1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
  26 #include "adlc.hpp"
  27 
  28 //==============================Instructions===================================
  29 //------------------------------InstructForm-----------------------------------
  30 InstructForm::InstructForm(const char *id, bool ideal_only)
  31   : _ident(id), _ideal_only(ideal_only),
  32     _localNames(cmpstr, hashstr, Form::arena),
  33     _effects(cmpstr, hashstr, Form::arena),
  34     _is_mach_constant(false),
  35     _has_call(false)
  36 {
  37       _ftype = Form::INS;
  38 
  39       _matrule       = NULL;
  40       _insencode     = NULL;
  41       _constant      = NULL;
  42       _is_lateExpand = false;
  43       _opcode        = NULL;
  44       _size          = NULL;
  45       _attribs       = NULL;
  46       _predicate     = NULL;
  47       _exprule       = NULL;
  48       _rewrule       = NULL;
  49       _format        = NULL;
  50       _peephole      = NULL;
  51       _ins_pipe      = NULL;
  52       _uniq_idx      = NULL;
  53       _num_uniq      = 0;
  54       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
  55       _cisc_spill_alternate = NULL;            // possible cisc replacement
  56       _cisc_reg_mask_name = NULL;
  57       _is_cisc_alternate = false;
  58       _is_short_branch = false;
  59       _short_branch_form = NULL;
  60       _alignment = 1;
  61 }
  62 
  63 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
  64   : _ident(id), _ideal_only(false),
  65     _localNames(instr->_localNames),
  66     _effects(instr->_effects),
  67     _is_mach_constant(false),
  68     _has_call(false)
  69 {
  70       _ftype = Form::INS;
  71 
  72       _matrule       = rule;
  73       _insencode     = instr->_insencode;
  74       _constant      = instr->_constant;
  75       _is_lateExpand = instr->_is_lateExpand;
  76       _opcode        = instr->_opcode;
  77       _size          = instr->_size;
  78       _attribs       = instr->_attribs;
  79       _predicate     = instr->_predicate;
  80       _exprule       = instr->_exprule;
  81       _rewrule       = instr->_rewrule;
  82       _format        = instr->_format;
  83       _peephole      = instr->_peephole;
  84       _ins_pipe      = instr->_ins_pipe;
  85       _uniq_idx      = instr->_uniq_idx;
  86       _num_uniq      = instr->_num_uniq;
  87       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
  88       _cisc_spill_alternate = NULL;            // possible cisc replacement
  89       _cisc_reg_mask_name = NULL;
  90       _is_cisc_alternate = false;
  91       _is_short_branch = false;
  92       _short_branch_form = NULL;
  93       _alignment = 1;
  94      // Copy parameters
  95      const char *name;
  96      instr->_parameters.reset();
  97      for (; (name = instr->_parameters.iter()) != NULL;)
  98        _parameters.addName(name);
  99 }
 100 
 101 InstructForm::~InstructForm() {
 102 }
 103 
 104 InstructForm *InstructForm::is_instruction() const {
 105   return (InstructForm*)this;
 106 }
 107 
 108 bool InstructForm::ideal_only() const {
 109   return _ideal_only;
 110 }
 111 
 112 bool InstructForm::sets_result() const {
 113   return (_matrule != NULL && _matrule->sets_result());
 114 }
 115 
 116 bool InstructForm::needs_projections() {
 117   _components.reset();
 118   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 119     if (comp->isa(Component::KILL)) {
 120       return true;
 121     }
 122   }
 123   return false;
 124 }
 125 
 126 
 127 bool InstructForm::has_temps() {
 128   if (_matrule) {
 129     // Examine each component to see if it is a TEMP
 130     _components.reset();
 131     // Skip the first component, if already handled as (SET dst (...))
 132     Component *comp = NULL;
 133     if (sets_result())  comp = _components.iter();
 134     while ((comp = _components.iter()) != NULL) {
 135       if (comp->isa(Component::TEMP)) {
 136         return true;
 137       }
 138     }
 139   }
 140 
 141   return false;
 142 }
 143 
 144 uint InstructForm::num_defs_or_kills() {
 145   uint   defs_or_kills = 0;
 146 
 147   _components.reset();
 148   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 149     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
 150       ++defs_or_kills;
 151     }
 152   }
 153 
 154   return  defs_or_kills;
 155 }
 156 
 157 // This instruction has an expand rule?
 158 bool InstructForm::expands() const {
 159   return ( _exprule != NULL );
 160 }
 161 
 162 // This instruction has a late expand rule?
 163 bool InstructForm::lateExpands() const {
 164   return _is_lateExpand;
 165 }
 166 
 167 // This instruction has a peephole rule?
 168 Peephole *InstructForm::peepholes() const {
 169   return _peephole;
 170 }
 171 
 172 // This instruction has a peephole rule?
 173 void InstructForm::append_peephole(Peephole *peephole) {
 174   if( _peephole == NULL ) {
 175     _peephole = peephole;
 176   } else {
 177     _peephole->append_peephole(peephole);
 178   }
 179 }
 180 
 181 
 182 // ideal opcode enumeration
 183 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
 184   if( !_matrule ) return "Node"; // Something weird
 185   // Chain rules do not really have ideal Opcodes; use their source
 186   // operand ideal Opcode instead.
 187   if( is_simple_chain_rule(globalNames) ) {
 188     const char *src = _matrule->_rChild->_opType;
 189     OperandForm *src_op = globalNames[src]->is_operand();
 190     assert( src_op, "Not operand class of chain rule" );
 191     if( !src_op->_matrule ) return "Node";
 192     return src_op->_matrule->_opType;
 193   }
 194   // Operand chain rules do not really have ideal Opcodes
 195   if( _matrule->is_chain_rule(globalNames) )
 196     return "Node";
 197   return strcmp(_matrule->_opType,"Set")
 198     ? _matrule->_opType
 199     : _matrule->_rChild->_opType;
 200 }
 201 
 202 // Recursive check on all operands' match rules in my match rule
 203 bool InstructForm::is_pinned(FormDict &globals) {
 204   if ( ! _matrule)  return false;
 205 
 206   int  index   = 0;
 207   if (_matrule->find_type("Goto",          index)) return true;
 208   if (_matrule->find_type("If",            index)) return true;
 209   if (_matrule->find_type("CountedLoopEnd",index)) return true;
 210   if (_matrule->find_type("Return",        index)) return true;
 211   if (_matrule->find_type("Rethrow",       index)) return true;
 212   if (_matrule->find_type("TailCall",      index)) return true;
 213   if (_matrule->find_type("TailJump",      index)) return true;
 214   if (_matrule->find_type("Halt",          index)) return true;
 215   if (_matrule->find_type("Jump",          index)) return true;
 216 
 217   return is_parm(globals);
 218 }
 219 
 220 // Recursive check on all operands' match rules in my match rule
 221 bool InstructForm::is_projection(FormDict &globals) {
 222   if ( ! _matrule)  return false;
 223 
 224   int  index   = 0;
 225   if (_matrule->find_type("Goto",    index)) return true;
 226   if (_matrule->find_type("Return",  index)) return true;
 227   if (_matrule->find_type("Rethrow", index)) return true;
 228   if (_matrule->find_type("TailCall",index)) return true;
 229   if (_matrule->find_type("TailJump",index)) return true;
 230   if (_matrule->find_type("Halt",    index)) return true;
 231 
 232   return false;
 233 }
 234 
 235 // Recursive check on all operands' match rules in my match rule
 236 bool InstructForm::is_parm(FormDict &globals) {
 237   if ( ! _matrule)  return false;
 238 
 239   int  index   = 0;
 240   if (_matrule->find_type("Parm",index)) return true;
 241 
 242   return false;
 243 }
 244 
 245 bool InstructForm::is_ideal_negD() const {
 246   return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
 247 }
 248 
 249 // Return 'true' if this instruction matches an ideal 'Copy*' node
 250 int InstructForm::is_ideal_copy() const {
 251   return _matrule ? _matrule->is_ideal_copy() : 0;
 252 }
 253 
 254 // Return 'true' if this instruction is too complex to rematerialize.
 255 int InstructForm::is_expensive() const {
 256   // We can prove it is cheap if it has an empty encoding.
 257   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
 258   if (is_empty_encoding())
 259     return 0;
 260 
 261   if (is_tls_instruction())
 262     return 1;
 263 
 264   if (_matrule == NULL)  return 0;
 265 
 266   return _matrule->is_expensive();
 267 }
 268 
 269 // Has an empty encoding if _size is a constant zero or there
 270 // are no ins_encode tokens.
 271 int InstructForm::is_empty_encoding() const {
 272   if (_insencode != NULL) {
 273     _insencode->reset();
 274     if (_insencode->encode_class_iter() == NULL) {
 275       return 1;
 276     }
 277   }
 278   if (_size != NULL && strcmp(_size, "0") == 0) {
 279     return 1;
 280   }
 281   return 0;
 282 }
 283 
 284 int InstructForm::is_tls_instruction() const {
 285   if (_ident != NULL &&
 286       ( ! strcmp( _ident,"tlsLoadP") ||
 287         ! strncmp(_ident,"tlsLoadP_",9)) ) {
 288     return 1;
 289   }
 290 
 291   if (_matrule != NULL && _insencode != NULL) {
 292     const char* opType = _matrule->_opType;
 293     if (strcmp(opType, "Set")==0)
 294       opType = _matrule->_rChild->_opType;
 295     if (strcmp(opType,"ThreadLocal")==0) {
 296       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
 297               (_ident == NULL ? "NULL" : _ident));
 298       return 1;
 299     }
 300   }
 301 
 302   return 0;
 303 }
 304 
 305 
 306 // Return 'true' if this instruction matches an ideal 'If' node
 307 bool InstructForm::is_ideal_if() const {
 308   if( _matrule == NULL ) return false;
 309 
 310   return _matrule->is_ideal_if();
 311 }
 312 
 313 // Return 'true' if this instruction matches an ideal 'FastLock' node
 314 bool InstructForm::is_ideal_fastlock() const {
 315   if( _matrule == NULL ) return false;
 316 
 317   return _matrule->is_ideal_fastlock();
 318 }
 319 
 320 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
 321 bool InstructForm::is_ideal_membar() const {
 322   if( _matrule == NULL ) return false;
 323 
 324   return _matrule->is_ideal_membar();
 325 }
 326 
 327 // Return 'true' if this instruction matches an ideal 'LoadPC' node
 328 bool InstructForm::is_ideal_loadPC() const {
 329   if( _matrule == NULL ) return false;
 330 
 331   return _matrule->is_ideal_loadPC();
 332 }
 333 
 334 // Return 'true' if this instruction matches an ideal 'Box' node
 335 bool InstructForm::is_ideal_box() const {
 336   if( _matrule == NULL ) return false;
 337 
 338   return _matrule->is_ideal_box();
 339 }
 340 
 341 // Return 'true' if this instruction matches an ideal 'Goto' node
 342 bool InstructForm::is_ideal_goto() const {
 343   if( _matrule == NULL ) return false;
 344 
 345   return _matrule->is_ideal_goto();
 346 }
 347 
 348 // Return 'true' if this instruction matches an ideal 'Jump' node
 349 bool InstructForm::is_ideal_jump() const {
 350   if( _matrule == NULL ) return false;
 351 
 352   return _matrule->is_ideal_jump();
 353 }
 354 
 355 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
 356 bool InstructForm::is_ideal_branch() const {
 357   if( _matrule == NULL ) return false;
 358 
 359   return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
 360 }
 361 
 362 
 363 // Return 'true' if this instruction matches an ideal 'Return' node
 364 bool InstructForm::is_ideal_return() const {
 365   if( _matrule == NULL ) return false;
 366 
 367   // Check MatchRule to see if the first entry is the ideal "Return" node
 368   int  index   = 0;
 369   if (_matrule->find_type("Return",index)) return true;
 370   if (_matrule->find_type("Rethrow",index)) return true;
 371   if (_matrule->find_type("TailCall",index)) return true;
 372   if (_matrule->find_type("TailJump",index)) return true;
 373 
 374   return false;
 375 }
 376 
 377 // Return 'true' if this instruction matches an ideal 'Halt' node
 378 bool InstructForm::is_ideal_halt() const {
 379   int  index   = 0;
 380   return _matrule && _matrule->find_type("Halt",index);
 381 }
 382 
 383 // Return 'true' if this instruction matches an ideal 'SafePoint' node
 384 bool InstructForm::is_ideal_safepoint() const {
 385   int  index   = 0;
 386   return _matrule && _matrule->find_type("SafePoint",index);
 387 }
 388 
 389 // Return 'true' if this instruction matches an ideal 'Nop' node
 390 bool InstructForm::is_ideal_nop() const {
 391   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
 392 }
 393 
 394 bool InstructForm::is_ideal_control() const {
 395   if ( ! _matrule)  return false;
 396 
 397   return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
 398 }
 399 
 400 // Return 'true' if this instruction matches an ideal 'Call' node
 401 Form::CallType InstructForm::is_ideal_call() const {
 402   if( _matrule == NULL ) return Form::invalid_type;
 403 
 404   // Check MatchRule to see if the first entry is the ideal "Call" node
 405   int  idx   = 0;
 406   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
 407   idx = 0;
 408   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
 409   idx = 0;
 410   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
 411   idx = 0;
 412   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
 413   idx = 0;
 414   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
 415   idx = 0;
 416   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
 417   idx = 0;
 418   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
 419   idx = 0;
 420 
 421   return Form::invalid_type;
 422 }
 423 
 424 // Return 'true' if this instruction matches an ideal 'Load?' node
 425 Form::DataType InstructForm::is_ideal_load() const {
 426   if( _matrule == NULL ) return Form::none;
 427 
 428   return  _matrule->is_ideal_load();
 429 }
 430 
 431 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
 432 bool InstructForm::skip_antidep_check() const {
 433   if( _matrule == NULL ) return false;
 434 
 435   return  _matrule->skip_antidep_check();
 436 }
 437 
 438 // Return 'true' if this instruction matches an ideal 'Load?' node
 439 Form::DataType InstructForm::is_ideal_store() const {
 440   if( _matrule == NULL ) return Form::none;
 441 
 442   return  _matrule->is_ideal_store();
 443 }
 444 
 445 // Return 'true' if this instruction matches an ideal vector node
 446 bool InstructForm::is_vector() const {
 447   if( _matrule == NULL ) return false;
 448 
 449   return _matrule->is_vector();
 450 }
 451 
 452 
 453 // Return the input register that must match the output register
 454 // If this is not required, return 0
 455 uint InstructForm::two_address(FormDict &globals) {
 456   uint  matching_input = 0;
 457   if(_components.count() == 0) return 0;
 458 
 459   _components.reset();
 460   Component *comp = _components.iter();
 461   // Check if there is a DEF
 462   if( comp->isa(Component::DEF) ) {
 463     // Check that this is a register
 464     const char  *def_type = comp->_type;
 465     const Form  *form     = globals[def_type];
 466     OperandForm *op       = form->is_operand();
 467     if( op ) {
 468       if( op->constrained_reg_class() != NULL &&
 469           op->interface_type(globals) == Form::register_interface ) {
 470         // Remember the local name for equality test later
 471         const char *def_name = comp->_name;
 472         // Check if a component has the same name and is a USE
 473         do {
 474           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
 475             return operand_position_format(def_name);
 476           }
 477         } while( (comp = _components.iter()) != NULL);
 478       }
 479     }
 480   }
 481 
 482   return 0;
 483 }
 484 
 485 
 486 // when chaining a constant to an instruction, returns 'true' and sets opType
 487 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
 488   const char *dummy  = NULL;
 489   const char *dummy2 = NULL;
 490   return is_chain_of_constant(globals, dummy, dummy2);
 491 }
 492 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 493                 const char * &opTypeParam) {
 494   const char *result = NULL;
 495 
 496   return is_chain_of_constant(globals, opTypeParam, result);
 497 }
 498 
 499 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
 500                 const char * &opTypeParam, const char * &resultParam) {
 501   Form::DataType  data_type = Form::none;
 502   if ( ! _matrule)  return data_type;
 503 
 504   // !!!!!
 505   // The source of the chain rule is 'position = 1'
 506   uint         position = 1;
 507   const char  *result   = NULL;
 508   const char  *name     = NULL;
 509   const char  *opType   = NULL;
 510   // Here base_operand is looking for an ideal type to be returned (opType).
 511   if ( _matrule->is_chain_rule(globals)
 512        && _matrule->base_operand(position, globals, result, name, opType) ) {
 513     data_type = ideal_to_const_type(opType);
 514 
 515     // if it isn't an ideal constant type, just return
 516     if ( data_type == Form::none ) return data_type;
 517 
 518     // Ideal constant types also adjust the opType parameter.
 519     resultParam = result;
 520     opTypeParam = opType;
 521     return data_type;
 522   }
 523 
 524   return data_type;
 525 }
 526 
 527 // Check if a simple chain rule
 528 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
 529   if( _matrule && _matrule->sets_result()
 530       && _matrule->_rChild->_lChild == NULL
 531       && globals[_matrule->_rChild->_opType]
 532       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
 533     return true;
 534   }
 535   return false;
 536 }
 537 
 538 // check for structural rematerialization
 539 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
 540   bool   rematerialize = false;
 541 
 542   Form::DataType data_type = is_chain_of_constant(globals);
 543   if( data_type != Form::none )
 544     rematerialize = true;
 545 
 546   // Constants
 547   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
 548     rematerialize = true;
 549 
 550   // Pseudo-constants (values easily available to the runtime)
 551   if (is_empty_encoding() && is_tls_instruction())
 552     rematerialize = true;
 553 
 554   // 1-input, 1-output, such as copies or increments.
 555   if( _components.count() == 2 &&
 556       _components[0]->is(Component::DEF) &&
 557       _components[1]->isa(Component::USE) )
 558     rematerialize = true;
 559 
 560   // Check for an ideal 'Load?' and eliminate rematerialize option
 561   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
 562        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
 563        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
 564     rematerialize = false;
 565   }
 566 
 567   // Always rematerialize the flags.  They are more expensive to save &
 568   // restore than to recompute (and possibly spill the compare's inputs).
 569   if( _components.count() >= 1 ) {
 570     Component *c = _components[0];
 571     const Form *form = globals[c->_type];
 572     OperandForm *opform = form->is_operand();
 573     if( opform ) {
 574       // Avoid the special stack_slots register classes
 575       const char *rc_name = opform->constrained_reg_class();
 576       if( rc_name ) {
 577         if( strcmp(rc_name,"stack_slots") ) {
 578           // Check for ideal_type of RegFlags
 579           const char *type = opform->ideal_type( globals, registers );
 580           if( (type != NULL) && !strcmp(type, "RegFlags") )
 581             rematerialize = true;
 582         } else
 583           rematerialize = false; // Do not rematerialize things target stk
 584       }
 585     }
 586   }
 587 
 588   return rematerialize;
 589 }
 590 
 591 // loads from memory, so must check for anti-dependence
 592 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
 593   if ( skip_antidep_check() ) return false;
 594 
 595   // Machine independent loads must be checked for anti-dependences
 596   if( is_ideal_load() != Form::none )  return true;
 597 
 598   // !!!!! !!!!! !!!!!
 599   // TEMPORARY
 600   // if( is_simple_chain_rule(globals) )  return false;
 601 
 602   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
 603   // but writes none
 604   if( _matrule && _matrule->_rChild &&
 605       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
 606         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
 607         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
 608         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
 609     return true;
 610 
 611   // Check if instruction has a USE of a memory operand class, but no defs
 612   bool USE_of_memory  = false;
 613   bool DEF_of_memory  = false;
 614   Component     *comp = NULL;
 615   ComponentList &components = (ComponentList &)_components;
 616 
 617   components.reset();
 618   while( (comp = components.iter()) != NULL ) {
 619     const Form  *form = globals[comp->_type];
 620     if( !form ) continue;
 621     OpClassForm *op   = form->is_opclass();
 622     if( !op ) continue;
 623     if( form->interface_type(globals) == Form::memory_interface ) {
 624       if( comp->isa(Component::USE) ) USE_of_memory = true;
 625       if( comp->isa(Component::DEF) ) {
 626         OperandForm *oper = form->is_operand();
 627         if( oper && oper->is_user_name_for_sReg() ) {
 628           // Stack slots are unaliased memory handled by allocator
 629           oper = oper;  // debug stopping point !!!!!
 630         } else {
 631           DEF_of_memory = true;
 632         }
 633       }
 634     }
 635   }
 636   return (USE_of_memory && !DEF_of_memory);
 637 }
 638 
 639 
 640 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
 641   if( _matrule == NULL ) return false;
 642   if( !_matrule->_opType ) return false;
 643 
 644   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
 645   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
 646   if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
 647   if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
 648   if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
 649 
 650   return false;
 651 }
 652 
 653 int InstructForm::memory_operand(FormDict &globals) const {
 654   // Machine independent loads must be checked for anti-dependences
 655   // Check if instruction has a USE of a memory operand class, or a def.
 656   int USE_of_memory  = 0;
 657   int DEF_of_memory  = 0;
 658   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
 659   Component     *unique          = NULL;
 660   Component     *comp            = NULL;
 661   ComponentList &components      = (ComponentList &)_components;
 662 
 663   components.reset();
 664   while( (comp = components.iter()) != NULL ) {
 665     const Form  *form = globals[comp->_type];
 666     if( !form ) continue;
 667     OpClassForm *op   = form->is_opclass();
 668     if( !op ) continue;
 669     if( op->stack_slots_only(globals) )  continue;
 670     if( form->interface_type(globals) == Form::memory_interface ) {
 671       if( comp->isa(Component::DEF) ) {
 672         last_memory_DEF = comp->_name;
 673         DEF_of_memory++;
 674         unique = comp;
 675       } else if( comp->isa(Component::USE) ) {
 676         if( last_memory_DEF != NULL ) {
 677           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
 678           last_memory_DEF = NULL;
 679         }
 680         USE_of_memory++;
 681         if (DEF_of_memory == 0)  // defs take precedence
 682           unique = comp;
 683       } else {
 684         assert(last_memory_DEF == NULL, "unpaired memory DEF");
 685       }
 686     }
 687   }
 688   assert(last_memory_DEF == NULL, "unpaired memory DEF");
 689   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
 690   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
 691   if( (USE_of_memory + DEF_of_memory) > 0 ) {
 692     if( is_simple_chain_rule(globals) ) {
 693       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
 694       //((InstructForm*)this)->dump();
 695       // Preceding code prints nothing on sparc and these insns on intel:
 696       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
 697       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
 698       return NO_MEMORY_OPERAND;
 699     }
 700 
 701     if( DEF_of_memory == 1 ) {
 702       assert(unique != NULL, "");
 703       if( USE_of_memory == 0 ) {
 704         // unique def, no uses
 705       } else {
 706         // // unique def, some uses
 707         // // must return bottom unless all uses match def
 708         // unique = NULL;
 709       }
 710     } else if( DEF_of_memory > 0 ) {
 711       // multiple defs, don't care about uses
 712       unique = NULL;
 713     } else if( USE_of_memory == 1) {
 714       // unique use, no defs
 715       assert(unique != NULL, "");
 716     } else if( USE_of_memory > 0 ) {
 717       // multiple uses, no defs
 718       unique = NULL;
 719     } else {
 720       assert(false, "bad case analysis");
 721     }
 722     // process the unique DEF or USE, if there is one
 723     if( unique == NULL ) {
 724       return MANY_MEMORY_OPERANDS;
 725     } else {
 726       int pos = components.operand_position(unique->_name);
 727       if( unique->isa(Component::DEF) ) {
 728         pos += 1;                // get corresponding USE from DEF
 729       }
 730       assert(pos >= 1, "I was just looking at it!");
 731       return pos;
 732     }
 733   }
 734 
 735   // missed the memory op??
 736   if( true ) {  // %%% should not be necessary
 737     if( is_ideal_store() != Form::none ) {
 738       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 739       ((InstructForm*)this)->dump();
 740       // pretend it has multiple defs and uses
 741       return MANY_MEMORY_OPERANDS;
 742     }
 743     if( is_ideal_load()  != Form::none ) {
 744       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 745       ((InstructForm*)this)->dump();
 746       // pretend it has multiple uses and no defs
 747       return MANY_MEMORY_OPERANDS;
 748     }
 749   }
 750 
 751   return NO_MEMORY_OPERAND;
 752 }
 753 
 754 
 755 // This instruction captures the machine-independent bottom_type
 756 // Expected use is for pointer vs oop determination for LoadP
 757 bool InstructForm::captures_bottom_type(FormDict &globals) const {
 758   if( _matrule && _matrule->_rChild &&
 759        (!strcmp(_matrule->_rChild->_opType,"CastPP")       ||  // new result type
 760         !strcmp(_matrule->_rChild->_opType,"CastX2P")      ||  // new result type
 761         !strcmp(_matrule->_rChild->_opType,"DecodeN")      ||
 762         !strcmp(_matrule->_rChild->_opType,"EncodeP")      ||
 763         !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
 764         !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
 765         !strcmp(_matrule->_rChild->_opType,"LoadN")        ||
 766         !strcmp(_matrule->_rChild->_opType,"LoadNKlass")   ||
 767         !strcmp(_matrule->_rChild->_opType,"CreateEx")     ||  // type of exception
 768         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")  ||
 769         !strcmp(_matrule->_rChild->_opType,"GetAndSetP")   ||
 770         !strcmp(_matrule->_rChild->_opType,"GetAndSetN")) )  return true;
 771   else if ( is_ideal_load() == Form::idealP )                return true;
 772   else if ( is_ideal_store() != Form::none  )                return true;
 773 
 774   if (needs_base_oop_edge(globals)) return true;
 775 
 776   if (is_vector()) return true;
 777   if (is_mach_constant()) return true;
 778 
 779   return  false;
 780 }
 781 
 782 
 783 // Access instr_cost attribute or return NULL.
 784 const char* InstructForm::cost() {
 785   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
 786     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
 787       return cur->_val;
 788     }
 789   }
 790   return NULL;
 791 }
 792 
 793 // Return count of top-level operands.
 794 uint InstructForm::num_opnds() {
 795   int  num_opnds = _components.num_operands();
 796 
 797   // Need special handling for matching some ideal nodes
 798   // i.e. Matching a return node
 799   /*
 800   if( _matrule ) {
 801     if( strcmp(_matrule->_opType,"Return"   )==0 ||
 802         strcmp(_matrule->_opType,"Halt"     )==0 )
 803       return 3;
 804   }
 805     */
 806   return num_opnds;
 807 }
 808 
 809 const char* InstructForm::opnd_ident(int idx) {
 810   return _components.at(idx)->_name;
 811 }
 812 
 813 const char* InstructForm::unique_opnd_ident(uint idx) {
 814   uint i;
 815   for (i = 1; i < num_opnds(); ++i) {
 816     if (unique_opnds_idx(i) == idx) {
 817       break;
 818     }
 819   }
 820   return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
 821 }
 822 
 823 // Return count of unmatched operands.
 824 uint InstructForm::num_post_match_opnds() {
 825   uint  num_post_match_opnds = _components.count();
 826   uint  num_match_opnds = _components.match_count();
 827   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
 828 
 829   return num_post_match_opnds;
 830 }
 831 
 832 // Return the number of leaves below this complex operand
 833 uint InstructForm::num_consts(FormDict &globals) const {
 834   if ( ! _matrule) return 0;
 835 
 836   // This is a recursive invocation on all operands in the matchrule
 837   return _matrule->num_consts(globals);
 838 }
 839 
 840 // Constants in match rule with specified type
 841 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
 842   if ( ! _matrule) return 0;
 843 
 844   // This is a recursive invocation on all operands in the matchrule
 845   return _matrule->num_consts(globals, type);
 846 }
 847 
 848 
 849 // Return the register class associated with 'leaf'.
 850 const char *InstructForm::out_reg_class(FormDict &globals) {
 851   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
 852 
 853   return NULL;
 854 }
 855 
 856 
 857 
 858 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
 859 uint InstructForm::oper_input_base(FormDict &globals) {
 860   if( !_matrule ) return 1;     // Skip control for most nodes
 861 
 862   // Need special handling for matching some ideal nodes
 863   // i.e. Matching a return node
 864   if( strcmp(_matrule->_opType,"Return"    )==0 ||
 865       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
 866       strcmp(_matrule->_opType,"TailCall"  )==0 ||
 867       strcmp(_matrule->_opType,"TailJump"  )==0 ||
 868       strcmp(_matrule->_opType,"SafePoint" )==0 ||
 869       strcmp(_matrule->_opType,"Halt"      )==0 )
 870     return AdlcVMDeps::Parms;   // Skip the machine-state edges
 871 
 872   if( _matrule->_rChild &&
 873       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
 874         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
 875         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
 876         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
 877         strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
 878         // String.(compareTo/equals/indexOf) and Arrays.equals
 879         // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
 880         // take 1 control and 1 memory edges.
 881     return 2;
 882   }
 883 
 884   // Check for handling of 'Memory' input/edge in the ideal world.
 885   // The AD file writer is shielded from knowledge of these edges.
 886   int base = 1;                 // Skip control
 887   base += _matrule->needs_ideal_memory_edge(globals);
 888 
 889   // Also skip the base-oop value for uses of derived oops.
 890   // The AD file writer is shielded from knowledge of these edges.
 891   base += needs_base_oop_edge(globals);
 892 
 893   return base;
 894 }
 895 
 896 // This function determines the order of the MachOper in _opnds[]
 897 // by writing the operand names into the _components list.
 898 //
 899 // Implementation does not modify state of internal structures
 900 void InstructForm::build_components() {
 901   // Add top-level operands to the components
 902   if (_matrule)  _matrule->append_components(_localNames, _components);
 903 
 904   // Add parameters that "do not appear in match rule".
 905   bool has_temp = false;
 906   const char *name;
 907   const char *kill_name = NULL;
 908   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
 909     OperandForm *opForm = (OperandForm*)_localNames[name];
 910 
 911     Effect* e = NULL;
 912     {
 913       const Form* form = _effects[name];
 914       e = form ? form->is_effect() : NULL;
 915     }
 916 
 917     if (e != NULL) {
 918       has_temp |= e->is(Component::TEMP);
 919 
 920       // KILLs must be declared after any TEMPs because TEMPs are real
 921       // uses so their operand numbering must directly follow the real
 922       // inputs from the match rule.  Fixing the numbering seems
 923       // complex so simply enforce the restriction during parse.
 924       if (kill_name != NULL &&
 925           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
 926         OperandForm* kill = (OperandForm*)_localNames[kill_name];
 927         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
 928                              _ident, kill->_ident, kill_name);
 929       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
 930         kill_name = name;
 931       }
 932     }
 933 
 934     const Component *component  = _components.search(name);
 935     if ( component  == NULL ) {
 936       if (e) {
 937         _components.insert(name, opForm->_ident, e->_use_def, false);
 938         component = _components.search(name);
 939         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
 940           const Form *form = globalAD->globalNames()[component->_type];
 941           assert( form, "component type must be a defined form");
 942           OperandForm *op   = form->is_operand();
 943           if (op->_interface && op->_interface->is_RegInterface()) {
 944             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 945                                  _ident, opForm->_ident, name);
 946           }
 947         }
 948       } else {
 949         // This would be a nice warning but it triggers in a few places in a benign way
 950         // if (_matrule != NULL && !expands()) {
 951         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
 952         //                        _ident, opForm->_ident, name);
 953         // }
 954         _components.insert(name, opForm->_ident, Component::INVALID, false);
 955       }
 956     }
 957     else if (e) {
 958       // Component was found in the list
 959       // Check if there is a new effect that requires an extra component.
 960       // This happens when adding 'USE' to a component that is not yet one.
 961       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
 962         if (component->isa(Component::USE) && _matrule) {
 963           const Form *form = globalAD->globalNames()[component->_type];
 964           assert( form, "component type must be a defined form");
 965           OperandForm *op   = form->is_operand();
 966           if (op->_interface && op->_interface->is_RegInterface()) {
 967             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 968                                  _ident, opForm->_ident, name);
 969           }
 970         }
 971         _components.insert(name, opForm->_ident, e->_use_def, false);
 972       } else {
 973         Component  *comp = (Component*)component;
 974         comp->promote_use_def_info(e->_use_def);
 975       }
 976       // Component positions are zero based.
 977       int  pos  = _components.operand_position(name);
 978       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
 979               "Component::DEF can only occur in the first position");
 980     }
 981   }
 982 
 983   // Resolving the interactions between expand rules and TEMPs would
 984   // be complex so simply disallow it.
 985   if (_matrule == NULL && has_temp) {
 986     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
 987   }
 988 
 989   return;
 990 }
 991 
 992 // Return zero-based position in component list;  -1 if not in list.
 993 int   InstructForm::operand_position(const char *name, int usedef) {
 994   return unique_opnds_idx(_components.operand_position(name, usedef, this));
 995 }
 996 
 997 int   InstructForm::operand_position_format(const char *name) {
 998   return unique_opnds_idx(_components.operand_position_format(name, this));
 999 }
1000 
1001 // Return zero-based position in component list; -1 if not in list.
1002 int   InstructForm::label_position() {
1003   return unique_opnds_idx(_components.label_position());
1004 }
1005 
1006 int   InstructForm::method_position() {
1007   return unique_opnds_idx(_components.method_position());
1008 }
1009 
1010 // Return number of relocation entries needed for this instruction.
1011 uint  InstructForm::reloc(FormDict &globals) {
1012   uint reloc_entries  = 0;
1013   // Check for "Call" nodes
1014   if ( is_ideal_call() )      ++reloc_entries;
1015   if ( is_ideal_return() )    ++reloc_entries;
1016   if ( is_ideal_safepoint() ) ++reloc_entries;
1017 
1018 
1019   // Check if operands MAYBE oop pointers, by checking for ConP elements
1020   // Proceed through the leaves of the match-tree and check for ConPs
1021   if ( _matrule != NULL ) {
1022     uint         position = 0;
1023     const char  *result   = NULL;
1024     const char  *name     = NULL;
1025     const char  *opType   = NULL;
1026     while (_matrule->base_operand(position, globals, result, name, opType)) {
1027       if ( strcmp(opType,"ConP") == 0 ) {
1028 #ifdef SPARC
1029         reloc_entries += 2; // 1 for sethi + 1 for setlo
1030 #else
1031         ++reloc_entries;
1032 #endif
1033       }
1034       ++position;
1035     }
1036   }
1037 
1038   // Above is only a conservative estimate
1039   // because it did not check contents of operand classes.
1040   // !!!!! !!!!!
1041   // Add 1 to reloc info for each operand class in the component list.
1042   Component  *comp;
1043   _components.reset();
1044   while ( (comp = _components.iter()) != NULL ) {
1045     const Form        *form = globals[comp->_type];
1046     assert( form, "Did not find component's type in global names");
1047     const OpClassForm *opc  = form->is_opclass();
1048     const OperandForm *oper = form->is_operand();
1049     if ( opc && (oper == NULL) ) {
1050       ++reloc_entries;
1051     } else if ( oper ) {
1052       // floats and doubles loaded out of method's constant pool require reloc info
1053       Form::DataType type = oper->is_base_constant(globals);
1054       if ( (type == Form::idealF) || (type == Form::idealD) ) {
1055         ++reloc_entries;
1056       }
1057     }
1058   }
1059 
1060   // Float and Double constants may come from the CodeBuffer table
1061   // and require relocatable addresses for access
1062   // !!!!!
1063   // Check for any component being an immediate float or double.
1064   Form::DataType data_type = is_chain_of_constant(globals);
1065   if( data_type==idealD || data_type==idealF ) {
1066 #ifdef SPARC
1067     // sparc required more relocation entries for floating constants
1068     // (expires 9/98)
1069     reloc_entries += 6;
1070 #else
1071     reloc_entries++;
1072 #endif
1073   }
1074 
1075   return reloc_entries;
1076 }
1077 
1078 // Utility function defined in archDesc.cpp
1079 extern bool is_def(int usedef);
1080 
1081 // Return the result of reducing an instruction
1082 const char *InstructForm::reduce_result() {
1083   const char* result = "Universe";  // default
1084   _components.reset();
1085   Component *comp = _components.iter();
1086   if (comp != NULL && comp->isa(Component::DEF)) {
1087     result = comp->_type;
1088     // Override this if the rule is a store operation:
1089     if (_matrule && _matrule->_rChild &&
1090         is_store_to_memory(_matrule->_rChild->_opType))
1091       result = "Universe";
1092   }
1093   return result;
1094 }
1095 
1096 // Return the name of the operand on the right hand side of the binary match
1097 // Return NULL if there is no right hand side
1098 const char *InstructForm::reduce_right(FormDict &globals)  const {
1099   if( _matrule == NULL ) return NULL;
1100   return  _matrule->reduce_right(globals);
1101 }
1102 
1103 // Similar for left
1104 const char *InstructForm::reduce_left(FormDict &globals)   const {
1105   if( _matrule == NULL ) return NULL;
1106   return  _matrule->reduce_left(globals);
1107 }
1108 
1109 
1110 // Base class for this instruction, MachNode except for calls
1111 const char *InstructForm::mach_base_class(FormDict &globals)  const {
1112   if( is_ideal_call() == Form::JAVA_STATIC ) {
1113     return "MachCallStaticJavaNode";
1114   }
1115   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
1116     return "MachCallDynamicJavaNode";
1117   }
1118   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
1119     return "MachCallRuntimeNode";
1120   }
1121   else if( is_ideal_call() == Form::JAVA_LEAF ) {
1122     return "MachCallLeafNode";
1123   }
1124   else if (is_ideal_return()) {
1125     return "MachReturnNode";
1126   }
1127   else if (is_ideal_halt()) {
1128     return "MachHaltNode";
1129   }
1130   else if (is_ideal_safepoint()) {
1131     return "MachSafePointNode";
1132   }
1133   else if (is_ideal_if()) {
1134     return "MachIfNode";
1135   }
1136   else if (is_ideal_goto()) {
1137     return "MachGotoNode";
1138   }
1139   else if (is_ideal_fastlock()) {
1140     return "MachFastLockNode";
1141   }
1142   else if (is_ideal_nop()) {
1143     return "MachNopNode";
1144   }
1145   else if (is_mach_constant()) {
1146     return "MachConstantNode";
1147   }
1148   else if (captures_bottom_type(globals)) {
1149     return "MachTypeNode";
1150   } else {
1151     return "MachNode";
1152   }
1153   assert( false, "ShouldNotReachHere()");
1154   return NULL;
1155 }
1156 
1157 // Compare the instruction predicates for textual equality
1158 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
1159   const Predicate *pred1  = instr1->_predicate;
1160   const Predicate *pred2  = instr2->_predicate;
1161   if( pred1 == NULL && pred2 == NULL ) {
1162     // no predicates means they are identical
1163     return true;
1164   }
1165   if( pred1 != NULL && pred2 != NULL ) {
1166     // compare the predicates
1167     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
1168       return true;
1169     }
1170   }
1171 
1172   return false;
1173 }
1174 
1175 // Check if this instruction can cisc-spill to 'alternate'
1176 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
1177   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
1178   // Do not replace if a cisc-version has been found.
1179   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
1180 
1181   int         cisc_spill_operand = Maybe_cisc_spillable;
1182   char       *result             = NULL;
1183   char       *result2            = NULL;
1184   const char *op_name            = NULL;
1185   const char *reg_type           = NULL;
1186   FormDict   &globals            = AD.globalNames();
1187   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
1188   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
1189     cisc_spill_operand = operand_position(op_name, Component::USE);
1190     int def_oper  = operand_position(op_name, Component::DEF);
1191     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
1192       // Do not support cisc-spilling for destination operands and
1193       // make sure they have the same number of operands.
1194       _cisc_spill_alternate = instr;
1195       instr->set_cisc_alternate(true);
1196       if( AD._cisc_spill_debug ) {
1197         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
1198         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
1199       }
1200       // Record that a stack-version of the reg_mask is needed
1201       // !!!!!
1202       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
1203       assert( oper != NULL, "cisc-spilling non operand");
1204       const char *reg_class_name = oper->constrained_reg_class();
1205       AD.set_stack_or_reg(reg_class_name);
1206       const char *reg_mask_name  = AD.reg_mask(*oper);
1207       set_cisc_reg_mask_name(reg_mask_name);
1208       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
1209     } else {
1210       cisc_spill_operand = Not_cisc_spillable;
1211     }
1212   } else {
1213     cisc_spill_operand = Not_cisc_spillable;
1214   }
1215 
1216   set_cisc_spill_operand(cisc_spill_operand);
1217   return (cisc_spill_operand != Not_cisc_spillable);
1218 }
1219 
1220 // Check to see if this instruction can be replaced with the short branch
1221 // instruction `short-branch'
1222 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
1223   if (_matrule != NULL &&
1224       this != short_branch &&   // Don't match myself
1225       !is_short_branch() &&     // Don't match another short branch variant
1226       reduce_result() != NULL &&
1227       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
1228       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
1229     // The instructions are equivalent.
1230 
1231     // Now verify that both instructions have the same parameters and
1232     // the same effects. Both branch forms should have the same inputs
1233     // and resulting projections to correctly replace a long branch node
1234     // with corresponding short branch node during code generation.
1235 
1236     bool different = false;
1237     if (short_branch->_components.count() != _components.count()) {
1238        different = true;
1239     } else if (_components.count() > 0) {
1240       short_branch->_components.reset();
1241       _components.reset();
1242       Component *comp;
1243       while ((comp = _components.iter()) != NULL) {
1244         Component *short_comp = short_branch->_components.iter();
1245         if (short_comp == NULL ||
1246             short_comp->_type != comp->_type ||
1247             short_comp->_usedef != comp->_usedef) {
1248           different = true;
1249           break;
1250         }
1251       }
1252       if (short_branch->_components.iter() != NULL)
1253         different = true;
1254     }
1255     if (different) {
1256       globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
1257     }
1258     if (AD._adl_debug > 1 || AD._short_branch_debug) {
1259       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
1260     }
1261     _short_branch_form = short_branch;
1262     return true;
1263   }
1264   return false;
1265 }
1266 
1267 
1268 // --------------------------- FILE *output_routines
1269 //
1270 // Generate the format call for the replacement variable
1271 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
1272   // Handle special constant table variables.
1273   if (strcmp(rep_var, "constanttablebase") == 0) {
1274     fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
1275     fprintf(fp, "    st->print(\"%%s\", reg);\n");
1276     return;
1277   }
1278   if (strcmp(rep_var, "constantoffset") == 0) {
1279     fprintf(fp, "st->print(\"#%%d\", constant_offset());\n");
1280     return;
1281   }
1282   if (strcmp(rep_var, "constantaddress") == 0) {
1283     fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset());\n");
1284     return;
1285   }
1286 
1287   // Find replacement variable's type
1288   const Form *form   = _localNames[rep_var];
1289   if (form == NULL) {
1290     globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
1291                          rep_var, _ident);
1292     return;
1293   }
1294   OpClassForm *opc   = form->is_opclass();
1295   assert( opc, "replacement variable was not found in local names");
1296   // Lookup the index position of the replacement variable
1297   int idx  = operand_position_format(rep_var);
1298   if ( idx == -1 ) {
1299     globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
1300                          rep_var, _ident);
1301     assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
1302     return;
1303   }
1304 
1305   if (is_noninput_operand(idx)) {
1306     // This component isn't in the input array.  Print out the static
1307     // name of the register.
1308     OperandForm* oper = form->is_operand();
1309     if (oper != NULL && oper->is_bound_register()) {
1310       const RegDef* first = oper->get_RegClass()->find_first_elem();
1311       fprintf(fp, "    st->print(\"%s\");\n", first->_regname);
1312     } else {
1313       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
1314     }
1315   } else {
1316     // Output the format call for this operand
1317     fprintf(fp,"opnd_array(%d)->",idx);
1318     if (idx == 0)
1319       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
1320     else
1321       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
1322   }
1323 }
1324 
1325 // Seach through operands to determine parameters unique positions.
1326 void InstructForm::set_unique_opnds() {
1327   uint* uniq_idx = NULL;
1328   uint  nopnds = num_opnds();
1329   uint  num_uniq = nopnds;
1330   uint i;
1331   _uniq_idx_length = 0;
1332   if (nopnds > 0) {
1333     // Allocate index array.  Worst case we're mapping from each
1334     // component back to an index and any DEF always goes at 0 so the
1335     // length of the array has to be the number of components + 1.
1336     _uniq_idx_length = _components.count() + 1;
1337     uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
1338     for (i = 0; i < _uniq_idx_length; i++) {
1339       uniq_idx[i] = i;
1340     }
1341   }
1342   // Do it only if there is a match rule and no expand rule.  With an
1343   // expand rule it is done by creating new mach node in Expand()
1344   // method.
1345   if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
1346     const char *name;
1347     uint count;
1348     bool has_dupl_use = false;
1349 
1350     _parameters.reset();
1351     while ((name = _parameters.iter()) != NULL) {
1352       count = 0;
1353       uint position = 0;
1354       uint uniq_position = 0;
1355       _components.reset();
1356       Component *comp = NULL;
1357       if (sets_result()) {
1358         comp = _components.iter();
1359         position++;
1360       }
1361       // The next code is copied from the method operand_position().
1362       for (; (comp = _components.iter()) != NULL; ++position) {
1363         // When the first component is not a DEF,
1364         // leave space for the result operand!
1365         if (position==0 && (!comp->isa(Component::DEF))) {
1366           ++position;
1367         }
1368         if (strcmp(name, comp->_name) == 0) {
1369           if (++count > 1) {
1370             assert(position < _uniq_idx_length, "out of bounds");
1371             uniq_idx[position] = uniq_position;
1372             has_dupl_use = true;
1373           } else {
1374             uniq_position = position;
1375           }
1376         }
1377         if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
1378           ++position;
1379           if (position != 1)
1380             --position;   // only use two slots for the 1st USE_DEF
1381         }
1382       }
1383     }
1384     if (has_dupl_use) {
1385       for (i = 1; i < nopnds; i++) {
1386         if (i != uniq_idx[i]) {
1387           break;
1388         }
1389       }
1390       uint j = i;
1391       for (; i < nopnds; i++) {
1392         if (i == uniq_idx[i]) {
1393           uniq_idx[i] = j++;
1394         }
1395       }
1396       num_uniq = j;
1397     }
1398   }
1399   _uniq_idx = uniq_idx;
1400   _num_uniq = num_uniq;
1401 }
1402 
1403 // Generate index values needed for determining the operand position
1404 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
1405   uint  idx = 0;                  // position of operand in match rule
1406   int   cur_num_opnds = num_opnds();
1407 
1408   // Compute the index into vector of operand pointers:
1409   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
1410   // idx1 starts at oper_input_base()
1411   if ( cur_num_opnds >= 1 ) {
1412     fprintf(fp,"  // Start at oper_input_base() and count operands\n");
1413     fprintf(fp,"  unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
1414     fprintf(fp,"  unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
1415     fprintf(fp," \t// %s\n", unique_opnd_ident(1));
1416 
1417     // Generate starting points for other unique operands if they exist
1418     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
1419       if( *receiver == 0 ) {
1420         fprintf(fp,"  unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
1421                 prefix, idx, prefix, idx-1, idx-1 );
1422       } else {
1423         fprintf(fp,"  unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
1424                 prefix, idx, prefix, idx-1, receiver, idx-1 );
1425       }
1426       fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
1427     }
1428   }
1429   if( *receiver != 0 ) {
1430     // This value is used by generate_peepreplace when copying a node.
1431     // Don't emit it in other cases since it can hide bugs with the
1432     // use invalid idx's.
1433     fprintf(fp,"  unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
1434   }
1435 
1436 }
1437 
1438 // ---------------------------
1439 bool InstructForm::verify() {
1440   // !!!!! !!!!!
1441   // Check that a "label" operand occurs last in the operand list, if present
1442   return true;
1443 }
1444 
1445 void InstructForm::dump() {
1446   output(stderr);
1447 }
1448 
1449 void InstructForm::output(FILE *fp) {
1450   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
1451   if (_matrule)   _matrule->output(fp);
1452   if (_insencode) _insencode->output(fp);
1453   if (_constant)  _constant->output(fp);
1454   if (_opcode)    _opcode->output(fp);
1455   if (_attribs)   _attribs->output(fp);
1456   if (_predicate) _predicate->output(fp);
1457   if (_effects.Size()) {
1458     fprintf(fp,"Effects\n");
1459     _effects.dump();
1460   }
1461   if (_exprule)   _exprule->output(fp);
1462   if (_rewrule)   _rewrule->output(fp);
1463   if (_format)    _format->output(fp);
1464   if (_peephole)  _peephole->output(fp);
1465 }
1466 
1467 void MachNodeForm::dump() {
1468   output(stderr);
1469 }
1470 
1471 void MachNodeForm::output(FILE *fp) {
1472   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
1473 }
1474 
1475 //------------------------------build_predicate--------------------------------
1476 // Build instruction predicates.  If the user uses the same operand name
1477 // twice, we need to check that the operands are pointer-eequivalent in
1478 // the DFA during the labeling process.
1479 Predicate *InstructForm::build_predicate() {
1480   char buf[1024], *s=buf;
1481   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
1482 
1483   MatchNode *mnode =
1484     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
1485   mnode->count_instr_names(names);
1486 
1487   uint first = 1;
1488   // Start with the predicate supplied in the .ad file.
1489   if( _predicate ) {
1490     if( first ) first=0;
1491     strcpy(s,"("); s += strlen(s);
1492     strcpy(s,_predicate->_pred);
1493     s += strlen(s);
1494     strcpy(s,")"); s += strlen(s);
1495   }
1496   for( DictI i(&names); i.test(); ++i ) {
1497     uintptr_t cnt = (uintptr_t)i._value;
1498     if( cnt > 1 ) {             // Need a predicate at all?
1499       assert( cnt == 2, "Unimplemented" );
1500       // Handle many pairs
1501       if( first ) first=0;
1502       else {                    // All tests must pass, so use '&&'
1503         strcpy(s," && ");
1504         s += strlen(s);
1505       }
1506       // Add predicate to working buffer
1507       sprintf(s,"/*%s*/(",(char*)i._key);
1508       s += strlen(s);
1509       mnode->build_instr_pred(s,(char*)i._key,0);
1510       s += strlen(s);
1511       strcpy(s," == "); s += strlen(s);
1512       mnode->build_instr_pred(s,(char*)i._key,1);
1513       s += strlen(s);
1514       strcpy(s,")"); s += strlen(s);
1515     }
1516   }
1517   if( s == buf ) s = NULL;
1518   else {
1519     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
1520     s = strdup(buf);
1521   }
1522   return new Predicate(s);
1523 }
1524 
1525 //------------------------------EncodeForm-------------------------------------
1526 // Constructor
1527 EncodeForm::EncodeForm()
1528   : _encClass(cmpstr,hashstr, Form::arena) {
1529 }
1530 EncodeForm::~EncodeForm() {
1531 }
1532 
1533 // record a new register class
1534 EncClass *EncodeForm::add_EncClass(const char *className) {
1535   EncClass *encClass = new EncClass(className);
1536   _eclasses.addName(className);
1537   _encClass.Insert(className,encClass);
1538   return encClass;
1539 }
1540 
1541 // Lookup the function body for an encoding class
1542 EncClass  *EncodeForm::encClass(const char *className) {
1543   assert( className != NULL, "Must provide a defined encoding name");
1544 
1545   EncClass *encClass = (EncClass*)_encClass[className];
1546   return encClass;
1547 }
1548 
1549 // Lookup the function body for an encoding class
1550 const char *EncodeForm::encClassBody(const char *className) {
1551   if( className == NULL ) return NULL;
1552 
1553   EncClass *encClass = (EncClass*)_encClass[className];
1554   assert( encClass != NULL, "Encode Class is missing.");
1555   encClass->_code.reset();
1556   const char *code = (const char*)encClass->_code.iter();
1557   assert( code != NULL, "Found an empty encode class body.");
1558 
1559   return code;
1560 }
1561 
1562 // Lookup the function body for an encoding class
1563 const char *EncodeForm::encClassPrototype(const char *className) {
1564   assert( className != NULL, "Encode class name must be non NULL.");
1565 
1566   return className;
1567 }
1568 
1569 void EncodeForm::dump() {                  // Debug printer
1570   output(stderr);
1571 }
1572 
1573 void EncodeForm::output(FILE *fp) {          // Write info to output files
1574   const char *name;
1575   fprintf(fp,"\n");
1576   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
1577   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
1578     ((EncClass*)_encClass[name])->output(fp);
1579   }
1580   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
1581 }
1582 //------------------------------EncClass---------------------------------------
1583 EncClass::EncClass(const char *name)
1584   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
1585 }
1586 EncClass::~EncClass() {
1587 }
1588 
1589 // Add a parameter <type,name> pair
1590 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
1591   _parameter_type.addName( parameter_type );
1592   _parameter_name.addName( parameter_name );
1593 }
1594 
1595 // Verify operand types in parameter list
1596 bool EncClass::check_parameter_types(FormDict &globals) {
1597   // !!!!!
1598   return false;
1599 }
1600 
1601 // Add the decomposed "code" sections of an encoding's code-block
1602 void EncClass::add_code(const char *code) {
1603   _code.addName(code);
1604 }
1605 
1606 // Add the decomposed "replacement variables" of an encoding's code-block
1607 void EncClass::add_rep_var(char *replacement_var) {
1608   _code.addName(NameList::_signal);
1609   _rep_vars.addName(replacement_var);
1610 }
1611 
1612 // Lookup the function body for an encoding class
1613 int EncClass::rep_var_index(const char *rep_var) {
1614   uint        position = 0;
1615   const char *name     = NULL;
1616 
1617   _parameter_name.reset();
1618   while ( (name = _parameter_name.iter()) != NULL ) {
1619     if ( strcmp(rep_var,name) == 0 ) return position;
1620     ++position;
1621   }
1622 
1623   return -1;
1624 }
1625 
1626 // Check after parsing
1627 bool EncClass::verify() {
1628   // 1!!!!
1629   // Check that each replacement variable, '$name' in architecture description
1630   // is actually a local variable for this encode class, or a reserved name
1631   // "primary, secondary, tertiary"
1632   return true;
1633 }
1634 
1635 void EncClass::dump() {
1636   output(stderr);
1637 }
1638 
1639 // Write info to output files
1640 void EncClass::output(FILE *fp) {
1641   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
1642 
1643   // Output the parameter list
1644   _parameter_type.reset();
1645   _parameter_name.reset();
1646   const char *type = _parameter_type.iter();
1647   const char *name = _parameter_name.iter();
1648   fprintf(fp, " ( ");
1649   for ( ; (type != NULL) && (name != NULL);
1650         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
1651     fprintf(fp, " %s %s,", type, name);
1652   }
1653   fprintf(fp, " ) ");
1654 
1655   // Output the code block
1656   _code.reset();
1657   _rep_vars.reset();
1658   const char *code;
1659   while ( (code = _code.iter()) != NULL ) {
1660     if ( _code.is_signal(code) ) {
1661       // A replacement variable
1662       const char *rep_var = _rep_vars.iter();
1663       fprintf(fp,"($%s)", rep_var);
1664     } else {
1665       // A section of code
1666       fprintf(fp,"%s", code);
1667     }
1668   }
1669 
1670 }
1671 
1672 //------------------------------Opcode-----------------------------------------
1673 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
1674   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
1675 }
1676 
1677 Opcode::~Opcode() {
1678 }
1679 
1680 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
1681   if( strcmp(param,"primary") == 0 ) {
1682     return Opcode::PRIMARY;
1683   }
1684   else if( strcmp(param,"secondary") == 0 ) {
1685     return Opcode::SECONDARY;
1686   }
1687   else if( strcmp(param,"tertiary") == 0 ) {
1688     return Opcode::TERTIARY;
1689   }
1690   return Opcode::NOT_AN_OPCODE;
1691 }
1692 
1693 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
1694   // Default values previously provided by MachNode::primary()...
1695   const char *description = NULL;
1696   const char *value       = NULL;
1697   // Check if user provided any opcode definitions
1698   if( this != NULL ) {
1699     // Update 'value' if user provided a definition in the instruction
1700     switch (desired_opcode) {
1701     case PRIMARY:
1702       description = "primary()";
1703       if( _primary   != NULL)  { value = _primary;     }
1704       break;
1705     case SECONDARY:
1706       description = "secondary()";
1707       if( _secondary != NULL ) { value = _secondary;   }
1708       break;
1709     case TERTIARY:
1710       description = "tertiary()";
1711       if( _tertiary  != NULL ) { value = _tertiary;    }
1712       break;
1713     default:
1714       assert( false, "ShouldNotReachHere();");
1715       break;
1716     }
1717   }
1718   if (value != NULL) {
1719     fprintf(fp, "(%s /*%s*/)", value, description);
1720   }
1721   return value != NULL;
1722 }
1723 
1724 void Opcode::dump() {
1725   output(stderr);
1726 }
1727 
1728 // Write info to output files
1729 void Opcode::output(FILE *fp) {
1730   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
1731   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
1732   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
1733 }
1734 
1735 //------------------------------InsEncode--------------------------------------
1736 InsEncode::InsEncode() {
1737 }
1738 InsEncode::~InsEncode() {
1739 }
1740 
1741 // Add "encode class name" and its parameters
1742 NameAndList *InsEncode::add_encode(char *encoding) {
1743   assert( encoding != NULL, "Must provide name for encoding");
1744 
1745   // add_parameter(NameList::_signal);
1746   NameAndList *encode = new NameAndList(encoding);
1747   _encoding.addName((char*)encode);
1748 
1749   return encode;
1750 }
1751 
1752 // Access the list of encodings
1753 void InsEncode::reset() {
1754   _encoding.reset();
1755   // _parameter.reset();
1756 }
1757 const char* InsEncode::encode_class_iter() {
1758   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
1759   return  ( encode_class != NULL ? encode_class->name() : NULL );
1760 }
1761 // Obtain parameter name from zero based index
1762 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
1763   NameAndList *params = (NameAndList*)_encoding.current();
1764   assert( params != NULL, "Internal Error");
1765   const char *param = (*params)[param_no];
1766 
1767   // Remove '$' if parser placed it there.
1768   return ( param != NULL && *param == '$') ? (param+1) : param;
1769 }
1770 
1771 void InsEncode::dump() {
1772   output(stderr);
1773 }
1774 
1775 // Write info to output files
1776 void InsEncode::output(FILE *fp) {
1777   NameAndList *encoding  = NULL;
1778   const char  *parameter = NULL;
1779 
1780   fprintf(fp,"InsEncode: ");
1781   _encoding.reset();
1782 
1783   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
1784     // Output the encoding being used
1785     fprintf(fp,"%s(", encoding->name() );
1786 
1787     // Output its parameter list, if any
1788     bool first_param = true;
1789     encoding->reset();
1790     while (  (parameter = encoding->iter()) != 0 ) {
1791       // Output the ',' between parameters
1792       if ( ! first_param )  fprintf(fp,", ");
1793       first_param = false;
1794       // Output the parameter
1795       fprintf(fp,"%s", parameter);
1796     } // done with parameters
1797     fprintf(fp,")  ");
1798   } // done with encodings
1799 
1800   fprintf(fp,"\n");
1801 }
1802 
1803 //------------------------------Effect-----------------------------------------
1804 static int effect_lookup(const char *name) {
1805   if(!strcmp(name, "USE")) return Component::USE;
1806   if(!strcmp(name, "DEF")) return Component::DEF;
1807   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
1808   if(!strcmp(name, "KILL")) return Component::KILL;
1809   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
1810   if(!strcmp(name, "TEMP")) return Component::TEMP;
1811   if(!strcmp(name, "INVALID")) return Component::INVALID;
1812   if(!strcmp(name, "CALL")) return Component::CALL;
1813   assert( false,"Invalid effect name specified\n");
1814   return Component::INVALID;
1815 }
1816 
1817 const char *Component::getUsedefName() {
1818   switch (_usedef) {
1819     case Component::INVALID:  return "INVALID";  break;
1820     case Component::USE:      return "USE";      break;
1821     case Component::USE_DEF:  return "USE_DEF";  break;
1822     case Component::USE_KILL: return "USE_KILL"; break;
1823     case Component::KILL:     return "KILL";     break;
1824     case Component::TEMP:     return "TEMP";     break;
1825     case Component::DEF:      return "DEF";      break;
1826     case Component::CALL:     return "CALL";     break;
1827     default: assert(false, "unknown effect");
1828   }
1829   return "Undefined Use/Def info";
1830 }
1831 
1832 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
1833   _ftype = Form::EFF;
1834 }
1835 
1836 Effect::~Effect() {
1837 }
1838 
1839 // Dynamic type check
1840 Effect *Effect::is_effect() const {
1841   return (Effect*)this;
1842 }
1843 
1844 
1845 // True if this component is equal to the parameter.
1846 bool Effect::is(int use_def_kill_enum) const {
1847   return (_use_def == use_def_kill_enum ? true : false);
1848 }
1849 // True if this component is used/def'd/kill'd as the parameter suggests.
1850 bool Effect::isa(int use_def_kill_enum) const {
1851   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
1852 }
1853 
1854 void Effect::dump() {
1855   output(stderr);
1856 }
1857 
1858 void Effect::output(FILE *fp) {          // Write info to output files
1859   fprintf(fp,"Effect: %s\n", (_name?_name:""));
1860 }
1861 
1862 //------------------------------ExpandRule-------------------------------------
1863 ExpandRule::ExpandRule() : _expand_instrs(),
1864                            _newopconst(cmpstr, hashstr, Form::arena) {
1865   _ftype = Form::EXP;
1866 }
1867 
1868 ExpandRule::~ExpandRule() {                  // Destructor
1869 }
1870 
1871 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
1872   _expand_instrs.addName((char*)instruction_name_and_operand_list);
1873 }
1874 
1875 void ExpandRule::reset_instructions() {
1876   _expand_instrs.reset();
1877 }
1878 
1879 NameAndList* ExpandRule::iter_instructions() {
1880   return (NameAndList*)_expand_instrs.iter();
1881 }
1882 
1883 
1884 void ExpandRule::dump() {
1885   output(stderr);
1886 }
1887 
1888 void ExpandRule::output(FILE *fp) {         // Write info to output files
1889   NameAndList *expand_instr = NULL;
1890   const char *opid = NULL;
1891 
1892   fprintf(fp,"\nExpand Rule:\n");
1893 
1894   // Iterate over the instructions 'node' expands into
1895   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
1896     fprintf(fp,"%s(", expand_instr->name());
1897 
1898     // iterate over the operand list
1899     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1900       fprintf(fp,"%s ", opid);
1901     }
1902     fprintf(fp,");\n");
1903   }
1904 }
1905 
1906 //------------------------------RewriteRule------------------------------------
1907 RewriteRule::RewriteRule(char* params, char* block)
1908   : _tempParams(params), _tempBlock(block) { };  // Constructor
1909 RewriteRule::~RewriteRule() {                 // Destructor
1910 }
1911 
1912 void RewriteRule::dump() {
1913   output(stderr);
1914 }
1915 
1916 void RewriteRule::output(FILE *fp) {         // Write info to output files
1917   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
1918           (_tempParams?_tempParams:""),
1919           (_tempBlock?_tempBlock:""));
1920 }
1921 
1922 
1923 //==============================MachNodes======================================
1924 //------------------------------MachNodeForm-----------------------------------
1925 MachNodeForm::MachNodeForm(char *id)
1926   : _ident(id) {
1927 }
1928 
1929 MachNodeForm::~MachNodeForm() {
1930 }
1931 
1932 MachNodeForm *MachNodeForm::is_machnode() const {
1933   return (MachNodeForm*)this;
1934 }
1935 
1936 //==============================Operand Classes================================
1937 //------------------------------OpClassForm------------------------------------
1938 OpClassForm::OpClassForm(const char* id) : _ident(id) {
1939   _ftype = Form::OPCLASS;
1940 }
1941 
1942 OpClassForm::~OpClassForm() {
1943 }
1944 
1945 bool OpClassForm::ideal_only() const { return 0; }
1946 
1947 OpClassForm *OpClassForm::is_opclass() const {
1948   return (OpClassForm*)this;
1949 }
1950 
1951 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
1952   if( _oplst.count() == 0 ) return Form::no_interface;
1953 
1954   // Check that my operands have the same interface type
1955   Form::InterfaceType  interface;
1956   bool  first = true;
1957   NameList &op_list = (NameList &)_oplst;
1958   op_list.reset();
1959   const char *op_name;
1960   while( (op_name = op_list.iter()) != NULL ) {
1961     const Form  *form    = globals[op_name];
1962     OperandForm *operand = form->is_operand();
1963     assert( operand, "Entry in operand class that is not an operand");
1964     if( first ) {
1965       first     = false;
1966       interface = operand->interface_type(globals);
1967     } else {
1968       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
1969     }
1970   }
1971   return interface;
1972 }
1973 
1974 bool OpClassForm::stack_slots_only(FormDict &globals) const {
1975   if( _oplst.count() == 0 ) return false;  // how?
1976 
1977   NameList &op_list = (NameList &)_oplst;
1978   op_list.reset();
1979   const char *op_name;
1980   while( (op_name = op_list.iter()) != NULL ) {
1981     const Form  *form    = globals[op_name];
1982     OperandForm *operand = form->is_operand();
1983     assert( operand, "Entry in operand class that is not an operand");
1984     if( !operand->stack_slots_only(globals) )  return false;
1985   }
1986   return true;
1987 }
1988 
1989 
1990 void OpClassForm::dump() {
1991   output(stderr);
1992 }
1993 
1994 void OpClassForm::output(FILE *fp) {
1995   const char *name;
1996   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
1997   fprintf(fp,"\nCount = %d\n", _oplst.count());
1998   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
1999     fprintf(fp,"%s, ",name);
2000   }
2001   fprintf(fp,"\n");
2002 }
2003 
2004 
2005 //==============================Operands=======================================
2006 //------------------------------OperandForm------------------------------------
2007 OperandForm::OperandForm(const char* id)
2008   : OpClassForm(id), _ideal_only(false),
2009     _localNames(cmpstr, hashstr, Form::arena) {
2010       _ftype = Form::OPER;
2011 
2012       _matrule   = NULL;
2013       _interface = NULL;
2014       _attribs   = NULL;
2015       _predicate = NULL;
2016       _constraint= NULL;
2017       _construct = NULL;
2018       _format    = NULL;
2019 }
2020 OperandForm::OperandForm(const char* id, bool ideal_only)
2021   : OpClassForm(id), _ideal_only(ideal_only),
2022     _localNames(cmpstr, hashstr, Form::arena) {
2023       _ftype = Form::OPER;
2024 
2025       _matrule   = NULL;
2026       _interface = NULL;
2027       _attribs   = NULL;
2028       _predicate = NULL;
2029       _constraint= NULL;
2030       _construct = NULL;
2031       _format    = NULL;
2032 }
2033 OperandForm::~OperandForm() {
2034 }
2035 
2036 
2037 OperandForm *OperandForm::is_operand() const {
2038   return (OperandForm*)this;
2039 }
2040 
2041 bool OperandForm::ideal_only() const {
2042   return _ideal_only;
2043 }
2044 
2045 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
2046   if( _interface == NULL )  return Form::no_interface;
2047 
2048   return _interface->interface_type(globals);
2049 }
2050 
2051 
2052 bool OperandForm::stack_slots_only(FormDict &globals) const {
2053   if( _constraint == NULL )  return false;
2054   return _constraint->stack_slots_only();
2055 }
2056 
2057 
2058 // Access op_cost attribute or return NULL.
2059 const char* OperandForm::cost() {
2060   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
2061     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
2062       return cur->_val;
2063     }
2064   }
2065   return NULL;
2066 }
2067 
2068 // Return the number of leaves below this complex operand
2069 uint OperandForm::num_leaves() const {
2070   if ( ! _matrule) return 0;
2071 
2072   int num_leaves = _matrule->_numleaves;
2073   return num_leaves;
2074 }
2075 
2076 // Return the number of constants contained within this complex operand
2077 uint OperandForm::num_consts(FormDict &globals) const {
2078   if ( ! _matrule) return 0;
2079 
2080   // This is a recursive invocation on all operands in the matchrule
2081   return _matrule->num_consts(globals);
2082 }
2083 
2084 // Return the number of constants in match rule with specified type
2085 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
2086   if ( ! _matrule) return 0;
2087 
2088   // This is a recursive invocation on all operands in the matchrule
2089   return _matrule->num_consts(globals, type);
2090 }
2091 
2092 // Return the number of pointer constants contained within this complex operand
2093 uint OperandForm::num_const_ptrs(FormDict &globals) const {
2094   if ( ! _matrule) return 0;
2095 
2096   // This is a recursive invocation on all operands in the matchrule
2097   return _matrule->num_const_ptrs(globals);
2098 }
2099 
2100 uint OperandForm::num_edges(FormDict &globals) const {
2101   uint edges  = 0;
2102   uint leaves = num_leaves();
2103   uint consts = num_consts(globals);
2104 
2105   // If we are matching a constant directly, there are no leaves.
2106   edges = ( leaves > consts ) ? leaves - consts : 0;
2107 
2108   // !!!!!
2109   // Special case operands that do not have a corresponding ideal node.
2110   if( (edges == 0) && (consts == 0) ) {
2111     if( constrained_reg_class() != NULL ) {
2112       edges = 1;
2113     } else {
2114       if( _matrule
2115           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
2116         const Form *form = globals[_matrule->_opType];
2117         OperandForm *oper = form ? form->is_operand() : NULL;
2118         if( oper ) {
2119           return oper->num_edges(globals);
2120         }
2121       }
2122     }
2123   }
2124 
2125   return edges;
2126 }
2127 
2128 
2129 // Check if this operand is usable for cisc-spilling
2130 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
2131   const char *ideal = ideal_type(globals);
2132   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
2133   return is_cisc_reg;
2134 }
2135 
2136 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
2137   Form::InterfaceType my_interface = interface_type(globals);
2138   return (my_interface == memory_interface);
2139 }
2140 
2141 
2142 // node matches ideal 'Bool'
2143 bool OperandForm::is_ideal_bool() const {
2144   if( _matrule == NULL ) return false;
2145 
2146   return _matrule->is_ideal_bool();
2147 }
2148 
2149 // Require user's name for an sRegX to be stackSlotX
2150 Form::DataType OperandForm::is_user_name_for_sReg() const {
2151   DataType data_type = none;
2152   if( _ident != NULL ) {
2153     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
2154     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
2155     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
2156     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
2157     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
2158   }
2159   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
2160 
2161   return data_type;
2162 }
2163 
2164 
2165 // Return ideal type, if there is a single ideal type for this operand
2166 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
2167   const char *type = NULL;
2168   if (ideal_only()) type = _ident;
2169   else if( _matrule == NULL ) {
2170     // Check for condition code register
2171     const char *rc_name = constrained_reg_class();
2172     // !!!!!
2173     if (rc_name == NULL) return NULL;
2174     // !!!!! !!!!!
2175     // Check constraints on result's register class
2176     if( registers ) {
2177       RegClass *reg_class  = registers->getRegClass(rc_name);
2178       assert( reg_class != NULL, "Register class is not defined");
2179 
2180       // Check for ideal type of entries in register class, all are the same type
2181       reg_class->reset();
2182       RegDef *reg_def = reg_class->RegDef_iter();
2183       assert( reg_def != NULL, "No entries in register class");
2184       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
2185       // Return substring that names the register's ideal type
2186       type = reg_def->_idealtype + 3;
2187       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
2188       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
2189       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
2190     }
2191   }
2192   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
2193     // This operand matches a single type, at the top level.
2194     // Check for ideal type
2195     type = _matrule->_opType;
2196     if( strcmp(type,"Bool") == 0 )
2197       return "Bool";
2198     // transitive lookup
2199     const Form *frm = globals[type];
2200     OperandForm *op = frm->is_operand();
2201     type = op->ideal_type(globals, registers);
2202   }
2203   return type;
2204 }
2205 
2206 
2207 // If there is a single ideal type for this interface field, return it.
2208 const char *OperandForm::interface_ideal_type(FormDict &globals,
2209                                               const char *field) const {
2210   const char  *ideal_type = NULL;
2211   const char  *value      = NULL;
2212 
2213   // Check if "field" is valid for this operand's interface
2214   if ( ! is_interface_field(field, value) )   return ideal_type;
2215 
2216   // !!!!! !!!!! !!!!!
2217   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
2218 
2219   // Else, lookup type of field's replacement variable
2220 
2221   return ideal_type;
2222 }
2223 
2224 
2225 RegClass* OperandForm::get_RegClass() const {
2226   if (_interface && !_interface->is_RegInterface()) return NULL;
2227   return globalAD->get_registers()->getRegClass(constrained_reg_class());
2228 }
2229 
2230 
2231 bool OperandForm::is_bound_register() const {
2232   RegClass* reg_class = get_RegClass();
2233   if (reg_class == NULL) {
2234     return false;
2235   }
2236 
2237   const char* name = ideal_type(globalAD->globalNames());
2238   if (name == NULL) {
2239     return false;
2240   }
2241 
2242   uint size = 0;
2243   if (strcmp(name, "RegFlags") == 0) size = 1;
2244   if (strcmp(name, "RegI") == 0) size = 1;
2245   if (strcmp(name, "RegF") == 0) size = 1;
2246   if (strcmp(name, "RegD") == 0) size = 2;
2247   if (strcmp(name, "RegL") == 0) size = 2;
2248   if (strcmp(name, "RegN") == 0) size = 1;
2249   if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
2250   if (size == 0) {
2251     return false;
2252   }
2253   return size == reg_class->size();
2254 }
2255 
2256 
2257 // Check if this is a valid field for this operand,
2258 // Return 'true' if valid, and set the value to the string the user provided.
2259 bool  OperandForm::is_interface_field(const char *field,
2260                                       const char * &value) const {
2261   return false;
2262 }
2263 
2264 
2265 // Return register class name if a constraint specifies the register class.
2266 const char *OperandForm::constrained_reg_class() const {
2267   const char *reg_class  = NULL;
2268   if ( _constraint ) {
2269     // !!!!!
2270     Constraint *constraint = _constraint;
2271     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
2272       reg_class = _constraint->_arg;
2273     }
2274   }
2275 
2276   return reg_class;
2277 }
2278 
2279 
2280 // Return the register class associated with 'leaf'.
2281 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
2282   const char *reg_class = NULL; // "RegMask::Empty";
2283 
2284   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
2285     reg_class = constrained_reg_class();
2286     return reg_class;
2287   }
2288   const char *result   = NULL;
2289   const char *name     = NULL;
2290   const char *type     = NULL;
2291   // iterate through all base operands
2292   // until we reach the register that corresponds to "leaf"
2293   // This function is not looking for an ideal type.  It needs the first
2294   // level user type associated with the leaf.
2295   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
2296     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
2297     OperandForm *oper = form ? form->is_operand() : NULL;
2298     if( oper ) {
2299       reg_class = oper->constrained_reg_class();
2300       if( reg_class ) {
2301         reg_class = reg_class;
2302       } else {
2303         // ShouldNotReachHere();
2304       }
2305     } else {
2306       // ShouldNotReachHere();
2307     }
2308 
2309     // Increment our target leaf position if current leaf is not a candidate.
2310     if( reg_class == NULL)    ++leaf;
2311     // Exit the loop with the value of reg_class when at the correct index
2312     if( idx == leaf )         break;
2313     // May iterate through all base operands if reg_class for 'leaf' is NULL
2314   }
2315   return reg_class;
2316 }
2317 
2318 
2319 // Recursive call to construct list of top-level operands.
2320 // Implementation does not modify state of internal structures
2321 void OperandForm::build_components() {
2322   if (_matrule)  _matrule->append_components(_localNames, _components);
2323 
2324   // Add parameters that "do not appear in match rule".
2325   const char *name;
2326   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
2327     OperandForm *opForm = (OperandForm*)_localNames[name];
2328 
2329     if ( _components.operand_position(name) == -1 ) {
2330       _components.insert(name, opForm->_ident, Component::INVALID, false);
2331     }
2332   }
2333 
2334   return;
2335 }
2336 
2337 int OperandForm::operand_position(const char *name, int usedef) {
2338   return _components.operand_position(name, usedef, this);
2339 }
2340 
2341 
2342 // Return zero-based position in component list, only counting constants;
2343 // Return -1 if not in list.
2344 int OperandForm::constant_position(FormDict &globals, const Component *last) {
2345   // Iterate through components and count constants preceding 'constant'
2346   int position = 0;
2347   Component *comp;
2348   _components.reset();
2349   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
2350     // Special case for operands that take a single user-defined operand
2351     // Skip the initial definition in the component list.
2352     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2353 
2354     const char *type = comp->_type;
2355     // Lookup operand form for replacement variable's type
2356     const Form *form = globals[type];
2357     assert( form != NULL, "Component's type not found");
2358     OperandForm *oper = form ? form->is_operand() : NULL;
2359     if( oper ) {
2360       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
2361         ++position;
2362       }
2363     }
2364   }
2365 
2366   // Check for being passed a component that was not in the list
2367   if( comp != last )  position = -1;
2368 
2369   return position;
2370 }
2371 // Provide position of constant by "name"
2372 int OperandForm::constant_position(FormDict &globals, const char *name) {
2373   const Component *comp = _components.search(name);
2374   int idx = constant_position( globals, comp );
2375 
2376   return idx;
2377 }
2378 
2379 
2380 // Return zero-based position in component list, only counting constants;
2381 // Return -1 if not in list.
2382 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
2383   // Iterate through components and count registers preceding 'last'
2384   uint  position = 0;
2385   Component *comp;
2386   _components.reset();
2387   while( (comp = _components.iter()) != NULL
2388          && (strcmp(comp->_name,reg_name) != 0) ) {
2389     // Special case for operands that take a single user-defined operand
2390     // Skip the initial definition in the component list.
2391     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2392 
2393     const char *type = comp->_type;
2394     // Lookup operand form for component's type
2395     const Form *form = globals[type];
2396     assert( form != NULL, "Component's type not found");
2397     OperandForm *oper = form ? form->is_operand() : NULL;
2398     if( oper ) {
2399       if( oper->_matrule->is_base_register(globals) ) {
2400         ++position;
2401       }
2402     }
2403   }
2404 
2405   return position;
2406 }
2407 
2408 
2409 const char *OperandForm::reduce_result()  const {
2410   return _ident;
2411 }
2412 // Return the name of the operand on the right hand side of the binary match
2413 // Return NULL if there is no right hand side
2414 const char *OperandForm::reduce_right(FormDict &globals)  const {
2415   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
2416 }
2417 
2418 // Similar for left
2419 const char *OperandForm::reduce_left(FormDict &globals)   const {
2420   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
2421 }
2422 
2423 
2424 // --------------------------- FILE *output_routines
2425 //
2426 // Output code for disp_is_oop, if true.
2427 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
2428   //  Check it is a memory interface with a non-user-constant disp field
2429   if ( this->_interface == NULL ) return;
2430   MemInterface *mem_interface = this->_interface->is_MemInterface();
2431   if ( mem_interface == NULL )    return;
2432   const char   *disp  = mem_interface->_disp;
2433   if ( *disp != '$' )             return;
2434 
2435   // Lookup replacement variable in operand's component list
2436   const char   *rep_var = disp + 1;
2437   const Component *comp = this->_components.search(rep_var);
2438   assert( comp != NULL, "Replacement variable not found in components");
2439   // Lookup operand form for replacement variable's type
2440   const char      *type = comp->_type;
2441   Form            *form = (Form*)globals[type];
2442   assert( form != NULL, "Replacement variable's type not found");
2443   OperandForm     *op   = form->is_operand();
2444   assert( op, "Memory Interface 'disp' can only emit an operand form");
2445   // Check if this is a ConP, which may require relocation
2446   if ( op->is_base_constant(globals) == Form::idealP ) {
2447     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
2448     uint idx  = op->constant_position( globals, rep_var);
2449     fprintf(fp,"  virtual relocInfo::relocType disp_reloc() const {");
2450     fprintf(fp,  "  return _c%d->reloc();", idx);
2451     fprintf(fp, " }\n");
2452   }
2453 }
2454 
2455 // Generate code for internal and external format methods
2456 //
2457 // internal access to reg# node->_idx
2458 // access to subsumed constant _c0, _c1,
2459 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
2460   Form::DataType dtype;
2461   if (_matrule && (_matrule->is_base_register(globals) ||
2462                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2463     // !!!!! !!!!!
2464     fprintf(fp,"  { char reg_str[128];\n");
2465     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
2466     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2467     fprintf(fp,"  }\n");
2468   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2469     format_constant( fp, index, dtype );
2470   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2471     // Special format for Stack Slot Register
2472     fprintf(fp,"  { char reg_str[128];\n");
2473     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
2474     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2475     fprintf(fp,"  }\n");
2476   } else {
2477     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
2478     fflush(fp);
2479     fprintf(stderr,"No format defined for %s\n", _ident);
2480     dump();
2481     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
2482   }
2483 }
2484 
2485 // Similar to "int_format" but for cases where data is external to operand
2486 // external access to reg# node->in(idx)->_idx,
2487 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
2488   Form::DataType dtype;
2489   if (_matrule && (_matrule->is_base_register(globals) ||
2490                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2491     fprintf(fp,"  { char reg_str[128];\n");
2492     fprintf(fp,"    ra->dump_register(node->in(idx");
2493     if ( index != 0 ) fprintf(fp,              "+%d",index);
2494     fprintf(fp,                                      "),reg_str);\n");
2495     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2496     fprintf(fp,"  }\n");
2497   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2498     format_constant( fp, index, dtype );
2499   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2500     // Special format for Stack Slot Register
2501     fprintf(fp,"  { char reg_str[128];\n");
2502     fprintf(fp,"    ra->dump_register(node->in(idx");
2503     if ( index != 0 ) fprintf(fp,                  "+%d",index);
2504     fprintf(fp,                                       "),reg_str);\n");
2505     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
2506     fprintf(fp,"  }\n");
2507   } else {
2508     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
2509     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
2510   }
2511 }
2512 
2513 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
2514   switch(const_type) {
2515   case Form::idealI: fprintf(fp,"  st->print(\"#%%d\", _c%d);\n", const_index); break;
2516   case Form::idealP: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
2517   case Form::idealNKlass:
2518   case Form::idealN: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
2519   case Form::idealL: fprintf(fp,"  st->print(\"#%%lld\", _c%d);\n", const_index); break;
2520   case Form::idealF: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
2521   case Form::idealD: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
2522   default:
2523     assert( false, "ShouldNotReachHere()");
2524   }
2525 }
2526 
2527 // Return the operand form corresponding to the given index, else NULL.
2528 OperandForm *OperandForm::constant_operand(FormDict &globals,
2529                                            uint      index) {
2530   // !!!!!
2531   // Check behavior on complex operands
2532   uint n_consts = num_consts(globals);
2533   if( n_consts > 0 ) {
2534     uint i = 0;
2535     const char *type;
2536     Component  *comp;
2537     _components.reset();
2538     if ((comp = _components.iter()) == NULL) {
2539       assert(n_consts == 1, "Bad component list detected.\n");
2540       // Current operand is THE operand
2541       if ( index == 0 ) {
2542         return this;
2543       }
2544     } // end if NULL
2545     else {
2546       // Skip the first component, it can not be a DEF of a constant
2547       do {
2548         type = comp->base_type(globals);
2549         // Check that "type" is a 'ConI', 'ConP', ...
2550         if ( ideal_to_const_type(type) != Form::none ) {
2551           // When at correct component, get corresponding Operand
2552           if ( index == 0 ) {
2553             return globals[comp->_type]->is_operand();
2554           }
2555           // Decrement number of constants to go
2556           --index;
2557         }
2558       } while((comp = _components.iter()) != NULL);
2559     }
2560   }
2561 
2562   // Did not find a constant for this index.
2563   return NULL;
2564 }
2565 
2566 // If this operand has a single ideal type, return its type
2567 Form::DataType OperandForm::simple_type(FormDict &globals) const {
2568   const char *type_name = ideal_type(globals);
2569   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
2570                                     : Form::none;
2571   return type;
2572 }
2573 
2574 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
2575   if ( _matrule == NULL )    return Form::none;
2576 
2577   return _matrule->is_base_constant(globals);
2578 }
2579 
2580 // "true" if this operand is a simple type that is swallowed
2581 bool  OperandForm::swallowed(FormDict &globals) const {
2582   Form::DataType type   = simple_type(globals);
2583   if( type != Form::none ) {
2584     return true;
2585   }
2586 
2587   return false;
2588 }
2589 
2590 // Output code to access the value of the index'th constant
2591 void OperandForm::access_constant(FILE *fp, FormDict &globals,
2592                                   uint const_index) {
2593   OperandForm *oper = constant_operand(globals, const_index);
2594   assert( oper, "Index exceeds number of constants in operand");
2595   Form::DataType dtype = oper->is_base_constant(globals);
2596 
2597   switch(dtype) {
2598   case idealI: fprintf(fp,"_c%d",           const_index); break;
2599   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
2600   case idealL: fprintf(fp,"_c%d",           const_index); break;
2601   case idealF: fprintf(fp,"_c%d",           const_index); break;
2602   case idealD: fprintf(fp,"_c%d",           const_index); break;
2603   default:
2604     assert( false, "ShouldNotReachHere()");
2605   }
2606 }
2607 
2608 
2609 void OperandForm::dump() {
2610   output(stderr);
2611 }
2612 
2613 void OperandForm::output(FILE *fp) {
2614   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
2615   if (_matrule)    _matrule->dump();
2616   if (_interface)  _interface->dump();
2617   if (_attribs)    _attribs->dump();
2618   if (_predicate)  _predicate->dump();
2619   if (_constraint) _constraint->dump();
2620   if (_construct)  _construct->dump();
2621   if (_format)     _format->dump();
2622 }
2623 
2624 //------------------------------Constraint-------------------------------------
2625 Constraint::Constraint(const char *func, const char *arg)
2626   : _func(func), _arg(arg) {
2627 }
2628 Constraint::~Constraint() { /* not owner of char* */
2629 }
2630 
2631 bool Constraint::stack_slots_only() const {
2632   return strcmp(_func, "ALLOC_IN_RC") == 0
2633       && strcmp(_arg,  "stack_slots") == 0;
2634 }
2635 
2636 void Constraint::dump() {
2637   output(stderr);
2638 }
2639 
2640 void Constraint::output(FILE *fp) {           // Write info to output files
2641   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
2642   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
2643 }
2644 
2645 //------------------------------Predicate--------------------------------------
2646 Predicate::Predicate(char *pr)
2647   : _pred(pr) {
2648 }
2649 Predicate::~Predicate() {
2650 }
2651 
2652 void Predicate::dump() {
2653   output(stderr);
2654 }
2655 
2656 void Predicate::output(FILE *fp) {
2657   fprintf(fp,"Predicate");  // Write to output files
2658 }
2659 //------------------------------Interface--------------------------------------
2660 Interface::Interface(const char *name) : _name(name) {
2661 }
2662 Interface::~Interface() {
2663 }
2664 
2665 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
2666   Interface *thsi = (Interface*)this;
2667   if ( thsi->is_RegInterface()   ) return Form::register_interface;
2668   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
2669   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
2670   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
2671 
2672   return Form::no_interface;
2673 }
2674 
2675 RegInterface   *Interface::is_RegInterface() {
2676   if ( strcmp(_name,"REG_INTER") != 0 )
2677     return NULL;
2678   return (RegInterface*)this;
2679 }
2680 MemInterface   *Interface::is_MemInterface() {
2681   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
2682   return (MemInterface*)this;
2683 }
2684 ConstInterface *Interface::is_ConstInterface() {
2685   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
2686   return (ConstInterface*)this;
2687 }
2688 CondInterface  *Interface::is_CondInterface() {
2689   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
2690   return (CondInterface*)this;
2691 }
2692 
2693 
2694 void Interface::dump() {
2695   output(stderr);
2696 }
2697 
2698 // Write info to output files
2699 void Interface::output(FILE *fp) {
2700   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
2701 }
2702 
2703 //------------------------------RegInterface-----------------------------------
2704 RegInterface::RegInterface() : Interface("REG_INTER") {
2705 }
2706 RegInterface::~RegInterface() {
2707 }
2708 
2709 void RegInterface::dump() {
2710   output(stderr);
2711 }
2712 
2713 // Write info to output files
2714 void RegInterface::output(FILE *fp) {
2715   Interface::output(fp);
2716 }
2717 
2718 //------------------------------ConstInterface---------------------------------
2719 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
2720 }
2721 ConstInterface::~ConstInterface() {
2722 }
2723 
2724 void ConstInterface::dump() {
2725   output(stderr);
2726 }
2727 
2728 // Write info to output files
2729 void ConstInterface::output(FILE *fp) {
2730   Interface::output(fp);
2731 }
2732 
2733 //------------------------------MemInterface-----------------------------------
2734 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
2735   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
2736 }
2737 MemInterface::~MemInterface() {
2738   // not owner of any character arrays
2739 }
2740 
2741 void MemInterface::dump() {
2742   output(stderr);
2743 }
2744 
2745 // Write info to output files
2746 void MemInterface::output(FILE *fp) {
2747   Interface::output(fp);
2748   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
2749   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
2750   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
2751   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
2752   // fprintf(fp,"\n");
2753 }
2754 
2755 //------------------------------CondInterface----------------------------------
2756 CondInterface::CondInterface(const char* equal,         const char* equal_format,
2757                              const char* not_equal,     const char* not_equal_format,
2758                              const char* less,          const char* less_format,
2759                              const char* greater_equal, const char* greater_equal_format,
2760                              const char* less_equal,    const char* less_equal_format,
2761                              const char* greater,       const char* greater_format,
2762                              const char* overflow,      const char* overflow_format,
2763                              const char* no_overflow,   const char* no_overflow_format)
2764   : Interface("COND_INTER"),
2765     _equal(equal),                 _equal_format(equal_format),
2766     _not_equal(not_equal),         _not_equal_format(not_equal_format),
2767     _less(less),                   _less_format(less_format),
2768     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
2769     _less_equal(less_equal),       _less_equal_format(less_equal_format),
2770     _greater(greater),             _greater_format(greater_format),
2771     _overflow(overflow),           _overflow_format(overflow_format),
2772     _no_overflow(no_overflow),     _no_overflow_format(no_overflow_format) {
2773 }
2774 CondInterface::~CondInterface() {
2775   // not owner of any character arrays
2776 }
2777 
2778 void CondInterface::dump() {
2779   output(stderr);
2780 }
2781 
2782 // Write info to output files
2783 void CondInterface::output(FILE *fp) {
2784   Interface::output(fp);
2785   if ( _equal  != NULL )     fprintf(fp," equal        == %s\n", _equal);
2786   if ( _not_equal  != NULL ) fprintf(fp," not_equal    == %s\n", _not_equal);
2787   if ( _less  != NULL )      fprintf(fp," less         == %s\n", _less);
2788   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal    == %s\n", _greater_equal);
2789   if ( _less_equal  != NULL ) fprintf(fp," less_equal   == %s\n", _less_equal);
2790   if ( _greater  != NULL )    fprintf(fp," greater      == %s\n", _greater);
2791   if ( _overflow != NULL )    fprintf(fp," overflow     == %s\n", _overflow);
2792   if ( _no_overflow != NULL ) fprintf(fp," no_overflow  == %s\n", _no_overflow);
2793   // fprintf(fp,"\n");
2794 }
2795 
2796 //------------------------------ConstructRule----------------------------------
2797 ConstructRule::ConstructRule(char *cnstr)
2798   : _construct(cnstr) {
2799 }
2800 ConstructRule::~ConstructRule() {
2801 }
2802 
2803 void ConstructRule::dump() {
2804   output(stderr);
2805 }
2806 
2807 void ConstructRule::output(FILE *fp) {
2808   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
2809 }
2810 
2811 
2812 //==============================Shared Forms===================================
2813 //------------------------------AttributeForm----------------------------------
2814 int         AttributeForm::_insId   = 0;           // start counter at 0
2815 int         AttributeForm::_opId    = 0;           // start counter at 0
2816 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
2817 const char* AttributeForm::_op_cost  = "op_cost";  // required name
2818 
2819 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
2820   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
2821     if (type==OP_ATTR) {
2822       id = ++_opId;
2823     }
2824     else if (type==INS_ATTR) {
2825       id = ++_insId;
2826     }
2827     else assert( false,"");
2828 }
2829 AttributeForm::~AttributeForm() {
2830 }
2831 
2832 // Dynamic type check
2833 AttributeForm *AttributeForm::is_attribute() const {
2834   return (AttributeForm*)this;
2835 }
2836 
2837 
2838 // inlined  // int  AttributeForm::type() { return id;}
2839 
2840 void AttributeForm::dump() {
2841   output(stderr);
2842 }
2843 
2844 void AttributeForm::output(FILE *fp) {
2845   if( _attrname && _attrdef ) {
2846     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
2847             _attrname, _attrdef);
2848   }
2849   else {
2850     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
2851             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
2852   }
2853 }
2854 
2855 //------------------------------Component--------------------------------------
2856 Component::Component(const char *name, const char *type, int usedef)
2857   : _name(name), _type(type), _usedef(usedef) {
2858     _ftype = Form::COMP;
2859 }
2860 Component::~Component() {
2861 }
2862 
2863 // True if this component is equal to the parameter.
2864 bool Component::is(int use_def_kill_enum) const {
2865   return (_usedef == use_def_kill_enum ? true : false);
2866 }
2867 // True if this component is used/def'd/kill'd as the parameter suggests.
2868 bool Component::isa(int use_def_kill_enum) const {
2869   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
2870 }
2871 
2872 // Extend this component with additional use/def/kill behavior
2873 int Component::promote_use_def_info(int new_use_def) {
2874   _usedef |= new_use_def;
2875 
2876   return _usedef;
2877 }
2878 
2879 // Check the base type of this component, if it has one
2880 const char *Component::base_type(FormDict &globals) {
2881   const Form *frm = globals[_type];
2882   if (frm == NULL) return NULL;
2883   OperandForm *op = frm->is_operand();
2884   if (op == NULL) return NULL;
2885   if (op->ideal_only()) return op->_ident;
2886   return (char *)op->ideal_type(globals);
2887 }
2888 
2889 void Component::dump() {
2890   output(stderr);
2891 }
2892 
2893 void Component::output(FILE *fp) {
2894   fprintf(fp,"Component:");  // Write to output files
2895   fprintf(fp, "  name = %s", _name);
2896   fprintf(fp, ", type = %s", _type);
2897   assert(_usedef != 0, "unknown effect");
2898   fprintf(fp, ", use/def = %s\n", getUsedefName());
2899 }
2900 
2901 
2902 //------------------------------ComponentList---------------------------------
2903 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
2904 }
2905 ComponentList::~ComponentList() {
2906   // // This list may not own its elements if copied via assignment
2907   // Component *component;
2908   // for (reset(); (component = iter()) != NULL;) {
2909   //   delete component;
2910   // }
2911 }
2912 
2913 void   ComponentList::insert(Component *component, bool mflag) {
2914   NameList::addName((char *)component);
2915   if(mflag) _matchcnt++;
2916 }
2917 void   ComponentList::insert(const char *name, const char *opType, int usedef,
2918                              bool mflag) {
2919   Component * component = new Component(name, opType, usedef);
2920   insert(component, mflag);
2921 }
2922 Component *ComponentList::current() { return (Component*)NameList::current(); }
2923 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
2924 Component *ComponentList::match_iter() {
2925   if(_iter < _matchcnt) return (Component*)NameList::iter();
2926   return NULL;
2927 }
2928 Component *ComponentList::post_match_iter() {
2929   Component *comp = iter();
2930   // At end of list?
2931   if ( comp == NULL ) {
2932     return comp;
2933   }
2934   // In post-match components?
2935   if (_iter > match_count()-1) {
2936     return comp;
2937   }
2938 
2939   return post_match_iter();
2940 }
2941 
2942 void       ComponentList::reset()   { NameList::reset(); }
2943 int        ComponentList::count()   { return NameList::count(); }
2944 
2945 Component *ComponentList::operator[](int position) {
2946   // Shortcut complete iteration if there are not enough entries
2947   if (position >= count()) return NULL;
2948 
2949   int        index     = 0;
2950   Component *component = NULL;
2951   for (reset(); (component = iter()) != NULL;) {
2952     if (index == position) {
2953       return component;
2954     }
2955     ++index;
2956   }
2957 
2958   return NULL;
2959 }
2960 
2961 const Component *ComponentList::search(const char *name) {
2962   PreserveIter pi(this);
2963   reset();
2964   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
2965     if( strcmp(comp->_name,name) == 0 ) return comp;
2966   }
2967 
2968   return NULL;
2969 }
2970 
2971 // Return number of USEs + number of DEFs
2972 // When there are no components, or the first component is a USE,
2973 // then we add '1' to hold a space for the 'result' operand.
2974 int ComponentList::num_operands() {
2975   PreserveIter pi(this);
2976   uint       count = 1;           // result operand
2977   uint       position = 0;
2978 
2979   Component *component  = NULL;
2980   for( reset(); (component = iter()) != NULL; ++position ) {
2981     if( component->isa(Component::USE) ||
2982         ( position == 0 && (! component->isa(Component::DEF))) ) {
2983       ++count;
2984     }
2985   }
2986 
2987   return count;
2988 }
2989 
2990 // Return zero-based position of operand 'name' in list;  -1 if not in list.
2991 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
2992 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
2993   PreserveIter pi(this);
2994   int position = 0;
2995   int num_opnds = num_operands();
2996   Component *component;
2997   Component* preceding_non_use = NULL;
2998   Component* first_def = NULL;
2999   for (reset(); (component = iter()) != NULL; ++position) {
3000     // When the first component is not a DEF,
3001     // leave space for the result operand!
3002     if ( position==0 && (! component->isa(Component::DEF)) ) {
3003       ++position;
3004       ++num_opnds;
3005     }
3006     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
3007       // When the first entry in the component list is a DEF and a USE
3008       // Treat them as being separate, a DEF first, then a USE
3009       if( position==0
3010           && usedef==Component::USE && component->isa(Component::DEF) ) {
3011         assert(position+1 < num_opnds, "advertised index in bounds");
3012         return position+1;
3013       } else {
3014         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
3015           fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
3016                   preceding_non_use->_name, preceding_non_use->getUsedefName(),
3017                   name, component->getUsedefName());
3018           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
3019           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
3020           fprintf(stderr,  "\n");
3021         }
3022         if( position >= num_opnds ) {
3023           fprintf(stderr, "the name '%s' is too late in its name list", name);
3024           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
3025           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
3026           fprintf(stderr,  "\n");
3027         }
3028         assert(position < num_opnds, "advertised index in bounds");
3029         return position;
3030       }
3031     }
3032     if( component->isa(Component::DEF)
3033         && component->isa(Component::USE) ) {
3034       ++position;
3035       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3036     }
3037     if( component->isa(Component::DEF) && !first_def ) {
3038       first_def = component;
3039     }
3040     if( !component->isa(Component::USE) && component != first_def ) {
3041       preceding_non_use = component;
3042     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
3043       preceding_non_use = NULL;
3044     }
3045   }
3046   return Not_in_list;
3047 }
3048 
3049 // Find position for this name, regardless of use/def information
3050 int ComponentList::operand_position(const char *name) {
3051   PreserveIter pi(this);
3052   int position = 0;
3053   Component *component;
3054   for (reset(); (component = iter()) != NULL; ++position) {
3055     // When the first component is not a DEF,
3056     // leave space for the result operand!
3057     if ( position==0 && (! component->isa(Component::DEF)) ) {
3058       ++position;
3059     }
3060     if (strcmp(name, component->_name)==0) {
3061       return position;
3062     }
3063     if( component->isa(Component::DEF)
3064         && component->isa(Component::USE) ) {
3065       ++position;
3066       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3067     }
3068   }
3069   return Not_in_list;
3070 }
3071 
3072 int ComponentList::operand_position_format(const char *name, Form *fm) {
3073   PreserveIter pi(this);
3074   int  first_position = operand_position(name);
3075   int  use_position   = operand_position(name, Component::USE, fm);
3076 
3077   return ((first_position < use_position) ? use_position : first_position);
3078 }
3079 
3080 int ComponentList::label_position() {
3081   PreserveIter pi(this);
3082   int position = 0;
3083   reset();
3084   for( Component *comp; (comp = iter()) != NULL; ++position) {
3085     // When the first component is not a DEF,
3086     // leave space for the result operand!
3087     if ( position==0 && (! comp->isa(Component::DEF)) ) {
3088       ++position;
3089     }
3090     if (strcmp(comp->_type, "label")==0) {
3091       return position;
3092     }
3093     if( comp->isa(Component::DEF)
3094         && comp->isa(Component::USE) ) {
3095       ++position;
3096       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3097     }
3098   }
3099 
3100   return -1;
3101 }
3102 
3103 int ComponentList::method_position() {
3104   PreserveIter pi(this);
3105   int position = 0;
3106   reset();
3107   for( Component *comp; (comp = iter()) != NULL; ++position) {
3108     // When the first component is not a DEF,
3109     // leave space for the result operand!
3110     if ( position==0 && (! comp->isa(Component::DEF)) ) {
3111       ++position;
3112     }
3113     if (strcmp(comp->_type, "method")==0) {
3114       return position;
3115     }
3116     if( comp->isa(Component::DEF)
3117         && comp->isa(Component::USE) ) {
3118       ++position;
3119       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3120     }
3121   }
3122 
3123   return -1;
3124 }
3125 
3126 void ComponentList::dump() { output(stderr); }
3127 
3128 void ComponentList::output(FILE *fp) {
3129   PreserveIter pi(this);
3130   fprintf(fp, "\n");
3131   Component *component;
3132   for (reset(); (component = iter()) != NULL;) {
3133     component->output(fp);
3134   }
3135   fprintf(fp, "\n");
3136 }
3137 
3138 //------------------------------MatchNode--------------------------------------
3139 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
3140                      const char *opType, MatchNode *lChild, MatchNode *rChild)
3141   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
3142     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
3143     _commutative_id(0) {
3144   _numleaves = (lChild ? lChild->_numleaves : 0)
3145                + (rChild ? rChild->_numleaves : 0);
3146 }
3147 
3148 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
3149   : _AD(ad), _result(mnode._result), _name(mnode._name),
3150     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
3151     _internalop(0), _numleaves(mnode._numleaves),
3152     _commutative_id(mnode._commutative_id) {
3153 }
3154 
3155 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
3156   : _AD(ad), _result(mnode._result), _name(mnode._name),
3157     _opType(mnode._opType),
3158     _internalop(0), _numleaves(mnode._numleaves),
3159     _commutative_id(mnode._commutative_id) {
3160   if (mnode._lChild) {
3161     _lChild = new MatchNode(ad, *mnode._lChild, clone);
3162   } else {
3163     _lChild = NULL;
3164   }
3165   if (mnode._rChild) {
3166     _rChild = new MatchNode(ad, *mnode._rChild, clone);
3167   } else {
3168     _rChild = NULL;
3169   }
3170 }
3171 
3172 MatchNode::~MatchNode() {
3173   // // This node may not own its children if copied via assignment
3174   // if( _lChild ) delete _lChild;
3175   // if( _rChild ) delete _rChild;
3176 }
3177 
3178 bool  MatchNode::find_type(const char *type, int &position) const {
3179   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
3180   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
3181 
3182   if (strcmp(type,_opType)==0)  {
3183     return true;
3184   } else {
3185     ++position;
3186   }
3187   return false;
3188 }
3189 
3190 // Recursive call collecting info on top-level operands, not transitive.
3191 // Implementation does not modify state of internal structures.
3192 void MatchNode::append_components(FormDict& locals, ComponentList& components,
3193                                   bool def_flag) const {
3194   int usedef = def_flag ? Component::DEF : Component::USE;
3195   FormDict &globals = _AD.globalNames();
3196 
3197   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3198   // Base case
3199   if (_lChild==NULL && _rChild==NULL) {
3200     // If _opType is not an operation, do not build a component for it #####
3201     const Form *f = globals[_opType];
3202     if( f != NULL ) {
3203       // Add non-ideals that are operands, operand-classes,
3204       if( ! f->ideal_only()
3205           && (f->is_opclass() || f->is_operand()) ) {
3206         components.insert(_name, _opType, usedef, true);
3207       }
3208     }
3209     return;
3210   }
3211   // Promote results of "Set" to DEF
3212   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
3213   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
3214   tmpdef_flag = false;   // only applies to component immediately following 'Set'
3215   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
3216 }
3217 
3218 // Find the n'th base-operand in the match node,
3219 // recursively investigates match rules of user-defined operands.
3220 //
3221 // Implementation does not modify state of internal structures since they
3222 // can be shared.
3223 bool MatchNode::base_operand(uint &position, FormDict &globals,
3224                              const char * &result, const char * &name,
3225                              const char * &opType) const {
3226   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
3227   // Base case
3228   if (_lChild==NULL && _rChild==NULL) {
3229     // Check for special case: "Universe", "label"
3230     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
3231       if (position == 0) {
3232         result = _result;
3233         name   = _name;
3234         opType = _opType;
3235         return 1;
3236       } else {
3237         -- position;
3238         return 0;
3239       }
3240     }
3241 
3242     const Form *form = globals[_opType];
3243     MatchNode *matchNode = NULL;
3244     // Check for user-defined type
3245     if (form) {
3246       // User operand or instruction?
3247       OperandForm  *opForm = form->is_operand();
3248       InstructForm *inForm = form->is_instruction();
3249       if ( opForm ) {
3250         matchNode = (MatchNode*)opForm->_matrule;
3251       } else if ( inForm ) {
3252         matchNode = (MatchNode*)inForm->_matrule;
3253       }
3254     }
3255     // if this is user-defined, recurse on match rule
3256     // User-defined operand and instruction forms have a match-rule.
3257     if (matchNode) {
3258       return (matchNode->base_operand(position,globals,result,name,opType));
3259     } else {
3260       // Either not a form, or a system-defined form (no match rule).
3261       if (position==0) {
3262         result = _result;
3263         name   = _name;
3264         opType = _opType;
3265         return 1;
3266       } else {
3267         --position;
3268         return 0;
3269       }
3270     }
3271 
3272   } else {
3273     // Examine the left child and right child as well
3274     if (_lChild) {
3275       if (_lChild->base_operand(position, globals, result, name, opType))
3276         return 1;
3277     }
3278 
3279     if (_rChild) {
3280       if (_rChild->base_operand(position, globals, result, name, opType))
3281         return 1;
3282     }
3283   }
3284 
3285   return 0;
3286 }
3287 
3288 // Recursive call on all operands' match rules in my match rule.
3289 uint  MatchNode::num_consts(FormDict &globals) const {
3290   uint        index      = 0;
3291   uint        num_consts = 0;
3292   const char *result;
3293   const char *name;
3294   const char *opType;
3295 
3296   for (uint position = index;
3297        base_operand(position,globals,result,name,opType); position = index) {
3298     ++index;
3299     if( ideal_to_const_type(opType) )        num_consts++;
3300   }
3301 
3302   return num_consts;
3303 }
3304 
3305 // Recursive call on all operands' match rules in my match rule.
3306 // Constants in match rule subtree with specified type
3307 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
3308   uint        index      = 0;
3309   uint        num_consts = 0;
3310   const char *result;
3311   const char *name;
3312   const char *opType;
3313 
3314   for (uint position = index;
3315        base_operand(position,globals,result,name,opType); position = index) {
3316     ++index;
3317     if( ideal_to_const_type(opType) == type ) num_consts++;
3318   }
3319 
3320   return num_consts;
3321 }
3322 
3323 // Recursive call on all operands' match rules in my match rule.
3324 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
3325   return  num_consts( globals, Form::idealP );
3326 }
3327 
3328 bool  MatchNode::sets_result() const {
3329   return   ( (strcmp(_name,"Set") == 0) ? true : false );
3330 }
3331 
3332 const char *MatchNode::reduce_right(FormDict &globals) const {
3333   // If there is no right reduction, return NULL.
3334   const char      *rightStr    = NULL;
3335 
3336   // If we are a "Set", start from the right child.
3337   const MatchNode *const mnode = sets_result() ?
3338     (const MatchNode *)this->_rChild :
3339     (const MatchNode *)this;
3340 
3341   // If our right child exists, it is the right reduction
3342   if ( mnode->_rChild ) {
3343     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
3344       : mnode->_rChild->_opType;
3345   }
3346   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
3347   return rightStr;
3348 }
3349 
3350 const char *MatchNode::reduce_left(FormDict &globals) const {
3351   // If there is no left reduction, return NULL.
3352   const char  *leftStr  = NULL;
3353 
3354   // If we are a "Set", start from the right child.
3355   const MatchNode *const mnode = sets_result() ?
3356     (const MatchNode *)this->_rChild :
3357     (const MatchNode *)this;
3358 
3359   // If our left child exists, it is the left reduction
3360   if ( mnode->_lChild ) {
3361     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
3362       : mnode->_lChild->_opType;
3363   } else {
3364     // May be simple chain rule: (Set dst operand_form_source)
3365     if ( sets_result() ) {
3366       OperandForm *oper = globals[mnode->_opType]->is_operand();
3367       if( oper ) {
3368         leftStr = mnode->_opType;
3369       }
3370     }
3371   }
3372   return leftStr;
3373 }
3374 
3375 //------------------------------count_instr_names------------------------------
3376 // Count occurrences of operands names in the leaves of the instruction
3377 // match rule.
3378 void MatchNode::count_instr_names( Dict &names ) {
3379   if( !this ) return;
3380   if( _lChild ) _lChild->count_instr_names(names);
3381   if( _rChild ) _rChild->count_instr_names(names);
3382   if( !_lChild && !_rChild ) {
3383     uintptr_t cnt = (uintptr_t)names[_name];
3384     cnt++;                      // One more name found
3385     names.Insert(_name,(void*)cnt);
3386   }
3387 }
3388 
3389 //------------------------------build_instr_pred-------------------------------
3390 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
3391 // can skip some leading instances of 'name'.
3392 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
3393   if( _lChild ) {
3394     if( !cnt ) strcpy( buf, "_kids[0]->" );
3395     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
3396     if( cnt < 0 ) return cnt;   // Found it, all done
3397   }
3398   if( _rChild ) {
3399     if( !cnt ) strcpy( buf, "_kids[1]->" );
3400     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
3401     if( cnt < 0 ) return cnt;   // Found it, all done
3402   }
3403   if( !_lChild && !_rChild ) {  // Found a leaf
3404     // Wrong name?  Give up...
3405     if( strcmp(name,_name) ) return cnt;
3406     if( !cnt ) strcpy(buf,"_leaf");
3407     return cnt-1;
3408   }
3409   return cnt;
3410 }
3411 
3412 
3413 //------------------------------build_internalop-------------------------------
3414 // Build string representation of subtree
3415 void MatchNode::build_internalop( ) {
3416   char *iop, *subtree;
3417   const char *lstr, *rstr;
3418   // Build string representation of subtree
3419   // Operation lchildType rchildType
3420   int len = (int)strlen(_opType) + 4;
3421   lstr = (_lChild) ? ((_lChild->_internalop) ?
3422                        _lChild->_internalop : _lChild->_opType) : "";
3423   rstr = (_rChild) ? ((_rChild->_internalop) ?
3424                        _rChild->_internalop : _rChild->_opType) : "";
3425   len += (int)strlen(lstr) + (int)strlen(rstr);
3426   subtree = (char *)malloc(len);
3427   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
3428   // Hash the subtree string in _internalOps; if a name exists, use it
3429   iop = (char *)_AD._internalOps[subtree];
3430   // Else create a unique name, and add it to the hash table
3431   if (iop == NULL) {
3432     iop = subtree;
3433     _AD._internalOps.Insert(subtree, iop);
3434     _AD._internalOpNames.addName(iop);
3435     _AD._internalMatch.Insert(iop, this);
3436   }
3437   // Add the internal operand name to the MatchNode
3438   _internalop = iop;
3439   _result = iop;
3440 }
3441 
3442 
3443 void MatchNode::dump() {
3444   output(stderr);
3445 }
3446 
3447 void MatchNode::output(FILE *fp) {
3448   if (_lChild==0 && _rChild==0) {
3449     fprintf(fp," %s",_name);    // operand
3450   }
3451   else {
3452     fprintf(fp," (%s ",_name);  // " (opcodeName "
3453     if(_lChild) _lChild->output(fp); //               left operand
3454     if(_rChild) _rChild->output(fp); //                    right operand
3455     fprintf(fp,")");                 //                                 ")"
3456   }
3457 }
3458 
3459 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
3460   static const char *needs_ideal_memory_list[] = {
3461     "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
3462     "StoreB","StoreC","Store" ,"StoreFP",
3463     "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
3464     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
3465     "StoreVector", "LoadVector",
3466     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
3467     "LoadPLocked",
3468     "StorePConditional", "StoreIConditional", "StoreLConditional",
3469     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
3470     "StoreCM",
3471     "ClearArray",
3472     "GetAndAddI", "GetAndSetI", "GetAndSetP",
3473     "GetAndAddL", "GetAndSetL", "GetAndSetN",
3474   };
3475   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
3476   if( strcmp(_opType,"PrefetchRead")==0 ||
3477       strcmp(_opType,"PrefetchWrite")==0 ||
3478       strcmp(_opType,"PrefetchAllocation")==0 )
3479     return 1;
3480   if( _lChild ) {
3481     const char *opType = _lChild->_opType;
3482     for( int i=0; i<cnt; i++ )
3483       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3484         return 1;
3485     if( _lChild->needs_ideal_memory_edge(globals) )
3486       return 1;
3487   }
3488   if( _rChild ) {
3489     const char *opType = _rChild->_opType;
3490     for( int i=0; i<cnt; i++ )
3491       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3492         return 1;
3493     if( _rChild->needs_ideal_memory_edge(globals) )
3494       return 1;
3495   }
3496 
3497   return 0;
3498 }
3499 
3500 // TRUE if defines a derived oop, and so needs a base oop edge present
3501 // post-matching.
3502 int MatchNode::needs_base_oop_edge() const {
3503   if( !strcmp(_opType,"AddP") ) return 1;
3504   if( strcmp(_opType,"Set") ) return 0;
3505   return !strcmp(_rChild->_opType,"AddP");
3506 }
3507 
3508 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
3509   if( is_simple_chain_rule(globals) ) {
3510     const char *src = _matrule->_rChild->_opType;
3511     OperandForm *src_op = globals[src]->is_operand();
3512     assert( src_op, "Not operand class of chain rule" );
3513     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
3514   }                             // Else check instruction
3515 
3516   return _matrule ? _matrule->needs_base_oop_edge() : 0;
3517 }
3518 
3519 
3520 //-------------------------cisc spilling methods-------------------------------
3521 // helper routines and methods for detecting cisc-spilling instructions
3522 //-------------------------cisc_spill_merge------------------------------------
3523 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
3524   int cisc_spillable  = Maybe_cisc_spillable;
3525 
3526   // Combine results of left and right checks
3527   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
3528     // neither side is spillable, nor prevents cisc spilling
3529     cisc_spillable = Maybe_cisc_spillable;
3530   }
3531   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
3532     // right side is spillable
3533     cisc_spillable = right_spillable;
3534   }
3535   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
3536     // left side is spillable
3537     cisc_spillable = left_spillable;
3538   }
3539   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
3540     // left or right prevents cisc spilling this instruction
3541     cisc_spillable = Not_cisc_spillable;
3542   }
3543   else {
3544     // Only allow one to spill
3545     cisc_spillable = Not_cisc_spillable;
3546   }
3547 
3548   return cisc_spillable;
3549 }
3550 
3551 //-------------------------root_ops_match--------------------------------------
3552 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
3553   // Base Case: check that the current operands/operations match
3554   assert( op1, "Must have op's name");
3555   assert( op2, "Must have op's name");
3556   const Form *form1 = globals[op1];
3557   const Form *form2 = globals[op2];
3558 
3559   return (form1 == form2);
3560 }
3561 
3562 //-------------------------cisc_spill_match_node-------------------------------
3563 // Recursively check two MatchRules for legal conversion via cisc-spilling
3564 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
3565   int cisc_spillable  = Maybe_cisc_spillable;
3566   int left_spillable  = Maybe_cisc_spillable;
3567   int right_spillable = Maybe_cisc_spillable;
3568 
3569   // Check that each has same number of operands at this level
3570   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
3571     return Not_cisc_spillable;
3572 
3573   // Base Case: check that the current operands/operations match
3574   // or are CISC spillable
3575   assert( _opType, "Must have _opType");
3576   assert( mRule2->_opType, "Must have _opType");
3577   const Form *form  = globals[_opType];
3578   const Form *form2 = globals[mRule2->_opType];
3579   if( form == form2 ) {
3580     cisc_spillable = Maybe_cisc_spillable;
3581   } else {
3582     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
3583     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
3584     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
3585     DataType data_type = Form::none;
3586     if (form->is_operand()) {
3587       // Make sure the loadX matches the type of the reg
3588       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
3589     }
3590     // Detect reg vs (loadX memory)
3591     if( form->is_cisc_reg(globals)
3592         && form2_inst
3593         && data_type != Form::none
3594         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
3595         && (name_left != NULL)       // NOT (load)
3596         && (name_right == NULL) ) {  // NOT (load memory foo)
3597       const Form *form2_left = name_left ? globals[name_left] : NULL;
3598       if( form2_left && form2_left->is_cisc_mem(globals) ) {
3599         cisc_spillable = Is_cisc_spillable;
3600         operand        = _name;
3601         reg_type       = _result;
3602         return Is_cisc_spillable;
3603       } else {
3604         cisc_spillable = Not_cisc_spillable;
3605       }
3606     }
3607     // Detect reg vs memory
3608     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
3609       cisc_spillable = Is_cisc_spillable;
3610       operand        = _name;
3611       reg_type       = _result;
3612       return Is_cisc_spillable;
3613     } else {
3614       cisc_spillable = Not_cisc_spillable;
3615     }
3616   }
3617 
3618   // If cisc is still possible, check rest of tree
3619   if( cisc_spillable == Maybe_cisc_spillable ) {
3620     // Check that each has same number of operands at this level
3621     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3622 
3623     // Check left operands
3624     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
3625       left_spillable = Maybe_cisc_spillable;
3626     } else {
3627       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
3628     }
3629 
3630     // Check right operands
3631     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3632       right_spillable =  Maybe_cisc_spillable;
3633     } else {
3634       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3635     }
3636 
3637     // Combine results of left and right checks
3638     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3639   }
3640 
3641   return cisc_spillable;
3642 }
3643 
3644 //---------------------------cisc_spill_match_rule------------------------------
3645 // Recursively check two MatchRules for legal conversion via cisc-spilling
3646 // This method handles the root of Match tree,
3647 // general recursive checks done in MatchNode
3648 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
3649                                            MatchRule* mRule2, const char* &operand,
3650                                            const char* &reg_type) {
3651   int cisc_spillable  = Maybe_cisc_spillable;
3652   int left_spillable  = Maybe_cisc_spillable;
3653   int right_spillable = Maybe_cisc_spillable;
3654 
3655   // Check that each sets a result
3656   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
3657   // Check that each has same number of operands at this level
3658   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3659 
3660   // Check left operands: at root, must be target of 'Set'
3661   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
3662     left_spillable = Not_cisc_spillable;
3663   } else {
3664     // Do not support cisc-spilling instruction's target location
3665     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
3666       left_spillable = Maybe_cisc_spillable;
3667     } else {
3668       left_spillable = Not_cisc_spillable;
3669     }
3670   }
3671 
3672   // Check right operands: recursive walk to identify reg->mem operand
3673   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3674     right_spillable =  Maybe_cisc_spillable;
3675   } else {
3676     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3677   }
3678 
3679   // Combine results of left and right checks
3680   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3681 
3682   return cisc_spillable;
3683 }
3684 
3685 //----------------------------- equivalent ------------------------------------
3686 // Recursively check to see if two match rules are equivalent.
3687 // This rule handles the root.
3688 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
3689   // Check that each sets a result
3690   if (sets_result() != mRule2->sets_result()) {
3691     return false;
3692   }
3693 
3694   // Check that the current operands/operations match
3695   assert( _opType, "Must have _opType");
3696   assert( mRule2->_opType, "Must have _opType");
3697   const Form *form  = globals[_opType];
3698   const Form *form2 = globals[mRule2->_opType];
3699   if( form != form2 ) {
3700     return false;
3701   }
3702 
3703   if (_lChild ) {
3704     if( !_lChild->equivalent(globals, mRule2->_lChild) )
3705       return false;
3706   } else if (mRule2->_lChild) {
3707     return false; // I have NULL left child, mRule2 has non-NULL left child.
3708   }
3709 
3710   if (_rChild ) {
3711     if( !_rChild->equivalent(globals, mRule2->_rChild) )
3712       return false;
3713   } else if (mRule2->_rChild) {
3714     return false; // I have NULL right child, mRule2 has non-NULL right child.
3715   }
3716 
3717   // We've made it through the gauntlet.
3718   return true;
3719 }
3720 
3721 //----------------------------- equivalent ------------------------------------
3722 // Recursively check to see if two match rules are equivalent.
3723 // This rule handles the operands.
3724 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
3725   if( !mNode2 )
3726     return false;
3727 
3728   // Check that the current operands/operations match
3729   assert( _opType, "Must have _opType");
3730   assert( mNode2->_opType, "Must have _opType");
3731   const Form *form  = globals[_opType];
3732   const Form *form2 = globals[mNode2->_opType];
3733   if( form != form2 ) {
3734     return false;
3735   }
3736 
3737   // Check that their children also match
3738   if (_lChild ) {
3739     if( !_lChild->equivalent(globals, mNode2->_lChild) )
3740       return false;
3741   } else if (mNode2->_lChild) {
3742     return false; // I have NULL left child, mNode2 has non-NULL left child.
3743   }
3744 
3745   if (_rChild ) {
3746     if( !_rChild->equivalent(globals, mNode2->_rChild) )
3747       return false;
3748   } else if (mNode2->_rChild) {
3749     return false; // I have NULL right child, mNode2 has non-NULL right child.
3750   }
3751 
3752   // We've made it through the gauntlet.
3753   return true;
3754 }
3755 
3756 //-------------------------- has_commutative_op -------------------------------
3757 // Recursively check for commutative operations with subtree operands
3758 // which could be swapped.
3759 void MatchNode::count_commutative_op(int& count) {
3760   static const char *commut_op_list[] = {
3761     "AddI","AddL","AddF","AddD",
3762     "AndI","AndL",
3763     "MaxI","MinI",
3764     "MulI","MulL","MulF","MulD",
3765     "OrI" ,"OrL" ,
3766     "XorI","XorL"
3767   };
3768   int cnt = sizeof(commut_op_list)/sizeof(char*);
3769 
3770   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
3771     // Don't swap if right operand is an immediate constant.
3772     bool is_const = false;
3773     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
3774       FormDict &globals = _AD.globalNames();
3775       const Form *form = globals[_rChild->_opType];
3776       if ( form ) {
3777         OperandForm  *oper = form->is_operand();
3778         if( oper && oper->interface_type(globals) == Form::constant_interface )
3779           is_const = true;
3780       }
3781     }
3782     if( !is_const ) {
3783       for( int i=0; i<cnt; i++ ) {
3784         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
3785           count++;
3786           _commutative_id = count; // id should be > 0
3787           break;
3788         }
3789       }
3790     }
3791   }
3792   if( _lChild )
3793     _lChild->count_commutative_op(count);
3794   if( _rChild )
3795     _rChild->count_commutative_op(count);
3796 }
3797 
3798 //-------------------------- swap_commutative_op ------------------------------
3799 // Recursively swap specified commutative operation with subtree operands.
3800 void MatchNode::swap_commutative_op(bool atroot, int id) {
3801   if( _commutative_id == id ) { // id should be > 0
3802     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
3803             "not swappable operation");
3804     MatchNode* tmp = _lChild;
3805     _lChild = _rChild;
3806     _rChild = tmp;
3807     // Don't exit here since we need to build internalop.
3808   }
3809 
3810   bool is_set = ( strcmp(_opType, "Set") == 0 );
3811   if( _lChild )
3812     _lChild->swap_commutative_op(is_set, id);
3813   if( _rChild )
3814     _rChild->swap_commutative_op(is_set, id);
3815 
3816   // If not the root, reduce this subtree to an internal operand
3817   if( !atroot && (_lChild || _rChild) ) {
3818     build_internalop();
3819   }
3820 }
3821 
3822 //-------------------------- swap_commutative_op ------------------------------
3823 // Recursively swap specified commutative operation with subtree operands.
3824 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
3825   assert(match_rules_cnt < 100," too many match rule clones");
3826   // Clone
3827   MatchRule* clone = new MatchRule(_AD, this);
3828   // Swap operands of commutative operation
3829   ((MatchNode*)clone)->swap_commutative_op(true, count);
3830   char* buf = (char*) malloc(strlen(instr_ident) + 4);
3831   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
3832   clone->_result = buf;
3833 
3834   clone->_next = this->_next;
3835   this-> _next = clone;
3836   if( (--count) > 0 ) {
3837     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3838     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3839   }
3840 }
3841 
3842 //------------------------------MatchRule--------------------------------------
3843 MatchRule::MatchRule(ArchDesc &ad)
3844   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
3845     _next = NULL;
3846 }
3847 
3848 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
3849   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
3850     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
3851     _next = NULL;
3852 }
3853 
3854 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
3855                      int numleaves)
3856   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
3857     _numchilds(0) {
3858       _next = NULL;
3859       mroot->_lChild = NULL;
3860       mroot->_rChild = NULL;
3861       delete mroot;
3862       _numleaves = numleaves;
3863       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
3864 }
3865 MatchRule::~MatchRule() {
3866 }
3867 
3868 // Recursive call collecting info on top-level operands, not transitive.
3869 // Implementation does not modify state of internal structures.
3870 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
3871   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3872 
3873   MatchNode::append_components(locals, components,
3874                                false /* not necessarily a def */);
3875 }
3876 
3877 // Recursive call on all operands' match rules in my match rule.
3878 // Implementation does not modify state of internal structures  since they
3879 // can be shared.
3880 // The MatchNode that is called first treats its
3881 bool MatchRule::base_operand(uint &position0, FormDict &globals,
3882                              const char *&result, const char * &name,
3883                              const char * &opType)const{
3884   uint position = position0;
3885 
3886   return (MatchNode::base_operand( position, globals, result, name, opType));
3887 }
3888 
3889 
3890 bool MatchRule::is_base_register(FormDict &globals) const {
3891   uint   position = 1;
3892   const char  *result   = NULL;
3893   const char  *name     = NULL;
3894   const char  *opType   = NULL;
3895   if (!base_operand(position, globals, result, name, opType)) {
3896     position = 0;
3897     if( base_operand(position, globals, result, name, opType) &&
3898         (strcmp(opType,"RegI")==0 ||
3899          strcmp(opType,"RegP")==0 ||
3900          strcmp(opType,"RegN")==0 ||
3901          strcmp(opType,"RegL")==0 ||
3902          strcmp(opType,"RegF")==0 ||
3903          strcmp(opType,"RegD")==0 ||
3904          strcmp(opType,"VecS")==0 ||
3905          strcmp(opType,"VecD")==0 ||
3906          strcmp(opType,"VecX")==0 ||
3907          strcmp(opType,"VecY")==0 ||
3908          strcmp(opType,"Reg" )==0) ) {
3909       return 1;
3910     }
3911   }
3912   return 0;
3913 }
3914 
3915 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
3916   uint         position = 1;
3917   const char  *result   = NULL;
3918   const char  *name     = NULL;
3919   const char  *opType   = NULL;
3920   if (!base_operand(position, globals, result, name, opType)) {
3921     position = 0;
3922     if (base_operand(position, globals, result, name, opType)) {
3923       return ideal_to_const_type(opType);
3924     }
3925   }
3926   return Form::none;
3927 }
3928 
3929 bool MatchRule::is_chain_rule(FormDict &globals) const {
3930 
3931   // Check for chain rule, and do not generate a match list for it
3932   if ((_lChild == NULL) && (_rChild == NULL) ) {
3933     const Form *form = globals[_opType];
3934     // If this is ideal, then it is a base match, not a chain rule.
3935     if ( form && form->is_operand() && (!form->ideal_only())) {
3936       return true;
3937     }
3938   }
3939   // Check for "Set" form of chain rule, and do not generate a match list
3940   if (_rChild) {
3941     const char *rch = _rChild->_opType;
3942     const Form *form = globals[rch];
3943     if ((!strcmp(_opType,"Set") &&
3944          ((form) && form->is_operand()))) {
3945       return true;
3946     }
3947   }
3948   return false;
3949 }
3950 
3951 int MatchRule::is_ideal_copy() const {
3952   if( _rChild ) {
3953     const char  *opType = _rChild->_opType;
3954 #if 1
3955     if( strcmp(opType,"CastIP")==0 )
3956       return 1;
3957 #else
3958     if( strcmp(opType,"CastII")==0 )
3959       return 1;
3960     // Do not treat *CastPP this way, because it
3961     // may transfer a raw pointer to an oop.
3962     // If the register allocator were to coalesce this
3963     // into a single LRG, the GC maps would be incorrect.
3964     //if( strcmp(opType,"CastPP")==0 )
3965     //  return 1;
3966     //if( strcmp(opType,"CheckCastPP")==0 )
3967     //  return 1;
3968     //
3969     // Do not treat CastX2P or CastP2X this way, because
3970     // raw pointers and int types are treated differently
3971     // when saving local & stack info for safepoints in
3972     // Output().
3973     //if( strcmp(opType,"CastX2P")==0 )
3974     //  return 1;
3975     //if( strcmp(opType,"CastP2X")==0 )
3976     //  return 1;
3977 #endif
3978   }
3979   if( is_chain_rule(_AD.globalNames()) &&
3980       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
3981     return 1;
3982   return 0;
3983 }
3984 
3985 
3986 int MatchRule::is_expensive() const {
3987   if( _rChild ) {
3988     const char  *opType = _rChild->_opType;
3989     if( strcmp(opType,"AtanD")==0 ||
3990         strcmp(opType,"CosD")==0 ||
3991         strcmp(opType,"DivD")==0 ||
3992         strcmp(opType,"DivF")==0 ||
3993         strcmp(opType,"DivI")==0 ||
3994         strcmp(opType,"ExpD")==0 ||
3995         strcmp(opType,"LogD")==0 ||
3996         strcmp(opType,"Log10D")==0 ||
3997         strcmp(opType,"ModD")==0 ||
3998         strcmp(opType,"ModF")==0 ||
3999         strcmp(opType,"ModI")==0 ||
4000         strcmp(opType,"PowD")==0 ||
4001         strcmp(opType,"SinD")==0 ||
4002         strcmp(opType,"SqrtD")==0 ||
4003         strcmp(opType,"TanD")==0 ||
4004         strcmp(opType,"ConvD2F")==0 ||
4005         strcmp(opType,"ConvD2I")==0 ||
4006         strcmp(opType,"ConvD2L")==0 ||
4007         strcmp(opType,"ConvF2D")==0 ||
4008         strcmp(opType,"ConvF2I")==0 ||
4009         strcmp(opType,"ConvF2L")==0 ||
4010         strcmp(opType,"ConvI2D")==0 ||
4011         strcmp(opType,"ConvI2F")==0 ||
4012         strcmp(opType,"ConvI2L")==0 ||
4013         strcmp(opType,"ConvL2D")==0 ||
4014         strcmp(opType,"ConvL2F")==0 ||
4015         strcmp(opType,"ConvL2I")==0 ||
4016         strcmp(opType,"DecodeN")==0 ||
4017         strcmp(opType,"EncodeP")==0 ||
4018         strcmp(opType,"EncodePKlass")==0 ||
4019         strcmp(opType,"DecodeNKlass")==0 ||
4020         strcmp(opType,"RoundDouble")==0 ||
4021         strcmp(opType,"RoundFloat")==0 ||
4022         strcmp(opType,"ReverseBytesI")==0 ||
4023         strcmp(opType,"ReverseBytesL")==0 ||
4024         strcmp(opType,"ReverseBytesUS")==0 ||
4025         strcmp(opType,"ReverseBytesS")==0 ||
4026         strcmp(opType,"ReplicateB")==0 ||
4027         strcmp(opType,"ReplicateS")==0 ||
4028         strcmp(opType,"ReplicateI")==0 ||
4029         strcmp(opType,"ReplicateL")==0 ||
4030         strcmp(opType,"ReplicateF")==0 ||
4031         strcmp(opType,"ReplicateD")==0 ||
4032         0 /* 0 to line up columns nicely */ )
4033       return 1;
4034   }
4035   return 0;
4036 }
4037 
4038 bool MatchRule::is_ideal_if() const {
4039   if( !_opType ) return false;
4040   return
4041     !strcmp(_opType,"If"            ) ||
4042     !strcmp(_opType,"CountedLoopEnd");
4043 }
4044 
4045 bool MatchRule::is_ideal_fastlock() const {
4046   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4047     return (strcmp(_rChild->_opType,"FastLock") == 0);
4048   }
4049   return false;
4050 }
4051 
4052 bool MatchRule::is_ideal_membar() const {
4053   if( !_opType ) return false;
4054   return
4055     !strcmp(_opType,"MemBarAcquire"  ) ||
4056     !strcmp(_opType,"MemBarRelease"  ) ||
4057     !strcmp(_opType,"MemBarAcquireLock") ||
4058     !strcmp(_opType,"MemBarReleaseLock") ||
4059     !strcmp(_opType,"MemBarVolatile" ) ||
4060     !strcmp(_opType,"MemBarCPUOrder" ) ||
4061     !strcmp(_opType,"MemBarStoreStore" );
4062 }
4063 
4064 bool MatchRule::is_ideal_loadPC() const {
4065   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4066     return (strcmp(_rChild->_opType,"LoadPC") == 0);
4067   }
4068   return false;
4069 }
4070 
4071 bool MatchRule::is_ideal_box() const {
4072   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4073     return (strcmp(_rChild->_opType,"Box") == 0);
4074   }
4075   return false;
4076 }
4077 
4078 bool MatchRule::is_ideal_goto() const {
4079   bool   ideal_goto = false;
4080 
4081   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
4082     ideal_goto = true;
4083   }
4084   return ideal_goto;
4085 }
4086 
4087 bool MatchRule::is_ideal_jump() const {
4088   if( _opType ) {
4089     if( !strcmp(_opType,"Jump") )
4090       return true;
4091   }
4092   return false;
4093 }
4094 
4095 bool MatchRule::is_ideal_bool() const {
4096   if( _opType ) {
4097     if( !strcmp(_opType,"Bool") )
4098       return true;
4099   }
4100   return false;
4101 }
4102 
4103 
4104 Form::DataType MatchRule::is_ideal_load() const {
4105   Form::DataType ideal_load = Form::none;
4106 
4107   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4108     const char *opType = _rChild->_opType;
4109     ideal_load = is_load_from_memory(opType);
4110   }
4111 
4112   return ideal_load;
4113 }
4114 
4115 bool MatchRule::is_vector() const {
4116   static const char *vector_list[] = {
4117     "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
4118     "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
4119     "MulVS","MulVI","MulVF","MulVD",
4120     "DivVF","DivVD",
4121     "AndV" ,"XorV" ,"OrV",
4122     "LShiftCntV","RShiftCntV",
4123     "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
4124     "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
4125     "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
4126     "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
4127     "LoadVector","StoreVector",
4128     // Next are not supported currently.
4129     "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
4130     "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
4131   };
4132   int cnt = sizeof(vector_list)/sizeof(char*);
4133   if (_rChild) {
4134     const char  *opType = _rChild->_opType;
4135     for (int i=0; i<cnt; i++)
4136       if (strcmp(opType,vector_list[i]) == 0)
4137         return true;
4138   }
4139   return false;
4140 }
4141 
4142 
4143 bool MatchRule::skip_antidep_check() const {
4144   // Some loads operate on what is effectively immutable memory so we
4145   // should skip the anti dep computations.  For some of these nodes
4146   // the rewritable field keeps the anti dep logic from triggering but
4147   // for certain kinds of LoadKlass it does not since they are
4148   // actually reading memory which could be rewritten by the runtime,
4149   // though never by generated code.  This disables it uniformly for
4150   // the nodes that behave like this: LoadKlass, LoadNKlass and
4151   // LoadRange.
4152   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4153     const char *opType = _rChild->_opType;
4154     if (strcmp("LoadKlass", opType) == 0 ||
4155         strcmp("LoadNKlass", opType) == 0 ||
4156         strcmp("LoadRange", opType) == 0) {
4157       return true;
4158     }
4159   }
4160 
4161   return false;
4162 }
4163 
4164 
4165 Form::DataType MatchRule::is_ideal_store() const {
4166   Form::DataType ideal_store = Form::none;
4167 
4168   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4169     const char *opType = _rChild->_opType;
4170     ideal_store = is_store_to_memory(opType);
4171   }
4172 
4173   return ideal_store;
4174 }
4175 
4176 
4177 void MatchRule::dump() {
4178   output(stderr);
4179 }
4180 
4181 // Write just one line.
4182 void MatchRule::output_short(FILE *fp) {
4183   fprintf(fp,"MatchRule: ( %s",_name);
4184   if (_lChild) _lChild->output(fp);
4185   if (_rChild) _rChild->output(fp);
4186   fprintf(fp," )");
4187 }
4188 
4189 void MatchRule::output(FILE *fp) {
4190   output_short(fp);
4191   fprintf(fp,"\n   nesting depth = %d\n", _depth);
4192   if (_result) fprintf(fp,"   Result Type = %s", _result);
4193   fprintf(fp,"\n");
4194 }
4195 
4196 //------------------------------Attribute--------------------------------------
4197 Attribute::Attribute(char *id, char* val, int type)
4198   : _ident(id), _val(val), _atype(type) {
4199 }
4200 Attribute::~Attribute() {
4201 }
4202 
4203 int Attribute::int_val(ArchDesc &ad) {
4204   // Make sure it is an integer constant:
4205   int result = 0;
4206   if (!_val || !ADLParser::is_int_token(_val, result)) {
4207     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
4208                   _ident, _val ? _val : "");
4209   }
4210   return result;
4211 }
4212 
4213 void Attribute::dump() {
4214   output(stderr);
4215 } // Debug printer
4216 
4217 // Write to output files
4218 void Attribute::output(FILE *fp) {
4219   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
4220 }
4221 
4222 //------------------------------FormatRule----------------------------------
4223 FormatRule::FormatRule(char *temp)
4224   : _temp(temp) {
4225 }
4226 FormatRule::~FormatRule() {
4227 }
4228 
4229 void FormatRule::dump() {
4230   output(stderr);
4231 }
4232 
4233 // Write to output files
4234 void FormatRule::output(FILE *fp) {
4235   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
4236   fprintf(fp,"\n");
4237 }