1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "code/compiledIC.hpp"
  28 #include "code/debugInfo.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "memory/allocation.inline.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/output.hpp"
  38 #include "opto/regalloc.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/type.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "utilities/xmlstream.hpp"
  44 
  45 extern uint size_exception_handler();
  46 extern uint size_deopt_handler();
  47 
  48 #ifndef PRODUCT
  49 #define DEBUG_ARG(x) , x
  50 #else
  51 #define DEBUG_ARG(x)
  52 #endif
  53 
  54 extern int emit_exception_handler(CodeBuffer &cbuf);
  55 extern int emit_deopt_handler(CodeBuffer &cbuf);
  56 
  57 //------------------------------Output-----------------------------------------
  58 // Convert Nodes to instruction bits and pass off to the VM
  59 void Compile::Output() {
  60   // RootNode goes
  61   assert( _cfg->_broot->_nodes.size() == 0, "" );
  62 
  63   // The number of new nodes (mostly MachNop) is proportional to
  64   // the number of java calls and inner loops which are aligned.
  65   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  66                             C->inner_loops()*(OptoLoopAlignment-1)),
  67                            "out of nodes before code generation" ) ) {
  68     return;
  69   }
  70   // Make sure I can find the Start Node
  71   Block_Array& bbs = _cfg->_bbs;
  72   Block *entry = _cfg->_blocks[1];
  73   Block *broot = _cfg->_broot;
  74 
  75   const StartNode *start = entry->_nodes[0]->as_Start();
  76 
  77   // Replace StartNode with prolog
  78   MachPrologNode *prolog = new (this) MachPrologNode();
  79   entry->_nodes.map( 0, prolog );
  80   bbs.map( prolog->_idx, entry );
  81   bbs.map( start->_idx, NULL ); // start is no longer in any block
  82 
  83   // Virtual methods need an unverified entry point
  84 
  85   if( is_osr_compilation() ) {
  86     if( PoisonOSREntry ) {
  87       // TODO: Should use a ShouldNotReachHereNode...
  88       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  89     }
  90   } else {
  91     if( _method && !_method->flags().is_static() ) {
  92       // Insert unvalidated entry point
  93       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  94     }
  95 
  96   }
  97 
  98 
  99   // Break before main entry point
 100   if( (_method && _method->break_at_execute())
 101 #ifndef PRODUCT
 102     ||(OptoBreakpoint && is_method_compilation())
 103     ||(OptoBreakpointOSR && is_osr_compilation())
 104     ||(OptoBreakpointC2R && !_method)
 105 #endif
 106     ) {
 107     // checking for _method means that OptoBreakpoint does not apply to
 108     // runtime stubs or frame converters
 109     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
 110   }
 111 
 112   // Insert epilogs before every return
 113   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 114     Block *b = _cfg->_blocks[i];
 115     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
 116       Node *m = b->end();
 117       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
 118         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 119         b->add_inst( epilog );
 120         bbs.map(epilog->_idx, b);
 121         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
 122       }
 123     }
 124   }
 125 
 126 # ifdef ENABLE_ZAP_DEAD_LOCALS
 127   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
 128 # endif
 129 
 130   uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
 131   blk_starts[0]    = 0;
 132 
 133   // Initialize code buffer and process short branches.
 134   CodeBuffer* cb = init_buffer(blk_starts);
 135 
 136   if (cb == NULL || failing())  return;
 137 
 138   ScheduleAndBundle();
 139 
 140 #ifndef PRODUCT
 141   if (trace_opto_output()) {
 142     tty->print("\n---- After ScheduleAndBundle ----\n");
 143     for (uint i = 0; i < _cfg->_num_blocks; i++) {
 144       tty->print("\nBB#%03d:\n", i);
 145       Block *bb = _cfg->_blocks[i];
 146       for (uint j = 0; j < bb->_nodes.size(); j++) {
 147         Node *n = bb->_nodes[j];
 148         OptoReg::Name reg = _regalloc->get_reg_first(n);
 149         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 150         n->dump();
 151       }
 152     }
 153   }
 154 #endif
 155 
 156   if (failing())  return;
 157 
 158   BuildOopMaps();
 159 
 160   if (failing())  return;
 161 
 162   fill_buffer(cb, blk_starts);
 163 }
 164 
 165 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 166   // Determine if we need to generate a stack overflow check.
 167   // Do it if the method is not a stub function and
 168   // has java calls or has frame size > vm_page_size/8.
 169   return (UseStackBanging && stub_function() == NULL &&
 170           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
 171 }
 172 
 173 bool Compile::need_register_stack_bang() const {
 174   // Determine if we need to generate a register stack overflow check.
 175   // This is only used on architectures which have split register
 176   // and memory stacks (ie. IA64).
 177   // Bang if the method is not a stub function and has java calls
 178   return (stub_function() == NULL && has_java_calls());
 179 }
 180 
 181 # ifdef ENABLE_ZAP_DEAD_LOCALS
 182 
 183 
 184 // In order to catch compiler oop-map bugs, we have implemented
 185 // a debugging mode called ZapDeadCompilerLocals.
 186 // This mode causes the compiler to insert a call to a runtime routine,
 187 // "zap_dead_locals", right before each place in compiled code
 188 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 189 // The runtime routine checks that locations mapped as oops are really
 190 // oops, that locations mapped as values do not look like oops,
 191 // and that locations mapped as dead are not used later
 192 // (by zapping them to an invalid address).
 193 
 194 int Compile::_CompiledZap_count = 0;
 195 
 196 void Compile::Insert_zap_nodes() {
 197   bool skip = false;
 198 
 199 
 200   // Dink with static counts because code code without the extra
 201   // runtime calls is MUCH faster for debugging purposes
 202 
 203        if ( CompileZapFirst  ==  0  ) ; // nothing special
 204   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 205   else if ( CompileZapFirst  == CompiledZap_count() )
 206     warning("starting zap compilation after skipping");
 207 
 208        if ( CompileZapLast  ==  -1  ) ; // nothing special
 209   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 210   else if ( CompileZapLast  ==  CompiledZap_count() )
 211     warning("about to compile last zap");
 212 
 213   ++_CompiledZap_count; // counts skipped zaps, too
 214 
 215   if ( skip )  return;
 216 
 217 
 218   if ( _method == NULL )
 219     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 220 
 221   // Insert call to zap runtime stub before every node with an oop map
 222   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 223     Block *b = _cfg->_blocks[i];
 224     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
 225       Node *n = b->_nodes[j];
 226 
 227       // Determining if we should insert a zap-a-lot node in output.
 228       // We do that for all nodes that has oopmap info, except for calls
 229       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 230       // and expect the C code to reset it.  Hence, there can be no safepoints between
 231       // the inlined-allocation and the call to new_Java, etc.
 232       // We also cannot zap monitor calls, as they must hold the microlock
 233       // during the call to Zap, which also wants to grab the microlock.
 234       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 235       if ( insert ) { // it is MachSafePoint
 236         if ( !n->is_MachCall() ) {
 237           insert = false;
 238         } else if ( n->is_MachCall() ) {
 239           MachCallNode* call = n->as_MachCall();
 240           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 241               call->entry_point() == OptoRuntime::new_array_Java() ||
 242               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 243               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 244               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 245               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 246               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 247               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 248               ) {
 249             insert = false;
 250           }
 251         }
 252         if (insert) {
 253           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 254           b->_nodes.insert( j, zap );
 255           _cfg->_bbs.map( zap->_idx, b );
 256           ++j;
 257         }
 258       }
 259     }
 260   }
 261 }
 262 
 263 
 264 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 265   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 266   CallStaticJavaNode* ideal_node =
 267     new (this) CallStaticJavaNode( tf,
 268          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 269                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
 270   // We need to copy the OopMap from the site we're zapping at.
 271   // We have to make a copy, because the zap site might not be
 272   // a call site, and zap_dead is a call site.
 273   OopMap* clone = node_to_check->oop_map()->deep_copy();
 274 
 275   // Add the cloned OopMap to the zap node
 276   ideal_node->set_oop_map(clone);
 277   return _matcher->match_sfpt(ideal_node);
 278 }
 279 
 280 //------------------------------is_node_getting_a_safepoint--------------------
 281 bool Compile::is_node_getting_a_safepoint( Node* n) {
 282   // This code duplicates the logic prior to the call of add_safepoint
 283   // below in this file.
 284   if( n->is_MachSafePoint() ) return true;
 285   return false;
 286 }
 287 
 288 # endif // ENABLE_ZAP_DEAD_LOCALS
 289 
 290 //------------------------------compute_loop_first_inst_sizes------------------
 291 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 292 // of a loop. When aligning a loop we need to provide enough instructions
 293 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 294 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 295 // By default, the size is set to 999999 by Block's constructor so that
 296 // a loop will be aligned if the size is not reset here.
 297 //
 298 // Note: Mach instructions could contain several HW instructions
 299 // so the size is estimated only.
 300 //
 301 void Compile::compute_loop_first_inst_sizes() {
 302   // The next condition is used to gate the loop alignment optimization.
 303   // Don't aligned a loop if there are enough instructions at the head of a loop
 304   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 305   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 306   // equal to 11 bytes which is the largest address NOP instruction.
 307   if( MaxLoopPad < OptoLoopAlignment-1 ) {
 308     uint last_block = _cfg->_num_blocks-1;
 309     for( uint i=1; i <= last_block; i++ ) {
 310       Block *b = _cfg->_blocks[i];
 311       // Check the first loop's block which requires an alignment.
 312       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
 313         uint sum_size = 0;
 314         uint inst_cnt = NumberOfLoopInstrToAlign;
 315         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 316 
 317         // Check subsequent fallthrough blocks if the loop's first
 318         // block(s) does not have enough instructions.
 319         Block *nb = b;
 320         while( inst_cnt > 0 &&
 321                i < last_block &&
 322                !_cfg->_blocks[i+1]->has_loop_alignment() &&
 323                !nb->has_successor(b) ) {
 324           i++;
 325           nb = _cfg->_blocks[i];
 326           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 327         } // while( inst_cnt > 0 && i < last_block  )
 328 
 329         b->set_first_inst_size(sum_size);
 330       } // f( b->head()->is_Loop() )
 331     } // for( i <= last_block )
 332   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 333 }
 334 
 335 //----------------------shorten_branches---------------------------------------
 336 // The architecture description provides short branch variants for some long
 337 // branch instructions. Replace eligible long branches with short branches.
 338 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
 339 
 340   // ------------------
 341   // Compute size of each block, method size, and relocation information size
 342   uint nblocks  = _cfg->_num_blocks;
 343 
 344   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 345   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 346   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 347   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 348   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 349 
 350   bool has_short_branch_candidate = false;
 351 
 352   // Initialize the sizes to 0
 353   code_size  = 0;          // Size in bytes of generated code
 354   stub_size  = 0;          // Size in bytes of all stub entries
 355   // Size in bytes of all relocation entries, including those in local stubs.
 356   // Start with 2-bytes of reloc info for the unvalidated entry point
 357   reloc_size = 1;          // Number of relocation entries
 358 
 359   // Make three passes.  The first computes pessimistic blk_starts,
 360   // relative jmp_offset and reloc_size information.  The second performs
 361   // short branch substitution using the pessimistic sizing.  The
 362   // third inserts nops where needed.
 363 
 364   // Step one, perform a pessimistic sizing pass.
 365   uint last_call_adr = max_uint;
 366   uint last_avoid_back_to_back_adr = max_uint;
 367   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 368   for (uint i = 0; i < nblocks; i++) { // For all blocks
 369     Block *b = _cfg->_blocks[i];
 370 
 371     // During short branch replacement, we store the relative (to blk_starts)
 372     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 373     // This is so that we do not need to recompute sizes of all nodes when
 374     // we compute correct blk_starts in our next sizing pass.
 375     jmp_offset[i] = 0;
 376     jmp_size[i]   = 0;
 377     jmp_nidx[i]   = -1;
 378     DEBUG_ONLY( jmp_target[i] = 0; )
 379     DEBUG_ONLY( jmp_rule[i]   = 0; )
 380 
 381     // Sum all instruction sizes to compute block size
 382     uint last_inst = b->_nodes.size();
 383     uint blk_size = 0;
 384     for (uint j = 0; j < last_inst; j++) {
 385       Node* nj = b->_nodes[j];
 386       // Handle machine instruction nodes
 387       if (nj->is_Mach()) {
 388         MachNode *mach = nj->as_Mach();
 389         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 390         reloc_size += mach->reloc();
 391         if (mach->is_MachCall()) {
 392           MachCallNode *mcall = mach->as_MachCall();
 393           // This destination address is NOT PC-relative
 394 
 395           mcall->method_set((intptr_t)mcall->entry_point());
 396 
 397           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 398             stub_size  += CompiledStaticCall::to_interp_stub_size();
 399             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 400           }
 401         } else if (mach->is_MachSafePoint()) {
 402           // If call/safepoint are adjacent, account for possible
 403           // nop to disambiguate the two safepoints.
 404           // ScheduleAndBundle() can rearrange nodes in a block,
 405           // check for all offsets inside this block.
 406           if (last_call_adr >= blk_starts[i]) {
 407             blk_size += nop_size;
 408           }
 409         }
 410         if (mach->avoid_back_to_back()) {
 411           // Nop is inserted between "avoid back to back" instructions.
 412           // ScheduleAndBundle() can rearrange nodes in a block,
 413           // check for all offsets inside this block.
 414           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 415             blk_size += nop_size;
 416           }
 417         }
 418         if (mach->may_be_short_branch()) {
 419           if (!nj->is_MachBranch()) {
 420 #ifndef PRODUCT
 421             nj->dump(3);
 422 #endif
 423             Unimplemented();
 424           }
 425           assert(jmp_nidx[i] == -1, "block should have only one branch");
 426           jmp_offset[i] = blk_size;
 427           jmp_size[i]   = nj->size(_regalloc);
 428           jmp_nidx[i]   = j;
 429           has_short_branch_candidate = true;
 430         }
 431       }
 432       blk_size += nj->size(_regalloc);
 433       // Remember end of call offset
 434       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 435         last_call_adr = blk_starts[i]+blk_size;
 436       }
 437       // Remember end of avoid_back_to_back offset
 438       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
 439         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 440       }
 441     }
 442 
 443     // When the next block starts a loop, we may insert pad NOP
 444     // instructions.  Since we cannot know our future alignment,
 445     // assume the worst.
 446     if (i< nblocks-1) {
 447       Block *nb = _cfg->_blocks[i+1];
 448       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 449       if (max_loop_pad > 0) {
 450         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 451         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 452         // If either is the last instruction in this block, bump by
 453         // max_loop_pad in lock-step with blk_size, so sizing
 454         // calculations in subsequent blocks still can conservatively
 455         // detect that it may the last instruction in this block.
 456         if (last_call_adr == blk_starts[i]+blk_size) {
 457           last_call_adr += max_loop_pad;
 458         }
 459         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 460           last_avoid_back_to_back_adr += max_loop_pad;
 461         }
 462         blk_size += max_loop_pad;
 463       }
 464     }
 465 
 466     // Save block size; update total method size
 467     blk_starts[i+1] = blk_starts[i]+blk_size;
 468   }
 469 
 470   // Step two, replace eligible long jumps.
 471   bool progress = true;
 472   uint last_may_be_short_branch_adr = max_uint;
 473   while (has_short_branch_candidate && progress) {
 474     progress = false;
 475     has_short_branch_candidate = false;
 476     int adjust_block_start = 0;
 477     for (uint i = 0; i < nblocks; i++) {
 478       Block *b = _cfg->_blocks[i];
 479       int idx = jmp_nidx[i];
 480       MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach();
 481       if (mach != NULL && mach->may_be_short_branch()) {
 482 #ifdef ASSERT
 483         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 484         int j;
 485         // Find the branch; ignore trailing NOPs.
 486         for (j = b->_nodes.size()-1; j>=0; j--) {
 487           Node* n = b->_nodes[j];
 488           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 489             break;
 490         }
 491         assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity");
 492 #endif
 493         int br_size = jmp_size[i];
 494         int br_offs = blk_starts[i] + jmp_offset[i];
 495 
 496         // This requires the TRUE branch target be in succs[0]
 497         uint bnum = b->non_connector_successor(0)->_pre_order;
 498         int offset = blk_starts[bnum] - br_offs;
 499         if (bnum > i) { // adjust following block's offset
 500           offset -= adjust_block_start;
 501         }
 502         // In the following code a nop could be inserted before
 503         // the branch which will increase the backward distance.
 504         bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
 505         if (needs_padding && offset <= 0)
 506           offset -= nop_size;
 507 
 508         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
 509           // We've got a winner.  Replace this branch.
 510           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
 511 
 512           // Update the jmp_size.
 513           int new_size = replacement->size(_regalloc);
 514           int diff     = br_size - new_size;
 515           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 516           // Conservatively take into accound padding between
 517           // avoid_back_to_back branches. Previous branch could be
 518           // converted into avoid_back_to_back branch during next
 519           // rounds.
 520           if (needs_padding && replacement->avoid_back_to_back()) {
 521             jmp_offset[i] += nop_size;
 522             diff -= nop_size;
 523           }
 524           adjust_block_start += diff;
 525           b->_nodes.map(idx, replacement);
 526           mach->subsume_by(replacement, C);
 527           mach = replacement;
 528           progress = true;
 529 
 530           jmp_size[i] = new_size;
 531           DEBUG_ONLY( jmp_target[i] = bnum; );
 532           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 533         } else {
 534           // The jump distance is not short, try again during next iteration.
 535           has_short_branch_candidate = true;
 536         }
 537       } // (mach->may_be_short_branch())
 538       if (mach != NULL && (mach->may_be_short_branch() ||
 539                            mach->avoid_back_to_back())) {
 540         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 541       }
 542       blk_starts[i+1] -= adjust_block_start;
 543     }
 544   }
 545 
 546 #ifdef ASSERT
 547   for (uint i = 0; i < nblocks; i++) { // For all blocks
 548     if (jmp_target[i] != 0) {
 549       int br_size = jmp_size[i];
 550       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 551       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 552         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 553       }
 554       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 555     }
 556   }
 557 #endif
 558 
 559   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 560   // after ScheduleAndBundle().
 561 
 562   // ------------------
 563   // Compute size for code buffer
 564   code_size = blk_starts[nblocks];
 565 
 566   // Relocation records
 567   reloc_size += 1;              // Relo entry for exception handler
 568 
 569   // Adjust reloc_size to number of record of relocation info
 570   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 571   // a relocation index.
 572   // The CodeBuffer will expand the locs array if this estimate is too low.
 573   reloc_size *= 10 / sizeof(relocInfo);
 574 }
 575 
 576 //------------------------------FillLocArray-----------------------------------
 577 // Create a bit of debug info and append it to the array.  The mapping is from
 578 // Java local or expression stack to constant, register or stack-slot.  For
 579 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 580 // entry has been taken care of and caller should skip it).
 581 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 582   // This should never have accepted Bad before
 583   assert(OptoReg::is_valid(regnum), "location must be valid");
 584   return (OptoReg::is_reg(regnum))
 585     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 586     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 587 }
 588 
 589 
 590 ObjectValue*
 591 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 592   for (int i = 0; i < objs->length(); i++) {
 593     assert(objs->at(i)->is_object(), "corrupt object cache");
 594     ObjectValue* sv = (ObjectValue*) objs->at(i);
 595     if (sv->id() == id) {
 596       return sv;
 597     }
 598   }
 599   // Otherwise..
 600   return NULL;
 601 }
 602 
 603 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 604                                      ObjectValue* sv ) {
 605   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 606   objs->append(sv);
 607 }
 608 
 609 
 610 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 611                             GrowableArray<ScopeValue*> *array,
 612                             GrowableArray<ScopeValue*> *objs ) {
 613   assert( local, "use _top instead of null" );
 614   if (array->length() != idx) {
 615     assert(array->length() == idx + 1, "Unexpected array count");
 616     // Old functionality:
 617     //   return
 618     // New functionality:
 619     //   Assert if the local is not top. In product mode let the new node
 620     //   override the old entry.
 621     assert(local == top(), "LocArray collision");
 622     if (local == top()) {
 623       return;
 624     }
 625     array->pop();
 626   }
 627   const Type *t = local->bottom_type();
 628 
 629   // Is it a safepoint scalar object node?
 630   if (local->is_SafePointScalarObject()) {
 631     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 632 
 633     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 634     if (sv == NULL) {
 635       ciKlass* cik = t->is_oopptr()->klass();
 636       assert(cik->is_instance_klass() ||
 637              cik->is_array_klass(), "Not supported allocation.");
 638       sv = new ObjectValue(spobj->_idx,
 639                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 640       Compile::set_sv_for_object_node(objs, sv);
 641 
 642       uint first_ind = spobj->first_index();
 643       for (uint i = 0; i < spobj->n_fields(); i++) {
 644         Node* fld_node = sfpt->in(first_ind+i);
 645         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 646       }
 647     }
 648     array->append(sv);
 649     return;
 650   }
 651 
 652   // Grab the register number for the local
 653   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 654   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 655     // Record the double as two float registers.
 656     // The register mask for such a value always specifies two adjacent
 657     // float registers, with the lower register number even.
 658     // Normally, the allocation of high and low words to these registers
 659     // is irrelevant, because nearly all operations on register pairs
 660     // (e.g., StoreD) treat them as a single unit.
 661     // Here, we assume in addition that the words in these two registers
 662     // stored "naturally" (by operations like StoreD and double stores
 663     // within the interpreter) such that the lower-numbered register
 664     // is written to the lower memory address.  This may seem like
 665     // a machine dependency, but it is not--it is a requirement on
 666     // the author of the <arch>.ad file to ensure that, for every
 667     // even/odd double-register pair to which a double may be allocated,
 668     // the word in the even single-register is stored to the first
 669     // memory word.  (Note that register numbers are completely
 670     // arbitrary, and are not tied to any machine-level encodings.)
 671 #ifdef _LP64
 672     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 673       array->append(new ConstantIntValue(0));
 674       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 675     } else if ( t->base() == Type::Long ) {
 676       array->append(new ConstantIntValue(0));
 677       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 678     } else if ( t->base() == Type::RawPtr ) {
 679       // jsr/ret return address which must be restored into a the full
 680       // width 64-bit stack slot.
 681       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 682     }
 683 #else //_LP64
 684 #ifdef SPARC
 685     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 686       // For SPARC we have to swap high and low words for
 687       // long values stored in a single-register (g0-g7).
 688       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 689       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 690     } else
 691 #endif //SPARC
 692     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 693       // Repack the double/long as two jints.
 694       // The convention the interpreter uses is that the second local
 695       // holds the first raw word of the native double representation.
 696       // This is actually reasonable, since locals and stack arrays
 697       // grow downwards in all implementations.
 698       // (If, on some machine, the interpreter's Java locals or stack
 699       // were to grow upwards, the embedded doubles would be word-swapped.)
 700       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 701       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 702     }
 703 #endif //_LP64
 704     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 705                OptoReg::is_reg(regnum) ) {
 706       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 707                                    ? Location::float_in_dbl : Location::normal ));
 708     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 709       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 710                                    ? Location::int_in_long : Location::normal ));
 711     } else if( t->base() == Type::NarrowOop ) {
 712       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 713     } else {
 714       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 715     }
 716     return;
 717   }
 718 
 719   // No register.  It must be constant data.
 720   switch (t->base()) {
 721   case Type::Half:              // Second half of a double
 722     ShouldNotReachHere();       // Caller should skip 2nd halves
 723     break;
 724   case Type::AnyPtr:
 725     array->append(new ConstantOopWriteValue(NULL));
 726     break;
 727   case Type::AryPtr:
 728   case Type::InstPtr:          // fall through
 729     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 730     break;
 731   case Type::NarrowOop:
 732     if (t == TypeNarrowOop::NULL_PTR) {
 733       array->append(new ConstantOopWriteValue(NULL));
 734     } else {
 735       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 736     }
 737     break;
 738   case Type::Int:
 739     array->append(new ConstantIntValue(t->is_int()->get_con()));
 740     break;
 741   case Type::RawPtr:
 742     // A return address (T_ADDRESS).
 743     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 744 #ifdef _LP64
 745     // Must be restored to the full-width 64-bit stack slot.
 746     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 747 #else
 748     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 749 #endif
 750     break;
 751   case Type::FloatCon: {
 752     float f = t->is_float_constant()->getf();
 753     array->append(new ConstantIntValue(jint_cast(f)));
 754     break;
 755   }
 756   case Type::DoubleCon: {
 757     jdouble d = t->is_double_constant()->getd();
 758 #ifdef _LP64
 759     array->append(new ConstantIntValue(0));
 760     array->append(new ConstantDoubleValue(d));
 761 #else
 762     // Repack the double as two jints.
 763     // The convention the interpreter uses is that the second local
 764     // holds the first raw word of the native double representation.
 765     // This is actually reasonable, since locals and stack arrays
 766     // grow downwards in all implementations.
 767     // (If, on some machine, the interpreter's Java locals or stack
 768     // were to grow upwards, the embedded doubles would be word-swapped.)
 769     jint   *dp = (jint*)&d;
 770     array->append(new ConstantIntValue(dp[1]));
 771     array->append(new ConstantIntValue(dp[0]));
 772 #endif
 773     break;
 774   }
 775   case Type::Long: {
 776     jlong d = t->is_long()->get_con();
 777 #ifdef _LP64
 778     array->append(new ConstantIntValue(0));
 779     array->append(new ConstantLongValue(d));
 780 #else
 781     // Repack the long as two jints.
 782     // The convention the interpreter uses is that the second local
 783     // holds the first raw word of the native double representation.
 784     // This is actually reasonable, since locals and stack arrays
 785     // grow downwards in all implementations.
 786     // (If, on some machine, the interpreter's Java locals or stack
 787     // were to grow upwards, the embedded doubles would be word-swapped.)
 788     jint *dp = (jint*)&d;
 789     array->append(new ConstantIntValue(dp[1]));
 790     array->append(new ConstantIntValue(dp[0]));
 791 #endif
 792     break;
 793   }
 794   case Type::Top:               // Add an illegal value here
 795     array->append(new LocationValue(Location()));
 796     break;
 797   default:
 798     ShouldNotReachHere();
 799     break;
 800   }
 801 }
 802 
 803 // Determine if this node starts a bundle
 804 bool Compile::starts_bundle(const Node *n) const {
 805   return (_node_bundling_limit > n->_idx &&
 806           _node_bundling_base[n->_idx].starts_bundle());
 807 }
 808 
 809 //--------------------------Process_OopMap_Node--------------------------------
 810 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 811 
 812   // Handle special safepoint nodes for synchronization
 813   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 814   MachCallNode      *mcall;
 815 
 816 #ifdef ENABLE_ZAP_DEAD_LOCALS
 817   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 818 #endif
 819 
 820   int safepoint_pc_offset = current_offset;
 821   bool is_method_handle_invoke = false;
 822   bool return_oop = false;
 823 
 824   // Add the safepoint in the DebugInfoRecorder
 825   if( !mach->is_MachCall() ) {
 826     mcall = NULL;
 827     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 828   } else {
 829     mcall = mach->as_MachCall();
 830 
 831     // Is the call a MethodHandle call?
 832     if (mcall->is_MachCallJava()) {
 833       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 834         assert(has_method_handle_invokes(), "must have been set during call generation");
 835         is_method_handle_invoke = true;
 836       }
 837     }
 838 
 839     // Check if a call returns an object.
 840     if (mcall->return_value_is_used() &&
 841         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
 842       return_oop = true;
 843     }
 844     safepoint_pc_offset += mcall->ret_addr_offset();
 845     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 846   }
 847 
 848   // Loop over the JVMState list to add scope information
 849   // Do not skip safepoints with a NULL method, they need monitor info
 850   JVMState* youngest_jvms = sfn->jvms();
 851   int max_depth = youngest_jvms->depth();
 852 
 853   // Allocate the object pool for scalar-replaced objects -- the map from
 854   // small-integer keys (which can be recorded in the local and ostack
 855   // arrays) to descriptions of the object state.
 856   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 857 
 858   // Visit scopes from oldest to youngest.
 859   for (int depth = 1; depth <= max_depth; depth++) {
 860     JVMState* jvms = youngest_jvms->of_depth(depth);
 861     int idx;
 862     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 863     // Safepoints that do not have method() set only provide oop-map and monitor info
 864     // to support GC; these do not support deoptimization.
 865     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 866     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 867     int num_mon  = jvms->nof_monitors();
 868     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 869            "JVMS local count must match that of the method");
 870 
 871     // Add Local and Expression Stack Information
 872 
 873     // Insert locals into the locarray
 874     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 875     for( idx = 0; idx < num_locs; idx++ ) {
 876       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 877     }
 878 
 879     // Insert expression stack entries into the exparray
 880     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 881     for( idx = 0; idx < num_exps; idx++ ) {
 882       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 883     }
 884 
 885     // Add in mappings of the monitors
 886     assert( !method ||
 887             !method->is_synchronized() ||
 888             method->is_native() ||
 889             num_mon > 0 ||
 890             !GenerateSynchronizationCode,
 891             "monitors must always exist for synchronized methods");
 892 
 893     // Build the growable array of ScopeValues for exp stack
 894     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 895 
 896     // Loop over monitors and insert into array
 897     for(idx = 0; idx < num_mon; idx++) {
 898       // Grab the node that defines this monitor
 899       Node* box_node = sfn->monitor_box(jvms, idx);
 900       Node* obj_node = sfn->monitor_obj(jvms, idx);
 901 
 902       // Create ScopeValue for object
 903       ScopeValue *scval = NULL;
 904 
 905       if( obj_node->is_SafePointScalarObject() ) {
 906         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 907         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 908         if (scval == NULL) {
 909           const Type *t = obj_node->bottom_type();
 910           ciKlass* cik = t->is_oopptr()->klass();
 911           assert(cik->is_instance_klass() ||
 912                  cik->is_array_klass(), "Not supported allocation.");
 913           ObjectValue* sv = new ObjectValue(spobj->_idx,
 914                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 915           Compile::set_sv_for_object_node(objs, sv);
 916 
 917           uint first_ind = spobj->first_index();
 918           for (uint i = 0; i < spobj->n_fields(); i++) {
 919             Node* fld_node = sfn->in(first_ind+i);
 920             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 921           }
 922           scval = sv;
 923         }
 924       } else if( !obj_node->is_Con() ) {
 925         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 926         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 927           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 928         } else {
 929           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 930         }
 931       } else {
 932         const TypePtr *tp = obj_node->get_ptr_type();
 933         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
 934       }
 935 
 936       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
 937       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 938       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
 939       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
 940     }
 941 
 942     // We dump the object pool first, since deoptimization reads it in first.
 943     debug_info()->dump_object_pool(objs);
 944 
 945     // Build first class objects to pass to scope
 946     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 947     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 948     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 949 
 950     // Make method available for all Safepoints
 951     ciMethod* scope_method = method ? method : _method;
 952     // Describe the scope here
 953     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 954     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 955     // Now we can describe the scope.
 956     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 957   } // End jvms loop
 958 
 959   // Mark the end of the scope set.
 960   debug_info()->end_safepoint(safepoint_pc_offset);
 961 }
 962 
 963 
 964 
 965 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 966 class NonSafepointEmitter {
 967   Compile*  C;
 968   JVMState* _pending_jvms;
 969   int       _pending_offset;
 970 
 971   void emit_non_safepoint();
 972 
 973  public:
 974   NonSafepointEmitter(Compile* compile) {
 975     this->C = compile;
 976     _pending_jvms = NULL;
 977     _pending_offset = 0;
 978   }
 979 
 980   void observe_instruction(Node* n, int pc_offset) {
 981     if (!C->debug_info()->recording_non_safepoints())  return;
 982 
 983     Node_Notes* nn = C->node_notes_at(n->_idx);
 984     if (nn == NULL || nn->jvms() == NULL)  return;
 985     if (_pending_jvms != NULL &&
 986         _pending_jvms->same_calls_as(nn->jvms())) {
 987       // Repeated JVMS?  Stretch it up here.
 988       _pending_offset = pc_offset;
 989     } else {
 990       if (_pending_jvms != NULL &&
 991           _pending_offset < pc_offset) {
 992         emit_non_safepoint();
 993       }
 994       _pending_jvms = NULL;
 995       if (pc_offset > C->debug_info()->last_pc_offset()) {
 996         // This is the only way _pending_jvms can become non-NULL:
 997         _pending_jvms = nn->jvms();
 998         _pending_offset = pc_offset;
 999       }
1000     }
1001   }
1002 
1003   // Stay out of the way of real safepoints:
1004   void observe_safepoint(JVMState* jvms, int pc_offset) {
1005     if (_pending_jvms != NULL &&
1006         !_pending_jvms->same_calls_as(jvms) &&
1007         _pending_offset < pc_offset) {
1008       emit_non_safepoint();
1009     }
1010     _pending_jvms = NULL;
1011   }
1012 
1013   void flush_at_end() {
1014     if (_pending_jvms != NULL) {
1015       emit_non_safepoint();
1016     }
1017     _pending_jvms = NULL;
1018   }
1019 };
1020 
1021 void NonSafepointEmitter::emit_non_safepoint() {
1022   JVMState* youngest_jvms = _pending_jvms;
1023   int       pc_offset     = _pending_offset;
1024 
1025   // Clear it now:
1026   _pending_jvms = NULL;
1027 
1028   DebugInformationRecorder* debug_info = C->debug_info();
1029   assert(debug_info->recording_non_safepoints(), "sanity");
1030 
1031   debug_info->add_non_safepoint(pc_offset);
1032   int max_depth = youngest_jvms->depth();
1033 
1034   // Visit scopes from oldest to youngest.
1035   for (int depth = 1; depth <= max_depth; depth++) {
1036     JVMState* jvms = youngest_jvms->of_depth(depth);
1037     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1038     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1039     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1040   }
1041 
1042   // Mark the end of the scope set.
1043   debug_info->end_non_safepoint(pc_offset);
1044 }
1045 
1046 //------------------------------init_buffer------------------------------------
1047 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1048 
1049   // Set the initially allocated size
1050   int  code_req   = initial_code_capacity;
1051   int  locs_req   = initial_locs_capacity;
1052   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1053   int  const_req  = initial_const_capacity;
1054 
1055   int  pad_req    = NativeCall::instruction_size;
1056   // The extra spacing after the code is necessary on some platforms.
1057   // Sometimes we need to patch in a jump after the last instruction,
1058   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1059 
1060   // Compute the byte offset where we can store the deopt pc.
1061   if (fixed_slots() != 0) {
1062     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1063   }
1064 
1065   // Compute prolog code size
1066   _method_size = 0;
1067   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1068 #ifdef IA64
1069   if (save_argument_registers()) {
1070     // 4815101: this is a stub with implicit and unknown precision fp args.
1071     // The usual spill mechanism can only generate stfd's in this case, which
1072     // doesn't work if the fp reg to spill contains a single-precision denorm.
1073     // Instead, we hack around the normal spill mechanism using stfspill's and
1074     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1075     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1076     //
1077     // If we ever implement 16-byte 'registers' == stack slots, we can
1078     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1079     // instead of stfd/stfs/ldfd/ldfs.
1080     _frame_slots += 8*(16/BytesPerInt);
1081   }
1082 #endif
1083   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1084 
1085   if (has_mach_constant_base_node()) {
1086     // Fill the constant table.
1087     // Note:  This must happen before shorten_branches.
1088     for (uint i = 0; i < _cfg->_num_blocks; i++) {
1089       Block* b = _cfg->_blocks[i];
1090 
1091       for (uint j = 0; j < b->_nodes.size(); j++) {
1092         Node* n = b->_nodes[j];
1093 
1094         // If the node is a MachConstantNode evaluate the constant
1095         // value section.
1096         if (n->is_MachConstant()) {
1097           MachConstantNode* machcon = n->as_MachConstant();
1098           machcon->eval_constant(C);
1099         }
1100       }
1101     }
1102 
1103     // Calculate the offsets of the constants and the size of the
1104     // constant table (including the padding to the next section).
1105     constant_table().calculate_offsets_and_size();
1106     const_req = constant_table().size();
1107   }
1108 
1109   // Initialize the space for the BufferBlob used to find and verify
1110   // instruction size in MachNode::emit_size()
1111   init_scratch_buffer_blob(const_req);
1112   if (failing())  return NULL; // Out of memory
1113 
1114   // Pre-compute the length of blocks and replace
1115   // long branches with short if machine supports it.
1116   shorten_branches(blk_starts, code_req, locs_req, stub_req);
1117 
1118   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1119   int exception_handler_req = size_exception_handler();
1120   int deopt_handler_req = size_deopt_handler();
1121   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1122   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1123   stub_req += MAX_stubs_size;   // ensure per-stub margin
1124   code_req += MAX_inst_size;    // ensure per-instruction margin
1125 
1126   if (StressCodeBuffers)
1127     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1128 
1129   int total_req =
1130     const_req +
1131     code_req +
1132     pad_req +
1133     stub_req +
1134     exception_handler_req +
1135     deopt_handler_req;               // deopt handler
1136 
1137   if (has_method_handle_invokes())
1138     total_req += deopt_handler_req;  // deopt MH handler
1139 
1140   CodeBuffer* cb = code_buffer();
1141   cb->initialize(total_req, locs_req);
1142 
1143   // Have we run out of code space?
1144   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1145     C->record_failure("CodeCache is full");
1146     return NULL;
1147   }
1148   // Configure the code buffer.
1149   cb->initialize_consts_size(const_req);
1150   cb->initialize_stubs_size(stub_req);
1151   cb->initialize_oop_recorder(env()->oop_recorder());
1152 
1153   // fill in the nop array for bundling computations
1154   MachNode *_nop_list[Bundle::_nop_count];
1155   Bundle::initialize_nops(_nop_list, this);
1156 
1157   return cb;
1158 }
1159 
1160 //------------------------------fill_buffer------------------------------------
1161 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1162   // blk_starts[] contains offsets calculated during short branches processing,
1163   // offsets should not be increased during following steps.
1164 
1165   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1166   // of a loop. It is used to determine the padding for loop alignment.
1167   compute_loop_first_inst_sizes();
1168 
1169   // Create oopmap set.
1170   _oop_map_set = new OopMapSet();
1171 
1172   // !!!!! This preserves old handling of oopmaps for now
1173   debug_info()->set_oopmaps(_oop_map_set);
1174 
1175   uint nblocks  = _cfg->_num_blocks;
1176   // Count and start of implicit null check instructions
1177   uint inct_cnt = 0;
1178   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1179 
1180   // Count and start of calls
1181   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1182 
1183   uint  return_offset = 0;
1184   int nop_size = (new (this) MachNopNode())->size(_regalloc);
1185 
1186   int previous_offset = 0;
1187   int current_offset  = 0;
1188   int last_call_offset = -1;
1189   int last_avoid_back_to_back_offset = -1;
1190 #ifdef ASSERT
1191   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1192   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1193   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1194   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1195 #endif
1196 
1197   // Create an array of unused labels, one for each basic block, if printing is enabled
1198 #ifndef PRODUCT
1199   int *node_offsets      = NULL;
1200   uint node_offset_limit = unique();
1201 
1202   if (print_assembly())
1203     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1204 #endif
1205 
1206   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1207 
1208   // Emit the constant table.
1209   if (has_mach_constant_base_node()) {
1210     constant_table().emit(*cb);
1211   }
1212 
1213   // Create an array of labels, one for each basic block
1214   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1215   for (uint i=0; i <= nblocks; i++) {
1216     blk_labels[i].init();
1217   }
1218 
1219   // ------------------
1220   // Now fill in the code buffer
1221   Node *delay_slot = NULL;
1222 
1223   for (uint i=0; i < nblocks; i++) {
1224     Block *b = _cfg->_blocks[i];
1225 
1226     Node *head = b->head();
1227 
1228     // If this block needs to start aligned (i.e, can be reached other
1229     // than by falling-thru from the previous block), then force the
1230     // start of a new bundle.
1231     if (Pipeline::requires_bundling() && starts_bundle(head))
1232       cb->flush_bundle(true);
1233 
1234 #ifdef ASSERT
1235     if (!b->is_connector()) {
1236       stringStream st;
1237       b->dump_head(&_cfg->_bbs, &st);
1238       MacroAssembler(cb).block_comment(st.as_string());
1239     }
1240     jmp_target[i] = 0;
1241     jmp_offset[i] = 0;
1242     jmp_size[i]   = 0;
1243     jmp_rule[i]   = 0;
1244 #endif
1245     int blk_offset = current_offset;
1246 
1247     // Define the label at the beginning of the basic block
1248     MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
1249 
1250     uint last_inst = b->_nodes.size();
1251 
1252     // Emit block normally, except for last instruction.
1253     // Emit means "dump code bits into code buffer".
1254     for (uint j = 0; j<last_inst; j++) {
1255 
1256       // Get the node
1257       Node* n = b->_nodes[j];
1258 
1259       // See if delay slots are supported
1260       if (valid_bundle_info(n) &&
1261           node_bundling(n)->used_in_unconditional_delay()) {
1262         assert(delay_slot == NULL, "no use of delay slot node");
1263         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1264 
1265         delay_slot = n;
1266         continue;
1267       }
1268 
1269       // If this starts a new instruction group, then flush the current one
1270       // (but allow split bundles)
1271       if (Pipeline::requires_bundling() && starts_bundle(n))
1272         cb->flush_bundle(false);
1273 
1274       // The following logic is duplicated in the code ifdeffed for
1275       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1276       // should be factored out.  Or maybe dispersed to the nodes?
1277 
1278       // Special handling for SafePoint/Call Nodes
1279       bool is_mcall = false;
1280       if (n->is_Mach()) {
1281         MachNode *mach = n->as_Mach();
1282         is_mcall = n->is_MachCall();
1283         bool is_sfn = n->is_MachSafePoint();
1284 
1285         // If this requires all previous instructions be flushed, then do so
1286         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1287           cb->flush_bundle(true);
1288           current_offset = cb->insts_size();
1289         }
1290 
1291         // A padding may be needed again since a previous instruction
1292         // could be moved to delay slot.
1293 
1294         // align the instruction if necessary
1295         int padding = mach->compute_padding(current_offset);
1296         // Make sure safepoint node for polling is distinct from a call's
1297         // return by adding a nop if needed.
1298         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1299           padding = nop_size;
1300         }
1301         if (padding == 0 && mach->avoid_back_to_back() &&
1302             current_offset == last_avoid_back_to_back_offset) {
1303           // Avoid back to back some instructions.
1304           padding = nop_size;
1305         }
1306 
1307         if(padding > 0) {
1308           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1309           int nops_cnt = padding / nop_size;
1310           MachNode *nop = new (this) MachNopNode(nops_cnt);
1311           b->_nodes.insert(j++, nop);
1312           last_inst++;
1313           _cfg->_bbs.map( nop->_idx, b );
1314           nop->emit(*cb, _regalloc);
1315           cb->flush_bundle(true);
1316           current_offset = cb->insts_size();
1317         }
1318 
1319         // Remember the start of the last call in a basic block
1320         if (is_mcall) {
1321           MachCallNode *mcall = mach->as_MachCall();
1322 
1323           // This destination address is NOT PC-relative
1324           mcall->method_set((intptr_t)mcall->entry_point());
1325 
1326           // Save the return address
1327           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1328 
1329           if (mcall->is_MachCallLeaf()) {
1330             is_mcall = false;
1331             is_sfn = false;
1332           }
1333         }
1334 
1335         // sfn will be valid whenever mcall is valid now because of inheritance
1336         if (is_sfn || is_mcall) {
1337 
1338           // Handle special safepoint nodes for synchronization
1339           if (!is_mcall) {
1340             MachSafePointNode *sfn = mach->as_MachSafePoint();
1341             // !!!!! Stubs only need an oopmap right now, so bail out
1342             if (sfn->jvms()->method() == NULL) {
1343               // Write the oopmap directly to the code blob??!!
1344 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1345               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1346 #             endif
1347               continue;
1348             }
1349           } // End synchronization
1350 
1351           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1352                                            current_offset);
1353           Process_OopMap_Node(mach, current_offset);
1354         } // End if safepoint
1355 
1356         // If this is a null check, then add the start of the previous instruction to the list
1357         else if( mach->is_MachNullCheck() ) {
1358           inct_starts[inct_cnt++] = previous_offset;
1359         }
1360 
1361         // If this is a branch, then fill in the label with the target BB's label
1362         else if (mach->is_MachBranch()) {
1363           // This requires the TRUE branch target be in succs[0]
1364           uint block_num = b->non_connector_successor(0)->_pre_order;
1365 
1366           // Try to replace long branch if delay slot is not used,
1367           // it is mostly for back branches since forward branch's
1368           // distance is not updated yet.
1369           bool delay_slot_is_used = valid_bundle_info(n) &&
1370                                     node_bundling(n)->use_unconditional_delay();
1371           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1372            assert(delay_slot == NULL, "not expecting delay slot node");
1373            int br_size = n->size(_regalloc);
1374             int offset = blk_starts[block_num] - current_offset;
1375             if (block_num >= i) {
1376               // Current and following block's offset are not
1377               // finilized yet, adjust distance by the difference
1378               // between calculated and final offsets of current block.
1379               offset -= (blk_starts[i] - blk_offset);
1380             }
1381             // In the following code a nop could be inserted before
1382             // the branch which will increase the backward distance.
1383             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1384             if (needs_padding && offset <= 0)
1385               offset -= nop_size;
1386 
1387             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1388               // We've got a winner.  Replace this branch.
1389               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1390 
1391               // Update the jmp_size.
1392               int new_size = replacement->size(_regalloc);
1393               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1394               // Insert padding between avoid_back_to_back branches.
1395               if (needs_padding && replacement->avoid_back_to_back()) {
1396                 MachNode *nop = new (this) MachNopNode();
1397                 b->_nodes.insert(j++, nop);
1398                 _cfg->_bbs.map(nop->_idx, b);
1399                 last_inst++;
1400                 nop->emit(*cb, _regalloc);
1401                 cb->flush_bundle(true);
1402                 current_offset = cb->insts_size();
1403               }
1404 #ifdef ASSERT
1405               jmp_target[i] = block_num;
1406               jmp_offset[i] = current_offset - blk_offset;
1407               jmp_size[i]   = new_size;
1408               jmp_rule[i]   = mach->rule();
1409 #endif
1410               b->_nodes.map(j, replacement);
1411               mach->subsume_by(replacement, C);
1412               n    = replacement;
1413               mach = replacement;
1414             }
1415           }
1416           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1417         } else if (mach->ideal_Opcode() == Op_Jump) {
1418           for (uint h = 0; h < b->_num_succs; h++) {
1419             Block* succs_block = b->_succs[h];
1420             for (uint j = 1; j < succs_block->num_preds(); j++) {
1421               Node* jpn = succs_block->pred(j);
1422               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1423                 uint block_num = succs_block->non_connector()->_pre_order;
1424                 Label *blkLabel = &blk_labels[block_num];
1425                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1426               }
1427             }
1428           }
1429         }
1430 
1431 #ifdef ASSERT
1432         // Check that oop-store precedes the card-mark
1433         else if (mach->ideal_Opcode() == Op_StoreCM) {
1434           uint storeCM_idx = j;
1435           int count = 0;
1436           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1437             Node *oop_store = mach->in(prec);  // Precedence edge
1438             if (oop_store == NULL) continue;
1439             count++;
1440             uint i4;
1441             for( i4 = 0; i4 < last_inst; ++i4 ) {
1442               if( b->_nodes[i4] == oop_store ) break;
1443             }
1444             // Note: This test can provide a false failure if other precedence
1445             // edges have been added to the storeCMNode.
1446             assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1447           }
1448           assert(count > 0, "storeCM expects at least one precedence edge");
1449         }
1450 #endif
1451 
1452         else if (!n->is_Proj()) {
1453           // Remember the beginning of the previous instruction, in case
1454           // it's followed by a flag-kill and a null-check.  Happens on
1455           // Intel all the time, with add-to-memory kind of opcodes.
1456           previous_offset = current_offset;
1457         }
1458       }
1459 
1460       // Verify that there is sufficient space remaining
1461       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1462       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1463         C->record_failure("CodeCache is full");
1464         return;
1465       }
1466 
1467       // Save the offset for the listing
1468 #ifndef PRODUCT
1469       if (node_offsets && n->_idx < node_offset_limit)
1470         node_offsets[n->_idx] = cb->insts_size();
1471 #endif
1472 
1473       // "Normal" instruction case
1474       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1475       n->emit(*cb, _regalloc);
1476       current_offset  = cb->insts_size();
1477 
1478 #ifdef ASSERT
1479       if (n->size(_regalloc) < (current_offset-instr_offset)) {
1480         n->dump();
1481         assert(false, "wrong size of mach node");
1482       }
1483 #endif
1484       non_safepoints.observe_instruction(n, current_offset);
1485 
1486       // mcall is last "call" that can be a safepoint
1487       // record it so we can see if a poll will directly follow it
1488       // in which case we'll need a pad to make the PcDesc sites unique
1489       // see  5010568. This can be slightly inaccurate but conservative
1490       // in the case that return address is not actually at current_offset.
1491       // This is a small price to pay.
1492 
1493       if (is_mcall) {
1494         last_call_offset = current_offset;
1495       }
1496 
1497       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
1498         // Avoid back to back some instructions.
1499         last_avoid_back_to_back_offset = current_offset;
1500       }
1501 
1502       // See if this instruction has a delay slot
1503       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1504         assert(delay_slot != NULL, "expecting delay slot node");
1505 
1506         // Back up 1 instruction
1507         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1508 
1509         // Save the offset for the listing
1510 #ifndef PRODUCT
1511         if (node_offsets && delay_slot->_idx < node_offset_limit)
1512           node_offsets[delay_slot->_idx] = cb->insts_size();
1513 #endif
1514 
1515         // Support a SafePoint in the delay slot
1516         if (delay_slot->is_MachSafePoint()) {
1517           MachNode *mach = delay_slot->as_Mach();
1518           // !!!!! Stubs only need an oopmap right now, so bail out
1519           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1520             // Write the oopmap directly to the code blob??!!
1521 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1522             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1523 #           endif
1524             delay_slot = NULL;
1525             continue;
1526           }
1527 
1528           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1529           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1530                                            adjusted_offset);
1531           // Generate an OopMap entry
1532           Process_OopMap_Node(mach, adjusted_offset);
1533         }
1534 
1535         // Insert the delay slot instruction
1536         delay_slot->emit(*cb, _regalloc);
1537 
1538         // Don't reuse it
1539         delay_slot = NULL;
1540       }
1541 
1542     } // End for all instructions in block
1543 
1544     // If the next block is the top of a loop, pad this block out to align
1545     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1546     if (i < nblocks-1) {
1547       Block *nb = _cfg->_blocks[i+1];
1548       int padding = nb->alignment_padding(current_offset);
1549       if( padding > 0 ) {
1550         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1551         b->_nodes.insert( b->_nodes.size(), nop );
1552         _cfg->_bbs.map( nop->_idx, b );
1553         nop->emit(*cb, _regalloc);
1554         current_offset = cb->insts_size();
1555       }
1556     }
1557     // Verify that the distance for generated before forward
1558     // short branches is still valid.
1559     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1560 
1561     // Save new block start offset
1562     blk_starts[i] = blk_offset;
1563   } // End of for all blocks
1564   blk_starts[nblocks] = current_offset;
1565 
1566   non_safepoints.flush_at_end();
1567 
1568   // Offset too large?
1569   if (failing())  return;
1570 
1571   // Define a pseudo-label at the end of the code
1572   MacroAssembler(cb).bind( blk_labels[nblocks] );
1573 
1574   // Compute the size of the first block
1575   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1576 
1577   assert(cb->insts_size() < 500000, "method is unreasonably large");
1578 
1579 #ifdef ASSERT
1580   for (uint i = 0; i < nblocks; i++) { // For all blocks
1581     if (jmp_target[i] != 0) {
1582       int br_size = jmp_size[i];
1583       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1584       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1585         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1586         assert(false, "Displacement too large for short jmp");
1587       }
1588     }
1589   }
1590 #endif
1591 
1592   // ------------------
1593 
1594 #ifndef PRODUCT
1595   // Information on the size of the method, without the extraneous code
1596   Scheduling::increment_method_size(cb->insts_size());
1597 #endif
1598 
1599   // ------------------
1600   // Fill in exception table entries.
1601   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1602 
1603   // Only java methods have exception handlers and deopt handlers
1604   if (_method) {
1605     // Emit the exception handler code.
1606     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1607     // Emit the deopt handler code.
1608     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1609 
1610     // Emit the MethodHandle deopt handler code (if required).
1611     if (has_method_handle_invokes()) {
1612       // We can use the same code as for the normal deopt handler, we
1613       // just need a different entry point address.
1614       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1615     }
1616   }
1617 
1618   // One last check for failed CodeBuffer::expand:
1619   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1620     C->record_failure("CodeCache is full");
1621     return;
1622   }
1623 
1624 #ifndef PRODUCT
1625   // Dump the assembly code, including basic-block numbers
1626   if (print_assembly()) {
1627     ttyLocker ttyl;  // keep the following output all in one block
1628     if (!VMThread::should_terminate()) {  // test this under the tty lock
1629       // This output goes directly to the tty, not the compiler log.
1630       // To enable tools to match it up with the compilation activity,
1631       // be sure to tag this tty output with the compile ID.
1632       if (xtty != NULL) {
1633         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1634                    is_osr_compilation()    ? " compile_kind='osr'" :
1635                    "");
1636       }
1637       if (method() != NULL) {
1638         method()->print_metadata();
1639       }
1640       dump_asm(node_offsets, node_offset_limit);
1641       if (xtty != NULL) {
1642         xtty->tail("opto_assembly");
1643       }
1644     }
1645   }
1646 #endif
1647 
1648 }
1649 
1650 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1651   _inc_table.set_size(cnt);
1652 
1653   uint inct_cnt = 0;
1654   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1655     Block *b = _cfg->_blocks[i];
1656     Node *n = NULL;
1657     int j;
1658 
1659     // Find the branch; ignore trailing NOPs.
1660     for( j = b->_nodes.size()-1; j>=0; j-- ) {
1661       n = b->_nodes[j];
1662       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1663         break;
1664     }
1665 
1666     // If we didn't find anything, continue
1667     if( j < 0 ) continue;
1668 
1669     // Compute ExceptionHandlerTable subtable entry and add it
1670     // (skip empty blocks)
1671     if( n->is_Catch() ) {
1672 
1673       // Get the offset of the return from the call
1674       uint call_return = call_returns[b->_pre_order];
1675 #ifdef ASSERT
1676       assert( call_return > 0, "no call seen for this basic block" );
1677       while( b->_nodes[--j]->is_MachProj() ) ;
1678       assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
1679 #endif
1680       // last instruction is a CatchNode, find it's CatchProjNodes
1681       int nof_succs = b->_num_succs;
1682       // allocate space
1683       GrowableArray<intptr_t> handler_bcis(nof_succs);
1684       GrowableArray<intptr_t> handler_pcos(nof_succs);
1685       // iterate through all successors
1686       for (int j = 0; j < nof_succs; j++) {
1687         Block* s = b->_succs[j];
1688         bool found_p = false;
1689         for( uint k = 1; k < s->num_preds(); k++ ) {
1690           Node *pk = s->pred(k);
1691           if( pk->is_CatchProj() && pk->in(0) == n ) {
1692             const CatchProjNode* p = pk->as_CatchProj();
1693             found_p = true;
1694             // add the corresponding handler bci & pco information
1695             if( p->_con != CatchProjNode::fall_through_index ) {
1696               // p leads to an exception handler (and is not fall through)
1697               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1698               // no duplicates, please
1699               if( !handler_bcis.contains(p->handler_bci()) ) {
1700                 uint block_num = s->non_connector()->_pre_order;
1701                 handler_bcis.append(p->handler_bci());
1702                 handler_pcos.append(blk_labels[block_num].loc_pos());
1703               }
1704             }
1705           }
1706         }
1707         assert(found_p, "no matching predecessor found");
1708         // Note:  Due to empty block removal, one block may have
1709         // several CatchProj inputs, from the same Catch.
1710       }
1711 
1712       // Set the offset of the return from the call
1713       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1714       continue;
1715     }
1716 
1717     // Handle implicit null exception table updates
1718     if( n->is_MachNullCheck() ) {
1719       uint block_num = b->non_connector_successor(0)->_pre_order;
1720       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1721       continue;
1722     }
1723   } // End of for all blocks fill in exception table entries
1724 }
1725 
1726 // Static Variables
1727 #ifndef PRODUCT
1728 uint Scheduling::_total_nop_size = 0;
1729 uint Scheduling::_total_method_size = 0;
1730 uint Scheduling::_total_branches = 0;
1731 uint Scheduling::_total_unconditional_delays = 0;
1732 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1733 #endif
1734 
1735 // Initializer for class Scheduling
1736 
1737 Scheduling::Scheduling(Arena *arena, Compile &compile)
1738   : _arena(arena),
1739     _cfg(compile.cfg()),
1740     _bbs(compile.cfg()->_bbs),
1741     _regalloc(compile.regalloc()),
1742     _reg_node(arena),
1743     _bundle_instr_count(0),
1744     _bundle_cycle_number(0),
1745     _scheduled(arena),
1746     _available(arena),
1747     _next_node(NULL),
1748     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1749     _pinch_free_list(arena)
1750 #ifndef PRODUCT
1751   , _branches(0)
1752   , _unconditional_delays(0)
1753 #endif
1754 {
1755   // Create a MachNopNode
1756   _nop = new (&compile) MachNopNode();
1757 
1758   // Now that the nops are in the array, save the count
1759   // (but allow entries for the nops)
1760   _node_bundling_limit = compile.unique();
1761   uint node_max = _regalloc->node_regs_max_index();
1762 
1763   compile.set_node_bundling_limit(_node_bundling_limit);
1764 
1765   // This one is persistent within the Compile class
1766   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1767 
1768   // Allocate space for fixed-size arrays
1769   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1770   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1771   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1772 
1773   // Clear the arrays
1774   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1775   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1776   memset(_uses,               0, node_max * sizeof(short));
1777   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1778 
1779   // Clear the bundling information
1780   memcpy(_bundle_use_elements,
1781     Pipeline_Use::elaborated_elements,
1782     sizeof(Pipeline_Use::elaborated_elements));
1783 
1784   // Get the last node
1785   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1786 
1787   _next_node = bb->_nodes[bb->_nodes.size()-1];
1788 }
1789 
1790 #ifndef PRODUCT
1791 // Scheduling destructor
1792 Scheduling::~Scheduling() {
1793   _total_branches             += _branches;
1794   _total_unconditional_delays += _unconditional_delays;
1795 }
1796 #endif
1797 
1798 // Step ahead "i" cycles
1799 void Scheduling::step(uint i) {
1800 
1801   Bundle *bundle = node_bundling(_next_node);
1802   bundle->set_starts_bundle();
1803 
1804   // Update the bundle record, but leave the flags information alone
1805   if (_bundle_instr_count > 0) {
1806     bundle->set_instr_count(_bundle_instr_count);
1807     bundle->set_resources_used(_bundle_use.resourcesUsed());
1808   }
1809 
1810   // Update the state information
1811   _bundle_instr_count = 0;
1812   _bundle_cycle_number += i;
1813   _bundle_use.step(i);
1814 }
1815 
1816 void Scheduling::step_and_clear() {
1817   Bundle *bundle = node_bundling(_next_node);
1818   bundle->set_starts_bundle();
1819 
1820   // Update the bundle record
1821   if (_bundle_instr_count > 0) {
1822     bundle->set_instr_count(_bundle_instr_count);
1823     bundle->set_resources_used(_bundle_use.resourcesUsed());
1824 
1825     _bundle_cycle_number += 1;
1826   }
1827 
1828   // Clear the bundling information
1829   _bundle_instr_count = 0;
1830   _bundle_use.reset();
1831 
1832   memcpy(_bundle_use_elements,
1833     Pipeline_Use::elaborated_elements,
1834     sizeof(Pipeline_Use::elaborated_elements));
1835 }
1836 
1837 //------------------------------ScheduleAndBundle------------------------------
1838 // Perform instruction scheduling and bundling over the sequence of
1839 // instructions in backwards order.
1840 void Compile::ScheduleAndBundle() {
1841 
1842   // Don't optimize this if it isn't a method
1843   if (!_method)
1844     return;
1845 
1846   // Don't optimize this if scheduling is disabled
1847   if (!do_scheduling())
1848     return;
1849 
1850   // Scheduling code works only with pairs (8 bytes) maximum.
1851   if (max_vector_size() > 8)
1852     return;
1853 
1854   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1855 
1856   // Create a data structure for all the scheduling information
1857   Scheduling scheduling(Thread::current()->resource_area(), *this);
1858 
1859   // Walk backwards over each basic block, computing the needed alignment
1860   // Walk over all the basic blocks
1861   scheduling.DoScheduling();
1862 }
1863 
1864 //------------------------------ComputeLocalLatenciesForward-------------------
1865 // Compute the latency of all the instructions.  This is fairly simple,
1866 // because we already have a legal ordering.  Walk over the instructions
1867 // from first to last, and compute the latency of the instruction based
1868 // on the latency of the preceding instruction(s).
1869 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1870 #ifndef PRODUCT
1871   if (_cfg->C->trace_opto_output())
1872     tty->print("# -> ComputeLocalLatenciesForward\n");
1873 #endif
1874 
1875   // Walk over all the schedulable instructions
1876   for( uint j=_bb_start; j < _bb_end; j++ ) {
1877 
1878     // This is a kludge, forcing all latency calculations to start at 1.
1879     // Used to allow latency 0 to force an instruction to the beginning
1880     // of the bb
1881     uint latency = 1;
1882     Node *use = bb->_nodes[j];
1883     uint nlen = use->len();
1884 
1885     // Walk over all the inputs
1886     for ( uint k=0; k < nlen; k++ ) {
1887       Node *def = use->in(k);
1888       if (!def)
1889         continue;
1890 
1891       uint l = _node_latency[def->_idx] + use->latency(k);
1892       if (latency < l)
1893         latency = l;
1894     }
1895 
1896     _node_latency[use->_idx] = latency;
1897 
1898 #ifndef PRODUCT
1899     if (_cfg->C->trace_opto_output()) {
1900       tty->print("# latency %4d: ", latency);
1901       use->dump();
1902     }
1903 #endif
1904   }
1905 
1906 #ifndef PRODUCT
1907   if (_cfg->C->trace_opto_output())
1908     tty->print("# <- ComputeLocalLatenciesForward\n");
1909 #endif
1910 
1911 } // end ComputeLocalLatenciesForward
1912 
1913 // See if this node fits into the present instruction bundle
1914 bool Scheduling::NodeFitsInBundle(Node *n) {
1915   uint n_idx = n->_idx;
1916 
1917   // If this is the unconditional delay instruction, then it fits
1918   if (n == _unconditional_delay_slot) {
1919 #ifndef PRODUCT
1920     if (_cfg->C->trace_opto_output())
1921       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1922 #endif
1923     return (true);
1924   }
1925 
1926   // If the node cannot be scheduled this cycle, skip it
1927   if (_current_latency[n_idx] > _bundle_cycle_number) {
1928 #ifndef PRODUCT
1929     if (_cfg->C->trace_opto_output())
1930       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1931         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1932 #endif
1933     return (false);
1934   }
1935 
1936   const Pipeline *node_pipeline = n->pipeline();
1937 
1938   uint instruction_count = node_pipeline->instructionCount();
1939   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1940     instruction_count = 0;
1941   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1942     instruction_count++;
1943 
1944   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1945 #ifndef PRODUCT
1946     if (_cfg->C->trace_opto_output())
1947       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1948         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1949 #endif
1950     return (false);
1951   }
1952 
1953   // Don't allow non-machine nodes to be handled this way
1954   if (!n->is_Mach() && instruction_count == 0)
1955     return (false);
1956 
1957   // See if there is any overlap
1958   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1959 
1960   if (delay > 0) {
1961 #ifndef PRODUCT
1962     if (_cfg->C->trace_opto_output())
1963       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1964 #endif
1965     return false;
1966   }
1967 
1968 #ifndef PRODUCT
1969   if (_cfg->C->trace_opto_output())
1970     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1971 #endif
1972 
1973   return true;
1974 }
1975 
1976 Node * Scheduling::ChooseNodeToBundle() {
1977   uint siz = _available.size();
1978 
1979   if (siz == 0) {
1980 
1981 #ifndef PRODUCT
1982     if (_cfg->C->trace_opto_output())
1983       tty->print("#   ChooseNodeToBundle: NULL\n");
1984 #endif
1985     return (NULL);
1986   }
1987 
1988   // Fast path, if only 1 instruction in the bundle
1989   if (siz == 1) {
1990 #ifndef PRODUCT
1991     if (_cfg->C->trace_opto_output()) {
1992       tty->print("#   ChooseNodeToBundle (only 1): ");
1993       _available[0]->dump();
1994     }
1995 #endif
1996     return (_available[0]);
1997   }
1998 
1999   // Don't bother, if the bundle is already full
2000   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2001     for ( uint i = 0; i < siz; i++ ) {
2002       Node *n = _available[i];
2003 
2004       // Skip projections, we'll handle them another way
2005       if (n->is_Proj())
2006         continue;
2007 
2008       // This presupposed that instructions are inserted into the
2009       // available list in a legality order; i.e. instructions that
2010       // must be inserted first are at the head of the list
2011       if (NodeFitsInBundle(n)) {
2012 #ifndef PRODUCT
2013         if (_cfg->C->trace_opto_output()) {
2014           tty->print("#   ChooseNodeToBundle: ");
2015           n->dump();
2016         }
2017 #endif
2018         return (n);
2019       }
2020     }
2021   }
2022 
2023   // Nothing fits in this bundle, choose the highest priority
2024 #ifndef PRODUCT
2025   if (_cfg->C->trace_opto_output()) {
2026     tty->print("#   ChooseNodeToBundle: ");
2027     _available[0]->dump();
2028   }
2029 #endif
2030 
2031   return _available[0];
2032 }
2033 
2034 //------------------------------AddNodeToAvailableList-------------------------
2035 void Scheduling::AddNodeToAvailableList(Node *n) {
2036   assert( !n->is_Proj(), "projections never directly made available" );
2037 #ifndef PRODUCT
2038   if (_cfg->C->trace_opto_output()) {
2039     tty->print("#   AddNodeToAvailableList: ");
2040     n->dump();
2041   }
2042 #endif
2043 
2044   int latency = _current_latency[n->_idx];
2045 
2046   // Insert in latency order (insertion sort)
2047   uint i;
2048   for ( i=0; i < _available.size(); i++ )
2049     if (_current_latency[_available[i]->_idx] > latency)
2050       break;
2051 
2052   // Special Check for compares following branches
2053   if( n->is_Mach() && _scheduled.size() > 0 ) {
2054     int op = n->as_Mach()->ideal_Opcode();
2055     Node *last = _scheduled[0];
2056     if( last->is_MachIf() && last->in(1) == n &&
2057         ( op == Op_CmpI ||
2058           op == Op_CmpU ||
2059           op == Op_CmpP ||
2060           op == Op_CmpF ||
2061           op == Op_CmpD ||
2062           op == Op_CmpL ) ) {
2063 
2064       // Recalculate position, moving to front of same latency
2065       for ( i=0 ; i < _available.size(); i++ )
2066         if (_current_latency[_available[i]->_idx] >= latency)
2067           break;
2068     }
2069   }
2070 
2071   // Insert the node in the available list
2072   _available.insert(i, n);
2073 
2074 #ifndef PRODUCT
2075   if (_cfg->C->trace_opto_output())
2076     dump_available();
2077 #endif
2078 }
2079 
2080 //------------------------------DecrementUseCounts-----------------------------
2081 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2082   for ( uint i=0; i < n->len(); i++ ) {
2083     Node *def = n->in(i);
2084     if (!def) continue;
2085     if( def->is_Proj() )        // If this is a machine projection, then
2086       def = def->in(0);         // propagate usage thru to the base instruction
2087 
2088     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
2089       continue;
2090 
2091     // Compute the latency
2092     uint l = _bundle_cycle_number + n->latency(i);
2093     if (_current_latency[def->_idx] < l)
2094       _current_latency[def->_idx] = l;
2095 
2096     // If this does not have uses then schedule it
2097     if ((--_uses[def->_idx]) == 0)
2098       AddNodeToAvailableList(def);
2099   }
2100 }
2101 
2102 //------------------------------AddNodeToBundle--------------------------------
2103 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2104 #ifndef PRODUCT
2105   if (_cfg->C->trace_opto_output()) {
2106     tty->print("#   AddNodeToBundle: ");
2107     n->dump();
2108   }
2109 #endif
2110 
2111   // Remove this from the available list
2112   uint i;
2113   for (i = 0; i < _available.size(); i++)
2114     if (_available[i] == n)
2115       break;
2116   assert(i < _available.size(), "entry in _available list not found");
2117   _available.remove(i);
2118 
2119   // See if this fits in the current bundle
2120   const Pipeline *node_pipeline = n->pipeline();
2121   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2122 
2123   // Check for instructions to be placed in the delay slot. We
2124   // do this before we actually schedule the current instruction,
2125   // because the delay slot follows the current instruction.
2126   if (Pipeline::_branch_has_delay_slot &&
2127       node_pipeline->hasBranchDelay() &&
2128       !_unconditional_delay_slot) {
2129 
2130     uint siz = _available.size();
2131 
2132     // Conditional branches can support an instruction that
2133     // is unconditionally executed and not dependent by the
2134     // branch, OR a conditionally executed instruction if
2135     // the branch is taken.  In practice, this means that
2136     // the first instruction at the branch target is
2137     // copied to the delay slot, and the branch goes to
2138     // the instruction after that at the branch target
2139     if ( n->is_MachBranch() ) {
2140 
2141       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2142       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2143 
2144 #ifndef PRODUCT
2145       _branches++;
2146 #endif
2147 
2148       // At least 1 instruction is on the available list
2149       // that is not dependent on the branch
2150       for (uint i = 0; i < siz; i++) {
2151         Node *d = _available[i];
2152         const Pipeline *avail_pipeline = d->pipeline();
2153 
2154         // Don't allow safepoints in the branch shadow, that will
2155         // cause a number of difficulties
2156         if ( avail_pipeline->instructionCount() == 1 &&
2157             !avail_pipeline->hasMultipleBundles() &&
2158             !avail_pipeline->hasBranchDelay() &&
2159             Pipeline::instr_has_unit_size() &&
2160             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2161             NodeFitsInBundle(d) &&
2162             !node_bundling(d)->used_in_delay()) {
2163 
2164           if (d->is_Mach() && !d->is_MachSafePoint()) {
2165             // A node that fits in the delay slot was found, so we need to
2166             // set the appropriate bits in the bundle pipeline information so
2167             // that it correctly indicates resource usage.  Later, when we
2168             // attempt to add this instruction to the bundle, we will skip
2169             // setting the resource usage.
2170             _unconditional_delay_slot = d;
2171             node_bundling(n)->set_use_unconditional_delay();
2172             node_bundling(d)->set_used_in_unconditional_delay();
2173             _bundle_use.add_usage(avail_pipeline->resourceUse());
2174             _current_latency[d->_idx] = _bundle_cycle_number;
2175             _next_node = d;
2176             ++_bundle_instr_count;
2177 #ifndef PRODUCT
2178             _unconditional_delays++;
2179 #endif
2180             break;
2181           }
2182         }
2183       }
2184     }
2185 
2186     // No delay slot, add a nop to the usage
2187     if (!_unconditional_delay_slot) {
2188       // See if adding an instruction in the delay slot will overflow
2189       // the bundle.
2190       if (!NodeFitsInBundle(_nop)) {
2191 #ifndef PRODUCT
2192         if (_cfg->C->trace_opto_output())
2193           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2194 #endif
2195         step(1);
2196       }
2197 
2198       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2199       _next_node = _nop;
2200       ++_bundle_instr_count;
2201     }
2202 
2203     // See if the instruction in the delay slot requires a
2204     // step of the bundles
2205     if (!NodeFitsInBundle(n)) {
2206 #ifndef PRODUCT
2207         if (_cfg->C->trace_opto_output())
2208           tty->print("#  *** STEP(branch won't fit) ***\n");
2209 #endif
2210         // Update the state information
2211         _bundle_instr_count = 0;
2212         _bundle_cycle_number += 1;
2213         _bundle_use.step(1);
2214     }
2215   }
2216 
2217   // Get the number of instructions
2218   uint instruction_count = node_pipeline->instructionCount();
2219   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2220     instruction_count = 0;
2221 
2222   // Compute the latency information
2223   uint delay = 0;
2224 
2225   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2226     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2227     if (relative_latency < 0)
2228       relative_latency = 0;
2229 
2230     delay = _bundle_use.full_latency(relative_latency, node_usage);
2231 
2232     // Does not fit in this bundle, start a new one
2233     if (delay > 0) {
2234       step(delay);
2235 
2236 #ifndef PRODUCT
2237       if (_cfg->C->trace_opto_output())
2238         tty->print("#  *** STEP(%d) ***\n", delay);
2239 #endif
2240     }
2241   }
2242 
2243   // If this was placed in the delay slot, ignore it
2244   if (n != _unconditional_delay_slot) {
2245 
2246     if (delay == 0) {
2247       if (node_pipeline->hasMultipleBundles()) {
2248 #ifndef PRODUCT
2249         if (_cfg->C->trace_opto_output())
2250           tty->print("#  *** STEP(multiple instructions) ***\n");
2251 #endif
2252         step(1);
2253       }
2254 
2255       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2256 #ifndef PRODUCT
2257         if (_cfg->C->trace_opto_output())
2258           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2259             instruction_count + _bundle_instr_count,
2260             Pipeline::_max_instrs_per_cycle);
2261 #endif
2262         step(1);
2263       }
2264     }
2265 
2266     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2267       _bundle_instr_count++;
2268 
2269     // Set the node's latency
2270     _current_latency[n->_idx] = _bundle_cycle_number;
2271 
2272     // Now merge the functional unit information
2273     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2274       _bundle_use.add_usage(node_usage);
2275 
2276     // Increment the number of instructions in this bundle
2277     _bundle_instr_count += instruction_count;
2278 
2279     // Remember this node for later
2280     if (n->is_Mach())
2281       _next_node = n;
2282   }
2283 
2284   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2285   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2286   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2287   // into the block.  All other scheduled nodes get put in the schedule here.
2288   int op = n->Opcode();
2289   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2290       (op != Op_Node &&         // Not an unused antidepedence node and
2291        // not an unallocated boxlock
2292        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2293 
2294     // Push any trailing projections
2295     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2296       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2297         Node *foi = n->fast_out(i);
2298         if( foi->is_Proj() )
2299           _scheduled.push(foi);
2300       }
2301     }
2302 
2303     // Put the instruction in the schedule list
2304     _scheduled.push(n);
2305   }
2306 
2307 #ifndef PRODUCT
2308   if (_cfg->C->trace_opto_output())
2309     dump_available();
2310 #endif
2311 
2312   // Walk all the definitions, decrementing use counts, and
2313   // if a definition has a 0 use count, place it in the available list.
2314   DecrementUseCounts(n,bb);
2315 }
2316 
2317 //------------------------------ComputeUseCount--------------------------------
2318 // This method sets the use count within a basic block.  We will ignore all
2319 // uses outside the current basic block.  As we are doing a backwards walk,
2320 // any node we reach that has a use count of 0 may be scheduled.  This also
2321 // avoids the problem of cyclic references from phi nodes, as long as phi
2322 // nodes are at the front of the basic block.  This method also initializes
2323 // the available list to the set of instructions that have no uses within this
2324 // basic block.
2325 void Scheduling::ComputeUseCount(const Block *bb) {
2326 #ifndef PRODUCT
2327   if (_cfg->C->trace_opto_output())
2328     tty->print("# -> ComputeUseCount\n");
2329 #endif
2330 
2331   // Clear the list of available and scheduled instructions, just in case
2332   _available.clear();
2333   _scheduled.clear();
2334 
2335   // No delay slot specified
2336   _unconditional_delay_slot = NULL;
2337 
2338 #ifdef ASSERT
2339   for( uint i=0; i < bb->_nodes.size(); i++ )
2340     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2341 #endif
2342 
2343   // Force the _uses count to never go to zero for unscheduable pieces
2344   // of the block
2345   for( uint k = 0; k < _bb_start; k++ )
2346     _uses[bb->_nodes[k]->_idx] = 1;
2347   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2348     _uses[bb->_nodes[l]->_idx] = 1;
2349 
2350   // Iterate backwards over the instructions in the block.  Don't count the
2351   // branch projections at end or the block header instructions.
2352   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2353     Node *n = bb->_nodes[j];
2354     if( n->is_Proj() ) continue; // Projections handled another way
2355 
2356     // Account for all uses
2357     for ( uint k = 0; k < n->len(); k++ ) {
2358       Node *inp = n->in(k);
2359       if (!inp) continue;
2360       assert(inp != n, "no cycles allowed" );
2361       if( _bbs[inp->_idx] == bb ) { // Block-local use?
2362         if( inp->is_Proj() )    // Skip through Proj's
2363           inp = inp->in(0);
2364         ++_uses[inp->_idx];     // Count 1 block-local use
2365       }
2366     }
2367 
2368     // If this instruction has a 0 use count, then it is available
2369     if (!_uses[n->_idx]) {
2370       _current_latency[n->_idx] = _bundle_cycle_number;
2371       AddNodeToAvailableList(n);
2372     }
2373 
2374 #ifndef PRODUCT
2375     if (_cfg->C->trace_opto_output()) {
2376       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2377       n->dump();
2378     }
2379 #endif
2380   }
2381 
2382 #ifndef PRODUCT
2383   if (_cfg->C->trace_opto_output())
2384     tty->print("# <- ComputeUseCount\n");
2385 #endif
2386 }
2387 
2388 // This routine performs scheduling on each basic block in reverse order,
2389 // using instruction latencies and taking into account function unit
2390 // availability.
2391 void Scheduling::DoScheduling() {
2392 #ifndef PRODUCT
2393   if (_cfg->C->trace_opto_output())
2394     tty->print("# -> DoScheduling\n");
2395 #endif
2396 
2397   Block *succ_bb = NULL;
2398   Block *bb;
2399 
2400   // Walk over all the basic blocks in reverse order
2401   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2402     bb = _cfg->_blocks[i];
2403 
2404 #ifndef PRODUCT
2405     if (_cfg->C->trace_opto_output()) {
2406       tty->print("#  Schedule BB#%03d (initial)\n", i);
2407       for (uint j = 0; j < bb->_nodes.size(); j++)
2408         bb->_nodes[j]->dump();
2409     }
2410 #endif
2411 
2412     // On the head node, skip processing
2413     if( bb == _cfg->_broot )
2414       continue;
2415 
2416     // Skip empty, connector blocks
2417     if (bb->is_connector())
2418       continue;
2419 
2420     // If the following block is not the sole successor of
2421     // this one, then reset the pipeline information
2422     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2423 #ifndef PRODUCT
2424       if (_cfg->C->trace_opto_output()) {
2425         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2426                    _next_node->_idx, _bundle_instr_count);
2427       }
2428 #endif
2429       step_and_clear();
2430     }
2431 
2432     // Leave untouched the starting instruction, any Phis, a CreateEx node
2433     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2434     _bb_end = bb->_nodes.size()-1;
2435     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2436       Node *n = bb->_nodes[_bb_start];
2437       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2438       // Also, MachIdealNodes do not get scheduled
2439       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2440       MachNode *mach = n->as_Mach();
2441       int iop = mach->ideal_Opcode();
2442       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2443       if( iop == Op_Con ) continue;      // Do not schedule Top
2444       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2445           mach->pipeline() == MachNode::pipeline_class() &&
2446           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2447         continue;
2448       break;                    // Funny loop structure to be sure...
2449     }
2450     // Compute last "interesting" instruction in block - last instruction we
2451     // might schedule.  _bb_end points just after last schedulable inst.  We
2452     // normally schedule conditional branches (despite them being forced last
2453     // in the block), because they have delay slots we can fill.  Calls all
2454     // have their delay slots filled in the template expansions, so we don't
2455     // bother scheduling them.
2456     Node *last = bb->_nodes[_bb_end];
2457     // Ignore trailing NOPs.
2458     while (_bb_end > 0 && last->is_Mach() &&
2459            last->as_Mach()->ideal_Opcode() == Op_Con) {
2460       last = bb->_nodes[--_bb_end];
2461     }
2462     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2463     if( last->is_Catch() ||
2464        // Exclude unreachable path case when Halt node is in a separate block.
2465        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2466       // There must be a prior call.  Skip it.
2467       while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
2468         assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
2469       }
2470     } else if( last->is_MachNullCheck() ) {
2471       // Backup so the last null-checked memory instruction is
2472       // outside the schedulable range. Skip over the nullcheck,
2473       // projection, and the memory nodes.
2474       Node *mem = last->in(1);
2475       do {
2476         _bb_end--;
2477       } while (mem != bb->_nodes[_bb_end]);
2478     } else {
2479       // Set _bb_end to point after last schedulable inst.
2480       _bb_end++;
2481     }
2482 
2483     assert( _bb_start <= _bb_end, "inverted block ends" );
2484 
2485     // Compute the register antidependencies for the basic block
2486     ComputeRegisterAntidependencies(bb);
2487     if (_cfg->C->failing())  return;  // too many D-U pinch points
2488 
2489     // Compute intra-bb latencies for the nodes
2490     ComputeLocalLatenciesForward(bb);
2491 
2492     // Compute the usage within the block, and set the list of all nodes
2493     // in the block that have no uses within the block.
2494     ComputeUseCount(bb);
2495 
2496     // Schedule the remaining instructions in the block
2497     while ( _available.size() > 0 ) {
2498       Node *n = ChooseNodeToBundle();
2499       guarantee(n != NULL, "no nodes available");
2500       AddNodeToBundle(n,bb);
2501     }
2502 
2503     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2504 #ifdef ASSERT
2505     for( uint l = _bb_start; l < _bb_end; l++ ) {
2506       Node *n = bb->_nodes[l];
2507       uint m;
2508       for( m = 0; m < _bb_end-_bb_start; m++ )
2509         if( _scheduled[m] == n )
2510           break;
2511       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2512     }
2513 #endif
2514 
2515     // Now copy the instructions (in reverse order) back to the block
2516     for ( uint k = _bb_start; k < _bb_end; k++ )
2517       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2518 
2519 #ifndef PRODUCT
2520     if (_cfg->C->trace_opto_output()) {
2521       tty->print("#  Schedule BB#%03d (final)\n", i);
2522       uint current = 0;
2523       for (uint j = 0; j < bb->_nodes.size(); j++) {
2524         Node *n = bb->_nodes[j];
2525         if( valid_bundle_info(n) ) {
2526           Bundle *bundle = node_bundling(n);
2527           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2528             tty->print("*** Bundle: ");
2529             bundle->dump();
2530           }
2531           n->dump();
2532         }
2533       }
2534     }
2535 #endif
2536 #ifdef ASSERT
2537   verify_good_schedule(bb,"after block local scheduling");
2538 #endif
2539   }
2540 
2541 #ifndef PRODUCT
2542   if (_cfg->C->trace_opto_output())
2543     tty->print("# <- DoScheduling\n");
2544 #endif
2545 
2546   // Record final node-bundling array location
2547   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2548 
2549 } // end DoScheduling
2550 
2551 //------------------------------verify_good_schedule---------------------------
2552 // Verify that no live-range used in the block is killed in the block by a
2553 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2554 
2555 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2556 static bool edge_from_to( Node *from, Node *to ) {
2557   for( uint i=0; i<from->len(); i++ )
2558     if( from->in(i) == to )
2559       return true;
2560   return false;
2561 }
2562 
2563 #ifdef ASSERT
2564 //------------------------------verify_do_def----------------------------------
2565 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2566   // Check for bad kills
2567   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2568     Node *prior_use = _reg_node[def];
2569     if( prior_use && !edge_from_to(prior_use,n) ) {
2570       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2571       n->dump();
2572       tty->print_cr("...");
2573       prior_use->dump();
2574       assert(edge_from_to(prior_use,n),msg);
2575     }
2576     _reg_node.map(def,NULL); // Kill live USEs
2577   }
2578 }
2579 
2580 //------------------------------verify_good_schedule---------------------------
2581 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2582 
2583   // Zap to something reasonable for the verify code
2584   _reg_node.clear();
2585 
2586   // Walk over the block backwards.  Check to make sure each DEF doesn't
2587   // kill a live value (other than the one it's supposed to).  Add each
2588   // USE to the live set.
2589   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2590     Node *n = b->_nodes[i];
2591     int n_op = n->Opcode();
2592     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2593       // Fat-proj kills a slew of registers
2594       RegMask rm = n->out_RegMask();// Make local copy
2595       while( rm.is_NotEmpty() ) {
2596         OptoReg::Name kill = rm.find_first_elem();
2597         rm.Remove(kill);
2598         verify_do_def( n, kill, msg );
2599       }
2600     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2601       // Get DEF'd registers the normal way
2602       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2603       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2604     }
2605 
2606     // Now make all USEs live
2607     for( uint i=1; i<n->req(); i++ ) {
2608       Node *def = n->in(i);
2609       assert(def != 0, "input edge required");
2610       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2611       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2612       if( OptoReg::is_valid(reg_lo) ) {
2613         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2614         _reg_node.map(reg_lo,n);
2615       }
2616       if( OptoReg::is_valid(reg_hi) ) {
2617         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2618         _reg_node.map(reg_hi,n);
2619       }
2620     }
2621 
2622   }
2623 
2624   // Zap to something reasonable for the Antidependence code
2625   _reg_node.clear();
2626 }
2627 #endif
2628 
2629 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2630 static void add_prec_edge_from_to( Node *from, Node *to ) {
2631   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2632     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2633     from = from->in(0);
2634   }
2635   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2636       !edge_from_to( from, to ) ) // Avoid duplicate edge
2637     from->add_prec(to);
2638 }
2639 
2640 //------------------------------anti_do_def------------------------------------
2641 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2642   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2643     return;
2644 
2645   Node *pinch = _reg_node[def_reg]; // Get pinch point
2646   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2647       is_def ) {    // Check for a true def (not a kill)
2648     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2649     return;
2650   }
2651 
2652   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2653   debug_only( def = (Node*)0xdeadbeef; )
2654 
2655   // After some number of kills there _may_ be a later def
2656   Node *later_def = NULL;
2657 
2658   // Finding a kill requires a real pinch-point.
2659   // Check for not already having a pinch-point.
2660   // Pinch points are Op_Node's.
2661   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2662     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2663     if ( _pinch_free_list.size() > 0) {
2664       pinch = _pinch_free_list.pop();
2665     } else {
2666       pinch = new (_cfg->C) Node(1); // Pinch point to-be
2667     }
2668     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2669       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2670       return;
2671     }
2672     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2673     _reg_node.map(def_reg,pinch); // Record pinch-point
2674     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2675     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2676       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2677       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2678       later_def = NULL;           // and no later def
2679     }
2680     pinch->set_req(0,later_def);  // Hook later def so we can find it
2681   } else {                        // Else have valid pinch point
2682     if( pinch->in(0) )            // If there is a later-def
2683       later_def = pinch->in(0);   // Get it
2684   }
2685 
2686   // Add output-dependence edge from later def to kill
2687   if( later_def )               // If there is some original def
2688     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2689 
2690   // See if current kill is also a use, and so is forced to be the pinch-point.
2691   if( pinch->Opcode() == Op_Node ) {
2692     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2693     for( uint i=1; i<uses->req(); i++ ) {
2694       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2695           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2696         // Yes, found a use/kill pinch-point
2697         pinch->set_req(0,NULL);  //
2698         pinch->replace_by(kill); // Move anti-dep edges up
2699         pinch = kill;
2700         _reg_node.map(def_reg,pinch);
2701         return;
2702       }
2703     }
2704   }
2705 
2706   // Add edge from kill to pinch-point
2707   add_prec_edge_from_to(kill,pinch);
2708 }
2709 
2710 //------------------------------anti_do_use------------------------------------
2711 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2712   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2713     return;
2714   Node *pinch = _reg_node[use_reg]; // Get pinch point
2715   // Check for no later def_reg/kill in block
2716   if( pinch && _bbs[pinch->_idx] == b &&
2717       // Use has to be block-local as well
2718       _bbs[use->_idx] == b ) {
2719     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2720         pinch->req() == 1 ) {   // pinch not yet in block?
2721       pinch->del_req(0);        // yank pointer to later-def, also set flag
2722       // Insert the pinch-point in the block just after the last use
2723       b->_nodes.insert(b->find_node(use)+1,pinch);
2724       _bb_end++;                // Increase size scheduled region in block
2725     }
2726 
2727     add_prec_edge_from_to(pinch,use);
2728   }
2729 }
2730 
2731 //------------------------------ComputeRegisterAntidependences-----------------
2732 // We insert antidependences between the reads and following write of
2733 // allocated registers to prevent illegal code motion. Hopefully, the
2734 // number of added references should be fairly small, especially as we
2735 // are only adding references within the current basic block.
2736 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2737 
2738 #ifdef ASSERT
2739   verify_good_schedule(b,"before block local scheduling");
2740 #endif
2741 
2742   // A valid schedule, for each register independently, is an endless cycle
2743   // of: a def, then some uses (connected to the def by true dependencies),
2744   // then some kills (defs with no uses), finally the cycle repeats with a new
2745   // def.  The uses are allowed to float relative to each other, as are the
2746   // kills.  No use is allowed to slide past a kill (or def).  This requires
2747   // antidependencies between all uses of a single def and all kills that
2748   // follow, up to the next def.  More edges are redundant, because later defs
2749   // & kills are already serialized with true or antidependencies.  To keep
2750   // the edge count down, we add a 'pinch point' node if there's more than
2751   // one use or more than one kill/def.
2752 
2753   // We add dependencies in one bottom-up pass.
2754 
2755   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2756 
2757   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2758   // register.  If not, we record the DEF/KILL in _reg_node, the
2759   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2760   // "pinch point", a new Node that's in the graph but not in the block.
2761   // We put edges from the prior and current DEF/KILLs to the pinch point.
2762   // We put the pinch point in _reg_node.  If there's already a pinch point
2763   // we merely add an edge from the current DEF/KILL to the pinch point.
2764 
2765   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2766   // put an edge from the pinch point to the USE.
2767 
2768   // To be expedient, the _reg_node array is pre-allocated for the whole
2769   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2770   // or a valid def/kill/pinch-point, or a leftover node from some prior
2771   // block.  Leftover node from some prior block is treated like a NULL (no
2772   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2773   // it being in the current block.
2774   bool fat_proj_seen = false;
2775   uint last_safept = _bb_end-1;
2776   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2777   Node* last_safept_node = end_node;
2778   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2779     Node *n = b->_nodes[i];
2780     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2781     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2782       // Fat-proj kills a slew of registers
2783       // This can add edges to 'n' and obscure whether or not it was a def,
2784       // hence the is_def flag.
2785       fat_proj_seen = true;
2786       RegMask rm = n->out_RegMask();// Make local copy
2787       while( rm.is_NotEmpty() ) {
2788         OptoReg::Name kill = rm.find_first_elem();
2789         rm.Remove(kill);
2790         anti_do_def( b, n, kill, is_def );
2791       }
2792     } else {
2793       // Get DEF'd registers the normal way
2794       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2795       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2796     }
2797 
2798     // Kill projections on a branch should appear to occur on the
2799     // branch, not afterwards, so grab the masks from the projections
2800     // and process them.
2801     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2802       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2803         Node* use = n->fast_out(i);
2804         if (use->is_Proj()) {
2805           RegMask rm = use->out_RegMask();// Make local copy
2806           while( rm.is_NotEmpty() ) {
2807             OptoReg::Name kill = rm.find_first_elem();
2808             rm.Remove(kill);
2809             anti_do_def( b, n, kill, false );
2810           }
2811         }
2812       }
2813     }
2814 
2815     // Check each register used by this instruction for a following DEF/KILL
2816     // that must occur afterward and requires an anti-dependence edge.
2817     for( uint j=0; j<n->req(); j++ ) {
2818       Node *def = n->in(j);
2819       if( def ) {
2820         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2821         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2822         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2823       }
2824     }
2825     // Do not allow defs of new derived values to float above GC
2826     // points unless the base is definitely available at the GC point.
2827 
2828     Node *m = b->_nodes[i];
2829 
2830     // Add precedence edge from following safepoint to use of derived pointer
2831     if( last_safept_node != end_node &&
2832         m != last_safept_node) {
2833       for (uint k = 1; k < m->req(); k++) {
2834         const Type *t = m->in(k)->bottom_type();
2835         if( t->isa_oop_ptr() &&
2836             t->is_ptr()->offset() != 0 ) {
2837           last_safept_node->add_prec( m );
2838           break;
2839         }
2840       }
2841     }
2842 
2843     if( n->jvms() ) {           // Precedence edge from derived to safept
2844       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2845       if( b->_nodes[last_safept] != last_safept_node ) {
2846         last_safept = b->find_node(last_safept_node);
2847       }
2848       for( uint j=last_safept; j > i; j-- ) {
2849         Node *mach = b->_nodes[j];
2850         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2851           mach->add_prec( n );
2852       }
2853       last_safept = i;
2854       last_safept_node = m;
2855     }
2856   }
2857 
2858   if (fat_proj_seen) {
2859     // Garbage collect pinch nodes that were not consumed.
2860     // They are usually created by a fat kill MachProj for a call.
2861     garbage_collect_pinch_nodes();
2862   }
2863 }
2864 
2865 //------------------------------garbage_collect_pinch_nodes-------------------------------
2866 
2867 // Garbage collect pinch nodes for reuse by other blocks.
2868 //
2869 // The block scheduler's insertion of anti-dependence
2870 // edges creates many pinch nodes when the block contains
2871 // 2 or more Calls.  A pinch node is used to prevent a
2872 // combinatorial explosion of edges.  If a set of kills for a
2873 // register is anti-dependent on a set of uses (or defs), rather
2874 // than adding an edge in the graph between each pair of kill
2875 // and use (or def), a pinch is inserted between them:
2876 //
2877 //            use1   use2  use3
2878 //                \   |   /
2879 //                 \  |  /
2880 //                  pinch
2881 //                 /  |  \
2882 //                /   |   \
2883 //            kill1 kill2 kill3
2884 //
2885 // One pinch node is created per register killed when
2886 // the second call is encountered during a backwards pass
2887 // over the block.  Most of these pinch nodes are never
2888 // wired into the graph because the register is never
2889 // used or def'ed in the block.
2890 //
2891 void Scheduling::garbage_collect_pinch_nodes() {
2892 #ifndef PRODUCT
2893     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2894 #endif
2895     int trace_cnt = 0;
2896     for (uint k = 0; k < _reg_node.Size(); k++) {
2897       Node* pinch = _reg_node[k];
2898       if (pinch != NULL && pinch->Opcode() == Op_Node &&
2899           // no predecence input edges
2900           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2901         cleanup_pinch(pinch);
2902         _pinch_free_list.push(pinch);
2903         _reg_node.map(k, NULL);
2904 #ifndef PRODUCT
2905         if (_cfg->C->trace_opto_output()) {
2906           trace_cnt++;
2907           if (trace_cnt > 40) {
2908             tty->print("\n");
2909             trace_cnt = 0;
2910           }
2911           tty->print(" %d", pinch->_idx);
2912         }
2913 #endif
2914       }
2915     }
2916 #ifndef PRODUCT
2917     if (_cfg->C->trace_opto_output()) tty->print("\n");
2918 #endif
2919 }
2920 
2921 // Clean up a pinch node for reuse.
2922 void Scheduling::cleanup_pinch( Node *pinch ) {
2923   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2924 
2925   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2926     Node* use = pinch->last_out(i);
2927     uint uses_found = 0;
2928     for (uint j = use->req(); j < use->len(); j++) {
2929       if (use->in(j) == pinch) {
2930         use->rm_prec(j);
2931         uses_found++;
2932       }
2933     }
2934     assert(uses_found > 0, "must be a precedence edge");
2935     i -= uses_found;    // we deleted 1 or more copies of this edge
2936   }
2937   // May have a later_def entry
2938   pinch->set_req(0, NULL);
2939 }
2940 
2941 //------------------------------print_statistics-------------------------------
2942 #ifndef PRODUCT
2943 
2944 void Scheduling::dump_available() const {
2945   tty->print("#Availist  ");
2946   for (uint i = 0; i < _available.size(); i++)
2947     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2948   tty->cr();
2949 }
2950 
2951 // Print Scheduling Statistics
2952 void Scheduling::print_statistics() {
2953   // Print the size added by nops for bundling
2954   tty->print("Nops added %d bytes to total of %d bytes",
2955     _total_nop_size, _total_method_size);
2956   if (_total_method_size > 0)
2957     tty->print(", for %.2f%%",
2958       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2959   tty->print("\n");
2960 
2961   // Print the number of branch shadows filled
2962   if (Pipeline::_branch_has_delay_slot) {
2963     tty->print("Of %d branches, %d had unconditional delay slots filled",
2964       _total_branches, _total_unconditional_delays);
2965     if (_total_branches > 0)
2966       tty->print(", for %.2f%%",
2967         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2968     tty->print("\n");
2969   }
2970 
2971   uint total_instructions = 0, total_bundles = 0;
2972 
2973   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2974     uint bundle_count   = _total_instructions_per_bundle[i];
2975     total_instructions += bundle_count * i;
2976     total_bundles      += bundle_count;
2977   }
2978 
2979   if (total_bundles > 0)
2980     tty->print("Average ILP (excluding nops) is %.2f\n",
2981       ((double)total_instructions) / ((double)total_bundles));
2982 }
2983 #endif