1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/aprofiler.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fprofiler.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/jniPeriodicChecker.hpp"
  59 #include "runtime/memprofiler.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/task.hpp"
  68 #include "runtime/thread.inline.hpp"
  69 #include "runtime/threadCritical.hpp"
  70 #include "runtime/threadLocalStorage.hpp"
  71 #include "runtime/vframe.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vframe_hp.hpp"
  74 #include "runtime/vmThread.hpp"
  75 #include "runtime/vm_operations.hpp"
  76 #include "services/attachListener.hpp"
  77 #include "services/management.hpp"
  78 #include "services/memTracker.hpp"
  79 #include "services/threadService.hpp"
  80 #include "trace/tracing.hpp"
  81 #include "trace/traceMacros.hpp"
  82 #include "utilities/defaultStream.hpp"
  83 #include "utilities/dtrace.hpp"
  84 #include "utilities/events.hpp"
  85 #include "utilities/preserveException.hpp"
  86 #include "utilities/macros.hpp"
  87 #ifdef TARGET_OS_FAMILY_linux
  88 # include "os_linux.inline.hpp"
  89 #endif
  90 #ifdef TARGET_OS_FAMILY_solaris
  91 # include "os_solaris.inline.hpp"
  92 #endif
  93 #ifdef TARGET_OS_FAMILY_windows
  94 # include "os_windows.inline.hpp"
  95 #endif
  96 #ifdef TARGET_OS_FAMILY_bsd
  97 # include "os_bsd.inline.hpp"
  98 #endif
  99 #if INCLUDE_ALL_GCS
 100 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 101 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 102 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 103 #endif // INCLUDE_ALL_GCS
 104 #ifdef COMPILER1
 105 #include "c1/c1_Compiler.hpp"
 106 #endif
 107 #ifdef COMPILER2
 108 #include "opto/c2compiler.hpp"
 109 #include "opto/idealGraphPrinter.hpp"
 110 #endif
 111 
 112 #ifdef DTRACE_ENABLED
 113 
 114 // Only bother with this argument setup if dtrace is available
 115 
 116 #ifndef USDT2
 117 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 118 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 119 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 120   intptr_t, intptr_t, bool);
 121 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 122   intptr_t, intptr_t, bool);
 123 
 124 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 125   {                                                                        \
 126     ResourceMark rm(this);                                                 \
 127     int len = 0;                                                           \
 128     const char* name = (javathread)->get_thread_name();                    \
 129     len = strlen(name);                                                    \
 130     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 131       name, len,                                                           \
 132       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 133       (javathread)->osthread()->thread_id(),                               \
 134       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 135   }
 136 
 137 #else /* USDT2 */
 138 
 139 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 140 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 141 
 142 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 143   {                                                                        \
 144     ResourceMark rm(this);                                                 \
 145     int len = 0;                                                           \
 146     const char* name = (javathread)->get_thread_name();                    \
 147     len = strlen(name);                                                    \
 148     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 149       (char *) name, len,                                                           \
 150       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 151       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 152       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 153   }
 154 
 155 #endif /* USDT2 */
 156 
 157 #else //  ndef DTRACE_ENABLED
 158 
 159 #define DTRACE_THREAD_PROBE(probe, javathread)
 160 
 161 #endif // ndef DTRACE_ENABLED
 162 
 163 
 164 // Class hierarchy
 165 // - Thread
 166 //   - VMThread
 167 //   - WatcherThread
 168 //   - ConcurrentMarkSweepThread
 169 //   - JavaThread
 170 //     - CompilerThread
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const int alignment = markOopDesc::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                               AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (TraceBiasedLocking) {
 186       if (aligned_addr != real_malloc_addr)
 187         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                       real_malloc_addr, aligned_addr);
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 201     FreeHeap(real_malloc_addr, mtThread);
 202   } else {
 203     FreeHeap(p, mtThread);
 204   }
 205 }
 206 
 207 
 208 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 209 // JavaThread
 210 
 211 
 212 Thread::Thread() {
 213   // stack and get_thread
 214   set_stack_base(NULL);
 215   set_stack_size(0);
 216   set_self_raw_id(0);
 217   set_lgrp_id(-1);
 218 
 219   // allocated data structures
 220   set_osthread(NULL);
 221   set_resource_area(new (mtThread)ResourceArea());
 222   set_handle_area(new (mtThread) HandleArea(NULL));
 223   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
 224   set_active_handles(NULL);
 225   set_free_handle_block(NULL);
 226   set_last_handle_mark(NULL);
 227 
 228   // This initial value ==> never claimed.
 229   _oops_do_parity = 0;
 230 
 231   // the handle mark links itself to last_handle_mark
 232   new HandleMark(this);
 233 
 234   // plain initialization
 235   debug_only(_owned_locks = NULL;)
 236   debug_only(_allow_allocation_count = 0;)
 237   NOT_PRODUCT(_allow_safepoint_count = 0;)
 238   NOT_PRODUCT(_skip_gcalot = false;)
 239   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 240   _jvmti_env_iteration_count = 0;
 241   set_allocated_bytes(0);
 242   _vm_operation_started_count = 0;
 243   _vm_operation_completed_count = 0;
 244   _current_pending_monitor = NULL;
 245   _current_pending_monitor_is_from_java = true;
 246   _current_waiting_monitor = NULL;
 247   _num_nested_signal = 0;
 248   omFreeList = NULL ;
 249   omFreeCount = 0 ;
 250   omFreeProvision = 32 ;
 251   omInUseList = NULL ;
 252   omInUseCount = 0 ;
 253 
 254 #ifdef ASSERT
 255   _visited_for_critical_count = false;
 256 #endif
 257 
 258   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 259   _suspend_flags = 0;
 260 
 261   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 262   _hashStateX = os::random() ;
 263   _hashStateY = 842502087 ;
 264   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 265   _hashStateW = 273326509 ;
 266 
 267   _OnTrap   = 0 ;
 268   _schedctl = NULL ;
 269   _Stalled  = 0 ;
 270   _TypeTag  = 0x2BAD ;
 271 
 272   // Many of the following fields are effectively final - immutable
 273   // Note that nascent threads can't use the Native Monitor-Mutex
 274   // construct until the _MutexEvent is initialized ...
 275   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 276   // we might instead use a stack of ParkEvents that we could provision on-demand.
 277   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 278   // and ::Release()
 279   _ParkEvent   = ParkEvent::Allocate (this) ;
 280   _SleepEvent  = ParkEvent::Allocate (this) ;
 281   _MutexEvent  = ParkEvent::Allocate (this) ;
 282   _MuxEvent    = ParkEvent::Allocate (this) ;
 283 
 284 #ifdef CHECK_UNHANDLED_OOPS
 285   if (CheckUnhandledOops) {
 286     _unhandled_oops = new UnhandledOops(this);
 287   }
 288 #endif // CHECK_UNHANDLED_OOPS
 289 #ifdef ASSERT
 290   if (UseBiasedLocking) {
 291     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 292     assert(this == _real_malloc_address ||
 293            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 294            "bug in forced alignment of thread objects");
 295   }
 296 #endif /* ASSERT */
 297 }
 298 
 299 void Thread::initialize_thread_local_storage() {
 300   // Note: Make sure this method only calls
 301   // non-blocking operations. Otherwise, it might not work
 302   // with the thread-startup/safepoint interaction.
 303 
 304   // During Java thread startup, safepoint code should allow this
 305   // method to complete because it may need to allocate memory to
 306   // store information for the new thread.
 307 
 308   // initialize structure dependent on thread local storage
 309   ThreadLocalStorage::set_thread(this);
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315   if (is_Java_thread()) {
 316     ((JavaThread*) this)->set_stack_overflow_limit();
 317   }
 318   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 319   // in initialize_thread(). Without the adjustment, stack size is
 320   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 321   // So far, only Solaris has real implementation of initialize_thread().
 322   //
 323   // set up any platform-specific state.
 324   os::initialize_thread(this);
 325 
 326 #if INCLUDE_NMT
 327   // record thread's native stack, stack grows downward
 328   address stack_low_addr = stack_base() - stack_size();
 329   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
 330       CURRENT_PC);
 331 #endif // INCLUDE_NMT
 332 }
 333 
 334 
 335 Thread::~Thread() {
 336   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 337   ObjectSynchronizer::omFlush (this) ;
 338 
 339   // stack_base can be NULL if the thread is never started or exited before
 340   // record_stack_base_and_size called. Although, we would like to ensure
 341   // that all started threads do call record_stack_base_and_size(), there is
 342   // not proper way to enforce that.
 343 #if INCLUDE_NMT
 344   if (_stack_base != NULL) {
 345     address low_stack_addr = stack_base() - stack_size();
 346     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 347 #ifdef ASSERT
 348     set_stack_base(NULL);
 349 #endif
 350   }
 351 #endif // INCLUDE_NMT
 352 
 353   // deallocate data structures
 354   delete resource_area();
 355   // since the handle marks are using the handle area, we have to deallocated the root
 356   // handle mark before deallocating the thread's handle area,
 357   assert(last_handle_mark() != NULL, "check we have an element");
 358   delete last_handle_mark();
 359   assert(last_handle_mark() == NULL, "check we have reached the end");
 360 
 361   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 362   // We NULL out the fields for good hygiene.
 363   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 364   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 365   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 366   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 367 
 368   delete handle_area();
 369   delete metadata_handles();
 370 
 371   // osthread() can be NULL, if creation of thread failed.
 372   if (osthread() != NULL) os::free_thread(osthread());
 373 
 374   delete _SR_lock;
 375 
 376   // clear thread local storage if the Thread is deleting itself
 377   if (this == Thread::current()) {
 378     ThreadLocalStorage::set_thread(NULL);
 379   } else {
 380     // In the case where we're not the current thread, invalidate all the
 381     // caches in case some code tries to get the current thread or the
 382     // thread that was destroyed, and gets stale information.
 383     ThreadLocalStorage::invalidate_all();
 384   }
 385   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 386 }
 387 
 388 // NOTE: dummy function for assertion purpose.
 389 void Thread::run() {
 390   ShouldNotReachHere();
 391 }
 392 
 393 #ifdef ASSERT
 394 // Private method to check for dangling thread pointer
 395 void check_for_dangling_thread_pointer(Thread *thread) {
 396  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 397          "possibility of dangling Thread pointer");
 398 }
 399 #endif
 400 
 401 
 402 #ifndef PRODUCT
 403 // Tracing method for basic thread operations
 404 void Thread::trace(const char* msg, const Thread* const thread) {
 405   if (!TraceThreadEvents) return;
 406   ResourceMark rm;
 407   ThreadCritical tc;
 408   const char *name = "non-Java thread";
 409   int prio = -1;
 410   if (thread->is_Java_thread()
 411       && !thread->is_Compiler_thread()) {
 412     // The Threads_lock must be held to get information about
 413     // this thread but may not be in some situations when
 414     // tracing  thread events.
 415     bool release_Threads_lock = false;
 416     if (!Threads_lock->owned_by_self()) {
 417       Threads_lock->lock();
 418       release_Threads_lock = true;
 419     }
 420     JavaThread* jt = (JavaThread *)thread;
 421     name = (char *)jt->get_thread_name();
 422     oop thread_oop = jt->threadObj();
 423     if (thread_oop != NULL) {
 424       prio = java_lang_Thread::priority(thread_oop);
 425     }
 426     if (release_Threads_lock) {
 427       Threads_lock->unlock();
 428     }
 429   }
 430   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 431 }
 432 #endif
 433 
 434 
 435 ThreadPriority Thread::get_priority(const Thread* const thread) {
 436   trace("get priority", thread);
 437   ThreadPriority priority;
 438   // Can return an error!
 439   (void)os::get_priority(thread, priority);
 440   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 441   return priority;
 442 }
 443 
 444 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 445   trace("set priority", thread);
 446   debug_only(check_for_dangling_thread_pointer(thread);)
 447   // Can return an error!
 448   (void)os::set_priority(thread, priority);
 449 }
 450 
 451 
 452 void Thread::start(Thread* thread) {
 453   trace("start", thread);
 454   // Start is different from resume in that its safety is guaranteed by context or
 455   // being called from a Java method synchronized on the Thread object.
 456   if (!DisableStartThread) {
 457     if (thread->is_Java_thread()) {
 458       // Initialize the thread state to RUNNABLE before starting this thread.
 459       // Can not set it after the thread started because we do not know the
 460       // exact thread state at that time. It could be in MONITOR_WAIT or
 461       // in SLEEPING or some other state.
 462       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 463                                           java_lang_Thread::RUNNABLE);
 464     }
 465     os::start_thread(thread);
 466   }
 467 }
 468 
 469 // Enqueue a VM_Operation to do the job for us - sometime later
 470 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 471   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 472   VMThread::execute(vm_stop);
 473 }
 474 
 475 
 476 //
 477 // Check if an external suspend request has completed (or has been
 478 // cancelled). Returns true if the thread is externally suspended and
 479 // false otherwise.
 480 //
 481 // The bits parameter returns information about the code path through
 482 // the routine. Useful for debugging:
 483 //
 484 // set in is_ext_suspend_completed():
 485 // 0x00000001 - routine was entered
 486 // 0x00000010 - routine return false at end
 487 // 0x00000100 - thread exited (return false)
 488 // 0x00000200 - suspend request cancelled (return false)
 489 // 0x00000400 - thread suspended (return true)
 490 // 0x00001000 - thread is in a suspend equivalent state (return true)
 491 // 0x00002000 - thread is native and walkable (return true)
 492 // 0x00004000 - thread is native_trans and walkable (needed retry)
 493 //
 494 // set in wait_for_ext_suspend_completion():
 495 // 0x00010000 - routine was entered
 496 // 0x00020000 - suspend request cancelled before loop (return false)
 497 // 0x00040000 - thread suspended before loop (return true)
 498 // 0x00080000 - suspend request cancelled in loop (return false)
 499 // 0x00100000 - thread suspended in loop (return true)
 500 // 0x00200000 - suspend not completed during retry loop (return false)
 501 //
 502 
 503 // Helper class for tracing suspend wait debug bits.
 504 //
 505 // 0x00000100 indicates that the target thread exited before it could
 506 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 507 // 0x00080000 each indicate a cancelled suspend request so they don't
 508 // count as wait failures either.
 509 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 510 
 511 class TraceSuspendDebugBits : public StackObj {
 512  private:
 513   JavaThread * jt;
 514   bool         is_wait;
 515   bool         called_by_wait;  // meaningful when !is_wait
 516   uint32_t *   bits;
 517 
 518  public:
 519   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 520                         uint32_t *_bits) {
 521     jt             = _jt;
 522     is_wait        = _is_wait;
 523     called_by_wait = _called_by_wait;
 524     bits           = _bits;
 525   }
 526 
 527   ~TraceSuspendDebugBits() {
 528     if (!is_wait) {
 529 #if 1
 530       // By default, don't trace bits for is_ext_suspend_completed() calls.
 531       // That trace is very chatty.
 532       return;
 533 #else
 534       if (!called_by_wait) {
 535         // If tracing for is_ext_suspend_completed() is enabled, then only
 536         // trace calls to it from wait_for_ext_suspend_completion()
 537         return;
 538       }
 539 #endif
 540     }
 541 
 542     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 543       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 544         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 545         ResourceMark rm;
 546 
 547         tty->print_cr(
 548             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 549             jt->get_thread_name(), *bits);
 550 
 551         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 552       }
 553     }
 554   }
 555 };
 556 #undef DEBUG_FALSE_BITS
 557 
 558 
 559 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 560   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 561 
 562   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 563   bool do_trans_retry;           // flag to force the retry
 564 
 565   *bits |= 0x00000001;
 566 
 567   do {
 568     do_trans_retry = false;
 569 
 570     if (is_exiting()) {
 571       // Thread is in the process of exiting. This is always checked
 572       // first to reduce the risk of dereferencing a freed JavaThread.
 573       *bits |= 0x00000100;
 574       return false;
 575     }
 576 
 577     if (!is_external_suspend()) {
 578       // Suspend request is cancelled. This is always checked before
 579       // is_ext_suspended() to reduce the risk of a rogue resume
 580       // confusing the thread that made the suspend request.
 581       *bits |= 0x00000200;
 582       return false;
 583     }
 584 
 585     if (is_ext_suspended()) {
 586       // thread is suspended
 587       *bits |= 0x00000400;
 588       return true;
 589     }
 590 
 591     // Now that we no longer do hard suspends of threads running
 592     // native code, the target thread can be changing thread state
 593     // while we are in this routine:
 594     //
 595     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 596     //
 597     // We save a copy of the thread state as observed at this moment
 598     // and make our decision about suspend completeness based on the
 599     // copy. This closes the race where the thread state is seen as
 600     // _thread_in_native_trans in the if-thread_blocked check, but is
 601     // seen as _thread_blocked in if-thread_in_native_trans check.
 602     JavaThreadState save_state = thread_state();
 603 
 604     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 605       // If the thread's state is _thread_blocked and this blocking
 606       // condition is known to be equivalent to a suspend, then we can
 607       // consider the thread to be externally suspended. This means that
 608       // the code that sets _thread_blocked has been modified to do
 609       // self-suspension if the blocking condition releases. We also
 610       // used to check for CONDVAR_WAIT here, but that is now covered by
 611       // the _thread_blocked with self-suspension check.
 612       //
 613       // Return true since we wouldn't be here unless there was still an
 614       // external suspend request.
 615       *bits |= 0x00001000;
 616       return true;
 617     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 618       // Threads running native code will self-suspend on native==>VM/Java
 619       // transitions. If its stack is walkable (should always be the case
 620       // unless this function is called before the actual java_suspend()
 621       // call), then the wait is done.
 622       *bits |= 0x00002000;
 623       return true;
 624     } else if (!called_by_wait && !did_trans_retry &&
 625                save_state == _thread_in_native_trans &&
 626                frame_anchor()->walkable()) {
 627       // The thread is transitioning from thread_in_native to another
 628       // thread state. check_safepoint_and_suspend_for_native_trans()
 629       // will force the thread to self-suspend. If it hasn't gotten
 630       // there yet we may have caught the thread in-between the native
 631       // code check above and the self-suspend. Lucky us. If we were
 632       // called by wait_for_ext_suspend_completion(), then it
 633       // will be doing the retries so we don't have to.
 634       //
 635       // Since we use the saved thread state in the if-statement above,
 636       // there is a chance that the thread has already transitioned to
 637       // _thread_blocked by the time we get here. In that case, we will
 638       // make a single unnecessary pass through the logic below. This
 639       // doesn't hurt anything since we still do the trans retry.
 640 
 641       *bits |= 0x00004000;
 642 
 643       // Once the thread leaves thread_in_native_trans for another
 644       // thread state, we break out of this retry loop. We shouldn't
 645       // need this flag to prevent us from getting back here, but
 646       // sometimes paranoia is good.
 647       did_trans_retry = true;
 648 
 649       // We wait for the thread to transition to a more usable state.
 650       for (int i = 1; i <= SuspendRetryCount; i++) {
 651         // We used to do an "os::yield_all(i)" call here with the intention
 652         // that yielding would increase on each retry. However, the parameter
 653         // is ignored on Linux which means the yield didn't scale up. Waiting
 654         // on the SR_lock below provides a much more predictable scale up for
 655         // the delay. It also provides a simple/direct point to check for any
 656         // safepoint requests from the VMThread
 657 
 658         // temporarily drops SR_lock while doing wait with safepoint check
 659         // (if we're a JavaThread - the WatcherThread can also call this)
 660         // and increase delay with each retry
 661         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 662 
 663         // check the actual thread state instead of what we saved above
 664         if (thread_state() != _thread_in_native_trans) {
 665           // the thread has transitioned to another thread state so
 666           // try all the checks (except this one) one more time.
 667           do_trans_retry = true;
 668           break;
 669         }
 670       } // end retry loop
 671 
 672 
 673     }
 674   } while (do_trans_retry);
 675 
 676   *bits |= 0x00000010;
 677   return false;
 678 }
 679 
 680 //
 681 // Wait for an external suspend request to complete (or be cancelled).
 682 // Returns true if the thread is externally suspended and false otherwise.
 683 //
 684 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 685        uint32_t *bits) {
 686   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 687                              false /* !called_by_wait */, bits);
 688 
 689   // local flag copies to minimize SR_lock hold time
 690   bool is_suspended;
 691   bool pending;
 692   uint32_t reset_bits;
 693 
 694   // set a marker so is_ext_suspend_completed() knows we are the caller
 695   *bits |= 0x00010000;
 696 
 697   // We use reset_bits to reinitialize the bits value at the top of
 698   // each retry loop. This allows the caller to make use of any
 699   // unused bits for their own marking purposes.
 700   reset_bits = *bits;
 701 
 702   {
 703     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 704     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 705                                             delay, bits);
 706     pending = is_external_suspend();
 707   }
 708   // must release SR_lock to allow suspension to complete
 709 
 710   if (!pending) {
 711     // A cancelled suspend request is the only false return from
 712     // is_ext_suspend_completed() that keeps us from entering the
 713     // retry loop.
 714     *bits |= 0x00020000;
 715     return false;
 716   }
 717 
 718   if (is_suspended) {
 719     *bits |= 0x00040000;
 720     return true;
 721   }
 722 
 723   for (int i = 1; i <= retries; i++) {
 724     *bits = reset_bits;  // reinit to only track last retry
 725 
 726     // We used to do an "os::yield_all(i)" call here with the intention
 727     // that yielding would increase on each retry. However, the parameter
 728     // is ignored on Linux which means the yield didn't scale up. Waiting
 729     // on the SR_lock below provides a much more predictable scale up for
 730     // the delay. It also provides a simple/direct point to check for any
 731     // safepoint requests from the VMThread
 732 
 733     {
 734       MutexLocker ml(SR_lock());
 735       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 736       // can also call this)  and increase delay with each retry
 737       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 738 
 739       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 740                                               delay, bits);
 741 
 742       // It is possible for the external suspend request to be cancelled
 743       // (by a resume) before the actual suspend operation is completed.
 744       // Refresh our local copy to see if we still need to wait.
 745       pending = is_external_suspend();
 746     }
 747 
 748     if (!pending) {
 749       // A cancelled suspend request is the only false return from
 750       // is_ext_suspend_completed() that keeps us from staying in the
 751       // retry loop.
 752       *bits |= 0x00080000;
 753       return false;
 754     }
 755 
 756     if (is_suspended) {
 757       *bits |= 0x00100000;
 758       return true;
 759     }
 760   } // end retry loop
 761 
 762   // thread did not suspend after all our retries
 763   *bits |= 0x00200000;
 764   return false;
 765 }
 766 
 767 #ifndef PRODUCT
 768 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 769 
 770   // This should not need to be atomic as the only way for simultaneous
 771   // updates is via interrupts. Even then this should be rare or non-existant
 772   // and we don't care that much anyway.
 773 
 774   int index = _jmp_ring_index;
 775   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 776   _jmp_ring[index]._target = (intptr_t) target;
 777   _jmp_ring[index]._instruction = (intptr_t) instr;
 778   _jmp_ring[index]._file = file;
 779   _jmp_ring[index]._line = line;
 780 }
 781 #endif /* PRODUCT */
 782 
 783 // Called by flat profiler
 784 // Callers have already called wait_for_ext_suspend_completion
 785 // The assertion for that is currently too complex to put here:
 786 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 787   bool gotframe = false;
 788   // self suspension saves needed state.
 789   if (has_last_Java_frame() && _anchor.walkable()) {
 790      *_fr = pd_last_frame();
 791      gotframe = true;
 792   }
 793   return gotframe;
 794 }
 795 
 796 void Thread::interrupt(Thread* thread) {
 797   trace("interrupt", thread);
 798   debug_only(check_for_dangling_thread_pointer(thread);)
 799   os::interrupt(thread);
 800 }
 801 
 802 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 803   trace("is_interrupted", thread);
 804   debug_only(check_for_dangling_thread_pointer(thread);)
 805   // Note:  If clear_interrupted==false, this simply fetches and
 806   // returns the value of the field osthread()->interrupted().
 807   return os::is_interrupted(thread, clear_interrupted);
 808 }
 809 
 810 
 811 // GC Support
 812 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 813   jint thread_parity = _oops_do_parity;
 814   if (thread_parity != strong_roots_parity) {
 815     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 816     if (res == thread_parity) {
 817       return true;
 818     } else {
 819       guarantee(res == strong_roots_parity, "Or else what?");
 820       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 821          "Should only fail when parallel.");
 822       return false;
 823     }
 824   }
 825   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 826          "Should only fail when parallel.");
 827   return false;
 828 }
 829 
 830 void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
 831   active_handles()->oops_do(f);
 832   // Do oop for ThreadShadow
 833   f->do_oop((oop*)&_pending_exception);
 834   handle_area()->oops_do(f);
 835 }
 836 
 837 void Thread::nmethods_do(CodeBlobClosure* cf) {
 838   // no nmethods in a generic thread...
 839 }
 840 
 841 void Thread::metadata_do(void f(Metadata*)) {
 842   if (metadata_handles() != NULL) {
 843     for (int i = 0; i< metadata_handles()->length(); i++) {
 844       f(metadata_handles()->at(i));
 845     }
 846   }
 847 }
 848 
 849 void Thread::print_on(outputStream* st) const {
 850   // get_priority assumes osthread initialized
 851   if (osthread() != NULL) {
 852     int os_prio;
 853     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 854       st->print("os_prio=%d ", os_prio);
 855     }
 856     st->print("tid=" INTPTR_FORMAT " ", this);
 857     osthread()->print_on(st);
 858   }
 859   debug_only(if (WizardMode) print_owned_locks_on(st);)
 860 }
 861 
 862 // Thread::print_on_error() is called by fatal error handler. Don't use
 863 // any lock or allocate memory.
 864 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 865   if      (is_VM_thread())                  st->print("VMThread");
 866   else if (is_Compiler_thread())            st->print("CompilerThread");
 867   else if (is_Java_thread())                st->print("JavaThread");
 868   else if (is_GC_task_thread())             st->print("GCTaskThread");
 869   else if (is_Watcher_thread())             st->print("WatcherThread");
 870   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 871   else st->print("Thread");
 872 
 873   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 874             _stack_base - _stack_size, _stack_base);
 875 
 876   if (osthread()) {
 877     st->print(" [id=%d]", osthread()->thread_id());
 878   }
 879 }
 880 
 881 #ifdef ASSERT
 882 void Thread::print_owned_locks_on(outputStream* st) const {
 883   Monitor *cur = _owned_locks;
 884   if (cur == NULL) {
 885     st->print(" (no locks) ");
 886   } else {
 887     st->print_cr(" Locks owned:");
 888     while(cur) {
 889       cur->print_on(st);
 890       cur = cur->next();
 891     }
 892   }
 893 }
 894 
 895 static int ref_use_count  = 0;
 896 
 897 bool Thread::owns_locks_but_compiled_lock() const {
 898   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 899     if (cur != Compile_lock) return true;
 900   }
 901   return false;
 902 }
 903 
 904 
 905 #endif
 906 
 907 #ifndef PRODUCT
 908 
 909 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 910 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 911 // no threads which allow_vm_block's are held
 912 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 913     // Check if current thread is allowed to block at a safepoint
 914     if (!(_allow_safepoint_count == 0))
 915       fatal("Possible safepoint reached by thread that does not allow it");
 916     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 917       fatal("LEAF method calling lock?");
 918     }
 919 
 920 #ifdef ASSERT
 921     if (potential_vm_operation && is_Java_thread()
 922         && !Universe::is_bootstrapping()) {
 923       // Make sure we do not hold any locks that the VM thread also uses.
 924       // This could potentially lead to deadlocks
 925       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 926         // Threads_lock is special, since the safepoint synchronization will not start before this is
 927         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 928         // since it is used to transfer control between JavaThreads and the VMThread
 929         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 930         if ( (cur->allow_vm_block() &&
 931               cur != Threads_lock &&
 932               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 933               cur != VMOperationRequest_lock &&
 934               cur != VMOperationQueue_lock) ||
 935               cur->rank() == Mutex::special) {
 936           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 937         }
 938       }
 939     }
 940 
 941     if (GCALotAtAllSafepoints) {
 942       // We could enter a safepoint here and thus have a gc
 943       InterfaceSupport::check_gc_alot();
 944     }
 945 #endif
 946 }
 947 #endif
 948 
 949 bool Thread::is_in_stack(address adr) const {
 950   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 951   address end = os::current_stack_pointer();
 952   // Allow non Java threads to call this without stack_base
 953   if (_stack_base == NULL) return true;
 954   if (stack_base() >= adr && adr >= end) return true;
 955 
 956   return false;
 957 }
 958 
 959 
 960 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 961 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 962 // used for compilation in the future. If that change is made, the need for these methods
 963 // should be revisited, and they should be removed if possible.
 964 
 965 bool Thread::is_lock_owned(address adr) const {
 966   return on_local_stack(adr);
 967 }
 968 
 969 bool Thread::set_as_starting_thread() {
 970  // NOTE: this must be called inside the main thread.
 971   return os::create_main_thread((JavaThread*)this);
 972 }
 973 
 974 static void initialize_class(Symbol* class_name, TRAPS) {
 975   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 976   InstanceKlass::cast(klass)->initialize(CHECK);
 977 }
 978 
 979 
 980 // Creates the initial ThreadGroup
 981 static Handle create_initial_thread_group(TRAPS) {
 982   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 983   instanceKlassHandle klass (THREAD, k);
 984 
 985   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 986   {
 987     JavaValue result(T_VOID);
 988     JavaCalls::call_special(&result,
 989                             system_instance,
 990                             klass,
 991                             vmSymbols::object_initializer_name(),
 992                             vmSymbols::void_method_signature(),
 993                             CHECK_NH);
 994   }
 995   Universe::set_system_thread_group(system_instance());
 996 
 997   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 998   {
 999     JavaValue result(T_VOID);
1000     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1001     JavaCalls::call_special(&result,
1002                             main_instance,
1003                             klass,
1004                             vmSymbols::object_initializer_name(),
1005                             vmSymbols::threadgroup_string_void_signature(),
1006                             system_instance,
1007                             string,
1008                             CHECK_NH);
1009   }
1010   return main_instance;
1011 }
1012 
1013 // Creates the initial Thread
1014 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1015   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1016   instanceKlassHandle klass (THREAD, k);
1017   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1018 
1019   java_lang_Thread::set_thread(thread_oop(), thread);
1020   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1021   thread->set_threadObj(thread_oop());
1022 
1023   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1024 
1025   JavaValue result(T_VOID);
1026   JavaCalls::call_special(&result, thread_oop,
1027                                    klass,
1028                                    vmSymbols::object_initializer_name(),
1029                                    vmSymbols::threadgroup_string_void_signature(),
1030                                    thread_group,
1031                                    string,
1032                                    CHECK_NULL);
1033   return thread_oop();
1034 }
1035 
1036 static void call_initializeSystemClass(TRAPS) {
1037   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1038   instanceKlassHandle klass (THREAD, k);
1039 
1040   JavaValue result(T_VOID);
1041   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1042                                          vmSymbols::void_method_signature(), CHECK);
1043 }
1044 
1045 char java_runtime_name[128] = "";
1046 char java_runtime_version[128] = "";
1047 
1048 // extract the JRE name from sun.misc.Version.java_runtime_name
1049 static const char* get_java_runtime_name(TRAPS) {
1050   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1051                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1052   fieldDescriptor fd;
1053   bool found = k != NULL &&
1054                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1055                                                         vmSymbols::string_signature(), &fd);
1056   if (found) {
1057     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1058     if (name_oop == NULL)
1059       return NULL;
1060     const char* name = java_lang_String::as_utf8_string(name_oop,
1061                                                         java_runtime_name,
1062                                                         sizeof(java_runtime_name));
1063     return name;
1064   } else {
1065     return NULL;
1066   }
1067 }
1068 
1069 // extract the JRE version from sun.misc.Version.java_runtime_version
1070 static const char* get_java_runtime_version(TRAPS) {
1071   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1072                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1073   fieldDescriptor fd;
1074   bool found = k != NULL &&
1075                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1076                                                         vmSymbols::string_signature(), &fd);
1077   if (found) {
1078     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1079     if (name_oop == NULL)
1080       return NULL;
1081     const char* name = java_lang_String::as_utf8_string(name_oop,
1082                                                         java_runtime_version,
1083                                                         sizeof(java_runtime_version));
1084     return name;
1085   } else {
1086     return NULL;
1087   }
1088 }
1089 
1090 // General purpose hook into Java code, run once when the VM is initialized.
1091 // The Java library method itself may be changed independently from the VM.
1092 static void call_postVMInitHook(TRAPS) {
1093   Klass* k = SystemDictionary::PostVMInitHook_klass();
1094   instanceKlassHandle klass (THREAD, k);
1095   if (klass.not_null()) {
1096     JavaValue result(T_VOID);
1097     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1098                                            vmSymbols::void_method_signature(),
1099                                            CHECK);
1100   }
1101 }
1102 
1103 static void reset_vm_info_property(TRAPS) {
1104   // the vm info string
1105   ResourceMark rm(THREAD);
1106   const char *vm_info = VM_Version::vm_info_string();
1107 
1108   // java.lang.System class
1109   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1110   instanceKlassHandle klass (THREAD, k);
1111 
1112   // setProperty arguments
1113   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1114   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1115 
1116   // return value
1117   JavaValue r(T_OBJECT);
1118 
1119   // public static String setProperty(String key, String value);
1120   JavaCalls::call_static(&r,
1121                          klass,
1122                          vmSymbols::setProperty_name(),
1123                          vmSymbols::string_string_string_signature(),
1124                          key_str,
1125                          value_str,
1126                          CHECK);
1127 }
1128 
1129 
1130 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1131   assert(thread_group.not_null(), "thread group should be specified");
1132   assert(threadObj() == NULL, "should only create Java thread object once");
1133 
1134   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1135   instanceKlassHandle klass (THREAD, k);
1136   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1137 
1138   java_lang_Thread::set_thread(thread_oop(), this);
1139   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1140   set_threadObj(thread_oop());
1141 
1142   JavaValue result(T_VOID);
1143   if (thread_name != NULL) {
1144     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1145     // Thread gets assigned specified name and null target
1146     JavaCalls::call_special(&result,
1147                             thread_oop,
1148                             klass,
1149                             vmSymbols::object_initializer_name(),
1150                             vmSymbols::threadgroup_string_void_signature(),
1151                             thread_group, // Argument 1
1152                             name,         // Argument 2
1153                             THREAD);
1154   } else {
1155     // Thread gets assigned name "Thread-nnn" and null target
1156     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1157     JavaCalls::call_special(&result,
1158                             thread_oop,
1159                             klass,
1160                             vmSymbols::object_initializer_name(),
1161                             vmSymbols::threadgroup_runnable_void_signature(),
1162                             thread_group, // Argument 1
1163                             Handle(),     // Argument 2
1164                             THREAD);
1165   }
1166 
1167 
1168   if (daemon) {
1169       java_lang_Thread::set_daemon(thread_oop());
1170   }
1171 
1172   if (HAS_PENDING_EXCEPTION) {
1173     return;
1174   }
1175 
1176   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1177   Handle threadObj(this, this->threadObj());
1178 
1179   JavaCalls::call_special(&result,
1180                          thread_group,
1181                          group,
1182                          vmSymbols::add_method_name(),
1183                          vmSymbols::thread_void_signature(),
1184                          threadObj,          // Arg 1
1185                          THREAD);
1186 
1187 
1188 }
1189 
1190 // NamedThread --  non-JavaThread subclasses with multiple
1191 // uniquely named instances should derive from this.
1192 NamedThread::NamedThread() : Thread() {
1193   _name = NULL;
1194   _processed_thread = NULL;
1195 }
1196 
1197 NamedThread::~NamedThread() {
1198   if (_name != NULL) {
1199     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1200     _name = NULL;
1201   }
1202 }
1203 
1204 void NamedThread::set_name(const char* format, ...) {
1205   guarantee(_name == NULL, "Only get to set name once.");
1206   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1207   guarantee(_name != NULL, "alloc failure");
1208   va_list ap;
1209   va_start(ap, format);
1210   jio_vsnprintf(_name, max_name_len, format, ap);
1211   va_end(ap);
1212 }
1213 
1214 // ======= WatcherThread ========
1215 
1216 // The watcher thread exists to simulate timer interrupts.  It should
1217 // be replaced by an abstraction over whatever native support for
1218 // timer interrupts exists on the platform.
1219 
1220 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1221 bool WatcherThread::_startable = false;
1222 volatile bool  WatcherThread::_should_terminate = false;
1223 
1224 WatcherThread::WatcherThread() : Thread() {
1225   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1226   if (os::create_thread(this, os::watcher_thread)) {
1227     _watcher_thread = this;
1228 
1229     // Set the watcher thread to the highest OS priority which should not be
1230     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1231     // is created. The only normal thread using this priority is the reference
1232     // handler thread, which runs for very short intervals only.
1233     // If the VMThread's priority is not lower than the WatcherThread profiling
1234     // will be inaccurate.
1235     os::set_priority(this, MaxPriority);
1236     if (!DisableStartThread) {
1237       os::start_thread(this);
1238     }
1239   }
1240 }
1241 
1242 int WatcherThread::sleep() const {
1243   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1244 
1245   // remaining will be zero if there are no tasks,
1246   // causing the WatcherThread to sleep until a task is
1247   // enrolled
1248   int remaining = PeriodicTask::time_to_wait();
1249   int time_slept = 0;
1250 
1251   // we expect this to timeout - we only ever get unparked when
1252   // we should terminate or when a new task has been enrolled
1253   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1254 
1255   jlong time_before_loop = os::javaTimeNanos();
1256 
1257   for (;;) {
1258     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1259     jlong now = os::javaTimeNanos();
1260 
1261     if (remaining == 0) {
1262         // if we didn't have any tasks we could have waited for a long time
1263         // consider the time_slept zero and reset time_before_loop
1264         time_slept = 0;
1265         time_before_loop = now;
1266     } else {
1267         // need to recalulate since we might have new tasks in _tasks
1268         time_slept = (int) ((now - time_before_loop) / 1000000);
1269     }
1270 
1271     // Change to task list or spurious wakeup of some kind
1272     if (timedout || _should_terminate) {
1273         break;
1274     }
1275 
1276     remaining = PeriodicTask::time_to_wait();
1277     if (remaining == 0) {
1278         // Last task was just disenrolled so loop around and wait until
1279         // another task gets enrolled
1280         continue;
1281     }
1282 
1283     remaining -= time_slept;
1284     if (remaining <= 0)
1285       break;
1286   }
1287 
1288   return time_slept;
1289 }
1290 
1291 void WatcherThread::run() {
1292   assert(this == watcher_thread(), "just checking");
1293 
1294   this->record_stack_base_and_size();
1295   this->initialize_thread_local_storage();
1296   this->set_active_handles(JNIHandleBlock::allocate_block());
1297   while(!_should_terminate) {
1298     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1299     assert(watcher_thread() == this,  "thread consistency check");
1300 
1301     // Calculate how long it'll be until the next PeriodicTask work
1302     // should be done, and sleep that amount of time.
1303     int time_waited = sleep();
1304 
1305     if (is_error_reported()) {
1306       // A fatal error has happened, the error handler(VMError::report_and_die)
1307       // should abort JVM after creating an error log file. However in some
1308       // rare cases, the error handler itself might deadlock. Here we try to
1309       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1310       //
1311       // This code is in WatcherThread because WatcherThread wakes up
1312       // periodically so the fatal error handler doesn't need to do anything;
1313       // also because the WatcherThread is less likely to crash than other
1314       // threads.
1315 
1316       for (;;) {
1317         if (!ShowMessageBoxOnError
1318          && (OnError == NULL || OnError[0] == '\0')
1319          && Arguments::abort_hook() == NULL) {
1320              os::sleep(this, 2 * 60 * 1000, false);
1321              fdStream err(defaultStream::output_fd());
1322              err.print_raw_cr("# [ timer expired, abort... ]");
1323              // skip atexit/vm_exit/vm_abort hooks
1324              os::die();
1325         }
1326 
1327         // Wake up 5 seconds later, the fatal handler may reset OnError or
1328         // ShowMessageBoxOnError when it is ready to abort.
1329         os::sleep(this, 5 * 1000, false);
1330       }
1331     }
1332 
1333     PeriodicTask::real_time_tick(time_waited);
1334   }
1335 
1336   // Signal that it is terminated
1337   {
1338     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1339     _watcher_thread = NULL;
1340     Terminator_lock->notify();
1341   }
1342 
1343   // Thread destructor usually does this..
1344   ThreadLocalStorage::set_thread(NULL);
1345 }
1346 
1347 void WatcherThread::start() {
1348   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1349 
1350   if (watcher_thread() == NULL && _startable) {
1351     _should_terminate = false;
1352     // Create the single instance of WatcherThread
1353     new WatcherThread();
1354   }
1355 }
1356 
1357 void WatcherThread::make_startable() {
1358   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1359   _startable = true;
1360 }
1361 
1362 void WatcherThread::stop() {
1363   {
1364     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1365     _should_terminate = true;
1366     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1367 
1368     WatcherThread* watcher = watcher_thread();
1369     if (watcher != NULL)
1370       watcher->unpark();
1371   }
1372 
1373   // it is ok to take late safepoints here, if needed
1374   MutexLocker mu(Terminator_lock);
1375 
1376   while(watcher_thread() != NULL) {
1377     // This wait should make safepoint checks, wait without a timeout,
1378     // and wait as a suspend-equivalent condition.
1379     //
1380     // Note: If the FlatProfiler is running, then this thread is waiting
1381     // for the WatcherThread to terminate and the WatcherThread, via the
1382     // FlatProfiler task, is waiting for the external suspend request on
1383     // this thread to complete. wait_for_ext_suspend_completion() will
1384     // eventually timeout, but that takes time. Making this wait a
1385     // suspend-equivalent condition solves that timeout problem.
1386     //
1387     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1388                           Mutex::_as_suspend_equivalent_flag);
1389   }
1390 }
1391 
1392 void WatcherThread::unpark() {
1393   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1394   PeriodicTask_lock->notify();
1395 }
1396 
1397 void WatcherThread::print_on(outputStream* st) const {
1398   st->print("\"%s\" ", name());
1399   Thread::print_on(st);
1400   st->cr();
1401 }
1402 
1403 // ======= JavaThread ========
1404 
1405 // A JavaThread is a normal Java thread
1406 
1407 void JavaThread::initialize() {
1408   // Initialize fields
1409 
1410   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1411   set_claimed_par_id(-1);
1412 
1413   set_saved_exception_pc(NULL);
1414   set_threadObj(NULL);
1415   _anchor.clear();
1416   set_entry_point(NULL);
1417   set_jni_functions(jni_functions());
1418   set_callee_target(NULL);
1419   set_vm_result(NULL);
1420   set_vm_result_2(NULL);
1421   set_vframe_array_head(NULL);
1422   set_vframe_array_last(NULL);
1423   set_deferred_locals(NULL);
1424   set_deopt_mark(NULL);
1425   set_deopt_nmethod(NULL);
1426   clear_must_deopt_id();
1427   set_monitor_chunks(NULL);
1428   set_next(NULL);
1429   set_thread_state(_thread_new);
1430 #if INCLUDE_NMT
1431   set_recorder(NULL);
1432 #endif
1433   _terminated = _not_terminated;
1434   _privileged_stack_top = NULL;
1435   _array_for_gc = NULL;
1436   _suspend_equivalent = false;
1437   _in_deopt_handler = 0;
1438   _doing_unsafe_access = false;
1439   _stack_guard_state = stack_guard_unused;
1440   _exception_oop = NULL;
1441   _exception_pc  = 0;
1442   _exception_handler_pc = 0;
1443   _is_method_handle_return = 0;
1444   _jvmti_thread_state= NULL;
1445   _should_post_on_exceptions_flag = JNI_FALSE;
1446   _jvmti_get_loaded_classes_closure = NULL;
1447   _interp_only_mode    = 0;
1448   _special_runtime_exit_condition = _no_async_condition;
1449   _pending_async_exception = NULL;
1450   _is_compiling = false;
1451   _thread_stat = NULL;
1452   _thread_stat = new ThreadStatistics();
1453   _blocked_on_compilation = false;
1454   _jni_active_critical = 0;
1455   _do_not_unlock_if_synchronized = false;
1456   _cached_monitor_info = NULL;
1457   _parker = Parker::Allocate(this) ;
1458 
1459 #ifndef PRODUCT
1460   _jmp_ring_index = 0;
1461   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1462     record_jump(NULL, NULL, NULL, 0);
1463   }
1464 #endif /* PRODUCT */
1465 
1466   set_thread_profiler(NULL);
1467   if (FlatProfiler::is_active()) {
1468     // This is where we would decide to either give each thread it's own profiler
1469     // or use one global one from FlatProfiler,
1470     // or up to some count of the number of profiled threads, etc.
1471     ThreadProfiler* pp = new ThreadProfiler();
1472     pp->engage();
1473     set_thread_profiler(pp);
1474   }
1475 
1476   // Setup safepoint state info for this thread
1477   ThreadSafepointState::create(this);
1478 
1479   debug_only(_java_call_counter = 0);
1480 
1481   // JVMTI PopFrame support
1482   _popframe_condition = popframe_inactive;
1483   _popframe_preserved_args = NULL;
1484   _popframe_preserved_args_size = 0;
1485 
1486   pd_initialize();
1487 }
1488 
1489 #if INCLUDE_ALL_GCS
1490 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1491 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1492 #endif // INCLUDE_ALL_GCS
1493 
1494 JavaThread::JavaThread(bool is_attaching_via_jni) :
1495   Thread()
1496 #if INCLUDE_ALL_GCS
1497   , _satb_mark_queue(&_satb_mark_queue_set),
1498   _dirty_card_queue(&_dirty_card_queue_set)
1499 #endif // INCLUDE_ALL_GCS
1500 {
1501   initialize();
1502   if (is_attaching_via_jni) {
1503     _jni_attach_state = _attaching_via_jni;
1504   } else {
1505     _jni_attach_state = _not_attaching_via_jni;
1506   }
1507   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1508   _safepoint_visible = false;
1509 }
1510 
1511 bool JavaThread::reguard_stack(address cur_sp) {
1512   if (_stack_guard_state != stack_guard_yellow_disabled) {
1513     return true; // Stack already guarded or guard pages not needed.
1514   }
1515 
1516   if (register_stack_overflow()) {
1517     // For those architectures which have separate register and
1518     // memory stacks, we must check the register stack to see if
1519     // it has overflowed.
1520     return false;
1521   }
1522 
1523   // Java code never executes within the yellow zone: the latter is only
1524   // there to provoke an exception during stack banging.  If java code
1525   // is executing there, either StackShadowPages should be larger, or
1526   // some exception code in c1, c2 or the interpreter isn't unwinding
1527   // when it should.
1528   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1529 
1530   enable_stack_yellow_zone();
1531   return true;
1532 }
1533 
1534 bool JavaThread::reguard_stack(void) {
1535   return reguard_stack(os::current_stack_pointer());
1536 }
1537 
1538 
1539 void JavaThread::block_if_vm_exited() {
1540   if (_terminated == _vm_exited) {
1541     // _vm_exited is set at safepoint, and Threads_lock is never released
1542     // we will block here forever
1543     Threads_lock->lock_without_safepoint_check();
1544     ShouldNotReachHere();
1545   }
1546 }
1547 
1548 
1549 // Remove this ifdef when C1 is ported to the compiler interface.
1550 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1551 
1552 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1553   Thread()
1554 #if INCLUDE_ALL_GCS
1555   , _satb_mark_queue(&_satb_mark_queue_set),
1556   _dirty_card_queue(&_dirty_card_queue_set)
1557 #endif // INCLUDE_ALL_GCS
1558 {
1559   if (TraceThreadEvents) {
1560     tty->print_cr("creating thread %p", this);
1561   }
1562   initialize();
1563   _jni_attach_state = _not_attaching_via_jni;
1564   set_entry_point(entry_point);
1565   // Create the native thread itself.
1566   // %note runtime_23
1567   os::ThreadType thr_type = os::java_thread;
1568   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1569                                                      os::java_thread;
1570   os::create_thread(this, thr_type, stack_sz);
1571   _safepoint_visible = false;
1572   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1573   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1574   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1575   // the exception consists of creating the exception object & initializing it, initialization
1576   // will leave the VM via a JavaCall and then all locks must be unlocked).
1577   //
1578   // The thread is still suspended when we reach here. Thread must be explicit started
1579   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1580   // by calling Threads:add. The reason why this is not done here, is because the thread
1581   // object must be fully initialized (take a look at JVM_Start)
1582 }
1583 
1584 JavaThread::~JavaThread() {
1585   if (TraceThreadEvents) {
1586       tty->print_cr("terminate thread %p", this);
1587   }
1588 
1589   // By now, this thread should already be invisible to safepoint,
1590   // and its per-thread recorder also collected.
1591   assert(!is_safepoint_visible(), "wrong state");
1592 #if INCLUDE_NMT
1593   assert(get_recorder() == NULL, "Already collected");
1594 #endif // INCLUDE_NMT
1595 
1596   // JSR166 -- return the parker to the free list
1597   Parker::Release(_parker);
1598   _parker = NULL ;
1599 
1600   // Free any remaining  previous UnrollBlock
1601   vframeArray* old_array = vframe_array_last();
1602 
1603   if (old_array != NULL) {
1604     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1605     old_array->set_unroll_block(NULL);
1606     delete old_info;
1607     delete old_array;
1608   }
1609 
1610   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1611   if (deferred != NULL) {
1612     // This can only happen if thread is destroyed before deoptimization occurs.
1613     assert(deferred->length() != 0, "empty array!");
1614     do {
1615       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1616       deferred->remove_at(0);
1617       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1618       delete dlv;
1619     } while (deferred->length() != 0);
1620     delete deferred;
1621   }
1622 
1623   // All Java related clean up happens in exit
1624   ThreadSafepointState::destroy(this);
1625   if (_thread_profiler != NULL) delete _thread_profiler;
1626   if (_thread_stat != NULL) delete _thread_stat;
1627 }
1628 
1629 
1630 // The first routine called by a new Java thread
1631 void JavaThread::run() {
1632   // initialize thread-local alloc buffer related fields
1633   this->initialize_tlab();
1634 
1635   // used to test validitity of stack trace backs
1636   this->record_base_of_stack_pointer();
1637 
1638   // Record real stack base and size.
1639   this->record_stack_base_and_size();
1640 
1641   // Initialize thread local storage; set before calling MutexLocker
1642   this->initialize_thread_local_storage();
1643 
1644   this->create_stack_guard_pages();
1645 
1646   this->cache_global_variables();
1647 
1648   // Thread is now sufficient initialized to be handled by the safepoint code as being
1649   // in the VM. Change thread state from _thread_new to _thread_in_vm
1650   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1651 
1652   assert(JavaThread::current() == this, "sanity check");
1653   assert(!Thread::current()->owns_locks(), "sanity check");
1654 
1655   DTRACE_THREAD_PROBE(start, this);
1656 
1657   // This operation might block. We call that after all safepoint checks for a new thread has
1658   // been completed.
1659   this->set_active_handles(JNIHandleBlock::allocate_block());
1660 
1661   if (JvmtiExport::should_post_thread_life()) {
1662     JvmtiExport::post_thread_start(this);
1663   }
1664 
1665   EventThreadStart event;
1666   if (event.should_commit()) {
1667      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1668      event.commit();
1669   }
1670 
1671   // We call another function to do the rest so we are sure that the stack addresses used
1672   // from there will be lower than the stack base just computed
1673   thread_main_inner();
1674 
1675   // Note, thread is no longer valid at this point!
1676 }
1677 
1678 
1679 void JavaThread::thread_main_inner() {
1680   assert(JavaThread::current() == this, "sanity check");
1681   assert(this->threadObj() != NULL, "just checking");
1682 
1683   // Execute thread entry point unless this thread has a pending exception
1684   // or has been stopped before starting.
1685   // Note: Due to JVM_StopThread we can have pending exceptions already!
1686   if (!this->has_pending_exception() &&
1687       !java_lang_Thread::is_stillborn(this->threadObj())) {
1688     {
1689       ResourceMark rm(this);
1690       this->set_native_thread_name(this->get_thread_name());
1691     }
1692     HandleMark hm(this);
1693     this->entry_point()(this, this);
1694   }
1695 
1696   DTRACE_THREAD_PROBE(stop, this);
1697 
1698   this->exit(false);
1699   delete this;
1700 }
1701 
1702 
1703 static void ensure_join(JavaThread* thread) {
1704   // We do not need to grap the Threads_lock, since we are operating on ourself.
1705   Handle threadObj(thread, thread->threadObj());
1706   assert(threadObj.not_null(), "java thread object must exist");
1707   ObjectLocker lock(threadObj, thread);
1708   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1709   thread->clear_pending_exception();
1710   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1711   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1712   // Clear the native thread instance - this makes isAlive return false and allows the join()
1713   // to complete once we've done the notify_all below
1714   java_lang_Thread::set_thread(threadObj(), NULL);
1715   lock.notify_all(thread);
1716   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1717   thread->clear_pending_exception();
1718 }
1719 
1720 
1721 // For any new cleanup additions, please check to see if they need to be applied to
1722 // cleanup_failed_attach_current_thread as well.
1723 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1724   assert(this == JavaThread::current(),  "thread consistency check");
1725 
1726   HandleMark hm(this);
1727   Handle uncaught_exception(this, this->pending_exception());
1728   this->clear_pending_exception();
1729   Handle threadObj(this, this->threadObj());
1730   assert(threadObj.not_null(), "Java thread object should be created");
1731 
1732   if (get_thread_profiler() != NULL) {
1733     get_thread_profiler()->disengage();
1734     ResourceMark rm;
1735     get_thread_profiler()->print(get_thread_name());
1736   }
1737 
1738 
1739   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1740   {
1741     EXCEPTION_MARK;
1742 
1743     CLEAR_PENDING_EXCEPTION;
1744   }
1745   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1746   // has to be fixed by a runtime query method
1747   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1748     // JSR-166: change call from from ThreadGroup.uncaughtException to
1749     // java.lang.Thread.dispatchUncaughtException
1750     if (uncaught_exception.not_null()) {
1751       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1752       {
1753         EXCEPTION_MARK;
1754         // Check if the method Thread.dispatchUncaughtException() exists. If so
1755         // call it.  Otherwise we have an older library without the JSR-166 changes,
1756         // so call ThreadGroup.uncaughtException()
1757         KlassHandle recvrKlass(THREAD, threadObj->klass());
1758         CallInfo callinfo;
1759         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1760         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1761                                            vmSymbols::dispatchUncaughtException_name(),
1762                                            vmSymbols::throwable_void_signature(),
1763                                            KlassHandle(), false, false, THREAD);
1764         CLEAR_PENDING_EXCEPTION;
1765         methodHandle method = callinfo.selected_method();
1766         if (method.not_null()) {
1767           JavaValue result(T_VOID);
1768           JavaCalls::call_virtual(&result,
1769                                   threadObj, thread_klass,
1770                                   vmSymbols::dispatchUncaughtException_name(),
1771                                   vmSymbols::throwable_void_signature(),
1772                                   uncaught_exception,
1773                                   THREAD);
1774         } else {
1775           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1776           JavaValue result(T_VOID);
1777           JavaCalls::call_virtual(&result,
1778                                   group, thread_group,
1779                                   vmSymbols::uncaughtException_name(),
1780                                   vmSymbols::thread_throwable_void_signature(),
1781                                   threadObj,           // Arg 1
1782                                   uncaught_exception,  // Arg 2
1783                                   THREAD);
1784         }
1785         if (HAS_PENDING_EXCEPTION) {
1786           ResourceMark rm(this);
1787           jio_fprintf(defaultStream::error_stream(),
1788                 "\nException: %s thrown from the UncaughtExceptionHandler"
1789                 " in thread \"%s\"\n",
1790                 pending_exception()->klass()->external_name(),
1791                 get_thread_name());
1792           CLEAR_PENDING_EXCEPTION;
1793         }
1794       }
1795     }
1796 
1797     // Called before the java thread exit since we want to read info
1798     // from java_lang_Thread object
1799     EventThreadEnd event;
1800     if (event.should_commit()) {
1801         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1802         event.commit();
1803     }
1804 
1805     // Call after last event on thread
1806     EVENT_THREAD_EXIT(this);
1807 
1808     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1809     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1810     // is deprecated anyhow.
1811     { int count = 3;
1812       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1813         EXCEPTION_MARK;
1814         JavaValue result(T_VOID);
1815         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1816         JavaCalls::call_virtual(&result,
1817                               threadObj, thread_klass,
1818                               vmSymbols::exit_method_name(),
1819                               vmSymbols::void_method_signature(),
1820                               THREAD);
1821         CLEAR_PENDING_EXCEPTION;
1822       }
1823     }
1824 
1825     // notify JVMTI
1826     if (JvmtiExport::should_post_thread_life()) {
1827       JvmtiExport::post_thread_end(this);
1828     }
1829 
1830     // We have notified the agents that we are exiting, before we go on,
1831     // we must check for a pending external suspend request and honor it
1832     // in order to not surprise the thread that made the suspend request.
1833     while (true) {
1834       {
1835         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1836         if (!is_external_suspend()) {
1837           set_terminated(_thread_exiting);
1838           ThreadService::current_thread_exiting(this);
1839           break;
1840         }
1841         // Implied else:
1842         // Things get a little tricky here. We have a pending external
1843         // suspend request, but we are holding the SR_lock so we
1844         // can't just self-suspend. So we temporarily drop the lock
1845         // and then self-suspend.
1846       }
1847 
1848       ThreadBlockInVM tbivm(this);
1849       java_suspend_self();
1850 
1851       // We're done with this suspend request, but we have to loop around
1852       // and check again. Eventually we will get SR_lock without a pending
1853       // external suspend request and will be able to mark ourselves as
1854       // exiting.
1855     }
1856     // no more external suspends are allowed at this point
1857   } else {
1858     // before_exit() has already posted JVMTI THREAD_END events
1859   }
1860 
1861   // Notify waiters on thread object. This has to be done after exit() is called
1862   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1863   // group should have the destroyed bit set before waiters are notified).
1864   ensure_join(this);
1865   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1866 
1867   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1868   // held by this thread must be released.  A detach operation must only
1869   // get here if there are no Java frames on the stack.  Therefore, any
1870   // owned monitors at this point MUST be JNI-acquired monitors which are
1871   // pre-inflated and in the monitor cache.
1872   //
1873   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1874   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1875     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1876     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1877     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1878   }
1879 
1880   // These things needs to be done while we are still a Java Thread. Make sure that thread
1881   // is in a consistent state, in case GC happens
1882   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1883 
1884   if (active_handles() != NULL) {
1885     JNIHandleBlock* block = active_handles();
1886     set_active_handles(NULL);
1887     JNIHandleBlock::release_block(block);
1888   }
1889 
1890   if (free_handle_block() != NULL) {
1891     JNIHandleBlock* block = free_handle_block();
1892     set_free_handle_block(NULL);
1893     JNIHandleBlock::release_block(block);
1894   }
1895 
1896   // These have to be removed while this is still a valid thread.
1897   remove_stack_guard_pages();
1898 
1899   if (UseTLAB) {
1900     tlab().make_parsable(true);  // retire TLAB
1901   }
1902 
1903   if (JvmtiEnv::environments_might_exist()) {
1904     JvmtiExport::cleanup_thread(this);
1905   }
1906 
1907   // We must flush any deferred card marks before removing a thread from
1908   // the list of active threads.
1909   Universe::heap()->flush_deferred_store_barrier(this);
1910   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1911 
1912 #if INCLUDE_ALL_GCS
1913   // We must flush the G1-related buffers before removing a thread
1914   // from the list of active threads. We must do this after any deferred
1915   // card marks have been flushed (above) so that any entries that are
1916   // added to the thread's dirty card queue as a result are not lost.
1917   if (UseG1GC) {
1918     flush_barrier_queues();
1919   }
1920 #endif // INCLUDE_ALL_GCS
1921 
1922   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1923   Threads::remove(this);
1924 }
1925 
1926 #if INCLUDE_ALL_GCS
1927 // Flush G1-related queues.
1928 void JavaThread::flush_barrier_queues() {
1929   satb_mark_queue().flush();
1930   dirty_card_queue().flush();
1931 }
1932 
1933 void JavaThread::initialize_queues() {
1934   assert(!SafepointSynchronize::is_at_safepoint(),
1935          "we should not be at a safepoint");
1936 
1937   ObjPtrQueue& satb_queue = satb_mark_queue();
1938   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1939   // The SATB queue should have been constructed with its active
1940   // field set to false.
1941   assert(!satb_queue.is_active(), "SATB queue should not be active");
1942   assert(satb_queue.is_empty(), "SATB queue should be empty");
1943   // If we are creating the thread during a marking cycle, we should
1944   // set the active field of the SATB queue to true.
1945   if (satb_queue_set.is_active()) {
1946     satb_queue.set_active(true);
1947   }
1948 
1949   DirtyCardQueue& dirty_queue = dirty_card_queue();
1950   // The dirty card queue should have been constructed with its
1951   // active field set to true.
1952   assert(dirty_queue.is_active(), "dirty card queue should be active");
1953 }
1954 #endif // INCLUDE_ALL_GCS
1955 
1956 void JavaThread::cleanup_failed_attach_current_thread() {
1957   if (get_thread_profiler() != NULL) {
1958     get_thread_profiler()->disengage();
1959     ResourceMark rm;
1960     get_thread_profiler()->print(get_thread_name());
1961   }
1962 
1963   if (active_handles() != NULL) {
1964     JNIHandleBlock* block = active_handles();
1965     set_active_handles(NULL);
1966     JNIHandleBlock::release_block(block);
1967   }
1968 
1969   if (free_handle_block() != NULL) {
1970     JNIHandleBlock* block = free_handle_block();
1971     set_free_handle_block(NULL);
1972     JNIHandleBlock::release_block(block);
1973   }
1974 
1975   // These have to be removed while this is still a valid thread.
1976   remove_stack_guard_pages();
1977 
1978   if (UseTLAB) {
1979     tlab().make_parsable(true);  // retire TLAB, if any
1980   }
1981 
1982 #if INCLUDE_ALL_GCS
1983   if (UseG1GC) {
1984     flush_barrier_queues();
1985   }
1986 #endif // INCLUDE_ALL_GCS
1987 
1988   Threads::remove(this);
1989   delete this;
1990 }
1991 
1992 
1993 
1994 
1995 JavaThread* JavaThread::active() {
1996   Thread* thread = ThreadLocalStorage::thread();
1997   assert(thread != NULL, "just checking");
1998   if (thread->is_Java_thread()) {
1999     return (JavaThread*) thread;
2000   } else {
2001     assert(thread->is_VM_thread(), "this must be a vm thread");
2002     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2003     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2004     assert(ret->is_Java_thread(), "must be a Java thread");
2005     return ret;
2006   }
2007 }
2008 
2009 bool JavaThread::is_lock_owned(address adr) const {
2010   if (Thread::is_lock_owned(adr)) return true;
2011 
2012   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2013     if (chunk->contains(adr)) return true;
2014   }
2015 
2016   return false;
2017 }
2018 
2019 
2020 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2021   chunk->set_next(monitor_chunks());
2022   set_monitor_chunks(chunk);
2023 }
2024 
2025 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2026   guarantee(monitor_chunks() != NULL, "must be non empty");
2027   if (monitor_chunks() == chunk) {
2028     set_monitor_chunks(chunk->next());
2029   } else {
2030     MonitorChunk* prev = monitor_chunks();
2031     while (prev->next() != chunk) prev = prev->next();
2032     prev->set_next(chunk->next());
2033   }
2034 }
2035 
2036 // JVM support.
2037 
2038 // Note: this function shouldn't block if it's called in
2039 // _thread_in_native_trans state (such as from
2040 // check_special_condition_for_native_trans()).
2041 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2042 
2043   if (has_last_Java_frame() && has_async_condition()) {
2044     // If we are at a polling page safepoint (not a poll return)
2045     // then we must defer async exception because live registers
2046     // will be clobbered by the exception path. Poll return is
2047     // ok because the call we a returning from already collides
2048     // with exception handling registers and so there is no issue.
2049     // (The exception handling path kills call result registers but
2050     //  this is ok since the exception kills the result anyway).
2051 
2052     if (is_at_poll_safepoint()) {
2053       // if the code we are returning to has deoptimized we must defer
2054       // the exception otherwise live registers get clobbered on the
2055       // exception path before deoptimization is able to retrieve them.
2056       //
2057       RegisterMap map(this, false);
2058       frame caller_fr = last_frame().sender(&map);
2059       assert(caller_fr.is_compiled_frame(), "what?");
2060       if (caller_fr.is_deoptimized_frame()) {
2061         if (TraceExceptions) {
2062           ResourceMark rm;
2063           tty->print_cr("deferred async exception at compiled safepoint");
2064         }
2065         return;
2066       }
2067     }
2068   }
2069 
2070   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2071   if (condition == _no_async_condition) {
2072     // Conditions have changed since has_special_runtime_exit_condition()
2073     // was called:
2074     // - if we were here only because of an external suspend request,
2075     //   then that was taken care of above (or cancelled) so we are done
2076     // - if we were here because of another async request, then it has
2077     //   been cleared between the has_special_runtime_exit_condition()
2078     //   and now so again we are done
2079     return;
2080   }
2081 
2082   // Check for pending async. exception
2083   if (_pending_async_exception != NULL) {
2084     // Only overwrite an already pending exception, if it is not a threadDeath.
2085     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2086 
2087       // We cannot call Exceptions::_throw(...) here because we cannot block
2088       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2089 
2090       if (TraceExceptions) {
2091         ResourceMark rm;
2092         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2093         if (has_last_Java_frame() ) {
2094           frame f = last_frame();
2095           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2096         }
2097         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2098       }
2099       _pending_async_exception = NULL;
2100       clear_has_async_exception();
2101     }
2102   }
2103 
2104   if (check_unsafe_error &&
2105       condition == _async_unsafe_access_error && !has_pending_exception()) {
2106     condition = _no_async_condition;  // done
2107     switch (thread_state()) {
2108     case _thread_in_vm:
2109       {
2110         JavaThread* THREAD = this;
2111         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2112       }
2113     case _thread_in_native:
2114       {
2115         ThreadInVMfromNative tiv(this);
2116         JavaThread* THREAD = this;
2117         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2118       }
2119     case _thread_in_Java:
2120       {
2121         ThreadInVMfromJava tiv(this);
2122         JavaThread* THREAD = this;
2123         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2124       }
2125     default:
2126       ShouldNotReachHere();
2127     }
2128   }
2129 
2130   assert(condition == _no_async_condition || has_pending_exception() ||
2131          (!check_unsafe_error && condition == _async_unsafe_access_error),
2132          "must have handled the async condition, if no exception");
2133 }
2134 
2135 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2136   //
2137   // Check for pending external suspend. Internal suspend requests do
2138   // not use handle_special_runtime_exit_condition().
2139   // If JNIEnv proxies are allowed, don't self-suspend if the target
2140   // thread is not the current thread. In older versions of jdbx, jdbx
2141   // threads could call into the VM with another thread's JNIEnv so we
2142   // can be here operating on behalf of a suspended thread (4432884).
2143   bool do_self_suspend = is_external_suspend_with_lock();
2144   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2145     //
2146     // Because thread is external suspended the safepoint code will count
2147     // thread as at a safepoint. This can be odd because we can be here
2148     // as _thread_in_Java which would normally transition to _thread_blocked
2149     // at a safepoint. We would like to mark the thread as _thread_blocked
2150     // before calling java_suspend_self like all other callers of it but
2151     // we must then observe proper safepoint protocol. (We can't leave
2152     // _thread_blocked with a safepoint in progress). However we can be
2153     // here as _thread_in_native_trans so we can't use a normal transition
2154     // constructor/destructor pair because they assert on that type of
2155     // transition. We could do something like:
2156     //
2157     // JavaThreadState state = thread_state();
2158     // set_thread_state(_thread_in_vm);
2159     // {
2160     //   ThreadBlockInVM tbivm(this);
2161     //   java_suspend_self()
2162     // }
2163     // set_thread_state(_thread_in_vm_trans);
2164     // if (safepoint) block;
2165     // set_thread_state(state);
2166     //
2167     // but that is pretty messy. Instead we just go with the way the
2168     // code has worked before and note that this is the only path to
2169     // java_suspend_self that doesn't put the thread in _thread_blocked
2170     // mode.
2171 
2172     frame_anchor()->make_walkable(this);
2173     java_suspend_self();
2174 
2175     // We might be here for reasons in addition to the self-suspend request
2176     // so check for other async requests.
2177   }
2178 
2179   if (check_asyncs) {
2180     check_and_handle_async_exceptions();
2181   }
2182 }
2183 
2184 void JavaThread::send_thread_stop(oop java_throwable)  {
2185   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2186   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2187   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2188 
2189   // Do not throw asynchronous exceptions against the compiler thread
2190   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2191   if (is_Compiler_thread()) return;
2192 
2193   {
2194     // Actually throw the Throwable against the target Thread - however
2195     // only if there is no thread death exception installed already.
2196     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2197       // If the topmost frame is a runtime stub, then we are calling into
2198       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2199       // must deoptimize the caller before continuing, as the compiled  exception handler table
2200       // may not be valid
2201       if (has_last_Java_frame()) {
2202         frame f = last_frame();
2203         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2204           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2205           RegisterMap reg_map(this, UseBiasedLocking);
2206           frame compiled_frame = f.sender(&reg_map);
2207           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2208             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2209           }
2210         }
2211       }
2212 
2213       // Set async. pending exception in thread.
2214       set_pending_async_exception(java_throwable);
2215 
2216       if (TraceExceptions) {
2217        ResourceMark rm;
2218        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2219       }
2220       // for AbortVMOnException flag
2221       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2222     }
2223   }
2224 
2225 
2226   // Interrupt thread so it will wake up from a potential wait()
2227   Thread::interrupt(this);
2228 }
2229 
2230 // External suspension mechanism.
2231 //
2232 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2233 // to any VM_locks and it is at a transition
2234 // Self-suspension will happen on the transition out of the vm.
2235 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2236 //
2237 // Guarantees on return:
2238 //   + Target thread will not execute any new bytecode (that's why we need to
2239 //     force a safepoint)
2240 //   + Target thread will not enter any new monitors
2241 //
2242 void JavaThread::java_suspend() {
2243   { MutexLocker mu(Threads_lock);
2244     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2245        return;
2246     }
2247   }
2248 
2249   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2250     if (!is_external_suspend()) {
2251       // a racing resume has cancelled us; bail out now
2252       return;
2253     }
2254 
2255     // suspend is done
2256     uint32_t debug_bits = 0;
2257     // Warning: is_ext_suspend_completed() may temporarily drop the
2258     // SR_lock to allow the thread to reach a stable thread state if
2259     // it is currently in a transient thread state.
2260     if (is_ext_suspend_completed(false /* !called_by_wait */,
2261                                  SuspendRetryDelay, &debug_bits) ) {
2262       return;
2263     }
2264   }
2265 
2266   VM_ForceSafepoint vm_suspend;
2267   VMThread::execute(&vm_suspend);
2268 }
2269 
2270 // Part II of external suspension.
2271 // A JavaThread self suspends when it detects a pending external suspend
2272 // request. This is usually on transitions. It is also done in places
2273 // where continuing to the next transition would surprise the caller,
2274 // e.g., monitor entry.
2275 //
2276 // Returns the number of times that the thread self-suspended.
2277 //
2278 // Note: DO NOT call java_suspend_self() when you just want to block current
2279 //       thread. java_suspend_self() is the second stage of cooperative
2280 //       suspension for external suspend requests and should only be used
2281 //       to complete an external suspend request.
2282 //
2283 int JavaThread::java_suspend_self() {
2284   int ret = 0;
2285 
2286   // we are in the process of exiting so don't suspend
2287   if (is_exiting()) {
2288      clear_external_suspend();
2289      return ret;
2290   }
2291 
2292   assert(_anchor.walkable() ||
2293     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2294     "must have walkable stack");
2295 
2296   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2297 
2298   assert(!this->is_ext_suspended(),
2299     "a thread trying to self-suspend should not already be suspended");
2300 
2301   if (this->is_suspend_equivalent()) {
2302     // If we are self-suspending as a result of the lifting of a
2303     // suspend equivalent condition, then the suspend_equivalent
2304     // flag is not cleared until we set the ext_suspended flag so
2305     // that wait_for_ext_suspend_completion() returns consistent
2306     // results.
2307     this->clear_suspend_equivalent();
2308   }
2309 
2310   // A racing resume may have cancelled us before we grabbed SR_lock
2311   // above. Or another external suspend request could be waiting for us
2312   // by the time we return from SR_lock()->wait(). The thread
2313   // that requested the suspension may already be trying to walk our
2314   // stack and if we return now, we can change the stack out from under
2315   // it. This would be a "bad thing (TM)" and cause the stack walker
2316   // to crash. We stay self-suspended until there are no more pending
2317   // external suspend requests.
2318   while (is_external_suspend()) {
2319     ret++;
2320     this->set_ext_suspended();
2321 
2322     // _ext_suspended flag is cleared by java_resume()
2323     while (is_ext_suspended()) {
2324       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2325     }
2326   }
2327 
2328   return ret;
2329 }
2330 
2331 #ifdef ASSERT
2332 // verify the JavaThread has not yet been published in the Threads::list, and
2333 // hence doesn't need protection from concurrent access at this stage
2334 void JavaThread::verify_not_published() {
2335   if (!Threads_lock->owned_by_self()) {
2336    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2337    assert( !Threads::includes(this),
2338            "java thread shouldn't have been published yet!");
2339   }
2340   else {
2341    assert( !Threads::includes(this),
2342            "java thread shouldn't have been published yet!");
2343   }
2344 }
2345 #endif
2346 
2347 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2348 // progress or when _suspend_flags is non-zero.
2349 // Current thread needs to self-suspend if there is a suspend request and/or
2350 // block if a safepoint is in progress.
2351 // Async exception ISN'T checked.
2352 // Note only the ThreadInVMfromNative transition can call this function
2353 // directly and when thread state is _thread_in_native_trans
2354 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2355   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2356 
2357   JavaThread *curJT = JavaThread::current();
2358   bool do_self_suspend = thread->is_external_suspend();
2359 
2360   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2361 
2362   // If JNIEnv proxies are allowed, don't self-suspend if the target
2363   // thread is not the current thread. In older versions of jdbx, jdbx
2364   // threads could call into the VM with another thread's JNIEnv so we
2365   // can be here operating on behalf of a suspended thread (4432884).
2366   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2367     JavaThreadState state = thread->thread_state();
2368 
2369     // We mark this thread_blocked state as a suspend-equivalent so
2370     // that a caller to is_ext_suspend_completed() won't be confused.
2371     // The suspend-equivalent state is cleared by java_suspend_self().
2372     thread->set_suspend_equivalent();
2373 
2374     // If the safepoint code sees the _thread_in_native_trans state, it will
2375     // wait until the thread changes to other thread state. There is no
2376     // guarantee on how soon we can obtain the SR_lock and complete the
2377     // self-suspend request. It would be a bad idea to let safepoint wait for
2378     // too long. Temporarily change the state to _thread_blocked to
2379     // let the VM thread know that this thread is ready for GC. The problem
2380     // of changing thread state is that safepoint could happen just after
2381     // java_suspend_self() returns after being resumed, and VM thread will
2382     // see the _thread_blocked state. We must check for safepoint
2383     // after restoring the state and make sure we won't leave while a safepoint
2384     // is in progress.
2385     thread->set_thread_state(_thread_blocked);
2386     thread->java_suspend_self();
2387     thread->set_thread_state(state);
2388     // Make sure new state is seen by VM thread
2389     if (os::is_MP()) {
2390       if (UseMembar) {
2391         // Force a fence between the write above and read below
2392         OrderAccess::fence();
2393       } else {
2394         // Must use this rather than serialization page in particular on Windows
2395         InterfaceSupport::serialize_memory(thread);
2396       }
2397     }
2398   }
2399 
2400   if (SafepointSynchronize::do_call_back()) {
2401     // If we are safepointing, then block the caller which may not be
2402     // the same as the target thread (see above).
2403     SafepointSynchronize::block(curJT);
2404   }
2405 
2406   if (thread->is_deopt_suspend()) {
2407     thread->clear_deopt_suspend();
2408     RegisterMap map(thread, false);
2409     frame f = thread->last_frame();
2410     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2411       f = f.sender(&map);
2412     }
2413     if (f.id() == thread->must_deopt_id()) {
2414       thread->clear_must_deopt_id();
2415       f.deoptimize(thread);
2416     } else {
2417       fatal("missed deoptimization!");
2418     }
2419   }
2420 }
2421 
2422 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2423 // progress or when _suspend_flags is non-zero.
2424 // Current thread needs to self-suspend if there is a suspend request and/or
2425 // block if a safepoint is in progress.
2426 // Also check for pending async exception (not including unsafe access error).
2427 // Note only the native==>VM/Java barriers can call this function and when
2428 // thread state is _thread_in_native_trans.
2429 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2430   check_safepoint_and_suspend_for_native_trans(thread);
2431 
2432   if (thread->has_async_exception()) {
2433     // We are in _thread_in_native_trans state, don't handle unsafe
2434     // access error since that may block.
2435     thread->check_and_handle_async_exceptions(false);
2436   }
2437 }
2438 
2439 // This is a variant of the normal
2440 // check_special_condition_for_native_trans with slightly different
2441 // semantics for use by critical native wrappers.  It does all the
2442 // normal checks but also performs the transition back into
2443 // thread_in_Java state.  This is required so that critical natives
2444 // can potentially block and perform a GC if they are the last thread
2445 // exiting the GC_locker.
2446 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2447   check_special_condition_for_native_trans(thread);
2448 
2449   // Finish the transition
2450   thread->set_thread_state(_thread_in_Java);
2451 
2452   if (thread->do_critical_native_unlock()) {
2453     ThreadInVMfromJavaNoAsyncException tiv(thread);
2454     GC_locker::unlock_critical(thread);
2455     thread->clear_critical_native_unlock();
2456   }
2457 }
2458 
2459 // We need to guarantee the Threads_lock here, since resumes are not
2460 // allowed during safepoint synchronization
2461 // Can only resume from an external suspension
2462 void JavaThread::java_resume() {
2463   assert_locked_or_safepoint(Threads_lock);
2464 
2465   // Sanity check: thread is gone, has started exiting or the thread
2466   // was not externally suspended.
2467   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2468     return;
2469   }
2470 
2471   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2472 
2473   clear_external_suspend();
2474 
2475   if (is_ext_suspended()) {
2476     clear_ext_suspended();
2477     SR_lock()->notify_all();
2478   }
2479 }
2480 
2481 void JavaThread::create_stack_guard_pages() {
2482   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2483   address low_addr = stack_base() - stack_size();
2484   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2485 
2486   int allocate = os::allocate_stack_guard_pages();
2487   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2488 
2489   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2490     warning("Attempt to allocate stack guard pages failed.");
2491     return;
2492   }
2493 
2494   if (os::guard_memory((char *) low_addr, len)) {
2495     _stack_guard_state = stack_guard_enabled;
2496   } else {
2497     warning("Attempt to protect stack guard pages failed.");
2498     if (os::uncommit_memory((char *) low_addr, len)) {
2499       warning("Attempt to deallocate stack guard pages failed.");
2500     }
2501   }
2502 }
2503 
2504 void JavaThread::remove_stack_guard_pages() {
2505   assert(Thread::current() == this, "from different thread");
2506   if (_stack_guard_state == stack_guard_unused) return;
2507   address low_addr = stack_base() - stack_size();
2508   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2509 
2510   if (os::allocate_stack_guard_pages()) {
2511     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2512       _stack_guard_state = stack_guard_unused;
2513     } else {
2514       warning("Attempt to deallocate stack guard pages failed.");
2515     }
2516   } else {
2517     if (_stack_guard_state == stack_guard_unused) return;
2518     if (os::unguard_memory((char *) low_addr, len)) {
2519       _stack_guard_state = stack_guard_unused;
2520     } else {
2521         warning("Attempt to unprotect stack guard pages failed.");
2522     }
2523   }
2524 }
2525 
2526 void JavaThread::enable_stack_yellow_zone() {
2527   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2528   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2529 
2530   // The base notation is from the stacks point of view, growing downward.
2531   // We need to adjust it to work correctly with guard_memory()
2532   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2533 
2534   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2535   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2536 
2537   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2538     _stack_guard_state = stack_guard_enabled;
2539   } else {
2540     warning("Attempt to guard stack yellow zone failed.");
2541   }
2542   enable_register_stack_guard();
2543 }
2544 
2545 void JavaThread::disable_stack_yellow_zone() {
2546   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2547   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2548 
2549   // Simply return if called for a thread that does not use guard pages.
2550   if (_stack_guard_state == stack_guard_unused) return;
2551 
2552   // The base notation is from the stacks point of view, growing downward.
2553   // We need to adjust it to work correctly with guard_memory()
2554   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2555 
2556   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2557     _stack_guard_state = stack_guard_yellow_disabled;
2558   } else {
2559     warning("Attempt to unguard stack yellow zone failed.");
2560   }
2561   disable_register_stack_guard();
2562 }
2563 
2564 void JavaThread::enable_stack_red_zone() {
2565   // The base notation is from the stacks point of view, growing downward.
2566   // We need to adjust it to work correctly with guard_memory()
2567   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2568   address base = stack_red_zone_base() - stack_red_zone_size();
2569 
2570   guarantee(base < stack_base(),"Error calculating stack red zone");
2571   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2572 
2573   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2574     warning("Attempt to guard stack red zone failed.");
2575   }
2576 }
2577 
2578 void JavaThread::disable_stack_red_zone() {
2579   // The base notation is from the stacks point of view, growing downward.
2580   // We need to adjust it to work correctly with guard_memory()
2581   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2582   address base = stack_red_zone_base() - stack_red_zone_size();
2583   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2584     warning("Attempt to unguard stack red zone failed.");
2585   }
2586 }
2587 
2588 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2589   // ignore is there is no stack
2590   if (!has_last_Java_frame()) return;
2591   // traverse the stack frames. Starts from top frame.
2592   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2593     frame* fr = fst.current();
2594     f(fr, fst.register_map());
2595   }
2596 }
2597 
2598 
2599 #ifndef PRODUCT
2600 // Deoptimization
2601 // Function for testing deoptimization
2602 void JavaThread::deoptimize() {
2603   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2604   StackFrameStream fst(this, UseBiasedLocking);
2605   bool deopt = false;           // Dump stack only if a deopt actually happens.
2606   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2607   // Iterate over all frames in the thread and deoptimize
2608   for(; !fst.is_done(); fst.next()) {
2609     if(fst.current()->can_be_deoptimized()) {
2610 
2611       if (only_at) {
2612         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2613         // consists of comma or carriage return separated numbers so
2614         // search for the current bci in that string.
2615         address pc = fst.current()->pc();
2616         nmethod* nm =  (nmethod*) fst.current()->cb();
2617         ScopeDesc* sd = nm->scope_desc_at( pc);
2618         char buffer[8];
2619         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2620         size_t len = strlen(buffer);
2621         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2622         while (found != NULL) {
2623           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2624               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2625             // Check that the bci found is bracketed by terminators.
2626             break;
2627           }
2628           found = strstr(found + 1, buffer);
2629         }
2630         if (!found) {
2631           continue;
2632         }
2633       }
2634 
2635       if (DebugDeoptimization && !deopt) {
2636         deopt = true; // One-time only print before deopt
2637         tty->print_cr("[BEFORE Deoptimization]");
2638         trace_frames();
2639         trace_stack();
2640       }
2641       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2642     }
2643   }
2644 
2645   if (DebugDeoptimization && deopt) {
2646     tty->print_cr("[AFTER Deoptimization]");
2647     trace_frames();
2648   }
2649 }
2650 
2651 
2652 // Make zombies
2653 void JavaThread::make_zombies() {
2654   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2655     if (fst.current()->can_be_deoptimized()) {
2656       // it is a Java nmethod
2657       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2658       nm->make_not_entrant();
2659     }
2660   }
2661 }
2662 #endif // PRODUCT
2663 
2664 
2665 void JavaThread::deoptimized_wrt_marked_nmethods() {
2666   if (!has_last_Java_frame()) return;
2667   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2668   StackFrameStream fst(this, UseBiasedLocking);
2669   for(; !fst.is_done(); fst.next()) {
2670     if (fst.current()->should_be_deoptimized()) {
2671       if (LogCompilation && xtty != NULL) {
2672         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2673         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2674                    this->name(), nm != NULL ? nm->compile_id() : -1);
2675       }
2676 
2677       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2678     }
2679   }
2680 }
2681 
2682 
2683 // GC support
2684 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2685 
2686 void JavaThread::gc_epilogue() {
2687   frames_do(frame_gc_epilogue);
2688 }
2689 
2690 
2691 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2692 
2693 void JavaThread::gc_prologue() {
2694   frames_do(frame_gc_prologue);
2695 }
2696 
2697 // If the caller is a NamedThread, then remember, in the current scope,
2698 // the given JavaThread in its _processed_thread field.
2699 class RememberProcessedThread: public StackObj {
2700   NamedThread* _cur_thr;
2701 public:
2702   RememberProcessedThread(JavaThread* jthr) {
2703     Thread* thread = Thread::current();
2704     if (thread->is_Named_thread()) {
2705       _cur_thr = (NamedThread *)thread;
2706       _cur_thr->set_processed_thread(jthr);
2707     } else {
2708       _cur_thr = NULL;
2709     }
2710   }
2711 
2712   ~RememberProcessedThread() {
2713     if (_cur_thr) {
2714       _cur_thr->set_processed_thread(NULL);
2715     }
2716   }
2717 };
2718 
2719 void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2720   // Verify that the deferred card marks have been flushed.
2721   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2722 
2723   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2724   // since there may be more than one thread using each ThreadProfiler.
2725 
2726   // Traverse the GCHandles
2727   Thread::oops_do(f, cld_f, cf);
2728 
2729   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2730           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2731 
2732   if (has_last_Java_frame()) {
2733     // Record JavaThread to GC thread
2734     RememberProcessedThread rpt(this);
2735 
2736     // Traverse the privileged stack
2737     if (_privileged_stack_top != NULL) {
2738       _privileged_stack_top->oops_do(f);
2739     }
2740 
2741     // traverse the registered growable array
2742     if (_array_for_gc != NULL) {
2743       for (int index = 0; index < _array_for_gc->length(); index++) {
2744         f->do_oop(_array_for_gc->adr_at(index));
2745       }
2746     }
2747 
2748     // Traverse the monitor chunks
2749     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2750       chunk->oops_do(f);
2751     }
2752 
2753     // Traverse the execution stack
2754     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2755       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2756     }
2757   }
2758 
2759   // callee_target is never live across a gc point so NULL it here should
2760   // it still contain a methdOop.
2761 
2762   set_callee_target(NULL);
2763 
2764   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2765   // If we have deferred set_locals there might be oops waiting to be
2766   // written
2767   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2768   if (list != NULL) {
2769     for (int i = 0; i < list->length(); i++) {
2770       list->at(i)->oops_do(f);
2771     }
2772   }
2773 
2774   // Traverse instance variables at the end since the GC may be moving things
2775   // around using this function
2776   f->do_oop((oop*) &_threadObj);
2777   f->do_oop((oop*) &_vm_result);
2778   f->do_oop((oop*) &_exception_oop);
2779   f->do_oop((oop*) &_pending_async_exception);
2780 
2781   if (jvmti_thread_state() != NULL) {
2782     jvmti_thread_state()->oops_do(f);
2783   }
2784 }
2785 
2786 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2787   Thread::nmethods_do(cf);  // (super method is a no-op)
2788 
2789   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2790           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2791 
2792   if (has_last_Java_frame()) {
2793     // Traverse the execution stack
2794     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2795       fst.current()->nmethods_do(cf);
2796     }
2797   }
2798 }
2799 
2800 void JavaThread::metadata_do(void f(Metadata*)) {
2801   Thread::metadata_do(f);
2802   if (has_last_Java_frame()) {
2803     // Traverse the execution stack to call f() on the methods in the stack
2804     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2805       fst.current()->metadata_do(f);
2806     }
2807   } else if (is_Compiler_thread()) {
2808     // need to walk ciMetadata in current compile tasks to keep alive.
2809     CompilerThread* ct = (CompilerThread*)this;
2810     if (ct->env() != NULL) {
2811       ct->env()->metadata_do(f);
2812     }
2813   }
2814 }
2815 
2816 // Printing
2817 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2818   switch (_thread_state) {
2819   case _thread_uninitialized:     return "_thread_uninitialized";
2820   case _thread_new:               return "_thread_new";
2821   case _thread_new_trans:         return "_thread_new_trans";
2822   case _thread_in_native:         return "_thread_in_native";
2823   case _thread_in_native_trans:   return "_thread_in_native_trans";
2824   case _thread_in_vm:             return "_thread_in_vm";
2825   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2826   case _thread_in_Java:           return "_thread_in_Java";
2827   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2828   case _thread_blocked:           return "_thread_blocked";
2829   case _thread_blocked_trans:     return "_thread_blocked_trans";
2830   default:                        return "unknown thread state";
2831   }
2832 }
2833 
2834 #ifndef PRODUCT
2835 void JavaThread::print_thread_state_on(outputStream *st) const {
2836   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2837 };
2838 void JavaThread::print_thread_state() const {
2839   print_thread_state_on(tty);
2840 };
2841 #endif // PRODUCT
2842 
2843 // Called by Threads::print() for VM_PrintThreads operation
2844 void JavaThread::print_on(outputStream *st) const {
2845   st->print("\"%s\" ", get_thread_name());
2846   oop thread_oop = threadObj();
2847   if (thread_oop != NULL) {
2848     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2849     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2850     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2851   }
2852   Thread::print_on(st);
2853   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2854   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2855   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2856     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2857   }
2858 #ifndef PRODUCT
2859   print_thread_state_on(st);
2860   _safepoint_state->print_on(st);
2861 #endif // PRODUCT
2862 }
2863 
2864 // Called by fatal error handler. The difference between this and
2865 // JavaThread::print() is that we can't grab lock or allocate memory.
2866 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2867   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2868   oop thread_obj = threadObj();
2869   if (thread_obj != NULL) {
2870      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2871   }
2872   st->print(" [");
2873   st->print("%s", _get_thread_state_name(_thread_state));
2874   if (osthread()) {
2875     st->print(", id=%d", osthread()->thread_id());
2876   }
2877   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2878             _stack_base - _stack_size, _stack_base);
2879   st->print("]");
2880   return;
2881 }
2882 
2883 // Verification
2884 
2885 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2886 
2887 void JavaThread::verify() {
2888   // Verify oops in the thread.
2889   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2890 
2891   // Verify the stack frames.
2892   frames_do(frame_verify);
2893 }
2894 
2895 // CR 6300358 (sub-CR 2137150)
2896 // Most callers of this method assume that it can't return NULL but a
2897 // thread may not have a name whilst it is in the process of attaching to
2898 // the VM - see CR 6412693, and there are places where a JavaThread can be
2899 // seen prior to having it's threadObj set (eg JNI attaching threads and
2900 // if vm exit occurs during initialization). These cases can all be accounted
2901 // for such that this method never returns NULL.
2902 const char* JavaThread::get_thread_name() const {
2903 #ifdef ASSERT
2904   // early safepoints can hit while current thread does not yet have TLS
2905   if (!SafepointSynchronize::is_at_safepoint()) {
2906     Thread *cur = Thread::current();
2907     if (!(cur->is_Java_thread() && cur == this)) {
2908       // Current JavaThreads are allowed to get their own name without
2909       // the Threads_lock.
2910       assert_locked_or_safepoint(Threads_lock);
2911     }
2912   }
2913 #endif // ASSERT
2914     return get_thread_name_string();
2915 }
2916 
2917 // Returns a non-NULL representation of this thread's name, or a suitable
2918 // descriptive string if there is no set name
2919 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2920   const char* name_str;
2921   oop thread_obj = threadObj();
2922   if (thread_obj != NULL) {
2923     typeArrayOop name = java_lang_Thread::name(thread_obj);
2924     if (name != NULL) {
2925       if (buf == NULL) {
2926         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2927       }
2928       else {
2929         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2930       }
2931     }
2932     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2933       name_str = "<no-name - thread is attaching>";
2934     }
2935     else {
2936       name_str = Thread::name();
2937     }
2938   }
2939   else {
2940     name_str = Thread::name();
2941   }
2942   assert(name_str != NULL, "unexpected NULL thread name");
2943   return name_str;
2944 }
2945 
2946 
2947 const char* JavaThread::get_threadgroup_name() const {
2948   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2949   oop thread_obj = threadObj();
2950   if (thread_obj != NULL) {
2951     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2952     if (thread_group != NULL) {
2953       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2954       // ThreadGroup.name can be null
2955       if (name != NULL) {
2956         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2957         return str;
2958       }
2959     }
2960   }
2961   return NULL;
2962 }
2963 
2964 const char* JavaThread::get_parent_name() const {
2965   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2966   oop thread_obj = threadObj();
2967   if (thread_obj != NULL) {
2968     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2969     if (thread_group != NULL) {
2970       oop parent = java_lang_ThreadGroup::parent(thread_group);
2971       if (parent != NULL) {
2972         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2973         // ThreadGroup.name can be null
2974         if (name != NULL) {
2975           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2976           return str;
2977         }
2978       }
2979     }
2980   }
2981   return NULL;
2982 }
2983 
2984 ThreadPriority JavaThread::java_priority() const {
2985   oop thr_oop = threadObj();
2986   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2987   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2988   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2989   return priority;
2990 }
2991 
2992 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2993 
2994   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2995   // Link Java Thread object <-> C++ Thread
2996 
2997   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2998   // and put it into a new Handle.  The Handle "thread_oop" can then
2999   // be used to pass the C++ thread object to other methods.
3000 
3001   // Set the Java level thread object (jthread) field of the
3002   // new thread (a JavaThread *) to C++ thread object using the
3003   // "thread_oop" handle.
3004 
3005   // Set the thread field (a JavaThread *) of the
3006   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3007 
3008   Handle thread_oop(Thread::current(),
3009                     JNIHandles::resolve_non_null(jni_thread));
3010   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3011     "must be initialized");
3012   set_threadObj(thread_oop());
3013   java_lang_Thread::set_thread(thread_oop(), this);
3014 
3015   if (prio == NoPriority) {
3016     prio = java_lang_Thread::priority(thread_oop());
3017     assert(prio != NoPriority, "A valid priority should be present");
3018   }
3019 
3020   // Push the Java priority down to the native thread; needs Threads_lock
3021   Thread::set_priority(this, prio);
3022 
3023   // Add the new thread to the Threads list and set it in motion.
3024   // We must have threads lock in order to call Threads::add.
3025   // It is crucial that we do not block before the thread is
3026   // added to the Threads list for if a GC happens, then the java_thread oop
3027   // will not be visited by GC.
3028   Threads::add(this);
3029 }
3030 
3031 oop JavaThread::current_park_blocker() {
3032   // Support for JSR-166 locks
3033   oop thread_oop = threadObj();
3034   if (thread_oop != NULL &&
3035       JDK_Version::current().supports_thread_park_blocker()) {
3036     return java_lang_Thread::park_blocker(thread_oop);
3037   }
3038   return NULL;
3039 }
3040 
3041 
3042 void JavaThread::print_stack_on(outputStream* st) {
3043   if (!has_last_Java_frame()) return;
3044   ResourceMark rm;
3045   HandleMark   hm;
3046 
3047   RegisterMap reg_map(this);
3048   vframe* start_vf = last_java_vframe(&reg_map);
3049   int count = 0;
3050   for (vframe* f = start_vf; f; f = f->sender() ) {
3051     if (f->is_java_frame()) {
3052       javaVFrame* jvf = javaVFrame::cast(f);
3053       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3054 
3055       // Print out lock information
3056       if (JavaMonitorsInStackTrace) {
3057         jvf->print_lock_info_on(st, count);
3058       }
3059     } else {
3060       // Ignore non-Java frames
3061     }
3062 
3063     // Bail-out case for too deep stacks
3064     count++;
3065     if (MaxJavaStackTraceDepth == count) return;
3066   }
3067 }
3068 
3069 
3070 // JVMTI PopFrame support
3071 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3072   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3073   if (in_bytes(size_in_bytes) != 0) {
3074     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3075     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3076     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3077   }
3078 }
3079 
3080 void* JavaThread::popframe_preserved_args() {
3081   return _popframe_preserved_args;
3082 }
3083 
3084 ByteSize JavaThread::popframe_preserved_args_size() {
3085   return in_ByteSize(_popframe_preserved_args_size);
3086 }
3087 
3088 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3089   int sz = in_bytes(popframe_preserved_args_size());
3090   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3091   return in_WordSize(sz / wordSize);
3092 }
3093 
3094 void JavaThread::popframe_free_preserved_args() {
3095   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3096   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3097   _popframe_preserved_args = NULL;
3098   _popframe_preserved_args_size = 0;
3099 }
3100 
3101 #ifndef PRODUCT
3102 
3103 void JavaThread::trace_frames() {
3104   tty->print_cr("[Describe stack]");
3105   int frame_no = 1;
3106   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3107     tty->print("  %d. ", frame_no++);
3108     fst.current()->print_value_on(tty,this);
3109     tty->cr();
3110   }
3111 }
3112 
3113 class PrintAndVerifyOopClosure: public OopClosure {
3114  protected:
3115   template <class T> inline void do_oop_work(T* p) {
3116     oop obj = oopDesc::load_decode_heap_oop(p);
3117     if (obj == NULL) return;
3118     tty->print(INTPTR_FORMAT ": ", p);
3119     if (obj->is_oop_or_null()) {
3120       if (obj->is_objArray()) {
3121         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3122       } else {
3123         obj->print();
3124       }
3125     } else {
3126       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3127     }
3128     tty->cr();
3129   }
3130  public:
3131   virtual void do_oop(oop* p) { do_oop_work(p); }
3132   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3133 };
3134 
3135 
3136 static void oops_print(frame* f, const RegisterMap *map) {
3137   PrintAndVerifyOopClosure print;
3138   f->print_value();
3139   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3140 }
3141 
3142 // Print our all the locations that contain oops and whether they are
3143 // valid or not.  This useful when trying to find the oldest frame
3144 // where an oop has gone bad since the frame walk is from youngest to
3145 // oldest.
3146 void JavaThread::trace_oops() {
3147   tty->print_cr("[Trace oops]");
3148   frames_do(oops_print);
3149 }
3150 
3151 
3152 #ifdef ASSERT
3153 // Print or validate the layout of stack frames
3154 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3155   ResourceMark rm;
3156   PRESERVE_EXCEPTION_MARK;
3157   FrameValues values;
3158   int frame_no = 0;
3159   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3160     fst.current()->describe(values, ++frame_no);
3161     if (depth == frame_no) break;
3162   }
3163   if (validate_only) {
3164     values.validate();
3165   } else {
3166     tty->print_cr("[Describe stack layout]");
3167     values.print(this);
3168   }
3169 }
3170 #endif
3171 
3172 void JavaThread::trace_stack_from(vframe* start_vf) {
3173   ResourceMark rm;
3174   int vframe_no = 1;
3175   for (vframe* f = start_vf; f; f = f->sender() ) {
3176     if (f->is_java_frame()) {
3177       javaVFrame::cast(f)->print_activation(vframe_no++);
3178     } else {
3179       f->print();
3180     }
3181     if (vframe_no > StackPrintLimit) {
3182       tty->print_cr("...<more frames>...");
3183       return;
3184     }
3185   }
3186 }
3187 
3188 
3189 void JavaThread::trace_stack() {
3190   if (!has_last_Java_frame()) return;
3191   ResourceMark rm;
3192   HandleMark   hm;
3193   RegisterMap reg_map(this);
3194   trace_stack_from(last_java_vframe(&reg_map));
3195 }
3196 
3197 
3198 #endif // PRODUCT
3199 
3200 
3201 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3202   assert(reg_map != NULL, "a map must be given");
3203   frame f = last_frame();
3204   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3205     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3206   }
3207   return NULL;
3208 }
3209 
3210 
3211 Klass* JavaThread::security_get_caller_class(int depth) {
3212   vframeStream vfst(this);
3213   vfst.security_get_caller_frame(depth);
3214   if (!vfst.at_end()) {
3215     return vfst.method()->method_holder();
3216   }
3217   return NULL;
3218 }
3219 
3220 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3221   assert(thread->is_Compiler_thread(), "must be compiler thread");
3222   CompileBroker::compiler_thread_loop();
3223 }
3224 
3225 // Create a CompilerThread
3226 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3227 : JavaThread(&compiler_thread_entry) {
3228   _env   = NULL;
3229   _log   = NULL;
3230   _task  = NULL;
3231   _queue = queue;
3232   _counters = counters;
3233   _buffer_blob = NULL;
3234   _scanned_nmethod = NULL;
3235 
3236 #ifndef PRODUCT
3237   _ideal_graph_printer = NULL;
3238 #endif
3239 }
3240 
3241 void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3242   JavaThread::oops_do(f, cld_f, cf);
3243   if (_scanned_nmethod != NULL && cf != NULL) {
3244     // Safepoints can occur when the sweeper is scanning an nmethod so
3245     // process it here to make sure it isn't unloaded in the middle of
3246     // a scan.
3247     cf->do_code_blob(_scanned_nmethod);
3248   }
3249 }
3250 
3251 // ======= Threads ========
3252 
3253 // The Threads class links together all active threads, and provides
3254 // operations over all threads.  It is protected by its own Mutex
3255 // lock, which is also used in other contexts to protect thread
3256 // operations from having the thread being operated on from exiting
3257 // and going away unexpectedly (e.g., safepoint synchronization)
3258 
3259 JavaThread* Threads::_thread_list = NULL;
3260 int         Threads::_number_of_threads = 0;
3261 int         Threads::_number_of_non_daemon_threads = 0;
3262 int         Threads::_return_code = 0;
3263 size_t      JavaThread::_stack_size_at_create = 0;
3264 #ifdef ASSERT
3265 bool        Threads::_vm_complete = false;
3266 #endif
3267 
3268 // All JavaThreads
3269 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3270 
3271 void os_stream();
3272 
3273 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3274 void Threads::threads_do(ThreadClosure* tc) {
3275   assert_locked_or_safepoint(Threads_lock);
3276   // ALL_JAVA_THREADS iterates through all JavaThreads
3277   ALL_JAVA_THREADS(p) {
3278     tc->do_thread(p);
3279   }
3280   // Someday we could have a table or list of all non-JavaThreads.
3281   // For now, just manually iterate through them.
3282   tc->do_thread(VMThread::vm_thread());
3283   Universe::heap()->gc_threads_do(tc);
3284   WatcherThread *wt = WatcherThread::watcher_thread();
3285   // Strictly speaking, the following NULL check isn't sufficient to make sure
3286   // the data for WatcherThread is still valid upon being examined. However,
3287   // considering that WatchThread terminates when the VM is on the way to
3288   // exit at safepoint, the chance of the above is extremely small. The right
3289   // way to prevent termination of WatcherThread would be to acquire
3290   // Terminator_lock, but we can't do that without violating the lock rank
3291   // checking in some cases.
3292   if (wt != NULL)
3293     tc->do_thread(wt);
3294 
3295   // If CompilerThreads ever become non-JavaThreads, add them here
3296 }
3297 
3298 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3299 
3300   extern void JDK_Version_init();
3301 
3302   // Check version
3303   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3304 
3305   // Initialize the output stream module
3306   ostream_init();
3307 
3308   // Process java launcher properties.
3309   Arguments::process_sun_java_launcher_properties(args);
3310 
3311   // Initialize the os module before using TLS
3312   os::init();
3313 
3314   // Initialize system properties.
3315   Arguments::init_system_properties();
3316 
3317   // So that JDK version can be used as a discrimintor when parsing arguments
3318   JDK_Version_init();
3319 
3320   // Update/Initialize System properties after JDK version number is known
3321   Arguments::init_version_specific_system_properties();
3322 
3323   // Parse arguments
3324   jint parse_result = Arguments::parse(args);
3325   if (parse_result != JNI_OK) return parse_result;
3326 
3327   if (PauseAtStartup) {
3328     os::pause();
3329   }
3330 
3331 #ifndef USDT2
3332   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3333 #else /* USDT2 */
3334   HOTSPOT_VM_INIT_BEGIN();
3335 #endif /* USDT2 */
3336 
3337   // Record VM creation timing statistics
3338   TraceVmCreationTime create_vm_timer;
3339   create_vm_timer.start();
3340 
3341   // Timing (must come after argument parsing)
3342   TraceTime timer("Create VM", TraceStartupTime);
3343 
3344   // Initialize the os module after parsing the args
3345   jint os_init_2_result = os::init_2();
3346   if (os_init_2_result != JNI_OK) return os_init_2_result;
3347 
3348   jint adjust_after_os_result = Arguments::adjust_after_os();
3349   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3350 
3351   // intialize TLS
3352   ThreadLocalStorage::init();
3353 
3354   // Bootstrap native memory tracking, so it can start recording memory
3355   // activities before worker thread is started. This is the first phase
3356   // of bootstrapping, VM is currently running in single-thread mode.
3357   MemTracker::bootstrap_single_thread();
3358 
3359   // Initialize output stream logging
3360   ostream_init_log();
3361 
3362   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3363   // Must be before create_vm_init_agents()
3364   if (Arguments::init_libraries_at_startup()) {
3365     convert_vm_init_libraries_to_agents();
3366   }
3367 
3368   // Launch -agentlib/-agentpath and converted -Xrun agents
3369   if (Arguments::init_agents_at_startup()) {
3370     create_vm_init_agents();
3371   }
3372 
3373   // Initialize Threads state
3374   _thread_list = NULL;
3375   _number_of_threads = 0;
3376   _number_of_non_daemon_threads = 0;
3377 
3378   // Initialize global data structures and create system classes in heap
3379   vm_init_globals();
3380 
3381   // Attach the main thread to this os thread
3382   JavaThread* main_thread = new JavaThread();
3383   main_thread->set_thread_state(_thread_in_vm);
3384   // must do this before set_active_handles and initialize_thread_local_storage
3385   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3386   // change the stack size recorded here to one based on the java thread
3387   // stacksize. This adjusted size is what is used to figure the placement
3388   // of the guard pages.
3389   main_thread->record_stack_base_and_size();
3390   main_thread->initialize_thread_local_storage();
3391 
3392   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3393 
3394   if (!main_thread->set_as_starting_thread()) {
3395     vm_shutdown_during_initialization(
3396       "Failed necessary internal allocation. Out of swap space");
3397     delete main_thread;
3398     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3399     return JNI_ENOMEM;
3400   }
3401 
3402   // Enable guard page *after* os::create_main_thread(), otherwise it would
3403   // crash Linux VM, see notes in os_linux.cpp.
3404   main_thread->create_stack_guard_pages();
3405 
3406   // Initialize Java-Level synchronization subsystem
3407   ObjectMonitor::Initialize() ;
3408 
3409   // Second phase of bootstrapping, VM is about entering multi-thread mode
3410   MemTracker::bootstrap_multi_thread();
3411 
3412   // Initialize global modules
3413   jint status = init_globals();
3414   if (status != JNI_OK) {
3415     delete main_thread;
3416     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3417     return status;
3418   }
3419 
3420   // Should be done after the heap is fully created
3421   main_thread->cache_global_variables();
3422 
3423   HandleMark hm;
3424 
3425   { MutexLocker mu(Threads_lock);
3426     Threads::add(main_thread);
3427   }
3428 
3429   // Any JVMTI raw monitors entered in onload will transition into
3430   // real raw monitor. VM is setup enough here for raw monitor enter.
3431   JvmtiExport::transition_pending_onload_raw_monitors();
3432 
3433   // Fully start NMT
3434   MemTracker::start();
3435 
3436   // Create the VMThread
3437   { TraceTime timer("Start VMThread", TraceStartupTime);
3438     VMThread::create();
3439     Thread* vmthread = VMThread::vm_thread();
3440 
3441     if (!os::create_thread(vmthread, os::vm_thread))
3442       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3443 
3444     // Wait for the VM thread to become ready, and VMThread::run to initialize
3445     // Monitors can have spurious returns, must always check another state flag
3446     {
3447       MutexLocker ml(Notify_lock);
3448       os::start_thread(vmthread);
3449       while (vmthread->active_handles() == NULL) {
3450         Notify_lock->wait();
3451       }
3452     }
3453   }
3454 
3455   assert (Universe::is_fully_initialized(), "not initialized");
3456   if (VerifyDuringStartup) {
3457     // Make sure we're starting with a clean slate.
3458     VM_Verify verify_op;
3459     VMThread::execute(&verify_op);
3460   }
3461 
3462   EXCEPTION_MARK;
3463 
3464   // At this point, the Universe is initialized, but we have not executed
3465   // any byte code.  Now is a good time (the only time) to dump out the
3466   // internal state of the JVM for sharing.
3467   if (DumpSharedSpaces) {
3468     MetaspaceShared::preload_and_dump(CHECK_0);
3469     ShouldNotReachHere();
3470   }
3471 
3472   // Always call even when there are not JVMTI environments yet, since environments
3473   // may be attached late and JVMTI must track phases of VM execution
3474   JvmtiExport::enter_start_phase();
3475 
3476   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3477   JvmtiExport::post_vm_start();
3478 
3479   {
3480     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3481 
3482     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3483       create_vm_init_libraries();
3484     }
3485 
3486     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3487 
3488     if (AggressiveOpts) {
3489       {
3490         // Forcibly initialize java/util/HashMap and mutate the private
3491         // static final "frontCacheEnabled" field before we start creating instances
3492 #ifdef ASSERT
3493         Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3494         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3495 #endif
3496         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3497         KlassHandle k = KlassHandle(THREAD, k_o);
3498         guarantee(k.not_null(), "Must find java/util/HashMap");
3499         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3500         ik->initialize(CHECK_0);
3501         fieldDescriptor fd;
3502         // Possible we might not find this field; if so, don't break
3503         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3504           k()->java_mirror()->bool_field_put(fd.offset(), true);
3505         }
3506       }
3507 
3508       if (UseStringCache) {
3509         // Forcibly initialize java/lang/StringValue and mutate the private
3510         // static final "stringCacheEnabled" field before we start creating instances
3511         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3512         // Possible that StringValue isn't present: if so, silently don't break
3513         if (k_o != NULL) {
3514           KlassHandle k = KlassHandle(THREAD, k_o);
3515           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3516           ik->initialize(CHECK_0);
3517           fieldDescriptor fd;
3518           // Possible we might not find this field: if so, silently don't break
3519           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3520             k()->java_mirror()->bool_field_put(fd.offset(), true);
3521           }
3522         }
3523       }
3524     }
3525 
3526     // Initialize java_lang.System (needed before creating the thread)
3527     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3528     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3529     Handle thread_group = create_initial_thread_group(CHECK_0);
3530     Universe::set_main_thread_group(thread_group());
3531     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3532     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3533     main_thread->set_threadObj(thread_object);
3534     // Set thread status to running since main thread has
3535     // been started and running.
3536     java_lang_Thread::set_thread_status(thread_object,
3537                                         java_lang_Thread::RUNNABLE);
3538 
3539     // The VM creates & returns objects of this class. Make sure it's initialized.
3540     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3541 
3542     // The VM preresolves methods to these classes. Make sure that they get initialized
3543     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3544     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3545     call_initializeSystemClass(CHECK_0);
3546 
3547     // get the Java runtime name after java.lang.System is initialized
3548     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3549     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3550 
3551     // an instance of OutOfMemory exception has been allocated earlier
3552     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3553     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3554     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3555     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3556     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3557     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3558     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3559     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3560   }
3561 
3562   // See        : bugid 4211085.
3563   // Background : the static initializer of java.lang.Compiler tries to read
3564   //              property"java.compiler" and read & write property "java.vm.info".
3565   //              When a security manager is installed through the command line
3566   //              option "-Djava.security.manager", the above properties are not
3567   //              readable and the static initializer for java.lang.Compiler fails
3568   //              resulting in a NoClassDefFoundError.  This can happen in any
3569   //              user code which calls methods in java.lang.Compiler.
3570   // Hack :       the hack is to pre-load and initialize this class, so that only
3571   //              system domains are on the stack when the properties are read.
3572   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3573   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3574   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3575   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3576   //              Once that is done, we should remove this hack.
3577   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3578 
3579   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3580   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3581   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3582   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3583   // This should also be taken out as soon as 4211383 gets fixed.
3584   reset_vm_info_property(CHECK_0);
3585 
3586   quicken_jni_functions();
3587 
3588   // Must be run after init_ft which initializes ft_enabled
3589   if (TRACE_INITIALIZE() != JNI_OK) {
3590     vm_exit_during_initialization("Failed to initialize tracing backend");
3591   }
3592 
3593   // Set flag that basic initialization has completed. Used by exceptions and various
3594   // debug stuff, that does not work until all basic classes have been initialized.
3595   set_init_completed();
3596 
3597 #ifndef USDT2
3598   HS_DTRACE_PROBE(hotspot, vm__init__end);
3599 #else /* USDT2 */
3600   HOTSPOT_VM_INIT_END();
3601 #endif /* USDT2 */
3602 
3603   // record VM initialization completion time
3604 #if INCLUDE_MANAGEMENT
3605   Management::record_vm_init_completed();
3606 #endif // INCLUDE_MANAGEMENT
3607 
3608   // Compute system loader. Note that this has to occur after set_init_completed, since
3609   // valid exceptions may be thrown in the process.
3610   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3611   // set_init_completed has just been called, causing exceptions not to be shortcut
3612   // anymore. We call vm_exit_during_initialization directly instead.
3613   SystemDictionary::compute_java_system_loader(THREAD);
3614   if (HAS_PENDING_EXCEPTION) {
3615     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3616   }
3617 
3618 #if INCLUDE_ALL_GCS
3619   // Support for ConcurrentMarkSweep. This should be cleaned up
3620   // and better encapsulated. The ugly nested if test would go away
3621   // once things are properly refactored. XXX YSR
3622   if (UseConcMarkSweepGC || UseG1GC) {
3623     if (UseConcMarkSweepGC) {
3624       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3625     } else {
3626       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3627     }
3628     if (HAS_PENDING_EXCEPTION) {
3629       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3630     }
3631   }
3632 #endif // INCLUDE_ALL_GCS
3633 
3634   // Always call even when there are not JVMTI environments yet, since environments
3635   // may be attached late and JVMTI must track phases of VM execution
3636   JvmtiExport::enter_live_phase();
3637 
3638   // Signal Dispatcher needs to be started before VMInit event is posted
3639   os::signal_init();
3640 
3641   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3642   if (!DisableAttachMechanism) {
3643     if (StartAttachListener || AttachListener::init_at_startup()) {
3644       AttachListener::init();
3645     }
3646   }
3647 
3648   // Launch -Xrun agents
3649   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3650   // back-end can launch with -Xdebug -Xrunjdwp.
3651   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3652     create_vm_init_libraries();
3653   }
3654 
3655   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3656   JvmtiExport::post_vm_initialized();
3657 
3658   if (TRACE_START() != JNI_OK) {
3659     vm_exit_during_initialization("Failed to start tracing backend.");
3660   }
3661 
3662   if (CleanChunkPoolAsync) {
3663     Chunk::start_chunk_pool_cleaner_task();
3664   }
3665 
3666   // initialize compiler(s)
3667 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3668   CompileBroker::compilation_init();
3669 #endif
3670 
3671 #if INCLUDE_MANAGEMENT
3672   Management::initialize(THREAD);
3673 #endif // INCLUDE_MANAGEMENT
3674 
3675   if (HAS_PENDING_EXCEPTION) {
3676     // management agent fails to start possibly due to
3677     // configuration problem and is responsible for printing
3678     // stack trace if appropriate. Simply exit VM.
3679     vm_exit(1);
3680   }
3681 
3682   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3683   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3684   if (MemProfiling)                   MemProfiler::engage();
3685   StatSampler::engage();
3686   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3687 
3688   BiasedLocking::init();
3689 
3690   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3691     call_postVMInitHook(THREAD);
3692     // The Java side of PostVMInitHook.run must deal with all
3693     // exceptions and provide means of diagnosis.
3694     if (HAS_PENDING_EXCEPTION) {
3695       CLEAR_PENDING_EXCEPTION;
3696     }
3697   }
3698 
3699   {
3700       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3701       // Make sure the watcher thread can be started by WatcherThread::start()
3702       // or by dynamic enrollment.
3703       WatcherThread::make_startable();
3704       // Start up the WatcherThread if there are any periodic tasks
3705       // NOTE:  All PeriodicTasks should be registered by now. If they
3706       //   aren't, late joiners might appear to start slowly (we might
3707       //   take a while to process their first tick).
3708       if (PeriodicTask::num_tasks() > 0) {
3709           WatcherThread::start();
3710       }
3711   }
3712 
3713   // Give os specific code one last chance to start
3714   os::init_3();
3715 
3716   create_vm_timer.end();
3717 #ifdef ASSERT
3718   _vm_complete = true;
3719 #endif
3720   return JNI_OK;
3721 }
3722 
3723 // type for the Agent_OnLoad and JVM_OnLoad entry points
3724 extern "C" {
3725   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3726 }
3727 // Find a command line agent library and return its entry point for
3728 //         -agentlib:  -agentpath:   -Xrun
3729 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3730 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3731   OnLoadEntry_t on_load_entry = NULL;
3732   void *library = agent->os_lib();  // check if we have looked it up before
3733 
3734   if (library == NULL) {
3735     char buffer[JVM_MAXPATHLEN];
3736     char ebuf[1024];
3737     const char *name = agent->name();
3738     const char *msg = "Could not find agent library ";
3739 
3740     if (agent->is_absolute_path()) {
3741       library = os::dll_load(name, ebuf, sizeof ebuf);
3742       if (library == NULL) {
3743         const char *sub_msg = " in absolute path, with error: ";
3744         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3745         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3746         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3747         // If we can't find the agent, exit.
3748         vm_exit_during_initialization(buf, NULL);
3749         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3750       }
3751     } else {
3752       // Try to load the agent from the standard dll directory
3753       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3754                              name)) {
3755         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3756       }
3757       if (library == NULL) { // Try the local directory
3758         char ns[1] = {0};
3759         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3760           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3761         }
3762         if (library == NULL) {
3763           const char *sub_msg = " on the library path, with error: ";
3764           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3765           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3766           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3767           // If we can't find the agent, exit.
3768           vm_exit_during_initialization(buf, NULL);
3769           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3770         }
3771       }
3772     }
3773     agent->set_os_lib(library);
3774   }
3775 
3776   // Find the OnLoad function.
3777   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3778     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3779     if (on_load_entry != NULL) break;
3780   }
3781   return on_load_entry;
3782 }
3783 
3784 // Find the JVM_OnLoad entry point
3785 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3786   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3787   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3788 }
3789 
3790 // Find the Agent_OnLoad entry point
3791 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3792   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3793   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3794 }
3795 
3796 // For backwards compatibility with -Xrun
3797 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3798 // treated like -agentpath:
3799 // Must be called before agent libraries are created
3800 void Threads::convert_vm_init_libraries_to_agents() {
3801   AgentLibrary* agent;
3802   AgentLibrary* next;
3803 
3804   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3805     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3806     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3807 
3808     // If there is an JVM_OnLoad function it will get called later,
3809     // otherwise see if there is an Agent_OnLoad
3810     if (on_load_entry == NULL) {
3811       on_load_entry = lookup_agent_on_load(agent);
3812       if (on_load_entry != NULL) {
3813         // switch it to the agent list -- so that Agent_OnLoad will be called,
3814         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3815         Arguments::convert_library_to_agent(agent);
3816       } else {
3817         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3818       }
3819     }
3820   }
3821 }
3822 
3823 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3824 // Invokes Agent_OnLoad
3825 // Called very early -- before JavaThreads exist
3826 void Threads::create_vm_init_agents() {
3827   extern struct JavaVM_ main_vm;
3828   AgentLibrary* agent;
3829 
3830   JvmtiExport::enter_onload_phase();
3831 
3832   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3833     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3834 
3835     if (on_load_entry != NULL) {
3836       // Invoke the Agent_OnLoad function
3837       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3838       if (err != JNI_OK) {
3839         vm_exit_during_initialization("agent library failed to init", agent->name());
3840       }
3841     } else {
3842       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3843     }
3844   }
3845   JvmtiExport::enter_primordial_phase();
3846 }
3847 
3848 extern "C" {
3849   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3850 }
3851 
3852 void Threads::shutdown_vm_agents() {
3853   // Send any Agent_OnUnload notifications
3854   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3855   extern struct JavaVM_ main_vm;
3856   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3857 
3858     // Find the Agent_OnUnload function.
3859     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3860       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3861                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3862 
3863       // Invoke the Agent_OnUnload function
3864       if (unload_entry != NULL) {
3865         JavaThread* thread = JavaThread::current();
3866         ThreadToNativeFromVM ttn(thread);
3867         HandleMark hm(thread);
3868         (*unload_entry)(&main_vm);
3869         break;
3870       }
3871     }
3872   }
3873 }
3874 
3875 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3876 // Invokes JVM_OnLoad
3877 void Threads::create_vm_init_libraries() {
3878   extern struct JavaVM_ main_vm;
3879   AgentLibrary* agent;
3880 
3881   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3882     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3883 
3884     if (on_load_entry != NULL) {
3885       // Invoke the JVM_OnLoad function
3886       JavaThread* thread = JavaThread::current();
3887       ThreadToNativeFromVM ttn(thread);
3888       HandleMark hm(thread);
3889       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3890       if (err != JNI_OK) {
3891         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3892       }
3893     } else {
3894       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3895     }
3896   }
3897 }
3898 
3899 // Last thread running calls java.lang.Shutdown.shutdown()
3900 void JavaThread::invoke_shutdown_hooks() {
3901   HandleMark hm(this);
3902 
3903   // We could get here with a pending exception, if so clear it now.
3904   if (this->has_pending_exception()) {
3905     this->clear_pending_exception();
3906   }
3907 
3908   EXCEPTION_MARK;
3909   Klass* k =
3910     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3911                                       THREAD);
3912   if (k != NULL) {
3913     // SystemDictionary::resolve_or_null will return null if there was
3914     // an exception.  If we cannot load the Shutdown class, just don't
3915     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3916     // and finalizers (if runFinalizersOnExit is set) won't be run.
3917     // Note that if a shutdown hook was registered or runFinalizersOnExit
3918     // was called, the Shutdown class would have already been loaded
3919     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3920     instanceKlassHandle shutdown_klass (THREAD, k);
3921     JavaValue result(T_VOID);
3922     JavaCalls::call_static(&result,
3923                            shutdown_klass,
3924                            vmSymbols::shutdown_method_name(),
3925                            vmSymbols::void_method_signature(),
3926                            THREAD);
3927   }
3928   CLEAR_PENDING_EXCEPTION;
3929 }
3930 
3931 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3932 // the program falls off the end of main(). Another VM exit path is through
3933 // vm_exit() when the program calls System.exit() to return a value or when
3934 // there is a serious error in VM. The two shutdown paths are not exactly
3935 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3936 // and VM_Exit op at VM level.
3937 //
3938 // Shutdown sequence:
3939 //   + Shutdown native memory tracking if it is on
3940 //   + Wait until we are the last non-daemon thread to execute
3941 //     <-- every thing is still working at this moment -->
3942 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3943 //        shutdown hooks, run finalizers if finalization-on-exit
3944 //   + Call before_exit(), prepare for VM exit
3945 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3946 //        currently the only user of this mechanism is File.deleteOnExit())
3947 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3948 //        post thread end and vm death events to JVMTI,
3949 //        stop signal thread
3950 //   + Call JavaThread::exit(), it will:
3951 //      > release JNI handle blocks, remove stack guard pages
3952 //      > remove this thread from Threads list
3953 //     <-- no more Java code from this thread after this point -->
3954 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3955 //     the compiler threads at safepoint
3956 //     <-- do not use anything that could get blocked by Safepoint -->
3957 //   + Disable tracing at JNI/JVM barriers
3958 //   + Set _vm_exited flag for threads that are still running native code
3959 //   + Delete this thread
3960 //   + Call exit_globals()
3961 //      > deletes tty
3962 //      > deletes PerfMemory resources
3963 //   + Return to caller
3964 
3965 bool Threads::destroy_vm() {
3966   JavaThread* thread = JavaThread::current();
3967 
3968 #ifdef ASSERT
3969   _vm_complete = false;
3970 #endif
3971   // Wait until we are the last non-daemon thread to execute
3972   { MutexLocker nu(Threads_lock);
3973     while (Threads::number_of_non_daemon_threads() > 1 )
3974       // This wait should make safepoint checks, wait without a timeout,
3975       // and wait as a suspend-equivalent condition.
3976       //
3977       // Note: If the FlatProfiler is running and this thread is waiting
3978       // for another non-daemon thread to finish, then the FlatProfiler
3979       // is waiting for the external suspend request on this thread to
3980       // complete. wait_for_ext_suspend_completion() will eventually
3981       // timeout, but that takes time. Making this wait a suspend-
3982       // equivalent condition solves that timeout problem.
3983       //
3984       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3985                          Mutex::_as_suspend_equivalent_flag);
3986   }
3987 
3988   // Hang forever on exit if we are reporting an error.
3989   if (ShowMessageBoxOnError && is_error_reported()) {
3990     os::infinite_sleep();
3991   }
3992   os::wait_for_keypress_at_exit();
3993 
3994   if (JDK_Version::is_jdk12x_version()) {
3995     // We are the last thread running, so check if finalizers should be run.
3996     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3997     HandleMark rm(thread);
3998     Universe::run_finalizers_on_exit();
3999   } else {
4000     // run Java level shutdown hooks
4001     thread->invoke_shutdown_hooks();
4002   }
4003 
4004   before_exit(thread);
4005 
4006   thread->exit(true);
4007 
4008   // Stop VM thread.
4009   {
4010     // 4945125 The vm thread comes to a safepoint during exit.
4011     // GC vm_operations can get caught at the safepoint, and the
4012     // heap is unparseable if they are caught. Grab the Heap_lock
4013     // to prevent this. The GC vm_operations will not be able to
4014     // queue until after the vm thread is dead.
4015     // After this point, we'll never emerge out of the safepoint before
4016     // the VM exits, so concurrent GC threads do not need to be explicitly
4017     // stopped; they remain inactive until the process exits.
4018     // Note: some concurrent G1 threads may be running during a safepoint,
4019     // but these will not be accessing the heap, just some G1-specific side
4020     // data structures that are not accessed by any other threads but them
4021     // after this point in a terminal safepoint.
4022 
4023     MutexLocker ml(Heap_lock);
4024 
4025     VMThread::wait_for_vm_thread_exit();
4026     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4027     VMThread::destroy();
4028   }
4029 
4030   // clean up ideal graph printers
4031 #if defined(COMPILER2) && !defined(PRODUCT)
4032   IdealGraphPrinter::clean_up();
4033 #endif
4034 
4035   // Now, all Java threads are gone except daemon threads. Daemon threads
4036   // running Java code or in VM are stopped by the Safepoint. However,
4037   // daemon threads executing native code are still running.  But they
4038   // will be stopped at native=>Java/VM barriers. Note that we can't
4039   // simply kill or suspend them, as it is inherently deadlock-prone.
4040 
4041 #ifndef PRODUCT
4042   // disable function tracing at JNI/JVM barriers
4043   TraceJNICalls = false;
4044   TraceJVMCalls = false;
4045   TraceRuntimeCalls = false;
4046 #endif
4047 
4048   VM_Exit::set_vm_exited();
4049 
4050   notify_vm_shutdown();
4051 
4052   delete thread;
4053 
4054   // exit_globals() will delete tty
4055   exit_globals();
4056 
4057   return true;
4058 }
4059 
4060 
4061 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4062   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4063   return is_supported_jni_version(version);
4064 }
4065 
4066 
4067 jboolean Threads::is_supported_jni_version(jint version) {
4068   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4069   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4070   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4071   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4072   return JNI_FALSE;
4073 }
4074 
4075 
4076 void Threads::add(JavaThread* p, bool force_daemon) {
4077   // The threads lock must be owned at this point
4078   assert_locked_or_safepoint(Threads_lock);
4079 
4080   // See the comment for this method in thread.hpp for its purpose and
4081   // why it is called here.
4082   p->initialize_queues();
4083   p->set_next(_thread_list);
4084   _thread_list = p;
4085   _number_of_threads++;
4086   oop threadObj = p->threadObj();
4087   bool daemon = true;
4088   // Bootstrapping problem: threadObj can be null for initial
4089   // JavaThread (or for threads attached via JNI)
4090   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4091     _number_of_non_daemon_threads++;
4092     daemon = false;
4093   }
4094 
4095   p->set_safepoint_visible(true);
4096 
4097   ThreadService::add_thread(p, daemon);
4098 
4099   // Possible GC point.
4100   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4101 }
4102 
4103 void Threads::remove(JavaThread* p) {
4104   // Extra scope needed for Thread_lock, so we can check
4105   // that we do not remove thread without safepoint code notice
4106   { MutexLocker ml(Threads_lock);
4107 
4108     assert(includes(p), "p must be present");
4109 
4110     JavaThread* current = _thread_list;
4111     JavaThread* prev    = NULL;
4112 
4113     while (current != p) {
4114       prev    = current;
4115       current = current->next();
4116     }
4117 
4118     if (prev) {
4119       prev->set_next(current->next());
4120     } else {
4121       _thread_list = p->next();
4122     }
4123     _number_of_threads--;
4124     oop threadObj = p->threadObj();
4125     bool daemon = true;
4126     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4127       _number_of_non_daemon_threads--;
4128       daemon = false;
4129 
4130       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4131       // on destroy_vm will wake up.
4132       if (number_of_non_daemon_threads() == 1)
4133         Threads_lock->notify_all();
4134     }
4135     ThreadService::remove_thread(p, daemon);
4136 
4137     // Make sure that safepoint code disregard this thread. This is needed since
4138     // the thread might mess around with locks after this point. This can cause it
4139     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4140     // of this thread since it is removed from the queue.
4141     p->set_terminated_value();
4142 
4143     // Now, this thread is not visible to safepoint
4144     p->set_safepoint_visible(false);
4145     // once the thread becomes safepoint invisible, we can not use its per-thread
4146     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4147     // to release its per-thread recorder here.
4148     MemTracker::thread_exiting(p);
4149   } // unlock Threads_lock
4150 
4151   // Since Events::log uses a lock, we grab it outside the Threads_lock
4152   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4153 }
4154 
4155 // Threads_lock must be held when this is called (or must be called during a safepoint)
4156 bool Threads::includes(JavaThread* p) {
4157   assert(Threads_lock->is_locked(), "sanity check");
4158   ALL_JAVA_THREADS(q) {
4159     if (q == p ) {
4160       return true;
4161     }
4162   }
4163   return false;
4164 }
4165 
4166 // Operations on the Threads list for GC.  These are not explicitly locked,
4167 // but the garbage collector must provide a safe context for them to run.
4168 // In particular, these things should never be called when the Threads_lock
4169 // is held by some other thread. (Note: the Safepoint abstraction also
4170 // uses the Threads_lock to gurantee this property. It also makes sure that
4171 // all threads gets blocked when exiting or starting).
4172 
4173 void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4174   ALL_JAVA_THREADS(p) {
4175     p->oops_do(f, cld_f, cf);
4176   }
4177   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4178 }
4179 
4180 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4181   // Introduce a mechanism allowing parallel threads to claim threads as
4182   // root groups.  Overhead should be small enough to use all the time,
4183   // even in sequential code.
4184   SharedHeap* sh = SharedHeap::heap();
4185   // Cannot yet substitute active_workers for n_par_threads
4186   // because of G1CollectedHeap::verify() use of
4187   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4188   // turn off parallelism in process_strong_roots while active_workers
4189   // is being used for parallelism elsewhere.
4190   bool is_par = sh->n_par_threads() > 0;
4191   assert(!is_par ||
4192          (SharedHeap::heap()->n_par_threads() ==
4193           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4194   int cp = SharedHeap::heap()->strong_roots_parity();
4195   ALL_JAVA_THREADS(p) {
4196     if (p->claim_oops_do(is_par, cp)) {
4197       p->oops_do(f, cld_f, cf);
4198     }
4199   }
4200   VMThread* vmt = VMThread::vm_thread();
4201   if (vmt->claim_oops_do(is_par, cp)) {
4202     vmt->oops_do(f, cld_f, cf);
4203   }
4204 }
4205 
4206 #if INCLUDE_ALL_GCS
4207 // Used by ParallelScavenge
4208 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4209   ALL_JAVA_THREADS(p) {
4210     q->enqueue(new ThreadRootsTask(p));
4211   }
4212   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4213 }
4214 
4215 // Used by Parallel Old
4216 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4217   ALL_JAVA_THREADS(p) {
4218     q->enqueue(new ThreadRootsMarkingTask(p));
4219   }
4220   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4221 }
4222 #endif // INCLUDE_ALL_GCS
4223 
4224 void Threads::nmethods_do(CodeBlobClosure* cf) {
4225   ALL_JAVA_THREADS(p) {
4226     p->nmethods_do(cf);
4227   }
4228   VMThread::vm_thread()->nmethods_do(cf);
4229 }
4230 
4231 void Threads::metadata_do(void f(Metadata*)) {
4232   ALL_JAVA_THREADS(p) {
4233     p->metadata_do(f);
4234   }
4235 }
4236 
4237 void Threads::gc_epilogue() {
4238   ALL_JAVA_THREADS(p) {
4239     p->gc_epilogue();
4240   }
4241 }
4242 
4243 void Threads::gc_prologue() {
4244   ALL_JAVA_THREADS(p) {
4245     p->gc_prologue();
4246   }
4247 }
4248 
4249 void Threads::deoptimized_wrt_marked_nmethods() {
4250   ALL_JAVA_THREADS(p) {
4251     p->deoptimized_wrt_marked_nmethods();
4252   }
4253 }
4254 
4255 
4256 // Get count Java threads that are waiting to enter the specified monitor.
4257 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4258   address monitor, bool doLock) {
4259   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4260     "must grab Threads_lock or be at safepoint");
4261   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4262 
4263   int i = 0;
4264   {
4265     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4266     ALL_JAVA_THREADS(p) {
4267       if (p->is_Compiler_thread()) continue;
4268 
4269       address pending = (address)p->current_pending_monitor();
4270       if (pending == monitor) {             // found a match
4271         if (i < count) result->append(p);   // save the first count matches
4272         i++;
4273       }
4274     }
4275   }
4276   return result;
4277 }
4278 
4279 
4280 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4281   assert(doLock ||
4282          Threads_lock->owned_by_self() ||
4283          SafepointSynchronize::is_at_safepoint(),
4284          "must grab Threads_lock or be at safepoint");
4285 
4286   // NULL owner means not locked so we can skip the search
4287   if (owner == NULL) return NULL;
4288 
4289   {
4290     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4291     ALL_JAVA_THREADS(p) {
4292       // first, see if owner is the address of a Java thread
4293       if (owner == (address)p) return p;
4294     }
4295   }
4296   // Cannot assert on lack of success here since this function may be
4297   // used by code that is trying to report useful problem information
4298   // like deadlock detection.
4299   if (UseHeavyMonitors) return NULL;
4300 
4301   //
4302   // If we didn't find a matching Java thread and we didn't force use of
4303   // heavyweight monitors, then the owner is the stack address of the
4304   // Lock Word in the owning Java thread's stack.
4305   //
4306   JavaThread* the_owner = NULL;
4307   {
4308     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4309     ALL_JAVA_THREADS(q) {
4310       if (q->is_lock_owned(owner)) {
4311         the_owner = q;
4312         break;
4313       }
4314     }
4315   }
4316   // cannot assert on lack of success here; see above comment
4317   return the_owner;
4318 }
4319 
4320 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4321 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4322   char buf[32];
4323   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4324 
4325   st->print_cr("Full thread dump %s (%s %s):",
4326                 Abstract_VM_Version::vm_name(),
4327                 Abstract_VM_Version::vm_release(),
4328                 Abstract_VM_Version::vm_info_string()
4329                );
4330   st->cr();
4331 
4332 #if INCLUDE_ALL_GCS
4333   // Dump concurrent locks
4334   ConcurrentLocksDump concurrent_locks;
4335   if (print_concurrent_locks) {
4336     concurrent_locks.dump_at_safepoint();
4337   }
4338 #endif // INCLUDE_ALL_GCS
4339 
4340   ALL_JAVA_THREADS(p) {
4341     ResourceMark rm;
4342     p->print_on(st);
4343     if (print_stacks) {
4344       if (internal_format) {
4345         p->trace_stack();
4346       } else {
4347         p->print_stack_on(st);
4348       }
4349     }
4350     st->cr();
4351 #if INCLUDE_ALL_GCS
4352     if (print_concurrent_locks) {
4353       concurrent_locks.print_locks_on(p, st);
4354     }
4355 #endif // INCLUDE_ALL_GCS
4356   }
4357 
4358   VMThread::vm_thread()->print_on(st);
4359   st->cr();
4360   Universe::heap()->print_gc_threads_on(st);
4361   WatcherThread* wt = WatcherThread::watcher_thread();
4362   if (wt != NULL) {
4363     wt->print_on(st);
4364     st->cr();
4365   }
4366   CompileBroker::print_compiler_threads_on(st);
4367   st->flush();
4368 }
4369 
4370 // Threads::print_on_error() is called by fatal error handler. It's possible
4371 // that VM is not at safepoint and/or current thread is inside signal handler.
4372 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4373 // memory (even in resource area), it might deadlock the error handler.
4374 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4375   bool found_current = false;
4376   st->print_cr("Java Threads: ( => current thread )");
4377   ALL_JAVA_THREADS(thread) {
4378     bool is_current = (current == thread);
4379     found_current = found_current || is_current;
4380 
4381     st->print("%s", is_current ? "=>" : "  ");
4382 
4383     st->print(PTR_FORMAT, thread);
4384     st->print(" ");
4385     thread->print_on_error(st, buf, buflen);
4386     st->cr();
4387   }
4388   st->cr();
4389 
4390   st->print_cr("Other Threads:");
4391   if (VMThread::vm_thread()) {
4392     bool is_current = (current == VMThread::vm_thread());
4393     found_current = found_current || is_current;
4394     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4395 
4396     st->print(PTR_FORMAT, VMThread::vm_thread());
4397     st->print(" ");
4398     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4399     st->cr();
4400   }
4401   WatcherThread* wt = WatcherThread::watcher_thread();
4402   if (wt != NULL) {
4403     bool is_current = (current == wt);
4404     found_current = found_current || is_current;
4405     st->print("%s", is_current ? "=>" : "  ");
4406 
4407     st->print(PTR_FORMAT, wt);
4408     st->print(" ");
4409     wt->print_on_error(st, buf, buflen);
4410     st->cr();
4411   }
4412   if (!found_current) {
4413     st->cr();
4414     st->print("=>" PTR_FORMAT " (exited) ", current);
4415     current->print_on_error(st, buf, buflen);
4416     st->cr();
4417   }
4418 }
4419 
4420 // Internal SpinLock and Mutex
4421 // Based on ParkEvent
4422 
4423 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4424 //
4425 // We employ SpinLocks _only for low-contention, fixed-length
4426 // short-duration critical sections where we're concerned
4427 // about native mutex_t or HotSpot Mutex:: latency.
4428 // The mux construct provides a spin-then-block mutual exclusion
4429 // mechanism.
4430 //
4431 // Testing has shown that contention on the ListLock guarding gFreeList
4432 // is common.  If we implement ListLock as a simple SpinLock it's common
4433 // for the JVM to devolve to yielding with little progress.  This is true
4434 // despite the fact that the critical sections protected by ListLock are
4435 // extremely short.
4436 //
4437 // TODO-FIXME: ListLock should be of type SpinLock.
4438 // We should make this a 1st-class type, integrated into the lock
4439 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4440 // should have sufficient padding to avoid false-sharing and excessive
4441 // cache-coherency traffic.
4442 
4443 
4444 typedef volatile int SpinLockT ;
4445 
4446 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4447   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4448      return ;   // normal fast-path return
4449   }
4450 
4451   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4452   TEVENT (SpinAcquire - ctx) ;
4453   int ctr = 0 ;
4454   int Yields = 0 ;
4455   for (;;) {
4456      while (*adr != 0) {
4457         ++ctr ;
4458         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4459            if (Yields > 5) {
4460              // Consider using a simple NakedSleep() instead.
4461              // Then SpinAcquire could be called by non-JVM threads
4462              Thread::current()->_ParkEvent->park(1) ;
4463            } else {
4464              os::NakedYield() ;
4465              ++Yields ;
4466            }
4467         } else {
4468            SpinPause() ;
4469         }
4470      }
4471      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4472   }
4473 }
4474 
4475 void Thread::SpinRelease (volatile int * adr) {
4476   assert (*adr != 0, "invariant") ;
4477   OrderAccess::fence() ;      // guarantee at least release consistency.
4478   // Roach-motel semantics.
4479   // It's safe if subsequent LDs and STs float "up" into the critical section,
4480   // but prior LDs and STs within the critical section can't be allowed
4481   // to reorder or float past the ST that releases the lock.
4482   *adr = 0 ;
4483 }
4484 
4485 // muxAcquire and muxRelease:
4486 //
4487 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4488 //    The LSB of the word is set IFF the lock is held.
4489 //    The remainder of the word points to the head of a singly-linked list
4490 //    of threads blocked on the lock.
4491 //
4492 // *  The current implementation of muxAcquire-muxRelease uses its own
4493 //    dedicated Thread._MuxEvent instance.  If we're interested in
4494 //    minimizing the peak number of extant ParkEvent instances then
4495 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4496 //    as certain invariants were satisfied.  Specifically, care would need
4497 //    to be taken with regards to consuming unpark() "permits".
4498 //    A safe rule of thumb is that a thread would never call muxAcquire()
4499 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4500 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4501 //    consume an unpark() permit intended for monitorenter, for instance.
4502 //    One way around this would be to widen the restricted-range semaphore
4503 //    implemented in park().  Another alternative would be to provide
4504 //    multiple instances of the PlatformEvent() for each thread.  One
4505 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4506 //
4507 // *  Usage:
4508 //    -- Only as leaf locks
4509 //    -- for short-term locking only as muxAcquire does not perform
4510 //       thread state transitions.
4511 //
4512 // Alternatives:
4513 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4514 //    but with parking or spin-then-park instead of pure spinning.
4515 // *  Use Taura-Oyama-Yonenzawa locks.
4516 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4517 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4518 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4519 //    acquiring threads use timers (ParkTimed) to detect and recover from
4520 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4521 //    boundaries by using placement-new.
4522 // *  Augment MCS with advisory back-link fields maintained with CAS().
4523 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4524 //    The validity of the backlinks must be ratified before we trust the value.
4525 //    If the backlinks are invalid the exiting thread must back-track through the
4526 //    the forward links, which are always trustworthy.
4527 // *  Add a successor indication.  The LockWord is currently encoded as
4528 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4529 //    to provide the usual futile-wakeup optimization.
4530 //    See RTStt for details.
4531 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4532 //
4533 
4534 
4535 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4536 enum MuxBits { LOCKBIT = 1 } ;
4537 
4538 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4539   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4540   if (w == 0) return ;
4541   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4542      return ;
4543   }
4544 
4545   TEVENT (muxAcquire - Contention) ;
4546   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4547   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4548   for (;;) {
4549      int its = (os::is_MP() ? 100 : 0) + 1 ;
4550 
4551      // Optional spin phase: spin-then-park strategy
4552      while (--its >= 0) {
4553        w = *Lock ;
4554        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4555           return ;
4556        }
4557      }
4558 
4559      Self->reset() ;
4560      Self->OnList = intptr_t(Lock) ;
4561      // The following fence() isn't _strictly necessary as the subsequent
4562      // CAS() both serializes execution and ratifies the fetched *Lock value.
4563      OrderAccess::fence();
4564      for (;;) {
4565         w = *Lock ;
4566         if ((w & LOCKBIT) == 0) {
4567             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4568                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4569                 return ;
4570             }
4571             continue ;      // Interference -- *Lock changed -- Just retry
4572         }
4573         assert (w & LOCKBIT, "invariant") ;
4574         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4575         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4576      }
4577 
4578      while (Self->OnList != 0) {
4579         Self->park() ;
4580      }
4581   }
4582 }
4583 
4584 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4585   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4586   if (w == 0) return ;
4587   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4588     return ;
4589   }
4590 
4591   TEVENT (muxAcquire - Contention) ;
4592   ParkEvent * ReleaseAfter = NULL ;
4593   if (ev == NULL) {
4594     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4595   }
4596   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4597   for (;;) {
4598     guarantee (ev->OnList == 0, "invariant") ;
4599     int its = (os::is_MP() ? 100 : 0) + 1 ;
4600 
4601     // Optional spin phase: spin-then-park strategy
4602     while (--its >= 0) {
4603       w = *Lock ;
4604       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4605         if (ReleaseAfter != NULL) {
4606           ParkEvent::Release (ReleaseAfter) ;
4607         }
4608         return ;
4609       }
4610     }
4611 
4612     ev->reset() ;
4613     ev->OnList = intptr_t(Lock) ;
4614     // The following fence() isn't _strictly necessary as the subsequent
4615     // CAS() both serializes execution and ratifies the fetched *Lock value.
4616     OrderAccess::fence();
4617     for (;;) {
4618       w = *Lock ;
4619       if ((w & LOCKBIT) == 0) {
4620         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4621           ev->OnList = 0 ;
4622           // We call ::Release while holding the outer lock, thus
4623           // artificially lengthening the critical section.
4624           // Consider deferring the ::Release() until the subsequent unlock(),
4625           // after we've dropped the outer lock.
4626           if (ReleaseAfter != NULL) {
4627             ParkEvent::Release (ReleaseAfter) ;
4628           }
4629           return ;
4630         }
4631         continue ;      // Interference -- *Lock changed -- Just retry
4632       }
4633       assert (w & LOCKBIT, "invariant") ;
4634       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4635       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4636     }
4637 
4638     while (ev->OnList != 0) {
4639       ev->park() ;
4640     }
4641   }
4642 }
4643 
4644 // Release() must extract a successor from the list and then wake that thread.
4645 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4646 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4647 // Release() would :
4648 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4649 // (B) Extract a successor from the private list "in-hand"
4650 // (C) attempt to CAS() the residual back into *Lock over null.
4651 //     If there were any newly arrived threads and the CAS() would fail.
4652 //     In that case Release() would detach the RATs, re-merge the list in-hand
4653 //     with the RATs and repeat as needed.  Alternately, Release() might
4654 //     detach and extract a successor, but then pass the residual list to the wakee.
4655 //     The wakee would be responsible for reattaching and remerging before it
4656 //     competed for the lock.
4657 //
4658 // Both "pop" and DMR are immune from ABA corruption -- there can be
4659 // multiple concurrent pushers, but only one popper or detacher.
4660 // This implementation pops from the head of the list.  This is unfair,
4661 // but tends to provide excellent throughput as hot threads remain hot.
4662 // (We wake recently run threads first).
4663 
4664 void Thread::muxRelease (volatile intptr_t * Lock)  {
4665   for (;;) {
4666     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4667     assert (w & LOCKBIT, "invariant") ;
4668     if (w == LOCKBIT) return ;
4669     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4670     assert (List != NULL, "invariant") ;
4671     assert (List->OnList == intptr_t(Lock), "invariant") ;
4672     ParkEvent * nxt = List->ListNext ;
4673 
4674     // The following CAS() releases the lock and pops the head element.
4675     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4676       continue ;
4677     }
4678     List->OnList = 0 ;
4679     OrderAccess::fence() ;
4680     List->unpark () ;
4681     return ;
4682   }
4683 }
4684 
4685 
4686 void Threads::verify() {
4687   ALL_JAVA_THREADS(p) {
4688     p->verify();
4689   }
4690   VMThread* thread = VMThread::vm_thread();
4691   if (thread != NULL) thread->verify();
4692 }