx < num_mon; idx++) {
 898       // Grab the node that defines this monitor
 899       Node* box_node = sfn->monitor_box(jvms, idx);
 900       Node* obj_node = sfn->monitor_obj(jvms, idx);
 901 
 902       // Create ScopeValue for object
 903       ScopeValue *scval = NULL;
 904 
 905       if( obj_node->is_SafePointScalarObject() ) {
 906         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 907         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 908         if (scval == NULL) {
 909           const Type *t = obj_node->bottom_type();
 910           ciKlass* cik = t->is_oopptr()->klass();
 911           assert(cik->is_instance_klass() ||
 912                  cik->is_array_klass(), "Not supported allocation.");
 913           ObjectValue* sv = new ObjectValue(spobj->_idx,
 914                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 915           Compile::set_sv_for_object_node(objs, sv);
 916 
 917           uint first_ind = spobj->first_index();
 918           for (uint i = 0; i < spobj->n_fields(); i++) {
 919             Node* fld_node = sfn->in(first_ind+i);
 920             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 921           }
 922           scval = sv;
 923         }
 924       } else if( !obj_node->is_Con() ) {
 925         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 926         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 927           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 928         } else {
 929           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 930         }
 931       } else {
 932         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
 933         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
 934       }
 935 
 936       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
 937       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 938       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
 939       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
 940     }
 941 
 942     // We dump the object pool first, since deoptimization reads it in first.
 943     debug_info()->dump_object_pool(objs);
 944 
 945     // Build first class objects to pass to scope
 946     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 947     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 948     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 949 
 950     // Make method available for all Safepoints
 951     ciMethod* scope_method = method ? method : _method;
 952     // Describe the scope here
 953     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 954     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 955     // Now we can describe the scope.
 956     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 957   } // End jvms loop
 958 
 959   // Mark the end of the scope set.
 960   debug_info()->end_safepoint(safepoint_pc_offset);
 961 }
 962 
 963 
 964 
 965 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 966 class NonSafepointEmitter {
 967   Compile*  C;
 968   JVMState* _pending_jvms;
 969   int       _pending_offset;
 970 
 971   void emit_non_safepoint();
 972 
 973  public:
 974   NonSafepointEmitter(Compile* compile) {
 975     this->C = compile;
 976     _pending_jvms = NULL;
 977     _pending_offset = 0;
 978   }
 979 
 980   void observe_instruction(Node* n, int pc_offset) {
 981     if (!C->debug_info()->recording_non_safepoints())  return;
 982 
 983     Node_Notes* nn = C->node_notes_at(n->_idx);
 984     if (nn == NULL || nn->jvms() == NULL)  return;
 985     if (_pending_jvms != NULL &&
 986         _pending_jvms->same_calls_as(nn->jvms())) {
 987       // Repeated JVMS?  Stretch it up here.
 988       _pending_offset = pc_offset;
 989     } else {
 990       if (_pending_jvms != NULL &&
 991           _pending_offset < pc_offset) {
 992         emit_non_safepoint();
 993       }
 994       _pending_jvms = NULL;
 995       if (pc_offset > C->debug_info()->last_pc_offset()) {
 996         // This is the only way _pending_jvms can become non-NULL:
 997         _pending_jvms = nn->jvms();
 998         _pending_offset = pc_offset;
 999       }
1000     }
1001   }
1002 
1003   // Stay out of the way of real safepoints:
1004   void observe_safepoint(JVMState* jvms, int pc_offset) {
1005     if (_pending_jvms != NULL &&
1006         !_pending_jvms->same_calls_as(jvms) &&
1007         _pending_offset < pc_offset) {
1008       emit_non_safepoint();
1009     }
1010     _pending_jvms = NULL;
1011   }
1012 
1013   void flush_at_end() {
1014     if (_pending_jvms != NULL) {
1015       emit_non_safepoint();
1016     }
1017     _pending_jvms = NULL;
1018   }
1019 };
1020 
1021 void NonSafepointEmitter::emit_non_safepoint() {
1022   JVMState* youngest_jvms = _pending_jvms;
1023   int       pc_offset     = _pending_offset;
1024 
1025   // Clear it now:
1026   _pending_jvms = NULL;
1027 
1028   DebugInformationRecorder* debug_info = C->debug_info();
1029   assert(debug_info->recording_non_safepoints(), "sanity");
1030 
1031   debug_info->add_non_safepoint(pc_offset);
1032   int max_depth = youngest_jvms->depth();
1033 
1034   // Visit scopes from oldest to youngest.
1035   for (int depth = 1; depth <= max_depth; depth++) {
1036     JVMState* jvms = youngest_jvms->of_depth(depth);
1037     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1038     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1039     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1040   }
1041 
1042   // Mark the end of the scope set.
1043   debug_info->end_non_safepoint(pc_offset);
1044 }
1045 
1046 
1047 
1048 // helper for fill_buffer bailout logic
1049 static void turn_off_compiler(Compile* C) {
1050   if (CodeCache::largest_free_block() >= CodeCacheMinimumFreeSpace*10) {
1051     // Do not turn off compilation if a single giant method has
1052     // blown the code cache size.
1053     C->record_failure("excessive request to CodeCache");
1054   } else {
1055     // Let CompilerBroker disable further compilations.
1056     C->record_failure("CodeCache is full");
1057   }
1058 }
1059 
1060 
1061 //------------------------------init_buffer------------------------------------
1062 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1063 
1064   // Set the initially allocated size
1065   int  code_req   = initial_code_capacity;
1066   int  locs_req   = initial_locs_capacity;
1067   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1068   int  const_req  = initial_const_capacity;
1069 
1070   int  pad_req    = NativeCall::instruction_size;
1071   // The extra spacing after the code is necessary on some platforms.
1072   // Sometimes we need to patch in a jump after the last instruction,
1073   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1074 
1075   // Compute the byte offset where we can store the deopt pc.
1076   if (fixed_slots() != 0) {
1077     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1078   }
1079 
1080   // Compute prolog code size
1081   _method_size = 0;
1082   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1083 #ifdef IA64
1084   if (save_argument_registers()) {
1085     // 4815101: this is a stub with implicit and unknown precision fp args.
1086     // The usual spill mechanism can only generate stfd's in this case, which
1087     // doesn't work if the fp reg to spill contains a single-precision denorm.
1088     // Instead, we hack around the normal spill mechanism using stfspill's and
1089     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1090     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1091     //
1092     // If we ever implement 16-byte 'registers' == stack slots, we can
1093     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1094     // instead of stfd/stfs/ldfd/ldfs.
1095     _frame_slots += 8*(16/BytesPerInt);
1096   }
1097 #endif
1098   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1099 
1100   if (has_mach_constant_base_node()) {
1101     // Fill the constant table.
1102     // Note:  This must happen before shorten_branches.
1103     for (uint i = 0; i < _cfg->_num_blocks; i++) {
1104       Block* b = _cfg->_blocks[i];
1105 
1106       for (uint j = 0; j < b->_nodes.size(); j++) {
1107         Node* n = b->_nodes[j];
1108 
1109         // If the node is a MachConstantNode evaluate the constant
1110         // value section.
1111         if (n->is_MachConstant()) {
1112           MachConstantNode* machcon = n->as_MachConstant();
1113           machcon->eval_constant(C);
1114         }
1115       }
1116     }
1117 
1118     // Calculate the offsets of the constants and the size of the
1119     // constant table (including the padding to the next section).
1120     constant_table().calculate_offsets_and_size();
1121     const_req = constant_table().size();
1122   }
1123 
1124   // Initialize the space for the BufferBlob used to find and verify
1125   // instruction size in MachNode::emit_size()
1126   init_scratch_buffer_blob(const_req);
1127   if (failing())  return NULL; // Out of memory
1128 
1129   // Pre-compute the length of blocks and replace
1130   // long branches with short if machine supports it.
1131   shorten_branches(blk_starts, code_req, locs_req, stub_req);
1132 
1133   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1134   int exception_handler_req = size_exception_handler();
1135   int deopt_handler_req = size_deopt_handler();
1136   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1137   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1138   stub_req += MAX_stubs_size;   // ensure per-stub margin
1139   code_req += MAX_inst_size;    // ensure per-instruction margin
1140 
1141   if (StressCodeBuffers)
1142     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1143 
1144   int total_req =
1145     const_req +
1146     code_req +
1147     pad_req +
1148     stub_req +
1149     exception_handler_req +
1150     deopt_handler_req;               // deopt handler
1151 
1152   if (has_method_handle_invokes())
1153     total_req += deopt_handler_req;  // deopt MH handler
1154 
1155   CodeBuffer* cb = code_buffer();
1156   cb->initialize(total_req, locs_req);
1157 
1158   // Have we run out of code space?
1159   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1160     turn_off_compiler(this);
1161     return NULL;
1162   }
1163   // Configure the code buffer.
1164   cb->initialize_consts_size(const_req);
1165   cb->initialize_stubs_size(stub_req);
1166   cb->initialize_oop_recorder(env()->oop_recorder());
1167 
1168   // fill in the nop array for bundling computations
1169   MachNode *_nop_list[Bundle::_nop_count];
1170   Bundle::initialize_nops(_nop_list, this);
1171 
1172   return cb;
1173 }
1174 
1175 //------------------------------fill_buffer------------------------------------
1176 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1177   // blk_starts[] contains offsets calculated during short branches processing,
1178   // offsets should not be increased during following steps.
1179 
1180   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1181   // of a loop. It is used to determine the padding for loop alignment.
1182   compute_loop_first_inst_sizes();
1183 
1184   // Create oopmap set.
1185   _oop_map_set = new OopMapSet();
1186 
1187   // !!!!! This preserves old handling of oopmaps for now
1188   debug_info()->set_oopmaps(_oop_map_set);
1189 
1190   uint nblocks  = _cfg->_num_blocks;
1191   // Count and start of implicit null check instructions
1192   uint inct_cnt = 0;
1193   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1194 
1195   // Count and start of calls
1196   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1197 
1198   uint  return_offset = 0;
1199   int nop_size = (new (this) MachNopNode())->size(_regalloc);
1200 
1201   int previous_offset = 0;
1202   int current_offset  = 0;
1203   int last_call_offset = -1;
1204   int last_avoid_back_to_back_offset = -1;
1205 #ifdef ASSERT
1206   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1207   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1208   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1209   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1210 #endif
1211 
1212   // Create an array of unused labels, one for each basic block, if printing is enabled
1213 #ifndef PRODUCT
1214   int *node_offsets      = NULL;
1215   uint node_offset_limit = unique();
1216 
1217   if (print_assembly())
1218     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1219 #endif
1220 
1221   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1222 
1223   // Emit the constant table.
1224   if (has_mach_constant_base_node()) {
1225     constant_table().emit(*cb);
1226   }
1227 
1228   // Create an array of labels, one for each basic block
1229   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1230   for (uint i=0; i <= nblocks; i++) {
1231     blk_labels[i].init();
1232   }
1233 
1234   // ------------------
1235   // Now fill in the code buffer
1236   Node *delay_slot = NULL;
1237 
1238   for (uint i=0; i < nblocks; i++) {
1239     Block *b = _cfg->_blocks[i];
1240 
1241     Node *head = b->head();
1242 
1243     // If this block needs to start aligned (i.e, can be reached other
1244     // than by falling-thru from the previous block), then force the
1245     // start of a new bundle.
1246     if (Pipeline::requires_bundling() && starts_bundle(head))
1247       cb->flush_bundle(true);
1248 
1249 #ifdef ASSERT
1250     if (!b->is_connector()) {
1251       stringStream st;
1252       b->dump_head(&_cfg->_bbs, &st);
1253       MacroAssembler(cb).block_comment(st.as_string());
1254     }
1255     jmp_target[i] = 0;
1256     jmp_offset[i] = 0;
1257     jmp_size[i]   = 0;
1258     jmp_rule[i]   = 0;
1259 #endif
1260     int blk_offset = current_offset;
1261 
1262     // Define the label at the beginning of the basic block
1263     MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
1264 
1265     uint last_inst = b->_nodes.size();
1266 
1267     // Emit block normally, except for last instruction.
1268     // Emit means "dump code bits into code buffer".
1269     for (uint j = 0; j<last_inst; j++) {
1270 
1271       // Get the node
1272       Node* n = b->_nodes[j];
1273 
1274       // See if delay slots are supported
1275       if (valid_bundle_info(n) &&
1276           node_bundling(n)->used_in_unconditional_delay()) {
1277         assert(delay_slot == NULL, "no use of delay slot node");
1278         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1279 
1280         delay_slot = n;
1281         continue;
1282       }
1283 
1284       // If this starts a new instruction group, then flush the current one
1285       // (but allow split bundles)
1286       if (Pipeline::requires_bundling() && starts_bundle(n))
1287         cb->flush_bundle(false);
1288 
1289       // The following logic is duplicated in the code ifdeffed for
1290       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1291       // should be factored out.  Or maybe dispersed to the nodes?
1292 
1293       // Special handling for SafePoint/Call Nodes
1294       bool is_mcall = false;
1295       if (n->is_Mach()) {
1296         MachNode *mach = n->as_Mach();
1297         is_mcall = n->is_MachCall();
1298         bool is_sfn = n->is_MachSafePoint();
1299 
1300         // If this requires all previous instructions be flushed, then do so
1301         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1302           cb->flush_bundle(true);
1303           current_offset = cb->insts_size();
1304         }
1305 
1306         // A padding may be needed again since a previous instruction
1307         // could be moved to delay slot.
1308 
1309         // align the instruction if necessary
1310         int padding = mach->compute_padding(current_offset);
1311         // Make sure safepoint node for polling is distinct from a call's
1312         // return by adding a nop if needed.
1313         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1314           padding = nop_size;
1315         }
1316         if (padding == 0 && mach->avoid_back_to_back() &&
1317             current_offset == last_avoid_back_to_back_offset) {
1318           // Avoid back to back some instructions.
1319           padding = nop_size;
1320         }
1321 
1322         if(padding > 0) {
1323           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1324           int nops_cnt = padding / nop_size;
1325           MachNode *nop = new (this) MachNopNode(nops_cnt);
1326           b->_nodes.insert(j++, nop);
1327           last_inst++;
1328           _cfg->_bbs.map( nop->_idx, b );
1329           nop->emit(*cb, _regalloc);
1330           cb->flush_bundle(true);
1331           current_offset = cb->insts_size();
1332         }
1333 
1334         // Remember the start of the last call in a basic block
1335         if (is_mcall) {
1336           MachCallNode *mcall = mach->as_MachCall();
1337 
1338           // This destination address is NOT PC-relative
1339           mcall->method_set((intptr_t)mcall->entry_point());
1340 
1341           // Save the return address
1342           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1343 
1344           if (mcall->is_MachCallLeaf()) {
1345             is_mcall = false;
1346             is_sfn = false;
1347           }
1348         }
1349 
1350         // sfn will be valid whenever mcall is valid now because of inheritance
1351         if (is_sfn || is_mcall) {
1352 
1353           // Handle special safepoint nodes for synchronization
1354           if (!is_mcall) {
1355             MachSafePointNode *sfn = mach->as_MachSafePoint();
1356             // !!!!! Stubs only need an oopmap right now, so bail out
1357             if (sfn->jvms()->method() == NULL) {
1358               // Write the oopmap directly to the code blob??!!
1359 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1360               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1361 #             endif
1362               continue;
1363             }
1364           } // End synchronization
1365 
1366           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1367                                            current_offset);
1368           Process_OopMap_Node(mach, current_offset);
1369         } // End if safepoint
1370 
1371         // If this is a null check, then add the start of the previous instruction to the list
1372         else if( mach->is_MachNullCheck() ) {
1373           inct_starts[inct_cnt++] = previous_offset;
1374         }
1375 
1376         // If this is a branch, then fill in the label with the target BB's label
1377         else if (mach->is_MachBranch()) {
1378           // This requires the TRUE branch target be in succs[0]
1379           uint block_num = b->non_connector_successor(0)->_pre_order;
1380 
1381           // Try to replace long branch if delay slot is not used,
1382           // it is mostly for back branches since forward branch's
1383           // distance is not updated yet.
1384           bool delay_slot_is_used = valid_bundle_info(n) &&
1385                                     node_bundling(n)->use_unconditional_delay();
1386           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1387            assert(delay_slot == NULL, "not expecting delay slot node");
1388            int br_size = n->size(_regalloc);
1389             int offset = blk_starts[block_num] - current_offset;
1390             if (block_num >= i) {
1391               // Current and following block's offset are not
1392               // finilized yet, adjust distance by the difference
1393               // between calculated and final offsets of current block.
1394               offset -= (blk_starts[i] - blk_offset);
1395             }
1396             // In the following code a nop could be inserted before
1397             // the branch which will increase the backward distance.
1398             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1399             if (needs_padding && offset <= 0)
1400               offset -= nop_size;
1401 
1402             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1403               // We've got a winner.  Replace this branch.
1404               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1405 
1406               // Update the jmp_size.
1407               int new_size = replacement->size(_regalloc);
1408               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1409               // Insert padding between avoid_back_to_back branches.
1410               if (needs_padding && replacement->avoid_back_to_back()) {
1411                 MachNode *nop = new (this) MachNopNode();
1412                 b->_nodes.insert(j++, nop);
1413                 _cfg->_bbs.map(nop->_idx, b);
1414                 last_inst++;
1415                 nop->emit(*cb, _regalloc);
1416                 cb->flush_bundle(true);
1417                 current_offset = cb->insts_size();
1418               }
1419 #ifdef ASSERT
1420               jmp_target[i] = block_num;
1421               jmp_offset[i] = current_offset - blk_offset;
1422               jmp_size[i]   = new_size;
1423               jmp_rule[i]   = mach->rule();
1424 #endif
1425               b->_nodes.map(j, replacement);
1426               mach->subsume_by(replacement, C);
1427               n    = replacement;
1428               mach = replacement;
1429             }
1430           }
1431           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1432         } else if (mach->ideal_Opcode() == Op_Jump) {
1433           for (uint h = 0; h < b->_num_succs; h++) {
1434             Block* succs_block = b->_succs[h];
1435             for (uint j = 1; j < succs_block->num_preds(); j++) {
1436               Node* jpn = succs_block->pred(j);
1437               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1438                 uint block_num = succs_block->non_connector()->_pre_order;
1439                 Label *blkLabel = &blk_labels[block_num];
1440                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1441               }
1442             }
1443           }
1444         }
1445 
1446 #ifdef ASSERT
1447         // Check that oop-store precedes the card-mark
1448         else if (mach->ideal_Opcode() == Op_StoreCM) {
1449           uint storeCM_idx = j;
1450           int count = 0;
1451           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1452             Node *oop_store = mach->in(prec);  // Precedence edge
1453             if (oop_store == NULL) continue;
1454             count++;
1455             uint i4;
1456             for( i4 = 0; i4 < last_inst; ++i4 ) {
1457               if( b->_nodes[i4] == oop_store ) break;
1458             }
1459             // Note: This test can provide a false failure if other precedence
1460             // edges have been added to the storeCMNode.
1461             assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1462           }
1463           assert(count > 0, "storeCM expects at least one precedence edge");
1464         }
1465 #endif
1466 
1467         else if (!n->is_Proj()) {
1468           // Remember the beginning of the previous instruction, in case
1469           // it's followed by a flag-kill and a null-check.  Happens on
1470           // Intel all the time, with add-to-memory kind of opcodes.
1471           previous_offset = current_offset;
1472         }
1473       }
1474 
1475       // Verify that there is sufficient space remaining
1476       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1477       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1478         turn_off_compiler(this);
1479         return;
1480       }
1481 
1482       // Save the offset for the listing
1483 #ifndef PRODUCT
1484       if (node_offsets && n->_idx < node_offset_limit)
1485         node_offsets[n->_idx] = cb->insts_size();
1486 #endif
1487 
1488       // "Normal" instruction case
1489       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1490       n->emit(*cb, _regalloc);
1491       current_offset  = cb->insts_size();
1492 
1493 #ifdef ASSERT
1494       if (n->size(_regalloc) < (current_offset-instr_offset)) {
1495         n->dump();
1496         assert(false, "wrong size of mach node");
1497       }
1498 #endif
1499       non_safepoints.observe_instruction(n, current_offset);
1500 
1501       // mcall is last "call" that can be a safepoint
1502       // record it so we can see if a poll will directly follow it
1503       // in which case we'll need a pad to make the PcDesc sites unique
1504       // see  5010568. This can be slightly inaccurate but conservative
1505       // in the case that return address is not actually at current_offset.
1506       // This is a small price to pay.
1507 
1508       if (is_mcall) {
1509         last_call_offset = current_offset;
1510       }
1511 
1512       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
1513         // Avoid back to back some instructions.
1514         last_avoid_back_to_back_offset = current_offset;
1515       }
1516 
1517       // See if this instruction has a delay slot
1518       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1519         assert(delay_slot != NULL, "expecting delay slot node");
1520 
1521         // Back up 1 instruction
1522         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1523 
1524         // Save the offset for the listing
1525 #ifndef PRODUCT
1526         if (node_offsets && delay_slot->_idx < node_offset_limit)
1527           node_offsets[delay_slot->_idx] = cb->insts_size();
1528 #endif
1529 
1530         // Support a SafePoint in the delay slot
1531         if (delay_slot->is_MachSafePoint()) {
1532           MachNode *mach = delay_slot->as_Mach();
1533           // !!!!! Stubs only need an oopmap right now, so bail out
1534           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1535             // Write the oopmap directly to the code blob??!!
1536 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1537             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1538 #           endif
1539             delay_slot = NULL;
1540             continue;
1541           }
1542 
1543           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1544           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1545                                            adjusted_offset);
1546           // Generate an OopMap entry
1547           Process_OopMap_Node(mach, adjusted_offset);
1548         }
1549 
1550         // Insert the delay slot instruction
1551         delay_slot->emit(*cb, _regalloc);
1552 
1553         // Don't reuse it
1554         delay_slot = NULL;
1555       }
1556 
1557     } // End for all instructions in block
1558 
1559     // If the next block is the top of a loop, pad this block out to align
1560     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1561     if (i < nblocks-1) {
1562       Block *nb = _cfg->_blocks[i+1];
1563       int padding = nb->alignment_padding(current_offset);
1564       if( padding > 0 ) {
1565         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1566         b->_nodes.insert( b->_nodes.size(), nop );
1567         _cfg->_bbs.map( nop->_idx, b );
1568         nop->emit(*cb, _regalloc);
1569         current_offset = cb->insts_size();
1570       }
1571     }
1572     // Verify that the distance for generated before forward
1573     // short branches is still valid.
1574     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1575 
1576     // Save new block start offset
1577     blk_starts[i] = blk_offset;
1578   } // End of for all blocks
1579   blk_starts[nblocks] = current_offset;
1580 
1581   non_safepoints.flush_at_end();
1582 
1583   // Offset too large?
1584   if (failing())  return;
1585 
1586   // Define a pseudo-label at the end of the code
1587   MacroAssembler(cb).bind( blk_labels[nblocks] );
1588 
1589   // Compute the size of the first block
1590   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1591 
1592   assert(cb->insts_size() < 500000, "method is unreasonably large");
1593 
1594 #ifdef ASSERT
1595   for (uint i = 0; i < nblocks; i++) { // For all blocks
1596     if (jmp_target[i] != 0) {
1597       int br_size = jmp_size[i];
1598       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1599       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1600         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1601         assert(false, "Displacement too large for short jmp");
1602       }
1603     }
1604   }
1605 #endif
1606 
1607   // ------------------
1608 
1609 #ifndef PRODUCT
1610   // Information on the size of the method, without the extraneous code
1611   Scheduling::increment_method_size(cb->insts_size());
1612 #endif
1613 
1614   // ------------------
1615   // Fill in exception table entries.
1616   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1617 
1618   // Only java methods have exception handlers and deopt handlers
1619   if (_method) {
1620     // Emit the exception handler code.
1621     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1622     // Emit the deopt handler code.
1623     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1624 
1625     // Emit the MethodHandle deopt handler code (if required).
1626     if (has_method_handle_invokes()) {
1627       // We can use the same code as for the normal deopt handler, we
1628       // just need a different entry point address.
1629       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1630     }
1631   }
1632 
1633   // One last check for failed CodeBuffer::expand:
1634   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1635     turn_off_compiler(this);
1636     return;
1637   }
1638 
1639 #ifndef PRODUCT
1640   // Dump the assembly code, including basic-block numbers
1641   if (print_assembly()) {
1642     ttyLocker ttyl;  // keep the following output all in one block
1643     if (!VMThread::should_terminate()) {  // test this under the tty lock
1644       // This output goes directly to the tty, not the compiler log.
1645       // To enable tools to match it up with the compilation activity,
1646       // be sure to tag this tty output with the compile ID.
1647       if (xtty != NULL) {
1648         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1649                    is_osr_compilation()    ? " compile_kind='osr'" :
1650                    "");
1651       }
1652       if (method() != NULL) {
1653         method()->print_metadata();
1654       }
1655       dump_asm(node_offsets, node_offset_limit);
1656       if (xtty != NULL) {
1657         xtty->tail("opto_assembly");
1658       }
1659     }
1660   }
1661 #endif
1662 
1663 }
1664 
1665 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1666   _inc_table.set_size(cnt);
1667 
1668   uint inct_cnt = 0;
1669   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1670     Block *b = _cfg->_blocks[i];
1671     Node *n = NULL;
1672     int j;
1673 
1674     // Find the branch; ignore trailing NOPs.
1675     for( j = b->_nodes.size()-1; j>=0; j-- ) {
1676       n = b->_nodes[j];
1677       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1678         break;
1679     }
1680 
1681     // If we didn't find anything, continue
1682     if( j < 0 ) continue;
1683 
1684     // Compute ExceptionHandlerTable subtable entry and add it
1685     // (skip empty blocks)
1686     if( n->is_Catch() ) {
1687 
1688       // Get the offset of the return from the call
1689       uint call_return = call_returns[b->_pre_order];
1690 #ifdef ASSERT
1691       assert( call_return > 0, "no call seen for this basic block" );
1692       while( b->_nodes[--j]->is_MachProj() ) ;
1693       assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
1694 #endif
1695       // last instruction is a CatchNode, find it's CatchProjNodes
1696       int nof_succs = b->_num_succs;
1697       // allocate space
1698       GrowableArray<intptr_t> handler_bcis(nof_succs);
1699       GrowableArray<intptr_t> handler_pcos(nof_succs);
1700       // iterate through all successors
1701       for (int j = 0; j < nof_succs; j++) {
1702         Block* s = b->_succs[j];
1703         bool found_p = false;
1704         for( uint k = 1; k < s->num_preds(); k++ ) {
1705           Node *pk = s->pred(k);
1706           if( pk->is_CatchProj() && pk->in(0) == n ) {
1707             const CatchProjNode* p = pk->as_CatchProj();
1708             found_p = true;
1709             // add the corresponding handler bci & pco information
1710             if( p->_con != CatchProjNode::fall_through_index ) {
1711               // p leads to an exception handler (and is not fall through)
1712               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1713               // no duplicates, please
1714               if( !handler_bcis.contains(p->handler_bci()) ) {
1715                 uint block_num = s->non_connector()->_pre_order;
1716                 handler_bcis.append(p->handler_bci());
1717                 handler_pcos.append(blk_labels[block_num].loc_pos());
1718               }
1719             }
1720           }
1721         }
1722         assert(found_p, "no matching predecessor found");
1723         // Note:  Due to empty block removal, one block may have
1724         // several CatchProj inputs, from the same Catch.
1725       }
1726 
1727       // Set the offset of the return from the call
1728       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1729       continue;
1730     }
1731 
1732     // Handle implicit null exception table updates
1733     if( n->is_MachNullCheck() ) {
1734       uint block_num = b->non_connector_successor(0)->_pre_order;
1735       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1736       continue;
1737     }
1738   } // End of for all blocks fill in exception table entries
1739 }
1740 
1741 // Static Variables
1742 #ifndef PRODUCT
1743 uint Scheduling::_total_nop_size = 0;
1744 uint Scheduling::_total_method_size = 0;
1745 uint Scheduling::_total_branches = 0;
1746 uint Scheduling::_total_unconditional_delays = 0;
1747 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1748 #endif
1749 
1750 // Initializer for class Scheduling
1751 
1752 Scheduling::Scheduling(Arena *arena, Compile &compile)
1753   : _arena(arena),
1754     _cfg(compile.cfg()),
1755     _bbs(compile.cfg()->_bbs),
1756     _regalloc(compile.regalloc()),
1757     _reg_node(arena),
1758     _bundle_instr_count(0),
1759     _bundle_cycle_number(0),
1760     _scheduled(arena),
1761     _available(arena),
1762     _next_node(NULL),
1763     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1764     _pinch_free_list(arena)
1765 #ifndef PRODUCT
1766   , _branches(0)
1767   , _unconditional_delays(0)
1768 #endif
1769 {
1770   // Create a MachNopNode
1771   _nop = new (&compile) MachNopNode();
1772 
1773   // Now that the nops are in the array, save the count
1774   // (but allow entries for the nops)
1775   _node_bundling_limit = compile.unique();
1776   uint node_max = _regalloc->node_regs_max_index();
1777 
1778   compile.set_node_bundling_limit(_node_bundling_limit);
1779 
1780   // This one is persistent within the Compile class
1781   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1782 
1783   // Allocate space for fixed-size arrays
1784   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1785   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1786   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1787 
1788   // Clear the arrays
1789   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1790   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1791   memset(_uses,               0, node_max * sizeof(short));
1792   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1793 
1794   // Clear the bundling information
1795   memcpy(_bundle_use_elements,
1796     Pipeline_Use::elaborated_elements,
1797     sizeof(Pipeline_Use::elaborated_elements));
1798 
1799   // Get the last node
1800   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1801 
1802   _next_node = bb->_nodes[bb->_nodes.size()-1];
1803 }
1804 
1805 #ifndef PRODUCT
1806 // Scheduling destructor
1807 Scheduling::~Scheduling() {
1808   _total_branches             += _branches;
1809   _total_unconditional_delays += _unconditional_delays;
1810 }
1811 #endif
1812 
1813 // Step ahead "i" cycles
1814 void Scheduling::step(uint i) {
1815 
1816   Bundle *bundle = node_bundling(_next_node);
1817   bundle->set_starts_bundle();
1818 
1819   // Update the bundle record, but leave the flags information alone
1820   if (_bundle_instr_count > 0) {
1821     bundle->set_instr_count(_bundle_instr_count);
1822     bundle->set_resources_used(_bundle_use.resourcesUsed());
1823   }
1824 
1825   // Update the state information
1826   _bundle_instr_count = 0;
1827   _bundle_cycle_number += i;
1828   _bundle_use.step(i);
1829 }
1830 
1831 void Scheduling::step_and_clear() {
1832   Bundle *bundle = node_bundling(_next_node);
1833   bundle->set_starts_bundle();
1834 
1835   // Update the bundle record
1836   if (_bundle_instr_count > 0) {
1837     bundle->set_instr_count(_bundle_instr_count);
1838     bundle->set_resources_used(_bundle_use.resourcesUsed());
1839 
1840     _bundle_cycle_number += 1;
1841   }
1842 
1843   // Clear the bundling information
1844   _bundle_instr_count = 0;
1845   _bundle_use.reset();
1846 
1847   memcpy(_bundle_use_elements,
1848     Pipeline_Use::elaborated_elements,
1849     sizeof(Pipeline_Use::elaborated_elements));
1850 }
1851 
1852 //------------------------------ScheduleAndBundle------------------------------
1853 // Perform instruction scheduling and bundling over the sequence of
1854 // instructions in backwards order.
1855 void Compile::ScheduleAndBundle() {
1856 
1857   // Don't optimize this if it isn't a method
1858   if (!_method)
1859     return;
1860 
1861   // Don't optimize this if scheduling is disabled
1862   if (!do_scheduling())
1863     return;
1864 
1865   // Scheduling code works only with pairs (8 bytes) maximum.
1866   if (max_vector_size() > 8)
1867     return;
1868 
1869   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1870 
1871   // Create a data structure for all the scheduling information
1872   Scheduling scheduling(Thread::current()->resource_area(), *this);
1873 
1874   // Walk backwards over each basic block, computing the needed alignment
1875   // Walk over all the basic blocks
1876   scheduling.DoScheduling();
1877 }
1878 
1879 //------------------------------ComputeLocalLatenciesForward-------------------
1880 // Compute the latency of all the instructions.  This is fairly simple,
1881 // because we already have a legal ordering.  Walk over the instructions
1882 // from first to last, and compute the latency of the instruction based
1883 // on the latency of the preceding instruction(s).
1884 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1885 #ifndef PRODUCT
1886   if (_cfg->C->trace_opto_output())
1887     tty->print("# -> ComputeLocalLatenciesForward\n");
1888 #endif
1889 
1890   // Walk over all the schedulable instructions
1891   for( uint j=_bb_start; j < _bb_end; j++ ) {
1892 
1893     // This is a kludge, forcing all latency calculations to start at 1.
1894     // Used to allow latency 0 to force an instruction to the beginning
1895     // of the bb
1896     uint latency = 1;
1897     Node *use = bb->_nodes[j];
1898     uint nlen = use->len();
1899 
1900     // Walk over all the inputs
1901     for ( uint k=0; k < nlen; k++ ) {
1902       Node *def = use->in(k);
1903       if (!def)
1904         continue;
1905 
1906       uint l = _node_latency[def->_idx] + use->latency(k);
1907       if (latency < l)
1908         latency = l;
1909     }
1910 
1911     _node_latency[use->_idx] = latency;
1912 
1913 #ifndef PRODUCT
1914     if (_cfg->C->trace_opto_output()) {
1915       tty->print("# latency %4d: ", latency);
1916       use->dump();
1917     }
1918 #endif
1919   }
1920 
1921 #ifndef PRODUCT
1922   if (_cfg->C->trace_opto_output())
1923     tty->print("# <- ComputeLocalLatenciesForward\n");
1924 #endif
1925 
1926 } // end ComputeLocalLatenciesForward
1927 
1928 // See if this node fits into the present instruction bundle
1929 bool Scheduling::NodeFitsInBundle(Node *n) {
1930   uint n_idx = n->_idx;
1931 
1932   // If this is the unconditional delay instruction, then it fits
1933   if (n == _unconditional_delay_slot) {
1934 #ifndef PRODUCT
1935     if (_cfg->C->trace_opto_output())
1936       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1937 #endif
1938     return (true);
1939   }
1940 
1941   // If the node cannot be scheduled this cycle, skip it
1942   if (_current_latency[n_idx] > _bundle_cycle_number) {
1943 #ifndef PRODUCT
1944     if (_cfg->C->trace_opto_output())
1945       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1946         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1947 #endif
1948     return (false);
1949   }
1950 
1951   const Pipeline *node_pipeline = n->pipeline();
1952 
1953   uint instruction_count = node_pipeline->instructionCount();
1954   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1955     instruction_count = 0;
1956   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1957     instruction_count++;
1958 
1959   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1960 #ifndef PRODUCT
1961     if (_cfg->C->trace_opto_output())
1962       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1963         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1964 #endif
1965     return (false);
1966   }
1967 
1968   // Don't allow non-machine nodes to be handled this way
1969   if (!n->is_Mach() && instruction_count == 0)
1970     return (false);
1971 
1972   // See if there is any overlap
1973   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1974 
1975   if (delay > 0) {
1976 #ifndef PRODUCT
1977     if (_cfg->C->trace_opto_output())
1978       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1979 #endif
1980     return false;
1981   }
1982 
1983 #ifndef PRODUCT
1984   if (_cfg->C->trace_opto_output())
1985     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1986 #endif
1987 
1988   return true;
1989 }
1990 
1991 Node * Scheduling::ChooseNodeToBundle() {
1992   uint siz = _available.size();
1993 
1994   if (siz == 0) {
1995 
1996 #ifndef PRODUCT
1997     if (_cfg->C->trace_opto_output())
1998       tty->print("#   ChooseNodeToBundle: NULL\n");
1999 #endif
2000     return (NULL);
2001   }
2002 
2003   // Fast path, if only 1 instruction in the bundle
2004   if (siz == 1) {
2005 #ifndef PRODUCT
2006     if (_cfg->C->trace_opto_output()) {
2007       tty->print("#   ChooseNodeToBundle (only 1): ");
2008       _available[0]->dump();
2009     }
2010 #endif
2011     return (_available[0]);
2012   }
2013 
2014   // Don't bother, if the bundle is already full
2015   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2016     for ( uint i = 0; i < siz; i++ ) {
2017       Node *n = _available[i];
2018 
2019       // Skip projections, we'll handle them another way
2020       if (n->is_Proj())
2021         continue;
2022 
2023       // This presupposed that instructions are inserted into the
2024       // available list in a legality order; i.e. instructions that
2025       // must be inserted first are at the head of the list
2026       if (NodeFitsInBundle(n)) {
2027 #ifndef PRODUCT
2028         if (_cfg->C->trace_opto_output()) {
2029           tty->print("#   ChooseNodeToBundle: ");
2030           n->dump();
2031         }
2032 #endif
2033         return (n);
2034       }
2035     }
2036   }
2037 
2038   // Nothing fits in this bundle, choose the highest priority
2039 #ifndef PRODUCT
2040   if (_cfg->C->trace_opto_output()) {
2041     tty->print("#   ChooseNodeToBundle: ");
2042     _available[0]->dump();
2043   }
2044 #endif
2045 
2046   return _available[0];
2047 }
2048 
2049 //------------------------------AddNodeToAvailableList-------------------------
2050 void Scheduling::AddNodeToAvailableList(Node *n) {
2051   assert( !n->is_Proj(), "projections never directly made available" );
2052 #ifndef PRODUCT
2053   if (_cfg->C->trace_opto_output()) {
2054     tty->print("#   AddNodeToAvailableList: ");
2055     n->dump();
2056   }
2057 #endif
2058 
2059   int latency = _current_latency[n->_idx];
2060 
2061   // Insert in latency order (insertion sort)
2062   uint i;
2063   for ( i=0; i < _available.size(); i++ )
2064     if (_current_latency[_available[i]->_idx] > latency)
2065       break;
2066 
2067   // Special Check for compares following branches
2068   if( n->is_Mach() && _scheduled.size() > 0 ) {
2069     int op = n->as_Mach()->ideal_Opcode();
2070     Node *last = _scheduled[0];
2071     if( last->is_MachIf() && last->in(1) == n &&
2072         ( op == Op_CmpI ||
2073           op == Op_CmpU ||
2074           op == Op_CmpP ||
2075           op == Op_CmpF ||
2076           op == Op_CmpD ||
2077           op == Op_CmpL ) ) {
2078 
2079       // Recalculate position, moving to front of same latency
2080       for ( i=0 ; i < _available.size(); i++ )
2081         if (_current_latency[_available[i]->_idx] >= latency)
2082           break;
2083     }
2084   }
2085 
2086   // Insert the node in the available list
2087   _available.insert(i, n);
2088 
2089 #ifndef PRODUCT
2090   if (_cfg->C->trace_opto_output())
2091     dump_available();
2092 #endif
2093 }
2094 
2095 //------------------------------DecrementUseCounts-----------------------------
2096 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2097   for ( uint i=0; i < n->len(); i++ ) {
2098     Node *def = n->in(i);
2099     if (!def) continue;
2100     if( def->is_Proj() )        // If this is a machine projection, then
2101       def = def->in(0);         // propagate usage thru to the base instruction
2102 
2103     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
2104       continue;
2105 
2106     // Compute the latency
2107     uint l = _bundle_cycle_number + n->latency(i);
2108     if (_current_latency[def->_idx] < l)
2109       _current_latency[def->_idx] = l;
2110 
2111     // If this does not have uses then schedule it
2112     if ((--_uses[def->_idx]) == 0)
2113       AddNodeToAvailableList(def);
2114   }
2115 }
2116 
2117 //------------------------------AddNodeToBundle--------------------------------
2118 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2119 #ifndef PRODUCT
2120   if (_cfg->C->trace_opto_output()) {
2121     tty->print("#   AddNodeToBundle: ");
2122     n->dump();
2123   }
2124 #endif
2125 
2126   // Remove this from the available list
2127   uint i;
2128   for (i = 0; i < _available.size(); i++)
2129     if (_available[i] == n)
2130       break;
2131   assert(i < _available.size(), "entry in _available list not found");
2132   _available.remove(i);
2133 
2134   // See if this fits in the current bundle
2135   const Pipeline *node_pipeline = n->pipeline();
2136   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2137 
2138   // Check for instructions to be placed in the delay slot. We
2139   // do this before we actually schedule the current instruction,
2140   // because the delay slot follows the current instruction.
2141   if (Pipeline::_branch_has_delay_slot &&
2142       node_pipeline->hasBranchDelay() &&
2143       !_unconditional_delay_slot) {
2144 
2145     uint siz = _available.size();
2146 
2147     // Conditional branches can support an instruction that
2148     // is unconditionally executed and not dependent by the
2149     // branch, OR a conditionally executed instruction if
2150     // the branch is taken.  In practice, this means that
2151     // the first instruction at the branch target is
2152     // copied to the delay slot, and the branch goes to
2153     // the instruction after that at the branch target
2154     if ( n->is_MachBranch() ) {
2155 
2156       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2157       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2158 
2159 #ifndef PRODUCT
2160       _branches++;
2161 #endif
2162 
2163       // At least 1 instruction is on the available list
2164       // that is not dependent on the branch
2165       for (uint i = 0; i < siz; i++) {
2166         Node *d = _available[i];
2167         const Pipeline *avail_pipeline = d->pipeline();
2168 
2169         // Don't allow safepoints in the branch shadow, that will
2170         // cause a number of difficulties
2171         if ( avail_pipeline->instructionCount() == 1 &&
2172             !avail_pipeline->hasMultipleBundles() &&
2173             !avail_pipeline->hasBranchDelay() &&
2174             Pipeline::instr_has_unit_size() &&
2175             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2176             NodeFitsInBundle(d) &&
2177             !node_bundling(d)->used_in_delay()) {
2178 
2179           if (d->is_Mach() && !d->is_MachSafePoint()) {
2180             // A node that fits in the delay slot was found, so we need to
2181             // set the appropriate bits in the bundle pipeline information so
2182             // that it correctly indicates resource usage.  Later, when we
2183             // attempt to add this instruction to the bundle, we will skip
2184             // setting the resource usage.
2185             _unconditional_delay_slot = d;
2186             node_bundling(n)->set_use_unconditional_delay();
2187             node_bundling(d)->set_used_in_unconditional_delay();
2188             _bundle_use.add_usage(avail_pipeline->resourceUse());
2189             _current_latency[d->_idx] = _bundle_cycle_number;
2190             _next_node = d;
2191             ++_bundle_instr_count;
2192 #ifndef PRODUCT
2193             _unconditional_delays++;
2194 #endif
2195             break;
2196           }
2197         }
2198       }
2199     }
2200 
2201     // No delay slot, add a nop to the usage
2202     if (!_unconditional_delay_slot) {
2203       // See if adding an instruction in the delay slot will overflow
2204       // the bundle.
2205       if (!NodeFitsInBundle(_nop)) {
2206 #ifndef PRODUCT
2207         if (_cfg->C->trace_opto_output())
2208           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2209 #endif
2210         step(1);
2211       }
2212 
2213       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2214       _next_node = _nop;
2215       ++_bundle_instr_count;
2216     }
2217 
2218     // See if the instruction in the delay slot requires a
2219     // step of the bundles
2220     if (!NodeFitsInBundle(n)) {
2221 #ifndef PRODUCT
2222         if (_cfg->C->trace_opto_output())
2223           tty->print("#  *** STEP(branch won't fit) ***\n");
2224 #endif
2225         // Update the state information
2226         _bundle_instr_count = 0;
2227         _bundle_cycle_number += 1;
2228         _bundle_use.step(1);
2229     }
2230   }
2231 
2232   // Get the number of instructions
2233   uint instruction_count = node_pipeline->instructionCount();
2234   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2235     instruction_count = 0;
2236 
2237   // Compute the latency information
2238   uint delay = 0;
2239 
2240   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2241     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2242     if (relative_latency < 0)
2243       relative_latency = 0;
2244 
2245     delay = _bundle_use.full_latency(relative_latency, node_usage);
2246 
2247     // Does not fit in this bundle, start a new one
2248     if (delay > 0) {
2249       step(delay);
2250 
2251 #ifndef PRODUCT
2252       if (_cfg->C->trace_opto_output())
2253         tty->print("#  *** STEP(%d) ***\n", delay);
2254 #endif
2255     }
2256   }
2257 
2258   // If this was placed in the delay slot, ignore it
2259   if (n != _unconditional_delay_slot) {
2260 
2261     if (delay == 0) {
2262       if (node_pipeline->hasMultipleBundles()) {
2263 #ifndef PRODUCT
2264         if (_cfg->C->trace_opto_output())
2265           tty->print("#  *** STEP(multiple instructions) ***\n");
2266 #endif
2267         step(1);
2268       }
2269 
2270       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2271 #ifndef PRODUCT
2272         if (_cfg->C->trace_opto_output())
2273           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2274             instruction_count + _bundle_instr_count,
2275             Pipeline::_max_instrs_per_cycle);
2276 #endif
2277         step(1);
2278       }
2279     }
2280 
2281     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2282       _bundle_instr_count++;
2283 
2284     // Set the node's latency
2285     _current_latency[n->_idx] = _bundle_cycle_number;
2286 
2287     // Now merge the functional unit information
2288     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2289       _bundle_use.add_usage(node_usage);
2290 
2291     // Increment the number of instructions in this bundle
2292     _bundle_instr_count += instruction_count;
2293 
2294     // Remember this node for later
2295     if (n->is_Mach())
2296       _next_node = n;
2297   }
2298 
2299   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2300   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2301   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2302   // into the block.  All other scheduled nodes get put in the schedule here.
2303   int op = n->Opcode();
2304   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2305       (op != Op_Node &&         // Not an unused antidepedence node and
2306        // not an unallocated boxlock
2307        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2308 
2309     // Push any trailing projections
2310     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2311       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2312         Node *foi = n->fast_out(i);
2313         if( foi->is_Proj() )
2314           _scheduled.push(foi);
2315       }
2316     }
2317 
2318     // Put the instruction in the schedule list
2319     _scheduled.push(n);
2320   }
2321 
2322 #ifndef PRODUCT
2323   if (_cfg->C->trace_opto_output())
2324     dump_available();
2325 #endif
2326 
2327   // Walk all the definitions, decrementing use counts, and
2328   // if a definition has a 0 use count, place it in the available list.
2329   DecrementUseCounts(n,bb);
2330 }
2331 
2332 //------------------------------ComputeUseCount--------------------------------
2333 // This method sets the use count within a basic block.  We will ignore all
2334 // uses outside the current basic block.  As we are doing a backwards walk,
2335 // any node we reach that has a use count of 0 may be scheduled.  This also
2336 // avoids the problem of cyclic references from phi nodes, as long as phi
2337 // nodes are at the front of the basic block.  This method also initializes
2338 // the available list to the set of instructions that have no uses within this
2339 // basic block.
2340 void Scheduling::ComputeUseCount(const Block *bb) {
2341 #ifndef PRODUCT
2342   if (_cfg->C->trace_opto_output())
2343     tty->print("# -> ComputeUseCount\n");
2344 #endif
2345 
2346   // Clear the list of available and scheduled instructions, just in case
2347   _available.clear();
2348   _scheduled.clear();
2349 
2350   // No delay slot specified
2351   _unconditional_delay_slot = NULL;
2352 
2353 #ifdef ASSERT
2354   for( uint i=0; i < bb->_nodes.size(); i++ )
2355     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2356 #endif
2357 
2358   // Force the _uses count to never go to zero for unscheduable pieces
2359   // of the block
2360   for( uint k = 0; k < _bb_start; k++ )
2361     _uses[bb->_nodes[k]->_idx] = 1;
2362   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2363     _uses[bb->_nodes[l]->_idx] = 1;
2364 
2365   // Iterate backwards over the instructions in the block.  Don't count the
2366   // branch projections at end or the block header instructions.
2367   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2368     Node *n = bb->_nodes[j];
2369     if( n->is_Proj() ) continue; // Projections handled another way
2370 
2371     // Account for all uses
2372     for ( uint k = 0; k < n->len(); k++ ) {
2373       Node *inp = n->in(k);
2374       if (!inp) continue;
2375       assert(inp != n, "no cycles allowed" );
2376       if( _bbs[inp->_idx] == bb ) { // Block-local use?
2377         if( inp->is_Proj() )    // Skip through Proj's
2378           inp = inp->in(0);
2379         ++_uses[inp->_idx];     // Count 1 block-local use
2380       }
2381     }
2382 
2383     // If this instruction has a 0 use count, then it is available
2384     if (!_uses[n->_idx]) {
2385       _current_latency[n->_idx] = _bundle_cycle_number;
2386       AddNodeToAvailableList(n);
2387     }
2388 
2389 #ifndef PRODUCT
2390     if (_cfg->C->trace_opto_output()) {
2391       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2392       n->dump();
2393     }
2394 #endif
2395   }
2396 
2397 #ifndef PRODUCT
2398   if (_cfg->C->trace_opto_output())
2399     tty->print("# <- ComputeUseCount\n");
2400 #endif
2401 }
2402 
2403 // This routine performs scheduling on each basic block in reverse order,
2404 // using instruction latencies and taking into account function unit
2405 // availability.
2406 void Scheduling::DoScheduling() {
2407 #ifndef PRODUCT
2408   if (_cfg->C->trace_opto_output())
2409     tty->print("# -> DoScheduling\n");
2410 #endif
2411 
2412   Block *succ_bb = NULL;
2413   Block *bb;
2414 
2415   // Walk over all the basic blocks in reverse order
2416   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2417     bb = _cfg->_blocks[i];
2418 
2419 #ifndef PRODUCT
2420     if (_cfg->C->trace_opto_output()) {
2421       tty->print("#  Schedule BB#%03d (initial)\n", i);
2422       for (uint j = 0; j < bb->_nodes.size(); j++)
2423         bb->_nodes[j]->dump();
2424     }
2425 #endif
2426 
2427     // On the head node, skip processing
2428     if( bb == _cfg->_broot )
2429       continue;
2430 
2431     // Skip empty, connector blocks
2432     if (bb->is_connector())
2433       continue;
2434 
2435     // If the following block is not the sole successor of
2436     // this one, then reset the pipeline information
2437     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2438 #ifndef PRODUCT
2439       if (_cfg->C->trace_opto_output()) {
2440         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2441                    _next_node->_idx, _bundle_instr_count);
2442       }
2443 #endif
2444       step_and_clear();
2445     }
2446 
2447     // Leave untouched the starting instruction, any Phis, a CreateEx node
2448     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2449     _bb_end = bb->_nodes.size()-1;
2450     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2451       Node *n = bb->_nodes[_bb_start];
2452       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2453       // Also, MachIdealNodes do not get scheduled
2454       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2455       MachNode *mach = n->as_Mach();
2456       int iop = mach->ideal_Opcode();
2457       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2458       if( iop == Op_Con ) continue;      // Do not schedule Top
2459       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2460           mach->pipeline() == MachNode::pipeline_class() &&
2461           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2462         continue;
2463       break;                    // Funny loop structure to be sure...
2464     }
2465     // Compute last "interesting" instruction in block - last instruction we
2466     // might schedule.  _bb_end points just after last schedulable inst.  We
2467     // normally schedule conditional branches (despite them being forced last
2468     // in the block), because they have delay slots we can fill.  Calls all
2469     // have their delay slots filled in the template expansions, so we don't
2470     // bother scheduling them.
2471     Node *last = bb->_nodes[_bb_end];
2472     // Ignore trailing NOPs.
2473     while (_bb_end > 0 && last->is_Mach() &&
2474            last->as_Mach()->ideal_Opcode() == Op_Con) {
2475       last = bb->_nodes[--_bb_end];
2476     }
2477     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2478     if( last->is_Catch() ||
2479        // Exclude unreachable path case when Halt node is in a separate block.
2480        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2481       // There must be a prior call.  Skip it.
2482       while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
2483         assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
2484       }
2485     } else if( last->is_MachNullCheck() ) {
2486       // Backup so the last null-checked memory instruction is
2487       // outside the schedulable range. Skip over the nullcheck,
2488       // projection, and the memory nodes.
2489       Node *mem = last->in(1);
2490       do {
2491         _bb_end--;
2492       } while (mem != bb->_nodes[_bb_end]);
2493     } else {
2494       // Set _bb_end to point after last schedulable inst.
2495       _bb_end++;
2496     }
2497 
2498     assert( _bb_start <= _bb_end, "inverted block ends" );
2499 
2500     // Compute the register antidependencies for the basic block
2501     ComputeRegisterAntidependencies(bb);
2502     if (_cfg->C->failing())  return;  // too many D-U pinch points
2503 
2504     // Compute intra-bb latencies for the nodes
2505     ComputeLocalLatenciesForward(bb);
2506 
2507     // Compute the usage within the block, and set the list of all nodes
2508     // in the block that have no uses within the block.
2509     ComputeUseCount(bb);
2510 
2511     // Schedule the remaining instructions in the block
2512     while ( _available.size() > 0 ) {
2513       Node *n = ChooseNodeToBundle();
2514       guarantee(n != NULL, "no nodes available");
2515       AddNodeToBundle(n,bb);
2516     }
2517 
2518     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2519 #ifdef ASSERT
2520     for( uint l = _bb_start; l < _bb_end; l++ ) {
2521       Node *n = bb->_nodes[l];
2522       uint m;
2523       for( m = 0; m < _bb_end-_bb_start; m++ )
2524         if( _scheduled[m] == n )
2525           break;
2526       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2527     }
2528 #endif
2529 
2530     // Now copy the instructions (in reverse order) back to the block
2531     for ( uint k = _bb_start; k < _bb_end; k++ )
2532       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2533 
2534 #ifndef PRODUCT
2535     if (_cfg->C->trace_opto_output()) {
2536       tty->print("#  Schedule BB#%03d (final)\n", i);
2537       uint current = 0;
2538       for (uint j = 0; j < bb->_nodes.size(); j++) {
2539         Node *n = bb->_nodes[j];
2540         if( valid_bundle_info(n) ) {
2541           Bundle *bundle = node_bundling(n);
2542           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2543             tty->print("*** Bundle: ");
2544             bundle->dump();
2545           }
2546           n->dump();
2547         }
2548       }
2549     }
2550 #endif
2551 #ifdef ASSERT
2552   verify_good_schedule(bb,"after block local scheduling");
2553 #endif
2554   }
2555 
2556 #ifndef PRODUCT
2557   if (_cfg->C->trace_opto_output())
2558     tty->print("# <- DoScheduling\n");
2559 #endif
2560 
2561   // Record final node-bundling array location
2562   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2563 
2564 } // end DoScheduling
2565 
2566 //------------------------------verify_good_schedule---------------------------
2567 // Verify that no live-range used in the block is killed in the block by a
2568 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2569 
2570 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2571 static bool edge_from_to( Node *from, Node *to ) {
2572   for( uint i=0; i<from->len(); i++ )
2573     if( from->in(i) == to )
2574       return true;
2575   return false;
2576 }
2577 
2578 #ifdef ASSERT
2579 //------------------------------verify_do_def----------------------------------
2580 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2581   // Check for bad kills
2582   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2583     Node *prior_use = _reg_node[def];
2584     if( prior_use && !edge_from_to(prior_use,n) ) {
2585       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2586       n->dump();
2587       tty->print_cr("...");
2588       prior_use->dump();
2589       assert(edge_from_to(prior_use,n),msg);
2590     }
2591     _reg_node.map(def,NULL); // Kill live USEs
2592   }
2593 }
2594 
2595 //------------------------------verify_good_schedule---------------------------
2596 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2597 
2598   // Zap to something reasonable for the verify code
2599   _reg_node.clear();
2600 
2601   // Walk over the block backwards.  Check to make sure each DEF doesn't
2602   // kill a live value (other than the one it's supposed to).  Add each
2603   // USE to the live set.
2604   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2605     Node *n = b->_nodes[i];
2606     int n_op = n->Opcode();
2607     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2608       // Fat-proj kills a slew of registers
2609       RegMask rm = n->out_RegMask();// Make local copy
2610       while( rm.is_NotEmpty() ) {
2611         OptoReg::Name kill = rm.find_first_elem();
2612         rm.Remove(kill);
2613         verify_do_def( n, kill, msg );
2614       }
2615     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2616       // Get DEF'd registers the normal way
2617       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2618       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2619     }
2620 
2621     // Now make all USEs live
2622     for( uint i=1; i<n->req(); i++ ) {
2623       Node *def = n->in(i);
2624       assert(def != 0, "input edge required");
2625       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2626       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2627       if( OptoReg::is_valid(reg_lo) ) {
2628         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2629         _reg_node.map(reg_lo,n);
2630       }
2631       if( OptoReg::is_valid(reg_hi) ) {
2632         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2633         _reg_node.map(reg_hi,n);
2634       }
2635     }
2636 
2637   }
2638 
2639   // Zap to something reasonable for the Antidependence code
2640   _reg_node.clear();
2641 }
2642 #endif
2643 
2644 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2645 static void add_prec_edge_from_to( Node *from, Node *to ) {
2646   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2647     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2648     from = from->in(0);
2649   }
2650   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2651       !edge_from_to( from, to ) ) // Avoid duplicate edge
2652     from->add_prec(to);
2653 }
2654 
2655 //------------------------------anti_do_def------------------------------------
2656 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2657   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2658     return;
2659 
2660   Node *pinch = _reg_node[def_reg]; // Get pinch point
2661   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2662       is_def ) {    // Check for a true def (not a kill)
2663     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2664     return;
2665   }
2666 
2667   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2668   debug_only( def = (Node*)0xdeadbeef; )
2669 
2670   // After some number of kills there _may_ be a later def
2671   Node *later_def = NULL;
2672 
2673   // Finding a kill requires a real pinch-point.
2674   // Check for not already having a pinch-point.
2675   // Pinch points are Op_Node's.
2676   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2677     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2678     if ( _pinch_free_list.size() > 0) {
2679       pinch = _pinch_free_list.pop();
2680     } else {
2681       pinch = new (_cfg->C) Node(1); // Pinch point to-be
2682     }
2683     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2684       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2685       return;
2686     }
2687     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2688     _reg_node.map(def_reg,pinch); // Record pinch-point
2689     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2690     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2691       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2692       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2693       later_def = NULL;           // and no later def
2694     }
2695     pinch->set_req(0,later_def);  // Hook later def so we can find it
2696   } else {                        // Else have valid pinch point
2697     if( pinch->in(0) )            // If there is a later-def
2698       later_def = pinch->in(0);   // Get it
2699   }
2700 
2701   // Add output-dependence edge from later def to kill
2702   if( later_def )               // If there is some original def
2703     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2704 
2705   // See if current kill is also a use, and so is forced to be the pinch-point.
2706   if( pinch->Opcode() == Op_Node ) {
2707     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2708     for( uint i=1; i<uses->req(); i++ ) {
2709       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2710           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2711         // Yes, found a use/kill pinch-point
2712         pinch->set_req(0,NULL);  //
2713         pinch->replace_by(kill); // Move anti-dep edges up
2714         pinch = kill;
2715         _reg_node.map(def_reg,pinch);
2716         return;
2717       }
2718     }
2719   }
2720 
2721   // Add edge from kill to pinch-point
2722   add_prec_edge_from_to(kill,pinch);
2723 }
2724 
2725 //------------------------------anti_do_use------------------------------------
2726 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2727   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2728     return;
2729   Node *pinch = _reg_node[use_reg]; // Get pinch point
2730   // Check for no later def_reg/kill in block
2731   if( pinch && _bbs[pinch->_idx] == b &&
2732       // Use has to be block-local as well
2733       _bbs[use->_idx] == b ) {
2734     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2735         pinch->req() == 1 ) {   // pinch not yet in block?
2736       pinch->del_req(0);        // yank pointer to later-def, also set flag
2737       // Insert the pinch-point in the block just after the last use
2738       b->_nodes.insert(b->find_node(use)+1,pinch);
2739       _bb_end++;                // Increase size scheduled region in block
2740     }
2741 
2742     add_prec_edge_from_to(pinch,use);
2743   }
2744 }
2745 
2746 //------------------------------ComputeRegisterAntidependences-----------------
2747 // We insert antidependences between the reads and following write of
2748 // allocated registers to prevent illegal code motion. Hopefully, the
2749 // number of added references should be fairly small, especially as we
2750 // are only adding references within the current basic block.
2751 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2752 
2753 #ifdef ASSERT
2754   verify_good_schedule(b,"before block local scheduling");
2755 #endif
2756 
2757   // A valid schedule, for each register independently, is an endless cycle
2758   // of: a def, then some uses (connected to the def by true dependencies),
2759   // then some kills (defs with no uses), finally the cycle repeats with a new
2760   // def.  The uses are allowed to float relative to each other, as are the
2761   // kills.  No use is allowed to slide past a kill (or def).  This requires
2762   // antidependencies between all uses of a single def and all kills that
2763   // follow, up to the next def.  More edges are redundant, because later defs
2764   // & kills are already serialized with true or antidependencies.  To keep
2765   // the edge count down, we add a 'pinch point' node if there's more than
2766   // one use or more than one kill/def.
2767 
2768   // We add dependencies in one bottom-up pass.
2769 
2770   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2771 
2772   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2773   // register.  If not, we record the DEF/KILL in _reg_node, the
2774   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2775   // "pinch point", a new Node that's in the graph but not in the block.
2776   // We put edges from the prior and current DEF/KILLs to the pinch point.
2777   // We put the pinch point in _reg_node.  If there's already a pinch point
2778   // we merely add an edge from the current DEF/KILL to the pinch point.
2779 
2780   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2781   // put an edge from the pinch point to the USE.
2782 
2783   // To be expedient, the _reg_node array is pre-allocated for the whole
2784   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2785   // or a valid def/kill/pinch-point, or a leftover node from some prior
2786   // block.  Leftover node from some prior block is treated like a NULL (no
2787   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2788   // it being in the current block.
2789   bool fat_proj_seen = false;
2790   uint last_safept = _bb_end-1;
2791   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2792   Node* last_safept_node = end_node;
2793   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2794     Node *n = b->_nodes[i];
2795     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2796     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2797       // Fat-proj kills a slew of registers
2798       // This can add edges to 'n' and obscure whether or not it was a def,
2799       // hence the is_def flag.
2800       fat_proj_seen = true;
2801       RegMask rm = n->out_RegMask();// Make local copy
2802       while( rm.is_NotEmpty() ) {
2803         OptoReg::Name kill = rm.find_first_elem();
2804         rm.Remove(kill);
2805         anti_do_def( b, n, kill, is_def );
2806       }
2807     } else {
2808       // Get DEF'd registers the normal way
2809       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2810       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2811     }
2812 
2813     // Kill projections on a branch should appear to occur on the
2814     // branch, not afterwards, so grab the masks from the projections
2815     // and process them.
2816     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2817       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2818         Node* use = n->fast_out(i);
2819         if (use->is_Proj()) {
2820           RegMask rm = use->out_RegMask();// Make local copy
2821           while( rm.is_NotEmpty() ) {
2822             OptoReg::Name kill = rm.find_first_elem();
2823             rm.Remove(kill);
2824             anti_do_def( b, n, kill, false );
2825           }
2826         }
2827       }
2828     }
2829 
2830     // Check each register used by this instruction for a following DEF/KILL
2831     // that must occur afterward and requires an anti-dependence edge.
2832     for( uint j=0; j<n->req(); j++ ) {
2833       Node *def = n->in(j);
2834       if( def ) {
2835         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2836         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2837         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2838       }
2839     }
2840     // Do not allow defs of new derived values to float above GC
2841     // points unless the base is definitely available at the GC point.
2842 
2843     Node *m = b->_nodes[i];
2844 
2845     // Add precedence edge from following safepoint to use of derived pointer
2846     if( last_safept_node != end_node &&
2847         m != last_safept_node) {
2848       for (uint k = 1; k < m->req(); k++) {
2849         const Type *t = m->in(k)->bottom_type();
2850         if( t->isa_oop_ptr() &&
2851             t->is_ptr()->offset() != 0 ) {
2852           last_safept_node->add_prec( m );
2853           break;
2854         }
2855       }
2856     }
2857 
2858     if( n->jvms() ) {           // Precedence edge from derived to safept
2859       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2860       if( b->_nodes[last_safept] != last_safept_node ) {
2861         last_safept = b->find_node(last_safept_node);
2862       }
2863       for( uint j=last_safept; j > i; j-- ) {
2864         Node *mach = b->_nodes[j];
2865         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2866           mach->add_prec( n );
2867       }
2868       last_safept = i;
2869       last_safept_node = m;
2870     }
2871   }
2872 
2873   if (fat_proj_seen) {
2874     // Garbage collect pinch nodes that were not consumed.
2875     // They are usually created by a fat kill MachProj for a call.
2876     garbage_collect_pinch_nodes();
2877   }
2878 }
2879 
2880 //------------------------------garbage_collect_pinch_nodes-------------------------------
2881 
2882 // Garbage collect pinch nodes for reuse by other blocks.
2883 //
2884 // The block scheduler's insertion of anti-dependence
2885 // edges creates many pinch nodes when the block contains
2886 // 2 or more Calls.  A pinch node is used to prevent a
2887 // combinatorial explosion of edges.  If a set of kills for a
2888 // register is anti-dependent on a set of uses (or defs), rather
2889 // than adding an edge in the graph between each pair of kill
2890 // and use (or def), a pinch is inserted between them:
2891 //
2892 //            use1   use2  use3
2893 //                \   |   /
2894 //                 \  |  /
2895 //                  pinch
2896 //                 /  |  \
2897 //                /   |   \
2898 //            kill1 kill2 kill3
2899 //
2900 // One pinch node is created per register killed when
2901 // the second call is encountered during a backwards pass
2902 // over the block.  Most of these pinch nodes are never
2903 // wired into the graph because the register is never
2904 // used or def'ed in the block.
2905 //
2906 void Scheduling::garbage_collect_pinch_nodes() {
2907 #ifndef PRODUCT
2908     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2909 #endif
2910     int trace_cnt = 0;
2911     for (uint k = 0; k < _reg_node.Size(); k++) {
2912       Node* pinch = _reg_node[k];
2913       if (pinch != NULL && pinch->Opcode() == Op_Node &&
2914           // no predecence input edges
2915           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2916         cleanup_pinch(pinch);
2917         _pinch_free_list.push(pinch);
2918         _reg_node.map(k, NULL);
2919 #ifndef PRODUCT
2920         if (_cfg->C->trace_opto_output()) {
2921           trace_cnt++;
2922           if (trace_cnt > 40) {
2923             tty->print("\n");
2924             trace_cnt = 0;
2925           }
2926           tty->print(" %d", pinch->_idx);
2927         }
2928 #endif
2929       }
2930     }
2931 #ifndef PRODUCT
2932     if (_cfg->C->trace_opto_output()) tty->print("\n");
2933 #endif
2934 }
2935 
2936 // Clean up a pinch node for reuse.
2937 void Scheduling::cleanup_pinch( Node *pinch ) {
2938   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2939 
2940   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2941     Node* use = pinch->last_out(i);
2942     uint uses_found = 0;
2943     for (uint j = use->req(); j < use->len(); j++) {
2944       if (use->in(j) == pinch) {
2945         use->rm_prec(j);
2946         uses_found++;
2947       }
2948     }
2949     assert(uses_found > 0, "must be a precedence edge");
2950     i -= uses_found;    // we deleted 1 or more copies of this edge
2951   }
2952   // May have a later_def entry
2953   pinch->set_req(0, NULL);
2954 }
2955 
2956 //------------------------------print_statistics-------------------------------
2957 #ifndef PRODUCT
2958 
2959 void Scheduling::dump_available() const {
2960   tty->print("#Availist  ");
2961   for (uint i = 0; i < _available.size(); i++)
2962     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2963   tty->cr();
2964 }
2965 
2966 // Print Scheduling Statistics
2967 void Scheduling::print_statistics() {
2968   // Print the size added by nops for bundling
2969   tty->print("Nops added %d bytes to total of %d bytes",
2970     _total_nop_size, _total_method_size);
2971   if (_total_method_size > 0)
2972     tty->print(", for %.2f%%",
2973       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2974   tty->print("\n");
2975 
2976   // Print the number of branch shadows filled
2977   if (Pipeline::_branch_has_delay_slot) {
2978     tty->print("Of %d branches, %d had unconditional delay slots filled",
2979       _total_branches, _total_unconditional_delays);
2980     if (_total_branches > 0)
2981       tty->print(", for %.2f%%",
2982         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2983     tty->print("\n");
2984   }
2985 
2986   uint total_instructions = 0, total_bundles = 0;
2987 
2988   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2989     uint bundle_count   = _total_instructions_per_bundle[i];
2990     total_instructions += bundle_count * i;
2991     total_bundles      += bundle_count;
2992   }
2993 
2994   if (total_bundles > 0)
2995     tty->print("Average ILP (excluding nops) is %.2f\n",
2996       ((double)total_instructions) / ((double)total_bundles));
2997 }
2998 #endif