1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_bsd.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_bsd.inline.hpp"
  36 #include "os_share_bsd.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "utilities/events.hpp"
  53 #include "utilities/vmError.hpp"
  54 
  55 // put OS-includes here
  56 # include <sys/types.h>
  57 # include <sys/mman.h>
  58 # include <pthread.h>
  59 # include <signal.h>
  60 # include <errno.h>
  61 # include <dlfcn.h>
  62 # include <stdlib.h>
  63 # include <stdio.h>
  64 # include <unistd.h>
  65 # include <sys/resource.h>
  66 # include <pthread.h>
  67 # include <sys/stat.h>
  68 # include <sys/time.h>
  69 # include <sys/utsname.h>
  70 # include <sys/socket.h>
  71 # include <sys/wait.h>
  72 # include <pwd.h>
  73 # include <poll.h>
  74 #ifndef __OpenBSD__
  75 # include <ucontext.h>
  76 #endif
  77 
  78 #if !defined(__APPLE__) && !defined(__NetBSD__)
  79 # include <pthread_np.h>
  80 #endif
  81 
  82 #ifdef AMD64
  83 #define SPELL_REG_SP "rsp"
  84 #define SPELL_REG_FP "rbp"
  85 #else
  86 #define SPELL_REG_SP "esp"
  87 #define SPELL_REG_FP "ebp"
  88 #endif // AMD64
  89 
  90 #ifdef __FreeBSD__
  91 # define context_trapno uc_mcontext.mc_trapno
  92 # ifdef AMD64
  93 #  define context_pc uc_mcontext.mc_rip
  94 #  define context_sp uc_mcontext.mc_rsp
  95 #  define context_fp uc_mcontext.mc_rbp
  96 #  define context_rip uc_mcontext.mc_rip
  97 #  define context_rsp uc_mcontext.mc_rsp
  98 #  define context_rbp uc_mcontext.mc_rbp
  99 #  define context_rax uc_mcontext.mc_rax
 100 #  define context_rbx uc_mcontext.mc_rbx
 101 #  define context_rcx uc_mcontext.mc_rcx
 102 #  define context_rdx uc_mcontext.mc_rdx
 103 #  define context_rsi uc_mcontext.mc_rsi
 104 #  define context_rdi uc_mcontext.mc_rdi
 105 #  define context_r8  uc_mcontext.mc_r8
 106 #  define context_r9  uc_mcontext.mc_r9
 107 #  define context_r10 uc_mcontext.mc_r10
 108 #  define context_r11 uc_mcontext.mc_r11
 109 #  define context_r12 uc_mcontext.mc_r12
 110 #  define context_r13 uc_mcontext.mc_r13
 111 #  define context_r14 uc_mcontext.mc_r14
 112 #  define context_r15 uc_mcontext.mc_r15
 113 #  define context_flags uc_mcontext.mc_flags
 114 #  define context_err uc_mcontext.mc_err
 115 # else
 116 #  define context_pc uc_mcontext.mc_eip
 117 #  define context_sp uc_mcontext.mc_esp
 118 #  define context_fp uc_mcontext.mc_ebp
 119 #  define context_eip uc_mcontext.mc_eip
 120 #  define context_esp uc_mcontext.mc_esp
 121 #  define context_eax uc_mcontext.mc_eax
 122 #  define context_ebx uc_mcontext.mc_ebx
 123 #  define context_ecx uc_mcontext.mc_ecx
 124 #  define context_edx uc_mcontext.mc_edx
 125 #  define context_ebp uc_mcontext.mc_ebp
 126 #  define context_esi uc_mcontext.mc_esi
 127 #  define context_edi uc_mcontext.mc_edi
 128 #  define context_eflags uc_mcontext.mc_eflags
 129 #  define context_trapno uc_mcontext.mc_trapno
 130 # endif
 131 #endif
 132 
 133 #ifdef __APPLE__
 134 # if __DARWIN_UNIX03 && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5)
 135   // 10.5 UNIX03 member name prefixes
 136   #define DU3_PREFIX(s, m) __ ## s.__ ## m
 137 # else
 138   #define DU3_PREFIX(s, m) s ## . ## m
 139 # endif
 140 
 141 # ifdef AMD64
 142 #  define context_pc context_rip
 143 #  define context_sp context_rsp
 144 #  define context_fp context_rbp
 145 #  define context_rip uc_mcontext->DU3_PREFIX(ss,rip)
 146 #  define context_rsp uc_mcontext->DU3_PREFIX(ss,rsp)
 147 #  define context_rax uc_mcontext->DU3_PREFIX(ss,rax)
 148 #  define context_rbx uc_mcontext->DU3_PREFIX(ss,rbx)
 149 #  define context_rcx uc_mcontext->DU3_PREFIX(ss,rcx)
 150 #  define context_rdx uc_mcontext->DU3_PREFIX(ss,rdx)
 151 #  define context_rbp uc_mcontext->DU3_PREFIX(ss,rbp)
 152 #  define context_rsi uc_mcontext->DU3_PREFIX(ss,rsi)
 153 #  define context_rdi uc_mcontext->DU3_PREFIX(ss,rdi)
 154 #  define context_r8  uc_mcontext->DU3_PREFIX(ss,r8)
 155 #  define context_r9  uc_mcontext->DU3_PREFIX(ss,r9)
 156 #  define context_r10 uc_mcontext->DU3_PREFIX(ss,r10)
 157 #  define context_r11 uc_mcontext->DU3_PREFIX(ss,r11)
 158 #  define context_r12 uc_mcontext->DU3_PREFIX(ss,r12)
 159 #  define context_r13 uc_mcontext->DU3_PREFIX(ss,r13)
 160 #  define context_r14 uc_mcontext->DU3_PREFIX(ss,r14)
 161 #  define context_r15 uc_mcontext->DU3_PREFIX(ss,r15)
 162 #  define context_flags uc_mcontext->DU3_PREFIX(ss,rflags)
 163 #  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
 164 #  define context_err uc_mcontext->DU3_PREFIX(es,err)
 165 # else
 166 #  define context_pc context_eip
 167 #  define context_sp context_esp
 168 #  define context_fp context_ebp
 169 #  define context_eip uc_mcontext->DU3_PREFIX(ss,eip)
 170 #  define context_esp uc_mcontext->DU3_PREFIX(ss,esp)
 171 #  define context_eax uc_mcontext->DU3_PREFIX(ss,eax)
 172 #  define context_ebx uc_mcontext->DU3_PREFIX(ss,ebx)
 173 #  define context_ecx uc_mcontext->DU3_PREFIX(ss,ecx)
 174 #  define context_edx uc_mcontext->DU3_PREFIX(ss,edx)
 175 #  define context_ebp uc_mcontext->DU3_PREFIX(ss,ebp)
 176 #  define context_esi uc_mcontext->DU3_PREFIX(ss,esi)
 177 #  define context_edi uc_mcontext->DU3_PREFIX(ss,edi)
 178 #  define context_eflags uc_mcontext->DU3_PREFIX(ss,eflags)
 179 #  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
 180 # endif
 181 #endif
 182 
 183 #ifdef __OpenBSD__
 184 # define context_trapno sc_trapno
 185 # ifdef AMD64
 186 #  define context_pc sc_rip
 187 #  define context_sp sc_rsp
 188 #  define context_fp sc_rbp
 189 #  define context_rip sc_rip
 190 #  define context_rsp sc_rsp
 191 #  define context_rbp sc_rbp
 192 #  define context_rax sc_rax
 193 #  define context_rbx sc_rbx
 194 #  define context_rcx sc_rcx
 195 #  define context_rdx sc_rdx
 196 #  define context_rsi sc_rsi
 197 #  define context_rdi sc_rdi
 198 #  define context_r8  sc_r8
 199 #  define context_r9  sc_r9
 200 #  define context_r10 sc_r10
 201 #  define context_r11 sc_r11
 202 #  define context_r12 sc_r12
 203 #  define context_r13 sc_r13
 204 #  define context_r14 sc_r14
 205 #  define context_r15 sc_r15
 206 #  define context_flags sc_rflags
 207 #  define context_err sc_err
 208 # else
 209 #  define context_pc sc_eip
 210 #  define context_sp sc_esp
 211 #  define context_fp sc_ebp
 212 #  define context_eip sc_eip
 213 #  define context_esp sc_esp
 214 #  define context_eax sc_eax
 215 #  define context_ebx sc_ebx
 216 #  define context_ecx sc_ecx
 217 #  define context_edx sc_edx
 218 #  define context_ebp sc_ebp
 219 #  define context_esi sc_esi
 220 #  define context_edi sc_edi
 221 #  define context_eflags sc_eflags
 222 #  define context_trapno sc_trapno
 223 # endif
 224 #endif
 225 
 226 #ifdef __NetBSD__
 227 # define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
 228 # ifdef AMD64
 229 #  define __register_t __greg_t
 230 #  define context_pc uc_mcontext.__gregs[_REG_RIP]
 231 #  define context_sp uc_mcontext.__gregs[_REG_URSP]
 232 #  define context_fp uc_mcontext.__gregs[_REG_RBP]
 233 #  define context_rip uc_mcontext.__gregs[_REG_RIP]
 234 #  define context_rsp uc_mcontext.__gregs[_REG_URSP]
 235 #  define context_rax uc_mcontext.__gregs[_REG_RAX]
 236 #  define context_rbx uc_mcontext.__gregs[_REG_RBX]
 237 #  define context_rcx uc_mcontext.__gregs[_REG_RCX]
 238 #  define context_rdx uc_mcontext.__gregs[_REG_RDX]
 239 #  define context_rbp uc_mcontext.__gregs[_REG_RBP]
 240 #  define context_rsi uc_mcontext.__gregs[_REG_RSI]
 241 #  define context_rdi uc_mcontext.__gregs[_REG_RDI]
 242 #  define context_r8  uc_mcontext.__gregs[_REG_R8]
 243 #  define context_r9  uc_mcontext.__gregs[_REG_R9]
 244 #  define context_r10 uc_mcontext.__gregs[_REG_R10]
 245 #  define context_r11 uc_mcontext.__gregs[_REG_R11]
 246 #  define context_r12 uc_mcontext.__gregs[_REG_R12]
 247 #  define context_r13 uc_mcontext.__gregs[_REG_R13]
 248 #  define context_r14 uc_mcontext.__gregs[_REG_R14]
 249 #  define context_r15 uc_mcontext.__gregs[_REG_R15]
 250 #  define context_flags uc_mcontext.__gregs[_REG_RFL]
 251 #  define context_err uc_mcontext.__gregs[_REG_ERR]
 252 # else
 253 #  define context_pc uc_mcontext.__gregs[_REG_EIP]
 254 #  define context_sp uc_mcontext.__gregs[_REG_UESP]
 255 #  define context_fp uc_mcontext.__gregs[_REG_EBP]
 256 #  define context_eip uc_mcontext.__gregs[_REG_EIP]
 257 #  define context_esp uc_mcontext.__gregs[_REG_UESP]
 258 #  define context_eax uc_mcontext.__gregs[_REG_EAX]
 259 #  define context_ebx uc_mcontext.__gregs[_REG_EBX]
 260 #  define context_ecx uc_mcontext.__gregs[_REG_ECX]
 261 #  define context_edx uc_mcontext.__gregs[_REG_EDX]
 262 #  define context_ebp uc_mcontext.__gregs[_REG_EBP]
 263 #  define context_esi uc_mcontext.__gregs[_REG_ESI]
 264 #  define context_edi uc_mcontext.__gregs[_REG_EDI]
 265 #  define context_eflags uc_mcontext.__gregs[_REG_EFL]
 266 #  define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
 267 # endif
 268 #endif
 269 
 270 address os::current_stack_pointer() {
 271 #if defined(__clang__) || defined(__llvm__)
 272   register void *esp;
 273   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
 274   return (address) esp;
 275 #elif defined(SPARC_WORKS)
 276   register void *esp;
 277   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
 278   return (address) ((char*)esp + sizeof(long)*2);
 279 #else
 280   register void *esp __asm__ (SPELL_REG_SP);
 281   return (address) esp;
 282 #endif
 283 }
 284 
 285 char* os::non_memory_address_word() {
 286   // Must never look like an address returned by reserve_memory,
 287   // even in its subfields (as defined by the CPU immediate fields,
 288   // if the CPU splits constants across multiple instructions).
 289 
 290   return (char*) -1;
 291 }
 292 
 293 void os::initialize_thread(Thread* thr) {
 294 // Nothing to do.
 295 }
 296 
 297 address os::Bsd::ucontext_get_pc(ucontext_t * uc) {
 298   return (address)uc->context_pc;
 299 }
 300 
 301 intptr_t* os::Bsd::ucontext_get_sp(ucontext_t * uc) {
 302   return (intptr_t*)uc->context_sp;
 303 }
 304 
 305 intptr_t* os::Bsd::ucontext_get_fp(ucontext_t * uc) {
 306   return (intptr_t*)uc->context_fp;
 307 }
 308 
 309 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 310 // is currently interrupted by SIGPROF.
 311 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 312 // frames. Currently we don't do that on Bsd, so it's the same as
 313 // os::fetch_frame_from_context().
 314 ExtendedPC os::Bsd::fetch_frame_from_ucontext(Thread* thread,
 315   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 316 
 317   assert(thread != NULL, "just checking");
 318   assert(ret_sp != NULL, "just checking");
 319   assert(ret_fp != NULL, "just checking");
 320 
 321   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 322 }
 323 
 324 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 325                     intptr_t** ret_sp, intptr_t** ret_fp) {
 326 
 327   ExtendedPC  epc;
 328   ucontext_t* uc = (ucontext_t*)ucVoid;
 329 
 330   if (uc != NULL) {
 331     epc = ExtendedPC(os::Bsd::ucontext_get_pc(uc));
 332     if (ret_sp) *ret_sp = os::Bsd::ucontext_get_sp(uc);
 333     if (ret_fp) *ret_fp = os::Bsd::ucontext_get_fp(uc);
 334   } else {
 335     // construct empty ExtendedPC for return value checking
 336     epc = ExtendedPC(NULL);
 337     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 338     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 339   }
 340 
 341   return epc;
 342 }
 343 
 344 frame os::fetch_frame_from_context(void* ucVoid) {
 345   intptr_t* sp;
 346   intptr_t* fp;
 347   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 348   return frame(sp, fp, epc.pc());
 349 }
 350 
 351 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 352 // turned off by -fomit-frame-pointer,
 353 frame os::get_sender_for_C_frame(frame* fr) {
 354   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 355 }
 356 
 357 intptr_t* _get_previous_fp() {
 358 #if defined(SPARC_WORKS) || defined(__clang__) || defined(__llvm__)
 359   register intptr_t **ebp;
 360   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 361 #else
 362   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 363 #endif
 364   return (intptr_t*) *ebp;   // we want what it points to.
 365 }
 366 
 367 
 368 frame os::current_frame() {
 369   intptr_t* fp = _get_previous_fp();
 370   frame myframe((intptr_t*)os::current_stack_pointer(),
 371                 (intptr_t*)fp,
 372                 CAST_FROM_FN_PTR(address, os::current_frame));
 373   if (os::is_first_C_frame(&myframe)) {
 374     // stack is not walkable
 375     return frame();
 376   } else {
 377     return os::get_sender_for_C_frame(&myframe);
 378   }
 379 }
 380 
 381 // Utility functions
 382 
 383 // From IA32 System Programming Guide
 384 enum {
 385   trap_page_fault = 0xE
 386 };
 387 
 388 extern "C" JNIEXPORT int
 389 JVM_handle_bsd_signal(int sig,
 390                         siginfo_t* info,
 391                         void* ucVoid,
 392                         int abort_if_unrecognized) {
 393   ucontext_t* uc = (ucontext_t*) ucVoid;
 394 
 395   Thread* t = ThreadLocalStorage::get_thread_slow();
 396 
 397   SignalHandlerMark shm(t);
 398 
 399   // Note: it's not uncommon that JNI code uses signal/sigset to install
 400   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 401   // or have a SIGILL handler when detecting CPU type). When that happens,
 402   // JVM_handle_bsd_signal() might be invoked with junk info/ucVoid. To
 403   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 404   // that do not require siginfo/ucontext first.
 405 
 406   if (sig == SIGPIPE || sig == SIGXFSZ) {
 407     // allow chained handler to go first
 408     if (os::Bsd::chained_handler(sig, info, ucVoid)) {
 409       return true;
 410     } else {
 411       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 412         char buf[64];
 413         warning("Ignoring %s - see bugs 4229104 or 646499219",
 414                 os::exception_name(sig, buf, sizeof(buf)));
 415       }
 416       return true;
 417     }
 418   }
 419 
 420   JavaThread* thread = NULL;
 421   VMThread* vmthread = NULL;
 422   if (os::Bsd::signal_handlers_are_installed) {
 423     if (t != NULL ){
 424       if(t->is_Java_thread()) {
 425         thread = (JavaThread*)t;
 426       }
 427       else if(t->is_VM_thread()){
 428         vmthread = (VMThread *)t;
 429       }
 430     }
 431   }
 432 /*
 433   NOTE: does not seem to work on bsd.
 434   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 435     // can't decode this kind of signal
 436     info = NULL;
 437   } else {
 438     assert(sig == info->si_signo, "bad siginfo");
 439   }
 440 */
 441   // decide if this trap can be handled by a stub
 442   address stub = NULL;
 443 
 444   address pc          = NULL;
 445 
 446   //%note os_trap_1
 447   if (info != NULL && uc != NULL && thread != NULL) {
 448     pc = (address) os::Bsd::ucontext_get_pc(uc);
 449 
 450     if (StubRoutines::is_safefetch_fault(pc)) {
 451       uc->context_pc = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
 452       return 1;
 453     }
 454 
 455     // Handle ALL stack overflow variations here
 456     if (sig == SIGSEGV || sig == SIGBUS) {
 457       address addr = (address) info->si_addr;
 458 
 459       // check if fault address is within thread stack
 460       if (addr < thread->stack_base() &&
 461           addr >= thread->stack_base() - thread->stack_size()) {
 462         // stack overflow
 463         if (thread->in_stack_yellow_zone(addr)) {
 464           thread->disable_stack_yellow_zone();
 465           if (thread->thread_state() == _thread_in_Java) {
 466             // Throw a stack overflow exception.  Guard pages will be reenabled
 467             // while unwinding the stack.
 468             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 469           } else {
 470             // Thread was in the vm or native code.  Return and try to finish.
 471             return 1;
 472           }
 473         } else if (thread->in_stack_red_zone(addr)) {
 474           // Fatal red zone violation.  Disable the guard pages and fall through
 475           // to handle_unexpected_exception way down below.
 476           thread->disable_stack_red_zone();
 477           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 478         }
 479       }
 480     }
 481 
 482     // We test if stub is already set (by the stack overflow code
 483     // above) so it is not overwritten by the code that follows. This
 484     // check is not required on other platforms, because on other
 485     // platforms we check for SIGSEGV only or SIGBUS only, where here
 486     // we have to check for both SIGSEGV and SIGBUS.
 487     if (thread->thread_state() == _thread_in_Java && stub == NULL) {
 488       // Java thread running in Java code => find exception handler if any
 489       // a fault inside compiled code, the interpreter, or a stub
 490 
 491       if ((sig == SIGSEGV || sig == SIGBUS) && os::is_poll_address((address)info->si_addr)) {
 492         stub = SharedRuntime::get_poll_stub(pc);
 493 #if defined(__APPLE__)
 494       // 32-bit Darwin reports a SIGBUS for nearly all memory access exceptions.
 495       // 64-bit Darwin may also use a SIGBUS (seen with compressed oops).
 496       // Catching SIGBUS here prevents the implicit SIGBUS NULL check below from
 497       // being called, so only do so if the implicit NULL check is not necessary.
 498       } else if (sig == SIGBUS && MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 499 #else
 500       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 501 #endif
 502         // BugId 4454115: A read from a MappedByteBuffer can fault
 503         // here if the underlying file has been truncated.
 504         // Do not crash the VM in such a case.
 505         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 506         nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
 507         if (nm != NULL && nm->has_unsafe_access()) {
 508           stub = StubRoutines::handler_for_unsafe_access();
 509         }
 510       }
 511       else
 512 
 513 #ifdef AMD64
 514       if (sig == SIGFPE  &&
 515           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 516         stub =
 517           SharedRuntime::
 518           continuation_for_implicit_exception(thread,
 519                                               pc,
 520                                               SharedRuntime::
 521                                               IMPLICIT_DIVIDE_BY_ZERO);
 522 #ifdef __APPLE__
 523       } else if (sig == SIGFPE && info->si_code == FPE_NOOP) {
 524         int op = pc[0];
 525 
 526         // Skip REX
 527         if ((pc[0] & 0xf0) == 0x40) {
 528           op = pc[1];
 529         } else {
 530           op = pc[0];
 531         }
 532 
 533         // Check for IDIV
 534         if (op == 0xF7) {
 535           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO);
 536         } else {
 537           // TODO: handle more cases if we are using other x86 instructions
 538           //   that can generate SIGFPE signal.
 539           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 540           fatal("please update this code.");
 541         }
 542 #endif /* __APPLE__ */
 543 
 544 #else
 545       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 546         // HACK: si_code does not work on bsd 2.2.12-20!!!
 547         int op = pc[0];
 548         if (op == 0xDB) {
 549           // FIST
 550           // TODO: The encoding of D2I in i486.ad can cause an exception
 551           // prior to the fist instruction if there was an invalid operation
 552           // pending. We want to dismiss that exception. From the win_32
 553           // side it also seems that if it really was the fist causing
 554           // the exception that we do the d2i by hand with different
 555           // rounding. Seems kind of weird.
 556           // NOTE: that we take the exception at the NEXT floating point instruction.
 557           assert(pc[0] == 0xDB, "not a FIST opcode");
 558           assert(pc[1] == 0x14, "not a FIST opcode");
 559           assert(pc[2] == 0x24, "not a FIST opcode");
 560           return true;
 561         } else if (op == 0xF7) {
 562           // IDIV
 563           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 564         } else {
 565           // TODO: handle more cases if we are using other x86 instructions
 566           //   that can generate SIGFPE signal on bsd.
 567           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 568           fatal("please update this code.");
 569         }
 570 #endif // AMD64
 571       } else if ((sig == SIGSEGV || sig == SIGBUS) &&
 572                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 573           // Determination of interpreter/vtable stub/compiled code null exception
 574           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 575       }
 576     } else if (thread->thread_state() == _thread_in_vm &&
 577                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 578                thread->doing_unsafe_access()) {
 579         stub = StubRoutines::handler_for_unsafe_access();
 580     }
 581 
 582     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 583     // and the heap gets shrunk before the field access.
 584     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 585       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 586       if (addr != (address)-1) {
 587         stub = addr;
 588       }
 589     }
 590 
 591     // Check to see if we caught the safepoint code in the
 592     // process of write protecting the memory serialization page.
 593     // It write enables the page immediately after protecting it
 594     // so we can just return to retry the write.
 595     if ((sig == SIGSEGV || sig == SIGBUS) &&
 596         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 597       // Block current thread until the memory serialize page permission restored.
 598       os::block_on_serialize_page_trap();
 599       return true;
 600     }
 601   }
 602 
 603 #ifndef AMD64
 604   // Execution protection violation
 605   //
 606   // This should be kept as the last step in the triage.  We don't
 607   // have a dedicated trap number for a no-execute fault, so be
 608   // conservative and allow other handlers the first shot.
 609   //
 610   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 611   // this si_code is so generic that it is almost meaningless; and
 612   // the si_code for this condition may change in the future.
 613   // Furthermore, a false-positive should be harmless.
 614   if (UnguardOnExecutionViolation > 0 &&
 615       (sig == SIGSEGV || sig == SIGBUS) &&
 616       uc->context_trapno == trap_page_fault) {
 617     int page_size = os::vm_page_size();
 618     address addr = (address) info->si_addr;
 619     address pc = os::Bsd::ucontext_get_pc(uc);
 620     // Make sure the pc and the faulting address are sane.
 621     //
 622     // If an instruction spans a page boundary, and the page containing
 623     // the beginning of the instruction is executable but the following
 624     // page is not, the pc and the faulting address might be slightly
 625     // different - we still want to unguard the 2nd page in this case.
 626     //
 627     // 15 bytes seems to be a (very) safe value for max instruction size.
 628     bool pc_is_near_addr =
 629       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 630     bool instr_spans_page_boundary =
 631       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 632                        (intptr_t) page_size) > 0);
 633 
 634     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 635       static volatile address last_addr =
 636         (address) os::non_memory_address_word();
 637 
 638       // In conservative mode, don't unguard unless the address is in the VM
 639       if (addr != last_addr &&
 640           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 641 
 642         // Set memory to RWX and retry
 643         address page_start =
 644           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 645         bool res = os::protect_memory((char*) page_start, page_size,
 646                                       os::MEM_PROT_RWX);
 647 
 648         if (PrintMiscellaneous && Verbose) {
 649           char buf[256];
 650           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 651                        "at " INTPTR_FORMAT
 652                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 653                        page_start, (res ? "success" : "failed"), errno);
 654           tty->print_raw_cr(buf);
 655         }
 656         stub = pc;
 657 
 658         // Set last_addr so if we fault again at the same address, we don't end
 659         // up in an endless loop.
 660         //
 661         // There are two potential complications here.  Two threads trapping at
 662         // the same address at the same time could cause one of the threads to
 663         // think it already unguarded, and abort the VM.  Likely very rare.
 664         //
 665         // The other race involves two threads alternately trapping at
 666         // different addresses and failing to unguard the page, resulting in
 667         // an endless loop.  This condition is probably even more unlikely than
 668         // the first.
 669         //
 670         // Although both cases could be avoided by using locks or thread local
 671         // last_addr, these solutions are unnecessary complication: this
 672         // handler is a best-effort safety net, not a complete solution.  It is
 673         // disabled by default and should only be used as a workaround in case
 674         // we missed any no-execute-unsafe VM code.
 675 
 676         last_addr = addr;
 677       }
 678     }
 679   }
 680 #endif // !AMD64
 681 
 682   if (stub != NULL) {
 683     // save all thread context in case we need to restore it
 684     if (thread != NULL) thread->set_saved_exception_pc(pc);
 685 
 686     uc->context_pc = (intptr_t)stub;
 687     return true;
 688   }
 689 
 690   // signal-chaining
 691   if (os::Bsd::chained_handler(sig, info, ucVoid)) {
 692      return true;
 693   }
 694 
 695   if (!abort_if_unrecognized) {
 696     // caller wants another chance, so give it to him
 697     return false;
 698   }
 699 
 700   if (pc == NULL && uc != NULL) {
 701     pc = os::Bsd::ucontext_get_pc(uc);
 702   }
 703 
 704   // unmask current signal
 705   sigset_t newset;
 706   sigemptyset(&newset);
 707   sigaddset(&newset, sig);
 708   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 709 
 710   VMError err(t, sig, pc, info, ucVoid);
 711   err.report_and_die();
 712 
 713   ShouldNotReachHere();
 714 }
 715 
 716 // From solaris_i486.s ported to bsd_i486.s
 717 extern "C" void fixcw();
 718 
 719 void os::Bsd::init_thread_fpu_state(void) {
 720 #ifndef AMD64
 721   // Set fpu to 53 bit precision. This happens too early to use a stub.
 722   fixcw();
 723 #endif // !AMD64
 724 }
 725 
 726 
 727 // Check that the bsd kernel version is 2.4 or higher since earlier
 728 // versions do not support SSE without patches.
 729 bool os::supports_sse() {
 730   return true;
 731 }
 732 
 733 bool os::is_allocatable(size_t bytes) {
 734 #ifdef AMD64
 735   // unused on amd64?
 736   return true;
 737 #else
 738 
 739   if (bytes < 2 * G) {
 740     return true;
 741   }
 742 
 743   char* addr = reserve_memory(bytes, NULL);
 744 
 745   if (addr != NULL) {
 746     release_memory(addr, bytes);
 747   }
 748 
 749   return addr != NULL;
 750 #endif // AMD64
 751 }
 752 
 753 ////////////////////////////////////////////////////////////////////////////////
 754 // thread stack
 755 
 756 #ifdef AMD64
 757 size_t os::Bsd::min_stack_allowed  = 64 * K;
 758 
 759 // amd64: pthread on amd64 is always in floating stack mode
 760 bool os::Bsd::supports_variable_stack_size() {  return true; }
 761 #else
 762 size_t os::Bsd::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 763 
 764 #ifdef __GNUC__
 765 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
 766 #endif
 767 
 768 bool os::Bsd::supports_variable_stack_size() { return true; }
 769 #endif // AMD64
 770 
 771 // return default stack size for thr_type
 772 size_t os::Bsd::default_stack_size(os::ThreadType thr_type) {
 773   // default stack size (compiler thread needs larger stack)
 774 #ifdef AMD64
 775   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 776 #else
 777   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 778 #endif // AMD64
 779   return s;
 780 }
 781 
 782 size_t os::Bsd::default_guard_size(os::ThreadType thr_type) {
 783   // Creating guard page is very expensive. Java thread has HotSpot
 784   // guard page, only enable glibc guard page for non-Java threads.
 785   return (thr_type == java_thread ? 0 : page_size());
 786 }
 787 
 788 // Java thread:
 789 //
 790 //   Low memory addresses
 791 //    +------------------------+
 792 //    |                        |\  JavaThread created by VM does not have glibc
 793 //    |    glibc guard page    | - guard, attached Java thread usually has
 794 //    |                        |/  1 page glibc guard.
 795 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 796 //    |                        |\
 797 //    |  HotSpot Guard Pages   | - red and yellow pages
 798 //    |                        |/
 799 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 800 //    |                        |\
 801 //    |      Normal Stack      | -
 802 //    |                        |/
 803 // P2 +------------------------+ Thread::stack_base()
 804 //
 805 // Non-Java thread:
 806 //
 807 //   Low memory addresses
 808 //    +------------------------+
 809 //    |                        |\
 810 //    |  glibc guard page      | - usually 1 page
 811 //    |                        |/
 812 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 813 //    |                        |\
 814 //    |      Normal Stack      | -
 815 //    |                        |/
 816 // P2 +------------------------+ Thread::stack_base()
 817 //
 818 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 819 //    pthread_attr_getstack()
 820 
 821 static void current_stack_region(address * bottom, size_t * size) {
 822 #ifdef __APPLE__
 823   pthread_t self = pthread_self();
 824   void *stacktop = pthread_get_stackaddr_np(self);
 825   *size = pthread_get_stacksize_np(self);
 826   *bottom = (address) stacktop - *size;
 827 #elif defined(__OpenBSD__)
 828   stack_t ss;
 829   int rslt = pthread_stackseg_np(pthread_self(), &ss);
 830 
 831   if (rslt != 0)
 832     fatal(err_msg("pthread_stackseg_np failed with err = %d", rslt));
 833 
 834   *bottom = (address)((char *)ss.ss_sp - ss.ss_size);
 835   *size   = ss.ss_size;
 836 #else
 837   pthread_attr_t attr;
 838 
 839   int rslt = pthread_attr_init(&attr);
 840 
 841   // JVM needs to know exact stack location, abort if it fails
 842   if (rslt != 0)
 843     fatal(err_msg("pthread_attr_init failed with err = %d", rslt));
 844 
 845   rslt = pthread_attr_get_np(pthread_self(), &attr);
 846 
 847   if (rslt != 0)
 848     fatal(err_msg("pthread_attr_get_np failed with err = %d", rslt));
 849 
 850   if (pthread_attr_getstackaddr(&attr, (void **)bottom) != 0 ||
 851     pthread_attr_getstacksize(&attr, size) != 0) {
 852     fatal("Can not locate current stack attributes!");
 853   }
 854 
 855   pthread_attr_destroy(&attr);
 856 #endif
 857   assert(os::current_stack_pointer() >= *bottom &&
 858          os::current_stack_pointer() < *bottom + *size, "just checking");
 859 }
 860 
 861 address os::current_stack_base() {
 862   address bottom;
 863   size_t size;
 864   current_stack_region(&bottom, &size);
 865   return (bottom + size);
 866 }
 867 
 868 size_t os::current_stack_size() {
 869   // stack size includes normal stack and HotSpot guard pages
 870   address bottom;
 871   size_t size;
 872   current_stack_region(&bottom, &size);
 873   return size;
 874 }
 875 
 876 /////////////////////////////////////////////////////////////////////////////
 877 // helper functions for fatal error handler
 878 
 879 void os::print_context(outputStream *st, void *context) {
 880   if (context == NULL) return;
 881 
 882   ucontext_t *uc = (ucontext_t*)context;
 883   st->print_cr("Registers:");
 884 #ifdef AMD64
 885   st->print(  "RAX=" INTPTR_FORMAT, uc->context_rax);
 886   st->print(", RBX=" INTPTR_FORMAT, uc->context_rbx);
 887   st->print(", RCX=" INTPTR_FORMAT, uc->context_rcx);
 888   st->print(", RDX=" INTPTR_FORMAT, uc->context_rdx);
 889   st->cr();
 890   st->print(  "RSP=" INTPTR_FORMAT, uc->context_rsp);
 891   st->print(", RBP=" INTPTR_FORMAT, uc->context_rbp);
 892   st->print(", RSI=" INTPTR_FORMAT, uc->context_rsi);
 893   st->print(", RDI=" INTPTR_FORMAT, uc->context_rdi);
 894   st->cr();
 895   st->print(  "R8 =" INTPTR_FORMAT, uc->context_r8);
 896   st->print(", R9 =" INTPTR_FORMAT, uc->context_r9);
 897   st->print(", R10=" INTPTR_FORMAT, uc->context_r10);
 898   st->print(", R11=" INTPTR_FORMAT, uc->context_r11);
 899   st->cr();
 900   st->print(  "R12=" INTPTR_FORMAT, uc->context_r12);
 901   st->print(", R13=" INTPTR_FORMAT, uc->context_r13);
 902   st->print(", R14=" INTPTR_FORMAT, uc->context_r14);
 903   st->print(", R15=" INTPTR_FORMAT, uc->context_r15);
 904   st->cr();
 905   st->print(  "RIP=" INTPTR_FORMAT, uc->context_rip);
 906   st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_flags);
 907   st->print(", ERR=" INTPTR_FORMAT, uc->context_err);
 908   st->cr();
 909   st->print("  TRAPNO=" INTPTR_FORMAT, uc->context_trapno);
 910 #else
 911   st->print(  "EAX=" INTPTR_FORMAT, uc->context_eax);
 912   st->print(", EBX=" INTPTR_FORMAT, uc->context_ebx);
 913   st->print(", ECX=" INTPTR_FORMAT, uc->context_ecx);
 914   st->print(", EDX=" INTPTR_FORMAT, uc->context_edx);
 915   st->cr();
 916   st->print(  "ESP=" INTPTR_FORMAT, uc->context_esp);
 917   st->print(", EBP=" INTPTR_FORMAT, uc->context_ebp);
 918   st->print(", ESI=" INTPTR_FORMAT, uc->context_esi);
 919   st->print(", EDI=" INTPTR_FORMAT, uc->context_edi);
 920   st->cr();
 921   st->print(  "EIP=" INTPTR_FORMAT, uc->context_eip);
 922   st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_eflags);
 923 #endif // AMD64
 924   st->cr();
 925   st->cr();
 926 
 927   intptr_t *sp = (intptr_t *)os::Bsd::ucontext_get_sp(uc);
 928   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 929   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 930   st->cr();
 931 
 932   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 933   // point to garbage if entry point in an nmethod is corrupted. Leave
 934   // this at the end, and hope for the best.
 935   address pc = os::Bsd::ucontext_get_pc(uc);
 936   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 937   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 938 }
 939 
 940 void os::print_register_info(outputStream *st, void *context) {
 941   if (context == NULL) return;
 942 
 943   ucontext_t *uc = (ucontext_t*)context;
 944 
 945   st->print_cr("Register to memory mapping:");
 946   st->cr();
 947 
 948   // this is horrendously verbose but the layout of the registers in the
 949   // context does not match how we defined our abstract Register set, so
 950   // we can't just iterate through the gregs area
 951 
 952   // this is only for the "general purpose" registers
 953 
 954 #ifdef AMD64
 955   st->print("RAX="); print_location(st, uc->context_rax);
 956   st->print("RBX="); print_location(st, uc->context_rbx);
 957   st->print("RCX="); print_location(st, uc->context_rcx);
 958   st->print("RDX="); print_location(st, uc->context_rdx);
 959   st->print("RSP="); print_location(st, uc->context_rsp);
 960   st->print("RBP="); print_location(st, uc->context_rbp);
 961   st->print("RSI="); print_location(st, uc->context_rsi);
 962   st->print("RDI="); print_location(st, uc->context_rdi);
 963   st->print("R8 ="); print_location(st, uc->context_r8);
 964   st->print("R9 ="); print_location(st, uc->context_r9);
 965   st->print("R10="); print_location(st, uc->context_r10);
 966   st->print("R11="); print_location(st, uc->context_r11);
 967   st->print("R12="); print_location(st, uc->context_r12);
 968   st->print("R13="); print_location(st, uc->context_r13);
 969   st->print("R14="); print_location(st, uc->context_r14);
 970   st->print("R15="); print_location(st, uc->context_r15);
 971 #else
 972   st->print("EAX="); print_location(st, uc->context_eax);
 973   st->print("EBX="); print_location(st, uc->context_ebx);
 974   st->print("ECX="); print_location(st, uc->context_ecx);
 975   st->print("EDX="); print_location(st, uc->context_edx);
 976   st->print("ESP="); print_location(st, uc->context_esp);
 977   st->print("EBP="); print_location(st, uc->context_ebp);
 978   st->print("ESI="); print_location(st, uc->context_esi);
 979   st->print("EDI="); print_location(st, uc->context_edi);
 980 #endif // AMD64
 981 
 982   st->cr();
 983 }
 984 
 985 void os::setup_fpu() {
 986 #ifndef AMD64
 987   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 988   __asm__ volatile (  "fldcw (%0)" :
 989                       : "r" (fpu_cntrl) : "memory");
 990 #endif // !AMD64
 991 }
 992 
 993 #ifndef PRODUCT
 994 void os::verify_stack_alignment() {
 995 }
 996 #endif