1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // output_h.cpp - Class HPP file output routines for architecture definition
  26 #include "adlc.hpp"
  27 
  28 // The comment delimiter used in format statements after assembler instructions.
  29 #define commentSeperator "!"
  30 
  31 // Generate the #define that describes the number of registers.
  32 static void defineRegCount(FILE *fp, RegisterForm *registers) {
  33   if (registers) {
  34     int regCount =  AdlcVMDeps::Physical + registers->_rdefs.count();
  35     fprintf(fp,"\n");
  36     fprintf(fp,"// the number of reserved registers + machine registers.\n");
  37     fprintf(fp,"#define REG_COUNT    %d\n", regCount);
  38   }
  39 }
  40 
  41 // Output enumeration of machine register numbers
  42 // (1)
  43 // // Enumerate machine registers starting after reserved regs.
  44 // // in the order of occurrence in the register block.
  45 // enum MachRegisterNumbers {
  46 //   EAX_num = 0,
  47 //   ...
  48 //   _last_Mach_Reg
  49 // }
  50 void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
  51   if (_register) {
  52     RegDef *reg_def = NULL;
  53 
  54     // Output a #define for the number of machine registers
  55     defineRegCount(fp_hpp, _register);
  56 
  57     // Count all the Save_On_Entry and Always_Save registers
  58     int    saved_on_entry = 0;
  59     int  c_saved_on_entry = 0;
  60     _register->reset_RegDefs();
  61     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
  62       if( strcmp(reg_def->_callconv,"SOE") == 0 ||
  63           strcmp(reg_def->_callconv,"AS")  == 0 )  ++saved_on_entry;
  64       if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
  65           strcmp(reg_def->_c_conv,"AS")  == 0 )  ++c_saved_on_entry;
  66     }
  67     fprintf(fp_hpp, "\n");
  68     fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
  69     fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT    %d\n",   max(saved_on_entry,c_saved_on_entry));
  70     fprintf(fp_hpp, "#define     SAVED_ON_ENTRY_REG_COUNT    %d\n",   saved_on_entry);
  71     fprintf(fp_hpp, "#define   C_SAVED_ON_ENTRY_REG_COUNT    %d\n", c_saved_on_entry);
  72 
  73     // (1)
  74     // Build definition for enumeration of register numbers
  75     fprintf(fp_hpp, "\n");
  76     fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
  77     fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
  78     fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
  79 
  80     // Output the register number for each register in the allocation classes
  81     _register->reset_RegDefs();
  82     int i = 0;
  83     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
  84       fprintf(fp_hpp,"  %s_num,", reg_def->_regname);
  85       for (int j = 0; j < 20-(int)strlen(reg_def->_regname); j++) fprintf(fp_hpp, " ");
  86       fprintf(fp_hpp," // enum %3d, regnum %3d, reg encode %3s\n",
  87               i++,
  88               reg_def->register_num(),
  89               reg_def->register_encode());
  90     }
  91     // Finish defining enumeration
  92     fprintf(fp_hpp, "  _last_Mach_Reg            // %d\n", i);
  93     fprintf(fp_hpp, "};\n");
  94   }
  95 
  96   fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
  97   fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
  98   fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
  99   fprintf(fp_hpp, "#define FORALL_BODY ");
 100   int len = RegisterForm::RegMask_Size();
 101   for( int i = 0; i < len; i++ )
 102     fprintf(fp_hpp, "BODY(%d) ",i);
 103   fprintf(fp_hpp, "\n\n");
 104 
 105   fprintf(fp_hpp,"class RegMask;\n");
 106   // All RegMasks are declared "extern const ..." in ad_<arch>.hpp
 107   // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
 108 }
 109 
 110 
 111 // Output enumeration of machine register encodings
 112 // (2)
 113 // // Enumerate machine registers starting after reserved regs.
 114 // // in the order of occurrence in the alloc_class(es).
 115 // enum MachRegisterEncodes {
 116 //   EAX_enc = 0x00,
 117 //   ...
 118 // }
 119 void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
 120   if (_register) {
 121     RegDef *reg_def = NULL;
 122     RegDef *reg_def_next = NULL;
 123 
 124     // (2)
 125     // Build definition for enumeration of encode values
 126     fprintf(fp_hpp, "\n");
 127     fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
 128     fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
 129     fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
 130 
 131     // Find max enum string length.
 132     size_t maxlen = 0;
 133     _register->reset_RegDefs();
 134     reg_def = _register->iter_RegDefs();
 135     while (reg_def != NULL) {
 136       size_t len = strlen(reg_def->_regname);
 137       if (len > maxlen) maxlen = len;
 138       reg_def = _register->iter_RegDefs();
 139     }
 140 
 141     // Output the register encoding for each register in the allocation classes
 142     _register->reset_RegDefs();
 143     reg_def_next = _register->iter_RegDefs();
 144     while( (reg_def = reg_def_next) != NULL ) {
 145       reg_def_next = _register->iter_RegDefs();
 146       fprintf(fp_hpp,"  %s_enc", reg_def->_regname);
 147       for (size_t i = strlen(reg_def->_regname); i < maxlen; i++) fprintf(fp_hpp, " ");
 148       fprintf(fp_hpp," = %3s%s\n", reg_def->register_encode(), reg_def_next == NULL? "" : "," );
 149     }
 150     // Finish defining enumeration
 151     fprintf(fp_hpp, "};\n");
 152 
 153   } // Done with register form
 154 }
 155 
 156 
 157 // Declare an array containing the machine register names, strings.
 158 static void declareRegNames(FILE *fp, RegisterForm *registers) {
 159   if (registers) {
 160 //    fprintf(fp,"\n");
 161 //    fprintf(fp,"// An array of character pointers to machine register names.\n");
 162 //    fprintf(fp,"extern const char *regName[];\n");
 163   }
 164 }
 165 
 166 // Declare an array containing the machine register sizes in 32-bit words.
 167 void ArchDesc::declareRegSizes(FILE *fp) {
 168 // regSize[] is not used
 169 }
 170 
 171 // Declare an array containing the machine register encoding values
 172 static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
 173   if (registers) {
 174     // // //
 175     // fprintf(fp,"\n");
 176     // fprintf(fp,"// An array containing the machine register encode values\n");
 177     // fprintf(fp,"extern const char  regEncode[];\n");
 178   }
 179 }
 180 
 181 
 182 // ---------------------------------------------------------------------------
 183 //------------------------------Utilities to build Instruction Classes--------
 184 // ---------------------------------------------------------------------------
 185 static void out_RegMask(FILE *fp) {
 186   fprintf(fp,"  virtual const RegMask &out_RegMask() const;\n");
 187 }
 188 
 189 // ---------------------------------------------------------------------------
 190 //--------Utilities to build MachOper and MachNode derived Classes------------
 191 // ---------------------------------------------------------------------------
 192 
 193 //------------------------------Utilities to build Operand Classes------------
 194 static void in_RegMask(FILE *fp) {
 195   fprintf(fp,"  virtual const RegMask *in_RegMask(int index) const;\n");
 196 }
 197 
 198 static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
 199   int i = 0;
 200   Component *comp;
 201 
 202   if (oper->num_consts(globals) == 0) return;
 203   // Iterate over the component list looking for constants
 204   oper->_components.reset();
 205   if ((comp = oper->_components.iter()) == NULL) {
 206     assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
 207     const char *type = oper->ideal_type(globals);
 208     if (!strcmp(type, "ConI")) {
 209       if (i > 0) fprintf(fp,", ");
 210       fprintf(fp,"  int32          _c%d;\n", i);
 211     }
 212     else if (!strcmp(type, "ConP")) {
 213       if (i > 0) fprintf(fp,", ");
 214       fprintf(fp,"  const TypePtr *_c%d;\n", i);
 215     }
 216     else if (!strcmp(type, "ConN")) {
 217       if (i > 0) fprintf(fp,", ");
 218       fprintf(fp,"  const TypeNarrowOop *_c%d;\n", i);
 219     }
 220     else if (!strcmp(type, "ConNKlass")) {
 221       if (i > 0) fprintf(fp,", ");
 222       fprintf(fp,"  const TypeNarrowKlass *_c%d;\n", i);
 223     }
 224     else if (!strcmp(type, "ConL")) {
 225       if (i > 0) fprintf(fp,", ");
 226       fprintf(fp,"  jlong          _c%d;\n", i);
 227     }
 228     else if (!strcmp(type, "ConF")) {
 229       if (i > 0) fprintf(fp,", ");
 230       fprintf(fp,"  jfloat         _c%d;\n", i);
 231     }
 232     else if (!strcmp(type, "ConD")) {
 233       if (i > 0) fprintf(fp,", ");
 234       fprintf(fp,"  jdouble        _c%d;\n", i);
 235     }
 236     else if (!strcmp(type, "Bool")) {
 237       fprintf(fp,"private:\n");
 238       fprintf(fp,"  BoolTest::mask _c%d;\n", i);
 239       fprintf(fp,"public:\n");
 240     }
 241     else {
 242       assert(0, "Non-constant operand lacks component list.");
 243     }
 244   } // end if NULL
 245   else {
 246     oper->_components.reset();
 247     while ((comp = oper->_components.iter()) != NULL) {
 248       if (!strcmp(comp->base_type(globals), "ConI")) {
 249         fprintf(fp,"  jint             _c%d;\n", i);
 250         i++;
 251       }
 252       else if (!strcmp(comp->base_type(globals), "ConP")) {
 253         fprintf(fp,"  const TypePtr *_c%d;\n", i);
 254         i++;
 255       }
 256       else if (!strcmp(comp->base_type(globals), "ConN")) {
 257         fprintf(fp,"  const TypePtr *_c%d;\n", i);
 258         i++;
 259       }
 260       else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
 261         fprintf(fp,"  const TypePtr *_c%d;\n", i);
 262         i++;
 263       }
 264       else if (!strcmp(comp->base_type(globals), "ConL")) {
 265         fprintf(fp,"  jlong            _c%d;\n", i);
 266         i++;
 267       }
 268       else if (!strcmp(comp->base_type(globals), "ConF")) {
 269         fprintf(fp,"  jfloat           _c%d;\n", i);
 270         i++;
 271       }
 272       else if (!strcmp(comp->base_type(globals), "ConD")) {
 273         fprintf(fp,"  jdouble          _c%d;\n", i);
 274         i++;
 275       }
 276     }
 277   }
 278 }
 279 
 280 // Declare constructor.
 281 // Parameters start with condition code, then all other constants
 282 //
 283 // (0) public:
 284 // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
 285 // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
 286 //
 287 static void defineConstructor(FILE *fp, const char *name, uint num_consts,
 288                               ComponentList &lst, bool is_ideal_bool,
 289                               Form::DataType constant_type, FormDict &globals) {
 290   fprintf(fp,"public:\n");
 291   // generate line (1)
 292   fprintf(fp,"  %sOper(", name);
 293   if( num_consts == 0 ) {
 294     fprintf(fp,") {}\n");
 295     return;
 296   }
 297 
 298   // generate parameters for constants
 299   uint i = 0;
 300   Component *comp;
 301   lst.reset();
 302   if ((comp = lst.iter()) == NULL) {
 303     assert(num_consts == 1, "Bad component list detected.\n");
 304     switch( constant_type ) {
 305     case Form::idealI : {
 306       fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i);
 307       break;
 308     }
 309     case Form::idealN :      { fprintf(fp,"const TypeNarrowOop *c%d", i); break; }
 310     case Form::idealNKlass : { fprintf(fp,"const TypeNarrowKlass *c%d", i); break; }
 311     case Form::idealP :      { fprintf(fp,"const TypePtr *c%d", i); break; }
 312     case Form::idealL :      { fprintf(fp,"jlong c%d", i);   break;        }
 313     case Form::idealF :      { fprintf(fp,"jfloat c%d", i);  break;        }
 314     case Form::idealD :      { fprintf(fp,"jdouble c%d", i); break;        }
 315     default:
 316       assert(!is_ideal_bool, "Non-constant operand lacks component list.");
 317       break;
 318     }
 319   } // end if NULL
 320   else {
 321     lst.reset();
 322     while((comp = lst.iter()) != NULL) {
 323       if (!strcmp(comp->base_type(globals), "ConI")) {
 324         if (i > 0) fprintf(fp,", ");
 325         fprintf(fp,"int32 c%d", i);
 326         i++;
 327       }
 328       else if (!strcmp(comp->base_type(globals), "ConP")) {
 329         if (i > 0) fprintf(fp,", ");
 330         fprintf(fp,"const TypePtr *c%d", i);
 331         i++;
 332       }
 333       else if (!strcmp(comp->base_type(globals), "ConN")) {
 334         if (i > 0) fprintf(fp,", ");
 335         fprintf(fp,"const TypePtr *c%d", i);
 336         i++;
 337       }
 338       else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
 339         if (i > 0) fprintf(fp,", ");
 340         fprintf(fp,"const TypePtr *c%d", i);
 341         i++;
 342       }
 343       else if (!strcmp(comp->base_type(globals), "ConL")) {
 344         if (i > 0) fprintf(fp,", ");
 345         fprintf(fp,"jlong c%d", i);
 346         i++;
 347       }
 348       else if (!strcmp(comp->base_type(globals), "ConF")) {
 349         if (i > 0) fprintf(fp,", ");
 350         fprintf(fp,"jfloat c%d", i);
 351         i++;
 352       }
 353       else if (!strcmp(comp->base_type(globals), "ConD")) {
 354         if (i > 0) fprintf(fp,", ");
 355         fprintf(fp,"jdouble c%d", i);
 356         i++;
 357       }
 358       else if (!strcmp(comp->base_type(globals), "Bool")) {
 359         if (i > 0) fprintf(fp,", ");
 360         fprintf(fp,"BoolTest::mask c%d", i);
 361         i++;
 362       }
 363     }
 364   }
 365   // finish line (1) and start line (2)
 366   fprintf(fp,")  : ");
 367   // generate initializers for constants
 368   i = 0;
 369   fprintf(fp,"_c%d(c%d)", i, i);
 370   for( i = 1; i < num_consts; ++i) {
 371     fprintf(fp,", _c%d(c%d)", i, i);
 372   }
 373   // The body for the constructor is empty
 374   fprintf(fp," {}\n");
 375 }
 376 
 377 // ---------------------------------------------------------------------------
 378 // Utilities to generate format rules for machine operands and instructions
 379 // ---------------------------------------------------------------------------
 380 
 381 // Generate the format rule for condition codes
 382 static void defineCCodeDump(OperandForm* oper, FILE *fp, int i) {
 383   assert(oper != NULL, "what");
 384   CondInterface* cond = oper->_interface->is_CondInterface();
 385   fprintf(fp, "       if( _c%d == BoolTest::eq ) st->print(\"%s\");\n",i,cond->_equal_format);
 386   fprintf(fp, "  else if( _c%d == BoolTest::ne ) st->print(\"%s\");\n",i,cond->_not_equal_format);
 387   fprintf(fp, "  else if( _c%d == BoolTest::le ) st->print(\"%s\");\n",i,cond->_less_equal_format);
 388   fprintf(fp, "  else if( _c%d == BoolTest::ge ) st->print(\"%s\");\n",i,cond->_greater_equal_format);
 389   fprintf(fp, "  else if( _c%d == BoolTest::lt ) st->print(\"%s\");\n",i,cond->_less_format);
 390   fprintf(fp, "  else if( _c%d == BoolTest::gt ) st->print(\"%s\");\n",i,cond->_greater_format);
 391   fprintf(fp, "  else if( _c%d == BoolTest::overflow ) st->print(\"%s\");\n",i,cond->_overflow_format);
 392   fprintf(fp, "  else if( _c%d == BoolTest::no_overflow ) st->print(\"%s\");\n",i,cond->_no_overflow_format);
 393 }
 394 
 395 // Output code that dumps constant values, increment "i" if type is constant
 396 static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i, OperandForm* oper) {
 397   if (!strcmp(ideal_type, "ConI")) {
 398     fprintf(fp,"   st->print(\"#%%d\", _c%d);\n", i);
 399     fprintf(fp,"   st->print(\"/0x%%08x\", _c%d);\n", i);
 400     ++i;
 401   }
 402   else if (!strcmp(ideal_type, "ConP")) {
 403     fprintf(fp,"    _c%d->dump_on(st);\n", i);
 404     ++i;
 405   }
 406   else if (!strcmp(ideal_type, "ConN")) {
 407     fprintf(fp,"    _c%d->dump_on(st);\n", i);
 408     ++i;
 409   }
 410   else if (!strcmp(ideal_type, "ConNKlass")) {
 411     fprintf(fp,"    _c%d->dump_on(st);\n", i);
 412     ++i;
 413   }
 414   else if (!strcmp(ideal_type, "ConL")) {
 415     fprintf(fp,"    st->print(\"#\" INT64_FORMAT, _c%d);\n", i);
 416     fprintf(fp,"    st->print(\"/\" PTR64_FORMAT, _c%d);\n", i);
 417     ++i;
 418   }
 419   else if (!strcmp(ideal_type, "ConF")) {
 420     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
 421     fprintf(fp,"    jint _c%di = JavaValue(_c%d).get_jint();\n", i, i);
 422     fprintf(fp,"    st->print(\"/0x%%x/\", _c%di);\n", i);
 423     ++i;
 424   }
 425   else if (!strcmp(ideal_type, "ConD")) {
 426     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
 427     fprintf(fp,"    jlong _c%dl = JavaValue(_c%d).get_jlong();\n", i, i);
 428     fprintf(fp,"    st->print(\"/\" PTR64_FORMAT, _c%dl);\n", i);
 429     ++i;
 430   }
 431   else if (!strcmp(ideal_type, "Bool")) {
 432     defineCCodeDump(oper, fp,i);
 433     ++i;
 434   }
 435 
 436   return i;
 437 }
 438 
 439 // Generate the format rule for an operand
 440 void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
 441   if (!for_c_file) {
 442     // invoked after output #ifndef PRODUCT to ad_<arch>.hpp
 443     // compile the bodies separately, to cut down on recompilations
 444     fprintf(fp,"  virtual void           int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
 445     fprintf(fp,"  virtual void           ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
 446     return;
 447   }
 448 
 449   // Local pointer indicates remaining part of format rule
 450   int idx = 0;                   // position of operand in match rule
 451 
 452   // Generate internal format function, used when stored locally
 453   fprintf(fp, "\n#ifndef PRODUCT\n");
 454   fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
 455   // Generate the user-defined portion of the format
 456   if (oper._format) {
 457     if ( oper._format->_strings.count() != 0 ) {
 458       // No initialization code for int_format
 459 
 460       // Build the format from the entries in strings and rep_vars
 461       const char  *string  = NULL;
 462       oper._format->_rep_vars.reset();
 463       oper._format->_strings.reset();
 464       while ( (string = oper._format->_strings.iter()) != NULL ) {
 465 
 466         // Check if this is a standard string or a replacement variable
 467         if ( string != NameList::_signal ) {
 468           // Normal string
 469           // Pass through to st->print
 470           fprintf(fp,"  st->print(\"%s\");\n", string);
 471         } else {
 472           // Replacement variable
 473           const char *rep_var = oper._format->_rep_vars.iter();
 474           // Check that it is a local name, and an operand
 475           const Form* form = oper._localNames[rep_var];
 476           if (form == NULL) {
 477             globalAD->syntax_err(oper._linenum,
 478                                  "\'%s\' not found in format for %s\n", rep_var, oper._ident);
 479             assert(form, "replacement variable was not found in local names");
 480           }
 481           OperandForm *op      = form->is_operand();
 482           // Get index if register or constant
 483           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
 484             idx  = oper.register_position( globals, rep_var);
 485           }
 486           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
 487             idx  = oper.constant_position( globals, rep_var);
 488           } else {
 489             idx = 0;
 490           }
 491 
 492           // output invocation of "$..."s format function
 493           if ( op != NULL ) op->int_format(fp, globals, idx);
 494 
 495           if ( idx == -1 ) {
 496             fprintf(stderr,
 497                     "Using a name, %s, that isn't in match rule\n", rep_var);
 498             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
 499           }
 500         } // Done with a replacement variable
 501       } // Done with all format strings
 502     } else {
 503       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
 504       oper.int_format(fp, globals, 0);
 505     }
 506 
 507   } else { // oper._format == NULL
 508     // Provide a few special case formats where the AD writer cannot.
 509     if ( strcmp(oper._ident,"Universe")==0 ) {
 510       fprintf(fp, "  st->print(\"$$univ\");\n");
 511     }
 512     // labelOper::int_format is defined in ad_<...>.cpp
 513   }
 514   // ALWAYS! Provide a special case output for condition codes.
 515   if( oper.is_ideal_bool() ) {
 516     defineCCodeDump(&oper, fp,0);
 517   }
 518   fprintf(fp,"}\n");
 519 
 520   // Generate external format function, when data is stored externally
 521   fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
 522   // Generate the user-defined portion of the format
 523   if (oper._format) {
 524     if ( oper._format->_strings.count() != 0 ) {
 525 
 526       // Check for a replacement string "$..."
 527       if ( oper._format->_rep_vars.count() != 0 ) {
 528         // Initialization code for ext_format
 529       }
 530 
 531       // Build the format from the entries in strings and rep_vars
 532       const char  *string  = NULL;
 533       oper._format->_rep_vars.reset();
 534       oper._format->_strings.reset();
 535       while ( (string = oper._format->_strings.iter()) != NULL ) {
 536 
 537         // Check if this is a standard string or a replacement variable
 538         if ( string != NameList::_signal ) {
 539           // Normal string
 540           // Pass through to st->print
 541           fprintf(fp,"  st->print(\"%s\");\n", string);
 542         } else {
 543           // Replacement variable
 544           const char *rep_var = oper._format->_rep_vars.iter();
 545          // Check that it is a local name, and an operand
 546           const Form* form = oper._localNames[rep_var];
 547           if (form == NULL) {
 548             globalAD->syntax_err(oper._linenum,
 549                                  "\'%s\' not found in format for %s\n", rep_var, oper._ident);
 550             assert(form, "replacement variable was not found in local names");
 551           }
 552           OperandForm *op      = form->is_operand();
 553           // Get index if register or constant
 554           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
 555             idx  = oper.register_position( globals, rep_var);
 556           }
 557           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
 558             idx  = oper.constant_position( globals, rep_var);
 559           } else {
 560             idx = 0;
 561           }
 562           // output invocation of "$..."s format function
 563           if ( op != NULL )   op->ext_format(fp, globals, idx);
 564 
 565           // Lookup the index position of the replacement variable
 566           idx      = oper._components.operand_position_format(rep_var, &oper);
 567           if ( idx == -1 ) {
 568             fprintf(stderr,
 569                     "Using a name, %s, that isn't in match rule\n", rep_var);
 570             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
 571           }
 572         } // Done with a replacement variable
 573       } // Done with all format strings
 574 
 575     } else {
 576       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
 577       oper.ext_format(fp, globals, 0);
 578     }
 579   } else { // oper._format == NULL
 580     // Provide a few special case formats where the AD writer cannot.
 581     if ( strcmp(oper._ident,"Universe")==0 ) {
 582       fprintf(fp, "  st->print(\"$$univ\");\n");
 583     }
 584     // labelOper::ext_format is defined in ad_<...>.cpp
 585   }
 586   // ALWAYS! Provide a special case output for condition codes.
 587   if( oper.is_ideal_bool() ) {
 588     defineCCodeDump(&oper, fp,0);
 589   }
 590   fprintf(fp, "}\n");
 591   fprintf(fp, "#endif\n");
 592 }
 593 
 594 
 595 // Generate the format rule for an instruction
 596 void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
 597   if (!for_c_file) {
 598     // compile the bodies separately, to cut down on recompilations
 599     // #ifndef PRODUCT region generated by caller
 600     fprintf(fp,"  virtual void           format(PhaseRegAlloc *ra, outputStream *st) const;\n");
 601     return;
 602   }
 603 
 604   // Define the format function
 605   fprintf(fp, "#ifndef PRODUCT\n");
 606   fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
 607 
 608   // Generate the user-defined portion of the format
 609   if( inst._format ) {
 610     // If there are replacement variables,
 611     // Generate index values needed for determining the operand position
 612     if( inst._format->_rep_vars.count() )
 613       inst.index_temps(fp, globals);
 614 
 615     // Build the format from the entries in strings and rep_vars
 616     const char  *string  = NULL;
 617     inst._format->_rep_vars.reset();
 618     inst._format->_strings.reset();
 619     while( (string = inst._format->_strings.iter()) != NULL ) {
 620       fprintf(fp,"  ");
 621       // Check if this is a standard string or a replacement variable
 622       if( string == NameList::_signal ) { // Replacement variable
 623         const char* rep_var =  inst._format->_rep_vars.iter();
 624         inst.rep_var_format( fp, rep_var);
 625       } else if( string == NameList::_signal3 ) { // Replacement variable in raw text
 626         const char* rep_var =  inst._format->_rep_vars.iter();
 627         const Form *form   = inst._localNames[rep_var];
 628         if (form == NULL) {
 629           fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
 630           assert(false, "ShouldNotReachHere()");
 631         }
 632         OpClassForm *opc   = form->is_opclass();
 633         assert( opc, "replacement variable was not found in local names");
 634         // Lookup the index position of the replacement variable
 635         int idx  = inst.operand_position_format(rep_var);
 636         if ( idx == -1 ) {
 637           assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
 638           assert( false, "ShouldNotReachHere()");
 639         }
 640 
 641         if (inst.is_noninput_operand(idx)) {
 642           assert( false, "ShouldNotReachHere()");
 643         } else {
 644           // Output the format call for this operand
 645           fprintf(fp,"opnd_array(%d)",idx);
 646         }
 647         rep_var =  inst._format->_rep_vars.iter();
 648         inst._format->_strings.iter();
 649         if ( strcmp(rep_var,"$constant") == 0 && opc->is_operand()) {
 650           Form::DataType constant_type = form->is_operand()->is_base_constant(globals);
 651           if ( constant_type == Form::idealD ) {
 652             fprintf(fp,"->constantD()");
 653           } else if ( constant_type == Form::idealF ) {
 654             fprintf(fp,"->constantF()");
 655           } else if ( constant_type == Form::idealL ) {
 656             fprintf(fp,"->constantL()");
 657           } else {
 658             fprintf(fp,"->constant()");
 659           }
 660         } else if ( strcmp(rep_var,"$cmpcode") == 0) {
 661             fprintf(fp,"->ccode()");
 662         } else {
 663           assert( false, "ShouldNotReachHere()");
 664         }
 665       } else if( string == NameList::_signal2 ) // Raw program text
 666         fputs(inst._format->_strings.iter(), fp);
 667       else
 668         fprintf(fp,"st->print(\"%s\");\n", string);
 669     } // Done with all format strings
 670   } // Done generating the user-defined portion of the format
 671 
 672   // Add call debug info automatically
 673   Form::CallType call_type = inst.is_ideal_call();
 674   if( call_type != Form::invalid_type ) {
 675     switch( call_type ) {
 676     case Form::JAVA_DYNAMIC:
 677       fprintf(fp,"  _method->print_short_name(st);\n");
 678       break;
 679     case Form::JAVA_STATIC:
 680       fprintf(fp,"  if( _method ) _method->print_short_name(st);\n");
 681       fprintf(fp,"  else st->print(\" wrapper for: %%s\", _name);\n");
 682       fprintf(fp,"  if( !_method ) dump_trap_args(st);\n");
 683       break;
 684     case Form::JAVA_COMPILED:
 685     case Form::JAVA_INTERP:
 686       break;
 687     case Form::JAVA_RUNTIME:
 688     case Form::JAVA_LEAF:
 689     case Form::JAVA_NATIVE:
 690       fprintf(fp,"  st->print(\" %%s\", _name);");
 691       break;
 692     default:
 693       assert(0,"ShouldNotReachHere");
 694     }
 695     fprintf(fp,  "  st->print_cr(\"\");\n" );
 696     fprintf(fp,  "  if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
 697     fprintf(fp,  "  st->print(\"        # \");\n" );
 698     fprintf(fp,  "  if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
 699   }
 700   else if(inst.is_ideal_safepoint()) {
 701     fprintf(fp,  "  st->print(\"\");\n" );
 702     fprintf(fp,  "  if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
 703     fprintf(fp,  "  st->print(\"        # \");\n" );
 704     fprintf(fp,  "  if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
 705   }
 706   else if( inst.is_ideal_if() ) {
 707     fprintf(fp,  "  st->print(\"  P=%%f C=%%f\",_prob,_fcnt);\n" );
 708   }
 709   else if( inst.is_ideal_mem() ) {
 710     // Print out the field name if available to improve readability
 711     fprintf(fp,  "  if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
 712     fprintf(fp,  "    ciField* f = ra->C->alias_type(adr_type())->field();\n");
 713     fprintf(fp,  "    st->print(\" %s Field: \");\n", commentSeperator);
 714     fprintf(fp,  "    if (f->is_volatile())\n");
 715     fprintf(fp,  "      st->print(\"volatile \");\n");
 716     fprintf(fp,  "    f->holder()->name()->print_symbol_on(st);\n");
 717     fprintf(fp,  "    st->print(\".\");\n");
 718     fprintf(fp,  "    f->name()->print_symbol_on(st);\n");
 719     fprintf(fp,  "    if (f->is_constant())\n");
 720     fprintf(fp,  "      st->print(\" (constant)\");\n");
 721     fprintf(fp,  "  } else {\n");
 722     // Make sure 'Volatile' gets printed out
 723     fprintf(fp,  "    if (ra->C->alias_type(adr_type())->is_volatile())\n");
 724     fprintf(fp,  "      st->print(\" volatile!\");\n");
 725     fprintf(fp,  "  }\n");
 726   }
 727 
 728   // Complete the definition of the format function
 729   fprintf(fp, "}\n#endif\n");
 730 }
 731 
 732 void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
 733   if (!_pipeline)
 734     return;
 735 
 736   fprintf(fp_hpp, "\n");
 737   fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
 738   fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
 739 
 740   if (_pipeline->_maxcycleused <=
 741 #ifdef SPARC
 742     64
 743 #else
 744     32
 745 #endif
 746       ) {
 747     fprintf(fp_hpp, "protected:\n");
 748     fprintf(fp_hpp, "  %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
 749     fprintf(fp_hpp, "public:\n");
 750     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
 751     if (_pipeline->_maxcycleused <= 32)
 752       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
 753     else {
 754       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
 755       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
 756     }
 757     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
 758     fprintf(fp_hpp, "    _mask = in._mask;\n");
 759     fprintf(fp_hpp, "    return *this;\n");
 760     fprintf(fp_hpp, "  }\n\n");
 761     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
 762     fprintf(fp_hpp, "    return ((_mask & in2._mask) != 0);\n");
 763     fprintf(fp_hpp, "  }\n\n");
 764     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
 765     fprintf(fp_hpp, "    _mask <<= n;\n");
 766     fprintf(fp_hpp, "    return *this;\n");
 767     fprintf(fp_hpp, "  }\n\n");
 768     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
 769     fprintf(fp_hpp, "    _mask |= in2._mask;\n");
 770     fprintf(fp_hpp, "  }\n\n");
 771     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
 772     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
 773   }
 774   else {
 775     fprintf(fp_hpp, "protected:\n");
 776     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 777     uint l;
 778     fprintf(fp_hpp, "  uint ");
 779     for (l = 1; l <= masklen; l++)
 780       fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
 781     fprintf(fp_hpp, "public:\n");
 782     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : ");
 783     for (l = 1; l <= masklen; l++)
 784       fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
 785     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(");
 786     for (l = 1; l <= masklen; l++)
 787       fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
 788     for (l = 1; l <= masklen; l++)
 789       fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
 790 
 791     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
 792     for (l = 1; l <= masklen; l++)
 793       fprintf(fp_hpp, "    _mask%d = in._mask%d;\n", l, l);
 794     fprintf(fp_hpp, "    return *this;\n");
 795     fprintf(fp_hpp, "  }\n\n");
 796     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
 797     fprintf(fp_hpp, "    Pipeline_Use_Cycle_Mask out;\n");
 798     for (l = 1; l <= masklen; l++)
 799       fprintf(fp_hpp, "    out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
 800     fprintf(fp_hpp, "    return out;\n");
 801     fprintf(fp_hpp, "  }\n\n");
 802     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
 803     fprintf(fp_hpp, "    return (");
 804     for (l = 1; l <= masklen; l++)
 805       fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
 806     fprintf(fp_hpp, ") ? true : false;\n");
 807     fprintf(fp_hpp, "  }\n\n");
 808     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
 809     fprintf(fp_hpp, "    if (n >= 32)\n");
 810     fprintf(fp_hpp, "      do {\n       ");
 811     for (l = masklen; l > 1; l--)
 812       fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
 813     fprintf(fp_hpp, " _mask%d = 0;\n", 1);
 814     fprintf(fp_hpp, "      } while ((n -= 32) >= 32);\n\n");
 815     fprintf(fp_hpp, "    if (n > 0) {\n");
 816     fprintf(fp_hpp, "      uint m = 32 - n;\n");
 817     fprintf(fp_hpp, "      uint mask = (1 << n) - 1;\n");
 818     fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
 819     for (l = 2; l < masklen; l++) {
 820       fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
 821     }
 822     fprintf(fp_hpp, "      _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
 823     fprintf(fp_hpp, "    }\n");
 824 
 825     fprintf(fp_hpp, "    return *this;\n");
 826     fprintf(fp_hpp, "  }\n\n");
 827     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
 828     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
 829     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
 830   }
 831 
 832   fprintf(fp_hpp, "  friend class Pipeline_Use;\n\n");
 833   fprintf(fp_hpp, "  friend class Pipeline_Use_Element;\n\n");
 834   fprintf(fp_hpp, "};\n\n");
 835 
 836   uint rescount = 0;
 837   const char *resource;
 838 
 839   for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
 840       int mask = _pipeline->_resdict[resource]->is_resource()->mask();
 841       if ((mask & (mask-1)) == 0)
 842         rescount++;
 843     }
 844 
 845   fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
 846   fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
 847   fprintf(fp_hpp, "protected:\n");
 848   fprintf(fp_hpp, "  // Mask of used functional units\n");
 849   fprintf(fp_hpp, "  uint _used;\n\n");
 850   fprintf(fp_hpp, "  // Lower and upper bound of functional unit number range\n");
 851   fprintf(fp_hpp, "  uint _lb, _ub;\n\n");
 852   fprintf(fp_hpp, "  // Indicates multiple functionals units available\n");
 853   fprintf(fp_hpp, "  bool _multiple;\n\n");
 854   fprintf(fp_hpp, "  // Mask of specific used cycles\n");
 855   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask _mask;\n\n");
 856   fprintf(fp_hpp, "public:\n");
 857   fprintf(fp_hpp, "  Pipeline_Use_Element() {}\n\n");
 858   fprintf(fp_hpp, "  Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
 859   fprintf(fp_hpp, "  : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
 860   fprintf(fp_hpp, "  uint used() const { return _used; }\n\n");
 861   fprintf(fp_hpp, "  uint lowerBound() const { return _lb; }\n\n");
 862   fprintf(fp_hpp, "  uint upperBound() const { return _ub; }\n\n");
 863   fprintf(fp_hpp, "  bool multiple() const { return _multiple; }\n\n");
 864   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
 865   fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Element &in2) const {\n");
 866   fprintf(fp_hpp, "    return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
 867   fprintf(fp_hpp, "  }\n\n");
 868   fprintf(fp_hpp, "  void step(uint cycles) {\n");
 869   fprintf(fp_hpp, "    _used = 0;\n");
 870   fprintf(fp_hpp, "    _mask <<= cycles;\n");
 871   fprintf(fp_hpp, "  }\n\n");
 872   fprintf(fp_hpp, "  friend class Pipeline_Use;\n");
 873   fprintf(fp_hpp, "};\n\n");
 874 
 875   fprintf(fp_hpp, "// Pipeline_Use Class\n");
 876   fprintf(fp_hpp, "class Pipeline_Use {\n");
 877   fprintf(fp_hpp, "protected:\n");
 878   fprintf(fp_hpp, "  // These resources can be used\n");
 879   fprintf(fp_hpp, "  uint _resources_used;\n\n");
 880   fprintf(fp_hpp, "  // These resources are used; excludes multiple choice functional units\n");
 881   fprintf(fp_hpp, "  uint _resources_used_exclusively;\n\n");
 882   fprintf(fp_hpp, "  // Number of elements\n");
 883   fprintf(fp_hpp, "  uint _count;\n\n");
 884   fprintf(fp_hpp, "  // This is the array of Pipeline_Use_Elements\n");
 885   fprintf(fp_hpp, "  Pipeline_Use_Element * _elements;\n\n");
 886   fprintf(fp_hpp, "public:\n");
 887   fprintf(fp_hpp, "  Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
 888   fprintf(fp_hpp, "  : _resources_used(resources_used)\n");
 889   fprintf(fp_hpp, "  , _resources_used_exclusively(resources_used_exclusively)\n");
 890   fprintf(fp_hpp, "  , _count(count)\n");
 891   fprintf(fp_hpp, "  , _elements(elements)\n");
 892   fprintf(fp_hpp, "  {}\n\n");
 893   fprintf(fp_hpp, "  uint resourcesUsed() const { return _resources_used; }\n\n");
 894   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
 895   fprintf(fp_hpp, "  uint count() const { return _count; }\n\n");
 896   fprintf(fp_hpp, "  Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
 897   fprintf(fp_hpp, "  uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
 898   fprintf(fp_hpp, "  void add_usage(const Pipeline_Use &pred);\n\n");
 899   fprintf(fp_hpp, "  void reset() {\n");
 900   fprintf(fp_hpp, "    _resources_used = _resources_used_exclusively = 0;\n");
 901   fprintf(fp_hpp, "  };\n\n");
 902   fprintf(fp_hpp, "  void step(uint cycles) {\n");
 903   fprintf(fp_hpp, "    reset();\n");
 904   fprintf(fp_hpp, "    for (uint i = 0; i < %d; i++)\n",
 905     rescount);
 906   fprintf(fp_hpp, "      (&_elements[i])->step(cycles);\n");
 907   fprintf(fp_hpp, "  };\n\n");
 908   fprintf(fp_hpp, "  static const Pipeline_Use         elaborated_use;\n");
 909   fprintf(fp_hpp, "  static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
 910     rescount);
 911   fprintf(fp_hpp, "  friend class Pipeline;\n");
 912   fprintf(fp_hpp, "};\n\n");
 913 
 914   fprintf(fp_hpp, "// Pipeline Class\n");
 915   fprintf(fp_hpp, "class Pipeline {\n");
 916   fprintf(fp_hpp, "public:\n");
 917 
 918   fprintf(fp_hpp, "  static bool enabled() { return %s; }\n\n",
 919     _pipeline ? "true" : "false" );
 920 
 921   assert( _pipeline->_maxInstrsPerBundle &&
 922         ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
 923           _pipeline->_instrFetchUnitSize &&
 924           _pipeline->_instrFetchUnits,
 925     "unspecified pipeline architecture units");
 926 
 927   uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
 928 
 929   fprintf(fp_hpp, "  enum {\n");
 930   fprintf(fp_hpp, "    _variable_size_instructions = %d,\n",
 931     _pipeline->_variableSizeInstrs ? 1 : 0);
 932   fprintf(fp_hpp, "    _fixed_size_instructions = %d,\n",
 933     _pipeline->_variableSizeInstrs ? 0 : 1);
 934   fprintf(fp_hpp, "    _branch_has_delay_slot = %d,\n",
 935     _pipeline->_branchHasDelaySlot ? 1 : 0);
 936   fprintf(fp_hpp, "    _max_instrs_per_bundle = %d,\n",
 937     _pipeline->_maxInstrsPerBundle);
 938   fprintf(fp_hpp, "    _max_bundles_per_cycle = %d,\n",
 939     _pipeline->_maxBundlesPerCycle);
 940   fprintf(fp_hpp, "    _max_instrs_per_cycle = %d\n",
 941     _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
 942   fprintf(fp_hpp, "  };\n\n");
 943 
 944   fprintf(fp_hpp, "  static bool instr_has_unit_size() { return %s; }\n\n",
 945     _pipeline->_instrUnitSize != 0 ? "true" : "false" );
 946   if( _pipeline->_bundleUnitSize != 0 )
 947     if( _pipeline->_instrUnitSize != 0 )
 948       fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
 949     else
 950       fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
 951   else
 952     fprintf(fp_hpp, "// Bundling is not supported\n\n");
 953   if( _pipeline->_instrUnitSize != 0 )
 954     fprintf(fp_hpp, "  // Size of an instruction\n");
 955   else
 956     fprintf(fp_hpp, "  // Size of an individual instruction does not exist - unsupported\n");
 957   fprintf(fp_hpp, "  static uint instr_unit_size() {");
 958   if( _pipeline->_instrUnitSize == 0 )
 959     fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
 960   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
 961 
 962   if( _pipeline->_bundleUnitSize != 0 )
 963     fprintf(fp_hpp, "  // Size of a bundle\n");
 964   else
 965     fprintf(fp_hpp, "  // Bundles do not exist - unsupported\n");
 966   fprintf(fp_hpp, "  static uint bundle_unit_size() {");
 967   if( _pipeline->_bundleUnitSize == 0 )
 968     fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
 969   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
 970 
 971   fprintf(fp_hpp, "  static bool requires_bundling() { return %s; }\n\n",
 972     _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
 973 
 974   fprintf(fp_hpp, "private:\n");
 975   fprintf(fp_hpp, "  Pipeline();  // Not a legal constructor\n");
 976   fprintf(fp_hpp, "\n");
 977   fprintf(fp_hpp, "  const unsigned char                   _read_stage_count;\n");
 978   fprintf(fp_hpp, "  const unsigned char                   _write_stage;\n");
 979   fprintf(fp_hpp, "  const unsigned char                   _fixed_latency;\n");
 980   fprintf(fp_hpp, "  const unsigned char                   _instruction_count;\n");
 981   fprintf(fp_hpp, "  const bool                            _has_fixed_latency;\n");
 982   fprintf(fp_hpp, "  const bool                            _has_branch_delay;\n");
 983   fprintf(fp_hpp, "  const bool                            _has_multiple_bundles;\n");
 984   fprintf(fp_hpp, "  const bool                            _force_serialization;\n");
 985   fprintf(fp_hpp, "  const bool                            _may_have_no_code;\n");
 986   fprintf(fp_hpp, "  const enum machPipelineStages * const _read_stages;\n");
 987   fprintf(fp_hpp, "  const enum machPipelineStages * const _resource_stage;\n");
 988   fprintf(fp_hpp, "  const uint                    * const _resource_cycles;\n");
 989   fprintf(fp_hpp, "  const Pipeline_Use                    _resource_use;\n");
 990   fprintf(fp_hpp, "\n");
 991   fprintf(fp_hpp, "public:\n");
 992   fprintf(fp_hpp, "  Pipeline(uint                            write_stage,\n");
 993   fprintf(fp_hpp, "           uint                            count,\n");
 994   fprintf(fp_hpp, "           bool                            has_fixed_latency,\n");
 995   fprintf(fp_hpp, "           uint                            fixed_latency,\n");
 996   fprintf(fp_hpp, "           uint                            instruction_count,\n");
 997   fprintf(fp_hpp, "           bool                            has_branch_delay,\n");
 998   fprintf(fp_hpp, "           bool                            has_multiple_bundles,\n");
 999   fprintf(fp_hpp, "           bool                            force_serialization,\n");
1000   fprintf(fp_hpp, "           bool                            may_have_no_code,\n");
1001   fprintf(fp_hpp, "           enum machPipelineStages * const dst,\n");
1002   fprintf(fp_hpp, "           enum machPipelineStages * const stage,\n");
1003   fprintf(fp_hpp, "           uint                    * const cycles,\n");
1004   fprintf(fp_hpp, "           Pipeline_Use                    resource_use)\n");
1005   fprintf(fp_hpp, "  : _write_stage(write_stage)\n");
1006   fprintf(fp_hpp, "  , _read_stage_count(count)\n");
1007   fprintf(fp_hpp, "  , _has_fixed_latency(has_fixed_latency)\n");
1008   fprintf(fp_hpp, "  , _fixed_latency(fixed_latency)\n");
1009   fprintf(fp_hpp, "  , _read_stages(dst)\n");
1010   fprintf(fp_hpp, "  , _resource_stage(stage)\n");
1011   fprintf(fp_hpp, "  , _resource_cycles(cycles)\n");
1012   fprintf(fp_hpp, "  , _resource_use(resource_use)\n");
1013   fprintf(fp_hpp, "  , _instruction_count(instruction_count)\n");
1014   fprintf(fp_hpp, "  , _has_branch_delay(has_branch_delay)\n");
1015   fprintf(fp_hpp, "  , _has_multiple_bundles(has_multiple_bundles)\n");
1016   fprintf(fp_hpp, "  , _force_serialization(force_serialization)\n");
1017   fprintf(fp_hpp, "  , _may_have_no_code(may_have_no_code)\n");
1018   fprintf(fp_hpp, "  {};\n");
1019   fprintf(fp_hpp, "\n");
1020   fprintf(fp_hpp, "  uint writeStage() const {\n");
1021   fprintf(fp_hpp, "    return (_write_stage);\n");
1022   fprintf(fp_hpp, "  }\n");
1023   fprintf(fp_hpp, "\n");
1024   fprintf(fp_hpp, "  enum machPipelineStages readStage(int ndx) const {\n");
1025   fprintf(fp_hpp, "    return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
1026   fprintf(fp_hpp, "  }\n\n");
1027   fprintf(fp_hpp, "  uint resourcesUsed() const {\n");
1028   fprintf(fp_hpp, "    return _resource_use.resourcesUsed();\n  }\n\n");
1029   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const {\n");
1030   fprintf(fp_hpp, "    return _resource_use.resourcesUsedExclusively();\n  }\n\n");
1031   fprintf(fp_hpp, "  bool hasFixedLatency() const {\n");
1032   fprintf(fp_hpp, "    return (_has_fixed_latency);\n  }\n\n");
1033   fprintf(fp_hpp, "  uint fixedLatency() const {\n");
1034   fprintf(fp_hpp, "    return (_fixed_latency);\n  }\n\n");
1035   fprintf(fp_hpp, "  uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
1036   fprintf(fp_hpp, "  uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
1037   fprintf(fp_hpp, "  const Pipeline_Use& resourceUse() const {\n");
1038   fprintf(fp_hpp, "    return (_resource_use); }\n\n");
1039   fprintf(fp_hpp, "  const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
1040   fprintf(fp_hpp, "    return (&_resource_use._elements[i]); }\n\n");
1041   fprintf(fp_hpp, "  uint resourceUseCount() const {\n");
1042   fprintf(fp_hpp, "    return (_resource_use._count); }\n\n");
1043   fprintf(fp_hpp, "  uint instructionCount() const {\n");
1044   fprintf(fp_hpp, "    return (_instruction_count); }\n\n");
1045   fprintf(fp_hpp, "  bool hasBranchDelay() const {\n");
1046   fprintf(fp_hpp, "    return (_has_branch_delay); }\n\n");
1047   fprintf(fp_hpp, "  bool hasMultipleBundles() const {\n");
1048   fprintf(fp_hpp, "    return (_has_multiple_bundles); }\n\n");
1049   fprintf(fp_hpp, "  bool forceSerialization() const {\n");
1050   fprintf(fp_hpp, "    return (_force_serialization); }\n\n");
1051   fprintf(fp_hpp, "  bool mayHaveNoCode() const {\n");
1052   fprintf(fp_hpp, "    return (_may_have_no_code); }\n\n");
1053   fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
1054   fprintf(fp_hpp, "//  return (_resource_use_masks[resource]); }\n\n");
1055   fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
1056   fprintf(fp_hpp, "  static const char * stageName(uint i);\n");
1057   fprintf(fp_hpp, "#endif\n");
1058   fprintf(fp_hpp, "};\n\n");
1059 
1060   fprintf(fp_hpp, "// Bundle class\n");
1061   fprintf(fp_hpp, "class Bundle {\n");
1062 
1063   uint mshift = 0;
1064   for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
1065     mshift++;
1066 
1067   uint rshift = rescount;
1068 
1069   fprintf(fp_hpp, "protected:\n");
1070   fprintf(fp_hpp, "  enum {\n");
1071   fprintf(fp_hpp, "    _unused_delay                   = 0x%x,\n", 0);
1072   fprintf(fp_hpp, "    _use_nop_delay                  = 0x%x,\n", 1);
1073   fprintf(fp_hpp, "    _use_unconditional_delay        = 0x%x,\n", 2);
1074   fprintf(fp_hpp, "    _use_conditional_delay          = 0x%x,\n", 3);
1075   fprintf(fp_hpp, "    _used_in_conditional_delay      = 0x%x,\n", 4);
1076   fprintf(fp_hpp, "    _used_in_unconditional_delay    = 0x%x,\n", 5);
1077   fprintf(fp_hpp, "    _used_in_all_conditional_delays = 0x%x,\n", 6);
1078   fprintf(fp_hpp, "\n");
1079   fprintf(fp_hpp, "    _use_delay                      = 0x%x,\n", 3);
1080   fprintf(fp_hpp, "    _used_in_delay                  = 0x%x\n",  4);
1081   fprintf(fp_hpp, "  };\n\n");
1082   fprintf(fp_hpp, "  uint _flags          : 3,\n");
1083   fprintf(fp_hpp, "       _starts_bundle  : 1,\n");
1084   fprintf(fp_hpp, "       _instr_count    : %d,\n",   mshift);
1085   fprintf(fp_hpp, "       _resources_used : %d;\n",   rshift);
1086   fprintf(fp_hpp, "public:\n");
1087   fprintf(fp_hpp, "  Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
1088   fprintf(fp_hpp, "  void set_instr_count(uint i) { _instr_count  = i; }\n");
1089   fprintf(fp_hpp, "  void set_resources_used(uint i) { _resources_used   = i; }\n");
1090   fprintf(fp_hpp, "  void clear_usage() { _flags = _unused_delay; }\n");
1091   fprintf(fp_hpp, "  void set_starts_bundle() { _starts_bundle = true; }\n");
1092 
1093   fprintf(fp_hpp, "  uint flags() const { return (_flags); }\n");
1094   fprintf(fp_hpp, "  uint instr_count() const { return (_instr_count); }\n");
1095   fprintf(fp_hpp, "  uint resources_used() const { return (_resources_used); }\n");
1096   fprintf(fp_hpp, "  bool starts_bundle() const { return (_starts_bundle != 0); }\n");
1097 
1098   fprintf(fp_hpp, "  void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
1099   fprintf(fp_hpp, "  void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
1100   fprintf(fp_hpp, "  void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
1101   fprintf(fp_hpp, "  void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
1102   fprintf(fp_hpp, "  void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
1103   fprintf(fp_hpp, "  void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
1104 
1105   fprintf(fp_hpp, "  bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
1106   fprintf(fp_hpp, "  bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
1107   fprintf(fp_hpp, "  bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
1108   fprintf(fp_hpp, "  bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
1109   fprintf(fp_hpp, "  bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
1110   fprintf(fp_hpp, "  bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
1111   fprintf(fp_hpp, "  bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
1112   fprintf(fp_hpp, "  bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
1113 
1114   fprintf(fp_hpp, "  enum {\n");
1115   fprintf(fp_hpp, "    _nop_count = %d\n",
1116     _pipeline->_nopcnt);
1117   fprintf(fp_hpp, "  };\n\n");
1118   fprintf(fp_hpp, "  static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n",
1119     _pipeline->_nopcnt);
1120   fprintf(fp_hpp, "#ifndef PRODUCT\n");
1121   fprintf(fp_hpp, "  void dump(outputStream *st = tty) const;\n");
1122   fprintf(fp_hpp, "#endif\n");
1123   fprintf(fp_hpp, "};\n\n");
1124 
1125 //  const char *classname;
1126 //  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
1127 //    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
1128 //    fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
1129 //  }
1130 }
1131 
1132 //------------------------------declareClasses---------------------------------
1133 // Construct the class hierarchy of MachNode classes from the instruction &
1134 // operand lists
1135 void ArchDesc::declareClasses(FILE *fp) {
1136 
1137   // Declare an array containing the machine register names, strings.
1138   declareRegNames(fp, _register);
1139 
1140   // Declare an array containing the machine register encoding values
1141   declareRegEncodes(fp, _register);
1142 
1143   // Generate declarations for the total number of operands
1144   fprintf(fp,"\n");
1145   fprintf(fp,"// Total number of operands defined in architecture definition\n");
1146   int num_operands = 0;
1147   OperandForm *op;
1148   for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
1149     // Ensure this is a machine-world instruction
1150     if (op->ideal_only()) continue;
1151 
1152     ++num_operands;
1153   }
1154   int first_operand_class = num_operands;
1155   OpClassForm *opc;
1156   for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
1157     // Ensure this is a machine-world instruction
1158     if (opc->ideal_only()) continue;
1159 
1160     ++num_operands;
1161   }
1162   fprintf(fp,"#define FIRST_OPERAND_CLASS   %d\n", first_operand_class);
1163   fprintf(fp,"#define NUM_OPERANDS          %d\n", num_operands);
1164   fprintf(fp,"\n");
1165   // Generate declarations for the total number of instructions
1166   fprintf(fp,"// Total number of instructions defined in architecture definition\n");
1167   fprintf(fp,"#define NUM_INSTRUCTIONS   %d\n",instructFormCount());
1168 
1169 
1170   // Generate Machine Classes for each operand defined in AD file
1171   fprintf(fp,"\n");
1172   fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
1173   // Iterate through all operands
1174   _operands.reset();
1175   OperandForm *oper;
1176   for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
1177     // Ensure this is a machine-world instruction
1178     if (oper->ideal_only() ) continue;
1179     // The declaration of labelOper is in machine-independent file: machnode
1180     if ( strcmp(oper->_ident,"label")  == 0 ) continue;
1181     // The declaration of methodOper is in machine-independent file: machnode
1182     if ( strcmp(oper->_ident,"method") == 0 ) continue;
1183 
1184     // Build class definition for this operand
1185     fprintf(fp,"\n");
1186     fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
1187     fprintf(fp,"private:\n");
1188     // Operand definitions that depend upon number of input edges
1189     {
1190       uint num_edges = oper->num_edges(_globalNames);
1191       if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
1192         fprintf(fp,"  virtual uint           num_edges() const { return %d; }\n",
1193               num_edges );
1194       }
1195       if( num_edges > 0 ) {
1196         in_RegMask(fp);
1197       }
1198     }
1199 
1200     // Support storing constants inside the MachOper
1201     declareConstStorage(fp,_globalNames,oper);
1202 
1203     // Support storage of the condition codes
1204     if( oper->is_ideal_bool() ) {
1205       fprintf(fp,"  virtual int ccode() const { \n");
1206       fprintf(fp,"    switch (_c0) {\n");
1207       fprintf(fp,"    case  BoolTest::eq : return equal();\n");
1208       fprintf(fp,"    case  BoolTest::gt : return greater();\n");
1209       fprintf(fp,"    case  BoolTest::lt : return less();\n");
1210       fprintf(fp,"    case  BoolTest::ne : return not_equal();\n");
1211       fprintf(fp,"    case  BoolTest::le : return less_equal();\n");
1212       fprintf(fp,"    case  BoolTest::ge : return greater_equal();\n");
1213       fprintf(fp,"    case  BoolTest::overflow : return overflow();\n");
1214       fprintf(fp,"    case  BoolTest::no_overflow: return no_overflow();\n");
1215       fprintf(fp,"    default : ShouldNotReachHere(); return 0;\n");
1216       fprintf(fp,"    }\n");
1217       fprintf(fp,"  };\n");
1218     }
1219 
1220     // Support storage of the condition codes
1221     if( oper->is_ideal_bool() ) {
1222       fprintf(fp,"  virtual void negate() { \n");
1223       fprintf(fp,"    _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
1224       fprintf(fp,"  };\n");
1225     }
1226 
1227     // Declare constructor.
1228     // Parameters start with condition code, then all other constants
1229     //
1230     // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
1231     // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
1232     //
1233     Form::DataType constant_type = oper->simple_type(_globalNames);
1234     defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
1235                       oper->_components, oper->is_ideal_bool(),
1236                       constant_type, _globalNames);
1237 
1238     // Clone function
1239     fprintf(fp,"  virtual MachOper      *clone(Compile* C) const;\n");
1240 
1241     // Support setting a spill offset into a constant operand.
1242     // We only support setting an 'int' offset, while in the
1243     // LP64 build spill offsets are added with an AddP which
1244     // requires a long constant.  Thus we don't support spilling
1245     // in frames larger than 4Gig.
1246     if( oper->has_conI(_globalNames) ||
1247         oper->has_conL(_globalNames) )
1248       fprintf(fp, "  virtual void set_con( jint c0 ) { _c0 = c0; }\n");
1249 
1250     // virtual functions for encoding and format
1251     //    fprintf(fp,"  virtual void           encode()   const {\n    %s }\n",
1252     //            (oper->_encrule)?(oper->_encrule->_encrule):"");
1253     // Check the interface type, and generate the correct query functions
1254     // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
1255 
1256     fprintf(fp,"  virtual uint           opcode() const { return %s; }\n",
1257             machOperEnum(oper->_ident));
1258 
1259     // virtual function to look up ideal return type of machine instruction
1260     //
1261     // (1)  virtual const Type    *type() const { return .....; }
1262     //
1263     if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
1264         (oper->_matrule->_rChild == NULL)) {
1265       unsigned int position = 0;
1266       const char  *opret, *opname, *optype;
1267       oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
1268       fprintf(fp,"  virtual const Type    *type() const {");
1269       const char *type = getIdealType(optype);
1270       if( type != NULL ) {
1271         Form::DataType data_type = oper->is_base_constant(_globalNames);
1272         // Check if we are an ideal pointer type
1273         if( data_type == Form::idealP || data_type == Form::idealN || data_type == Form::idealNKlass ) {
1274           // Return the ideal type we already have: <TypePtr *>
1275           fprintf(fp," return _c0;");
1276         } else {
1277           // Return the appropriate bottom type
1278           fprintf(fp," return %s;", getIdealType(optype));
1279         }
1280       } else {
1281         fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
1282       }
1283       fprintf(fp," }\n");
1284     } else {
1285       // Check for user-defined stack slots, based upon sRegX
1286       Form::DataType data_type = oper->is_user_name_for_sReg();
1287       if( data_type != Form::none ){
1288         const char *type = NULL;
1289         switch( data_type ) {
1290         case Form::idealI: type = "TypeInt::INT";   break;
1291         case Form::idealP: type = "TypePtr::BOTTOM";break;
1292         case Form::idealF: type = "Type::FLOAT";    break;
1293         case Form::idealD: type = "Type::DOUBLE";   break;
1294         case Form::idealL: type = "TypeLong::LONG"; break;
1295         case Form::none: // fall through
1296         default:
1297           assert( false, "No support for this type of stackSlot");
1298         }
1299         fprintf(fp,"  virtual const Type    *type() const { return %s; } // stackSlotX\n", type);
1300       }
1301     }
1302 
1303 
1304     //
1305     // virtual functions for defining the encoding interface.
1306     //
1307     // Access the linearized ideal register mask,
1308     // map to physical register encoding
1309     if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
1310       // Just use the default virtual 'reg' call
1311     } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
1312       // Special handling for operand 'sReg', a Stack Slot Register.
1313       // Map linearized ideal register mask to stack slot number
1314       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
1315       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
1316       fprintf(fp,"  }\n");
1317       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
1318       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
1319       fprintf(fp,"  }\n");
1320     }
1321 
1322     // Output the operand specific access functions used by an enc_class
1323     // These are only defined when we want to override the default virtual func
1324     if (oper->_interface != NULL) {
1325       fprintf(fp,"\n");
1326       // Check if it is a Memory Interface
1327       if ( oper->_interface->is_MemInterface() != NULL ) {
1328         MemInterface *mem_interface = oper->_interface->is_MemInterface();
1329         const char *base = mem_interface->_base;
1330         if( base != NULL ) {
1331           define_oper_interface(fp, *oper, _globalNames, "base", base);
1332         }
1333         char *index = mem_interface->_index;
1334         if( index != NULL ) {
1335           define_oper_interface(fp, *oper, _globalNames, "index", index);
1336         }
1337         const char *scale = mem_interface->_scale;
1338         if( scale != NULL ) {
1339           define_oper_interface(fp, *oper, _globalNames, "scale", scale);
1340         }
1341         const char *disp = mem_interface->_disp;
1342         if( disp != NULL ) {
1343           define_oper_interface(fp, *oper, _globalNames, "disp", disp);
1344           oper->disp_is_oop(fp, _globalNames);
1345         }
1346         if( oper->stack_slots_only(_globalNames) ) {
1347           // should not call this:
1348           fprintf(fp,"  virtual int       constant_disp() const { return Type::OffsetBot; }");
1349         } else if ( disp != NULL ) {
1350           define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
1351         }
1352       } // end Memory Interface
1353       // Check if it is a Conditional Interface
1354       else if (oper->_interface->is_CondInterface() != NULL) {
1355         CondInterface *cInterface = oper->_interface->is_CondInterface();
1356         const char *equal = cInterface->_equal;
1357         if( equal != NULL ) {
1358           define_oper_interface(fp, *oper, _globalNames, "equal", equal);
1359         }
1360         const char *not_equal = cInterface->_not_equal;
1361         if( not_equal != NULL ) {
1362           define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
1363         }
1364         const char *less = cInterface->_less;
1365         if( less != NULL ) {
1366           define_oper_interface(fp, *oper, _globalNames, "less", less);
1367         }
1368         const char *greater_equal = cInterface->_greater_equal;
1369         if( greater_equal != NULL ) {
1370           define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
1371         }
1372         const char *less_equal = cInterface->_less_equal;
1373         if( less_equal != NULL ) {
1374           define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
1375         }
1376         const char *greater = cInterface->_greater;
1377         if( greater != NULL ) {
1378           define_oper_interface(fp, *oper, _globalNames, "greater", greater);
1379         }
1380         const char *overflow = cInterface->_overflow;
1381         if( overflow != NULL ) {
1382           define_oper_interface(fp, *oper, _globalNames, "overflow", overflow);
1383         }
1384         const char *no_overflow = cInterface->_no_overflow;
1385         if( no_overflow != NULL ) {
1386           define_oper_interface(fp, *oper, _globalNames, "no_overflow", no_overflow);
1387         }
1388       } // end Conditional Interface
1389       // Check if it is a Constant Interface
1390       else if (oper->_interface->is_ConstInterface() != NULL ) {
1391         assert( oper->num_consts(_globalNames) == 1,
1392                 "Must have one constant when using CONST_INTER encoding");
1393         if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
1394           // Access the locally stored constant
1395           fprintf(fp,"  virtual intptr_t       constant() const {");
1396           fprintf(fp,   " return (intptr_t)_c0;");
1397           fprintf(fp,"  }\n");
1398         }
1399         else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
1400           // Access the locally stored constant
1401           fprintf(fp,"  virtual intptr_t       constant() const {");
1402           fprintf(fp,   " return _c0->get_con();");
1403           fprintf(fp, " }\n");
1404           // Generate query to determine if this pointer is an oop
1405           fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
1406           fprintf(fp,   " return _c0->reloc();");
1407           fprintf(fp, " }\n");
1408         }
1409         else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) {
1410           // Access the locally stored constant
1411           fprintf(fp,"  virtual intptr_t       constant() const {");
1412           fprintf(fp,   " return _c0->get_ptrtype()->get_con();");
1413           fprintf(fp, " }\n");
1414           // Generate query to determine if this pointer is an oop
1415           fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
1416           fprintf(fp,   " return _c0->get_ptrtype()->reloc();");
1417           fprintf(fp, " }\n");
1418         }
1419         else if (!strcmp(oper->ideal_type(_globalNames), "ConNKlass")) {
1420           // Access the locally stored constant
1421           fprintf(fp,"  virtual intptr_t       constant() const {");
1422           fprintf(fp,   " return _c0->get_ptrtype()->get_con();");
1423           fprintf(fp, " }\n");
1424           // Generate query to determine if this pointer is an oop
1425           fprintf(fp,"  virtual relocInfo::relocType           constant_reloc() const {");
1426           fprintf(fp,   " return _c0->get_ptrtype()->reloc();");
1427           fprintf(fp, " }\n");
1428         }
1429         else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
1430           fprintf(fp,"  virtual intptr_t       constant() const {");
1431           // We don't support addressing modes with > 4Gig offsets.
1432           // Truncate to int.
1433           fprintf(fp,   "  return (intptr_t)_c0;");
1434           fprintf(fp, " }\n");
1435           fprintf(fp,"  virtual jlong          constantL() const {");
1436           fprintf(fp,   " return _c0;");
1437           fprintf(fp, " }\n");
1438         }
1439         else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
1440           fprintf(fp,"  virtual intptr_t       constant() const {");
1441           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1442           fprintf(fp, " }\n");
1443           fprintf(fp,"  virtual jfloat         constantF() const {");
1444           fprintf(fp,   " return (jfloat)_c0;");
1445           fprintf(fp, " }\n");
1446         }
1447         else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
1448           fprintf(fp,"  virtual intptr_t       constant() const {");
1449           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1450           fprintf(fp, " }\n");
1451           fprintf(fp,"  virtual jdouble        constantD() const {");
1452           fprintf(fp,   " return _c0;");
1453           fprintf(fp, " }\n");
1454         }
1455       }
1456       else if (oper->_interface->is_RegInterface() != NULL) {
1457         // make sure that a fixed format string isn't used for an
1458         // operand which might be assiged to multiple registers.
1459         // Otherwise the opto assembly output could be misleading.
1460         if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
1461           syntax_err(oper->_linenum,
1462                      "Only bound registers can have fixed formats: %s\n",
1463                      oper->_ident);
1464         }
1465       }
1466       else {
1467         assert( false, "ShouldNotReachHere();");
1468       }
1469     }
1470 
1471     fprintf(fp,"\n");
1472     // // Currently all XXXOper::hash() methods are identical (990820)
1473     // declare_hash(fp);
1474     // // Currently all XXXOper::Cmp() methods are identical (990820)
1475     // declare_cmp(fp);
1476 
1477     // Do not place dump_spec() and Name() into PRODUCT code
1478     // int_format and ext_format are not needed in PRODUCT code either
1479     fprintf(fp, "#ifndef PRODUCT\n");
1480 
1481     // Declare int_format() and ext_format()
1482     gen_oper_format(fp, _globalNames, *oper);
1483 
1484     // Machine independent print functionality for debugging
1485     // IF we have constants, create a dump_spec function for the derived class
1486     //
1487     // (1)  virtual void           dump_spec() const {
1488     // (2)    st->print("#%d", _c#);        // Constant != ConP
1489     //  OR    _c#->dump_on(st);             // Type ConP
1490     //  ...
1491     // (3)  }
1492     uint num_consts = oper->num_consts(_globalNames);
1493     if( num_consts > 0 ) {
1494       // line (1)
1495       fprintf(fp, "  virtual void           dump_spec(outputStream *st) const {\n");
1496       // generate format string for st->print
1497       // Iterate over the component list & spit out the right thing
1498       uint i = 0;
1499       const char *type = oper->ideal_type(_globalNames);
1500       Component  *comp;
1501       oper->_components.reset();
1502       if ((comp = oper->_components.iter()) == NULL) {
1503         assert(num_consts == 1, "Bad component list detected.\n");
1504         i = dump_spec_constant( fp, type, i, oper );
1505         // Check that type actually matched
1506         assert( i != 0, "Non-constant operand lacks component list.");
1507       } // end if NULL
1508       else {
1509         // line (2)
1510         // dump all components
1511         oper->_components.reset();
1512         while((comp = oper->_components.iter()) != NULL) {
1513           type = comp->base_type(_globalNames);
1514           i = dump_spec_constant( fp, type, i, NULL );
1515         }
1516       }
1517       // finish line (3)
1518       fprintf(fp,"  }\n");
1519     }
1520 
1521     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1522             oper->_ident);
1523 
1524     fprintf(fp,"#endif\n");
1525 
1526     // Close definition of this XxxMachOper
1527     fprintf(fp,"};\n");
1528   }
1529 
1530 
1531   // Generate Machine Classes for each instruction defined in AD file
1532   fprintf(fp,"\n");
1533   fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
1534   declare_pipe_classes(fp);
1535 
1536   // Generate Machine Classes for each instruction defined in AD file
1537   fprintf(fp,"\n");
1538   fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
1539   _instructions.reset();
1540   InstructForm *instr;
1541   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
1542     // Ensure this is a machine-world instruction
1543     if ( instr->ideal_only() ) continue;
1544 
1545     // Build class definition for this instruction
1546     fprintf(fp,"\n");
1547     fprintf(fp,"class %sNode : public %s { \n",
1548             instr->_ident, instr->mach_base_class(_globalNames) );
1549     fprintf(fp,"private:\n");
1550     fprintf(fp,"  MachOper *_opnd_array[%d];\n", instr->num_opnds() );
1551     if ( instr->is_ideal_jump() ) {
1552       fprintf(fp, "  GrowableArray<Label*> _index2label;\n");
1553     }
1554 
1555     fprintf(fp, "public:\n");
1556 
1557     Attribute *att = instr->_attribs;
1558     // Fields of the node specified in the ad file.
1559     while (att != NULL) {
1560       if (strncmp(att->_ident, "ins_field_", 10) == 0) {
1561         const char *field_name = att->_ident+10;
1562         const char *field_type = att->_val;
1563         fprintf(fp, "  %s _%s;\n", field_type, field_name);
1564       }
1565       att = (Attribute *)att->_next;
1566     }
1567 
1568     fprintf(fp,"  MachOper *opnd_array(uint operand_index) const {\n");
1569     fprintf(fp,"    assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
1570     fprintf(fp,"    return _opnd_array[operand_index];\n");
1571     fprintf(fp,"  }\n");
1572     fprintf(fp,"  void      set_opnd_array(uint operand_index, MachOper *operand) {\n");
1573     fprintf(fp,"    assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
1574     fprintf(fp,"    _opnd_array[operand_index] = operand;\n");
1575     fprintf(fp,"  }\n");
1576     fprintf(fp,"private:\n");
1577     if ( instr->is_ideal_jump() ) {
1578       fprintf(fp,"  virtual void           add_case_label(int index_num, Label* blockLabel) {\n");
1579       fprintf(fp,"    _index2label.at_put_grow(index_num, blockLabel);\n");
1580       fprintf(fp,"  }\n");
1581     }
1582     if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1583       fprintf(fp,"  const RegMask  *_cisc_RegMask;\n");
1584     }
1585 
1586     out_RegMask(fp);                      // output register mask
1587     fprintf(fp,"  virtual uint           rule() const { return %s_rule; }\n",
1588             instr->_ident);
1589 
1590     // If this instruction contains a labelOper
1591     // Declare Node::methods that set operand Label's contents
1592     int label_position = instr->label_position();
1593     if( label_position != -1 ) {
1594       // Set/Save the label, stored in labelOper::_branch_label
1595       fprintf(fp,"  virtual void           label_set( Label* label, uint block_num );\n");
1596       fprintf(fp,"  virtual void           save_label( Label** label, uint* block_num );\n");
1597     }
1598 
1599     // If this instruction contains a methodOper
1600     // Declare Node::methods that set operand method's contents
1601     int method_position = instr->method_position();
1602     if( method_position != -1 ) {
1603       // Set the address method, stored in methodOper::_method
1604       fprintf(fp,"  virtual void           method_set( intptr_t method );\n");
1605     }
1606 
1607     // virtual functions for attributes
1608     //
1609     // Each instruction attribute results in a virtual call of same name.
1610     // The ins_cost is not handled here.
1611     Attribute *attr = instr->_attribs;
1612     bool avoid_back_to_back = false;
1613     while (attr != NULL) {
1614       if (strcmp (attr->_ident,"ins_cost") &&
1615           strncmp(attr->_ident,"ins_field_", 10) != 0 &&
1616           strcmp (attr->_ident,"ins_short_branch")) {
1617         fprintf(fp,"          int            %s() const { return %s; }\n",
1618                 attr->_ident, attr->_val);
1619       }
1620       // Check value for ins_avoid_back_to_back, and if it is true (1), set the flag
1621       if (!strcmp(attr->_ident,"ins_avoid_back_to_back") && attr->int_val(*this) != 0)
1622         avoid_back_to_back = true;
1623       attr = (Attribute *)attr->_next;
1624     }
1625 
1626     // virtual functions for encode and format
1627 
1628     // Virtual function for evaluating the constant.
1629     if (instr->is_mach_constant()) {
1630       fprintf(fp,"  virtual void           eval_constant(Compile* C);\n");
1631     }
1632 
1633     // Output the opcode function and the encode function here using the
1634     // encoding class information in the _insencode slot.
1635     if ( instr->_insencode ) {
1636       fprintf(fp,"  virtual void           emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
1637     }
1638 
1639     // virtual function for getting the size of an instruction
1640     if ( instr->_size ) {
1641       fprintf(fp,"  virtual uint           size(PhaseRegAlloc *ra_) const;\n");
1642     }
1643 
1644     // Return the top-level ideal opcode.
1645     // Use MachNode::ideal_Opcode() for nodes based on MachNode class
1646     // if the ideal_Opcode == Op_Node.
1647     if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
1648          strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
1649       fprintf(fp,"  virtual int            ideal_Opcode() const { return Op_%s; }\n",
1650             instr->ideal_Opcode(_globalNames) );
1651     }
1652 
1653     // Allow machine-independent optimization, invert the sense of the IF test
1654     if( instr->is_ideal_if() ) {
1655       fprintf(fp,"  virtual void           negate() { \n");
1656       // Identify which operand contains the negate(able) ideal condition code
1657       int   idx = 0;
1658       instr->_components.reset();
1659       for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
1660         // Check that component is an operand
1661         Form *form = (Form*)_globalNames[comp->_type];
1662         OperandForm *opForm = form ? form->is_operand() : NULL;
1663         if( opForm == NULL ) continue;
1664 
1665         // Lookup the position of the operand in the instruction.
1666         if( opForm->is_ideal_bool() ) {
1667           idx = instr->operand_position(comp->_name, comp->_usedef);
1668           assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
1669           break;
1670         }
1671       }
1672       fprintf(fp,"    opnd_array(%d)->negate();\n", idx);
1673       fprintf(fp,"    _prob = 1.0f - _prob;\n");
1674       fprintf(fp,"  };\n");
1675     }
1676 
1677 
1678     // Identify which input register matches the input register.
1679     uint  matching_input = instr->two_address(_globalNames);
1680 
1681     // Generate the method if it returns != 0 otherwise use MachNode::two_adr()
1682     if( matching_input != 0 ) {
1683       fprintf(fp,"  virtual uint           two_adr() const  ");
1684       fprintf(fp,"{ return oper_input_base()");
1685       for( uint i = 2; i <= matching_input; i++ )
1686         fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
1687       fprintf(fp,"; }\n");
1688     }
1689 
1690     // Declare cisc_version, if applicable
1691     //   MachNode *cisc_version( int offset /* ,... */ );
1692     instr->declare_cisc_version(*this, fp);
1693 
1694     // If there is an explicit peephole rule, build it
1695     if ( instr->peepholes() != NULL ) {
1696       fprintf(fp,"  virtual MachNode      *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n");
1697     }
1698 
1699     // Output the declaration for number of relocation entries
1700     if ( instr->reloc(_globalNames) != 0 ) {
1701       fprintf(fp,"  virtual int            reloc() const;\n");
1702     }
1703 
1704     if (instr->alignment() != 1) {
1705       fprintf(fp,"  virtual int            alignment_required() const { return %d; }\n", instr->alignment());
1706       fprintf(fp,"  virtual int            compute_padding(int current_offset) const;\n");
1707     }
1708 
1709     // Starting point for inputs matcher wants.
1710     // Use MachNode::oper_input_base() for nodes based on MachNode class
1711     // if the base == 1.
1712     if ( instr->oper_input_base(_globalNames) != 1 ||
1713          strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
1714       fprintf(fp,"  virtual uint           oper_input_base() const { return %d; }\n",
1715             instr->oper_input_base(_globalNames));
1716     }
1717 
1718     // Make the constructor and following methods 'public:'
1719     fprintf(fp,"public:\n");
1720 
1721     // Constructor
1722     if ( instr->is_ideal_jump() ) {
1723       fprintf(fp,"  %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
1724     } else {
1725       fprintf(fp,"  %sNode() { ", instr->_ident);
1726       if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1727         fprintf(fp,"_cisc_RegMask = NULL; ");
1728       }
1729     }
1730 
1731     fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
1732 
1733     bool node_flags_set = false;
1734     // flag: if this instruction matches an ideal 'Copy*' node
1735     if ( instr->is_ideal_copy() != 0 ) {
1736       fprintf(fp,"init_flags(Flag_is_Copy");
1737       node_flags_set = true;
1738     }
1739 
1740     // Is an instruction is a constant?  If so, get its type
1741     Form::DataType  data_type;
1742     const char     *opType = NULL;
1743     const char     *result = NULL;
1744     data_type    = instr->is_chain_of_constant(_globalNames, opType, result);
1745     // Check if this instruction is a constant
1746     if ( data_type != Form::none ) {
1747       if ( node_flags_set ) {
1748         fprintf(fp," | Flag_is_Con");
1749       } else {
1750         fprintf(fp,"init_flags(Flag_is_Con");
1751         node_flags_set = true;
1752       }
1753     }
1754 
1755     // flag: if this instruction is cisc alternate
1756     if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
1757       if ( node_flags_set ) {
1758         fprintf(fp," | Flag_is_cisc_alternate");
1759       } else {
1760         fprintf(fp,"init_flags(Flag_is_cisc_alternate");
1761         node_flags_set = true;
1762       }
1763     }
1764 
1765     // flag: if this instruction has short branch form
1766     if ( instr->has_short_branch_form() ) {
1767       if ( node_flags_set ) {
1768         fprintf(fp," | Flag_may_be_short_branch");
1769       } else {
1770         fprintf(fp,"init_flags(Flag_may_be_short_branch");
1771         node_flags_set = true;
1772       }
1773     }
1774 
1775     // flag: if this instruction should not be generated back to back.
1776     if ( avoid_back_to_back ) {
1777       if ( node_flags_set ) {
1778         fprintf(fp," | Flag_avoid_back_to_back");
1779       } else {
1780         fprintf(fp,"init_flags(Flag_avoid_back_to_back");
1781         node_flags_set = true;
1782       }
1783     }
1784 
1785     // Check if machine instructions that USE memory, but do not DEF memory,
1786     // depend upon a node that defines memory in machine-independent graph.
1787     if ( instr->needs_anti_dependence_check(_globalNames) ) {
1788       if ( node_flags_set ) {
1789         fprintf(fp," | Flag_needs_anti_dependence_check");
1790       } else {
1791         fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
1792         node_flags_set = true;
1793       }
1794     }
1795 
1796     // flag: if this instruction is implemented with a call
1797     if ( instr->_has_call ) {
1798       if ( node_flags_set ) {
1799         fprintf(fp," | Flag_has_call");
1800       } else {
1801         fprintf(fp,"init_flags(Flag_has_call");
1802         node_flags_set = true;
1803       }
1804     }
1805 
1806     if ( node_flags_set ) {
1807       fprintf(fp,"); ");
1808     }
1809 
1810     fprintf(fp,"}\n");
1811 
1812     // size_of, used by base class's clone to obtain the correct size.
1813     fprintf(fp,"  virtual uint           size_of() const {");
1814     fprintf(fp,   " return sizeof(%sNode);", instr->_ident);
1815     fprintf(fp, " }\n");
1816 
1817     // Virtual methods which are only generated to override base class
1818     if( instr->expands() || instr->needs_projections() ||
1819         instr->has_temps() ||
1820         instr->is_mach_constant() ||
1821         instr->_matrule != NULL &&
1822         instr->num_opnds() != instr->num_unique_opnds() ) {
1823       fprintf(fp,"  virtual MachNode      *Expand(State *state, Node_List &proj_list, Node* mem);\n");
1824     }
1825 
1826     if (instr->is_pinned(_globalNames)) {
1827       fprintf(fp,"  virtual bool           pinned() const { return ");
1828       if (instr->is_parm(_globalNames)) {
1829         fprintf(fp,"_in[0]->pinned();");
1830       } else {
1831         fprintf(fp,"true;");
1832       }
1833       fprintf(fp," }\n");
1834     }
1835     if (instr->is_projection(_globalNames)) {
1836       fprintf(fp,"  virtual const Node *is_block_proj() const { return this; }\n");
1837     }
1838     if ( instr->num_post_match_opnds() != 0
1839          || instr->is_chain_of_constant(_globalNames) ) {
1840       fprintf(fp,"  friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n");
1841     }
1842     if ( instr->rematerialize(_globalNames, get_registers()) ) {
1843       fprintf(fp,"  // Rematerialize %s\n", instr->_ident);
1844     }
1845 
1846     // Declare short branch methods, if applicable
1847     instr->declare_short_branch_methods(fp);
1848 
1849     // See if there is an "ins_pipe" declaration for this instruction
1850     if (instr->_ins_pipe) {
1851       fprintf(fp,"  static  const Pipeline *pipeline_class();\n");
1852       fprintf(fp,"  virtual const Pipeline *pipeline() const;\n");
1853     }
1854 
1855     // Generate virtual function for MachNodeX::bottom_type when necessary
1856     //
1857     // Note on accuracy:  Pointer-types of machine nodes need to be accurate,
1858     // or else alias analysis on the matched graph may produce bad code.
1859     // Moreover, the aliasing decisions made on machine-node graph must be
1860     // no less accurate than those made on the ideal graph, or else the graph
1861     // may fail to schedule.  (Reason:  Memory ops which are reordered in
1862     // the ideal graph might look interdependent in the machine graph,
1863     // thereby removing degrees of scheduling freedom that the optimizer
1864     // assumed would be available.)
1865     //
1866     // %%% We should handle many of these cases with an explicit ADL clause:
1867     // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
1868     if( data_type != Form::none ) {
1869       // A constant's bottom_type returns a Type containing its constant value
1870 
1871       // !!!!!
1872       // Convert all ints, floats, ... to machine-independent TypeXs
1873       // as is done for pointers
1874       //
1875       // Construct appropriate constant type containing the constant value.
1876       fprintf(fp,"  virtual const class Type *bottom_type() const {\n");
1877       switch( data_type ) {
1878       case Form::idealI:
1879         fprintf(fp,"    return  TypeInt::make(opnd_array(1)->constant());\n");
1880         break;
1881       case Form::idealP:
1882       case Form::idealN:
1883       case Form::idealNKlass:
1884         fprintf(fp,"    return  opnd_array(1)->type();\n");
1885         break;
1886       case Form::idealD:
1887         fprintf(fp,"    return  TypeD::make(opnd_array(1)->constantD());\n");
1888         break;
1889       case Form::idealF:
1890         fprintf(fp,"    return  TypeF::make(opnd_array(1)->constantF());\n");
1891         break;
1892       case Form::idealL:
1893         fprintf(fp,"    return  TypeLong::make(opnd_array(1)->constantL());\n");
1894         break;
1895       default:
1896         assert( false, "Unimplemented()" );
1897         break;
1898       }
1899       fprintf(fp,"  };\n");
1900     }
1901 /*    else if ( instr->_matrule && instr->_matrule->_rChild &&
1902         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1903         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1904       // !!!!! !!!!!
1905       // Provide explicit bottom type for conversions to int
1906       // On Intel the result operand is a stackSlot, untyped.
1907       fprintf(fp,"  virtual const class Type *bottom_type() const {");
1908       fprintf(fp,   " return  TypeInt::INT;");
1909       fprintf(fp, " };\n");
1910     }*/
1911     else if( instr->is_ideal_copy() &&
1912               !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
1913       // !!!!!
1914       // Special hack for ideal Copy of pointer.  Bottom type is oop or not depending on input.
1915       fprintf(fp,"  const Type            *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
1916     }
1917     else if( instr->is_ideal_loadPC() ) {
1918       // LoadPCNode provides the return address of a call to native code.
1919       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1920       // since it is a pointer to an internal VM location and must have a zero offset.
1921       // Allocation detects derived pointers, in part, by their non-zero offsets.
1922       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
1923     }
1924     else if( instr->is_ideal_box() ) {
1925       // BoxNode provides the address of a stack slot.
1926       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1927       // This prevent s insert_anti_dependencies from complaining. It will
1928       // complain if it sees that the pointer base is TypePtr::BOTTOM since
1929       // it doesn't understand what that might alias.
1930       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
1931     }
1932     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
1933       int offset = 1;
1934       // Special special hack to see if the Cmp? has been incorporated in the conditional move
1935       MatchNode *rl = instr->_matrule->_rChild->_lChild;
1936       if( rl && !strcmp(rl->_opType, "Binary") ) {
1937           MatchNode *rlr = rl->_rChild;
1938           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1939             offset = 2;
1940       }
1941       // Special hack for ideal CMoveP; ideal type depends on inputs
1942       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
1943         offset, offset+1, offset+1);
1944     }
1945     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveN") ) {
1946       int offset = 1;
1947       // Special special hack to see if the Cmp? has been incorporated in the conditional move
1948       MatchNode *rl = instr->_matrule->_rChild->_lChild;
1949       if( rl && !strcmp(rl->_opType, "Binary") ) {
1950           MatchNode *rlr = rl->_rChild;
1951           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1952             offset = 2;
1953       }
1954       // Special hack for ideal CMoveN; ideal type depends on inputs
1955       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveN\n",
1956         offset, offset+1, offset+1);
1957     }
1958     else if (instr->is_tls_instruction()) {
1959       // Special hack for tlsLoadP
1960       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
1961     }
1962     else if ( instr->is_ideal_if() ) {
1963       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
1964     }
1965     else if ( instr->is_ideal_membar() ) {
1966       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
1967     }
1968 
1969     // Check where 'ideal_type' must be customized
1970     /*
1971     if ( instr->_matrule && instr->_matrule->_rChild &&
1972         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1973         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1974       fprintf(fp,"  virtual uint           ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
1975     }*/
1976 
1977     // Analyze machine instructions that either USE or DEF memory.
1978     int memory_operand = instr->memory_operand(_globalNames);
1979     // Some guys kill all of memory
1980     if ( instr->is_wide_memory_kill(_globalNames) ) {
1981       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
1982     }
1983     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1984       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
1985         fprintf(fp,"  virtual const TypePtr *adr_type() const;\n");
1986       }
1987       fprintf(fp,"  virtual const MachOper *memory_operand() const;\n");
1988     }
1989 
1990     fprintf(fp, "#ifndef PRODUCT\n");
1991 
1992     // virtual function for generating the user's assembler output
1993     gen_inst_format(fp, _globalNames,*instr);
1994 
1995     // Machine independent print functionality for debugging
1996     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1997             instr->_ident);
1998 
1999     fprintf(fp, "#endif\n");
2000 
2001     // Close definition of this XxxMachNode
2002     fprintf(fp,"};\n");
2003   };
2004 
2005 }
2006 
2007 void ArchDesc::defineStateClass(FILE *fp) {
2008   static const char *state__valid    = "_valid[((uint)index) >> 5] &  (0x1 << (((uint)index) & 0x0001F))";
2009   static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
2010 
2011   fprintf(fp,"\n");
2012   fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
2013   fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
2014   fprintf(fp,"//   uint word   = index >> 5;       // Shift out bit position\n");
2015   fprintf(fp,"//   uint bitpos = index & 0x0001F;  // Mask off word bits\n");
2016   fprintf(fp,"#define STATE__VALID(index) ");
2017   fprintf(fp,"    (%s)\n", state__valid);
2018   fprintf(fp,"\n");
2019   fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
2020   fprintf(fp,"  ( (%s) == 0 )\n", state__valid);
2021   fprintf(fp,"\n");
2022   fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
2023   fprintf(fp,"  ( state && (state->%s) )\n", state__valid);
2024   fprintf(fp,"\n");
2025   fprintf(fp,"#define STATE__SET_VALID(index) ");
2026   fprintf(fp,"  (%s)\n", state__set_valid);
2027   fprintf(fp,"\n");
2028   fprintf(fp,
2029           "//---------------------------State-------------------------------------------\n");
2030   fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
2031   fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
2032   fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
2033   fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
2034   fprintf(fp,"// two for convenience, but this could change).\n");
2035   fprintf(fp,"class State : public ResourceObj {\n");
2036   fprintf(fp,"public:\n");
2037   fprintf(fp,"  int    _id;         // State identifier\n");
2038   fprintf(fp,"  Node  *_leaf;       // Ideal (non-machine-node) leaf of match tree\n");
2039   fprintf(fp,"  State *_kids[2];       // Children of state node in label tree\n");
2040   fprintf(fp,"  unsigned int _cost[_LAST_MACH_OPER];  // Cost vector, indexed by operand opcodes\n");
2041   fprintf(fp,"  unsigned int _rule[_LAST_MACH_OPER];  // Rule vector, indexed by operand opcodes\n");
2042   fprintf(fp,"  unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
2043   fprintf(fp,"\n");
2044   fprintf(fp,"  State(void);                      // Constructor\n");
2045   fprintf(fp,"  DEBUG_ONLY( ~State(void); )       // Destructor\n");
2046   fprintf(fp,"\n");
2047   fprintf(fp,"  // Methods created by ADLC and invoked by Reduce\n");
2048   fprintf(fp,"  MachOper *MachOperGenerator( int opcode, Compile* C );\n");
2049   fprintf(fp,"  MachNode *MachNodeGenerator( int opcode, Compile* C );\n");
2050   fprintf(fp,"\n");
2051   fprintf(fp,"  // Assign a state to a node, definition of method produced by ADLC\n");
2052   fprintf(fp,"  bool DFA( int opcode, const Node *ideal );\n");
2053   fprintf(fp,"\n");
2054   fprintf(fp,"  // Access function for _valid bit vector\n");
2055   fprintf(fp,"  bool valid(uint index) {\n");
2056   fprintf(fp,"    return( STATE__VALID(index) != 0 );\n");
2057   fprintf(fp,"  }\n");
2058   fprintf(fp,"\n");
2059   fprintf(fp,"  // Set function for _valid bit vector\n");
2060   fprintf(fp,"  void set_valid(uint index) {\n");
2061   fprintf(fp,"    STATE__SET_VALID(index);\n");
2062   fprintf(fp,"  }\n");
2063   fprintf(fp,"\n");
2064   fprintf(fp,"#ifndef PRODUCT\n");
2065   fprintf(fp,"  void dump();                // Debugging prints\n");
2066   fprintf(fp,"  void dump(int depth);\n");
2067   fprintf(fp,"#endif\n");
2068   if (_dfa_small) {
2069     // Generate the routine name we'll need
2070     for (int i = 1; i < _last_opcode; i++) {
2071       if (_mlistab[i] == NULL) continue;
2072       fprintf(fp, "  void  _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
2073     }
2074   }
2075   fprintf(fp,"};\n");
2076   fprintf(fp,"\n");
2077   fprintf(fp,"\n");
2078 
2079 }
2080 
2081 
2082 //---------------------------buildMachOperEnum---------------------------------
2083 // Build enumeration for densely packed operands.
2084 // This enumeration is used to index into the arrays in the State objects
2085 // that indicate cost and a successfull rule match.
2086 
2087 // Information needed to generate the ReduceOp mapping for the DFA
2088 class OutputMachOperands : public OutputMap {
2089 public:
2090   OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2091     : OutputMap(hpp, cpp, globals, AD, "MachOperands") {};
2092 
2093   void declaration() { }
2094   void definition()  { fprintf(_cpp, "enum MachOperands {\n"); }
2095   void closing()     { fprintf(_cpp, "  _LAST_MACH_OPER\n");
2096                        OutputMap::closing();
2097   }
2098   void map(OpClassForm &opc)  {
2099     const char* opc_ident_to_upper = _AD.machOperEnum(opc._ident);
2100     fprintf(_cpp, "  %s", opc_ident_to_upper);
2101     delete[] opc_ident_to_upper;
2102   }
2103   void map(OperandForm &oper) {
2104     const char* oper_ident_to_upper = _AD.machOperEnum(oper._ident);
2105     fprintf(_cpp, "  %s", oper_ident_to_upper);
2106     delete[] oper_ident_to_upper;
2107   }
2108   void map(char *name) {
2109     const char* name_to_upper = _AD.machOperEnum(name);
2110     fprintf(_cpp, "  %s", name_to_upper);
2111     delete[] name_to_upper;
2112   }
2113 
2114   bool do_instructions()      { return false; }
2115   void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
2116 };
2117 
2118 
2119 void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
2120   // Construct the table for MachOpcodes
2121   OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
2122   build_map(output_mach_operands);
2123 }
2124 
2125 
2126 //---------------------------buildMachEnum----------------------------------
2127 // Build enumeration for all MachOpers and all MachNodes
2128 
2129 // Information needed to generate the ReduceOp mapping for the DFA
2130 class OutputMachOpcodes : public OutputMap {
2131   int begin_inst_chain_rule;
2132   int end_inst_chain_rule;
2133   int begin_rematerialize;
2134   int end_rematerialize;
2135   int end_instructions;
2136 public:
2137   OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2138     : OutputMap(hpp, cpp, globals, AD, "MachOpcodes"),
2139       begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
2140   {};
2141 
2142   void declaration() { }
2143   void definition()  { fprintf(_cpp, "enum MachOpcodes {\n"); }
2144   void closing()     {
2145     if( begin_inst_chain_rule != -1 )
2146       fprintf(_cpp, "  _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
2147     if( end_inst_chain_rule   != -1 )
2148       fprintf(_cpp, "  _END_INST_CHAIN_RULE  = %d,\n", end_inst_chain_rule);
2149     if( begin_rematerialize   != -1 )
2150       fprintf(_cpp, "  _BEGIN_REMATERIALIZE   = %d,\n", begin_rematerialize);
2151     if( end_rematerialize     != -1 )
2152       fprintf(_cpp, "  _END_REMATERIALIZE    = %d,\n", end_rematerialize);
2153     // always execute since do_instructions() is true, and avoids trailing comma
2154     fprintf(_cpp, "  _last_Mach_Node  = %d \n",  end_instructions);
2155     OutputMap::closing();
2156   }
2157   void map(OpClassForm &opc)  { fprintf(_cpp, "  %s_rule", opc._ident ); }
2158   void map(OperandForm &oper) { fprintf(_cpp, "  %s_rule", oper._ident ); }
2159   void map(char        *name) { if (name) fprintf(_cpp, "  %s_rule", name);
2160                                 else      fprintf(_cpp, "  0"); }
2161   void map(InstructForm &inst) {fprintf(_cpp, "  %s_rule", inst._ident ); }
2162 
2163   void record_position(OutputMap::position place, int idx ) {
2164     switch(place) {
2165     case OutputMap::BEGIN_INST_CHAIN_RULES :
2166       begin_inst_chain_rule = idx;
2167       break;
2168     case OutputMap::END_INST_CHAIN_RULES :
2169       end_inst_chain_rule   = idx;
2170       break;
2171     case OutputMap::BEGIN_REMATERIALIZE :
2172       begin_rematerialize   = idx;
2173       break;
2174     case OutputMap::END_REMATERIALIZE :
2175       end_rematerialize     = idx;
2176       break;
2177     case OutputMap::END_INSTRUCTIONS :
2178       end_instructions      = idx;
2179       break;
2180     default:
2181       break;
2182     }
2183   }
2184 };
2185 
2186 
2187 void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
2188   // Construct the table for MachOpcodes
2189   OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
2190   build_map(output_mach_opcodes);
2191 }
2192 
2193 
2194 // Generate an enumeration of the pipeline states, and both
2195 // the functional units (resources) and the masks for
2196 // specifying resources
2197 void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
2198   int stagelen = (int)strlen("undefined");
2199   int stagenum = 0;
2200 
2201   if (_pipeline) {              // Find max enum string length
2202     const char *stage;
2203     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
2204       int len = (int)strlen(stage);
2205       if (stagelen < len) stagelen = len;
2206     }
2207   }
2208 
2209   // Generate a list of stages
2210   fprintf(fp_hpp, "\n");
2211   fprintf(fp_hpp, "// Pipeline Stages\n");
2212   fprintf(fp_hpp, "enum machPipelineStages {\n");
2213   fprintf(fp_hpp, "   stage_%-*s = 0,\n", stagelen, "undefined");
2214 
2215   if( _pipeline ) {
2216     const char *stage;
2217     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
2218       fprintf(fp_hpp, "   stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
2219   }
2220 
2221   fprintf(fp_hpp, "   stage_%-*s = %d\n", stagelen, "count", stagenum);
2222   fprintf(fp_hpp, "};\n");
2223 
2224   fprintf(fp_hpp, "\n");
2225   fprintf(fp_hpp, "// Pipeline Resources\n");
2226   fprintf(fp_hpp, "enum machPipelineResources {\n");
2227   int rescount = 0;
2228 
2229   if( _pipeline ) {
2230     const char *resource;
2231     int reslen = 0;
2232 
2233     // Generate a list of resources, and masks
2234     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2235       int len = (int)strlen(resource);
2236       if (reslen < len)
2237         reslen = len;
2238     }
2239 
2240     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2241       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2242       int mask = resform->mask();
2243       if ((mask & (mask-1)) == 0)
2244         fprintf(fp_hpp, "   resource_%-*s = %d,\n", reslen, resource, rescount++);
2245     }
2246     fprintf(fp_hpp, "\n");
2247     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2248       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2249       fprintf(fp_hpp, "   res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
2250     }
2251     fprintf(fp_hpp, "\n");
2252   }
2253   fprintf(fp_hpp, "   resource_count = %d\n", rescount);
2254   fprintf(fp_hpp, "};\n");
2255 }