1 /*
   2  * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2012, 2013 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
  27 #define CPU_PPC_VM_ASSEMBLER_PPC_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // Address is an abstraction used to represent a memory location
  32 // as used in assembler instructions.
  33 // PPC instructions grok either baseReg + indexReg or baseReg + disp.
  34 // So far we do not use this as simplification by this class is low
  35 // on PPC with its simple addressing mode. Use RegisterOrConstant to
  36 // represent an offset.
  37 class Address VALUE_OBJ_CLASS_SPEC {
  38 };
  39 
  40 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
  41  private:
  42   address          _address;
  43   RelocationHolder _rspec;
  44 
  45   RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
  46     switch (rtype) {
  47     case relocInfo::external_word_type:
  48       return external_word_Relocation::spec(addr);
  49     case relocInfo::internal_word_type:
  50       return internal_word_Relocation::spec(addr);
  51     case relocInfo::opt_virtual_call_type:
  52       return opt_virtual_call_Relocation::spec();
  53     case relocInfo::static_call_type:
  54       return static_call_Relocation::spec();
  55     case relocInfo::runtime_call_type:
  56       return runtime_call_Relocation::spec();
  57     case relocInfo::none:
  58       return RelocationHolder();
  59     default:
  60       ShouldNotReachHere();
  61       return RelocationHolder();
  62     }
  63   }
  64 
  65  protected:
  66   // creation
  67   AddressLiteral() : _address(NULL), _rspec(NULL) {}
  68 
  69  public:
  70   AddressLiteral(address addr, RelocationHolder const& rspec)
  71     : _address(addr),
  72       _rspec(rspec) {}
  73 
  74   AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
  75     : _address((address) addr),
  76       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
  77 
  78   AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
  79     : _address((address) addr),
  80       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
  81 
  82   intptr_t value() const { return (intptr_t) _address; }
  83 
  84   const RelocationHolder& rspec() const { return _rspec; }
  85 };
  86 
  87 // Argument is an abstraction used to represent an outgoing
  88 // actual argument or an incoming formal parameter, whether
  89 // it resides in memory or in a register, in a manner consistent
  90 // with the PPC Application Binary Interface, or ABI. This is
  91 // often referred to as the native or C calling convention.
  92 
  93 class Argument VALUE_OBJ_CLASS_SPEC {
  94  private:
  95   int _number;  // The number of the argument.
  96  public:
  97   enum {
  98     // Only 8 registers may contain integer parameters.
  99     n_register_parameters = 8,
 100     // Can have up to 8 floating registers.
 101     n_float_register_parameters = 8
 102   };
 103   // creation
 104   Argument(int number) : _number(number) {}
 105 
 106   int  number() const { return _number; }
 107 
 108   // Locating register-based arguments:
 109   bool is_register() const { return _number < n_register_parameters; }
 110 
 111   Register as_register() const {
 112     assert(is_register(), "must be a register argument");
 113     return as_Register(number() + R3_ARG1->encoding());
 114   }
 115 };
 116 
 117 // A ppc64 function descriptor.
 118 struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
 119  private:
 120   address _entry;
 121   address _toc;
 122   address _env;
 123 
 124  public:
 125   inline address entry() const { return _entry; }
 126   inline address toc()   const { return _toc; }
 127   inline address env()   const { return _env; }
 128 
 129   inline void set_entry(address entry) { _entry = entry; }
 130   inline void set_toc(  address toc)   { _toc   = toc; }
 131   inline void set_env(  address env)   { _env   = env; }
 132 
 133   inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
 134   inline static ByteSize toc_offset()   { return byte_offset_of(FunctionDescriptor, _toc); }
 135   inline static ByteSize env_offset()   { return byte_offset_of(FunctionDescriptor, _env); }
 136 
 137   // Friend functions can be called without loading toc and env.
 138   enum {
 139     friend_toc = 0xcafe,
 140     friend_env = 0xc0de
 141   };
 142 
 143   inline bool is_friend_function() const {
 144     return (toc() == (address) friend_toc) && (env() == (address) friend_env);
 145   }
 146 
 147   // Constructor for stack-allocated instances.
 148   FunctionDescriptor() {
 149     _entry = (address) 0xbad;
 150     _toc   = (address) 0xbad;
 151     _env   = (address) 0xbad;
 152   }
 153 };
 154 
 155 class Assembler : public AbstractAssembler {
 156  protected:
 157   // Displacement routines
 158   static void print_instruction(int inst);
 159   static int  patched_branch(int dest_pos, int inst, int inst_pos);
 160   static int  branch_destination(int inst, int pos);
 161 
 162   friend class AbstractAssembler;
 163 
 164   // Code patchers need various routines like inv_wdisp()
 165   friend class NativeInstruction;
 166   friend class NativeGeneralJump;
 167   friend class Relocation;
 168 
 169  public:
 170 
 171   enum shifts {
 172     XO_21_29_SHIFT = 2,
 173     XO_21_30_SHIFT = 1,
 174     XO_27_29_SHIFT = 2,
 175     XO_30_31_SHIFT = 0,
 176     SPR_5_9_SHIFT  = 11u, // SPR_5_9 field in bits 11 -- 15
 177     SPR_0_4_SHIFT  = 16u, // SPR_0_4 field in bits 16 -- 20
 178     RS_SHIFT       = 21u, // RS field in bits 21 -- 25
 179     OPCODE_SHIFT   = 26u, // opcode in bits 26 -- 31
 180   };
 181 
 182   enum opcdxos_masks {
 183     XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
 184     ADDI_OPCODE_MASK    = (63u << OPCODE_SHIFT),
 185     ADDIS_OPCODE_MASK   = (63u << OPCODE_SHIFT),
 186     BXX_OPCODE_MASK     = (63u << OPCODE_SHIFT),
 187     BCXX_OPCODE_MASK    = (63u << OPCODE_SHIFT),
 188     // trap instructions
 189     TDI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
 190     TWI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
 191     TD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
 192     TW_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
 193     LD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
 194     STD_OPCODE_MASK     = LD_OPCODE_MASK,
 195     STDU_OPCODE_MASK    = STD_OPCODE_MASK,
 196     STDX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
 197     STDUX_OPCODE_MASK   = STDX_OPCODE_MASK,
 198     STW_OPCODE_MASK     = (63u << OPCODE_SHIFT),
 199     STWU_OPCODE_MASK    = STW_OPCODE_MASK,
 200     STWX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
 201     STWUX_OPCODE_MASK   = STWX_OPCODE_MASK,
 202     MTCTR_OPCODE_MASK   = ~(31u << RS_SHIFT),
 203     ORI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
 204     ORIS_OPCODE_MASK    = (63u << OPCODE_SHIFT),
 205     RLDICR_OPCODE_MASK  = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
 206   };
 207 
 208   enum opcdxos {
 209     ADD_OPCODE    = (31u << OPCODE_SHIFT | 266u << 1),
 210     ADDC_OPCODE   = (31u << OPCODE_SHIFT |  10u << 1),
 211     ADDI_OPCODE   = (14u << OPCODE_SHIFT),
 212     ADDIS_OPCODE  = (15u << OPCODE_SHIFT),
 213     ADDIC__OPCODE = (13u << OPCODE_SHIFT),
 214     ADDE_OPCODE   = (31u << OPCODE_SHIFT | 138u << 1),
 215     SUBF_OPCODE   = (31u << OPCODE_SHIFT |  40u << 1),
 216     SUBFC_OPCODE  = (31u << OPCODE_SHIFT |   8u << 1),
 217     SUBFE_OPCODE  = (31u << OPCODE_SHIFT | 136u << 1),
 218     SUBFIC_OPCODE = (8u  << OPCODE_SHIFT),
 219     SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
 220     DIVW_OPCODE   = (31u << OPCODE_SHIFT | 491u << 1),
 221     MULLW_OPCODE  = (31u << OPCODE_SHIFT | 235u << 1),
 222     MULHW_OPCODE  = (31u << OPCODE_SHIFT |  75u << 1),
 223     MULHWU_OPCODE = (31u << OPCODE_SHIFT |  11u << 1),
 224     MULLI_OPCODE  = (7u  << OPCODE_SHIFT),
 225     AND_OPCODE    = (31u << OPCODE_SHIFT |  28u << 1),
 226     ANDI_OPCODE   = (28u << OPCODE_SHIFT),
 227     ANDIS_OPCODE  = (29u << OPCODE_SHIFT),
 228     ANDC_OPCODE   = (31u << OPCODE_SHIFT |  60u << 1),
 229     ORC_OPCODE    = (31u << OPCODE_SHIFT | 412u << 1),
 230     OR_OPCODE     = (31u << OPCODE_SHIFT | 444u << 1),
 231     ORI_OPCODE    = (24u << OPCODE_SHIFT),
 232     ORIS_OPCODE   = (25u << OPCODE_SHIFT),
 233     XOR_OPCODE    = (31u << OPCODE_SHIFT | 316u << 1),
 234     XORI_OPCODE   = (26u << OPCODE_SHIFT),
 235     XORIS_OPCODE  = (27u << OPCODE_SHIFT),
 236 
 237     NEG_OPCODE    = (31u << OPCODE_SHIFT | 104u << 1),
 238 
 239     RLWINM_OPCODE = (21u << OPCODE_SHIFT),
 240     CLRRWI_OPCODE = RLWINM_OPCODE,
 241     CLRLWI_OPCODE = RLWINM_OPCODE,
 242 
 243     RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
 244 
 245     SLW_OPCODE    = (31u << OPCODE_SHIFT |  24u << 1),
 246     SLWI_OPCODE   = RLWINM_OPCODE,
 247     SRW_OPCODE    = (31u << OPCODE_SHIFT | 536u << 1),
 248     SRWI_OPCODE   = RLWINM_OPCODE,
 249     SRAW_OPCODE   = (31u << OPCODE_SHIFT | 792u << 1),
 250     SRAWI_OPCODE  = (31u << OPCODE_SHIFT | 824u << 1),
 251 
 252     CMP_OPCODE    = (31u << OPCODE_SHIFT |   0u << 1),
 253     CMPI_OPCODE   = (11u << OPCODE_SHIFT),
 254     CMPL_OPCODE   = (31u << OPCODE_SHIFT |  32u << 1),
 255     CMPLI_OPCODE  = (10u << OPCODE_SHIFT),
 256 
 257     ISEL_OPCODE   = (31u << OPCODE_SHIFT |  15u << 1),
 258 
 259     MTLR_OPCODE   = (31u << OPCODE_SHIFT | 467u << 1 | 8 << SPR_0_4_SHIFT),
 260     MFLR_OPCODE   = (31u << OPCODE_SHIFT | 339u << 1 | 8 << SPR_0_4_SHIFT),
 261 
 262     MTCRF_OPCODE  = (31u << OPCODE_SHIFT | 144u << 1),
 263     MFCR_OPCODE   = (31u << OPCODE_SHIFT | 19u << 1),
 264     MCRF_OPCODE   = (19u << OPCODE_SHIFT | 0u << 1),
 265 
 266     // condition register logic instructions
 267     CRAND_OPCODE  = (19u << OPCODE_SHIFT | 257u << 1),
 268     CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
 269     CROR_OPCODE   = (19u << OPCODE_SHIFT | 449u << 1),
 270     CRXOR_OPCODE  = (19u << OPCODE_SHIFT | 193u << 1),
 271     CRNOR_OPCODE  = (19u << OPCODE_SHIFT |  33u << 1),
 272     CREQV_OPCODE  = (19u << OPCODE_SHIFT | 289u << 1),
 273     CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
 274     CRORC_OPCODE  = (19u << OPCODE_SHIFT | 417u << 1),
 275 
 276     BCLR_OPCODE   = (19u << OPCODE_SHIFT | 16u << 1),
 277     BXX_OPCODE      = (18u << OPCODE_SHIFT),
 278     BCXX_OPCODE     = (16u << OPCODE_SHIFT),
 279 
 280     // CTR-related opcodes
 281     BCCTR_OPCODE  = (19u << OPCODE_SHIFT | 528u << 1),
 282     MTCTR_OPCODE  = (31u << OPCODE_SHIFT | 467u << 1 | 9 << SPR_0_4_SHIFT),
 283     MFCTR_OPCODE  = (31u << OPCODE_SHIFT | 339u << 1 | 9 << SPR_0_4_SHIFT),
 284 
 285 
 286     LWZ_OPCODE   = (32u << OPCODE_SHIFT),
 287     LWZX_OPCODE  = (31u << OPCODE_SHIFT |  23u << 1),
 288     LWZU_OPCODE  = (33u << OPCODE_SHIFT),
 289 
 290     LHA_OPCODE   = (42u << OPCODE_SHIFT),
 291     LHAX_OPCODE  = (31u << OPCODE_SHIFT | 343u << 1),
 292     LHAU_OPCODE  = (43u << OPCODE_SHIFT),
 293 
 294     LHZ_OPCODE   = (40u << OPCODE_SHIFT),
 295     LHZX_OPCODE  = (31u << OPCODE_SHIFT | 279u << 1),
 296     LHZU_OPCODE  = (41u << OPCODE_SHIFT),
 297 
 298     LBZ_OPCODE   = (34u << OPCODE_SHIFT),
 299     LBZX_OPCODE  = (31u << OPCODE_SHIFT |  87u << 1),
 300     LBZU_OPCODE  = (35u << OPCODE_SHIFT),
 301 
 302     STW_OPCODE   = (36u << OPCODE_SHIFT),
 303     STWX_OPCODE  = (31u << OPCODE_SHIFT | 151u << 1),
 304     STWU_OPCODE  = (37u << OPCODE_SHIFT),
 305     STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
 306 
 307     STH_OPCODE   = (44u << OPCODE_SHIFT),
 308     STHX_OPCODE  = (31u << OPCODE_SHIFT | 407u << 1),
 309     STHU_OPCODE  = (45u << OPCODE_SHIFT),
 310 
 311     STB_OPCODE   = (38u << OPCODE_SHIFT),
 312     STBX_OPCODE  = (31u << OPCODE_SHIFT | 215u << 1),
 313     STBU_OPCODE  = (39u << OPCODE_SHIFT),
 314 
 315     EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
 316     EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
 317     EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1),               // X-FORM
 318 
 319     // 32 bit opcode encodings
 320 
 321     LWA_OPCODE    = (58u << OPCODE_SHIFT |   2u << XO_30_31_SHIFT), // DS-FORM
 322     LWAX_OPCODE   = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
 323 
 324     CNTLZW_OPCODE = (31u << OPCODE_SHIFT |  26u << XO_21_30_SHIFT), // X-FORM
 325 
 326     // 64 bit opcode encodings
 327 
 328     LD_OPCODE     = (58u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
 329     LDU_OPCODE    = (58u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
 330     LDX_OPCODE    = (31u << OPCODE_SHIFT |  21u << XO_21_30_SHIFT), // X-FORM
 331 
 332     STD_OPCODE    = (62u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
 333     STDU_OPCODE   = (62u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
 334     STDUX_OPCODE  = (31u << OPCODE_SHIFT | 181u << 1),                  // X-FORM
 335     STDX_OPCODE   = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
 336 
 337     RLDICR_OPCODE = (30u << OPCODE_SHIFT |   1u << XO_27_29_SHIFT), // MD-FORM
 338     RLDICL_OPCODE = (30u << OPCODE_SHIFT |   0u << XO_27_29_SHIFT), // MD-FORM
 339     RLDIC_OPCODE  = (30u << OPCODE_SHIFT |   2u << XO_27_29_SHIFT), // MD-FORM
 340     RLDIMI_OPCODE = (30u << OPCODE_SHIFT |   3u << XO_27_29_SHIFT), // MD-FORM
 341 
 342     SRADI_OPCODE  = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
 343 
 344     SLD_OPCODE    = (31u << OPCODE_SHIFT |  27u << 1),              // X-FORM
 345     SRD_OPCODE    = (31u << OPCODE_SHIFT | 539u << 1),              // X-FORM
 346     SRAD_OPCODE   = (31u << OPCODE_SHIFT | 794u << 1),              // X-FORM
 347 
 348     MULLD_OPCODE  = (31u << OPCODE_SHIFT | 233u << 1),              // XO-FORM
 349     MULHD_OPCODE  = (31u << OPCODE_SHIFT |  73u << 1),              // XO-FORM
 350     MULHDU_OPCODE = (31u << OPCODE_SHIFT |   9u << 1),              // XO-FORM
 351     DIVD_OPCODE   = (31u << OPCODE_SHIFT | 489u << 1),              // XO-FORM
 352 
 353     CNTLZD_OPCODE = (31u << OPCODE_SHIFT |  58u << XO_21_30_SHIFT), // X-FORM
 354     NAND_OPCODE   = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
 355     NOR_OPCODE    = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
 356 
 357 
 358     // opcodes only used for floating arithmetic
 359     FADD_OPCODE   = (63u << OPCODE_SHIFT |  21u << 1),
 360     FADDS_OPCODE  = (59u << OPCODE_SHIFT |  21u << 1),
 361     FCMPU_OPCODE  = (63u << OPCODE_SHIFT |  00u << 1),
 362     FDIV_OPCODE   = (63u << OPCODE_SHIFT |  18u << 1),
 363     FDIVS_OPCODE  = (59u << OPCODE_SHIFT |  18u << 1),
 364     FMR_OPCODE    = (63u << OPCODE_SHIFT |  72u << 1),
 365     // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
 366     // on Power7.  Do not use.
 367     // MFFGPR_OPCODE  = (31u << OPCODE_SHIFT | 607u << 1),
 368     // MFTGPR_OPCODE  = (31u << OPCODE_SHIFT | 735u << 1),
 369     CMPB_OPCODE    = (31u << OPCODE_SHIFT |  508  << 1),
 370     POPCNTB_OPCODE = (31u << OPCODE_SHIFT |  122  << 1),
 371     POPCNTW_OPCODE = (31u << OPCODE_SHIFT |  378  << 1),
 372     POPCNTD_OPCODE = (31u << OPCODE_SHIFT |  506  << 1),
 373     FABS_OPCODE    = (63u << OPCODE_SHIFT |  264u << 1),
 374     FNABS_OPCODE   = (63u << OPCODE_SHIFT |  136u << 1),
 375     FMUL_OPCODE    = (63u << OPCODE_SHIFT |   25u << 1),
 376     FMULS_OPCODE   = (59u << OPCODE_SHIFT |   25u << 1),
 377     FNEG_OPCODE    = (63u << OPCODE_SHIFT |   40u << 1),
 378     FSUB_OPCODE    = (63u << OPCODE_SHIFT |   20u << 1),
 379     FSUBS_OPCODE   = (59u << OPCODE_SHIFT |   20u << 1),
 380 
 381     // PPC64-internal FPU conversion opcodes
 382     FCFID_OPCODE   = (63u << OPCODE_SHIFT |  846u << 1),
 383     FCFIDS_OPCODE  = (59u << OPCODE_SHIFT |  846u << 1),
 384     FCTID_OPCODE   = (63u << OPCODE_SHIFT |  814u << 1),
 385     FCTIDZ_OPCODE  = (63u << OPCODE_SHIFT |  815u << 1),
 386     FCTIW_OPCODE   = (63u << OPCODE_SHIFT |   14u << 1),
 387     FCTIWZ_OPCODE  = (63u << OPCODE_SHIFT |   15u << 1),
 388     FRSP_OPCODE    = (63u << OPCODE_SHIFT |   12u << 1),
 389 
 390     // WARNING: using fmadd results in a non-compliant vm. Some floating
 391     // point tck tests will fail.
 392     FMADD_OPCODE   = (59u << OPCODE_SHIFT |   29u << 1),
 393     DMADD_OPCODE   = (63u << OPCODE_SHIFT |   29u << 1),
 394     FMSUB_OPCODE   = (59u << OPCODE_SHIFT |   28u << 1),
 395     DMSUB_OPCODE   = (63u << OPCODE_SHIFT |   28u << 1),
 396     FNMADD_OPCODE  = (59u << OPCODE_SHIFT |   31u << 1),
 397     DNMADD_OPCODE  = (63u << OPCODE_SHIFT |   31u << 1),
 398     FNMSUB_OPCODE  = (59u << OPCODE_SHIFT |   30u << 1),
 399     DNMSUB_OPCODE  = (63u << OPCODE_SHIFT |   30u << 1),
 400 
 401     LFD_OPCODE     = (50u << OPCODE_SHIFT |   00u << 1),
 402     LFDU_OPCODE    = (51u << OPCODE_SHIFT |   00u << 1),
 403     LFDX_OPCODE    = (31u << OPCODE_SHIFT |  599u << 1),
 404     LFS_OPCODE     = (48u << OPCODE_SHIFT |   00u << 1),
 405     LFSU_OPCODE    = (49u << OPCODE_SHIFT |   00u << 1),
 406     LFSX_OPCODE    = (31u << OPCODE_SHIFT |  535u << 1),
 407 
 408     STFD_OPCODE    = (54u << OPCODE_SHIFT |   00u << 1),
 409     STFDU_OPCODE   = (55u << OPCODE_SHIFT |   00u << 1),
 410     STFDX_OPCODE   = (31u << OPCODE_SHIFT |  727u << 1),
 411     STFS_OPCODE    = (52u << OPCODE_SHIFT |   00u << 1),
 412     STFSU_OPCODE   = (53u << OPCODE_SHIFT |   00u << 1),
 413     STFSX_OPCODE   = (31u << OPCODE_SHIFT |  663u << 1),
 414 
 415     FSQRT_OPCODE   = (63u << OPCODE_SHIFT |   22u << 1),            // A-FORM
 416     FSQRTS_OPCODE  = (59u << OPCODE_SHIFT |   22u << 1),            // A-FORM
 417 
 418     // Vector instruction support for >= Power6
 419     // Vector Storage Access
 420     LVEBX_OPCODE   = (31u << OPCODE_SHIFT |    7u << 1),
 421     LVEHX_OPCODE   = (31u << OPCODE_SHIFT |   39u << 1),
 422     LVEWX_OPCODE   = (31u << OPCODE_SHIFT |   71u << 1),
 423     LVX_OPCODE     = (31u << OPCODE_SHIFT |  103u << 1),
 424     LVXL_OPCODE    = (31u << OPCODE_SHIFT |  359u << 1),
 425     STVEBX_OPCODE  = (31u << OPCODE_SHIFT |  135u << 1),
 426     STVEHX_OPCODE  = (31u << OPCODE_SHIFT |  167u << 1),
 427     STVEWX_OPCODE  = (31u << OPCODE_SHIFT |  199u << 1),
 428     STVX_OPCODE    = (31u << OPCODE_SHIFT |  231u << 1),
 429     STVXL_OPCODE   = (31u << OPCODE_SHIFT |  487u << 1),
 430     LVSL_OPCODE    = (31u << OPCODE_SHIFT |    6u << 1),
 431     LVSR_OPCODE    = (31u << OPCODE_SHIFT |   38u << 1),
 432 
 433     // Vector Permute and Formatting
 434     VPKPX_OPCODE   = (4u  << OPCODE_SHIFT |  782u     ),
 435     VPKSHSS_OPCODE = (4u  << OPCODE_SHIFT |  398u     ),
 436     VPKSWSS_OPCODE = (4u  << OPCODE_SHIFT |  462u     ),
 437     VPKSHUS_OPCODE = (4u  << OPCODE_SHIFT |  270u     ),
 438     VPKSWUS_OPCODE = (4u  << OPCODE_SHIFT |  334u     ),
 439     VPKUHUM_OPCODE = (4u  << OPCODE_SHIFT |   14u     ),
 440     VPKUWUM_OPCODE = (4u  << OPCODE_SHIFT |   78u     ),
 441     VPKUHUS_OPCODE = (4u  << OPCODE_SHIFT |  142u     ),
 442     VPKUWUS_OPCODE = (4u  << OPCODE_SHIFT |  206u     ),
 443     VUPKHPX_OPCODE = (4u  << OPCODE_SHIFT |  846u     ),
 444     VUPKHSB_OPCODE = (4u  << OPCODE_SHIFT |  526u     ),
 445     VUPKHSH_OPCODE = (4u  << OPCODE_SHIFT |  590u     ),
 446     VUPKLPX_OPCODE = (4u  << OPCODE_SHIFT |  974u     ),
 447     VUPKLSB_OPCODE = (4u  << OPCODE_SHIFT |  654u     ),
 448     VUPKLSH_OPCODE = (4u  << OPCODE_SHIFT |  718u     ),
 449 
 450     VMRGHB_OPCODE  = (4u  << OPCODE_SHIFT |   12u     ),
 451     VMRGHW_OPCODE  = (4u  << OPCODE_SHIFT |  140u     ),
 452     VMRGHH_OPCODE  = (4u  << OPCODE_SHIFT |   76u     ),
 453     VMRGLB_OPCODE  = (4u  << OPCODE_SHIFT |  268u     ),
 454     VMRGLW_OPCODE  = (4u  << OPCODE_SHIFT |  396u     ),
 455     VMRGLH_OPCODE  = (4u  << OPCODE_SHIFT |  332u     ),
 456 
 457     VSPLT_OPCODE   = (4u  << OPCODE_SHIFT |  524u     ),
 458     VSPLTH_OPCODE  = (4u  << OPCODE_SHIFT |  588u     ),
 459     VSPLTW_OPCODE  = (4u  << OPCODE_SHIFT |  652u     ),
 460     VSPLTISB_OPCODE= (4u  << OPCODE_SHIFT |  780u     ),
 461     VSPLTISH_OPCODE= (4u  << OPCODE_SHIFT |  844u     ),
 462     VSPLTISW_OPCODE= (4u  << OPCODE_SHIFT |  908u     ),
 463 
 464     VPERM_OPCODE   = (4u  << OPCODE_SHIFT |   43u     ),
 465     VSEL_OPCODE    = (4u  << OPCODE_SHIFT |   42u     ),
 466 
 467     VSL_OPCODE     = (4u  << OPCODE_SHIFT |  452u     ),
 468     VSLDOI_OPCODE  = (4u  << OPCODE_SHIFT |   44u     ),
 469     VSLO_OPCODE    = (4u  << OPCODE_SHIFT | 1036u     ),
 470     VSR_OPCODE     = (4u  << OPCODE_SHIFT |  708u     ),
 471     VSRO_OPCODE    = (4u  << OPCODE_SHIFT | 1100u     ),
 472 
 473     // Vector Integer
 474     VADDCUW_OPCODE = (4u  << OPCODE_SHIFT |  384u     ),
 475     VADDSHS_OPCODE = (4u  << OPCODE_SHIFT |  832u     ),
 476     VADDSBS_OPCODE = (4u  << OPCODE_SHIFT |  768u     ),
 477     VADDSWS_OPCODE = (4u  << OPCODE_SHIFT |  896u     ),
 478     VADDUBM_OPCODE = (4u  << OPCODE_SHIFT |    0u     ),
 479     VADDUWM_OPCODE = (4u  << OPCODE_SHIFT |  128u     ),
 480     VADDUHM_OPCODE = (4u  << OPCODE_SHIFT |   64u     ),
 481     VADDUBS_OPCODE = (4u  << OPCODE_SHIFT |  512u     ),
 482     VADDUWS_OPCODE = (4u  << OPCODE_SHIFT |  640u     ),
 483     VADDUHS_OPCODE = (4u  << OPCODE_SHIFT |  576u     ),
 484     VSUBCUW_OPCODE = (4u  << OPCODE_SHIFT | 1408u     ),
 485     VSUBSHS_OPCODE = (4u  << OPCODE_SHIFT | 1856u     ),
 486     VSUBSBS_OPCODE = (4u  << OPCODE_SHIFT | 1792u     ),
 487     VSUBSWS_OPCODE = (4u  << OPCODE_SHIFT | 1920u     ),
 488     VSUBUBM_OPCODE = (4u  << OPCODE_SHIFT | 1024u     ),
 489     VSUBUWM_OPCODE = (4u  << OPCODE_SHIFT | 1152u     ),
 490     VSUBUHM_OPCODE = (4u  << OPCODE_SHIFT | 1088u     ),
 491     VSUBUBS_OPCODE = (4u  << OPCODE_SHIFT | 1536u     ),
 492     VSUBUWS_OPCODE = (4u  << OPCODE_SHIFT | 1664u     ),
 493     VSUBUHS_OPCODE = (4u  << OPCODE_SHIFT | 1600u     ),
 494 
 495     VMULESB_OPCODE = (4u  << OPCODE_SHIFT |  776u     ),
 496     VMULEUB_OPCODE = (4u  << OPCODE_SHIFT |  520u     ),
 497     VMULESH_OPCODE = (4u  << OPCODE_SHIFT |  840u     ),
 498     VMULEUH_OPCODE = (4u  << OPCODE_SHIFT |  584u     ),
 499     VMULOSB_OPCODE = (4u  << OPCODE_SHIFT |  264u     ),
 500     VMULOUB_OPCODE = (4u  << OPCODE_SHIFT |    8u     ),
 501     VMULOSH_OPCODE = (4u  << OPCODE_SHIFT |  328u     ),
 502     VMULOUH_OPCODE = (4u  << OPCODE_SHIFT |   72u     ),
 503     VMHADDSHS_OPCODE=(4u  << OPCODE_SHIFT |   32u     ),
 504     VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT |   33u     ),
 505     VMLADDUHM_OPCODE=(4u  << OPCODE_SHIFT |   34u     ),
 506     VMSUBUHM_OPCODE= (4u  << OPCODE_SHIFT |   36u     ),
 507     VMSUMMBM_OPCODE= (4u  << OPCODE_SHIFT |   37u     ),
 508     VMSUMSHM_OPCODE= (4u  << OPCODE_SHIFT |   40u     ),
 509     VMSUMSHS_OPCODE= (4u  << OPCODE_SHIFT |   41u     ),
 510     VMSUMUHM_OPCODE= (4u  << OPCODE_SHIFT |   38u     ),
 511     VMSUMUHS_OPCODE= (4u  << OPCODE_SHIFT |   39u     ),
 512 
 513     VSUMSWS_OPCODE = (4u  << OPCODE_SHIFT | 1928u     ),
 514     VSUM2SWS_OPCODE= (4u  << OPCODE_SHIFT | 1672u     ),
 515     VSUM4SBS_OPCODE= (4u  << OPCODE_SHIFT | 1800u     ),
 516     VSUM4UBS_OPCODE= (4u  << OPCODE_SHIFT | 1544u     ),
 517     VSUM4SHS_OPCODE= (4u  << OPCODE_SHIFT | 1608u     ),
 518 
 519     VAVGSB_OPCODE  = (4u  << OPCODE_SHIFT | 1282u     ),
 520     VAVGSW_OPCODE  = (4u  << OPCODE_SHIFT | 1410u     ),
 521     VAVGSH_OPCODE  = (4u  << OPCODE_SHIFT | 1346u     ),
 522     VAVGUB_OPCODE  = (4u  << OPCODE_SHIFT | 1026u     ),
 523     VAVGUW_OPCODE  = (4u  << OPCODE_SHIFT | 1154u     ),
 524     VAVGUH_OPCODE  = (4u  << OPCODE_SHIFT | 1090u     ),
 525 
 526     VMAXSB_OPCODE  = (4u  << OPCODE_SHIFT |  258u     ),
 527     VMAXSW_OPCODE  = (4u  << OPCODE_SHIFT |  386u     ),
 528     VMAXSH_OPCODE  = (4u  << OPCODE_SHIFT |  322u     ),
 529     VMAXUB_OPCODE  = (4u  << OPCODE_SHIFT |    2u     ),
 530     VMAXUW_OPCODE  = (4u  << OPCODE_SHIFT |  130u     ),
 531     VMAXUH_OPCODE  = (4u  << OPCODE_SHIFT |   66u     ),
 532     VMINSB_OPCODE  = (4u  << OPCODE_SHIFT |  770u     ),
 533     VMINSW_OPCODE  = (4u  << OPCODE_SHIFT |  898u     ),
 534     VMINSH_OPCODE  = (4u  << OPCODE_SHIFT |  834u     ),
 535     VMINUB_OPCODE  = (4u  << OPCODE_SHIFT |  514u     ),
 536     VMINUW_OPCODE  = (4u  << OPCODE_SHIFT |  642u     ),
 537     VMINUH_OPCODE  = (4u  << OPCODE_SHIFT |  578u     ),
 538 
 539     VCMPEQUB_OPCODE= (4u  << OPCODE_SHIFT |    6u     ),
 540     VCMPEQUH_OPCODE= (4u  << OPCODE_SHIFT |   70u     ),
 541     VCMPEQUW_OPCODE= (4u  << OPCODE_SHIFT |  134u     ),
 542     VCMPGTSH_OPCODE= (4u  << OPCODE_SHIFT |  838u     ),
 543     VCMPGTSB_OPCODE= (4u  << OPCODE_SHIFT |  774u     ),
 544     VCMPGTSW_OPCODE= (4u  << OPCODE_SHIFT |  902u     ),
 545     VCMPGTUB_OPCODE= (4u  << OPCODE_SHIFT |  518u     ),
 546     VCMPGTUH_OPCODE= (4u  << OPCODE_SHIFT |  582u     ),
 547     VCMPGTUW_OPCODE= (4u  << OPCODE_SHIFT |  646u     ),
 548 
 549     VAND_OPCODE    = (4u  << OPCODE_SHIFT | 1028u     ),
 550     VANDC_OPCODE   = (4u  << OPCODE_SHIFT | 1092u     ),
 551     VNOR_OPCODE    = (4u  << OPCODE_SHIFT | 1284u     ),
 552     VOR_OPCODE     = (4u  << OPCODE_SHIFT | 1156u     ),
 553     VXOR_OPCODE    = (4u  << OPCODE_SHIFT | 1220u     ),
 554     VRLB_OPCODE    = (4u  << OPCODE_SHIFT |    4u     ),
 555     VRLW_OPCODE    = (4u  << OPCODE_SHIFT |  132u     ),
 556     VRLH_OPCODE    = (4u  << OPCODE_SHIFT |   68u     ),
 557     VSLB_OPCODE    = (4u  << OPCODE_SHIFT |  260u     ),
 558     VSKW_OPCODE    = (4u  << OPCODE_SHIFT |  388u     ),
 559     VSLH_OPCODE    = (4u  << OPCODE_SHIFT |  324u     ),
 560     VSRB_OPCODE    = (4u  << OPCODE_SHIFT |  516u     ),
 561     VSRW_OPCODE    = (4u  << OPCODE_SHIFT |  644u     ),
 562     VSRH_OPCODE    = (4u  << OPCODE_SHIFT |  580u     ),
 563     VSRAB_OPCODE   = (4u  << OPCODE_SHIFT |  772u     ),
 564     VSRAW_OPCODE   = (4u  << OPCODE_SHIFT |  900u     ),
 565     VSRAH_OPCODE   = (4u  << OPCODE_SHIFT |  836u     ),
 566 
 567     // Vector Floating-Point
 568     // not implemented yet
 569 
 570     // Vector Status and Control
 571     MTVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1604u     ),
 572     MFVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1540u     ),
 573 
 574     // Icache and dcache related instructions
 575     DCBA_OPCODE    = (31u << OPCODE_SHIFT |  758u << 1),
 576     DCBZ_OPCODE    = (31u << OPCODE_SHIFT | 1014u << 1),
 577     DCBST_OPCODE   = (31u << OPCODE_SHIFT |   54u << 1),
 578     DCBF_OPCODE    = (31u << OPCODE_SHIFT |   86u << 1),
 579 
 580     DCBT_OPCODE    = (31u << OPCODE_SHIFT |  278u << 1),
 581     DCBTST_OPCODE  = (31u << OPCODE_SHIFT |  246u << 1),
 582     ICBI_OPCODE    = (31u << OPCODE_SHIFT |  982u << 1),
 583 
 584     // Instruction synchronization
 585     ISYNC_OPCODE   = (19u << OPCODE_SHIFT |  150u << 1),
 586     // Memory barriers
 587     SYNC_OPCODE    = (31u << OPCODE_SHIFT |  598u << 1),
 588     EIEIO_OPCODE   = (31u << OPCODE_SHIFT |  854u << 1),
 589 
 590     // Trap instructions
 591     TDI_OPCODE     = (2u  << OPCODE_SHIFT),
 592     TWI_OPCODE     = (3u  << OPCODE_SHIFT),
 593     TD_OPCODE      = (31u << OPCODE_SHIFT |   68u << 1),
 594     TW_OPCODE      = (31u << OPCODE_SHIFT |    4u << 1),
 595 
 596     // Atomics.
 597     LWARX_OPCODE   = (31u << OPCODE_SHIFT |   20u << 1),
 598     LDARX_OPCODE   = (31u << OPCODE_SHIFT |   84u << 1),
 599     STWCX_OPCODE   = (31u << OPCODE_SHIFT |  150u << 1),
 600     STDCX_OPCODE   = (31u << OPCODE_SHIFT |  214u << 1)
 601 
 602   };
 603 
 604   // Trap instructions TO bits
 605   enum trap_to_bits {
 606     // single bits
 607     traptoLessThanSigned      = 1 << 4, // 0, left end
 608     traptoGreaterThanSigned   = 1 << 3,
 609     traptoEqual               = 1 << 2,
 610     traptoLessThanUnsigned    = 1 << 1,
 611     traptoGreaterThanUnsigned = 1 << 0, // 4, right end
 612 
 613     // compound ones
 614     traptoUnconditional       = (traptoLessThanSigned |
 615                                  traptoGreaterThanSigned |
 616                                  traptoEqual |
 617                                  traptoLessThanUnsigned |
 618                                  traptoGreaterThanUnsigned)
 619   };
 620 
 621   // Branch hints BH field
 622   enum branch_hint_bh {
 623     // bclr cases:
 624     bhintbhBCLRisReturn            = 0,
 625     bhintbhBCLRisNotReturnButSame  = 1,
 626     bhintbhBCLRisNotPredictable    = 3,
 627 
 628     // bcctr cases:
 629     bhintbhBCCTRisNotReturnButSame = 0,
 630     bhintbhBCCTRisNotPredictable   = 3
 631   };
 632 
 633   // Branch prediction hints AT field
 634   enum branch_hint_at {
 635     bhintatNoHint     = 0,  // at=00
 636     bhintatIsNotTaken = 2,  // at=10
 637     bhintatIsTaken    = 3   // at=11
 638   };
 639 
 640   // Branch prediction hints
 641   enum branch_hint_concept {
 642     // Use the same encoding as branch_hint_at to simply code.
 643     bhintNoHint       = bhintatNoHint,
 644     bhintIsNotTaken   = bhintatIsNotTaken,
 645     bhintIsTaken      = bhintatIsTaken
 646   };
 647 
 648   // Used in BO field of branch instruction.
 649   enum branch_condition {
 650     bcondCRbiIs0      =  4, // bo=001at
 651     bcondCRbiIs1      = 12, // bo=011at
 652     bcondAlways       = 20  // bo=10100
 653   };
 654 
 655   // Branch condition with combined prediction hints.
 656   enum branch_condition_with_hint {
 657     bcondCRbiIs0_bhintNoHint     = bcondCRbiIs0 | bhintatNoHint,
 658     bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
 659     bcondCRbiIs0_bhintIsTaken    = bcondCRbiIs0 | bhintatIsTaken,
 660     bcondCRbiIs1_bhintNoHint     = bcondCRbiIs1 | bhintatNoHint,
 661     bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
 662     bcondCRbiIs1_bhintIsTaken    = bcondCRbiIs1 | bhintatIsTaken,
 663   };
 664 
 665   // Branch prediction hints.
 666   inline static int add_bhint_to_boint(const int bhint, const int boint) {
 667     switch (boint) {
 668       case bcondCRbiIs0:
 669       case bcondCRbiIs1:
 670         // branch_hint and branch_hint_at have same encodings
 671         assert(   (int)bhintNoHint     == (int)bhintatNoHint
 672                && (int)bhintIsNotTaken == (int)bhintatIsNotTaken
 673                && (int)bhintIsTaken    == (int)bhintatIsTaken,
 674                "wrong encodings");
 675         assert((bhint & 0x03) == bhint, "wrong encodings");
 676         return (boint & ~0x03) | bhint;
 677       case bcondAlways:
 678         // no branch_hint
 679         return boint;
 680       default:
 681         ShouldNotReachHere();
 682         return 0;
 683     }
 684   }
 685 
 686   // Extract bcond from boint.
 687   inline static int inv_boint_bcond(const int boint) {
 688     int r_bcond = boint & ~0x03;
 689     assert(r_bcond == bcondCRbiIs0 ||
 690            r_bcond == bcondCRbiIs1 ||
 691            r_bcond == bcondAlways,
 692            "bad branch condition");
 693     return r_bcond;
 694   }
 695 
 696   // Extract bhint from boint.
 697   inline static int inv_boint_bhint(const int boint) {
 698     int r_bhint = boint & 0x03;
 699     assert(r_bhint == bhintatNoHint ||
 700            r_bhint == bhintatIsNotTaken ||
 701            r_bhint == bhintatIsTaken,
 702            "bad branch hint");
 703     return r_bhint;
 704   }
 705 
 706   // Calculate opposite of given bcond.
 707   inline static int opposite_bcond(const int bcond) {
 708     switch (bcond) {
 709       case bcondCRbiIs0:
 710         return bcondCRbiIs1;
 711       case bcondCRbiIs1:
 712         return bcondCRbiIs0;
 713       default:
 714         ShouldNotReachHere();
 715         return 0;
 716     }
 717   }
 718 
 719   // Calculate opposite of given bhint.
 720   inline static int opposite_bhint(const int bhint) {
 721     switch (bhint) {
 722       case bhintatNoHint:
 723         return bhintatNoHint;
 724       case bhintatIsNotTaken:
 725         return bhintatIsTaken;
 726       case bhintatIsTaken:
 727         return bhintatIsNotTaken;
 728       default:
 729         ShouldNotReachHere();
 730         return 0;
 731     }
 732   }
 733 
 734   // PPC branch instructions
 735   enum ppcops {
 736     b_op    = 18,
 737     bc_op   = 16,
 738     bcr_op  = 19
 739   };
 740 
 741   enum Condition {
 742     negative         = 0,
 743     less             = 0,
 744     positive         = 1,
 745     greater          = 1,
 746     zero             = 2,
 747     equal            = 2,
 748     summary_overflow = 3,
 749   };
 750 
 751  public:
 752   // Helper functions for groups of instructions
 753 
 754   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
 755 
 756   enum Membar_mask_bits { // page 184, v9
 757     StoreStore = 1 << 3,
 758     LoadStore  = 1 << 2,
 759     StoreLoad  = 1 << 1,
 760     LoadLoad   = 1 << 0,
 761 
 762     Sync       = 1 << 6,
 763     MemIssue   = 1 << 5,
 764     Lookaside  = 1 << 4
 765   };
 766 
 767   // instruction must start at passed address
 768   static int instr_len(unsigned char *instr) { return BytesPerInstWord; }
 769 
 770   // instruction must be left-justified in argument
 771   static int instr_len(unsigned long instr)  { return BytesPerInstWord; }
 772 
 773   // longest instructions
 774   static int instr_maxlen() { return BytesPerInstWord; }
 775 
 776   // Test if x is within signed immediate range for nbits.
 777   static bool is_simm(int x, unsigned int nbits) {
 778     assert(0 < nbits && nbits < 32, "out of bounds");
 779     const int   min      = -( ((int)1) << nbits-1 );
 780     const int   maxplus1 =  ( ((int)1) << nbits-1 );
 781     return min <= x && x < maxplus1;
 782   }
 783 
 784   static bool is_simm(jlong x, unsigned int nbits) {
 785     assert(0 < nbits && nbits < 64, "out of bounds");
 786     const jlong min      = -( ((jlong)1) << nbits-1 );
 787     const jlong maxplus1 =  ( ((jlong)1) << nbits-1 );
 788     return min <= x && x < maxplus1;
 789   }
 790 
 791   // Test if x is within unsigned immediate range for nbits
 792   static bool is_uimm(int x, unsigned int nbits) {
 793     assert(0 < nbits && nbits < 32, "out of bounds");
 794     const int   maxplus1 = ( ((int)1) << nbits );
 795     return 0 <= x && x < maxplus1;
 796   }
 797 
 798   static bool is_uimm(jlong x, unsigned int nbits) {
 799     assert(0 < nbits && nbits < 64, "out of bounds");
 800     const jlong maxplus1 =  ( ((jlong)1) << nbits );
 801     return 0 <= x && x < maxplus1;
 802   }
 803 
 804  protected:
 805   // helpers
 806 
 807   // X is supposed to fit in a field "nbits" wide
 808   // and be sign-extended. Check the range.
 809   static void assert_signed_range(intptr_t x, int nbits) {
 810     assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
 811            "value out of range");
 812   }
 813 
 814   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
 815     assert((x & 3) == 0, "not word aligned");
 816     assert_signed_range(x, nbits + 2);
 817   }
 818 
 819   static void assert_unsigned_const(int x, int nbits) {
 820     assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
 821   }
 822 
 823   static int fmask(juint hi_bit, juint lo_bit) {
 824     assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
 825     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
 826   }
 827 
 828   // inverse of u_field
 829   static int inv_u_field(int x, int hi_bit, int lo_bit) {
 830     juint r = juint(x) >> lo_bit;
 831     r &= fmask(hi_bit, lo_bit);
 832     return int(r);
 833   }
 834 
 835   // signed version: extract from field and sign-extend
 836   static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
 837     x = x << (31-hi_bit);
 838     x = x >> (31-hi_bit+lo_bit);
 839     return x;
 840   }
 841 
 842   static int u_field(int x, int hi_bit, int lo_bit) {
 843     assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
 844     int r = x << lo_bit;
 845     assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
 846     return r;
 847   }
 848 
 849   // Same as u_field for signed values
 850   static int s_field(int x, int hi_bit, int lo_bit) {
 851     int nbits = hi_bit - lo_bit + 1;
 852     assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
 853       "value out of range");
 854     x &= fmask(hi_bit, lo_bit);
 855     int r = x << lo_bit;
 856     return r;
 857   }
 858 
 859   // inv_op for ppc instructions
 860   static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
 861 
 862   // Determine target address from li, bd field of branch instruction.
 863   static intptr_t inv_li_field(int x) {
 864     intptr_t r = inv_s_field_ppc(x, 25, 2);
 865     r = (r << 2);
 866     return r;
 867   }
 868   static intptr_t inv_bd_field(int x, intptr_t pos) {
 869     intptr_t r = inv_s_field_ppc(x, 15, 2);
 870     r = (r << 2) + pos;
 871     return r;
 872   }
 873 
 874   #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
 875   #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
 876   // Extract instruction fields from instruction words.
 877  public:
 878   static int inv_ra_field(int x) { return inv_opp_u_field(x, 15, 11); }
 879   static int inv_rb_field(int x) { return inv_opp_u_field(x, 20, 16); }
 880   static int inv_rt_field(int x) { return inv_opp_u_field(x, 10,  6); }
 881   static int inv_rs_field(int x) { return inv_opp_u_field(x, 10,  6); }
 882   // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
 883   // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
 884   static int inv_ds_field(int x) { return inv_opp_s_field(x, 29, 16) << 2; }
 885   static int inv_d1_field(int x) { return inv_opp_s_field(x, 31, 16); }
 886   static int inv_si_field(int x) { return inv_opp_s_field(x, 31, 16); }
 887   static int inv_to_field(int x) { return inv_opp_u_field(x, 10, 6);  }
 888   static int inv_lk_field(int x) { return inv_opp_u_field(x, 31, 31); }
 889   static int inv_bo_field(int x) { return inv_opp_u_field(x, 10,  6); }
 890   static int inv_bi_field(int x) { return inv_opp_u_field(x, 15, 11); }
 891 
 892   #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
 893   #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
 894 
 895   // instruction fields
 896   static int aa(       int         x)  { return  opp_u_field(x,             30, 30); }
 897   static int ba(       int         x)  { return  opp_u_field(x,             15, 11); }
 898   static int bb(       int         x)  { return  opp_u_field(x,             20, 16); }
 899   static int bc(       int         x)  { return  opp_u_field(x,             25, 21); }
 900   static int bd(       int         x)  { return  opp_s_field(x,             29, 16); }
 901   static int bf( ConditionRegister cr) { return  bf(cr->encoding()); }
 902   static int bf(       int         x)  { return  opp_u_field(x,              8,  6); }
 903   static int bfa(ConditionRegister cr) { return  bfa(cr->encoding()); }
 904   static int bfa(      int         x)  { return  opp_u_field(x,             13, 11); }
 905   static int bh(       int         x)  { return  opp_u_field(x,             20, 19); }
 906   static int bi(       int         x)  { return  opp_u_field(x,             15, 11); }
 907   static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
 908   static int bo(       int         x)  { return  opp_u_field(x,             10,  6); }
 909   static int bt(       int         x)  { return  opp_u_field(x,             10,  6); }
 910   static int d1(       int         x)  { return  opp_s_field(x,             31, 16); }
 911   static int ds(       int         x)  { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
 912   static int eh(       int         x)  { return  opp_u_field(x,             31, 31); }
 913   static int flm(      int         x)  { return  opp_u_field(x,             14,  7); }
 914   static int fra(    FloatRegister r)  { return  fra(r->encoding());}
 915   static int frb(    FloatRegister r)  { return  frb(r->encoding());}
 916   static int frc(    FloatRegister r)  { return  frc(r->encoding());}
 917   static int frs(    FloatRegister r)  { return  frs(r->encoding());}
 918   static int frt(    FloatRegister r)  { return  frt(r->encoding());}
 919   static int fra(      int         x)  { return  opp_u_field(x,             15, 11); }
 920   static int frb(      int         x)  { return  opp_u_field(x,             20, 16); }
 921   static int frc(      int         x)  { return  opp_u_field(x,             25, 21); }
 922   static int frs(      int         x)  { return  opp_u_field(x,             10,  6); }
 923   static int frt(      int         x)  { return  opp_u_field(x,             10,  6); }
 924   static int fxm(      int         x)  { return  opp_u_field(x,             19, 12); }
 925   static int l10(      int         x)  { return  opp_u_field(x,             10, 10); }
 926   static int l15(      int         x)  { return  opp_u_field(x,             15, 15); }
 927   static int l910(     int         x)  { return  opp_u_field(x,             10,  9); }
 928   static int lev(      int         x)  { return  opp_u_field(x,             26, 20); }
 929   static int li(       int         x)  { return  opp_s_field(x,             29,  6); }
 930   static int lk(       int         x)  { return  opp_u_field(x,             31, 31); }
 931   static int mb2125(   int         x)  { return  opp_u_field(x,             25, 21); }
 932   static int me2630(   int         x)  { return  opp_u_field(x,             30, 26); }
 933   static int mb2126(   int         x)  { return  opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
 934   static int me2126(   int         x)  { return  mb2126(x); }
 935   static int nb(       int         x)  { return  opp_u_field(x,             20, 16); }
 936   //static int opcd(   int         x)  { return  opp_u_field(x,              5,  0); } // is contained in our opcodes
 937   static int oe(       int         x)  { return  opp_u_field(x,             21, 21); }
 938   static int ra(       Register    r)  { return  ra(r->encoding()); }
 939   static int ra(       int         x)  { return  opp_u_field(x,             15, 11); }
 940   static int rb(       Register    r)  { return  rb(r->encoding()); }
 941   static int rb(       int         x)  { return  opp_u_field(x,             20, 16); }
 942   static int rc(       int         x)  { return  opp_u_field(x,             31, 31); }
 943   static int rs(       Register    r)  { return  rs(r->encoding()); }
 944   static int rs(       int         x)  { return  opp_u_field(x,             10,  6); }
 945   // we don't want to use R0 in memory accesses, because it has value `0' then
 946   static int ra0mem(   Register    r)  { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
 947   static int ra0mem(   int         x)  { assert(x != 0,  "cannot use register 0 in memory access");  return ra(x); }
 948 
 949   // register r is target
 950   static int rt(       Register    r)  { return rs(r); }
 951   static int rt(       int         x)  { return rs(x); }
 952   static int rta(      Register    r)  { return ra(r); }
 953   static int rta0mem(  Register    r)  { rta(r); return ra0mem(r); }
 954 
 955   static int sh1620(   int         x)  { return  opp_u_field(x,             20, 16); }
 956   static int sh30(     int         x)  { return  opp_u_field(x,             30, 30); }
 957   static int sh162030( int         x)  { return  sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
 958   static int si(       int         x)  { return  opp_s_field(x,             31, 16); }
 959   static int spr(      int         x)  { return  opp_u_field(x,             20, 11); }
 960   static int sr(       int         x)  { return  opp_u_field(x,             15, 12); }
 961   static int tbr(      int         x)  { return  opp_u_field(x,             20, 11); }
 962   static int th(       int         x)  { return  opp_u_field(x,             10,  7); }
 963   static int thct(     int         x)  { assert((x&8)==0, "must be valid cache specification");  return th(x); }
 964   static int thds(     int         x)  { assert((x&8)==8, "must be valid stream specification"); return th(x); }
 965   static int to(       int         x)  { return  opp_u_field(x,             10,  6); }
 966   static int u(        int         x)  { return  opp_u_field(x,             19, 16); }
 967   static int ui(       int         x)  { return  opp_u_field(x,             31, 16); }
 968 
 969   // support vector instructions for >= Power6
 970   static int vra(      int         x)  { return  opp_u_field(x,             15, 11); }
 971   static int vrb(      int         x)  { return  opp_u_field(x,             20, 16); }
 972   static int vrc(      int         x)  { return  opp_u_field(x,             25, 21); }
 973   static int vrs(      int         x)  { return  opp_u_field(x,             10,  6); }
 974   static int vrt(      int         x)  { return  opp_u_field(x,             10,  6); }
 975 
 976   static int vra(   VectorRegister r)  { return  vra(r->encoding());}
 977   static int vrb(   VectorRegister r)  { return  vrb(r->encoding());}
 978   static int vrc(   VectorRegister r)  { return  vrc(r->encoding());}
 979   static int vrs(   VectorRegister r)  { return  vrs(r->encoding());}
 980   static int vrt(   VectorRegister r)  { return  vrt(r->encoding());}
 981 
 982   static int vsplt_uim( int        x)  { return  opp_u_field(x,             15, 12); } // for vsplt* instructions
 983   static int vsplti_sim(int        x)  { return  opp_u_field(x,             15, 11); } // for vsplti* instructions
 984   static int vsldoi_shb(int        x)  { return  opp_u_field(x,             25, 22); } // for vsldoi instruction
 985   static int vcmp_rc(   int        x)  { return  opp_u_field(x,             21, 21); } // for vcmp* instructions
 986 
 987   //static int xo1(     int        x)  { return  opp_u_field(x,             29, 21); }// is contained in our opcodes
 988   //static int xo2(     int        x)  { return  opp_u_field(x,             30, 21); }// is contained in our opcodes
 989   //static int xo3(     int        x)  { return  opp_u_field(x,             30, 22); }// is contained in our opcodes
 990   //static int xo4(     int        x)  { return  opp_u_field(x,             30, 26); }// is contained in our opcodes
 991   //static int xo5(     int        x)  { return  opp_u_field(x,             29, 27); }// is contained in our opcodes
 992   //static int xo6(     int        x)  { return  opp_u_field(x,             30, 27); }// is contained in our opcodes
 993   //static int xo7(     int        x)  { return  opp_u_field(x,             31, 30); }// is contained in our opcodes
 994 
 995  protected:
 996   // Compute relative address for branch.
 997   static intptr_t disp(intptr_t x, intptr_t off) {
 998     int xx = x - off;
 999     xx = xx >> 2;
1000     return xx;
1001   }
1002 
1003  public:
1004   // signed immediate, in low bits, nbits long
1005   static int simm(int x, int nbits) {
1006     assert_signed_range(x, nbits);
1007     return x & ((1 << nbits) - 1);
1008   }
1009 
1010   // unsigned immediate, in low bits, nbits long
1011   static int uimm(int x, int nbits) {
1012     assert_unsigned_const(x, nbits);
1013     return x & ((1 << nbits) - 1);
1014   }
1015 
1016   static void set_imm(int* instr, short s) {
1017     short* p = ((short *)instr) + 1;
1018     *p = s;
1019   }
1020 
1021   static int get_imm(address a, int instruction_number) {
1022     short imm;
1023     short *p =((short *)a)+2*instruction_number+1;
1024     imm = *p;
1025     return (int)imm;
1026   }
1027 
1028   static inline int hi16_signed(  int x) { return (int)(int16_t)(x >> 16); }
1029   static inline int lo16_unsigned(int x) { return x & 0xffff; }
1030 
1031  protected:
1032 
1033   // Extract the top 32 bits in a 64 bit word.
1034   static int32_t hi32(int64_t x) {
1035     int32_t r = int32_t((uint64_t)x >> 32);
1036     return r;
1037   }
1038 
1039  public:
1040 
1041   static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
1042     return ((addr + (a - 1)) & ~(a - 1));
1043   }
1044 
1045   static inline bool is_aligned(unsigned int addr, unsigned int a) {
1046     return (0 == addr % a);
1047   }
1048 
1049   void flush() {
1050     AbstractAssembler::flush();
1051   }
1052 
1053   inline void emit_int32(int);  // shadows AbstractAssembler::emit_int32
1054   inline void emit_data(int);
1055   inline void emit_data(int, RelocationHolder const&);
1056   inline void emit_data(int, relocInfo::relocType rtype);
1057 
1058   // Emit an address.
1059   inline address emit_addr(const address addr = NULL);
1060 
1061   // Emit a function descriptor with the specified entry point, TOC,
1062   // and ENV. If the entry point is NULL, the descriptor will point
1063   // just past the descriptor.
1064   // Use values from friend functions as defaults.
1065   inline address emit_fd(address entry = NULL,
1066                          address toc = (address) FunctionDescriptor::friend_toc,
1067                          address env = (address) FunctionDescriptor::friend_env);
1068 
1069   /////////////////////////////////////////////////////////////////////////////////////
1070   // PPC instructions
1071   /////////////////////////////////////////////////////////////////////////////////////
1072 
1073   // Memory instructions use r0 as hard coded 0, e.g. to simulate loading
1074   // immediates. The normal instruction encoders enforce that r0 is not
1075   // passed to them. Use either extended mnemonics encoders or the special ra0
1076   // versions.
1077 
1078   // Issue an illegal instruction.
1079   inline void illtrap();
1080   static inline bool is_illtrap(int x);
1081 
1082   // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
1083   inline void addi( Register d, Register a, int si16);
1084   inline void addis(Register d, Register a, int si16);
1085  private:
1086   inline void addi_r0ok( Register d, Register a, int si16);
1087   inline void addis_r0ok(Register d, Register a, int si16);
1088  public:
1089   inline void addic_( Register d, Register a, int si16);
1090   inline void subfic( Register d, Register a, int si16);
1091   inline void add(    Register d, Register a, Register b);
1092   inline void add_(   Register d, Register a, Register b);
1093   inline void subf(   Register d, Register a, Register b);
1094   inline void sub(    Register d, Register a, Register b);
1095   inline void subf_(  Register d, Register a, Register b);
1096   inline void addc(   Register d, Register a, Register b);
1097   inline void addc_(  Register d, Register a, Register b);
1098   inline void subfc(  Register d, Register a, Register b);
1099   inline void subfc_( Register d, Register a, Register b);
1100   inline void adde(   Register d, Register a, Register b);
1101   inline void adde_(  Register d, Register a, Register b);
1102   inline void subfe(  Register d, Register a, Register b);
1103   inline void subfe_( Register d, Register a, Register b);
1104   inline void neg(    Register d, Register a);
1105   inline void neg_(   Register d, Register a);
1106   inline void mulli(  Register d, Register a, int si16);
1107   inline void mulld(  Register d, Register a, Register b);
1108   inline void mulld_( Register d, Register a, Register b);
1109   inline void mullw(  Register d, Register a, Register b);
1110   inline void mullw_( Register d, Register a, Register b);
1111   inline void mulhw(  Register d, Register a, Register b);
1112   inline void mulhw_( Register d, Register a, Register b);
1113   inline void mulhd(  Register d, Register a, Register b);
1114   inline void mulhd_( Register d, Register a, Register b);
1115   inline void mulhdu( Register d, Register a, Register b);
1116   inline void mulhdu_(Register d, Register a, Register b);
1117   inline void divd(   Register d, Register a, Register b);
1118   inline void divd_(  Register d, Register a, Register b);
1119   inline void divw(   Register d, Register a, Register b);
1120   inline void divw_(  Register d, Register a, Register b);
1121 
1122   // extended mnemonics
1123   inline void li(   Register d, int si16);
1124   inline void lis(  Register d, int si16);
1125   inline void addir(Register d, int si16, Register a);
1126 
1127   static bool is_addi(int x) {
1128      return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
1129   }
1130   static bool is_addis(int x) {
1131      return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
1132   }
1133   static bool is_bxx(int x) {
1134      return BXX_OPCODE == (x & BXX_OPCODE_MASK);
1135   }
1136   static bool is_b(int x) {
1137      return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
1138   }
1139   static bool is_bl(int x) {
1140      return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
1141   }
1142   static bool is_bcxx(int x) {
1143      return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
1144   }
1145   static bool is_bxx_or_bcxx(int x) {
1146      return is_bxx(x) || is_bcxx(x);
1147   }
1148   static bool is_bctrl(int x) {
1149      return x == 0x4e800421;
1150   }
1151   static bool is_bctr(int x) {
1152      return x == 0x4e800420;
1153   }
1154   static bool is_bclr(int x) {
1155      return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
1156   }
1157   static bool is_li(int x) {
1158      return is_addi(x) && inv_ra_field(x)==0;
1159   }
1160   static bool is_lis(int x) {
1161      return is_addis(x) && inv_ra_field(x)==0;
1162   }
1163   static bool is_mtctr(int x) {
1164      return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
1165   }
1166   static bool is_ld(int x) {
1167      return LD_OPCODE == (x & LD_OPCODE_MASK);
1168   }
1169   static bool is_std(int x) {
1170      return STD_OPCODE == (x & STD_OPCODE_MASK);
1171   }
1172   static bool is_stdu(int x) {
1173      return STDU_OPCODE == (x & STDU_OPCODE_MASK);
1174   }
1175   static bool is_stdx(int x) {
1176      return STDX_OPCODE == (x & STDX_OPCODE_MASK);
1177   }
1178   static bool is_stdux(int x) {
1179      return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
1180   }
1181   static bool is_stwx(int x) {
1182      return STWX_OPCODE == (x & STWX_OPCODE_MASK);
1183   }
1184   static bool is_stwux(int x) {
1185      return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
1186   }
1187   static bool is_stw(int x) {
1188      return STW_OPCODE == (x & STW_OPCODE_MASK);
1189   }
1190   static bool is_stwu(int x) {
1191      return STWU_OPCODE == (x & STWU_OPCODE_MASK);
1192   }
1193   static bool is_ori(int x) {
1194      return ORI_OPCODE == (x & ORI_OPCODE_MASK);
1195   };
1196   static bool is_oris(int x) {
1197      return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
1198   };
1199   static bool is_rldicr(int x) {
1200      return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
1201   };
1202   static bool is_nop(int x) {
1203     return x == 0x60000000;
1204   }
1205   // endgroup opcode for Power6
1206   static bool is_endgroup(int x) {
1207     return is_ori(x) && inv_ra_field(x)==1 && inv_rs_field(x)==1 && inv_d1_field(x)==0;
1208   }
1209 
1210 
1211  private:
1212   // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
1213   inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
1214   inline void cmp(  ConditionRegister bf, int l, Register a, Register b);
1215   inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
1216   inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
1217 
1218  public:
1219   // extended mnemonics of Compare Instructions
1220   inline void cmpwi( ConditionRegister crx, Register a, int si16);
1221   inline void cmpdi( ConditionRegister crx, Register a, int si16);
1222   inline void cmpw(  ConditionRegister crx, Register a, Register b);
1223   inline void cmpd(  ConditionRegister crx, Register a, Register b);
1224   inline void cmplwi(ConditionRegister crx, Register a, int ui16);
1225   inline void cmpldi(ConditionRegister crx, Register a, int ui16);
1226   inline void cmplw( ConditionRegister crx, Register a, Register b);
1227   inline void cmpld( ConditionRegister crx, Register a, Register b);
1228 
1229   inline void isel(   Register d, Register a, Register b, int bc);
1230 
1231   // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
1232          void andi(   Register a, Register s, int ui16);    // optimized version
1233   inline void andi_(  Register a, Register s, int ui16);
1234   inline void andis_( Register a, Register s, int ui16);
1235   inline void ori(    Register a, Register s, int ui16);
1236   inline void oris(   Register a, Register s, int ui16);
1237   inline void xori(   Register a, Register s, int ui16);
1238   inline void xoris(  Register a, Register s, int ui16);
1239   inline void andr(   Register a, Register s, Register b);  // suffixed by 'r' as 'and' is C++ keyword
1240   inline void and_(   Register a, Register s, Register b);
1241   // Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
1242   // SMT-priority change instruction (see SMT instructions below).
1243   inline void or_unchecked(Register a, Register s, Register b);
1244   inline void orr(    Register a, Register s, Register b);  // suffixed by 'r' as 'or' is C++ keyword
1245   inline void or_(    Register a, Register s, Register b);
1246   inline void xorr(   Register a, Register s, Register b);  // suffixed by 'r' as 'xor' is C++ keyword
1247   inline void xor_(   Register a, Register s, Register b);
1248   inline void nand(   Register a, Register s, Register b);
1249   inline void nand_(  Register a, Register s, Register b);
1250   inline void nor(    Register a, Register s, Register b);
1251   inline void nor_(   Register a, Register s, Register b);
1252   inline void andc(   Register a, Register s, Register b);
1253   inline void andc_(  Register a, Register s, Register b);
1254   inline void orc(    Register a, Register s, Register b);
1255   inline void orc_(   Register a, Register s, Register b);
1256   inline void extsb(  Register a, Register s);
1257   inline void extsh(  Register a, Register s);
1258   inline void extsw(  Register a, Register s);
1259 
1260   // extended mnemonics
1261   inline void nop();
1262   // NOP for FP and BR units (different versions to allow them to be in one group)
1263   inline void fpnop0();
1264   inline void fpnop1();
1265   inline void brnop0();
1266   inline void brnop1();
1267   inline void brnop2();
1268 
1269   inline void mr(      Register d, Register s);
1270   inline void ori_opt( Register d, int ui16);
1271   inline void oris_opt(Register d, int ui16);
1272 
1273   // endgroup opcode for Power6
1274   inline void endgroup();
1275 
1276   // count instructions
1277   inline void cntlzw(  Register a, Register s);
1278   inline void cntlzw_( Register a, Register s);
1279   inline void cntlzd(  Register a, Register s);
1280   inline void cntlzd_( Register a, Register s);
1281 
1282   // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
1283   inline void sld(     Register a, Register s, Register b);
1284   inline void sld_(    Register a, Register s, Register b);
1285   inline void slw(     Register a, Register s, Register b);
1286   inline void slw_(    Register a, Register s, Register b);
1287   inline void srd(     Register a, Register s, Register b);
1288   inline void srd_(    Register a, Register s, Register b);
1289   inline void srw(     Register a, Register s, Register b);
1290   inline void srw_(    Register a, Register s, Register b);
1291   inline void srad(    Register a, Register s, Register b);
1292   inline void srad_(   Register a, Register s, Register b);
1293   inline void sraw(    Register a, Register s, Register b);
1294   inline void sraw_(   Register a, Register s, Register b);
1295   inline void sradi(   Register a, Register s, int sh6);
1296   inline void sradi_(  Register a, Register s, int sh6);
1297   inline void srawi(   Register a, Register s, int sh5);
1298   inline void srawi_(  Register a, Register s, int sh5);
1299 
1300   // extended mnemonics for Shift Instructions
1301   inline void sldi(    Register a, Register s, int sh6);
1302   inline void sldi_(   Register a, Register s, int sh6);
1303   inline void slwi(    Register a, Register s, int sh5);
1304   inline void slwi_(   Register a, Register s, int sh5);
1305   inline void srdi(    Register a, Register s, int sh6);
1306   inline void srdi_(   Register a, Register s, int sh6);
1307   inline void srwi(    Register a, Register s, int sh5);
1308   inline void srwi_(   Register a, Register s, int sh5);
1309 
1310   inline void clrrdi(  Register a, Register s, int ui6);
1311   inline void clrrdi_( Register a, Register s, int ui6);
1312   inline void clrldi(  Register a, Register s, int ui6);
1313   inline void clrldi_( Register a, Register s, int ui6);
1314   inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
1315   inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
1316   inline void extrdi(  Register a, Register s, int n, int b);
1317   // testbit with condition register
1318   inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
1319 
1320   // rotate instructions
1321   inline void rotldi(  Register a, Register s, int n);
1322   inline void rotrdi(  Register a, Register s, int n);
1323   inline void rotlwi(  Register a, Register s, int n);
1324   inline void rotrwi(  Register a, Register s, int n);
1325 
1326   // Rotate Instructions
1327   inline void rldic(   Register a, Register s, int sh6, int mb6);
1328   inline void rldic_(  Register a, Register s, int sh6, int mb6);
1329   inline void rldicr(  Register a, Register s, int sh6, int mb6);
1330   inline void rldicr_( Register a, Register s, int sh6, int mb6);
1331   inline void rldicl(  Register a, Register s, int sh6, int mb6);
1332   inline void rldicl_( Register a, Register s, int sh6, int mb6);
1333   inline void rlwinm(  Register a, Register s, int sh5, int mb5, int me5);
1334   inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
1335   inline void rldimi(  Register a, Register s, int sh6, int mb6);
1336   inline void rldimi_( Register a, Register s, int sh6, int mb6);
1337   inline void rlwimi(  Register a, Register s, int sh5, int mb5, int me5);
1338   inline void insrdi(  Register a, Register s, int n,   int b);
1339   inline void insrwi(  Register a, Register s, int n,   int b);
1340 
1341   // PPC 1, section 3.3.2 Fixed-Point Load Instructions
1342   // 4 bytes
1343   inline void lwzx( Register d, Register s1, Register s2);
1344   inline void lwz(  Register d, int si16,    Register s1);
1345   inline void lwzu( Register d, int si16,    Register s1);
1346 
1347   // 4 bytes
1348   inline void lwax( Register d, Register s1, Register s2);
1349   inline void lwa(  Register d, int si16,    Register s1);
1350 
1351   // 2 bytes
1352   inline void lhzx( Register d, Register s1, Register s2);
1353   inline void lhz(  Register d, int si16,    Register s1);
1354   inline void lhzu( Register d, int si16,    Register s1);
1355 
1356   // 2 bytes
1357   inline void lhax( Register d, Register s1, Register s2);
1358   inline void lha(  Register d, int si16,    Register s1);
1359   inline void lhau( Register d, int si16,    Register s1);
1360 
1361   // 1 byte
1362   inline void lbzx( Register d, Register s1, Register s2);
1363   inline void lbz(  Register d, int si16,    Register s1);
1364   inline void lbzu( Register d, int si16,    Register s1);
1365 
1366   // 8 bytes
1367   inline void ldx(  Register d, Register s1, Register s2);
1368   inline void ld(   Register d, int si16,    Register s1);
1369   inline void ldu(  Register d, int si16,    Register s1);
1370 
1371   //  PPC 1, section 3.3.3 Fixed-Point Store Instructions
1372   inline void stwx( Register d, Register s1, Register s2);
1373   inline void stw(  Register d, int si16,    Register s1);
1374   inline void stwu( Register d, int si16,    Register s1);
1375 
1376   inline void sthx( Register d, Register s1, Register s2);
1377   inline void sth(  Register d, int si16,    Register s1);
1378   inline void sthu( Register d, int si16,    Register s1);
1379 
1380   inline void stbx( Register d, Register s1, Register s2);
1381   inline void stb(  Register d, int si16,    Register s1);
1382   inline void stbu( Register d, int si16,    Register s1);
1383 
1384   inline void stdx( Register d, Register s1, Register s2);
1385   inline void std(  Register d, int si16,    Register s1);
1386   inline void stdu( Register d, int si16,    Register s1);
1387   inline void stdux(Register s, Register a,  Register b);
1388 
1389   // PPC 1, section 3.3.13 Move To/From System Register Instructions
1390   inline void mtlr( Register s1);
1391   inline void mflr( Register d);
1392   inline void mtctr(Register s1);
1393   inline void mfctr(Register d);
1394   inline void mtcrf(int fxm, Register s);
1395   inline void mfcr( Register d);
1396   inline void mcrf( ConditionRegister crd, ConditionRegister cra);
1397   inline void mtcr( Register s);
1398 
1399   // PPC 1, section 2.4.1 Branch Instructions
1400   inline void b(  address a, relocInfo::relocType rt = relocInfo::none);
1401   inline void b(  Label& L);
1402   inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
1403   inline void bl( Label& L);
1404   inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1405   inline void bc( int boint, int biint, Label& L);
1406   inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1407   inline void bcl(int boint, int biint, Label& L);
1408 
1409   inline void bclr(  int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1410   inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1411   inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
1412                          relocInfo::relocType rt = relocInfo::none);
1413   inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
1414                          relocInfo::relocType rt = relocInfo::none);
1415 
1416   // helper function for b, bcxx
1417   inline bool is_within_range_of_b(address a, address pc);
1418   inline bool is_within_range_of_bcxx(address a, address pc);
1419 
1420   // get the destination of a bxx branch (b, bl, ba, bla)
1421   static inline address  bxx_destination(address baddr);
1422   static inline address  bxx_destination(int instr, address pc);
1423   static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
1424 
1425   // extended mnemonics for branch instructions
1426   inline void blt(ConditionRegister crx, Label& L);
1427   inline void bgt(ConditionRegister crx, Label& L);
1428   inline void beq(ConditionRegister crx, Label& L);
1429   inline void bso(ConditionRegister crx, Label& L);
1430   inline void bge(ConditionRegister crx, Label& L);
1431   inline void ble(ConditionRegister crx, Label& L);
1432   inline void bne(ConditionRegister crx, Label& L);
1433   inline void bns(ConditionRegister crx, Label& L);
1434 
1435   // Branch instructions with static prediction hints.
1436   inline void blt_predict_taken(    ConditionRegister crx, Label& L);
1437   inline void bgt_predict_taken(    ConditionRegister crx, Label& L);
1438   inline void beq_predict_taken(    ConditionRegister crx, Label& L);
1439   inline void bso_predict_taken(    ConditionRegister crx, Label& L);
1440   inline void bge_predict_taken(    ConditionRegister crx, Label& L);
1441   inline void ble_predict_taken(    ConditionRegister crx, Label& L);
1442   inline void bne_predict_taken(    ConditionRegister crx, Label& L);
1443   inline void bns_predict_taken(    ConditionRegister crx, Label& L);
1444   inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
1445   inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
1446   inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
1447   inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
1448   inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
1449   inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
1450   inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
1451   inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
1452 
1453   // for use in conjunction with testbitdi:
1454   inline void btrue( ConditionRegister crx, Label& L);
1455   inline void bfalse(ConditionRegister crx, Label& L);
1456 
1457   inline void bltl(ConditionRegister crx, Label& L);
1458   inline void bgtl(ConditionRegister crx, Label& L);
1459   inline void beql(ConditionRegister crx, Label& L);
1460   inline void bsol(ConditionRegister crx, Label& L);
1461   inline void bgel(ConditionRegister crx, Label& L);
1462   inline void blel(ConditionRegister crx, Label& L);
1463   inline void bnel(ConditionRegister crx, Label& L);
1464   inline void bnsl(ConditionRegister crx, Label& L);
1465 
1466   // extended mnemonics for Branch Instructions via LR
1467   // We use `blr' for returns.
1468   inline void blr(relocInfo::relocType rt = relocInfo::none);
1469 
1470   // extended mnemonics for Branch Instructions with CTR
1471   // bdnz means `decrement CTR and jump to L if CTR is not zero'
1472   inline void bdnz(Label& L);
1473   // Decrement and branch if result is zero.
1474   inline void bdz(Label& L);
1475   // we use `bctr[l]' for jumps/calls in function descriptor glue
1476   // code, e.g. calls to runtime functions
1477   inline void bctr( relocInfo::relocType rt = relocInfo::none);
1478   inline void bctrl(relocInfo::relocType rt = relocInfo::none);
1479   // conditional jumps/branches via CTR
1480   inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1481   inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1482   inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1483   inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1484 
1485   // condition register logic instructions
1486   inline void crand( int d, int s1, int s2);
1487   inline void crnand(int d, int s1, int s2);
1488   inline void cror(  int d, int s1, int s2);
1489   inline void crxor( int d, int s1, int s2);
1490   inline void crnor( int d, int s1, int s2);
1491   inline void creqv( int d, int s1, int s2);
1492   inline void crandc(int d, int s1, int s2);
1493   inline void crorc( int d, int s1, int s2);
1494 
1495   // icache and dcache related instructions
1496   inline void icbi(  Register s1, Register s2);
1497   //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
1498   inline void dcbz(  Register s1, Register s2);
1499   inline void dcbst( Register s1, Register s2);
1500   inline void dcbf(  Register s1, Register s2);
1501 
1502   enum ct_cache_specification {
1503     ct_primary_cache   = 0,
1504     ct_secondary_cache = 2
1505   };
1506   // dcache read hint
1507   inline void dcbt(    Register s1, Register s2);
1508   inline void dcbtct(  Register s1, Register s2, int ct);
1509   inline void dcbtds(  Register s1, Register s2, int ds);
1510   // dcache write hint
1511   inline void dcbtst(  Register s1, Register s2);
1512   inline void dcbtstct(Register s1, Register s2, int ct);
1513 
1514   //  machine barrier instructions:
1515   //
1516   //  - sync    two-way memory barrier, aka fence
1517   //  - lwsync  orders  Store|Store,
1518   //                     Load|Store,
1519   //                     Load|Load,
1520   //            but not Store|Load
1521   //  - eieio   orders memory accesses for device memory (only)
1522   //  - isync   invalidates speculatively executed instructions
1523   //            From the Power ISA 2.06 documentation:
1524   //             "[...] an isync instruction prevents the execution of
1525   //            instructions following the isync until instructions
1526   //            preceding the isync have completed, [...]"
1527   //            From IBM's AIX assembler reference:
1528   //             "The isync [...] instructions causes the processor to
1529   //            refetch any instructions that might have been fetched
1530   //            prior to the isync instruction. The instruction isync
1531   //            causes the processor to wait for all previous instructions
1532   //            to complete. Then any instructions already fetched are
1533   //            discarded and instruction processing continues in the
1534   //            environment established by the previous instructions."
1535   //
1536   //  semantic barrier instructions:
1537   //  (as defined in orderAccess.hpp)
1538   //
1539   //  - release  orders Store|Store,       (maps to lwsync)
1540   //                     Load|Store
1541   //  - acquire  orders  Load|Store,       (maps to lwsync)
1542   //                     Load|Load
1543   //  - fence    orders Store|Store,       (maps to sync)
1544   //                     Load|Store,
1545   //                     Load|Load,
1546   //                    Store|Load
1547   //
1548  private:
1549   inline void sync(int l);
1550  public:
1551   inline void sync();
1552   inline void lwsync();
1553   inline void ptesync();
1554   inline void eieio();
1555   inline void isync();
1556 
1557   inline void release();
1558   inline void acquire();
1559   inline void fence();
1560 
1561   // atomics
1562   inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1563   inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1564   inline bool lxarx_hint_exclusive_access();
1565   inline void lwarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
1566   inline void ldarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
1567   inline void stwcx_( Register s, Register a, Register b);
1568   inline void stdcx_( Register s, Register a, Register b);
1569 
1570   // Instructions for adjusting thread priority for simultaneous
1571   // multithreading (SMT) on Power5.
1572  private:
1573   inline void smt_prio_very_low();
1574   inline void smt_prio_medium_high();
1575   inline void smt_prio_high();
1576 
1577  public:
1578   inline void smt_prio_low();
1579   inline void smt_prio_medium_low();
1580   inline void smt_prio_medium();
1581 
1582   // trap instructions
1583   inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
1584   // NOT FOR DIRECT USE!!
1585  protected:
1586   inline void tdi_unchecked(int tobits, Register a, int si16);
1587   inline void twi_unchecked(int tobits, Register a, int si16);
1588   inline void tdi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
1589   inline void twi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
1590   inline void td(           int tobits, Register a, Register b); // asserts UseSIGTRAP
1591   inline void tw(           int tobits, Register a, Register b); // asserts UseSIGTRAP
1592 
1593   static bool is_tdi(int x, int tobits, int ra, int si16) {
1594      return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
1595          && (tobits == inv_to_field(x))
1596          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1597          && (si16 == inv_si_field(x));
1598   }
1599 
1600   static bool is_twi(int x, int tobits, int ra, int si16) {
1601      return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
1602          && (tobits == inv_to_field(x))
1603          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1604          && (si16 == inv_si_field(x));
1605   }
1606 
1607   static bool is_twi(int x, int tobits, int ra) {
1608      return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
1609          && (tobits == inv_to_field(x))
1610          && (ra == -1/*any reg*/ || ra == inv_ra_field(x));
1611   }
1612 
1613   static bool is_td(int x, int tobits, int ra, int rb) {
1614      return (TD_OPCODE == (x & TD_OPCODE_MASK))
1615          && (tobits == inv_to_field(x))
1616          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1617          && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
1618   }
1619 
1620   static bool is_tw(int x, int tobits, int ra, int rb) {
1621      return (TW_OPCODE == (x & TW_OPCODE_MASK))
1622          && (tobits == inv_to_field(x))
1623          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1624          && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
1625   }
1626 
1627  public:
1628   // PPC floating point instructions
1629   // PPC 1, section 4.6.2 Floating-Point Load Instructions
1630   inline void lfs(  FloatRegister d, int si16,   Register a);
1631   inline void lfsu( FloatRegister d, int si16,   Register a);
1632   inline void lfsx( FloatRegister d, Register a, Register b);
1633   inline void lfd(  FloatRegister d, int si16,   Register a);
1634   inline void lfdu( FloatRegister d, int si16,   Register a);
1635   inline void lfdx( FloatRegister d, Register a, Register b);
1636 
1637   // PPC 1, section 4.6.3 Floating-Point Store Instructions
1638   inline void stfs(  FloatRegister s, int si16,   Register a);
1639   inline void stfsu( FloatRegister s, int si16,   Register a);
1640   inline void stfsx( FloatRegister s, Register a, Register b);
1641   inline void stfd(  FloatRegister s, int si16,   Register a);
1642   inline void stfdu( FloatRegister s, int si16,   Register a);
1643   inline void stfdx( FloatRegister s, Register a, Register b);
1644 
1645   // PPC 1, section 4.6.4 Floating-Point Move Instructions
1646   inline void fmr(  FloatRegister d, FloatRegister b);
1647   inline void fmr_( FloatRegister d, FloatRegister b);
1648 
1649   //  inline void mffgpr( FloatRegister d, Register b);
1650   //  inline void mftgpr( Register d, FloatRegister b);
1651   inline void cmpb(   Register a, Register s, Register b);
1652   inline void popcntb(Register a, Register s);
1653   inline void popcntw(Register a, Register s);
1654   inline void popcntd(Register a, Register s);
1655 
1656   inline void fneg(  FloatRegister d, FloatRegister b);
1657   inline void fneg_( FloatRegister d, FloatRegister b);
1658   inline void fabs(  FloatRegister d, FloatRegister b);
1659   inline void fabs_( FloatRegister d, FloatRegister b);
1660   inline void fnabs( FloatRegister d, FloatRegister b);
1661   inline void fnabs_(FloatRegister d, FloatRegister b);
1662 
1663   // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
1664   inline void fadd(  FloatRegister d, FloatRegister a, FloatRegister b);
1665   inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
1666   inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
1667   inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
1668   inline void fsub(  FloatRegister d, FloatRegister a, FloatRegister b);
1669   inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
1670   inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
1671   inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
1672   inline void fmul(  FloatRegister d, FloatRegister a, FloatRegister c);
1673   inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
1674   inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
1675   inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
1676   inline void fdiv(  FloatRegister d, FloatRegister a, FloatRegister b);
1677   inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
1678   inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
1679   inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
1680 
1681   // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
1682   inline void frsp(  FloatRegister d, FloatRegister b);
1683   inline void fctid( FloatRegister d, FloatRegister b);
1684   inline void fctidz(FloatRegister d, FloatRegister b);
1685   inline void fctiw( FloatRegister d, FloatRegister b);
1686   inline void fctiwz(FloatRegister d, FloatRegister b);
1687   inline void fcfid( FloatRegister d, FloatRegister b);
1688   inline void fcfids(FloatRegister d, FloatRegister b);
1689 
1690   // PPC 1, section 4.6.7 Floating-Point Compare Instructions
1691   inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
1692 
1693   inline void fsqrt( FloatRegister d, FloatRegister b);
1694   inline void fsqrts(FloatRegister d, FloatRegister b);
1695 
1696   // Vector instructions for >= Power6.
1697   inline void lvebx(    VectorRegister d, Register s1, Register s2);
1698   inline void lvehx(    VectorRegister d, Register s1, Register s2);
1699   inline void lvewx(    VectorRegister d, Register s1, Register s2);
1700   inline void lvx(      VectorRegister d, Register s1, Register s2);
1701   inline void lvxl(     VectorRegister d, Register s1, Register s2);
1702   inline void stvebx(   VectorRegister d, Register s1, Register s2);
1703   inline void stvehx(   VectorRegister d, Register s1, Register s2);
1704   inline void stvewx(   VectorRegister d, Register s1, Register s2);
1705   inline void stvx(     VectorRegister d, Register s1, Register s2);
1706   inline void stvxl(    VectorRegister d, Register s1, Register s2);
1707   inline void lvsl(     VectorRegister d, Register s1, Register s2);
1708   inline void lvsr(     VectorRegister d, Register s1, Register s2);
1709   inline void vpkpx(    VectorRegister d, VectorRegister a, VectorRegister b);
1710   inline void vpkshss(  VectorRegister d, VectorRegister a, VectorRegister b);
1711   inline void vpkswss(  VectorRegister d, VectorRegister a, VectorRegister b);
1712   inline void vpkshus(  VectorRegister d, VectorRegister a, VectorRegister b);
1713   inline void vpkswus(  VectorRegister d, VectorRegister a, VectorRegister b);
1714   inline void vpkuhum(  VectorRegister d, VectorRegister a, VectorRegister b);
1715   inline void vpkuwum(  VectorRegister d, VectorRegister a, VectorRegister b);
1716   inline void vpkuhus(  VectorRegister d, VectorRegister a, VectorRegister b);
1717   inline void vpkuwus(  VectorRegister d, VectorRegister a, VectorRegister b);
1718   inline void vupkhpx(  VectorRegister d, VectorRegister b);
1719   inline void vupkhsb(  VectorRegister d, VectorRegister b);
1720   inline void vupkhsh(  VectorRegister d, VectorRegister b);
1721   inline void vupklpx(  VectorRegister d, VectorRegister b);
1722   inline void vupklsb(  VectorRegister d, VectorRegister b);
1723   inline void vupklsh(  VectorRegister d, VectorRegister b);
1724   inline void vmrghb(   VectorRegister d, VectorRegister a, VectorRegister b);
1725   inline void vmrghw(   VectorRegister d, VectorRegister a, VectorRegister b);
1726   inline void vmrghh(   VectorRegister d, VectorRegister a, VectorRegister b);
1727   inline void vmrglb(   VectorRegister d, VectorRegister a, VectorRegister b);
1728   inline void vmrglw(   VectorRegister d, VectorRegister a, VectorRegister b);
1729   inline void vmrglh(   VectorRegister d, VectorRegister a, VectorRegister b);
1730   inline void vsplt(    VectorRegister d, int ui4,          VectorRegister b);
1731   inline void vsplth(   VectorRegister d, int ui3,          VectorRegister b);
1732   inline void vspltw(   VectorRegister d, int ui2,          VectorRegister b);
1733   inline void vspltisb( VectorRegister d, int si5);
1734   inline void vspltish( VectorRegister d, int si5);
1735   inline void vspltisw( VectorRegister d, int si5);
1736   inline void vperm(    VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1737   inline void vsel(     VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1738   inline void vsl(      VectorRegister d, VectorRegister a, VectorRegister b);
1739   inline void vsldoi(   VectorRegister d, VectorRegister a, VectorRegister b, int si4);
1740   inline void vslo(     VectorRegister d, VectorRegister a, VectorRegister b);
1741   inline void vsr(      VectorRegister d, VectorRegister a, VectorRegister b);
1742   inline void vsro(     VectorRegister d, VectorRegister a, VectorRegister b);
1743   inline void vaddcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
1744   inline void vaddshs(  VectorRegister d, VectorRegister a, VectorRegister b);
1745   inline void vaddsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
1746   inline void vaddsws(  VectorRegister d, VectorRegister a, VectorRegister b);
1747   inline void vaddubm(  VectorRegister d, VectorRegister a, VectorRegister b);
1748   inline void vadduwm(  VectorRegister d, VectorRegister a, VectorRegister b);
1749   inline void vadduhm(  VectorRegister d, VectorRegister a, VectorRegister b);
1750   inline void vaddubs(  VectorRegister d, VectorRegister a, VectorRegister b);
1751   inline void vadduws(  VectorRegister d, VectorRegister a, VectorRegister b);
1752   inline void vadduhs(  VectorRegister d, VectorRegister a, VectorRegister b);
1753   inline void vsubcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
1754   inline void vsubshs(  VectorRegister d, VectorRegister a, VectorRegister b);
1755   inline void vsubsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
1756   inline void vsubsws(  VectorRegister d, VectorRegister a, VectorRegister b);
1757   inline void vsububm(  VectorRegister d, VectorRegister a, VectorRegister b);
1758   inline void vsubuwm(  VectorRegister d, VectorRegister a, VectorRegister b);
1759   inline void vsubuhm(  VectorRegister d, VectorRegister a, VectorRegister b);
1760   inline void vsububs(  VectorRegister d, VectorRegister a, VectorRegister b);
1761   inline void vsubuws(  VectorRegister d, VectorRegister a, VectorRegister b);
1762   inline void vsubuhs(  VectorRegister d, VectorRegister a, VectorRegister b);
1763   inline void vmulesb(  VectorRegister d, VectorRegister a, VectorRegister b);
1764   inline void vmuleub(  VectorRegister d, VectorRegister a, VectorRegister b);
1765   inline void vmulesh(  VectorRegister d, VectorRegister a, VectorRegister b);
1766   inline void vmuleuh(  VectorRegister d, VectorRegister a, VectorRegister b);
1767   inline void vmulosb(  VectorRegister d, VectorRegister a, VectorRegister b);
1768   inline void vmuloub(  VectorRegister d, VectorRegister a, VectorRegister b);
1769   inline void vmulosh(  VectorRegister d, VectorRegister a, VectorRegister b);
1770   inline void vmulouh(  VectorRegister d, VectorRegister a, VectorRegister b);
1771   inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1772   inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
1773   inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1774   inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1775   inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1776   inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1777   inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1778   inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1779   inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1780   inline void vsumsws(  VectorRegister d, VectorRegister a, VectorRegister b);
1781   inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
1782   inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
1783   inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
1784   inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
1785   inline void vavgsb(   VectorRegister d, VectorRegister a, VectorRegister b);
1786   inline void vavgsw(   VectorRegister d, VectorRegister a, VectorRegister b);
1787   inline void vavgsh(   VectorRegister d, VectorRegister a, VectorRegister b);
1788   inline void vavgub(   VectorRegister d, VectorRegister a, VectorRegister b);
1789   inline void vavguw(   VectorRegister d, VectorRegister a, VectorRegister b);
1790   inline void vavguh(   VectorRegister d, VectorRegister a, VectorRegister b);
1791   inline void vmaxsb(   VectorRegister d, VectorRegister a, VectorRegister b);
1792   inline void vmaxsw(   VectorRegister d, VectorRegister a, VectorRegister b);
1793   inline void vmaxsh(   VectorRegister d, VectorRegister a, VectorRegister b);
1794   inline void vmaxub(   VectorRegister d, VectorRegister a, VectorRegister b);
1795   inline void vmaxuw(   VectorRegister d, VectorRegister a, VectorRegister b);
1796   inline void vmaxuh(   VectorRegister d, VectorRegister a, VectorRegister b);
1797   inline void vminsb(   VectorRegister d, VectorRegister a, VectorRegister b);
1798   inline void vminsw(   VectorRegister d, VectorRegister a, VectorRegister b);
1799   inline void vminsh(   VectorRegister d, VectorRegister a, VectorRegister b);
1800   inline void vminub(   VectorRegister d, VectorRegister a, VectorRegister b);
1801   inline void vminuw(   VectorRegister d, VectorRegister a, VectorRegister b);
1802   inline void vminuh(   VectorRegister d, VectorRegister a, VectorRegister b);
1803   inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
1804   inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
1805   inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
1806   inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
1807   inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
1808   inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
1809   inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
1810   inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
1811   inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
1812   inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
1813   inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
1814   inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
1815   inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
1816   inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
1817   inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
1818   inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
1819   inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
1820   inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
1821   inline void vand(     VectorRegister d, VectorRegister a, VectorRegister b);
1822   inline void vandc(    VectorRegister d, VectorRegister a, VectorRegister b);
1823   inline void vnor(     VectorRegister d, VectorRegister a, VectorRegister b);
1824   inline void vor(      VectorRegister d, VectorRegister a, VectorRegister b);
1825   inline void vxor(     VectorRegister d, VectorRegister a, VectorRegister b);
1826   inline void vrlb(     VectorRegister d, VectorRegister a, VectorRegister b);
1827   inline void vrlw(     VectorRegister d, VectorRegister a, VectorRegister b);
1828   inline void vrlh(     VectorRegister d, VectorRegister a, VectorRegister b);
1829   inline void vslb(     VectorRegister d, VectorRegister a, VectorRegister b);
1830   inline void vskw(     VectorRegister d, VectorRegister a, VectorRegister b);
1831   inline void vslh(     VectorRegister d, VectorRegister a, VectorRegister b);
1832   inline void vsrb(     VectorRegister d, VectorRegister a, VectorRegister b);
1833   inline void vsrw(     VectorRegister d, VectorRegister a, VectorRegister b);
1834   inline void vsrh(     VectorRegister d, VectorRegister a, VectorRegister b);
1835   inline void vsrab(    VectorRegister d, VectorRegister a, VectorRegister b);
1836   inline void vsraw(    VectorRegister d, VectorRegister a, VectorRegister b);
1837   inline void vsrah(    VectorRegister d, VectorRegister a, VectorRegister b);
1838   // Vector Floating-Point not implemented yet
1839   inline void mtvscr(   VectorRegister b);
1840   inline void mfvscr(   VectorRegister d);
1841 
1842   // The following encoders use r0 as second operand. These instructions
1843   // read r0 as '0'.
1844   inline void lwzx( Register d, Register s2);
1845   inline void lwz(  Register d, int si16);
1846   inline void lwax( Register d, Register s2);
1847   inline void lwa(  Register d, int si16);
1848   inline void lhzx( Register d, Register s2);
1849   inline void lhz(  Register d, int si16);
1850   inline void lhax( Register d, Register s2);
1851   inline void lha(  Register d, int si16);
1852   inline void lbzx( Register d, Register s2);
1853   inline void lbz(  Register d, int si16);
1854   inline void ldx(  Register d, Register s2);
1855   inline void ld(   Register d, int si16);
1856   inline void stwx( Register d, Register s2);
1857   inline void stw(  Register d, int si16);
1858   inline void sthx( Register d, Register s2);
1859   inline void sth(  Register d, int si16);
1860   inline void stbx( Register d, Register s2);
1861   inline void stb(  Register d, int si16);
1862   inline void stdx( Register d, Register s2);
1863   inline void std(  Register d, int si16);
1864 
1865   // PPC 2, section 3.2.1 Instruction Cache Instructions
1866   inline void icbi(    Register s2);
1867   // PPC 2, section 3.2.2 Data Cache Instructions
1868   //inlinevoid dcba(   Register s2); // Instruction for embedded processor only.
1869   inline void dcbz(    Register s2);
1870   inline void dcbst(   Register s2);
1871   inline void dcbf(    Register s2);
1872   // dcache read hint
1873   inline void dcbt(    Register s2);
1874   inline void dcbtct(  Register s2, int ct);
1875   inline void dcbtds(  Register s2, int ds);
1876   // dcache write hint
1877   inline void dcbtst(  Register s2);
1878   inline void dcbtstct(Register s2, int ct);
1879 
1880   // Atomics: use ra0mem to disallow R0 as base.
1881   inline void lwarx_unchecked(Register d, Register b, int eh1);
1882   inline void ldarx_unchecked(Register d, Register b, int eh1);
1883   inline void lwarx( Register d, Register b, bool hint_exclusive_access);
1884   inline void ldarx( Register d, Register b, bool hint_exclusive_access);
1885   inline void stwcx_(Register s, Register b);
1886   inline void stdcx_(Register s, Register b);
1887   inline void lfs(   FloatRegister d, int si16);
1888   inline void lfsx(  FloatRegister d, Register b);
1889   inline void lfd(   FloatRegister d, int si16);
1890   inline void lfdx(  FloatRegister d, Register b);
1891   inline void stfs(  FloatRegister s, int si16);
1892   inline void stfsx( FloatRegister s, Register b);
1893   inline void stfd(  FloatRegister s, int si16);
1894   inline void stfdx( FloatRegister s, Register b);
1895   inline void lvebx( VectorRegister d, Register s2);
1896   inline void lvehx( VectorRegister d, Register s2);
1897   inline void lvewx( VectorRegister d, Register s2);
1898   inline void lvx(   VectorRegister d, Register s2);
1899   inline void lvxl(  VectorRegister d, Register s2);
1900   inline void stvebx(VectorRegister d, Register s2);
1901   inline void stvehx(VectorRegister d, Register s2);
1902   inline void stvewx(VectorRegister d, Register s2);
1903   inline void stvx(  VectorRegister d, Register s2);
1904   inline void stvxl( VectorRegister d, Register s2);
1905   inline void lvsl(  VectorRegister d, Register s2);
1906   inline void lvsr(  VectorRegister d, Register s2);
1907 
1908   // RegisterOrConstant versions.
1909   // These emitters choose between the versions using two registers and
1910   // those with register and immediate, depending on the content of roc.
1911   // If the constant is not encodable as immediate, instructions to
1912   // load the constant are emitted beforehand. Store instructions need a
1913   // tmp reg if the constant is not encodable as immediate.
1914   // Size unpredictable.
1915   void ld(  Register d, RegisterOrConstant roc, Register s1 = noreg);
1916   void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
1917   void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
1918   void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
1919   void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
1920   void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
1921   void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
1922   void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
1923   void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
1924   void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
1925   void add( Register d, RegisterOrConstant roc, Register s1);
1926   void subf(Register d, RegisterOrConstant roc, Register s1);
1927   void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
1928 
1929 
1930   // Emit several instructions to load a 64 bit constant. This issues a fixed
1931   // instruction pattern so that the constant can be patched later on.
1932   enum {
1933     load_const_size = 5 * BytesPerInstWord
1934   };
1935          void load_const(Register d, long a,            Register tmp = noreg);
1936   inline void load_const(Register d, void* a,           Register tmp = noreg);
1937   inline void load_const(Register d, Label& L,          Register tmp = noreg);
1938   inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
1939 
1940   // Load a 64 bit constant, optimized, not identifyable.
1941   // Tmp can be used to increase ILP. Set return_simm16_rest=true to get a
1942   // 16 bit immediate offset. This is useful if the offset can be encoded in
1943   // a succeeding instruction.
1944          int load_const_optimized(Register d, long a,  Register tmp = noreg, bool return_simm16_rest = false);
1945   inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
1946     return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
1947   }
1948 
1949   // Creation
1950   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
1951 #ifdef CHECK_DELAY
1952     delay_state = no_delay;
1953 #endif
1954   }
1955 
1956   // Testing
1957 #ifndef PRODUCT
1958   void test_asm();
1959 #endif
1960 };
1961 
1962 
1963 #endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP