1 /*
   2  * Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc_interface/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/methodCounters.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/biasedLocking.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/interfaceSupport.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/threadCritical.hpp"
  45 #include "utilities/exceptions.hpp"
  46 #ifdef TARGET_OS_ARCH_linux_x86
  47 # include "orderAccess_linux_x86.inline.hpp"
  48 #endif
  49 #ifdef TARGET_OS_ARCH_linux_sparc
  50 # include "orderAccess_linux_sparc.inline.hpp"
  51 #endif
  52 #ifdef TARGET_OS_ARCH_linux_zero
  53 # include "orderAccess_linux_zero.inline.hpp"
  54 #endif
  55 #ifdef TARGET_OS_ARCH_solaris_x86
  56 # include "orderAccess_solaris_x86.inline.hpp"
  57 #endif
  58 #ifdef TARGET_OS_ARCH_solaris_sparc
  59 # include "orderAccess_solaris_sparc.inline.hpp"
  60 #endif
  61 #ifdef TARGET_OS_ARCH_windows_x86
  62 # include "orderAccess_windows_x86.inline.hpp"
  63 #endif
  64 #ifdef TARGET_OS_ARCH_linux_arm
  65 # include "orderAccess_linux_arm.inline.hpp"
  66 #endif
  67 #ifdef TARGET_OS_ARCH_linux_ppc
  68 # include "orderAccess_linux_ppc.inline.hpp"
  69 #endif
  70 #ifdef TARGET_OS_ARCH_bsd_x86
  71 # include "orderAccess_bsd_x86.inline.hpp"
  72 #endif
  73 #ifdef TARGET_OS_ARCH_bsd_zero
  74 # include "orderAccess_bsd_zero.inline.hpp"
  75 #endif
  76 
  77 
  78 // no precompiled headers
  79 #ifdef CC_INTERP
  80 
  81 /*
  82  * USELABELS - If using GCC, then use labels for the opcode dispatching
  83  * rather -then a switch statement. This improves performance because it
  84  * gives us the oportunity to have the instructions that calculate the
  85  * next opcode to jump to be intermixed with the rest of the instructions
  86  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  87  */
  88 #undef USELABELS
  89 #ifdef __GNUC__
  90 /*
  91    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  92    don't use the computed goto approach.
  93 */
  94 #ifndef ASSERT
  95 #define USELABELS
  96 #endif
  97 #endif
  98 
  99 #undef CASE
 100 #ifdef USELABELS
 101 #define CASE(opcode) opc ## opcode
 102 #define DEFAULT opc_default
 103 #else
 104 #define CASE(opcode) case Bytecodes:: opcode
 105 #define DEFAULT default
 106 #endif
 107 
 108 /*
 109  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
 110  * opcode before going back to the top of the while loop, rather then having
 111  * the top of the while loop handle it. This provides a better opportunity
 112  * for instruction scheduling. Some compilers just do this prefetch
 113  * automatically. Some actually end up with worse performance if you
 114  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
 115  */
 116 #undef PREFETCH_OPCCODE
 117 #define PREFETCH_OPCCODE
 118 
 119 /*
 120   Interpreter safepoint: it is expected that the interpreter will have no live
 121   handles of its own creation live at an interpreter safepoint. Therefore we
 122   run a HandleMarkCleaner and trash all handles allocated in the call chain
 123   since the JavaCalls::call_helper invocation that initiated the chain.
 124   There really shouldn't be any handles remaining to trash but this is cheap
 125   in relation to a safepoint.
 126 */
 127 #define SAFEPOINT                                                                 \
 128     if ( SafepointSynchronize::is_synchronizing()) {                              \
 129         {                                                                         \
 130           /* zap freed handles rather than GC'ing them */                         \
 131           HandleMarkCleaner __hmc(THREAD);                                        \
 132         }                                                                         \
 133         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 134     }
 135 
 136 /*
 137  * VM_JAVA_ERROR - Macro for throwing a java exception from
 138  * the interpreter loop. Should really be a CALL_VM but there
 139  * is no entry point to do the transition to vm so we just
 140  * do it by hand here.
 141  */
 142 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
 143     DECACHE_STATE();                                                              \
 144     SET_LAST_JAVA_FRAME();                                                        \
 145     {                                                                             \
 146        ThreadInVMfromJava trans(THREAD);                                          \
 147        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 148     }                                                                             \
 149     RESET_LAST_JAVA_FRAME();                                                      \
 150     CACHE_STATE();
 151 
 152 // Normal throw of a java error
 153 #define VM_JAVA_ERROR(name, msg)                                                  \
 154     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
 155     goto handle_exception;
 156 
 157 #ifdef PRODUCT
 158 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 159 #else
 160 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 161 {                                                                                                    \
 162     BytecodeCounter::_counter_value++;                                                               \
 163     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 164     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 165     if (TraceBytecodes) {                                                                            \
 166       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 167                                    topOfStack[Interpreter::expr_index_at(1)],   \
 168                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 169                                    handle_exception);                      \
 170     }                                                                      \
 171 }
 172 #endif
 173 
 174 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 175 #ifdef VM_JVMTI
 176 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 177    incremented. JvmtiExport::at_single_stepping_point() may cause a
 178    breakpoint opcode to get inserted at the current PC to allow the
 179    debugger to coalesce single-step events.
 180 
 181    As a result if we call at_single_stepping_point() we refetch opcode
 182    to get the current opcode. This will override any other prefetching
 183    that might have occurred.
 184 */
 185 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 186 {                                                                                \
 187       if (_jvmti_interp_events) {                                                \
 188         if (JvmtiExport::should_post_single_step()) {                            \
 189           DECACHE_STATE();                                                       \
 190           SET_LAST_JAVA_FRAME();                                                 \
 191           ThreadInVMfromJava trans(THREAD);                                      \
 192           JvmtiExport::at_single_stepping_point(THREAD,                          \
 193                                           istate->method(),                      \
 194                                           pc);                                   \
 195           RESET_LAST_JAVA_FRAME();                                               \
 196           CACHE_STATE();                                                         \
 197           if (THREAD->pop_frame_pending() &&                                     \
 198               !THREAD->pop_frame_in_process()) {                                 \
 199             goto handle_Pop_Frame;                                               \
 200           }                                                                      \
 201           if (THREAD->jvmti_thread_state() &&                                    \
 202               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 203             goto handle_Early_Return;                                            \
 204           }                                                                      \
 205           opcode = *pc;                                                          \
 206         }                                                                        \
 207       }                                                                          \
 208 }
 209 #else
 210 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 211 #endif
 212 
 213 /*
 214  * CONTINUE - Macro for executing the next opcode.
 215  */
 216 #undef CONTINUE
 217 #ifdef USELABELS
 218 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 219 // initialization (which is is the initialization of the table pointer...)
 220 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 221 #define CONTINUE {                              \
 222         opcode = *pc;                           \
 223         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 224         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 225         DISPATCH(opcode);                       \
 226     }
 227 #else
 228 #ifdef PREFETCH_OPCCODE
 229 #define CONTINUE {                              \
 230         opcode = *pc;                           \
 231         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 232         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 233         continue;                               \
 234     }
 235 #else
 236 #define CONTINUE {                              \
 237         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 238         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 239         continue;                               \
 240     }
 241 #endif
 242 #endif
 243 
 244 
 245 #define UPDATE_PC(opsize) {pc += opsize; }
 246 /*
 247  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 248  */
 249 #undef UPDATE_PC_AND_TOS
 250 #define UPDATE_PC_AND_TOS(opsize, stack) \
 251     {pc += opsize; MORE_STACK(stack); }
 252 
 253 /*
 254  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 255  * and executing the next opcode. It's somewhat similar to the combination
 256  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 257  */
 258 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 259 #ifdef USELABELS
 260 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 261         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 262         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 263         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 264         DISPATCH(opcode);                                       \
 265     }
 266 
 267 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 268         pc += opsize; opcode = *pc;                             \
 269         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 270         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 271         DISPATCH(opcode);                                       \
 272     }
 273 #else
 274 #ifdef PREFETCH_OPCCODE
 275 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 276         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 277         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 278         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 279         goto do_continue;                                       \
 280     }
 281 
 282 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 283         pc += opsize; opcode = *pc;                             \
 284         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 285         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 286         goto do_continue;                                       \
 287     }
 288 #else
 289 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 290         pc += opsize; MORE_STACK(stack);                \
 291         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 292         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 293         goto do_continue;                               \
 294     }
 295 
 296 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 297         pc += opsize;                                   \
 298         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 299         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 300         goto do_continue;                               \
 301     }
 302 #endif /* PREFETCH_OPCCODE */
 303 #endif /* USELABELS */
 304 
 305 // About to call a new method, update the save the adjusted pc and return to frame manager
 306 #define UPDATE_PC_AND_RETURN(opsize)  \
 307    DECACHE_TOS();                     \
 308    istate->set_bcp(pc+opsize);        \
 309    return;
 310 
 311 
 312 #define METHOD istate->method()
 313 #define GET_METHOD_COUNTERS(res)    \
 314   res = METHOD->method_counters();  \
 315   if (res == NULL) {                \
 316     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 317   }
 318 
 319 #define OSR_REQUEST(res, branch_pc) \
 320             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 321 /*
 322  * For those opcodes that need to have a GC point on a backwards branch
 323  */
 324 
 325 // Backedge counting is kind of strange. The asm interpreter will increment
 326 // the backedge counter as a separate counter but it does it's comparisons
 327 // to the sum (scaled) of invocation counter and backedge count to make
 328 // a decision. Seems kind of odd to sum them together like that
 329 
 330 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 331 
 332 
 333 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 334     if ((skip) <= 0) {                                                                              \
 335       MethodCounters* mcs;                                                                          \
 336       GET_METHOD_COUNTERS(mcs);                                                                     \
 337       if (UseLoopCounter) {                                                                         \
 338         bool do_OSR = UseOnStackReplacement;                                                        \
 339         mcs->backedge_counter()->increment();                                                       \
 340         if (do_OSR) do_OSR = mcs->backedge_counter()->reached_InvocationLimit();                    \
 341         if (do_OSR) {                                                                               \
 342           nmethod*  osr_nmethod;                                                                    \
 343           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 344           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
 345             intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
 346             istate->set_msg(do_osr);                                                                \
 347             istate->set_osr_buf((address)buf);                                                      \
 348             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 349             return;                                                                                 \
 350           }                                                                                         \
 351         }                                                                                           \
 352       }  /* UseCompiler ... */                                                                      \
 353       mcs->invocation_counter()->increment();                                                       \
 354       SAFEPOINT;                                                                                    \
 355     }
 356 
 357 /*
 358  * For those opcodes that need to have a GC point on a backwards branch
 359  */
 360 
 361 /*
 362  * Macros for caching and flushing the interpreter state. Some local
 363  * variables need to be flushed out to the frame before we do certain
 364  * things (like pushing frames or becomming gc safe) and some need to
 365  * be recached later (like after popping a frame). We could use one
 366  * macro to cache or decache everything, but this would be less then
 367  * optimal because we don't always need to cache or decache everything
 368  * because some things we know are already cached or decached.
 369  */
 370 #undef DECACHE_TOS
 371 #undef CACHE_TOS
 372 #undef CACHE_PREV_TOS
 373 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 374 
 375 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 376 
 377 #undef DECACHE_PC
 378 #undef CACHE_PC
 379 #define DECACHE_PC()    istate->set_bcp(pc);
 380 #define CACHE_PC()      pc = istate->bcp();
 381 #define CACHE_CP()      cp = istate->constants();
 382 #define CACHE_LOCALS()  locals = istate->locals();
 383 #undef CACHE_FRAME
 384 #define CACHE_FRAME()
 385 
 386 /*
 387  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 388  * passed is a null ref.
 389  * On some architectures/platforms it should be possible to do this implicitly
 390  */
 391 #undef CHECK_NULL
 392 #define CHECK_NULL(obj_)                                                 \
 393     if ((obj_) == NULL) {                                                \
 394         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
 395     }                                                                    \
 396     VERIFY_OOP(obj_)
 397 
 398 #define VMdoubleConstZero() 0.0
 399 #define VMdoubleConstOne() 1.0
 400 #define VMlongConstZero() (max_jlong-max_jlong)
 401 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 402 
 403 /*
 404  * Alignment
 405  */
 406 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 407 
 408 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 409 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 410 
 411 // Reload interpreter state after calling the VM or a possible GC
 412 #define CACHE_STATE()   \
 413         CACHE_TOS();    \
 414         CACHE_PC();     \
 415         CACHE_CP();     \
 416         CACHE_LOCALS();
 417 
 418 // Call the VM don't check for pending exceptions
 419 #define CALL_VM_NOCHECK(func)                                      \
 420         DECACHE_STATE();                                           \
 421         SET_LAST_JAVA_FRAME();                                     \
 422         func;                                                      \
 423         RESET_LAST_JAVA_FRAME();                                   \
 424         CACHE_STATE();                                             \
 425         if (THREAD->pop_frame_pending() &&                         \
 426             !THREAD->pop_frame_in_process()) {                     \
 427           goto handle_Pop_Frame;                                   \
 428         }                                                          \
 429         if (THREAD->jvmti_thread_state() &&                        \
 430             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 431           goto handle_Early_Return;                                \
 432         }
 433 
 434 // Call the VM and check for pending exceptions
 435 #define CALL_VM(func, label) {                                     \
 436           CALL_VM_NOCHECK(func);                                   \
 437           if (THREAD->has_pending_exception()) goto label;         \
 438         }
 439 
 440 /*
 441  * BytecodeInterpreter::run(interpreterState istate)
 442  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 443  *
 444  * The real deal. This is where byte codes actually get interpreted.
 445  * Basically it's a big while loop that iterates until we return from
 446  * the method passed in.
 447  *
 448  * The runWithChecks is used if JVMTI is enabled.
 449  *
 450  */
 451 #if defined(VM_JVMTI)
 452 void
 453 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 454 #else
 455 void
 456 BytecodeInterpreter::run(interpreterState istate) {
 457 #endif
 458 
 459   // In order to simplify some tests based on switches set at runtime
 460   // we invoke the interpreter a single time after switches are enabled
 461   // and set simpler to to test variables rather than method calls or complex
 462   // boolean expressions.
 463 
 464   static int initialized = 0;
 465   static int checkit = 0;
 466   static intptr_t* c_addr = NULL;
 467   static intptr_t  c_value;
 468 
 469   if (checkit && *c_addr != c_value) {
 470     os::breakpoint();
 471   }
 472 #ifdef VM_JVMTI
 473   static bool _jvmti_interp_events = 0;
 474 #endif
 475 
 476   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 477 
 478 #ifdef ASSERT
 479   if (istate->_msg != initialize) {
 480     // We have a problem here if we are running with a pre-hsx24 JDK (for example during bootstrap)
 481     // because in that case, EnableInvokeDynamic is true by default but will be later switched off
 482     // if java_lang_invoke_MethodHandle::compute_offsets() detects that the JDK only has the classes
 483     // for the old JSR292 implementation.
 484     // This leads to a situation where 'istate->_stack_limit' always accounts for
 485     // methodOopDesc::extra_stack_entries() because it is computed in
 486     // CppInterpreterGenerator::generate_compute_interpreter_state() which was generated while
 487     // EnableInvokeDynamic was still true. On the other hand, istate->_method->max_stack() doesn't
 488     // account for extra_stack_entries() anymore because at the time when it is called
 489     // EnableInvokeDynamic was already set to false.
 490     // So we have a second version of the assertion which handles the case where EnableInvokeDynamic was
 491     // switched off because of the wrong classes.
 492     if (EnableInvokeDynamic || FLAG_IS_CMDLINE(EnableInvokeDynamic)) {
 493       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 494     } else {
 495       const int extra_stack_entries = Method::extra_stack_entries_for_jsr292;
 496       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + extra_stack_entries
 497                                                                                                + 1), "bad stack limit");
 498     }
 499 #ifndef SHARK
 500     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 501 #endif // !SHARK
 502   }
 503   // Verify linkages.
 504   interpreterState l = istate;
 505   do {
 506     assert(l == l->_self_link, "bad link");
 507     l = l->_prev_link;
 508   } while (l != NULL);
 509   // Screwups with stack management usually cause us to overwrite istate
 510   // save a copy so we can verify it.
 511   interpreterState orig = istate;
 512 #endif
 513 
 514   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 515   register address          pc = istate->bcp();
 516   register jubyte opcode;
 517   register intptr_t*        locals = istate->locals();
 518   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 519 #ifdef LOTS_OF_REGS
 520   register JavaThread*      THREAD = istate->thread();
 521 #else
 522 #undef THREAD
 523 #define THREAD istate->thread()
 524 #endif
 525 
 526 #ifdef USELABELS
 527   const static void* const opclabels_data[256] = {
 528 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 529 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 530 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 531 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 532 
 533 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 534 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 535 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 536 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 537 
 538 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 539 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 540 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 541 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 542 
 543 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 544 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 545 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 546 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 547 
 548 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 549 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 550 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 551 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 552 
 553 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 554 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 555 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 556 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 557 
 558 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 559 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 560 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 561 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 562 
 563 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 564 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 565 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 566 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 567 
 568 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 569 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 570 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 571 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 572 
 573 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 574 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 575 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 576 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 577 
 578 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 579 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 580 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 581 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 582 
 583 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 584 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 585 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 586 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 587 
 588 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 589 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 590 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 591 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 592 
 593 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 594 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 595 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 596 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 597 
 598 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 599 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,  &&opc_return_register_finalizer,
 600 /* 0xE8 */ &&opc_invokehandle,&&opc_default,        &&opc_default,      &&opc_default,
 601 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 602 
 603 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 604 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 605 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 606 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 607   };
 608   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 609 #endif /* USELABELS */
 610 
 611 #ifdef ASSERT
 612   // this will trigger a VERIFY_OOP on entry
 613   if (istate->msg() != initialize && ! METHOD->is_static()) {
 614     oop rcvr = LOCALS_OBJECT(0);
 615     VERIFY_OOP(rcvr);
 616   }
 617 #endif
 618 // #define HACK
 619 #ifdef HACK
 620   bool interesting = false;
 621 #endif // HACK
 622 
 623   /* QQQ this should be a stack method so we don't know actual direction */
 624   guarantee(istate->msg() == initialize ||
 625          topOfStack >= istate->stack_limit() &&
 626          topOfStack < istate->stack_base(),
 627          "Stack top out of range");
 628 
 629   switch (istate->msg()) {
 630     case initialize: {
 631       if (initialized++) ShouldNotReachHere(); // Only one initialize call
 632       _compiling = (UseCompiler || CountCompiledCalls);
 633 #ifdef VM_JVMTI
 634       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 635 #endif
 636       return;
 637     }
 638     break;
 639     case method_entry: {
 640       THREAD->set_do_not_unlock();
 641       // count invocations
 642       assert(initialized, "Interpreter not initialized");
 643       if (_compiling) {
 644         MethodCounters* mcs;
 645         GET_METHOD_COUNTERS(mcs);
 646         if (ProfileInterpreter) {
 647           METHOD->increment_interpreter_invocation_count(THREAD);
 648         }
 649         mcs->invocation_counter()->increment();
 650         if (mcs->invocation_counter()->reached_InvocationLimit()) {
 651             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 652 
 653             // We no longer retry on a counter overflow
 654 
 655             // istate->set_msg(retry_method);
 656             // THREAD->clr_do_not_unlock();
 657             // return;
 658         }
 659         SAFEPOINT;
 660       }
 661 
 662       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 663         // initialize
 664         os::breakpoint();
 665       }
 666 
 667 #ifdef HACK
 668       {
 669         ResourceMark rm;
 670         char *method_name = istate->method()->name_and_sig_as_C_string();
 671         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 672           tty->print_cr("entering: depth %d bci: %d",
 673                          (istate->_stack_base - istate->_stack),
 674                          istate->_bcp - istate->_method->code_base());
 675           interesting = true;
 676         }
 677       }
 678 #endif // HACK
 679 
 680 
 681       // lock method if synchronized
 682       if (METHOD->is_synchronized()) {
 683         // oop rcvr = locals[0].j.r;
 684         oop rcvr;
 685         if (METHOD->is_static()) {
 686           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 687         } else {
 688           rcvr = LOCALS_OBJECT(0);
 689           VERIFY_OOP(rcvr);
 690         }
 691         // The initial monitor is ours for the taking
 692         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 693         BasicObjectLock* mon = &istate->monitor_base()[-1];
 694         mon->set_obj(rcvr);
 695         bool success = false;
 696         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 697         markOop mark = rcvr->mark();
 698         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 699         // Implies UseBiasedLocking.
 700         if (mark->has_bias_pattern()) {
 701           uintptr_t thread_ident;
 702           uintptr_t anticipated_bias_locking_value;
 703           thread_ident = (uintptr_t)istate->thread();
 704           anticipated_bias_locking_value =
 705             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 706             ~((uintptr_t) markOopDesc::age_mask_in_place);
 707 
 708           if (anticipated_bias_locking_value == 0) {
 709             // Already biased towards this thread, nothing to do.
 710             if (PrintBiasedLockingStatistics) {
 711               (* BiasedLocking::biased_lock_entry_count_addr())++;
 712             }
 713             success = true;
 714           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 715             // Try to revoke bias.
 716             markOop header = rcvr->klass()->prototype_header();
 717             if (hash != markOopDesc::no_hash) {
 718               header = header->copy_set_hash(hash);
 719             }
 720             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
 721               if (PrintBiasedLockingStatistics)
 722                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 723             }
 724           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 725             // Try to rebias.
 726             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 727             if (hash != markOopDesc::no_hash) {
 728               new_header = new_header->copy_set_hash(hash);
 729             }
 730             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
 731               if (PrintBiasedLockingStatistics) {
 732                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 733               }
 734             } else {
 735               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 736             }
 737             success = true;
 738           } else {
 739             // Try to bias towards thread in case object is anonymously biased.
 740             markOop header = (markOop) ((uintptr_t) mark &
 741                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 742                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 743             if (hash != markOopDesc::no_hash) {
 744               header = header->copy_set_hash(hash);
 745             }
 746             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 747             // Debugging hint.
 748             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 749             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
 750               if (PrintBiasedLockingStatistics) {
 751                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 752               }
 753             } else {
 754               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 755             }
 756             success = true;
 757           }
 758         }
 759 
 760         // Traditional lightweight locking.
 761         if (!success) {
 762           markOop displaced = rcvr->mark()->set_unlocked();
 763           mon->lock()->set_displaced_header(displaced);
 764           bool call_vm = UseHeavyMonitors;
 765           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 766             // Is it simple recursive case?
 767             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 768               mon->lock()->set_displaced_header(NULL);
 769             } else {
 770               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 771             }
 772           }
 773         }
 774       }
 775       THREAD->clr_do_not_unlock();
 776 
 777       // Notify jvmti
 778 #ifdef VM_JVMTI
 779       if (_jvmti_interp_events) {
 780         // Whenever JVMTI puts a thread in interp_only_mode, method
 781         // entry/exit events are sent for that thread to track stack depth.
 782         if (THREAD->is_interp_only_mode()) {
 783           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 784                   handle_exception);
 785         }
 786       }
 787 #endif /* VM_JVMTI */
 788 
 789       goto run;
 790     }
 791 
 792     case popping_frame: {
 793       // returned from a java call to pop the frame, restart the call
 794       // clear the message so we don't confuse ourselves later
 795       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 796       istate->set_msg(no_request);
 797       THREAD->clr_pop_frame_in_process();
 798       goto run;
 799     }
 800 
 801     case method_resume: {
 802       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 803         // resume
 804         os::breakpoint();
 805       }
 806 #ifdef HACK
 807       {
 808         ResourceMark rm;
 809         char *method_name = istate->method()->name_and_sig_as_C_string();
 810         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 811           tty->print_cr("resume: depth %d bci: %d",
 812                          (istate->_stack_base - istate->_stack) ,
 813                          istate->_bcp - istate->_method->code_base());
 814           interesting = true;
 815         }
 816       }
 817 #endif // HACK
 818       // returned from a java call, continue executing.
 819       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 820         goto handle_Pop_Frame;
 821       }
 822       if (THREAD->jvmti_thread_state() &&
 823           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 824         goto handle_Early_Return;
 825       }
 826 
 827       if (THREAD->has_pending_exception()) goto handle_exception;
 828       // Update the pc by the saved amount of the invoke bytecode size
 829       UPDATE_PC(istate->bcp_advance());
 830       goto run;
 831     }
 832 
 833     case deopt_resume2: {
 834       // Returned from an opcode that will reexecute. Deopt was
 835       // a result of a PopFrame request.
 836       //
 837       goto run;
 838     }
 839 
 840     case deopt_resume: {
 841       // Returned from an opcode that has completed. The stack has
 842       // the result all we need to do is skip across the bytecode
 843       // and continue (assuming there is no exception pending)
 844       //
 845       // compute continuation length
 846       //
 847       // Note: it is possible to deopt at a return_register_finalizer opcode
 848       // because this requires entering the vm to do the registering. While the
 849       // opcode is complete we can't advance because there are no more opcodes
 850       // much like trying to deopt at a poll return. In that has we simply
 851       // get out of here
 852       //
 853       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 854         // this will do the right thing even if an exception is pending.
 855         goto handle_return;
 856       }
 857       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 858       if (THREAD->has_pending_exception()) goto handle_exception;
 859       goto run;
 860     }
 861     case got_monitors: {
 862       // continue locking now that we have a monitor to use
 863       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 864       oop lockee = STACK_OBJECT(-1);
 865       VERIFY_OOP(lockee);
 866       // derefing's lockee ought to provoke implicit null check
 867       // find a free monitor
 868       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 869       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 870       entry->set_obj(lockee);
 871       bool success = false;
 872       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 873 
 874       markOop mark = lockee->mark();
 875       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 876       // implies UseBiasedLocking
 877       if (mark->has_bias_pattern()) {
 878         uintptr_t thread_ident;
 879         uintptr_t anticipated_bias_locking_value;
 880         thread_ident = (uintptr_t)istate->thread();
 881         anticipated_bias_locking_value =
 882           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 883           ~((uintptr_t) markOopDesc::age_mask_in_place);
 884 
 885         if  (anticipated_bias_locking_value == 0) {
 886           // already biased towards this thread, nothing to do
 887           if (PrintBiasedLockingStatistics) {
 888             (* BiasedLocking::biased_lock_entry_count_addr())++;
 889           }
 890           success = true;
 891         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 892           // try revoke bias
 893           markOop header = lockee->klass()->prototype_header();
 894           if (hash != markOopDesc::no_hash) {
 895             header = header->copy_set_hash(hash);
 896           }
 897           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
 898             if (PrintBiasedLockingStatistics) {
 899               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 900             }
 901           }
 902         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 903           // try rebias
 904           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 905           if (hash != markOopDesc::no_hash) {
 906                 new_header = new_header->copy_set_hash(hash);
 907           }
 908           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
 909             if (PrintBiasedLockingStatistics) {
 910               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 911             }
 912           } else {
 913             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 914           }
 915           success = true;
 916         } else {
 917           // try to bias towards thread in case object is anonymously biased
 918           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 919                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 920           if (hash != markOopDesc::no_hash) {
 921             header = header->copy_set_hash(hash);
 922           }
 923           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 924           // debugging hint
 925           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 926           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
 927             if (PrintBiasedLockingStatistics) {
 928               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 929             }
 930           } else {
 931             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 932           }
 933           success = true;
 934         }
 935       }
 936 
 937       // traditional lightweight locking
 938       if (!success) {
 939         markOop displaced = lockee->mark()->set_unlocked();
 940         entry->lock()->set_displaced_header(displaced);
 941         bool call_vm = UseHeavyMonitors;
 942         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 943           // Is it simple recursive case?
 944           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 945             entry->lock()->set_displaced_header(NULL);
 946           } else {
 947             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 948           }
 949         }
 950       }
 951       UPDATE_PC_AND_TOS(1, -1);
 952       goto run;
 953     }
 954     default: {
 955       fatal("Unexpected message from frame manager");
 956     }
 957   }
 958 
 959 run:
 960 
 961   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 962   DEBUGGER_SINGLE_STEP_NOTIFY();
 963 #ifdef PREFETCH_OPCCODE
 964   opcode = *pc;  /* prefetch first opcode */
 965 #endif
 966 
 967 #ifndef USELABELS
 968   while (1)
 969 #endif
 970   {
 971 #ifndef PREFETCH_OPCCODE
 972       opcode = *pc;
 973 #endif
 974       // Seems like this happens twice per opcode. At worst this is only
 975       // need at entry to the loop.
 976       // DEBUGGER_SINGLE_STEP_NOTIFY();
 977       /* Using this labels avoids double breakpoints when quickening and
 978        * when returing from transition frames.
 979        */
 980   opcode_switch:
 981       assert(istate == orig, "Corrupted istate");
 982       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 983       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 984       assert(topOfStack < istate->stack_base(), "Stack underrun");
 985 
 986 #ifdef USELABELS
 987       DISPATCH(opcode);
 988 #else
 989       switch (opcode)
 990 #endif
 991       {
 992       CASE(_nop):
 993           UPDATE_PC_AND_CONTINUE(1);
 994 
 995           /* Push miscellaneous constants onto the stack. */
 996 
 997       CASE(_aconst_null):
 998           SET_STACK_OBJECT(NULL, 0);
 999           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1000 
1001 #undef  OPC_CONST_n
1002 #define OPC_CONST_n(opcode, const_type, value)                          \
1003       CASE(opcode):                                                     \
1004           SET_STACK_ ## const_type(value, 0);                           \
1005           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1006 
1007           OPC_CONST_n(_iconst_m1,   INT,       -1);
1008           OPC_CONST_n(_iconst_0,    INT,        0);
1009           OPC_CONST_n(_iconst_1,    INT,        1);
1010           OPC_CONST_n(_iconst_2,    INT,        2);
1011           OPC_CONST_n(_iconst_3,    INT,        3);
1012           OPC_CONST_n(_iconst_4,    INT,        4);
1013           OPC_CONST_n(_iconst_5,    INT,        5);
1014           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1015           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1016           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1017 
1018 #undef  OPC_CONST2_n
1019 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1020       CASE(_##opcname):                                                 \
1021       {                                                                 \
1022           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1023           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1024       }
1025          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1026          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1027          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1028          OPC_CONST2_n(lconst_1, One,  long, LONG);
1029 
1030          /* Load constant from constant pool: */
1031 
1032           /* Push a 1-byte signed integer value onto the stack. */
1033       CASE(_bipush):
1034           SET_STACK_INT((jbyte)(pc[1]), 0);
1035           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1036 
1037           /* Push a 2-byte signed integer constant onto the stack. */
1038       CASE(_sipush):
1039           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1040           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1041 
1042           /* load from local variable */
1043 
1044       CASE(_aload):
1045           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1046           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1047           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1048 
1049       CASE(_iload):
1050       CASE(_fload):
1051           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1052           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1053 
1054       CASE(_lload):
1055           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1056           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1057 
1058       CASE(_dload):
1059           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1060           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1061 
1062 #undef  OPC_LOAD_n
1063 #define OPC_LOAD_n(num)                                                 \
1064       CASE(_aload_##num):                                               \
1065           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1066           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1067           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1068                                                                         \
1069       CASE(_iload_##num):                                               \
1070       CASE(_fload_##num):                                               \
1071           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1072           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1073                                                                         \
1074       CASE(_lload_##num):                                               \
1075           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1076           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1077       CASE(_dload_##num):                                               \
1078           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1079           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1080 
1081           OPC_LOAD_n(0);
1082           OPC_LOAD_n(1);
1083           OPC_LOAD_n(2);
1084           OPC_LOAD_n(3);
1085 
1086           /* store to a local variable */
1087 
1088       CASE(_astore):
1089           astore(topOfStack, -1, locals, pc[1]);
1090           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1091 
1092       CASE(_istore):
1093       CASE(_fstore):
1094           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1095           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1096 
1097       CASE(_lstore):
1098           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1099           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1100 
1101       CASE(_dstore):
1102           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1103           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1104 
1105       CASE(_wide): {
1106           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1107 
1108           opcode = pc[1];
1109           switch(opcode) {
1110               case Bytecodes::_aload:
1111                   VERIFY_OOP(LOCALS_OBJECT(reg));
1112                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1113                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1114 
1115               case Bytecodes::_iload:
1116               case Bytecodes::_fload:
1117                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1118                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1119 
1120               case Bytecodes::_lload:
1121                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1122                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1123 
1124               case Bytecodes::_dload:
1125                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1126                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1127 
1128               case Bytecodes::_astore:
1129                   astore(topOfStack, -1, locals, reg);
1130                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1131 
1132               case Bytecodes::_istore:
1133               case Bytecodes::_fstore:
1134                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1135                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1136 
1137               case Bytecodes::_lstore:
1138                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1139                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1140 
1141               case Bytecodes::_dstore:
1142                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1143                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1144 
1145               case Bytecodes::_iinc: {
1146                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1147                   // Be nice to see what this generates.... QQQ
1148                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1149                   UPDATE_PC_AND_CONTINUE(6);
1150               }
1151               case Bytecodes::_ret:
1152                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1153                   UPDATE_PC_AND_CONTINUE(0);
1154               default:
1155                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1156           }
1157       }
1158 
1159 
1160 #undef  OPC_STORE_n
1161 #define OPC_STORE_n(num)                                                \
1162       CASE(_astore_##num):                                              \
1163           astore(topOfStack, -1, locals, num);                          \
1164           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1165       CASE(_istore_##num):                                              \
1166       CASE(_fstore_##num):                                              \
1167           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1168           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1169 
1170           OPC_STORE_n(0);
1171           OPC_STORE_n(1);
1172           OPC_STORE_n(2);
1173           OPC_STORE_n(3);
1174 
1175 #undef  OPC_DSTORE_n
1176 #define OPC_DSTORE_n(num)                                               \
1177       CASE(_dstore_##num):                                              \
1178           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1179           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1180       CASE(_lstore_##num):                                              \
1181           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1182           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1183 
1184           OPC_DSTORE_n(0);
1185           OPC_DSTORE_n(1);
1186           OPC_DSTORE_n(2);
1187           OPC_DSTORE_n(3);
1188 
1189           /* stack pop, dup, and insert opcodes */
1190 
1191 
1192       CASE(_pop):                /* Discard the top item on the stack */
1193           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1194 
1195 
1196       CASE(_pop2):               /* Discard the top 2 items on the stack */
1197           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1198 
1199 
1200       CASE(_dup):               /* Duplicate the top item on the stack */
1201           dup(topOfStack);
1202           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1203 
1204       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1205           dup2(topOfStack);
1206           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1207 
1208       CASE(_dup_x1):    /* insert top word two down */
1209           dup_x1(topOfStack);
1210           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1211 
1212       CASE(_dup_x2):    /* insert top word three down  */
1213           dup_x2(topOfStack);
1214           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1215 
1216       CASE(_dup2_x1):   /* insert top 2 slots three down */
1217           dup2_x1(topOfStack);
1218           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1219 
1220       CASE(_dup2_x2):   /* insert top 2 slots four down */
1221           dup2_x2(topOfStack);
1222           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1223 
1224       CASE(_swap): {        /* swap top two elements on the stack */
1225           swap(topOfStack);
1226           UPDATE_PC_AND_CONTINUE(1);
1227       }
1228 
1229           /* Perform various binary integer operations */
1230 
1231 #undef  OPC_INT_BINARY
1232 #define OPC_INT_BINARY(opcname, opname, test)                           \
1233       CASE(_i##opcname):                                                \
1234           if (test && (STACK_INT(-1) == 0)) {                           \
1235               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1236                             "/ by zero");                               \
1237           }                                                             \
1238           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1239                                       STACK_INT(-1)),                   \
1240                                       -2);                              \
1241           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1242       CASE(_l##opcname):                                                \
1243       {                                                                 \
1244           if (test) {                                                   \
1245             jlong l1 = STACK_LONG(-1);                                  \
1246             if (VMlongEqz(l1)) {                                        \
1247               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1248                             "/ by long zero");                          \
1249             }                                                           \
1250           }                                                             \
1251           /* First long at (-1,-2) next long at (-3,-4) */              \
1252           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1253                                         STACK_LONG(-1)),                \
1254                                         -3);                            \
1255           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1256       }
1257 
1258       OPC_INT_BINARY(add, Add, 0);
1259       OPC_INT_BINARY(sub, Sub, 0);
1260       OPC_INT_BINARY(mul, Mul, 0);
1261       OPC_INT_BINARY(and, And, 0);
1262       OPC_INT_BINARY(or,  Or,  0);
1263       OPC_INT_BINARY(xor, Xor, 0);
1264       OPC_INT_BINARY(div, Div, 1);
1265       OPC_INT_BINARY(rem, Rem, 1);
1266 
1267 
1268       /* Perform various binary floating number operations */
1269       /* On some machine/platforms/compilers div zero check can be implicit */
1270 
1271 #undef  OPC_FLOAT_BINARY
1272 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1273       CASE(_d##opcname): {                                                 \
1274           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1275                                             STACK_DOUBLE(-1)),             \
1276                                             -3);                           \
1277           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1278       }                                                                    \
1279       CASE(_f##opcname):                                                   \
1280           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1281                                           STACK_FLOAT(-1)),                \
1282                                           -2);                             \
1283           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1284 
1285 
1286      OPC_FLOAT_BINARY(add, Add);
1287      OPC_FLOAT_BINARY(sub, Sub);
1288      OPC_FLOAT_BINARY(mul, Mul);
1289      OPC_FLOAT_BINARY(div, Div);
1290      OPC_FLOAT_BINARY(rem, Rem);
1291 
1292       /* Shift operations
1293        * Shift left int and long: ishl, lshl
1294        * Logical shift right int and long w/zero extension: iushr, lushr
1295        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1296        */
1297 
1298 #undef  OPC_SHIFT_BINARY
1299 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1300       CASE(_i##opcname):                                                \
1301          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1302                                      STACK_INT(-1)),                    \
1303                                      -2);                               \
1304          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1305       CASE(_l##opcname):                                                \
1306       {                                                                 \
1307          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1308                                        STACK_INT(-1)),                  \
1309                                        -2);                             \
1310          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1311       }
1312 
1313       OPC_SHIFT_BINARY(shl, Shl);
1314       OPC_SHIFT_BINARY(shr, Shr);
1315       OPC_SHIFT_BINARY(ushr, Ushr);
1316 
1317      /* Increment local variable by constant */
1318       CASE(_iinc):
1319       {
1320           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1321           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1322           UPDATE_PC_AND_CONTINUE(3);
1323       }
1324 
1325      /* negate the value on the top of the stack */
1326 
1327       CASE(_ineg):
1328          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1329          UPDATE_PC_AND_CONTINUE(1);
1330 
1331       CASE(_fneg):
1332          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1333          UPDATE_PC_AND_CONTINUE(1);
1334 
1335       CASE(_lneg):
1336       {
1337          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1338          UPDATE_PC_AND_CONTINUE(1);
1339       }
1340 
1341       CASE(_dneg):
1342       {
1343          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1344          UPDATE_PC_AND_CONTINUE(1);
1345       }
1346 
1347       /* Conversion operations */
1348 
1349       CASE(_i2f):       /* convert top of stack int to float */
1350          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1351          UPDATE_PC_AND_CONTINUE(1);
1352 
1353       CASE(_i2l):       /* convert top of stack int to long */
1354       {
1355           // this is ugly QQQ
1356           jlong r = VMint2Long(STACK_INT(-1));
1357           MORE_STACK(-1); // Pop
1358           SET_STACK_LONG(r, 1);
1359 
1360           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1361       }
1362 
1363       CASE(_i2d):       /* convert top of stack int to double */
1364       {
1365           // this is ugly QQQ (why cast to jlong?? )
1366           jdouble r = (jlong)STACK_INT(-1);
1367           MORE_STACK(-1); // Pop
1368           SET_STACK_DOUBLE(r, 1);
1369 
1370           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1371       }
1372 
1373       CASE(_l2i):       /* convert top of stack long to int */
1374       {
1375           jint r = VMlong2Int(STACK_LONG(-1));
1376           MORE_STACK(-2); // Pop
1377           SET_STACK_INT(r, 0);
1378           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1379       }
1380 
1381       CASE(_l2f):   /* convert top of stack long to float */
1382       {
1383           jlong r = STACK_LONG(-1);
1384           MORE_STACK(-2); // Pop
1385           SET_STACK_FLOAT(VMlong2Float(r), 0);
1386           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1387       }
1388 
1389       CASE(_l2d):       /* convert top of stack long to double */
1390       {
1391           jlong r = STACK_LONG(-1);
1392           MORE_STACK(-2); // Pop
1393           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1394           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1395       }
1396 
1397       CASE(_f2i):  /* Convert top of stack float to int */
1398           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1399           UPDATE_PC_AND_CONTINUE(1);
1400 
1401       CASE(_f2l):  /* convert top of stack float to long */
1402       {
1403           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1404           MORE_STACK(-1); // POP
1405           SET_STACK_LONG(r, 1);
1406           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1407       }
1408 
1409       CASE(_f2d):  /* convert top of stack float to double */
1410       {
1411           jfloat f;
1412           jdouble r;
1413           f = STACK_FLOAT(-1);
1414           r = (jdouble) f;
1415           MORE_STACK(-1); // POP
1416           SET_STACK_DOUBLE(r, 1);
1417           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1418       }
1419 
1420       CASE(_d2i): /* convert top of stack double to int */
1421       {
1422           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1423           MORE_STACK(-2);
1424           SET_STACK_INT(r1, 0);
1425           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1426       }
1427 
1428       CASE(_d2f): /* convert top of stack double to float */
1429       {
1430           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1431           MORE_STACK(-2);
1432           SET_STACK_FLOAT(r1, 0);
1433           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1434       }
1435 
1436       CASE(_d2l): /* convert top of stack double to long */
1437       {
1438           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1439           MORE_STACK(-2);
1440           SET_STACK_LONG(r1, 1);
1441           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1442       }
1443 
1444       CASE(_i2b):
1445           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1446           UPDATE_PC_AND_CONTINUE(1);
1447 
1448       CASE(_i2c):
1449           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1450           UPDATE_PC_AND_CONTINUE(1);
1451 
1452       CASE(_i2s):
1453           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1454           UPDATE_PC_AND_CONTINUE(1);
1455 
1456       /* comparison operators */
1457 
1458 
1459 #define COMPARISON_OP(name, comparison)                                      \
1460       CASE(_if_icmp##name): {                                                \
1461           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
1462                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1463           address branch_pc = pc;                                            \
1464           UPDATE_PC_AND_TOS(skip, -2);                                       \
1465           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1466           CONTINUE;                                                          \
1467       }                                                                      \
1468       CASE(_if##name): {                                                     \
1469           int skip = (STACK_INT(-1) comparison 0)                            \
1470                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1471           address branch_pc = pc;                                            \
1472           UPDATE_PC_AND_TOS(skip, -1);                                       \
1473           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1474           CONTINUE;                                                          \
1475       }
1476 
1477 #define COMPARISON_OP2(name, comparison)                                     \
1478       COMPARISON_OP(name, comparison)                                        \
1479       CASE(_if_acmp##name): {                                                \
1480           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
1481                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1482           address branch_pc = pc;                                            \
1483           UPDATE_PC_AND_TOS(skip, -2);                                       \
1484           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1485           CONTINUE;                                                          \
1486       }
1487 
1488 #define NULL_COMPARISON_NOT_OP(name)                                         \
1489       CASE(_if##name): {                                                     \
1490           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
1491                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1492           address branch_pc = pc;                                            \
1493           UPDATE_PC_AND_TOS(skip, -1);                                       \
1494           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1495           CONTINUE;                                                          \
1496       }
1497 
1498 #define NULL_COMPARISON_OP(name)                                             \
1499       CASE(_if##name): {                                                     \
1500           int skip = ((STACK_OBJECT(-1) == NULL))                            \
1501                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1502           address branch_pc = pc;                                            \
1503           UPDATE_PC_AND_TOS(skip, -1);                                       \
1504           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1505           CONTINUE;                                                          \
1506       }
1507       COMPARISON_OP(lt, <);
1508       COMPARISON_OP(gt, >);
1509       COMPARISON_OP(le, <=);
1510       COMPARISON_OP(ge, >=);
1511       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1512       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1513       NULL_COMPARISON_OP(null);
1514       NULL_COMPARISON_NOT_OP(nonnull);
1515 
1516       /* Goto pc at specified offset in switch table. */
1517 
1518       CASE(_tableswitch): {
1519           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1520           int32_t  key  = STACK_INT(-1);
1521           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1522           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1523           int32_t  skip;
1524           key -= low;
1525           skip = ((uint32_t) key > (uint32_t)(high - low))
1526                       ? Bytes::get_Java_u4((address)&lpc[0])
1527                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
1528           // Does this really need a full backedge check (osr?)
1529           address branch_pc = pc;
1530           UPDATE_PC_AND_TOS(skip, -1);
1531           DO_BACKEDGE_CHECKS(skip, branch_pc);
1532           CONTINUE;
1533       }
1534 
1535       /* Goto pc whose table entry matches specified key */
1536 
1537       CASE(_lookupswitch): {
1538           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1539           int32_t  key  = STACK_INT(-1);
1540           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1541           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1542           while (--npairs >= 0) {
1543               lpc += 2;
1544               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1545                   skip = Bytes::get_Java_u4((address)&lpc[1]);
1546                   break;
1547               }
1548           }
1549           address branch_pc = pc;
1550           UPDATE_PC_AND_TOS(skip, -1);
1551           DO_BACKEDGE_CHECKS(skip, branch_pc);
1552           CONTINUE;
1553       }
1554 
1555       CASE(_fcmpl):
1556       CASE(_fcmpg):
1557       {
1558           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1559                                         STACK_FLOAT(-1),
1560                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1561                         -2);
1562           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1563       }
1564 
1565       CASE(_dcmpl):
1566       CASE(_dcmpg):
1567       {
1568           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1569                                   STACK_DOUBLE(-1),
1570                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1571           MORE_STACK(-4); // Pop
1572           SET_STACK_INT(r, 0);
1573           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1574       }
1575 
1576       CASE(_lcmp):
1577       {
1578           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1579           MORE_STACK(-4);
1580           SET_STACK_INT(r, 0);
1581           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1582       }
1583 
1584 
1585       /* Return from a method */
1586 
1587       CASE(_areturn):
1588       CASE(_ireturn):
1589       CASE(_freturn):
1590       {
1591           // Allow a safepoint before returning to frame manager.
1592           SAFEPOINT;
1593 
1594           goto handle_return;
1595       }
1596 
1597       CASE(_lreturn):
1598       CASE(_dreturn):
1599       {
1600           // Allow a safepoint before returning to frame manager.
1601           SAFEPOINT;
1602           goto handle_return;
1603       }
1604 
1605       CASE(_return_register_finalizer): {
1606 
1607           oop rcvr = LOCALS_OBJECT(0);
1608           VERIFY_OOP(rcvr);
1609           if (rcvr->klass()->has_finalizer()) {
1610             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1611           }
1612           goto handle_return;
1613       }
1614       CASE(_return): {
1615 
1616           // Allow a safepoint before returning to frame manager.
1617           SAFEPOINT;
1618           goto handle_return;
1619       }
1620 
1621       /* Array access byte-codes */
1622 
1623       /* Every array access byte-code starts out like this */
1624 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1625 #define ARRAY_INTRO(arrayOff)                                                  \
1626       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1627       jint     index  = STACK_INT(arrayOff + 1);                               \
1628       char message[jintAsStringSize];                                          \
1629       CHECK_NULL(arrObj);                                                      \
1630       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1631           sprintf(message, "%d", index);                                       \
1632           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1633                         message);                                              \
1634       }
1635 
1636       /* 32-bit loads. These handle conversion from < 32-bit types */
1637 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1638       {                                                                               \
1639           ARRAY_INTRO(-2);                                                            \
1640           extra;                                                                      \
1641           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1642                            -2);                                                       \
1643           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1644       }
1645 
1646       /* 64-bit loads */
1647 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1648       {                                                                                    \
1649           ARRAY_INTRO(-2);                                                                 \
1650           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1651           extra;                                                                           \
1652           UPDATE_PC_AND_CONTINUE(1);                                            \
1653       }
1654 
1655       CASE(_iaload):
1656           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1657       CASE(_faload):
1658           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1659       CASE(_aaload): {
1660           ARRAY_INTRO(-2);
1661           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1662           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1663       }
1664       CASE(_baload):
1665           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1666       CASE(_caload):
1667           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1668       CASE(_saload):
1669           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1670       CASE(_laload):
1671           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1672       CASE(_daload):
1673           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1674 
1675       /* 32-bit stores. These handle conversion to < 32-bit types */
1676 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1677       {                                                                              \
1678           ARRAY_INTRO(-3);                                                           \
1679           extra;                                                                     \
1680           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1681           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1682       }
1683 
1684       /* 64-bit stores */
1685 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1686       {                                                                              \
1687           ARRAY_INTRO(-4);                                                           \
1688           extra;                                                                     \
1689           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1690           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1691       }
1692 
1693       CASE(_iastore):
1694           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1695       CASE(_fastore):
1696           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1697       /*
1698        * This one looks different because of the assignability check
1699        */
1700       CASE(_aastore): {
1701           oop rhsObject = STACK_OBJECT(-1);
1702           VERIFY_OOP(rhsObject);
1703           ARRAY_INTRO( -3);
1704           // arrObj, index are set
1705           if (rhsObject != NULL) {
1706             /* Check assignability of rhsObject into arrObj */
1707             Klass* rhsKlassOop = rhsObject->klass(); // EBX (subclass)
1708             Klass* elemKlassOop = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1709             //
1710             // Check for compatibilty. This check must not GC!!
1711             // Seems way more expensive now that we must dispatch
1712             //
1713             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->is_subtype_of(elemKlassOop)) { // ebx->is...
1714               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1715             }
1716           }
1717           ((objArrayOopDesc *) arrObj)->obj_at_put(index, rhsObject);
1718           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1719       }
1720       CASE(_bastore):
1721           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1722       CASE(_castore):
1723           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1724       CASE(_sastore):
1725           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1726       CASE(_lastore):
1727           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1728       CASE(_dastore):
1729           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1730 
1731       CASE(_arraylength):
1732       {
1733           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1734           CHECK_NULL(ary);
1735           SET_STACK_INT(ary->length(), -1);
1736           UPDATE_PC_AND_CONTINUE(1);
1737       }
1738 
1739       /* monitorenter and monitorexit for locking/unlocking an object */
1740 
1741       CASE(_monitorenter): {
1742         oop lockee = STACK_OBJECT(-1);
1743         // derefing's lockee ought to provoke implicit null check
1744         CHECK_NULL(lockee);
1745         // find a free monitor or one already allocated for this object
1746         // if we find a matching object then we need a new monitor
1747         // since this is recursive enter
1748         BasicObjectLock* limit = istate->monitor_base();
1749         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1750         BasicObjectLock* entry = NULL;
1751         while (most_recent != limit ) {
1752           if (most_recent->obj() == NULL) entry = most_recent;
1753           else if (most_recent->obj() == lockee) break;
1754           most_recent++;
1755         }
1756         if (entry != NULL) {
1757           entry->set_obj(lockee);
1758           int success = false;
1759           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1760 
1761           markOop mark = lockee->mark();
1762           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1763           // implies UseBiasedLocking
1764           if (mark->has_bias_pattern()) {
1765             uintptr_t thread_ident;
1766             uintptr_t anticipated_bias_locking_value;
1767             thread_ident = (uintptr_t)istate->thread();
1768             anticipated_bias_locking_value =
1769               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1770               ~((uintptr_t) markOopDesc::age_mask_in_place);
1771 
1772             if  (anticipated_bias_locking_value == 0) {
1773               // already biased towards this thread, nothing to do
1774               if (PrintBiasedLockingStatistics) {
1775                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1776               }
1777               success = true;
1778             }
1779             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1780               // try revoke bias
1781               markOop header = lockee->klass()->prototype_header();
1782               if (hash != markOopDesc::no_hash) {
1783                 header = header->copy_set_hash(hash);
1784               }
1785               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1786                 if (PrintBiasedLockingStatistics)
1787                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1788               }
1789             }
1790             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1791               // try rebias
1792               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1793               if (hash != markOopDesc::no_hash) {
1794                 new_header = new_header->copy_set_hash(hash);
1795               }
1796               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1797                 if (PrintBiasedLockingStatistics)
1798                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1799               }
1800               else {
1801                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1802               }
1803               success = true;
1804             }
1805             else {
1806               // try to bias towards thread in case object is anonymously biased
1807               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1808                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1809                                                               epoch_mask_in_place));
1810               if (hash != markOopDesc::no_hash) {
1811                 header = header->copy_set_hash(hash);
1812               }
1813               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1814               // debugging hint
1815               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1816               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1817                 if (PrintBiasedLockingStatistics)
1818                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1819               }
1820               else {
1821                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1822               }
1823               success = true;
1824             }
1825           }
1826 
1827           // traditional lightweight locking
1828           if (!success) {
1829             markOop displaced = lockee->mark()->set_unlocked();
1830             entry->lock()->set_displaced_header(displaced);
1831             bool call_vm = UseHeavyMonitors;
1832             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1833               // Is it simple recursive case?
1834               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1835                 entry->lock()->set_displaced_header(NULL);
1836               } else {
1837                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1838               }
1839             }
1840           }
1841           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1842         } else {
1843           istate->set_msg(more_monitors);
1844           UPDATE_PC_AND_RETURN(0); // Re-execute
1845         }
1846       }
1847 
1848       CASE(_monitorexit): {
1849         oop lockee = STACK_OBJECT(-1);
1850         CHECK_NULL(lockee);
1851         // derefing's lockee ought to provoke implicit null check
1852         // find our monitor slot
1853         BasicObjectLock* limit = istate->monitor_base();
1854         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1855         while (most_recent != limit ) {
1856           if ((most_recent)->obj() == lockee) {
1857             BasicLock* lock = most_recent->lock();
1858             markOop header = lock->displaced_header();
1859             most_recent->set_obj(NULL);
1860             if (!lockee->mark()->has_bias_pattern()) {
1861               bool call_vm = UseHeavyMonitors;
1862               // If it isn't recursive we either must swap old header or call the runtime
1863               if (header != NULL || call_vm) {
1864                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1865                   // restore object for the slow case
1866                   most_recent->set_obj(lockee);
1867                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1868                 }
1869               }
1870             }
1871             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1872           }
1873           most_recent++;
1874         }
1875         // Need to throw illegal monitor state exception
1876         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1877         ShouldNotReachHere();
1878       }
1879 
1880       /* All of the non-quick opcodes. */
1881 
1882       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1883        *  constant pool index in the instruction.
1884        */
1885       CASE(_getfield):
1886       CASE(_getstatic):
1887         {
1888           u2 index;
1889           ConstantPoolCacheEntry* cache;
1890           index = Bytes::get_native_u2(pc+1);
1891 
1892           // QQQ Need to make this as inlined as possible. Probably need to
1893           // split all the bytecode cases out so c++ compiler has a chance
1894           // for constant prop to fold everything possible away.
1895 
1896           cache = cp->entry_at(index);
1897           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1898             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1899                     handle_exception);
1900             cache = cp->entry_at(index);
1901           }
1902 
1903 #ifdef VM_JVMTI
1904           if (_jvmti_interp_events) {
1905             int *count_addr;
1906             oop obj;
1907             // Check to see if a field modification watch has been set
1908             // before we take the time to call into the VM.
1909             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1910             if ( *count_addr > 0 ) {
1911               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1912                 obj = (oop)NULL;
1913               } else {
1914                 obj = (oop) STACK_OBJECT(-1);
1915                 VERIFY_OOP(obj);
1916               }
1917               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1918                                           obj,
1919                                           cache),
1920                                           handle_exception);
1921             }
1922           }
1923 #endif /* VM_JVMTI */
1924 
1925           oop obj;
1926           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1927             Klass* k = cache->f1_as_klass();
1928             obj = k->java_mirror();
1929             MORE_STACK(1);  // Assume single slot push
1930           } else {
1931             obj = (oop) STACK_OBJECT(-1);
1932             CHECK_NULL(obj);
1933           }
1934 
1935           //
1936           // Now store the result on the stack
1937           //
1938           TosState tos_type = cache->flag_state();
1939           int field_offset = cache->f2_as_index();
1940           if (cache->is_volatile()) {
1941             if (tos_type == atos) {
1942               VERIFY_OOP(obj->obj_field_acquire(field_offset));
1943               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1944             } else if (tos_type == itos) {
1945               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1946             } else if (tos_type == ltos) {
1947               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1948               MORE_STACK(1);
1949             } else if (tos_type == btos) {
1950               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1951             } else if (tos_type == ctos) {
1952               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1953             } else if (tos_type == stos) {
1954               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1955             } else if (tos_type == ftos) {
1956               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1957             } else {
1958               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1959               MORE_STACK(1);
1960             }
1961           } else {
1962             if (tos_type == atos) {
1963               VERIFY_OOP(obj->obj_field(field_offset));
1964               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
1965             } else if (tos_type == itos) {
1966               SET_STACK_INT(obj->int_field(field_offset), -1);
1967             } else if (tos_type == ltos) {
1968               SET_STACK_LONG(obj->long_field(field_offset), 0);
1969               MORE_STACK(1);
1970             } else if (tos_type == btos) {
1971               SET_STACK_INT(obj->byte_field(field_offset), -1);
1972             } else if (tos_type == ctos) {
1973               SET_STACK_INT(obj->char_field(field_offset), -1);
1974             } else if (tos_type == stos) {
1975               SET_STACK_INT(obj->short_field(field_offset), -1);
1976             } else if (tos_type == ftos) {
1977               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1978             } else {
1979               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1980               MORE_STACK(1);
1981             }
1982           }
1983 
1984           UPDATE_PC_AND_CONTINUE(3);
1985          }
1986 
1987       CASE(_putfield):
1988       CASE(_putstatic):
1989         {
1990           u2 index = Bytes::get_native_u2(pc+1);
1991           ConstantPoolCacheEntry* cache = cp->entry_at(index);
1992           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1993             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1994                     handle_exception);
1995             cache = cp->entry_at(index);
1996           }
1997 
1998 #ifdef VM_JVMTI
1999           if (_jvmti_interp_events) {
2000             int *count_addr;
2001             oop obj;
2002             // Check to see if a field modification watch has been set
2003             // before we take the time to call into the VM.
2004             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2005             if ( *count_addr > 0 ) {
2006               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2007                 obj = (oop)NULL;
2008               }
2009               else {
2010                 if (cache->is_long() || cache->is_double()) {
2011                   obj = (oop) STACK_OBJECT(-3);
2012                 } else {
2013                   obj = (oop) STACK_OBJECT(-2);
2014                 }
2015                 VERIFY_OOP(obj);
2016               }
2017 
2018               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2019                                           obj,
2020                                           cache,
2021                                           (jvalue *)STACK_SLOT(-1)),
2022                                           handle_exception);
2023             }
2024           }
2025 #endif /* VM_JVMTI */
2026 
2027           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2028           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2029 
2030           oop obj;
2031           int count;
2032           TosState tos_type = cache->flag_state();
2033 
2034           count = -1;
2035           if (tos_type == ltos || tos_type == dtos) {
2036             --count;
2037           }
2038           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2039             Klass* k = cache->f1_as_klass();
2040             obj = k->java_mirror();
2041           } else {
2042             --count;
2043             obj = (oop) STACK_OBJECT(count);
2044             CHECK_NULL(obj);
2045           }
2046 
2047           //
2048           // Now store the result
2049           //
2050           int field_offset = cache->f2_as_index();
2051           if (cache->is_volatile()) {
2052             if (tos_type == itos) {
2053               obj->release_int_field_put(field_offset, STACK_INT(-1));
2054             } else if (tos_type == atos) {
2055               VERIFY_OOP(STACK_OBJECT(-1));
2056               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2057             } else if (tos_type == btos) {
2058               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2059             } else if (tos_type == ltos) {
2060               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2061             } else if (tos_type == ctos) {
2062               obj->release_char_field_put(field_offset, STACK_INT(-1));
2063             } else if (tos_type == stos) {
2064               obj->release_short_field_put(field_offset, STACK_INT(-1));
2065             } else if (tos_type == ftos) {
2066               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2067             } else {
2068               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2069             }
2070             OrderAccess::storeload();
2071           } else {
2072             if (tos_type == itos) {
2073               obj->int_field_put(field_offset, STACK_INT(-1));
2074             } else if (tos_type == atos) {
2075               VERIFY_OOP(STACK_OBJECT(-1));
2076               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2077             } else if (tos_type == btos) {
2078               obj->byte_field_put(field_offset, STACK_INT(-1));
2079             } else if (tos_type == ltos) {
2080               obj->long_field_put(field_offset, STACK_LONG(-1));
2081             } else if (tos_type == ctos) {
2082               obj->char_field_put(field_offset, STACK_INT(-1));
2083             } else if (tos_type == stos) {
2084               obj->short_field_put(field_offset, STACK_INT(-1));
2085             } else if (tos_type == ftos) {
2086               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2087             } else {
2088               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2089             }
2090           }
2091 
2092           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2093         }
2094 
2095       CASE(_new): {
2096         u2 index = Bytes::get_Java_u2(pc+1);
2097         ConstantPool* constants = istate->method()->constants();
2098         if (!constants->tag_at(index).is_unresolved_klass()) {
2099           // Make sure klass is initialized and doesn't have a finalizer
2100           Klass* entry = constants->slot_at(index).get_klass();
2101           assert(entry->is_klass(), "Should be resolved klass");
2102           Klass* k_entry = (Klass*) entry;
2103           assert(k_entry->oop_is_instance(), "Should be InstanceKlass");
2104           InstanceKlass* ik = (InstanceKlass*) k_entry;
2105           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2106             size_t obj_size = ik->size_helper();
2107             oop result = NULL;
2108             // If the TLAB isn't pre-zeroed then we'll have to do it
2109             bool need_zero = !ZeroTLAB;
2110             if (UseTLAB) {
2111               result = (oop) THREAD->tlab().allocate(obj_size);
2112             }
2113             if (result == NULL) {
2114               need_zero = true;
2115               // Try allocate in shared eden
2116         retry:
2117               HeapWord* compare_to = *Universe::heap()->top_addr();
2118               HeapWord* new_top = compare_to + obj_size;
2119               if (new_top <= *Universe::heap()->end_addr()) {
2120                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2121                   goto retry;
2122                 }
2123                 result = (oop) compare_to;
2124               }
2125             }
2126             if (result != NULL) {
2127               // Initialize object (if nonzero size and need) and then the header
2128               if (need_zero ) {
2129                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2130                 obj_size -= sizeof(oopDesc) / oopSize;
2131                 if (obj_size > 0 ) {
2132                   memset(to_zero, 0, obj_size * HeapWordSize);
2133                 }
2134               }
2135               if (UseBiasedLocking) {
2136                 result->set_mark(ik->prototype_header());
2137               } else {
2138                 result->set_mark(markOopDesc::prototype());
2139               }
2140               result->set_klass_gap(0);
2141               result->set_klass(k_entry);
2142               SET_STACK_OBJECT(result, 0);
2143               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2144             }
2145           }
2146         }
2147         // Slow case allocation
2148         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2149                 handle_exception);
2150         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2151         THREAD->set_vm_result(NULL);
2152         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2153       }
2154       CASE(_anewarray): {
2155         u2 index = Bytes::get_Java_u2(pc+1);
2156         jint size = STACK_INT(-1);
2157         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2158                 handle_exception);
2159         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2160         THREAD->set_vm_result(NULL);
2161         UPDATE_PC_AND_CONTINUE(3);
2162       }
2163       CASE(_multianewarray): {
2164         jint dims = *(pc+3);
2165         jint size = STACK_INT(-1);
2166         // stack grows down, dimensions are up!
2167         jint *dimarray =
2168                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2169                                       Interpreter::stackElementWords-1];
2170         //adjust pointer to start of stack element
2171         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2172                 handle_exception);
2173         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2174         THREAD->set_vm_result(NULL);
2175         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2176       }
2177       CASE(_checkcast):
2178           if (STACK_OBJECT(-1) != NULL) {
2179             VERIFY_OOP(STACK_OBJECT(-1));
2180             u2 index = Bytes::get_Java_u2(pc+1);
2181             if (ProfileInterpreter) {
2182               // needs Profile_checkcast QQQ
2183               ShouldNotReachHere();
2184             }
2185             // Constant pool may have actual klass or unresolved klass. If it is
2186             // unresolved we must resolve it
2187             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2188               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2189             }
2190             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2191             Klass* objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
2192             //
2193             // Check for compatibilty. This check must not GC!!
2194             // Seems way more expensive now that we must dispatch
2195             //
2196             if (objKlassOop != klassOf &&
2197                 !objKlassOop->is_subtype_of(klassOf)) {
2198               ResourceMark rm(THREAD);
2199               const char* objName = objKlassOop->external_name();
2200               const char* klassName = klassOf->external_name();
2201               char* message = SharedRuntime::generate_class_cast_message(
2202                 objName, klassName);
2203               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
2204             }
2205           } else {
2206             if (UncommonNullCast) {
2207 //              istate->method()->set_null_cast_seen();
2208 // [RGV] Not sure what to do here!
2209 
2210             }
2211           }
2212           UPDATE_PC_AND_CONTINUE(3);
2213 
2214       CASE(_instanceof):
2215           if (STACK_OBJECT(-1) == NULL) {
2216             SET_STACK_INT(0, -1);
2217           } else {
2218             VERIFY_OOP(STACK_OBJECT(-1));
2219             u2 index = Bytes::get_Java_u2(pc+1);
2220             // Constant pool may have actual klass or unresolved klass. If it is
2221             // unresolved we must resolve it
2222             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2223               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2224             }
2225             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2226             Klass* objKlassOop = STACK_OBJECT(-1)->klass();
2227             //
2228             // Check for compatibilty. This check must not GC!!
2229             // Seems way more expensive now that we must dispatch
2230             //
2231             if ( objKlassOop == klassOf || objKlassOop->is_subtype_of(klassOf)) {
2232               SET_STACK_INT(1, -1);
2233             } else {
2234               SET_STACK_INT(0, -1);
2235             }
2236           }
2237           UPDATE_PC_AND_CONTINUE(3);
2238 
2239       CASE(_ldc_w):
2240       CASE(_ldc):
2241         {
2242           u2 index;
2243           bool wide = false;
2244           int incr = 2; // frequent case
2245           if (opcode == Bytecodes::_ldc) {
2246             index = pc[1];
2247           } else {
2248             index = Bytes::get_Java_u2(pc+1);
2249             incr = 3;
2250             wide = true;
2251           }
2252 
2253           ConstantPool* constants = METHOD->constants();
2254           switch (constants->tag_at(index).value()) {
2255           case JVM_CONSTANT_Integer:
2256             SET_STACK_INT(constants->int_at(index), 0);
2257             break;
2258 
2259           case JVM_CONSTANT_Float:
2260             SET_STACK_FLOAT(constants->float_at(index), 0);
2261             break;
2262 
2263           case JVM_CONSTANT_String:
2264             {
2265               oop result = constants->resolved_references()->obj_at(index);
2266               if (result == NULL) {
2267                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2268                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2269                 THREAD->set_vm_result(NULL);
2270               } else {
2271                 VERIFY_OOP(result);
2272                 SET_STACK_OBJECT(result, 0);
2273               }
2274             break;
2275             }
2276 
2277           case JVM_CONSTANT_Class:
2278             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2279             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2280             break;
2281 
2282           case JVM_CONSTANT_UnresolvedClass:
2283           case JVM_CONSTANT_UnresolvedClassInError:
2284             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2285             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2286             THREAD->set_vm_result(NULL);
2287             break;
2288 
2289           default:  ShouldNotReachHere();
2290           }
2291           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2292         }
2293 
2294       CASE(_ldc2_w):
2295         {
2296           u2 index = Bytes::get_Java_u2(pc+1);
2297 
2298           ConstantPool* constants = METHOD->constants();
2299           switch (constants->tag_at(index).value()) {
2300 
2301           case JVM_CONSTANT_Long:
2302              SET_STACK_LONG(constants->long_at(index), 1);
2303             break;
2304 
2305           case JVM_CONSTANT_Double:
2306              SET_STACK_DOUBLE(constants->double_at(index), 1);
2307             break;
2308           default:  ShouldNotReachHere();
2309           }
2310           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2311         }
2312 
2313       CASE(_fast_aldc_w):
2314       CASE(_fast_aldc): {
2315         u2 index;
2316         int incr;
2317         if (opcode == Bytecodes::_fast_aldc) {
2318           index = pc[1];
2319           incr = 2;
2320         } else {
2321           index = Bytes::get_native_u2(pc+1);
2322           incr = 3;
2323         }
2324 
2325         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2326         // This kind of CP cache entry does not need to match the flags byte, because
2327         // there is a 1-1 relation between bytecode type and CP entry type.
2328         ConstantPool* constants = METHOD->constants();
2329         oop result = constants->resolved_references()->obj_at(index);
2330         if (result == NULL) {
2331           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2332                   handle_exception);
2333           result = THREAD->vm_result();
2334         }
2335 
2336         VERIFY_OOP(result);
2337         SET_STACK_OBJECT(result, 0);
2338         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2339       }
2340 
2341       CASE(_invokedynamic): {
2342 
2343         if (!EnableInvokeDynamic) {
2344           // We should not encounter this bytecode if !EnableInvokeDynamic.
2345           // The verifier will stop it.  However, if we get past the verifier,
2346           // this will stop the thread in a reasonable way, without crashing the JVM.
2347           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
2348                   handle_exception);
2349           ShouldNotReachHere();
2350         }
2351 
2352         u4 index = Bytes::get_native_u4(pc+1);
2353         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2354 
2355         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2356         // This kind of CP cache entry does not need to match the flags byte, because
2357         // there is a 1-1 relation between bytecode type and CP entry type.
2358         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2359           CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
2360                   handle_exception);
2361           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2362         }
2363 
2364         Method* method = cache->f1_as_method();
2365         if (VerifyOops) method->verify();
2366 
2367         if (cache->has_appendix()) {
2368           ConstantPool* constants = METHOD->constants();
2369           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2370           MORE_STACK(1);
2371         }
2372 
2373         istate->set_msg(call_method);
2374         istate->set_callee(method);
2375         istate->set_callee_entry_point(method->from_interpreted_entry());
2376         istate->set_bcp_advance(5);
2377 
2378         UPDATE_PC_AND_RETURN(0); // I'll be back...
2379       }
2380 
2381       CASE(_invokehandle): {
2382 
2383         if (!EnableInvokeDynamic) {
2384           ShouldNotReachHere();
2385         }
2386 
2387         u2 index = Bytes::get_native_u2(pc+1);
2388         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2389 
2390         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2391           CALL_VM(InterpreterRuntime::resolve_invokehandle(THREAD),
2392                   handle_exception);
2393           cache = cp->entry_at(index);
2394         }
2395 
2396         Method* method = cache->f1_as_method();
2397         if (VerifyOops) method->verify();
2398 
2399         if (cache->has_appendix()) {
2400           ConstantPool* constants = METHOD->constants();
2401           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2402           MORE_STACK(1);
2403         }
2404 
2405         istate->set_msg(call_method);
2406         istate->set_callee(method);
2407         istate->set_callee_entry_point(method->from_interpreted_entry());
2408         istate->set_bcp_advance(3);
2409 
2410         UPDATE_PC_AND_RETURN(0); // I'll be back...
2411       }
2412 
2413       CASE(_invokeinterface): {
2414         u2 index = Bytes::get_native_u2(pc+1);
2415 
2416         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2417         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2418 
2419         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2420         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2421           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2422                   handle_exception);
2423           cache = cp->entry_at(index);
2424         }
2425 
2426         istate->set_msg(call_method);
2427 
2428         // Special case of invokeinterface called for virtual method of
2429         // java.lang.Object.  See cpCacheOop.cpp for details.
2430         // This code isn't produced by javac, but could be produced by
2431         // another compliant java compiler.
2432         if (cache->is_forced_virtual()) {
2433           Method* callee;
2434           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2435           if (cache->is_vfinal()) {
2436             callee = cache->f2_as_vfinal_method();
2437           } else {
2438             // get receiver
2439             int parms = cache->parameter_size();
2440             // Same comments as invokevirtual apply here
2441             VERIFY_OOP(STACK_OBJECT(-parms));
2442             InstanceKlass* rcvrKlass = (InstanceKlass*)
2443                                  STACK_OBJECT(-parms)->klass();
2444             callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2445           }
2446           istate->set_callee(callee);
2447           istate->set_callee_entry_point(callee->from_interpreted_entry());
2448 #ifdef VM_JVMTI
2449           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2450             istate->set_callee_entry_point(callee->interpreter_entry());
2451           }
2452 #endif /* VM_JVMTI */
2453           istate->set_bcp_advance(5);
2454           UPDATE_PC_AND_RETURN(0); // I'll be back...
2455         }
2456 
2457         // this could definitely be cleaned up QQQ
2458         Method* callee;
2459         Klass* iclass = cache->f1_as_klass();
2460         // InstanceKlass* interface = (InstanceKlass*) iclass;
2461         // get receiver
2462         int parms = cache->parameter_size();
2463         oop rcvr = STACK_OBJECT(-parms);
2464         CHECK_NULL(rcvr);
2465         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2466         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2467         int i;
2468         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2469           if (ki->interface_klass() == iclass) break;
2470         }
2471         // If the interface isn't found, this class doesn't implement this
2472         // interface.  The link resolver checks this but only for the first
2473         // time this interface is called.
2474         if (i == int2->itable_length()) {
2475           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2476         }
2477         int mindex = cache->f2_as_index();
2478         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2479         callee = im[mindex].method();
2480         if (callee == NULL) {
2481           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
2482         }
2483 
2484         istate->set_callee(callee);
2485         istate->set_callee_entry_point(callee->from_interpreted_entry());
2486 #ifdef VM_JVMTI
2487         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2488           istate->set_callee_entry_point(callee->interpreter_entry());
2489         }
2490 #endif /* VM_JVMTI */
2491         istate->set_bcp_advance(5);
2492         UPDATE_PC_AND_RETURN(0); // I'll be back...
2493       }
2494 
2495       CASE(_invokevirtual):
2496       CASE(_invokespecial):
2497       CASE(_invokestatic): {
2498         u2 index = Bytes::get_native_u2(pc+1);
2499 
2500         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2501         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2502         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2503 
2504         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2505           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2506                   handle_exception);
2507           cache = cp->entry_at(index);
2508         }
2509 
2510         istate->set_msg(call_method);
2511         {
2512           Method* callee;
2513           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2514             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2515             if (cache->is_vfinal()) callee = cache->f2_as_vfinal_method();
2516             else {
2517               // get receiver
2518               int parms = cache->parameter_size();
2519               // this works but needs a resourcemark and seems to create a vtable on every call:
2520               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2521               //
2522               // this fails with an assert
2523               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2524               // but this works
2525               VERIFY_OOP(STACK_OBJECT(-parms));
2526               InstanceKlass* rcvrKlass = (InstanceKlass*) STACK_OBJECT(-parms)->klass();
2527               /*
2528                 Executing this code in java.lang.String:
2529                     public String(char value[]) {
2530                           this.count = value.length;
2531                           this.value = (char[])value.clone();
2532                      }
2533 
2534                  a find on rcvr->klass() reports:
2535                  {type array char}{type array class}
2536                   - klass: {other class}
2537 
2538                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2539                   because rcvr->klass()->oop_is_instance() == 0
2540                   However it seems to have a vtable in the right location. Huh?
2541 
2542               */
2543               callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2544             }
2545           } else {
2546             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2547               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2548             }
2549             callee = cache->f1_as_method();
2550           }
2551 
2552           istate->set_callee(callee);
2553           istate->set_callee_entry_point(callee->from_interpreted_entry());
2554 #ifdef VM_JVMTI
2555           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2556             istate->set_callee_entry_point(callee->interpreter_entry());
2557           }
2558 #endif /* VM_JVMTI */
2559           istate->set_bcp_advance(3);
2560           UPDATE_PC_AND_RETURN(0); // I'll be back...
2561         }
2562       }
2563 
2564       /* Allocate memory for a new java object. */
2565 
2566       CASE(_newarray): {
2567         BasicType atype = (BasicType) *(pc+1);
2568         jint size = STACK_INT(-1);
2569         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2570                 handle_exception);
2571         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2572         THREAD->set_vm_result(NULL);
2573 
2574         UPDATE_PC_AND_CONTINUE(2);
2575       }
2576 
2577       /* Throw an exception. */
2578 
2579       CASE(_athrow): {
2580           oop except_oop = STACK_OBJECT(-1);
2581           CHECK_NULL(except_oop);
2582           // set pending_exception so we use common code
2583           THREAD->set_pending_exception(except_oop, NULL, 0);
2584           goto handle_exception;
2585       }
2586 
2587       /* goto and jsr. They are exactly the same except jsr pushes
2588        * the address of the next instruction first.
2589        */
2590 
2591       CASE(_jsr): {
2592           /* push bytecode index on stack */
2593           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2594           MORE_STACK(1);
2595           /* FALL THROUGH */
2596       }
2597 
2598       CASE(_goto):
2599       {
2600           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2601           address branch_pc = pc;
2602           UPDATE_PC(offset);
2603           DO_BACKEDGE_CHECKS(offset, branch_pc);
2604           CONTINUE;
2605       }
2606 
2607       CASE(_jsr_w): {
2608           /* push return address on the stack */
2609           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2610           MORE_STACK(1);
2611           /* FALL THROUGH */
2612       }
2613 
2614       CASE(_goto_w):
2615       {
2616           int32_t offset = Bytes::get_Java_u4(pc + 1);
2617           address branch_pc = pc;
2618           UPDATE_PC(offset);
2619           DO_BACKEDGE_CHECKS(offset, branch_pc);
2620           CONTINUE;
2621       }
2622 
2623       /* return from a jsr or jsr_w */
2624 
2625       CASE(_ret): {
2626           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2627           UPDATE_PC_AND_CONTINUE(0);
2628       }
2629 
2630       /* debugger breakpoint */
2631 
2632       CASE(_breakpoint): {
2633           Bytecodes::Code original_bytecode;
2634           DECACHE_STATE();
2635           SET_LAST_JAVA_FRAME();
2636           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2637                               METHOD, pc);
2638           RESET_LAST_JAVA_FRAME();
2639           CACHE_STATE();
2640           if (THREAD->has_pending_exception()) goto handle_exception;
2641             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2642                                                     handle_exception);
2643 
2644           opcode = (jubyte)original_bytecode;
2645           goto opcode_switch;
2646       }
2647 
2648       DEFAULT:
2649           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2650                         Bytecodes::name((Bytecodes::Code)opcode)));
2651           goto finish;
2652 
2653       } /* switch(opc) */
2654 
2655 
2656 #ifdef USELABELS
2657     check_for_exception:
2658 #endif
2659     {
2660       if (!THREAD->has_pending_exception()) {
2661         CONTINUE;
2662       }
2663       /* We will be gcsafe soon, so flush our state. */
2664       DECACHE_PC();
2665       goto handle_exception;
2666     }
2667   do_continue: ;
2668 
2669   } /* while (1) interpreter loop */
2670 
2671 
2672   // An exception exists in the thread state see whether this activation can handle it
2673   handle_exception: {
2674 
2675     HandleMarkCleaner __hmc(THREAD);
2676     Handle except_oop(THREAD, THREAD->pending_exception());
2677     // Prevent any subsequent HandleMarkCleaner in the VM
2678     // from freeing the except_oop handle.
2679     HandleMark __hm(THREAD);
2680 
2681     THREAD->clear_pending_exception();
2682     assert(except_oop(), "No exception to process");
2683     intptr_t continuation_bci;
2684     // expression stack is emptied
2685     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2686     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2687             handle_exception);
2688 
2689     except_oop = THREAD->vm_result();
2690     THREAD->set_vm_result(NULL);
2691     if (continuation_bci >= 0) {
2692       // Place exception on top of stack
2693       SET_STACK_OBJECT(except_oop(), 0);
2694       MORE_STACK(1);
2695       pc = METHOD->code_base() + continuation_bci;
2696       if (TraceExceptions) {
2697         ttyLocker ttyl;
2698         ResourceMark rm;
2699         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2700         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2701         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2702                       pc - (intptr_t)METHOD->code_base(),
2703                       continuation_bci, THREAD);
2704       }
2705       // for AbortVMOnException flag
2706       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2707       goto run;
2708     }
2709     if (TraceExceptions) {
2710       ttyLocker ttyl;
2711       ResourceMark rm;
2712       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2713       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2714       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2715                     pc  - (intptr_t) METHOD->code_base(),
2716                     THREAD);
2717     }
2718     // for AbortVMOnException flag
2719     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2720     // No handler in this activation, unwind and try again
2721     THREAD->set_pending_exception(except_oop(), NULL, 0);
2722     goto handle_return;
2723   }  // handle_exception:
2724 
2725   // Return from an interpreter invocation with the result of the interpretation
2726   // on the top of the Java Stack (or a pending exception)
2727 
2728   handle_Pop_Frame: {
2729 
2730     // We don't really do anything special here except we must be aware
2731     // that we can get here without ever locking the method (if sync).
2732     // Also we skip the notification of the exit.
2733     
2734     istate->set_msg(popping_frame);
2735     // Clear pending so while the pop is in process
2736     // we don't start another one if a call_vm is done.
2737     THREAD->clr_pop_frame_pending();
2738     // Let interpreter (only) see the we're in the process of popping a frame
2739     THREAD->set_pop_frame_in_process();
2740     
2741     goto handle_return;
2742 
2743   } // handle_Pop_Frame
2744 
2745   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2746   // given by the invoker of the early return.
2747   handle_Early_Return: {
2748 
2749     istate->set_msg(early_return);
2750     
2751     // Clear expression stack.
2752     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2753 
2754     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2755 
2756     // Push the value to be returned.
2757     switch (istate->method()->result_type()) {
2758       case T_BOOLEAN:
2759       case T_SHORT:
2760       case T_BYTE:
2761       case T_CHAR:
2762       case T_INT:
2763         SET_STACK_INT(->earlyret_value().i, 0);
2764         MORE_STACK(1);
2765         break;
2766       case T_LONG:
2767         SET_STACK_LONG(ts->earlyret_value().j, 1);
2768         MORE_STACK(2);
2769         break;
2770       case T_FLOAT:
2771         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2772         MORE_STACK(1);
2773         break;
2774       case T_DOUBLE:
2775         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2776         MORE_STACK(2);
2777         break;
2778       case T_ARRAY:
2779       case T_OBJECT:
2780         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2781         MORE_STACK(1);
2782         break;
2783     }
2784     
2785     ts->clr_earlyret_value();
2786     ts->set_earlyret_oop(NULL);
2787     ts->clr_earlyret_pending();
2788     
2789     // Fall through to handle_return.
2790 
2791   } // handle_Early_Return
2792 
2793   handle_return: {
2794     DECACHE_STATE();
2795 
2796     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2797     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2798     Handle original_exception(THREAD, THREAD->pending_exception());
2799     Handle illegal_state_oop(THREAD, NULL);
2800 
2801     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2802     // in any following VM entries from freeing our live handles, but illegal_state_oop
2803     // isn't really allocated yet and so doesn't become live until later and
2804     // in unpredicatable places. Instead we must protect the places where we enter the
2805     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2806     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2807     // unfortunately isn't possible.
2808 
2809     THREAD->clear_pending_exception();
2810 
2811     //
2812     // As far as we are concerned we have returned. If we have a pending exception
2813     // that will be returned as this invocation's result. However if we get any
2814     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2815     // will be our final result (i.e. monitor exception trumps a pending exception).
2816     //
2817 
2818     // If we never locked the method (or really passed the point where we would have),
2819     // there is no need to unlock it (or look for other monitors), since that
2820     // could not have happened.
2821 
2822     if (THREAD->do_not_unlock()) {
2823 
2824       // Never locked, reset the flag now because obviously any caller must
2825       // have passed their point of locking for us to have gotten here.
2826 
2827       THREAD->clr_do_not_unlock();
2828     } else {
2829       // At this point we consider that we have returned. We now check that the
2830       // locks were properly block structured. If we find that they were not
2831       // used properly we will return with an illegal monitor exception.
2832       // The exception is checked by the caller not the callee since this
2833       // checking is considered to be part of the invocation and therefore
2834       // in the callers scope (JVM spec 8.13).
2835       //
2836       // Another weird thing to watch for is if the method was locked
2837       // recursively and then not exited properly. This means we must
2838       // examine all the entries in reverse time(and stack) order and
2839       // unlock as we find them. If we find the method monitor before
2840       // we are at the initial entry then we should throw an exception.
2841       // It is not clear the template based interpreter does this
2842       // correctly
2843 
2844       BasicObjectLock* base = istate->monitor_base();
2845       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2846       bool method_unlock_needed = METHOD->is_synchronized();
2847       // We know the initial monitor was used for the method don't check that
2848       // slot in the loop
2849       if (method_unlock_needed) base--;
2850 
2851       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2852       while (end < base) {
2853         oop lockee = end->obj();
2854         if (lockee != NULL) {
2855           BasicLock* lock = end->lock();
2856           markOop header = lock->displaced_header();
2857           end->set_obj(NULL);
2858 
2859           if (!lockee->mark()->has_bias_pattern()) {
2860             // If it isn't recursive we either must swap old header or call the runtime
2861             if (header != NULL) {
2862               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2863                 // restore object for the slow case
2864                 end->set_obj(lockee);
2865                 {
2866                   // Prevent any HandleMarkCleaner from freeing our live handles
2867                   HandleMark __hm(THREAD);
2868                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2869                 }
2870               }
2871             }
2872           }
2873           // One error is plenty
2874           if (illegal_state_oop() == NULL && !suppress_error) {
2875             {
2876               // Prevent any HandleMarkCleaner from freeing our live handles
2877               HandleMark __hm(THREAD);
2878               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2879             }
2880             assert(THREAD->has_pending_exception(), "Lost our exception!");
2881             illegal_state_oop = THREAD->pending_exception();
2882             THREAD->clear_pending_exception();
2883           }
2884         }
2885         end++;
2886       }
2887       // Unlock the method if needed
2888       if (method_unlock_needed) {
2889         if (base->obj() == NULL) {
2890           // The method is already unlocked this is not good.
2891           if (illegal_state_oop() == NULL && !suppress_error) {
2892             {
2893               // Prevent any HandleMarkCleaner from freeing our live handles
2894               HandleMark __hm(THREAD);
2895               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2896             }
2897             assert(THREAD->has_pending_exception(), "Lost our exception!");
2898             illegal_state_oop = THREAD->pending_exception();
2899             THREAD->clear_pending_exception();
2900           }
2901         } else {
2902           //
2903           // The initial monitor is always used for the method
2904           // However if that slot is no longer the oop for the method it was unlocked
2905           // and reused by something that wasn't unlocked!
2906           //
2907           // deopt can come in with rcvr dead because c2 knows
2908           // its value is preserved in the monitor. So we can't use locals[0] at all
2909           // and must use first monitor slot.
2910           //
2911           oop rcvr = base->obj();
2912           if (rcvr == NULL) {
2913             if (!suppress_error) {
2914               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
2915               illegal_state_oop = THREAD->pending_exception();
2916               THREAD->clear_pending_exception();
2917             }
2918           } else if (UseHeavyMonitors) {
2919             {
2920               // Prevent any HandleMarkCleaner from freeing our live handles.
2921               HandleMark __hm(THREAD);
2922               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2923             }
2924             if (THREAD->has_pending_exception()) {
2925               if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2926               THREAD->clear_pending_exception();
2927             }
2928           } else {
2929             BasicLock* lock = base->lock();
2930             markOop header = lock->displaced_header();
2931             base->set_obj(NULL);
2932 
2933             if (!rcvr->mark()->has_bias_pattern()) {
2934               base->set_obj(NULL);
2935               // If it isn't recursive we either must swap old header or call the runtime
2936               if (header != NULL) {
2937                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
2938                   // restore object for the slow case
2939                   base->set_obj(rcvr);
2940                   {
2941                     // Prevent any HandleMarkCleaner from freeing our live handles
2942                     HandleMark __hm(THREAD);
2943                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2944                   }
2945                   if (THREAD->has_pending_exception()) {
2946                     if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2947                     THREAD->clear_pending_exception();
2948                   }
2949                 }
2950               }
2951             }
2952           }
2953         }
2954       }
2955     }
2956     // Clear the do_not_unlock flag now.
2957     THREAD->clr_do_not_unlock();
2958 
2959     //
2960     // Notify jvmti/jvmdi
2961     //
2962     // NOTE: we do not notify a method_exit if we have a pending exception,
2963     // including an exception we generate for unlocking checks.  In the former
2964     // case, JVMDI has already been notified by our call for the exception handler
2965     // and in both cases as far as JVMDI is concerned we have already returned.
2966     // If we notify it again JVMDI will be all confused about how many frames
2967     // are still on the stack (4340444).
2968     //
2969     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
2970     // method_exit events whenever we leave an activation unless it was done
2971     // for popframe. This is nothing like jvmdi. However we are passing the
2972     // tests at the moment (apparently because they are jvmdi based) so rather
2973     // than change this code and possibly fail tests we will leave it alone
2974     // (with this note) in anticipation of changing the vm and the tests
2975     // simultaneously.
2976 
2977 
2978     //
2979     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
2980 
2981 
2982 
2983 #ifdef VM_JVMTI
2984       if (_jvmti_interp_events) {
2985         // Whenever JVMTI puts a thread in interp_only_mode, method
2986         // entry/exit events are sent for that thread to track stack depth.
2987         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
2988           {
2989             // Prevent any HandleMarkCleaner from freeing our live handles
2990             HandleMark __hm(THREAD);
2991             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
2992           }
2993         }
2994       }
2995 #endif /* VM_JVMTI */
2996 
2997     //
2998     // See if we are returning any exception
2999     // A pending exception that was pending prior to a possible popping frame
3000     // overrides the popping frame.
3001     //
3002     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
3003     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3004       // inform the frame manager we have no result
3005       istate->set_msg(throwing_exception);
3006       if (illegal_state_oop() != NULL)
3007         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3008       else
3009         THREAD->set_pending_exception(original_exception(), NULL, 0);
3010       UPDATE_PC_AND_RETURN(0);
3011     }
3012 
3013     if (istate->msg() == popping_frame) {
3014       // Make it simpler on the assembly code and set the message for the frame pop.
3015       // returns
3016       if (istate->prev() == NULL) {
3017         // We must be returning to a deoptimized frame (because popframe only happens between
3018         // two interpreted frames). We need to save the current arguments in C heap so that
3019         // the deoptimized frame when it restarts can copy the arguments to its expression
3020         // stack and re-execute the call. We also have to notify deoptimization that this
3021         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3022         // java expression stack. Yuck.
3023         //
3024         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3025                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3026         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3027       }
3028     } else {
3029       istate->set_msg(return_from_method);
3030     }
3031 
3032     // Normal return
3033     // Advance the pc and return to frame manager
3034     UPDATE_PC_AND_RETURN(1);
3035   } /* handle_return: */
3036 
3037 // This is really a fatal error return
3038 
3039 finish:
3040   DECACHE_TOS();
3041   DECACHE_PC();
3042 
3043   return;
3044 }
3045 
3046 /*
3047  * All the code following this point is only produced once and is not present
3048  * in the JVMTI version of the interpreter
3049 */
3050 
3051 #ifndef VM_JVMTI
3052 
3053 // This constructor should only be used to contruct the object to signal
3054 // interpreter initialization. All other instances should be created by
3055 // the frame manager.
3056 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3057   if (msg != initialize) ShouldNotReachHere();
3058   _msg = msg;
3059   _self_link = this;
3060   _prev_link = NULL;
3061 }
3062 
3063 // Inline static functions for Java Stack and Local manipulation
3064 
3065 // The implementations are platform dependent. We have to worry about alignment
3066 // issues on some machines which can change on the same platform depending on
3067 // whether it is an LP64 machine also.
3068 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3069   return (address) tos[Interpreter::expr_index_at(-offset)];
3070 }
3071 
3072 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3073   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3074 }
3075 
3076 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3077   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3078 }
3079 
3080 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3081   return (oop)tos [Interpreter::expr_index_at(-offset)];
3082 }
3083 
3084 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3085   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3086 }
3087 
3088 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3089   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3090 }
3091 
3092 // only used for value types
3093 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3094                                                         int offset) {
3095   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3096 }
3097 
3098 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3099                                                        int offset) {
3100   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3101 }
3102 
3103 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3104                                                          int offset) {
3105   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3106 }
3107 
3108 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3109                                                           int offset) {
3110   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3111 }
3112 
3113 // needs to be platform dep for the 32 bit platforms.
3114 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3115                                                           int offset) {
3116   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3117 }
3118 
3119 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3120                                               address addr, int offset) {
3121   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3122                         ((VMJavaVal64*)addr)->d);
3123 }
3124 
3125 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3126                                                         int offset) {
3127   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3128   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3129 }
3130 
3131 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3132                                             address addr, int offset) {
3133   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3134   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3135                         ((VMJavaVal64*)addr)->l;
3136 }
3137 
3138 // Locals
3139 
3140 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3141   return (address)locals[Interpreter::local_index_at(-offset)];
3142 }
3143 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3144   return (jint)locals[Interpreter::local_index_at(-offset)];
3145 }
3146 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3147   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3148 }
3149 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3150   return (oop)locals[Interpreter::local_index_at(-offset)];
3151 }
3152 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3153   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3154 }
3155 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3156   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3157 }
3158 
3159 // Returns the address of locals value.
3160 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3161   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3162 }
3163 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3164   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3165 }
3166 
3167 // Used for local value or returnAddress
3168 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3169                                    address value, int offset) {
3170   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3171 }
3172 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3173                                    jint value, int offset) {
3174   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3175 }
3176 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3177                                    jfloat value, int offset) {
3178   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3179 }
3180 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3181                                    oop value, int offset) {
3182   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3183 }
3184 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3185                                    jdouble value, int offset) {
3186   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3187 }
3188 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3189                                    jlong value, int offset) {
3190   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3191 }
3192 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3193                                    address addr, int offset) {
3194   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3195 }
3196 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3197                                    address addr, int offset) {
3198   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3199 }
3200 
3201 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3202                           intptr_t* locals, int locals_offset) {
3203   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3204   locals[Interpreter::local_index_at(-locals_offset)] = value;
3205 }
3206 
3207 
3208 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3209                                    int to_offset) {
3210   tos[Interpreter::expr_index_at(-to_offset)] =
3211                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3212 }
3213 
3214 void BytecodeInterpreter::dup(intptr_t *tos) {
3215   copy_stack_slot(tos, -1, 0);
3216 }
3217 void BytecodeInterpreter::dup2(intptr_t *tos) {
3218   copy_stack_slot(tos, -2, 0);
3219   copy_stack_slot(tos, -1, 1);
3220 }
3221 
3222 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3223   /* insert top word two down */
3224   copy_stack_slot(tos, -1, 0);
3225   copy_stack_slot(tos, -2, -1);
3226   copy_stack_slot(tos, 0, -2);
3227 }
3228 
3229 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3230   /* insert top word three down  */
3231   copy_stack_slot(tos, -1, 0);
3232   copy_stack_slot(tos, -2, -1);
3233   copy_stack_slot(tos, -3, -2);
3234   copy_stack_slot(tos, 0, -3);
3235 }
3236 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3237   /* insert top 2 slots three down */
3238   copy_stack_slot(tos, -1, 1);
3239   copy_stack_slot(tos, -2, 0);
3240   copy_stack_slot(tos, -3, -1);
3241   copy_stack_slot(tos, 1, -2);
3242   copy_stack_slot(tos, 0, -3);
3243 }
3244 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3245   /* insert top 2 slots four down */
3246   copy_stack_slot(tos, -1, 1);
3247   copy_stack_slot(tos, -2, 0);
3248   copy_stack_slot(tos, -3, -1);
3249   copy_stack_slot(tos, -4, -2);
3250   copy_stack_slot(tos, 1, -3);
3251   copy_stack_slot(tos, 0, -4);
3252 }
3253 
3254 
3255 void BytecodeInterpreter::swap(intptr_t *tos) {
3256   // swap top two elements
3257   intptr_t val = tos[Interpreter::expr_index_at(1)];
3258   // Copy -2 entry to -1
3259   copy_stack_slot(tos, -2, -1);
3260   // Store saved -1 entry into -2
3261   tos[Interpreter::expr_index_at(2)] = val;
3262 }
3263 // --------------------------------------------------------------------------------
3264 // Non-product code
3265 #ifndef PRODUCT
3266 
3267 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3268   switch (msg) {
3269      case BytecodeInterpreter::no_request:  return("no_request");
3270      case BytecodeInterpreter::initialize:  return("initialize");
3271      // status message to C++ interpreter
3272      case BytecodeInterpreter::method_entry:  return("method_entry");
3273      case BytecodeInterpreter::method_resume:  return("method_resume");
3274      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3275      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3276      // requests to frame manager from C++ interpreter
3277      case BytecodeInterpreter::call_method:  return("call_method");
3278      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3279      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3280      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3281      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3282      case BytecodeInterpreter::do_osr:  return("do_osr");
3283      // deopt
3284      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3285      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3286      default: return("BAD MSG");
3287   }
3288 }
3289 void
3290 BytecodeInterpreter::print() {
3291   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3292   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3293   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3294   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3295   {
3296     ResourceMark rm;
3297     char *method_name = _method->name_and_sig_as_C_string();
3298     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3299   }
3300   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3301   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3302   tty->print_cr("msg: %s", C_msg(this->_msg));
3303   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3304   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3305   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3306   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3307   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3308   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3309   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
3310   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3311   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3312   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3313 #ifdef SPARC
3314   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3315   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3316   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3317   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3318 #endif
3319 #if !defined(ZERO)
3320   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3321 #endif // !ZERO
3322   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3323 }
3324 
3325 extern "C" {
3326   void PI(uintptr_t arg) {
3327     ((BytecodeInterpreter*)arg)->print();
3328   }
3329 }
3330 #endif // PRODUCT
3331 
3332 #endif // JVMTI
3333 #endif // CC_INTERP