1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "services/attachListener.hpp"
  61 #include "services/memTracker.hpp"
  62 #include "services/runtimeService.hpp"
  63 #include "utilities/decoder.hpp"
  64 #include "utilities/defaultStream.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/elfFile.hpp"
  67 #include "utilities/growableArray.hpp"
  68 #include "utilities/vmError.hpp"
  69 
  70 // put OS-includes here
  71 # include <sys/types.h>
  72 # include <sys/mman.h>
  73 # include <sys/stat.h>
  74 # include <sys/select.h>
  75 # include <pthread.h>
  76 # include <signal.h>
  77 # include <errno.h>
  78 # include <dlfcn.h>
  79 # include <stdio.h>
  80 # include <unistd.h>
  81 # include <sys/resource.h>
  82 # include <pthread.h>
  83 # include <sys/stat.h>
  84 # include <sys/time.h>
  85 # include <sys/times.h>
  86 # include <sys/utsname.h>
  87 # include <sys/socket.h>
  88 # include <sys/wait.h>
  89 # include <pwd.h>
  90 # include <poll.h>
  91 # include <semaphore.h>
  92 # include <fcntl.h>
  93 # include <string.h>
  94 # include <syscall.h>
  95 # include <sys/sysinfo.h>
  96 # include <gnu/libc-version.h>
  97 # include <sys/ipc.h>
  98 # include <sys/shm.h>
  99 # include <link.h>
 100 # include <stdint.h>
 101 # include <inttypes.h>
 102 # include <sys/ioctl.h>
 103 
 104 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 105 // getrusage() is prepared to handle the associated failure.
 106 #ifndef RUSAGE_THREAD
 107 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 108 #endif
 109 
 110 #define MAX_PATH    (2 * K)
 111 
 112 // for timer info max values which include all bits
 113 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 114 
 115 #define LARGEPAGES_BIT (1 << 6)
 116 ////////////////////////////////////////////////////////////////////////////////
 117 // global variables
 118 julong os::Linux::_physical_memory = 0;
 119 
 120 address   os::Linux::_initial_thread_stack_bottom = NULL;
 121 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 122 
 123 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 124 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 125 Mutex* os::Linux::_createThread_lock = NULL;
 126 pthread_t os::Linux::_main_thread;
 127 int os::Linux::_page_size = -1;
 128 const int os::Linux::_vm_default_page_size = (8 * K);
 129 bool os::Linux::_is_floating_stack = false;
 130 bool os::Linux::_is_NPTL = false;
 131 bool os::Linux::_supports_fast_thread_cpu_time = false;
 132 const char * os::Linux::_glibc_version = NULL;
 133 const char * os::Linux::_libpthread_version = NULL;
 134 
 135 static jlong initial_time_count=0;
 136 
 137 static int clock_tics_per_sec = 100;
 138 
 139 // For diagnostics to print a message once. see run_periodic_checks
 140 static sigset_t check_signal_done;
 141 static bool check_signals = true;
 142 
 143 static pid_t _initial_pid = 0;
 144 
 145 /* Signal number used to suspend/resume a thread */
 146 
 147 /* do not use any signal number less than SIGSEGV, see 4355769 */
 148 static int SR_signum = SIGUSR2;
 149 sigset_t SR_sigset;
 150 
 151 /* Used to protect dlsym() calls */
 152 static pthread_mutex_t dl_mutex;
 153 
 154 // Declarations
 155 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 156 
 157 #ifdef JAVASE_EMBEDDED
 158 class MemNotifyThread: public Thread {
 159   friend class VMStructs;
 160  public:
 161   virtual void run();
 162 
 163  private:
 164   static MemNotifyThread* _memnotify_thread;
 165   int _fd;
 166 
 167  public:
 168 
 169   // Constructor
 170   MemNotifyThread(int fd);
 171 
 172   // Tester
 173   bool is_memnotify_thread() const { return true; }
 174 
 175   // Printing
 176   char* name() const { return (char*)"Linux MemNotify Thread"; }
 177 
 178   // Returns the single instance of the MemNotifyThread
 179   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 180 
 181   // Create and start the single instance of MemNotifyThread
 182   static void start();
 183 };
 184 #endif // JAVASE_EMBEDDED
 185 
 186 // utility functions
 187 
 188 static int SR_initialize();
 189 
 190 julong os::available_memory() {
 191   return Linux::available_memory();
 192 }
 193 
 194 julong os::Linux::available_memory() {
 195   // values in struct sysinfo are "unsigned long"
 196   struct sysinfo si;
 197   sysinfo(&si);
 198 
 199   return (julong)si.freeram * si.mem_unit;
 200 }
 201 
 202 julong os::physical_memory() {
 203   return Linux::physical_memory();
 204 }
 205 
 206 ////////////////////////////////////////////////////////////////////////////////
 207 // environment support
 208 
 209 bool os::getenv(const char* name, char* buf, int len) {
 210   const char* val = ::getenv(name);
 211   if (val != NULL && strlen(val) < (size_t)len) {
 212     strcpy(buf, val);
 213     return true;
 214   }
 215   if (len > 0) buf[0] = 0;  // return a null string
 216   return false;
 217 }
 218 
 219 
 220 // Return true if user is running as root.
 221 
 222 bool os::have_special_privileges() {
 223   static bool init = false;
 224   static bool privileges = false;
 225   if (!init) {
 226     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 227     init = true;
 228   }
 229   return privileges;
 230 }
 231 
 232 
 233 #ifndef SYS_gettid
 234 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 235 #ifdef __ia64__
 236 #define SYS_gettid 1105
 237 #elif __i386__
 238 #define SYS_gettid 224
 239 #elif __amd64__
 240 #define SYS_gettid 186
 241 #elif __sparc__
 242 #define SYS_gettid 143
 243 #else
 244 #error define gettid for the arch
 245 #endif
 246 #endif
 247 
 248 // Cpu architecture string
 249 #if   defined(ZERO)
 250 static char cpu_arch[] = ZERO_LIBARCH;
 251 #elif defined(IA64)
 252 static char cpu_arch[] = "ia64";
 253 #elif defined(IA32)
 254 static char cpu_arch[] = "i386";
 255 #elif defined(AMD64)
 256 static char cpu_arch[] = "amd64";
 257 #elif defined(ARM)
 258 static char cpu_arch[] = "arm";
 259 #elif defined(PPC32)
 260 static char cpu_arch[] = "ppc";
 261 #elif defined(PPC64)
 262 static char cpu_arch[] = "ppc64";
 263 #elif defined(SPARC)
 264 #  ifdef _LP64
 265 static char cpu_arch[] = "sparcv9";
 266 #  else
 267 static char cpu_arch[] = "sparc";
 268 #  endif
 269 #else
 270 #error Add appropriate cpu_arch setting
 271 #endif
 272 
 273 
 274 // pid_t gettid()
 275 //
 276 // Returns the kernel thread id of the currently running thread. Kernel
 277 // thread id is used to access /proc.
 278 //
 279 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 280 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 281 //
 282 pid_t os::Linux::gettid() {
 283   int rslt = syscall(SYS_gettid);
 284   if (rslt == -1) {
 285      // old kernel, no NPTL support
 286      return getpid();
 287   } else {
 288      return (pid_t)rslt;
 289   }
 290 }
 291 
 292 // Most versions of linux have a bug where the number of processors are
 293 // determined by looking at the /proc file system.  In a chroot environment,
 294 // the system call returns 1.  This causes the VM to act as if it is
 295 // a single processor and elide locking (see is_MP() call).
 296 static bool unsafe_chroot_detected = false;
 297 static const char *unstable_chroot_error = "/proc file system not found.\n"
 298                      "Java may be unstable running multithreaded in a chroot "
 299                      "environment on Linux when /proc filesystem is not mounted.";
 300 
 301 void os::Linux::initialize_system_info() {
 302   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 303   if (processor_count() == 1) {
 304     pid_t pid = os::Linux::gettid();
 305     char fname[32];
 306     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 307     FILE *fp = fopen(fname, "r");
 308     if (fp == NULL) {
 309       unsafe_chroot_detected = true;
 310     } else {
 311       fclose(fp);
 312     }
 313   }
 314   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 315   assert(processor_count() > 0, "linux error");
 316 }
 317 
 318 void os::init_system_properties_values() {
 319 //  char arch[12];
 320 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 321 
 322   // The next steps are taken in the product version:
 323   //
 324   // Obtain the JAVA_HOME value from the location of libjvm.so.
 325   // This library should be located at:
 326   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 327   //
 328   // If "/jre/lib/" appears at the right place in the path, then we
 329   // assume libjvm.so is installed in a JDK and we use this path.
 330   //
 331   // Otherwise exit with message: "Could not create the Java virtual machine."
 332   //
 333   // The following extra steps are taken in the debugging version:
 334   //
 335   // If "/jre/lib/" does NOT appear at the right place in the path
 336   // instead of exit check for $JAVA_HOME environment variable.
 337   //
 338   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 339   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 340   // it looks like libjvm.so is installed there
 341   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 342   //
 343   // Otherwise exit.
 344   //
 345   // Important note: if the location of libjvm.so changes this
 346   // code needs to be changed accordingly.
 347 
 348   // The next few definitions allow the code to be verbatim:
 349 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 350 #define getenv(n) ::getenv(n)
 351 
 352 /*
 353  * See ld(1):
 354  *      The linker uses the following search paths to locate required
 355  *      shared libraries:
 356  *        1: ...
 357  *        ...
 358  *        7: The default directories, normally /lib and /usr/lib.
 359  */
 360 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 361 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 362 #else
 363 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 364 #endif
 365 
 366 #define EXTENSIONS_DIR  "/lib/ext"
 367 #define ENDORSED_DIR    "/lib/endorsed"
 368 #define REG_DIR         "/usr/java/packages"
 369 
 370   {
 371     /* sysclasspath, java_home, dll_dir */
 372     {
 373         char *home_path;
 374         char *dll_path;
 375         char *pslash;
 376         char buf[MAXPATHLEN];
 377         os::jvm_path(buf, sizeof(buf));
 378 
 379         // Found the full path to libjvm.so.
 380         // Now cut the path to <java_home>/jre if we can.
 381         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 382         pslash = strrchr(buf, '/');
 383         if (pslash != NULL)
 384             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 385         dll_path = malloc(strlen(buf) + 1);
 386         if (dll_path == NULL)
 387             return;
 388         strcpy(dll_path, buf);
 389         Arguments::set_dll_dir(dll_path);
 390 
 391         if (pslash != NULL) {
 392             pslash = strrchr(buf, '/');
 393             if (pslash != NULL) {
 394                 *pslash = '\0';       /* get rid of /<arch> */
 395                 pslash = strrchr(buf, '/');
 396                 if (pslash != NULL)
 397                     *pslash = '\0';   /* get rid of /lib */
 398             }
 399         }
 400 
 401         home_path = malloc(strlen(buf) + 1);
 402         if (home_path == NULL)
 403             return;
 404         strcpy(home_path, buf);
 405         Arguments::set_java_home(home_path);
 406 
 407         if (!set_boot_path('/', ':'))
 408             return;
 409     }
 410 
 411     /*
 412      * Where to look for native libraries
 413      *
 414      * Note: Due to a legacy implementation, most of the library path
 415      * is set in the launcher.  This was to accomodate linking restrictions
 416      * on legacy Linux implementations (which are no longer supported).
 417      * Eventually, all the library path setting will be done here.
 418      *
 419      * However, to prevent the proliferation of improperly built native
 420      * libraries, the new path component /usr/java/packages is added here.
 421      * Eventually, all the library path setting will be done here.
 422      */
 423     {
 424         char *ld_library_path;
 425 
 426         /*
 427          * Construct the invariant part of ld_library_path. Note that the
 428          * space for the colon and the trailing null are provided by the
 429          * nulls included by the sizeof operator (so actually we allocate
 430          * a byte more than necessary).
 431          */
 432         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 433             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 434         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 435 
 436         /*
 437          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 438          * should always exist (until the legacy problem cited above is
 439          * addressed).
 440          */
 441         char *v = getenv("LD_LIBRARY_PATH");
 442         if (v != NULL) {
 443             char *t = ld_library_path;
 444             /* That's +1 for the colon and +1 for the trailing '\0' */
 445             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 446             sprintf(ld_library_path, "%s:%s", v, t);
 447         }
 448         Arguments::set_library_path(ld_library_path);
 449     }
 450 
 451     /*
 452      * Extensions directories.
 453      *
 454      * Note that the space for the colon and the trailing null are provided
 455      * by the nulls included by the sizeof operator (so actually one byte more
 456      * than necessary is allocated).
 457      */
 458     {
 459         char *buf = malloc(strlen(Arguments::get_java_home()) +
 460             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 461         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 462             Arguments::get_java_home());
 463         Arguments::set_ext_dirs(buf);
 464     }
 465 
 466     /* Endorsed standards default directory. */
 467     {
 468         char * buf;
 469         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 470         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 471         Arguments::set_endorsed_dirs(buf);
 472     }
 473   }
 474 
 475 #undef malloc
 476 #undef getenv
 477 #undef EXTENSIONS_DIR
 478 #undef ENDORSED_DIR
 479 
 480   // Done
 481   return;
 482 }
 483 
 484 ////////////////////////////////////////////////////////////////////////////////
 485 // breakpoint support
 486 
 487 void os::breakpoint() {
 488   BREAKPOINT;
 489 }
 490 
 491 extern "C" void breakpoint() {
 492   // use debugger to set breakpoint here
 493 }
 494 
 495 ////////////////////////////////////////////////////////////////////////////////
 496 // signal support
 497 
 498 debug_only(static bool signal_sets_initialized = false);
 499 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 500 
 501 bool os::Linux::is_sig_ignored(int sig) {
 502       struct sigaction oact;
 503       sigaction(sig, (struct sigaction*)NULL, &oact);
 504       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 505                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 506       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 507            return true;
 508       else
 509            return false;
 510 }
 511 
 512 void os::Linux::signal_sets_init() {
 513   // Should also have an assertion stating we are still single-threaded.
 514   assert(!signal_sets_initialized, "Already initialized");
 515   // Fill in signals that are necessarily unblocked for all threads in
 516   // the VM. Currently, we unblock the following signals:
 517   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 518   //                         by -Xrs (=ReduceSignalUsage));
 519   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 520   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 521   // the dispositions or masks wrt these signals.
 522   // Programs embedding the VM that want to use the above signals for their
 523   // own purposes must, at this time, use the "-Xrs" option to prevent
 524   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 525   // (See bug 4345157, and other related bugs).
 526   // In reality, though, unblocking these signals is really a nop, since
 527   // these signals are not blocked by default.
 528   sigemptyset(&unblocked_sigs);
 529   sigemptyset(&allowdebug_blocked_sigs);
 530   sigaddset(&unblocked_sigs, SIGILL);
 531   sigaddset(&unblocked_sigs, SIGSEGV);
 532   sigaddset(&unblocked_sigs, SIGBUS);
 533   sigaddset(&unblocked_sigs, SIGFPE);
 534   sigaddset(&unblocked_sigs, SR_signum);
 535 
 536   if (!ReduceSignalUsage) {
 537    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 538       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 539       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 540    }
 541    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 542       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 543       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 544    }
 545    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 546       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 547       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 548    }
 549   }
 550   // Fill in signals that are blocked by all but the VM thread.
 551   sigemptyset(&vm_sigs);
 552   if (!ReduceSignalUsage)
 553     sigaddset(&vm_sigs, BREAK_SIGNAL);
 554   debug_only(signal_sets_initialized = true);
 555 
 556 }
 557 
 558 // These are signals that are unblocked while a thread is running Java.
 559 // (For some reason, they get blocked by default.)
 560 sigset_t* os::Linux::unblocked_signals() {
 561   assert(signal_sets_initialized, "Not initialized");
 562   return &unblocked_sigs;
 563 }
 564 
 565 // These are the signals that are blocked while a (non-VM) thread is
 566 // running Java. Only the VM thread handles these signals.
 567 sigset_t* os::Linux::vm_signals() {
 568   assert(signal_sets_initialized, "Not initialized");
 569   return &vm_sigs;
 570 }
 571 
 572 // These are signals that are blocked during cond_wait to allow debugger in
 573 sigset_t* os::Linux::allowdebug_blocked_signals() {
 574   assert(signal_sets_initialized, "Not initialized");
 575   return &allowdebug_blocked_sigs;
 576 }
 577 
 578 void os::Linux::hotspot_sigmask(Thread* thread) {
 579 
 580   //Save caller's signal mask before setting VM signal mask
 581   sigset_t caller_sigmask;
 582   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 583 
 584   OSThread* osthread = thread->osthread();
 585   osthread->set_caller_sigmask(caller_sigmask);
 586 
 587   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 588 
 589   if (!ReduceSignalUsage) {
 590     if (thread->is_VM_thread()) {
 591       // Only the VM thread handles BREAK_SIGNAL ...
 592       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 593     } else {
 594       // ... all other threads block BREAK_SIGNAL
 595       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 596     }
 597   }
 598 }
 599 
 600 //////////////////////////////////////////////////////////////////////////////
 601 // detecting pthread library
 602 
 603 void os::Linux::libpthread_init() {
 604   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 605   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 606   // generic name for earlier versions.
 607   // Define macros here so we can build HotSpot on old systems.
 608 # ifndef _CS_GNU_LIBC_VERSION
 609 # define _CS_GNU_LIBC_VERSION 2
 610 # endif
 611 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 612 # define _CS_GNU_LIBPTHREAD_VERSION 3
 613 # endif
 614 
 615   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 616   if (n > 0) {
 617      char *str = (char *)malloc(n, mtInternal);
 618      confstr(_CS_GNU_LIBC_VERSION, str, n);
 619      os::Linux::set_glibc_version(str);
 620   } else {
 621      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 622      static char _gnu_libc_version[32];
 623      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 624               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 625      os::Linux::set_glibc_version(_gnu_libc_version);
 626   }
 627 
 628   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 629   if (n > 0) {
 630      char *str = (char *)malloc(n, mtInternal);
 631      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 632      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 633      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 634      // is the case. LinuxThreads has a hard limit on max number of threads.
 635      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 636      // On the other hand, NPTL does not have such a limit, sysconf()
 637      // will return -1 and errno is not changed. Check if it is really NPTL.
 638      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 639          strstr(str, "NPTL") &&
 640          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 641        free(str);
 642        os::Linux::set_libpthread_version("linuxthreads");
 643      } else {
 644        os::Linux::set_libpthread_version(str);
 645      }
 646   } else {
 647     // glibc before 2.3.2 only has LinuxThreads.
 648     os::Linux::set_libpthread_version("linuxthreads");
 649   }
 650 
 651   if (strstr(libpthread_version(), "NPTL")) {
 652      os::Linux::set_is_NPTL();
 653   } else {
 654      os::Linux::set_is_LinuxThreads();
 655   }
 656 
 657   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 658   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 659   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 660      os::Linux::set_is_floating_stack();
 661   }
 662 }
 663 
 664 /////////////////////////////////////////////////////////////////////////////
 665 // thread stack
 666 
 667 // Force Linux kernel to expand current thread stack. If "bottom" is close
 668 // to the stack guard, caller should block all signals.
 669 //
 670 // MAP_GROWSDOWN:
 671 //   A special mmap() flag that is used to implement thread stacks. It tells
 672 //   kernel that the memory region should extend downwards when needed. This
 673 //   allows early versions of LinuxThreads to only mmap the first few pages
 674 //   when creating a new thread. Linux kernel will automatically expand thread
 675 //   stack as needed (on page faults).
 676 //
 677 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 678 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 679 //   region, it's hard to tell if the fault is due to a legitimate stack
 680 //   access or because of reading/writing non-exist memory (e.g. buffer
 681 //   overrun). As a rule, if the fault happens below current stack pointer,
 682 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 683 //   application (see Linux kernel fault.c).
 684 //
 685 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 686 //   stack overflow detection.
 687 //
 688 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 689 //   not use this flag. However, the stack of initial thread is not created
 690 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 691 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 692 //   and then attach the thread to JVM.
 693 //
 694 // To get around the problem and allow stack banging on Linux, we need to
 695 // manually expand thread stack after receiving the SIGSEGV.
 696 //
 697 // There are two ways to expand thread stack to address "bottom", we used
 698 // both of them in JVM before 1.5:
 699 //   1. adjust stack pointer first so that it is below "bottom", and then
 700 //      touch "bottom"
 701 //   2. mmap() the page in question
 702 //
 703 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 704 // if current sp is already near the lower end of page 101, and we need to
 705 // call mmap() to map page 100, it is possible that part of the mmap() frame
 706 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 707 // That will destroy the mmap() frame and cause VM to crash.
 708 //
 709 // The following code works by adjusting sp first, then accessing the "bottom"
 710 // page to force a page fault. Linux kernel will then automatically expand the
 711 // stack mapping.
 712 //
 713 // _expand_stack_to() assumes its frame size is less than page size, which
 714 // should always be true if the function is not inlined.
 715 
 716 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 717 #define NOINLINE
 718 #else
 719 #define NOINLINE __attribute__ ((noinline))
 720 #endif
 721 
 722 static void _expand_stack_to(address bottom) NOINLINE;
 723 
 724 static void _expand_stack_to(address bottom) {
 725   address sp;
 726   size_t size;
 727   volatile char *p;
 728 
 729   // Adjust bottom to point to the largest address within the same page, it
 730   // gives us a one-page buffer if alloca() allocates slightly more memory.
 731   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 732   bottom += os::Linux::page_size() - 1;
 733 
 734   // sp might be slightly above current stack pointer; if that's the case, we
 735   // will alloca() a little more space than necessary, which is OK. Don't use
 736   // os::current_stack_pointer(), as its result can be slightly below current
 737   // stack pointer, causing us to not alloca enough to reach "bottom".
 738   sp = (address)&sp;
 739 
 740   if (sp > bottom) {
 741     size = sp - bottom;
 742     p = (volatile char *)alloca(size);
 743     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 744     p[0] = '\0';
 745   }
 746 }
 747 
 748 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 749   assert(t!=NULL, "just checking");
 750   assert(t->osthread()->expanding_stack(), "expand should be set");
 751   assert(t->stack_base() != NULL, "stack_base was not initialized");
 752 
 753   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 754     sigset_t mask_all, old_sigset;
 755     sigfillset(&mask_all);
 756     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 757     _expand_stack_to(addr);
 758     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 759     return true;
 760   }
 761   return false;
 762 }
 763 
 764 //////////////////////////////////////////////////////////////////////////////
 765 // create new thread
 766 
 767 static address highest_vm_reserved_address();
 768 
 769 // check if it's safe to start a new thread
 770 static bool _thread_safety_check(Thread* thread) {
 771   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 772     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 773     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 774     //   allocated (MAP_FIXED) from high address space. Every thread stack
 775     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 776     //   it to other values if they rebuild LinuxThreads).
 777     //
 778     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 779     // the memory region has already been mmap'ed. That means if we have too
 780     // many threads and/or very large heap, eventually thread stack will
 781     // collide with heap.
 782     //
 783     // Here we try to prevent heap/stack collision by comparing current
 784     // stack bottom with the highest address that has been mmap'ed by JVM
 785     // plus a safety margin for memory maps created by native code.
 786     //
 787     // This feature can be disabled by setting ThreadSafetyMargin to 0
 788     //
 789     if (ThreadSafetyMargin > 0) {
 790       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 791 
 792       // not safe if our stack extends below the safety margin
 793       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 794     } else {
 795       return true;
 796     }
 797   } else {
 798     // Floating stack LinuxThreads or NPTL:
 799     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 800     //   there's not enough space left, pthread_create() will fail. If we come
 801     //   here, that means enough space has been reserved for stack.
 802     return true;
 803   }
 804 }
 805 
 806 // Thread start routine for all newly created threads
 807 static void *java_start(Thread *thread) {
 808   // Try to randomize the cache line index of hot stack frames.
 809   // This helps when threads of the same stack traces evict each other's
 810   // cache lines. The threads can be either from the same JVM instance, or
 811   // from different JVM instances. The benefit is especially true for
 812   // processors with hyperthreading technology.
 813   static int counter = 0;
 814   int pid = os::current_process_id();
 815   alloca(((pid ^ counter++) & 7) * 128);
 816 
 817   ThreadLocalStorage::set_thread(thread);
 818 
 819   OSThread* osthread = thread->osthread();
 820   Monitor* sync = osthread->startThread_lock();
 821 
 822   // non floating stack LinuxThreads needs extra check, see above
 823   if (!_thread_safety_check(thread)) {
 824     // notify parent thread
 825     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 826     osthread->set_state(ZOMBIE);
 827     sync->notify_all();
 828     return NULL;
 829   }
 830 
 831   // thread_id is kernel thread id (similar to Solaris LWP id)
 832   osthread->set_thread_id(os::Linux::gettid());
 833 
 834   if (UseNUMA) {
 835     int lgrp_id = os::numa_get_group_id();
 836     if (lgrp_id != -1) {
 837       thread->set_lgrp_id(lgrp_id);
 838     }
 839   }
 840   // initialize signal mask for this thread
 841   os::Linux::hotspot_sigmask(thread);
 842 
 843   // initialize floating point control register
 844   os::Linux::init_thread_fpu_state();
 845 
 846   // handshaking with parent thread
 847   {
 848     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 849 
 850     // notify parent thread
 851     osthread->set_state(INITIALIZED);
 852     sync->notify_all();
 853 
 854     // wait until os::start_thread()
 855     while (osthread->get_state() == INITIALIZED) {
 856       sync->wait(Mutex::_no_safepoint_check_flag);
 857     }
 858   }
 859 
 860   // call one more level start routine
 861   thread->run();
 862 
 863   return 0;
 864 }
 865 
 866 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 867   assert(thread->osthread() == NULL, "caller responsible");
 868 
 869   // Allocate the OSThread object
 870   OSThread* osthread = new OSThread(NULL, NULL);
 871   if (osthread == NULL) {
 872     return false;
 873   }
 874 
 875   // set the correct thread state
 876   osthread->set_thread_type(thr_type);
 877 
 878   // Initial state is ALLOCATED but not INITIALIZED
 879   osthread->set_state(ALLOCATED);
 880 
 881   thread->set_osthread(osthread);
 882 
 883   // init thread attributes
 884   pthread_attr_t attr;
 885   pthread_attr_init(&attr);
 886   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 887 
 888   // stack size
 889   if (os::Linux::supports_variable_stack_size()) {
 890     // calculate stack size if it's not specified by caller
 891     if (stack_size == 0) {
 892       stack_size = os::Linux::default_stack_size(thr_type);
 893 
 894       switch (thr_type) {
 895       case os::java_thread:
 896         // Java threads use ThreadStackSize which default value can be
 897         // changed with the flag -Xss
 898         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 899         stack_size = JavaThread::stack_size_at_create();
 900         break;
 901       case os::compiler_thread:
 902         if (CompilerThreadStackSize > 0) {
 903           stack_size = (size_t)(CompilerThreadStackSize * K);
 904           break;
 905         } // else fall through:
 906           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 907       case os::vm_thread:
 908       case os::pgc_thread:
 909       case os::cgc_thread:
 910       case os::watcher_thread:
 911         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 912         break;
 913       }
 914     }
 915 
 916     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 917     pthread_attr_setstacksize(&attr, stack_size);
 918   } else {
 919     // let pthread_create() pick the default value.
 920   }
 921 
 922   // glibc guard page
 923   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 924 
 925   ThreadState state;
 926 
 927   {
 928     // Serialize thread creation if we are running with fixed stack LinuxThreads
 929     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 930     if (lock) {
 931       os::Linux::createThread_lock()->lock_without_safepoint_check();
 932     }
 933 
 934     pthread_t tid;
 935     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 936 
 937     pthread_attr_destroy(&attr);
 938 
 939     if (ret != 0) {
 940       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 941         perror("pthread_create()");
 942       }
 943       // Need to clean up stuff we've allocated so far
 944       thread->set_osthread(NULL);
 945       delete osthread;
 946       if (lock) os::Linux::createThread_lock()->unlock();
 947       return false;
 948     }
 949 
 950     // Store pthread info into the OSThread
 951     osthread->set_pthread_id(tid);
 952 
 953     // Wait until child thread is either initialized or aborted
 954     {
 955       Monitor* sync_with_child = osthread->startThread_lock();
 956       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 957       while ((state = osthread->get_state()) == ALLOCATED) {
 958         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 959       }
 960     }
 961 
 962     if (lock) {
 963       os::Linux::createThread_lock()->unlock();
 964     }
 965   }
 966 
 967   // Aborted due to thread limit being reached
 968   if (state == ZOMBIE) {
 969       thread->set_osthread(NULL);
 970       delete osthread;
 971       return false;
 972   }
 973 
 974   // The thread is returned suspended (in state INITIALIZED),
 975   // and is started higher up in the call chain
 976   assert(state == INITIALIZED, "race condition");
 977   return true;
 978 }
 979 
 980 /////////////////////////////////////////////////////////////////////////////
 981 // attach existing thread
 982 
 983 // bootstrap the main thread
 984 bool os::create_main_thread(JavaThread* thread) {
 985   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 986   return create_attached_thread(thread);
 987 }
 988 
 989 bool os::create_attached_thread(JavaThread* thread) {
 990 #ifdef ASSERT
 991     thread->verify_not_published();
 992 #endif
 993 
 994   // Allocate the OSThread object
 995   OSThread* osthread = new OSThread(NULL, NULL);
 996 
 997   if (osthread == NULL) {
 998     return false;
 999   }
1000 
1001   // Store pthread info into the OSThread
1002   osthread->set_thread_id(os::Linux::gettid());
1003   osthread->set_pthread_id(::pthread_self());
1004 
1005   // initialize floating point control register
1006   os::Linux::init_thread_fpu_state();
1007 
1008   // Initial thread state is RUNNABLE
1009   osthread->set_state(RUNNABLE);
1010 
1011   thread->set_osthread(osthread);
1012 
1013   if (UseNUMA) {
1014     int lgrp_id = os::numa_get_group_id();
1015     if (lgrp_id != -1) {
1016       thread->set_lgrp_id(lgrp_id);
1017     }
1018   }
1019 
1020   if (os::Linux::is_initial_thread()) {
1021     // If current thread is initial thread, its stack is mapped on demand,
1022     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1023     // the entire stack region to avoid SEGV in stack banging.
1024     // It is also useful to get around the heap-stack-gap problem on SuSE
1025     // kernel (see 4821821 for details). We first expand stack to the top
1026     // of yellow zone, then enable stack yellow zone (order is significant,
1027     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1028     // is no gap between the last two virtual memory regions.
1029 
1030     JavaThread *jt = (JavaThread *)thread;
1031     address addr = jt->stack_yellow_zone_base();
1032     assert(addr != NULL, "initialization problem?");
1033     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1034 
1035     osthread->set_expanding_stack();
1036     os::Linux::manually_expand_stack(jt, addr);
1037     osthread->clear_expanding_stack();
1038   }
1039 
1040   // initialize signal mask for this thread
1041   // and save the caller's signal mask
1042   os::Linux::hotspot_sigmask(thread);
1043 
1044   return true;
1045 }
1046 
1047 void os::pd_start_thread(Thread* thread) {
1048   OSThread * osthread = thread->osthread();
1049   assert(osthread->get_state() != INITIALIZED, "just checking");
1050   Monitor* sync_with_child = osthread->startThread_lock();
1051   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1052   sync_with_child->notify();
1053 }
1054 
1055 // Free Linux resources related to the OSThread
1056 void os::free_thread(OSThread* osthread) {
1057   assert(osthread != NULL, "osthread not set");
1058 
1059   if (Thread::current()->osthread() == osthread) {
1060     // Restore caller's signal mask
1061     sigset_t sigmask = osthread->caller_sigmask();
1062     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1063    }
1064 
1065   delete osthread;
1066 }
1067 
1068 //////////////////////////////////////////////////////////////////////////////
1069 // thread local storage
1070 
1071 int os::allocate_thread_local_storage() {
1072   pthread_key_t key;
1073   int rslt = pthread_key_create(&key, NULL);
1074   assert(rslt == 0, "cannot allocate thread local storage");
1075   return (int)key;
1076 }
1077 
1078 // Note: This is currently not used by VM, as we don't destroy TLS key
1079 // on VM exit.
1080 void os::free_thread_local_storage(int index) {
1081   int rslt = pthread_key_delete((pthread_key_t)index);
1082   assert(rslt == 0, "invalid index");
1083 }
1084 
1085 void os::thread_local_storage_at_put(int index, void* value) {
1086   int rslt = pthread_setspecific((pthread_key_t)index, value);
1087   assert(rslt == 0, "pthread_setspecific failed");
1088 }
1089 
1090 extern "C" Thread* get_thread() {
1091   return ThreadLocalStorage::thread();
1092 }
1093 
1094 //////////////////////////////////////////////////////////////////////////////
1095 // initial thread
1096 
1097 // Check if current thread is the initial thread, similar to Solaris thr_main.
1098 bool os::Linux::is_initial_thread(void) {
1099   char dummy;
1100   // If called before init complete, thread stack bottom will be null.
1101   // Can be called if fatal error occurs before initialization.
1102   if (initial_thread_stack_bottom() == NULL) return false;
1103   assert(initial_thread_stack_bottom() != NULL &&
1104          initial_thread_stack_size()   != 0,
1105          "os::init did not locate initial thread's stack region");
1106   if ((address)&dummy >= initial_thread_stack_bottom() &&
1107       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1108        return true;
1109   else return false;
1110 }
1111 
1112 // Find the virtual memory area that contains addr
1113 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1114   FILE *fp = fopen("/proc/self/maps", "r");
1115   if (fp) {
1116     address low, high;
1117     while (!feof(fp)) {
1118       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1119         if (low <= addr && addr < high) {
1120            if (vma_low)  *vma_low  = low;
1121            if (vma_high) *vma_high = high;
1122            fclose (fp);
1123            return true;
1124         }
1125       }
1126       for (;;) {
1127         int ch = fgetc(fp);
1128         if (ch == EOF || ch == (int)'\n') break;
1129       }
1130     }
1131     fclose(fp);
1132   }
1133   return false;
1134 }
1135 
1136 // Locate initial thread stack. This special handling of initial thread stack
1137 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1138 // bogus value for initial thread.
1139 void os::Linux::capture_initial_stack(size_t max_size) {
1140   // stack size is the easy part, get it from RLIMIT_STACK
1141   size_t stack_size;
1142   struct rlimit rlim;
1143   getrlimit(RLIMIT_STACK, &rlim);
1144   stack_size = rlim.rlim_cur;
1145 
1146   // 6308388: a bug in ld.so will relocate its own .data section to the
1147   //   lower end of primordial stack; reduce ulimit -s value a little bit
1148   //   so we won't install guard page on ld.so's data section.
1149   stack_size -= 2 * page_size();
1150 
1151   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1152   //   7.1, in both cases we will get 2G in return value.
1153   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1154   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1155   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1156   //   in case other parts in glibc still assumes 2M max stack size.
1157   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1158   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1159   if (stack_size > 2 * K * K IA64_ONLY(*2))
1160       stack_size = 2 * K * K IA64_ONLY(*2);
1161   // Try to figure out where the stack base (top) is. This is harder.
1162   //
1163   // When an application is started, glibc saves the initial stack pointer in
1164   // a global variable "__libc_stack_end", which is then used by system
1165   // libraries. __libc_stack_end should be pretty close to stack top. The
1166   // variable is available since the very early days. However, because it is
1167   // a private interface, it could disappear in the future.
1168   //
1169   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1170   // to __libc_stack_end, it is very close to stack top, but isn't the real
1171   // stack top. Note that /proc may not exist if VM is running as a chroot
1172   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1173   // /proc/<pid>/stat could change in the future (though unlikely).
1174   //
1175   // We try __libc_stack_end first. If that doesn't work, look for
1176   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1177   // as a hint, which should work well in most cases.
1178 
1179   uintptr_t stack_start;
1180 
1181   // try __libc_stack_end first
1182   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1183   if (p && *p) {
1184     stack_start = *p;
1185   } else {
1186     // see if we can get the start_stack field from /proc/self/stat
1187     FILE *fp;
1188     int pid;
1189     char state;
1190     int ppid;
1191     int pgrp;
1192     int session;
1193     int nr;
1194     int tpgrp;
1195     unsigned long flags;
1196     unsigned long minflt;
1197     unsigned long cminflt;
1198     unsigned long majflt;
1199     unsigned long cmajflt;
1200     unsigned long utime;
1201     unsigned long stime;
1202     long cutime;
1203     long cstime;
1204     long prio;
1205     long nice;
1206     long junk;
1207     long it_real;
1208     uintptr_t start;
1209     uintptr_t vsize;
1210     intptr_t rss;
1211     uintptr_t rsslim;
1212     uintptr_t scodes;
1213     uintptr_t ecode;
1214     int i;
1215 
1216     // Figure what the primordial thread stack base is. Code is inspired
1217     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1218     // followed by command name surrounded by parentheses, state, etc.
1219     char stat[2048];
1220     int statlen;
1221 
1222     fp = fopen("/proc/self/stat", "r");
1223     if (fp) {
1224       statlen = fread(stat, 1, 2047, fp);
1225       stat[statlen] = '\0';
1226       fclose(fp);
1227 
1228       // Skip pid and the command string. Note that we could be dealing with
1229       // weird command names, e.g. user could decide to rename java launcher
1230       // to "java 1.4.2 :)", then the stat file would look like
1231       //                1234 (java 1.4.2 :)) R ... ...
1232       // We don't really need to know the command string, just find the last
1233       // occurrence of ")" and then start parsing from there. See bug 4726580.
1234       char * s = strrchr(stat, ')');
1235 
1236       i = 0;
1237       if (s) {
1238         // Skip blank chars
1239         do s++; while (isspace(*s));
1240 
1241 #define _UFM UINTX_FORMAT
1242 #define _DFM INTX_FORMAT
1243 
1244         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1245         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1246         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1247              &state,          /* 3  %c  */
1248              &ppid,           /* 4  %d  */
1249              &pgrp,           /* 5  %d  */
1250              &session,        /* 6  %d  */
1251              &nr,             /* 7  %d  */
1252              &tpgrp,          /* 8  %d  */
1253              &flags,          /* 9  %lu  */
1254              &minflt,         /* 10 %lu  */
1255              &cminflt,        /* 11 %lu  */
1256              &majflt,         /* 12 %lu  */
1257              &cmajflt,        /* 13 %lu  */
1258              &utime,          /* 14 %lu  */
1259              &stime,          /* 15 %lu  */
1260              &cutime,         /* 16 %ld  */
1261              &cstime,         /* 17 %ld  */
1262              &prio,           /* 18 %ld  */
1263              &nice,           /* 19 %ld  */
1264              &junk,           /* 20 %ld  */
1265              &it_real,        /* 21 %ld  */
1266              &start,          /* 22 UINTX_FORMAT */
1267              &vsize,          /* 23 UINTX_FORMAT */
1268              &rss,            /* 24 INTX_FORMAT  */
1269              &rsslim,         /* 25 UINTX_FORMAT */
1270              &scodes,         /* 26 UINTX_FORMAT */
1271              &ecode,          /* 27 UINTX_FORMAT */
1272              &stack_start);   /* 28 UINTX_FORMAT */
1273       }
1274 
1275 #undef _UFM
1276 #undef _DFM
1277 
1278       if (i != 28 - 2) {
1279          assert(false, "Bad conversion from /proc/self/stat");
1280          // product mode - assume we are the initial thread, good luck in the
1281          // embedded case.
1282          warning("Can't detect initial thread stack location - bad conversion");
1283          stack_start = (uintptr_t) &rlim;
1284       }
1285     } else {
1286       // For some reason we can't open /proc/self/stat (for example, running on
1287       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1288       // most cases, so don't abort:
1289       warning("Can't detect initial thread stack location - no /proc/self/stat");
1290       stack_start = (uintptr_t) &rlim;
1291     }
1292   }
1293 
1294   // Now we have a pointer (stack_start) very close to the stack top, the
1295   // next thing to do is to figure out the exact location of stack top. We
1296   // can find out the virtual memory area that contains stack_start by
1297   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1298   // and its upper limit is the real stack top. (again, this would fail if
1299   // running inside chroot, because /proc may not exist.)
1300 
1301   uintptr_t stack_top;
1302   address low, high;
1303   if (find_vma((address)stack_start, &low, &high)) {
1304     // success, "high" is the true stack top. (ignore "low", because initial
1305     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1306     stack_top = (uintptr_t)high;
1307   } else {
1308     // failed, likely because /proc/self/maps does not exist
1309     warning("Can't detect initial thread stack location - find_vma failed");
1310     // best effort: stack_start is normally within a few pages below the real
1311     // stack top, use it as stack top, and reduce stack size so we won't put
1312     // guard page outside stack.
1313     stack_top = stack_start;
1314     stack_size -= 16 * page_size();
1315   }
1316 
1317   // stack_top could be partially down the page so align it
1318   stack_top = align_size_up(stack_top, page_size());
1319 
1320   if (max_size && stack_size > max_size) {
1321      _initial_thread_stack_size = max_size;
1322   } else {
1323      _initial_thread_stack_size = stack_size;
1324   }
1325 
1326   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1327   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1328 }
1329 
1330 ////////////////////////////////////////////////////////////////////////////////
1331 // time support
1332 
1333 // Time since start-up in seconds to a fine granularity.
1334 // Used by VMSelfDestructTimer and the MemProfiler.
1335 double os::elapsedTime() {
1336 
1337   return (double)(os::elapsed_counter()) * 0.000001;
1338 }
1339 
1340 jlong os::elapsed_counter() {
1341   timeval time;
1342   int status = gettimeofday(&time, NULL);
1343   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1344 }
1345 
1346 jlong os::elapsed_frequency() {
1347   return (1000 * 1000);
1348 }
1349 
1350 bool os::supports_vtime() { return true; }
1351 bool os::enable_vtime()   { return false; }
1352 bool os::vtime_enabled()  { return false; }
1353 
1354 double os::elapsedVTime() {
1355   struct rusage usage;
1356   int retval = getrusage(RUSAGE_THREAD, &usage);
1357   if (retval == 0) {
1358     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1359   } else {
1360     // better than nothing, but not much
1361     return elapsedTime();
1362   }
1363 }
1364 
1365 jlong os::javaTimeMillis() {
1366   timeval time;
1367   int status = gettimeofday(&time, NULL);
1368   assert(status != -1, "linux error");
1369   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1370 }
1371 
1372 #ifndef CLOCK_MONOTONIC
1373 #define CLOCK_MONOTONIC (1)
1374 #endif
1375 
1376 void os::Linux::clock_init() {
1377   // we do dlopen's in this particular order due to bug in linux
1378   // dynamical loader (see 6348968) leading to crash on exit
1379   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1380   if (handle == NULL) {
1381     handle = dlopen("librt.so", RTLD_LAZY);
1382   }
1383 
1384   if (handle) {
1385     int (*clock_getres_func)(clockid_t, struct timespec*) =
1386            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1387     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1388            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1389     if (clock_getres_func && clock_gettime_func) {
1390       // See if monotonic clock is supported by the kernel. Note that some
1391       // early implementations simply return kernel jiffies (updated every
1392       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1393       // for nano time (though the monotonic property is still nice to have).
1394       // It's fixed in newer kernels, however clock_getres() still returns
1395       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1396       // resolution for now. Hopefully as people move to new kernels, this
1397       // won't be a problem.
1398       struct timespec res;
1399       struct timespec tp;
1400       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1401           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1402         // yes, monotonic clock is supported
1403         _clock_gettime = clock_gettime_func;
1404       } else {
1405         // close librt if there is no monotonic clock
1406         dlclose(handle);
1407       }
1408     }
1409   }
1410 }
1411 
1412 #ifndef SYS_clock_getres
1413 
1414 #if defined(IA32) || defined(AMD64)
1415 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1416 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1417 #else
1418 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1419 #define sys_clock_getres(x,y)  -1
1420 #endif
1421 
1422 #else
1423 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1424 #endif
1425 
1426 void os::Linux::fast_thread_clock_init() {
1427   if (!UseLinuxPosixThreadCPUClocks) {
1428     return;
1429   }
1430   clockid_t clockid;
1431   struct timespec tp;
1432   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1433       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1434 
1435   // Switch to using fast clocks for thread cpu time if
1436   // the sys_clock_getres() returns 0 error code.
1437   // Note, that some kernels may support the current thread
1438   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1439   // returned by the pthread_getcpuclockid().
1440   // If the fast Posix clocks are supported then the sys_clock_getres()
1441   // must return at least tp.tv_sec == 0 which means a resolution
1442   // better than 1 sec. This is extra check for reliability.
1443 
1444   if(pthread_getcpuclockid_func &&
1445      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1446      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1447 
1448     _supports_fast_thread_cpu_time = true;
1449     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1450   }
1451 }
1452 
1453 jlong os::javaTimeNanos() {
1454   if (Linux::supports_monotonic_clock()) {
1455     struct timespec tp;
1456     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1457     assert(status == 0, "gettime error");
1458     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1459     return result;
1460   } else {
1461     timeval time;
1462     int status = gettimeofday(&time, NULL);
1463     assert(status != -1, "linux error");
1464     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1465     return 1000 * usecs;
1466   }
1467 }
1468 
1469 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1470   if (Linux::supports_monotonic_clock()) {
1471     info_ptr->max_value = ALL_64_BITS;
1472 
1473     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1474     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1475     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1476   } else {
1477     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1478     info_ptr->max_value = ALL_64_BITS;
1479 
1480     // gettimeofday is a real time clock so it skips
1481     info_ptr->may_skip_backward = true;
1482     info_ptr->may_skip_forward = true;
1483   }
1484 
1485   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1486 }
1487 
1488 // Return the real, user, and system times in seconds from an
1489 // arbitrary fixed point in the past.
1490 bool os::getTimesSecs(double* process_real_time,
1491                       double* process_user_time,
1492                       double* process_system_time) {
1493   struct tms ticks;
1494   clock_t real_ticks = times(&ticks);
1495 
1496   if (real_ticks == (clock_t) (-1)) {
1497     return false;
1498   } else {
1499     double ticks_per_second = (double) clock_tics_per_sec;
1500     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1501     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1502     *process_real_time = ((double) real_ticks) / ticks_per_second;
1503 
1504     return true;
1505   }
1506 }
1507 
1508 
1509 char * os::local_time_string(char *buf, size_t buflen) {
1510   struct tm t;
1511   time_t long_time;
1512   time(&long_time);
1513   localtime_r(&long_time, &t);
1514   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1515                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1516                t.tm_hour, t.tm_min, t.tm_sec);
1517   return buf;
1518 }
1519 
1520 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1521   return localtime_r(clock, res);
1522 }
1523 
1524 ////////////////////////////////////////////////////////////////////////////////
1525 // runtime exit support
1526 
1527 // Note: os::shutdown() might be called very early during initialization, or
1528 // called from signal handler. Before adding something to os::shutdown(), make
1529 // sure it is async-safe and can handle partially initialized VM.
1530 void os::shutdown() {
1531 
1532   // allow PerfMemory to attempt cleanup of any persistent resources
1533   perfMemory_exit();
1534 
1535   // needs to remove object in file system
1536   AttachListener::abort();
1537 
1538   // flush buffered output, finish log files
1539   ostream_abort();
1540 
1541   // Check for abort hook
1542   abort_hook_t abort_hook = Arguments::abort_hook();
1543   if (abort_hook != NULL) {
1544     abort_hook();
1545   }
1546 
1547 }
1548 
1549 // Note: os::abort() might be called very early during initialization, or
1550 // called from signal handler. Before adding something to os::abort(), make
1551 // sure it is async-safe and can handle partially initialized VM.
1552 void os::abort(bool dump_core) {
1553   os::shutdown();
1554   if (dump_core) {
1555 #ifndef PRODUCT
1556     fdStream out(defaultStream::output_fd());
1557     out.print_raw("Current thread is ");
1558     char buf[16];
1559     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1560     out.print_raw_cr(buf);
1561     out.print_raw_cr("Dumping core ...");
1562 #endif
1563     ::abort(); // dump core
1564   }
1565 
1566   ::exit(1);
1567 }
1568 
1569 // Die immediately, no exit hook, no abort hook, no cleanup.
1570 void os::die() {
1571   // _exit() on LinuxThreads only kills current thread
1572   ::abort();
1573 }
1574 
1575 // unused on linux for now.
1576 void os::set_error_file(const char *logfile) {}
1577 
1578 
1579 // This method is a copy of JDK's sysGetLastErrorString
1580 // from src/solaris/hpi/src/system_md.c
1581 
1582 size_t os::lasterror(char *buf, size_t len) {
1583 
1584   if (errno == 0)  return 0;
1585 
1586   const char *s = ::strerror(errno);
1587   size_t n = ::strlen(s);
1588   if (n >= len) {
1589     n = len - 1;
1590   }
1591   ::strncpy(buf, s, n);
1592   buf[n] = '\0';
1593   return n;
1594 }
1595 
1596 intx os::current_thread_id() { return (intx)pthread_self(); }
1597 int os::current_process_id() {
1598 
1599   // Under the old linux thread library, linux gives each thread
1600   // its own process id. Because of this each thread will return
1601   // a different pid if this method were to return the result
1602   // of getpid(2). Linux provides no api that returns the pid
1603   // of the launcher thread for the vm. This implementation
1604   // returns a unique pid, the pid of the launcher thread
1605   // that starts the vm 'process'.
1606 
1607   // Under the NPTL, getpid() returns the same pid as the
1608   // launcher thread rather than a unique pid per thread.
1609   // Use gettid() if you want the old pre NPTL behaviour.
1610 
1611   // if you are looking for the result of a call to getpid() that
1612   // returns a unique pid for the calling thread, then look at the
1613   // OSThread::thread_id() method in osThread_linux.hpp file
1614 
1615   return (int)(_initial_pid ? _initial_pid : getpid());
1616 }
1617 
1618 // DLL functions
1619 
1620 const char* os::dll_file_extension() { return ".so"; }
1621 
1622 // This must be hard coded because it's the system's temporary
1623 // directory not the java application's temp directory, ala java.io.tmpdir.
1624 const char* os::get_temp_directory() { return "/tmp"; }
1625 
1626 static bool file_exists(const char* filename) {
1627   struct stat statbuf;
1628   if (filename == NULL || strlen(filename) == 0) {
1629     return false;
1630   }
1631   return os::stat(filename, &statbuf) == 0;
1632 }
1633 
1634 bool os::dll_build_name(char* buffer, size_t buflen,
1635                         const char* pname, const char* fname) {
1636   bool retval = false;
1637   // Copied from libhpi
1638   const size_t pnamelen = pname ? strlen(pname) : 0;
1639 
1640   // Return error on buffer overflow.
1641   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1642     return retval;
1643   }
1644 
1645   if (pnamelen == 0) {
1646     snprintf(buffer, buflen, "lib%s.so", fname);
1647     retval = true;
1648   } else if (strchr(pname, *os::path_separator()) != NULL) {
1649     int n;
1650     char** pelements = split_path(pname, &n);
1651     if (pelements == NULL) {
1652       return false;
1653     }
1654     for (int i = 0 ; i < n ; i++) {
1655       // Really shouldn't be NULL, but check can't hurt
1656       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1657         continue; // skip the empty path values
1658       }
1659       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1660       if (file_exists(buffer)) {
1661         retval = true;
1662         break;
1663       }
1664     }
1665     // release the storage
1666     for (int i = 0 ; i < n ; i++) {
1667       if (pelements[i] != NULL) {
1668         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1669       }
1670     }
1671     if (pelements != NULL) {
1672       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1673     }
1674   } else {
1675     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1676     retval = true;
1677   }
1678   return retval;
1679 }
1680 
1681 // check if addr is inside libjvm.so
1682 bool os::address_is_in_vm(address addr) {
1683   static address libjvm_base_addr;
1684   Dl_info dlinfo;
1685 
1686   if (libjvm_base_addr == NULL) {
1687     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1688       libjvm_base_addr = (address)dlinfo.dli_fbase;
1689     }
1690     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1691   }
1692 
1693   if (dladdr((void *)addr, &dlinfo) != 0) {
1694     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1695   }
1696 
1697   return false;
1698 }
1699 
1700 bool os::dll_address_to_function_name(address addr, char *buf,
1701                                       int buflen, int *offset) {
1702   // buf is not optional, but offset is optional
1703   assert(buf != NULL, "sanity check");
1704 
1705   Dl_info dlinfo;
1706 
1707   if (dladdr((void*)addr, &dlinfo) != 0) {
1708     // see if we have a matching symbol
1709     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1710       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1711         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1712       }
1713       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1714       return true;
1715     }
1716     // no matching symbol so try for just file info
1717     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1718       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1719                           buf, buflen, offset, dlinfo.dli_fname)) {
1720         return true;
1721       }
1722     }
1723   }
1724 
1725   buf[0] = '\0';
1726   if (offset != NULL) *offset = -1;
1727   return false;
1728 }
1729 
1730 struct _address_to_library_name {
1731   address addr;          // input : memory address
1732   size_t  buflen;        //         size of fname
1733   char*   fname;         // output: library name
1734   address base;          //         library base addr
1735 };
1736 
1737 static int address_to_library_name_callback(struct dl_phdr_info *info,
1738                                             size_t size, void *data) {
1739   int i;
1740   bool found = false;
1741   address libbase = NULL;
1742   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1743 
1744   // iterate through all loadable segments
1745   for (i = 0; i < info->dlpi_phnum; i++) {
1746     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1747     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1748       // base address of a library is the lowest address of its loaded
1749       // segments.
1750       if (libbase == NULL || libbase > segbase) {
1751         libbase = segbase;
1752       }
1753       // see if 'addr' is within current segment
1754       if (segbase <= d->addr &&
1755           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1756         found = true;
1757       }
1758     }
1759   }
1760 
1761   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1762   // so dll_address_to_library_name() can fall through to use dladdr() which
1763   // can figure out executable name from argv[0].
1764   if (found && info->dlpi_name && info->dlpi_name[0]) {
1765     d->base = libbase;
1766     if (d->fname) {
1767       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1768     }
1769     return 1;
1770   }
1771   return 0;
1772 }
1773 
1774 bool os::dll_address_to_library_name(address addr, char* buf,
1775                                      int buflen, int* offset) {
1776   // buf is not optional, but offset is optional
1777   assert(buf != NULL, "sanity check");
1778 
1779   Dl_info dlinfo;
1780   struct _address_to_library_name data;
1781 
1782   // There is a bug in old glibc dladdr() implementation that it could resolve
1783   // to wrong library name if the .so file has a base address != NULL. Here
1784   // we iterate through the program headers of all loaded libraries to find
1785   // out which library 'addr' really belongs to. This workaround can be
1786   // removed once the minimum requirement for glibc is moved to 2.3.x.
1787   data.addr = addr;
1788   data.fname = buf;
1789   data.buflen = buflen;
1790   data.base = NULL;
1791   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1792 
1793   if (rslt) {
1794      // buf already contains library name
1795      if (offset) *offset = addr - data.base;
1796      return true;
1797   }
1798   if (dladdr((void*)addr, &dlinfo) != 0) {
1799     if (dlinfo.dli_fname != NULL) {
1800       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1801     }
1802     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1803       *offset = addr - (address)dlinfo.dli_fbase;
1804     }
1805     return true;
1806   }
1807 
1808   buf[0] = '\0';
1809   if (offset) *offset = -1;
1810   return false;
1811 }
1812 
1813   // Loads .dll/.so and
1814   // in case of error it checks if .dll/.so was built for the
1815   // same architecture as Hotspot is running on
1816 
1817 
1818 // Remember the stack's state. The Linux dynamic linker will change
1819 // the stack to 'executable' at most once, so we must safepoint only once.
1820 bool os::Linux::_stack_is_executable = false;
1821 
1822 // VM operation that loads a library.  This is necessary if stack protection
1823 // of the Java stacks can be lost during loading the library.  If we
1824 // do not stop the Java threads, they can stack overflow before the stacks
1825 // are protected again.
1826 class VM_LinuxDllLoad: public VM_Operation {
1827  private:
1828   const char *_filename;
1829   char *_ebuf;
1830   int _ebuflen;
1831   void *_lib;
1832  public:
1833   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1834     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1835   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1836   void doit() {
1837     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1838     os::Linux::_stack_is_executable = true;
1839   }
1840   void* loaded_library() { return _lib; }
1841 };
1842 
1843 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1844 {
1845   void * result = NULL;
1846   bool load_attempted = false;
1847 
1848   // Check whether the library to load might change execution rights
1849   // of the stack. If they are changed, the protection of the stack
1850   // guard pages will be lost. We need a safepoint to fix this.
1851   //
1852   // See Linux man page execstack(8) for more info.
1853   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1854     ElfFile ef(filename);
1855     if (!ef.specifies_noexecstack()) {
1856       if (!is_init_completed()) {
1857         os::Linux::_stack_is_executable = true;
1858         // This is OK - No Java threads have been created yet, and hence no
1859         // stack guard pages to fix.
1860         //
1861         // This should happen only when you are building JDK7 using a very
1862         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1863         //
1864         // Dynamic loader will make all stacks executable after
1865         // this function returns, and will not do that again.
1866         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1867       } else {
1868         warning("You have loaded library %s which might have disabled stack guard. "
1869                 "The VM will try to fix the stack guard now.\n"
1870                 "It's highly recommended that you fix the library with "
1871                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1872                 filename);
1873 
1874         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1875         JavaThread *jt = JavaThread::current();
1876         if (jt->thread_state() != _thread_in_native) {
1877           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1878           // that requires ExecStack. Cannot enter safe point. Let's give up.
1879           warning("Unable to fix stack guard. Giving up.");
1880         } else {
1881           if (!LoadExecStackDllInVMThread) {
1882             // This is for the case where the DLL has an static
1883             // constructor function that executes JNI code. We cannot
1884             // load such DLLs in the VMThread.
1885             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1886           }
1887 
1888           ThreadInVMfromNative tiv(jt);
1889           debug_only(VMNativeEntryWrapper vew;)
1890 
1891           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1892           VMThread::execute(&op);
1893           if (LoadExecStackDllInVMThread) {
1894             result = op.loaded_library();
1895           }
1896           load_attempted = true;
1897         }
1898       }
1899     }
1900   }
1901 
1902   if (!load_attempted) {
1903     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1904   }
1905 
1906   if (result != NULL) {
1907     // Successful loading
1908     return result;
1909   }
1910 
1911   Elf32_Ehdr elf_head;
1912   int diag_msg_max_length=ebuflen-strlen(ebuf);
1913   char* diag_msg_buf=ebuf+strlen(ebuf);
1914 
1915   if (diag_msg_max_length==0) {
1916     // No more space in ebuf for additional diagnostics message
1917     return NULL;
1918   }
1919 
1920 
1921   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1922 
1923   if (file_descriptor < 0) {
1924     // Can't open library, report dlerror() message
1925     return NULL;
1926   }
1927 
1928   bool failed_to_read_elf_head=
1929     (sizeof(elf_head)!=
1930         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1931 
1932   ::close(file_descriptor);
1933   if (failed_to_read_elf_head) {
1934     // file i/o error - report dlerror() msg
1935     return NULL;
1936   }
1937 
1938   typedef struct {
1939     Elf32_Half  code;         // Actual value as defined in elf.h
1940     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1941     char        elf_class;    // 32 or 64 bit
1942     char        endianess;    // MSB or LSB
1943     char*       name;         // String representation
1944   } arch_t;
1945 
1946   #ifndef EM_486
1947   #define EM_486          6               /* Intel 80486 */
1948   #endif
1949 
1950   static const arch_t arch_array[]={
1951     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1952     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1953     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1954     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1955     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1956     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1957     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1958     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1959     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1960     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1961     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1962     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1963     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1964     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1965     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1966     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1967   };
1968 
1969   #if  (defined IA32)
1970     static  Elf32_Half running_arch_code=EM_386;
1971   #elif   (defined AMD64)
1972     static  Elf32_Half running_arch_code=EM_X86_64;
1973   #elif  (defined IA64)
1974     static  Elf32_Half running_arch_code=EM_IA_64;
1975   #elif  (defined __sparc) && (defined _LP64)
1976     static  Elf32_Half running_arch_code=EM_SPARCV9;
1977   #elif  (defined __sparc) && (!defined _LP64)
1978     static  Elf32_Half running_arch_code=EM_SPARC;
1979   #elif  (defined __powerpc64__)
1980     static  Elf32_Half running_arch_code=EM_PPC64;
1981   #elif  (defined __powerpc__)
1982     static  Elf32_Half running_arch_code=EM_PPC;
1983   #elif  (defined ARM)
1984     static  Elf32_Half running_arch_code=EM_ARM;
1985   #elif  (defined S390)
1986     static  Elf32_Half running_arch_code=EM_S390;
1987   #elif  (defined ALPHA)
1988     static  Elf32_Half running_arch_code=EM_ALPHA;
1989   #elif  (defined MIPSEL)
1990     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1991   #elif  (defined PARISC)
1992     static  Elf32_Half running_arch_code=EM_PARISC;
1993   #elif  (defined MIPS)
1994     static  Elf32_Half running_arch_code=EM_MIPS;
1995   #elif  (defined M68K)
1996     static  Elf32_Half running_arch_code=EM_68K;
1997   #else
1998     #error Method os::dll_load requires that one of following is defined:\
1999          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2000   #endif
2001 
2002   // Identify compatability class for VM's architecture and library's architecture
2003   // Obtain string descriptions for architectures
2004 
2005   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2006   int running_arch_index=-1;
2007 
2008   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2009     if (running_arch_code == arch_array[i].code) {
2010       running_arch_index    = i;
2011     }
2012     if (lib_arch.code == arch_array[i].code) {
2013       lib_arch.compat_class = arch_array[i].compat_class;
2014       lib_arch.name         = arch_array[i].name;
2015     }
2016   }
2017 
2018   assert(running_arch_index != -1,
2019     "Didn't find running architecture code (running_arch_code) in arch_array");
2020   if (running_arch_index == -1) {
2021     // Even though running architecture detection failed
2022     // we may still continue with reporting dlerror() message
2023     return NULL;
2024   }
2025 
2026   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2027     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2028     return NULL;
2029   }
2030 
2031 #ifndef S390
2032   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2033     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2034     return NULL;
2035   }
2036 #endif // !S390
2037 
2038   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2039     if ( lib_arch.name!=NULL ) {
2040       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2041         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2042         lib_arch.name, arch_array[running_arch_index].name);
2043     } else {
2044       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2045       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2046         lib_arch.code,
2047         arch_array[running_arch_index].name);
2048     }
2049   }
2050 
2051   return NULL;
2052 }
2053 
2054 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2055   void * result = ::dlopen(filename, RTLD_LAZY);
2056   if (result == NULL) {
2057     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2058     ebuf[ebuflen-1] = '\0';
2059   }
2060   return result;
2061 }
2062 
2063 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2064   void * result = NULL;
2065   if (LoadExecStackDllInVMThread) {
2066     result = dlopen_helper(filename, ebuf, ebuflen);
2067   }
2068 
2069   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2070   // library that requires an executable stack, or which does not have this
2071   // stack attribute set, dlopen changes the stack attribute to executable. The
2072   // read protection of the guard pages gets lost.
2073   //
2074   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2075   // may have been queued at the same time.
2076 
2077   if (!_stack_is_executable) {
2078     JavaThread *jt = Threads::first();
2079 
2080     while (jt) {
2081       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2082           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2083         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2084                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2085           warning("Attempt to reguard stack yellow zone failed.");
2086         }
2087       }
2088       jt = jt->next();
2089     }
2090   }
2091 
2092   return result;
2093 }
2094 
2095 /*
2096  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2097  * chances are you might want to run the generated bits against glibc-2.0
2098  * libdl.so, so always use locking for any version of glibc.
2099  */
2100 void* os::dll_lookup(void* handle, const char* name) {
2101   pthread_mutex_lock(&dl_mutex);
2102   void* res = dlsym(handle, name);
2103   pthread_mutex_unlock(&dl_mutex);
2104   return res;
2105 }
2106 
2107 
2108 static bool _print_ascii_file(const char* filename, outputStream* st) {
2109   int fd = ::open(filename, O_RDONLY);
2110   if (fd == -1) {
2111      return false;
2112   }
2113 
2114   char buf[32];
2115   int bytes;
2116   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2117     st->print_raw(buf, bytes);
2118   }
2119 
2120   ::close(fd);
2121 
2122   return true;
2123 }
2124 
2125 void os::print_dll_info(outputStream *st) {
2126    st->print_cr("Dynamic libraries:");
2127 
2128    char fname[32];
2129    pid_t pid = os::Linux::gettid();
2130 
2131    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2132 
2133    if (!_print_ascii_file(fname, st)) {
2134      st->print("Can not get library information for pid = %d\n", pid);
2135    }
2136 }
2137 
2138 void os::print_os_info_brief(outputStream* st) {
2139   os::Linux::print_distro_info(st);
2140 
2141   os::Posix::print_uname_info(st);
2142 
2143   os::Linux::print_libversion_info(st);
2144 
2145 }
2146 
2147 void os::print_os_info(outputStream* st) {
2148   st->print("OS:");
2149 
2150   os::Linux::print_distro_info(st);
2151 
2152   os::Posix::print_uname_info(st);
2153 
2154   // Print warning if unsafe chroot environment detected
2155   if (unsafe_chroot_detected) {
2156     st->print("WARNING!! ");
2157     st->print_cr(unstable_chroot_error);
2158   }
2159 
2160   os::Linux::print_libversion_info(st);
2161 
2162   os::Posix::print_rlimit_info(st);
2163 
2164   os::Posix::print_load_average(st);
2165 
2166   os::Linux::print_full_memory_info(st);
2167 }
2168 
2169 // Try to identify popular distros.
2170 // Most Linux distributions have /etc/XXX-release file, which contains
2171 // the OS version string. Some have more than one /etc/XXX-release file
2172 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2173 // so the order is important.
2174 void os::Linux::print_distro_info(outputStream* st) {
2175   if (!_print_ascii_file("/etc/mandrake-release", st) &&
2176       !_print_ascii_file("/etc/sun-release", st) &&
2177       !_print_ascii_file("/etc/redhat-release", st) &&
2178       !_print_ascii_file("/etc/SuSE-release", st) &&
2179       !_print_ascii_file("/etc/turbolinux-release", st) &&
2180       !_print_ascii_file("/etc/gentoo-release", st) &&
2181       !_print_ascii_file("/etc/debian_version", st) &&
2182       !_print_ascii_file("/etc/ltib-release", st) &&
2183       !_print_ascii_file("/etc/angstrom-version", st)) {
2184       st->print("Linux");
2185   }
2186   st->cr();
2187 }
2188 
2189 void os::Linux::print_libversion_info(outputStream* st) {
2190   // libc, pthread
2191   st->print("libc:");
2192   st->print(os::Linux::glibc_version()); st->print(" ");
2193   st->print(os::Linux::libpthread_version()); st->print(" ");
2194   if (os::Linux::is_LinuxThreads()) {
2195      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2196   }
2197   st->cr();
2198 }
2199 
2200 void os::Linux::print_full_memory_info(outputStream* st) {
2201    st->print("\n/proc/meminfo:\n");
2202    _print_ascii_file("/proc/meminfo", st);
2203    st->cr();
2204 }
2205 
2206 void os::print_memory_info(outputStream* st) {
2207 
2208   st->print("Memory:");
2209   st->print(" %dk page", os::vm_page_size()>>10);
2210 
2211   // values in struct sysinfo are "unsigned long"
2212   struct sysinfo si;
2213   sysinfo(&si);
2214 
2215   st->print(", physical " UINT64_FORMAT "k",
2216             os::physical_memory() >> 10);
2217   st->print("(" UINT64_FORMAT "k free)",
2218             os::available_memory() >> 10);
2219   st->print(", swap " UINT64_FORMAT "k",
2220             ((jlong)si.totalswap * si.mem_unit) >> 10);
2221   st->print("(" UINT64_FORMAT "k free)",
2222             ((jlong)si.freeswap * si.mem_unit) >> 10);
2223   st->cr();
2224 }
2225 
2226 void os::pd_print_cpu_info(outputStream* st) {
2227   st->print("\n/proc/cpuinfo:\n");
2228   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2229     st->print("  <Not Available>");
2230   }
2231   st->cr();
2232 }
2233 
2234 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2235 // but they're the same for all the linux arch that we support
2236 // and they're the same for solaris but there's no common place to put this.
2237 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2238                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2239                           "ILL_COPROC", "ILL_BADSTK" };
2240 
2241 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2242                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2243                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2244 
2245 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2246 
2247 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2248 
2249 void os::print_siginfo(outputStream* st, void* siginfo) {
2250   st->print("siginfo:");
2251 
2252   const int buflen = 100;
2253   char buf[buflen];
2254   siginfo_t *si = (siginfo_t*)siginfo;
2255   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2256   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2257     st->print("si_errno=%s", buf);
2258   } else {
2259     st->print("si_errno=%d", si->si_errno);
2260   }
2261   const int c = si->si_code;
2262   assert(c > 0, "unexpected si_code");
2263   switch (si->si_signo) {
2264   case SIGILL:
2265     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2266     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2267     break;
2268   case SIGFPE:
2269     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2270     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2271     break;
2272   case SIGSEGV:
2273     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2274     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2275     break;
2276   case SIGBUS:
2277     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2278     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2279     break;
2280   default:
2281     st->print(", si_code=%d", si->si_code);
2282     // no si_addr
2283   }
2284 
2285   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2286       UseSharedSpaces) {
2287     FileMapInfo* mapinfo = FileMapInfo::current_info();
2288     if (mapinfo->is_in_shared_space(si->si_addr)) {
2289       st->print("\n\nError accessing class data sharing archive."   \
2290                 " Mapped file inaccessible during execution, "      \
2291                 " possible disk/network problem.");
2292     }
2293   }
2294   st->cr();
2295 }
2296 
2297 
2298 static void print_signal_handler(outputStream* st, int sig,
2299                                  char* buf, size_t buflen);
2300 
2301 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2302   st->print_cr("Signal Handlers:");
2303   print_signal_handler(st, SIGSEGV, buf, buflen);
2304   print_signal_handler(st, SIGBUS , buf, buflen);
2305   print_signal_handler(st, SIGFPE , buf, buflen);
2306   print_signal_handler(st, SIGPIPE, buf, buflen);
2307   print_signal_handler(st, SIGXFSZ, buf, buflen);
2308   print_signal_handler(st, SIGILL , buf, buflen);
2309   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2310   print_signal_handler(st, SR_signum, buf, buflen);
2311   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2312   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2313   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2314   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2315 }
2316 
2317 static char saved_jvm_path[MAXPATHLEN] = {0};
2318 
2319 // Find the full path to the current module, libjvm.so
2320 void os::jvm_path(char *buf, jint buflen) {
2321   // Error checking.
2322   if (buflen < MAXPATHLEN) {
2323     assert(false, "must use a large-enough buffer");
2324     buf[0] = '\0';
2325     return;
2326   }
2327   // Lazy resolve the path to current module.
2328   if (saved_jvm_path[0] != 0) {
2329     strcpy(buf, saved_jvm_path);
2330     return;
2331   }
2332 
2333   char dli_fname[MAXPATHLEN];
2334   bool ret = dll_address_to_library_name(
2335                 CAST_FROM_FN_PTR(address, os::jvm_path),
2336                 dli_fname, sizeof(dli_fname), NULL);
2337   assert(ret, "cannot locate libjvm");
2338   char *rp = NULL;
2339   if (ret && dli_fname[0] != '\0') {
2340     rp = realpath(dli_fname, buf);
2341   }
2342   if (rp == NULL)
2343     return;
2344 
2345   if (Arguments::created_by_gamma_launcher()) {
2346     // Support for the gamma launcher.  Typical value for buf is
2347     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2348     // the right place in the string, then assume we are installed in a JDK and
2349     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2350     // up the path so it looks like libjvm.so is installed there (append a
2351     // fake suffix hotspot/libjvm.so).
2352     const char *p = buf + strlen(buf) - 1;
2353     for (int count = 0; p > buf && count < 5; ++count) {
2354       for (--p; p > buf && *p != '/'; --p)
2355         /* empty */ ;
2356     }
2357 
2358     if (strncmp(p, "/jre/lib/", 9) != 0) {
2359       // Look for JAVA_HOME in the environment.
2360       char* java_home_var = ::getenv("JAVA_HOME");
2361       if (java_home_var != NULL && java_home_var[0] != 0) {
2362         char* jrelib_p;
2363         int len;
2364 
2365         // Check the current module name "libjvm.so".
2366         p = strrchr(buf, '/');
2367         assert(strstr(p, "/libjvm") == p, "invalid library name");
2368 
2369         rp = realpath(java_home_var, buf);
2370         if (rp == NULL)
2371           return;
2372 
2373         // determine if this is a legacy image or modules image
2374         // modules image doesn't have "jre" subdirectory
2375         len = strlen(buf);
2376         jrelib_p = buf + len;
2377         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2378         if (0 != access(buf, F_OK)) {
2379           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2380         }
2381 
2382         if (0 == access(buf, F_OK)) {
2383           // Use current module name "libjvm.so"
2384           len = strlen(buf);
2385           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2386         } else {
2387           // Go back to path of .so
2388           rp = realpath(dli_fname, buf);
2389           if (rp == NULL)
2390             return;
2391         }
2392       }
2393     }
2394   }
2395 
2396   strcpy(saved_jvm_path, buf);
2397 }
2398 
2399 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2400   // no prefix required, not even "_"
2401 }
2402 
2403 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2404   // no suffix required
2405 }
2406 
2407 ////////////////////////////////////////////////////////////////////////////////
2408 // sun.misc.Signal support
2409 
2410 static volatile jint sigint_count = 0;
2411 
2412 static void
2413 UserHandler(int sig, void *siginfo, void *context) {
2414   // 4511530 - sem_post is serialized and handled by the manager thread. When
2415   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2416   // don't want to flood the manager thread with sem_post requests.
2417   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2418       return;
2419 
2420   // Ctrl-C is pressed during error reporting, likely because the error
2421   // handler fails to abort. Let VM die immediately.
2422   if (sig == SIGINT && is_error_reported()) {
2423      os::die();
2424   }
2425 
2426   os::signal_notify(sig);
2427 }
2428 
2429 void* os::user_handler() {
2430   return CAST_FROM_FN_PTR(void*, UserHandler);
2431 }
2432 
2433 class Semaphore : public StackObj {
2434   public:
2435     Semaphore();
2436     ~Semaphore();
2437     void signal();
2438     void wait();
2439     bool trywait();
2440     bool timedwait(unsigned int sec, int nsec);
2441   private:
2442     sem_t _semaphore;
2443 };
2444 
2445 
2446 Semaphore::Semaphore() {
2447   sem_init(&_semaphore, 0, 0);
2448 }
2449 
2450 Semaphore::~Semaphore() {
2451   sem_destroy(&_semaphore);
2452 }
2453 
2454 void Semaphore::signal() {
2455   sem_post(&_semaphore);
2456 }
2457 
2458 void Semaphore::wait() {
2459   sem_wait(&_semaphore);
2460 }
2461 
2462 bool Semaphore::trywait() {
2463   return sem_trywait(&_semaphore) == 0;
2464 }
2465 
2466 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2467   struct timespec ts;
2468   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2469 
2470   while (1) {
2471     int result = sem_timedwait(&_semaphore, &ts);
2472     if (result == 0) {
2473       return true;
2474     } else if (errno == EINTR) {
2475       continue;
2476     } else if (errno == ETIMEDOUT) {
2477       return false;
2478     } else {
2479       return false;
2480     }
2481   }
2482 }
2483 
2484 extern "C" {
2485   typedef void (*sa_handler_t)(int);
2486   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2487 }
2488 
2489 void* os::signal(int signal_number, void* handler) {
2490   struct sigaction sigAct, oldSigAct;
2491 
2492   sigfillset(&(sigAct.sa_mask));
2493   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2494   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2495 
2496   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2497     // -1 means registration failed
2498     return (void *)-1;
2499   }
2500 
2501   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2502 }
2503 
2504 void os::signal_raise(int signal_number) {
2505   ::raise(signal_number);
2506 }
2507 
2508 /*
2509  * The following code is moved from os.cpp for making this
2510  * code platform specific, which it is by its very nature.
2511  */
2512 
2513 // Will be modified when max signal is changed to be dynamic
2514 int os::sigexitnum_pd() {
2515   return NSIG;
2516 }
2517 
2518 // a counter for each possible signal value
2519 static volatile jint pending_signals[NSIG+1] = { 0 };
2520 
2521 // Linux(POSIX) specific hand shaking semaphore.
2522 static sem_t sig_sem;
2523 static Semaphore sr_semaphore;
2524 
2525 void os::signal_init_pd() {
2526   // Initialize signal structures
2527   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2528 
2529   // Initialize signal semaphore
2530   ::sem_init(&sig_sem, 0, 0);
2531 }
2532 
2533 void os::signal_notify(int sig) {
2534   Atomic::inc(&pending_signals[sig]);
2535   ::sem_post(&sig_sem);
2536 }
2537 
2538 static int check_pending_signals(bool wait) {
2539   Atomic::store(0, &sigint_count);
2540   for (;;) {
2541     for (int i = 0; i < NSIG + 1; i++) {
2542       jint n = pending_signals[i];
2543       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2544         return i;
2545       }
2546     }
2547     if (!wait) {
2548       return -1;
2549     }
2550     JavaThread *thread = JavaThread::current();
2551     ThreadBlockInVM tbivm(thread);
2552 
2553     bool threadIsSuspended;
2554     do {
2555       thread->set_suspend_equivalent();
2556       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2557       ::sem_wait(&sig_sem);
2558 
2559       // were we externally suspended while we were waiting?
2560       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2561       if (threadIsSuspended) {
2562         //
2563         // The semaphore has been incremented, but while we were waiting
2564         // another thread suspended us. We don't want to continue running
2565         // while suspended because that would surprise the thread that
2566         // suspended us.
2567         //
2568         ::sem_post(&sig_sem);
2569 
2570         thread->java_suspend_self();
2571       }
2572     } while (threadIsSuspended);
2573   }
2574 }
2575 
2576 int os::signal_lookup() {
2577   return check_pending_signals(false);
2578 }
2579 
2580 int os::signal_wait() {
2581   return check_pending_signals(true);
2582 }
2583 
2584 ////////////////////////////////////////////////////////////////////////////////
2585 // Virtual Memory
2586 
2587 int os::vm_page_size() {
2588   // Seems redundant as all get out
2589   assert(os::Linux::page_size() != -1, "must call os::init");
2590   return os::Linux::page_size();
2591 }
2592 
2593 // Solaris allocates memory by pages.
2594 int os::vm_allocation_granularity() {
2595   assert(os::Linux::page_size() != -1, "must call os::init");
2596   return os::Linux::page_size();
2597 }
2598 
2599 // Rationale behind this function:
2600 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2601 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2602 //  samples for JITted code. Here we create private executable mapping over the code cache
2603 //  and then we can use standard (well, almost, as mapping can change) way to provide
2604 //  info for the reporting script by storing timestamp and location of symbol
2605 void linux_wrap_code(char* base, size_t size) {
2606   static volatile jint cnt = 0;
2607 
2608   if (!UseOprofile) {
2609     return;
2610   }
2611 
2612   char buf[PATH_MAX+1];
2613   int num = Atomic::add(1, &cnt);
2614 
2615   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2616            os::get_temp_directory(), os::current_process_id(), num);
2617   unlink(buf);
2618 
2619   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2620 
2621   if (fd != -1) {
2622     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2623     if (rv != (off_t)-1) {
2624       if (::write(fd, "", 1) == 1) {
2625         mmap(base, size,
2626              PROT_READ|PROT_WRITE|PROT_EXEC,
2627              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2628       }
2629     }
2630     ::close(fd);
2631     unlink(buf);
2632   }
2633 }
2634 
2635 static bool recoverable_mmap_error(int err) {
2636   // See if the error is one we can let the caller handle. This
2637   // list of errno values comes from JBS-6843484. I can't find a
2638   // Linux man page that documents this specific set of errno
2639   // values so while this list currently matches Solaris, it may
2640   // change as we gain experience with this failure mode.
2641   switch (err) {
2642   case EBADF:
2643   case EINVAL:
2644   case ENOTSUP:
2645     // let the caller deal with these errors
2646     return true;
2647 
2648   default:
2649     // Any remaining errors on this OS can cause our reserved mapping
2650     // to be lost. That can cause confusion where different data
2651     // structures think they have the same memory mapped. The worst
2652     // scenario is if both the VM and a library think they have the
2653     // same memory mapped.
2654     return false;
2655   }
2656 }
2657 
2658 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2659                                     int err) {
2660   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2661           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2662           strerror(err), err);
2663 }
2664 
2665 static void warn_fail_commit_memory(char* addr, size_t size,
2666                                     size_t alignment_hint, bool exec,
2667                                     int err) {
2668   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2669           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2670           alignment_hint, exec, strerror(err), err);
2671 }
2672 
2673 // NOTE: Linux kernel does not really reserve the pages for us.
2674 //       All it does is to check if there are enough free pages
2675 //       left at the time of mmap(). This could be a potential
2676 //       problem.
2677 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2678   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2679   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2680                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2681   if (res != (uintptr_t) MAP_FAILED) {
2682     if (UseNUMAInterleaving) {
2683       numa_make_global(addr, size);
2684     }
2685     return 0;
2686   }
2687 
2688   int err = errno;  // save errno from mmap() call above
2689 
2690   if (!recoverable_mmap_error(err)) {
2691     warn_fail_commit_memory(addr, size, exec, err);
2692     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2693   }
2694 
2695   return err;
2696 }
2697 
2698 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2699   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2700 }
2701 
2702 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2703                                   const char* mesg) {
2704   assert(mesg != NULL, "mesg must be specified");
2705   int err = os::Linux::commit_memory_impl(addr, size, exec);
2706   if (err != 0) {
2707     // the caller wants all commit errors to exit with the specified mesg:
2708     warn_fail_commit_memory(addr, size, exec, err);
2709     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2710   }
2711 }
2712 
2713 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2714 #ifndef MAP_HUGETLB
2715 #define MAP_HUGETLB 0x40000
2716 #endif
2717 
2718 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2719 #ifndef MADV_HUGEPAGE
2720 #define MADV_HUGEPAGE 14
2721 #endif
2722 
2723 int os::Linux::commit_memory_impl(char* addr, size_t size,
2724                                   size_t alignment_hint, bool exec) {
2725   int err;
2726   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2727     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2728     uintptr_t res =
2729       (uintptr_t) ::mmap(addr, size, prot,
2730                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2731                          -1, 0);
2732     if (res != (uintptr_t) MAP_FAILED) {
2733       if (UseNUMAInterleaving) {
2734         numa_make_global(addr, size);
2735       }
2736       return 0;
2737     }
2738 
2739     err = errno;  // save errno from mmap() call above
2740 
2741     if (!recoverable_mmap_error(err)) {
2742       // However, it is not clear that this loss of our reserved mapping
2743       // happens with large pages on Linux or that we cannot recover
2744       // from the loss. For now, we just issue a warning and we don't
2745       // call vm_exit_out_of_memory(). This issue is being tracked by
2746       // JBS-8007074.
2747       warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2748 //    vm_exit_out_of_memory(size, OOM_MMAP_ERROR,
2749 //                          "committing reserved memory.");
2750     }
2751     // Fall through and try to use small pages
2752   }
2753 
2754   err = os::Linux::commit_memory_impl(addr, size, exec);
2755   if (err == 0) {
2756     realign_memory(addr, size, alignment_hint);
2757   }
2758   return err;
2759 }
2760 
2761 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2762                           bool exec) {
2763   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2764 }
2765 
2766 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2767                                   size_t alignment_hint, bool exec,
2768                                   const char* mesg) {
2769   assert(mesg != NULL, "mesg must be specified");
2770   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2771   if (err != 0) {
2772     // the caller wants all commit errors to exit with the specified mesg:
2773     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2774     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2775   }
2776 }
2777 
2778 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2779   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2780     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2781     // be supported or the memory may already be backed by huge pages.
2782     ::madvise(addr, bytes, MADV_HUGEPAGE);
2783   }
2784 }
2785 
2786 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2787   // This method works by doing an mmap over an existing mmaping and effectively discarding
2788   // the existing pages. However it won't work for SHM-based large pages that cannot be
2789   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2790   // small pages on top of the SHM segment. This method always works for small pages, so we
2791   // allow that in any case.
2792   if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2793     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2794   }
2795 }
2796 
2797 void os::numa_make_global(char *addr, size_t bytes) {
2798   Linux::numa_interleave_memory(addr, bytes);
2799 }
2800 
2801 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2802   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2803 }
2804 
2805 bool os::numa_topology_changed()   { return false; }
2806 
2807 size_t os::numa_get_groups_num() {
2808   int max_node = Linux::numa_max_node();
2809   return max_node > 0 ? max_node + 1 : 1;
2810 }
2811 
2812 int os::numa_get_group_id() {
2813   int cpu_id = Linux::sched_getcpu();
2814   if (cpu_id != -1) {
2815     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2816     if (lgrp_id != -1) {
2817       return lgrp_id;
2818     }
2819   }
2820   return 0;
2821 }
2822 
2823 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2824   for (size_t i = 0; i < size; i++) {
2825     ids[i] = i;
2826   }
2827   return size;
2828 }
2829 
2830 bool os::get_page_info(char *start, page_info* info) {
2831   return false;
2832 }
2833 
2834 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2835   return end;
2836 }
2837 
2838 
2839 int os::Linux::sched_getcpu_syscall(void) {
2840   unsigned int cpu;
2841   int retval = -1;
2842 
2843 #if defined(IA32)
2844 # ifndef SYS_getcpu
2845 # define SYS_getcpu 318
2846 # endif
2847   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2848 #elif defined(AMD64)
2849 // Unfortunately we have to bring all these macros here from vsyscall.h
2850 // to be able to compile on old linuxes.
2851 # define __NR_vgetcpu 2
2852 # define VSYSCALL_START (-10UL << 20)
2853 # define VSYSCALL_SIZE 1024
2854 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2855   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2856   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2857   retval = vgetcpu(&cpu, NULL, NULL);
2858 #endif
2859 
2860   return (retval == -1) ? retval : cpu;
2861 }
2862 
2863 // Something to do with the numa-aware allocator needs these symbols
2864 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2865 extern "C" JNIEXPORT void numa_error(char *where) { }
2866 extern "C" JNIEXPORT int fork1() { return fork(); }
2867 
2868 
2869 // If we are running with libnuma version > 2, then we should
2870 // be trying to use symbols with versions 1.1
2871 // If we are running with earlier version, which did not have symbol versions,
2872 // we should use the base version.
2873 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2874   void *f = dlvsym(handle, name, "libnuma_1.1");
2875   if (f == NULL) {
2876     f = dlsym(handle, name);
2877   }
2878   return f;
2879 }
2880 
2881 bool os::Linux::libnuma_init() {
2882   // sched_getcpu() should be in libc.
2883   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2884                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2885 
2886   // If it's not, try a direct syscall.
2887   if (sched_getcpu() == -1)
2888     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2889 
2890   if (sched_getcpu() != -1) { // Does it work?
2891     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2892     if (handle != NULL) {
2893       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2894                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2895       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2896                                        libnuma_dlsym(handle, "numa_max_node")));
2897       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2898                                         libnuma_dlsym(handle, "numa_available")));
2899       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2900                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2901       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2902                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2903 
2904 
2905       if (numa_available() != -1) {
2906         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2907         // Create a cpu -> node mapping
2908         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2909         rebuild_cpu_to_node_map();
2910         return true;
2911       }
2912     }
2913   }
2914   return false;
2915 }
2916 
2917 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2918 // The table is later used in get_node_by_cpu().
2919 void os::Linux::rebuild_cpu_to_node_map() {
2920   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2921                               // in libnuma (possible values are starting from 16,
2922                               // and continuing up with every other power of 2, but less
2923                               // than the maximum number of CPUs supported by kernel), and
2924                               // is a subject to change (in libnuma version 2 the requirements
2925                               // are more reasonable) we'll just hardcode the number they use
2926                               // in the library.
2927   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2928 
2929   size_t cpu_num = os::active_processor_count();
2930   size_t cpu_map_size = NCPUS / BitsPerCLong;
2931   size_t cpu_map_valid_size =
2932     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2933 
2934   cpu_to_node()->clear();
2935   cpu_to_node()->at_grow(cpu_num - 1);
2936   size_t node_num = numa_get_groups_num();
2937 
2938   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2939   for (size_t i = 0; i < node_num; i++) {
2940     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2941       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2942         if (cpu_map[j] != 0) {
2943           for (size_t k = 0; k < BitsPerCLong; k++) {
2944             if (cpu_map[j] & (1UL << k)) {
2945               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2946             }
2947           }
2948         }
2949       }
2950     }
2951   }
2952   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2953 }
2954 
2955 int os::Linux::get_node_by_cpu(int cpu_id) {
2956   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2957     return cpu_to_node()->at(cpu_id);
2958   }
2959   return -1;
2960 }
2961 
2962 GrowableArray<int>* os::Linux::_cpu_to_node;
2963 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2964 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2965 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2966 os::Linux::numa_available_func_t os::Linux::_numa_available;
2967 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2968 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2969 unsigned long* os::Linux::_numa_all_nodes;
2970 
2971 bool os::pd_uncommit_memory(char* addr, size_t size) {
2972   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2973                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2974   return res  != (uintptr_t) MAP_FAILED;
2975 }
2976 
2977 // Linux uses a growable mapping for the stack, and if the mapping for
2978 // the stack guard pages is not removed when we detach a thread the
2979 // stack cannot grow beyond the pages where the stack guard was
2980 // mapped.  If at some point later in the process the stack expands to
2981 // that point, the Linux kernel cannot expand the stack any further
2982 // because the guard pages are in the way, and a segfault occurs.
2983 //
2984 // However, it's essential not to split the stack region by unmapping
2985 // a region (leaving a hole) that's already part of the stack mapping,
2986 // so if the stack mapping has already grown beyond the guard pages at
2987 // the time we create them, we have to truncate the stack mapping.
2988 // So, we need to know the extent of the stack mapping when
2989 // create_stack_guard_pages() is called.
2990 
2991 // Find the bounds of the stack mapping.  Return true for success.
2992 //
2993 // We only need this for stacks that are growable: at the time of
2994 // writing thread stacks don't use growable mappings (i.e. those
2995 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2996 // only applies to the main thread.
2997 
2998 static
2999 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
3000 
3001   char buf[128];
3002   int fd, sz;
3003 
3004   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
3005     return false;
3006   }
3007 
3008   const char kw[] = "[stack]";
3009   const int kwlen = sizeof(kw)-1;
3010 
3011   // Address part of /proc/self/maps couldn't be more than 128 bytes
3012   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
3013      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
3014         // Extract addresses
3015         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
3016            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
3017            if (sp >= *bottom && sp <= *top) {
3018               ::close(fd);
3019               return true;
3020            }
3021         }
3022      }
3023   }
3024 
3025  ::close(fd);
3026   return false;
3027 }
3028 
3029 
3030 // If the (growable) stack mapping already extends beyond the point
3031 // where we're going to put our guard pages, truncate the mapping at
3032 // that point by munmap()ping it.  This ensures that when we later
3033 // munmap() the guard pages we don't leave a hole in the stack
3034 // mapping. This only affects the main/initial thread, but guard
3035 // against future OS changes
3036 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3037   uintptr_t stack_extent, stack_base;
3038   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
3039   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
3040       assert(os::Linux::is_initial_thread(),
3041            "growable stack in non-initial thread");
3042     if (stack_extent < (uintptr_t)addr)
3043       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
3044   }
3045 
3046   return os::commit_memory(addr, size, !ExecMem);
3047 }
3048 
3049 // If this is a growable mapping, remove the guard pages entirely by
3050 // munmap()ping them.  If not, just call uncommit_memory(). This only
3051 // affects the main/initial thread, but guard against future OS changes
3052 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3053   uintptr_t stack_extent, stack_base;
3054   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
3055   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
3056       assert(os::Linux::is_initial_thread(),
3057            "growable stack in non-initial thread");
3058 
3059     return ::munmap(addr, size) == 0;
3060   }
3061 
3062   return os::uncommit_memory(addr, size);
3063 }
3064 
3065 static address _highest_vm_reserved_address = NULL;
3066 
3067 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3068 // at 'requested_addr'. If there are existing memory mappings at the same
3069 // location, however, they will be overwritten. If 'fixed' is false,
3070 // 'requested_addr' is only treated as a hint, the return value may or
3071 // may not start from the requested address. Unlike Linux mmap(), this
3072 // function returns NULL to indicate failure.
3073 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3074   char * addr;
3075   int flags;
3076 
3077   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3078   if (fixed) {
3079     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3080     flags |= MAP_FIXED;
3081   }
3082 
3083   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3084   // touch an uncommitted page. Otherwise, the read/write might
3085   // succeed if we have enough swap space to back the physical page.
3086   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3087                        flags, -1, 0);
3088 
3089   if (addr != MAP_FAILED) {
3090     // anon_mmap() should only get called during VM initialization,
3091     // don't need lock (actually we can skip locking even it can be called
3092     // from multiple threads, because _highest_vm_reserved_address is just a
3093     // hint about the upper limit of non-stack memory regions.)
3094     if ((address)addr + bytes > _highest_vm_reserved_address) {
3095       _highest_vm_reserved_address = (address)addr + bytes;
3096     }
3097   }
3098 
3099   return addr == MAP_FAILED ? NULL : addr;
3100 }
3101 
3102 // Don't update _highest_vm_reserved_address, because there might be memory
3103 // regions above addr + size. If so, releasing a memory region only creates
3104 // a hole in the address space, it doesn't help prevent heap-stack collision.
3105 //
3106 static int anon_munmap(char * addr, size_t size) {
3107   return ::munmap(addr, size) == 0;
3108 }
3109 
3110 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3111                          size_t alignment_hint) {
3112   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3113 }
3114 
3115 bool os::pd_release_memory(char* addr, size_t size) {
3116   return anon_munmap(addr, size);
3117 }
3118 
3119 static address highest_vm_reserved_address() {
3120   return _highest_vm_reserved_address;
3121 }
3122 
3123 static bool linux_mprotect(char* addr, size_t size, int prot) {
3124   // Linux wants the mprotect address argument to be page aligned.
3125   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3126 
3127   // According to SUSv3, mprotect() should only be used with mappings
3128   // established by mmap(), and mmap() always maps whole pages. Unaligned
3129   // 'addr' likely indicates problem in the VM (e.g. trying to change
3130   // protection of malloc'ed or statically allocated memory). Check the
3131   // caller if you hit this assert.
3132   assert(addr == bottom, "sanity check");
3133 
3134   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3135   return ::mprotect(bottom, size, prot) == 0;
3136 }
3137 
3138 // Set protections specified
3139 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3140                         bool is_committed) {
3141   unsigned int p = 0;
3142   switch (prot) {
3143   case MEM_PROT_NONE: p = PROT_NONE; break;
3144   case MEM_PROT_READ: p = PROT_READ; break;
3145   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3146   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3147   default:
3148     ShouldNotReachHere();
3149   }
3150   // is_committed is unused.
3151   return linux_mprotect(addr, bytes, p);
3152 }
3153 
3154 bool os::guard_memory(char* addr, size_t size) {
3155   return linux_mprotect(addr, size, PROT_NONE);
3156 }
3157 
3158 bool os::unguard_memory(char* addr, size_t size) {
3159   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3160 }
3161 
3162 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3163   bool result = false;
3164   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
3165                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3166                   -1, 0);
3167 
3168   if (p != MAP_FAILED) {
3169     // We don't know if this really is a huge page or not.
3170     FILE *fp = fopen("/proc/self/maps", "r");
3171     if (fp) {
3172       while (!feof(fp)) {
3173         char chars[257];
3174         long x = 0;
3175         if (fgets(chars, sizeof(chars), fp)) {
3176           if (sscanf(chars, "%lx-%*x", &x) == 1
3177               && x == (long)p) {
3178             if (strstr (chars, "hugepage")) {
3179               result = true;
3180               break;
3181             }
3182           }
3183         }
3184       }
3185       fclose(fp);
3186     }
3187     munmap (p, page_size);
3188     if (result)
3189       return true;
3190   }
3191 
3192   if (warn) {
3193     warning("HugeTLBFS is not supported by the operating system.");
3194   }
3195 
3196   return result;
3197 }
3198 
3199 /*
3200 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3201 *
3202 * From the coredump_filter documentation:
3203 *
3204 * - (bit 0) anonymous private memory
3205 * - (bit 1) anonymous shared memory
3206 * - (bit 2) file-backed private memory
3207 * - (bit 3) file-backed shared memory
3208 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3209 *           effective only if the bit 2 is cleared)
3210 * - (bit 5) hugetlb private memory
3211 * - (bit 6) hugetlb shared memory
3212 */
3213 static void set_coredump_filter(void) {
3214   FILE *f;
3215   long cdm;
3216 
3217   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3218     return;
3219   }
3220 
3221   if (fscanf(f, "%lx", &cdm) != 1) {
3222     fclose(f);
3223     return;
3224   }
3225 
3226   rewind(f);
3227 
3228   if ((cdm & LARGEPAGES_BIT) == 0) {
3229     cdm |= LARGEPAGES_BIT;
3230     fprintf(f, "%#lx", cdm);
3231   }
3232 
3233   fclose(f);
3234 }
3235 
3236 // Large page support
3237 
3238 static size_t _large_page_size = 0;
3239 
3240 void os::large_page_init() {
3241   if (!UseLargePages) {
3242     UseHugeTLBFS = false;
3243     UseSHM = false;
3244     return;
3245   }
3246 
3247   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3248     // If UseLargePages is specified on the command line try both methods,
3249     // if it's default, then try only HugeTLBFS.
3250     if (FLAG_IS_DEFAULT(UseLargePages)) {
3251       UseHugeTLBFS = true;
3252     } else {
3253       UseHugeTLBFS = UseSHM = true;
3254     }
3255   }
3256 
3257   if (LargePageSizeInBytes) {
3258     _large_page_size = LargePageSizeInBytes;
3259   } else {
3260     // large_page_size on Linux is used to round up heap size. x86 uses either
3261     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3262     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3263     // page as large as 256M.
3264     //
3265     // Here we try to figure out page size by parsing /proc/meminfo and looking
3266     // for a line with the following format:
3267     //    Hugepagesize:     2048 kB
3268     //
3269     // If we can't determine the value (e.g. /proc is not mounted, or the text
3270     // format has been changed), we'll use the largest page size supported by
3271     // the processor.
3272 
3273 #ifndef ZERO
3274     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3275                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3276 #endif // ZERO
3277 
3278     FILE *fp = fopen("/proc/meminfo", "r");
3279     if (fp) {
3280       while (!feof(fp)) {
3281         int x = 0;
3282         char buf[16];
3283         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3284           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3285             _large_page_size = x * K;
3286             break;
3287           }
3288         } else {
3289           // skip to next line
3290           for (;;) {
3291             int ch = fgetc(fp);
3292             if (ch == EOF || ch == (int)'\n') break;
3293           }
3294         }
3295       }
3296       fclose(fp);
3297     }
3298   }
3299 
3300   // print a warning if any large page related flag is specified on command line
3301   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3302 
3303   const size_t default_page_size = (size_t)Linux::page_size();
3304   if (_large_page_size > default_page_size) {
3305     _page_sizes[0] = _large_page_size;
3306     _page_sizes[1] = default_page_size;
3307     _page_sizes[2] = 0;
3308   }
3309   UseHugeTLBFS = UseHugeTLBFS &&
3310                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3311 
3312   if (UseHugeTLBFS)
3313     UseSHM = false;
3314 
3315   UseLargePages = UseHugeTLBFS || UseSHM;
3316 
3317   set_coredump_filter();
3318 }
3319 
3320 #ifndef SHM_HUGETLB
3321 #define SHM_HUGETLB 04000
3322 #endif
3323 
3324 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3325   // "exec" is passed in but not used.  Creating the shared image for
3326   // the code cache doesn't have an SHM_X executable permission to check.
3327   assert(UseLargePages && UseSHM, "only for SHM large pages");
3328 
3329   key_t key = IPC_PRIVATE;
3330   char *addr;
3331 
3332   bool warn_on_failure = UseLargePages &&
3333                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3334                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3335                         );
3336   char msg[128];
3337 
3338   // Create a large shared memory region to attach to based on size.
3339   // Currently, size is the total size of the heap
3340   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3341   if (shmid == -1) {
3342      // Possible reasons for shmget failure:
3343      // 1. shmmax is too small for Java heap.
3344      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3345      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3346      // 2. not enough large page memory.
3347      //    > check available large pages: cat /proc/meminfo
3348      //    > increase amount of large pages:
3349      //          echo new_value > /proc/sys/vm/nr_hugepages
3350      //      Note 1: different Linux may use different name for this property,
3351      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3352      //      Note 2: it's possible there's enough physical memory available but
3353      //            they are so fragmented after a long run that they can't
3354      //            coalesce into large pages. Try to reserve large pages when
3355      //            the system is still "fresh".
3356      if (warn_on_failure) {
3357        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3358        warning(msg);
3359      }
3360      return NULL;
3361   }
3362 
3363   // attach to the region
3364   addr = (char*)shmat(shmid, req_addr, 0);
3365   int err = errno;
3366 
3367   // Remove shmid. If shmat() is successful, the actual shared memory segment
3368   // will be deleted when it's detached by shmdt() or when the process
3369   // terminates. If shmat() is not successful this will remove the shared
3370   // segment immediately.
3371   shmctl(shmid, IPC_RMID, NULL);
3372 
3373   if ((intptr_t)addr == -1) {
3374      if (warn_on_failure) {
3375        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3376        warning(msg);
3377      }
3378      return NULL;
3379   }
3380 
3381   if ((addr != NULL) && UseNUMAInterleaving) {
3382     numa_make_global(addr, bytes);
3383   }
3384 
3385   // The memory is committed
3386   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3387 
3388   return addr;
3389 }
3390 
3391 bool os::release_memory_special(char* base, size_t bytes) {
3392   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3393   // detaching the SHM segment will also delete it, see reserve_memory_special()
3394   int rslt = shmdt(base);
3395   if (rslt == 0) {
3396     tkr.record((address)base, bytes);
3397     return true;
3398   } else {
3399     tkr.discard();
3400     return false;
3401   }
3402 }
3403 
3404 size_t os::large_page_size() {
3405   return _large_page_size;
3406 }
3407 
3408 // HugeTLBFS allows application to commit large page memory on demand;
3409 // with SysV SHM the entire memory region must be allocated as shared
3410 // memory.
3411 bool os::can_commit_large_page_memory() {
3412   return UseHugeTLBFS;
3413 }
3414 
3415 bool os::can_execute_large_page_memory() {
3416   return UseHugeTLBFS;
3417 }
3418 
3419 // Reserve memory at an arbitrary address, only if that area is
3420 // available (and not reserved for something else).
3421 
3422 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3423   const int max_tries = 10;
3424   char* base[max_tries];
3425   size_t size[max_tries];
3426   const size_t gap = 0x000000;
3427 
3428   // Assert only that the size is a multiple of the page size, since
3429   // that's all that mmap requires, and since that's all we really know
3430   // about at this low abstraction level.  If we need higher alignment,
3431   // we can either pass an alignment to this method or verify alignment
3432   // in one of the methods further up the call chain.  See bug 5044738.
3433   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3434 
3435   // Repeatedly allocate blocks until the block is allocated at the
3436   // right spot. Give up after max_tries. Note that reserve_memory() will
3437   // automatically update _highest_vm_reserved_address if the call is
3438   // successful. The variable tracks the highest memory address every reserved
3439   // by JVM. It is used to detect heap-stack collision if running with
3440   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3441   // space than needed, it could confuse the collision detecting code. To
3442   // solve the problem, save current _highest_vm_reserved_address and
3443   // calculate the correct value before return.
3444   address old_highest = _highest_vm_reserved_address;
3445 
3446   // Linux mmap allows caller to pass an address as hint; give it a try first,
3447   // if kernel honors the hint then we can return immediately.
3448   char * addr = anon_mmap(requested_addr, bytes, false);
3449   if (addr == requested_addr) {
3450      return requested_addr;
3451   }
3452 
3453   if (addr != NULL) {
3454      // mmap() is successful but it fails to reserve at the requested address
3455      anon_munmap(addr, bytes);
3456   }
3457 
3458   int i;
3459   for (i = 0; i < max_tries; ++i) {
3460     base[i] = reserve_memory(bytes);
3461 
3462     if (base[i] != NULL) {
3463       // Is this the block we wanted?
3464       if (base[i] == requested_addr) {
3465         size[i] = bytes;
3466         break;
3467       }
3468 
3469       // Does this overlap the block we wanted? Give back the overlapped
3470       // parts and try again.
3471 
3472       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3473       if (top_overlap >= 0 && top_overlap < bytes) {
3474         unmap_memory(base[i], top_overlap);
3475         base[i] += top_overlap;
3476         size[i] = bytes - top_overlap;
3477       } else {
3478         size_t bottom_overlap = base[i] + bytes - requested_addr;
3479         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3480           unmap_memory(requested_addr, bottom_overlap);
3481           size[i] = bytes - bottom_overlap;
3482         } else {
3483           size[i] = bytes;
3484         }
3485       }
3486     }
3487   }
3488 
3489   // Give back the unused reserved pieces.
3490 
3491   for (int j = 0; j < i; ++j) {
3492     if (base[j] != NULL) {
3493       unmap_memory(base[j], size[j]);
3494     }
3495   }
3496 
3497   if (i < max_tries) {
3498     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3499     return requested_addr;
3500   } else {
3501     _highest_vm_reserved_address = old_highest;
3502     return NULL;
3503   }
3504 }
3505 
3506 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3507   return ::read(fd, buf, nBytes);
3508 }
3509 
3510 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3511 // Solaris uses poll(), linux uses park().
3512 // Poll() is likely a better choice, assuming that Thread.interrupt()
3513 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3514 // SIGSEGV, see 4355769.
3515 
3516 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3517   assert(thread == Thread::current(),  "thread consistency check");
3518 
3519   ParkEvent * const slp = thread->_SleepEvent ;
3520   slp->reset() ;
3521   OrderAccess::fence() ;
3522 
3523   if (interruptible) {
3524     jlong prevtime = javaTimeNanos();
3525 
3526     for (;;) {
3527       if (os::is_interrupted(thread, true)) {
3528         return OS_INTRPT;
3529       }
3530 
3531       jlong newtime = javaTimeNanos();
3532 
3533       if (newtime - prevtime < 0) {
3534         // time moving backwards, should only happen if no monotonic clock
3535         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3536         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3537       } else {
3538         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3539       }
3540 
3541       if(millis <= 0) {
3542         return OS_OK;
3543       }
3544 
3545       prevtime = newtime;
3546 
3547       {
3548         assert(thread->is_Java_thread(), "sanity check");
3549         JavaThread *jt = (JavaThread *) thread;
3550         ThreadBlockInVM tbivm(jt);
3551         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3552 
3553         jt->set_suspend_equivalent();
3554         // cleared by handle_special_suspend_equivalent_condition() or
3555         // java_suspend_self() via check_and_wait_while_suspended()
3556 
3557         slp->park(millis);
3558 
3559         // were we externally suspended while we were waiting?
3560         jt->check_and_wait_while_suspended();
3561       }
3562     }
3563   } else {
3564     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3565     jlong prevtime = javaTimeNanos();
3566 
3567     for (;;) {
3568       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3569       // the 1st iteration ...
3570       jlong newtime = javaTimeNanos();
3571 
3572       if (newtime - prevtime < 0) {
3573         // time moving backwards, should only happen if no monotonic clock
3574         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3575         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3576       } else {
3577         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3578       }
3579 
3580       if(millis <= 0) break ;
3581 
3582       prevtime = newtime;
3583       slp->park(millis);
3584     }
3585     return OS_OK ;
3586   }
3587 }
3588 
3589 int os::naked_sleep() {
3590   // %% make the sleep time an integer flag. for now use 1 millisec.
3591   return os::sleep(Thread::current(), 1, false);
3592 }
3593 
3594 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3595 void os::infinite_sleep() {
3596   while (true) {    // sleep forever ...
3597     ::sleep(100);   // ... 100 seconds at a time
3598   }
3599 }
3600 
3601 // Used to convert frequent JVM_Yield() to nops
3602 bool os::dont_yield() {
3603   return DontYieldALot;
3604 }
3605 
3606 void os::yield() {
3607   sched_yield();
3608 }
3609 
3610 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3611 
3612 void os::yield_all(int attempts) {
3613   // Yields to all threads, including threads with lower priorities
3614   // Threads on Linux are all with same priority. The Solaris style
3615   // os::yield_all() with nanosleep(1ms) is not necessary.
3616   sched_yield();
3617 }
3618 
3619 // Called from the tight loops to possibly influence time-sharing heuristics
3620 void os::loop_breaker(int attempts) {
3621   os::yield_all(attempts);
3622 }
3623 
3624 ////////////////////////////////////////////////////////////////////////////////
3625 // thread priority support
3626 
3627 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3628 // only supports dynamic priority, static priority must be zero. For real-time
3629 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3630 // However, for large multi-threaded applications, SCHED_RR is not only slower
3631 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3632 // of 5 runs - Sep 2005).
3633 //
3634 // The following code actually changes the niceness of kernel-thread/LWP. It
3635 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3636 // not the entire user process, and user level threads are 1:1 mapped to kernel
3637 // threads. It has always been the case, but could change in the future. For
3638 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3639 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3640 
3641 int os::java_to_os_priority[CriticalPriority + 1] = {
3642   19,              // 0 Entry should never be used
3643 
3644    4,              // 1 MinPriority
3645    3,              // 2
3646    2,              // 3
3647 
3648    1,              // 4
3649    0,              // 5 NormPriority
3650   -1,              // 6
3651 
3652   -2,              // 7
3653   -3,              // 8
3654   -4,              // 9 NearMaxPriority
3655 
3656   -5,              // 10 MaxPriority
3657 
3658   -5               // 11 CriticalPriority
3659 };
3660 
3661 static int prio_init() {
3662   if (ThreadPriorityPolicy == 1) {
3663     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3664     // if effective uid is not root. Perhaps, a more elegant way of doing
3665     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3666     if (geteuid() != 0) {
3667       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3668         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3669       }
3670       ThreadPriorityPolicy = 0;
3671     }
3672   }
3673   if (UseCriticalJavaThreadPriority) {
3674     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3675   }
3676   return 0;
3677 }
3678 
3679 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3680   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3681 
3682   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3683   return (ret == 0) ? OS_OK : OS_ERR;
3684 }
3685 
3686 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3687   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3688     *priority_ptr = java_to_os_priority[NormPriority];
3689     return OS_OK;
3690   }
3691 
3692   errno = 0;
3693   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3694   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3695 }
3696 
3697 // Hint to the underlying OS that a task switch would not be good.
3698 // Void return because it's a hint and can fail.
3699 void os::hint_no_preempt() {}
3700 
3701 ////////////////////////////////////////////////////////////////////////////////
3702 // suspend/resume support
3703 
3704 //  the low-level signal-based suspend/resume support is a remnant from the
3705 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3706 //  within hotspot. Now there is a single use-case for this:
3707 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3708 //      that runs in the watcher thread.
3709 //  The remaining code is greatly simplified from the more general suspension
3710 //  code that used to be used.
3711 //
3712 //  The protocol is quite simple:
3713 //  - suspend:
3714 //      - sends a signal to the target thread
3715 //      - polls the suspend state of the osthread using a yield loop
3716 //      - target thread signal handler (SR_handler) sets suspend state
3717 //        and blocks in sigsuspend until continued
3718 //  - resume:
3719 //      - sets target osthread state to continue
3720 //      - sends signal to end the sigsuspend loop in the SR_handler
3721 //
3722 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3723 //
3724 
3725 static void resume_clear_context(OSThread *osthread) {
3726   osthread->set_ucontext(NULL);
3727   osthread->set_siginfo(NULL);
3728 }
3729 
3730 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3731   osthread->set_ucontext(context);
3732   osthread->set_siginfo(siginfo);
3733 }
3734 
3735 //
3736 // Handler function invoked when a thread's execution is suspended or
3737 // resumed. We have to be careful that only async-safe functions are
3738 // called here (Note: most pthread functions are not async safe and
3739 // should be avoided.)
3740 //
3741 // Note: sigwait() is a more natural fit than sigsuspend() from an
3742 // interface point of view, but sigwait() prevents the signal hander
3743 // from being run. libpthread would get very confused by not having
3744 // its signal handlers run and prevents sigwait()'s use with the
3745 // mutex granting granting signal.
3746 //
3747 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3748 //
3749 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3750   // Save and restore errno to avoid confusing native code with EINTR
3751   // after sigsuspend.
3752   int old_errno = errno;
3753 
3754   Thread* thread = Thread::current();
3755   OSThread* osthread = thread->osthread();
3756   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3757 
3758   os::SuspendResume::State current = osthread->sr.state();
3759   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3760     suspend_save_context(osthread, siginfo, context);
3761 
3762     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3763     os::SuspendResume::State state = osthread->sr.suspended();
3764     if (state == os::SuspendResume::SR_SUSPENDED) {
3765       sigset_t suspend_set;  // signals for sigsuspend()
3766 
3767       // get current set of blocked signals and unblock resume signal
3768       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3769       sigdelset(&suspend_set, SR_signum);
3770 
3771       sr_semaphore.signal();
3772       // wait here until we are resumed
3773       while (1) {
3774         sigsuspend(&suspend_set);
3775 
3776         os::SuspendResume::State result = osthread->sr.running();
3777         if (result == os::SuspendResume::SR_RUNNING) {
3778           sr_semaphore.signal();
3779           break;
3780         }
3781       }
3782 
3783     } else if (state == os::SuspendResume::SR_RUNNING) {
3784       // request was cancelled, continue
3785     } else {
3786       ShouldNotReachHere();
3787     }
3788 
3789     resume_clear_context(osthread);
3790   } else if (current == os::SuspendResume::SR_RUNNING) {
3791     // request was cancelled, continue
3792   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3793     // ignore
3794   } else {
3795     // ignore
3796   }
3797 
3798   errno = old_errno;
3799 }
3800 
3801 
3802 static int SR_initialize() {
3803   struct sigaction act;
3804   char *s;
3805   /* Get signal number to use for suspend/resume */
3806   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3807     int sig = ::strtol(s, 0, 10);
3808     if (sig > 0 || sig < _NSIG) {
3809         SR_signum = sig;
3810     }
3811   }
3812 
3813   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3814         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3815 
3816   sigemptyset(&SR_sigset);
3817   sigaddset(&SR_sigset, SR_signum);
3818 
3819   /* Set up signal handler for suspend/resume */
3820   act.sa_flags = SA_RESTART|SA_SIGINFO;
3821   act.sa_handler = (void (*)(int)) SR_handler;
3822 
3823   // SR_signum is blocked by default.
3824   // 4528190 - We also need to block pthread restart signal (32 on all
3825   // supported Linux platforms). Note that LinuxThreads need to block
3826   // this signal for all threads to work properly. So we don't have
3827   // to use hard-coded signal number when setting up the mask.
3828   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3829 
3830   if (sigaction(SR_signum, &act, 0) == -1) {
3831     return -1;
3832   }
3833 
3834   // Save signal flag
3835   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3836   return 0;
3837 }
3838 
3839 static int sr_notify(OSThread* osthread) {
3840   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3841   assert_status(status == 0, status, "pthread_kill");
3842   return status;
3843 }
3844 
3845 // "Randomly" selected value for how long we want to spin
3846 // before bailing out on suspending a thread, also how often
3847 // we send a signal to a thread we want to resume
3848 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3849 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3850 
3851 // returns true on success and false on error - really an error is fatal
3852 // but this seems the normal response to library errors
3853 static bool do_suspend(OSThread* osthread) {
3854   assert(osthread->sr.is_running(), "thread should be running");
3855   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3856 
3857   // mark as suspended and send signal
3858   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3859     // failed to switch, state wasn't running?
3860     ShouldNotReachHere();
3861     return false;
3862   }
3863 
3864   if (sr_notify(osthread) != 0) {
3865     ShouldNotReachHere();
3866   }
3867 
3868   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3869   while (true) {
3870     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3871       break;
3872     } else {
3873       // timeout
3874       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3875       if (cancelled == os::SuspendResume::SR_RUNNING) {
3876         return false;
3877       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3878         // make sure that we consume the signal on the semaphore as well
3879         sr_semaphore.wait();
3880         break;
3881       } else {
3882         ShouldNotReachHere();
3883         return false;
3884       }
3885     }
3886   }
3887 
3888   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3889   return true;
3890 }
3891 
3892 static void do_resume(OSThread* osthread) {
3893   assert(osthread->sr.is_suspended(), "thread should be suspended");
3894   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3895 
3896   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3897     // failed to switch to WAKEUP_REQUEST
3898     ShouldNotReachHere();
3899     return;
3900   }
3901 
3902   while (true) {
3903     if (sr_notify(osthread) == 0) {
3904       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3905         if (osthread->sr.is_running()) {
3906           return;
3907         }
3908       }
3909     } else {
3910       ShouldNotReachHere();
3911     }
3912   }
3913 
3914   guarantee(osthread->sr.is_running(), "Must be running!");
3915 }
3916 
3917 ////////////////////////////////////////////////////////////////////////////////
3918 // interrupt support
3919 
3920 void os::interrupt(Thread* thread) {
3921   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3922     "possibility of dangling Thread pointer");
3923 
3924   OSThread* osthread = thread->osthread();
3925 
3926   if (!osthread->interrupted()) {
3927     osthread->set_interrupted(true);
3928     // More than one thread can get here with the same value of osthread,
3929     // resulting in multiple notifications.  We do, however, want the store
3930     // to interrupted() to be visible to other threads before we execute unpark().
3931     OrderAccess::fence();
3932     ParkEvent * const slp = thread->_SleepEvent ;
3933     if (slp != NULL) slp->unpark() ;
3934   }
3935 
3936   // For JSR166. Unpark even if interrupt status already was set
3937   if (thread->is_Java_thread())
3938     ((JavaThread*)thread)->parker()->unpark();
3939 
3940   ParkEvent * ev = thread->_ParkEvent ;
3941   if (ev != NULL) ev->unpark() ;
3942 
3943 }
3944 
3945 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3946   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3947     "possibility of dangling Thread pointer");
3948 
3949   OSThread* osthread = thread->osthread();
3950 
3951   bool interrupted = osthread->interrupted();
3952 
3953   if (interrupted && clear_interrupted) {
3954     osthread->set_interrupted(false);
3955     // consider thread->_SleepEvent->reset() ... optional optimization
3956   }
3957 
3958   return interrupted;
3959 }
3960 
3961 ///////////////////////////////////////////////////////////////////////////////////
3962 // signal handling (except suspend/resume)
3963 
3964 // This routine may be used by user applications as a "hook" to catch signals.
3965 // The user-defined signal handler must pass unrecognized signals to this
3966 // routine, and if it returns true (non-zero), then the signal handler must
3967 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3968 // routine will never retun false (zero), but instead will execute a VM panic
3969 // routine kill the process.
3970 //
3971 // If this routine returns false, it is OK to call it again.  This allows
3972 // the user-defined signal handler to perform checks either before or after
3973 // the VM performs its own checks.  Naturally, the user code would be making
3974 // a serious error if it tried to handle an exception (such as a null check
3975 // or breakpoint) that the VM was generating for its own correct operation.
3976 //
3977 // This routine may recognize any of the following kinds of signals:
3978 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3979 // It should be consulted by handlers for any of those signals.
3980 //
3981 // The caller of this routine must pass in the three arguments supplied
3982 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3983 // field of the structure passed to sigaction().  This routine assumes that
3984 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3985 //
3986 // Note that the VM will print warnings if it detects conflicting signal
3987 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3988 //
3989 extern "C" JNIEXPORT int
3990 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3991                         void* ucontext, int abort_if_unrecognized);
3992 
3993 void signalHandler(int sig, siginfo_t* info, void* uc) {
3994   assert(info != NULL && uc != NULL, "it must be old kernel");
3995   int orig_errno = errno;  // Preserve errno value over signal handler.
3996   JVM_handle_linux_signal(sig, info, uc, true);
3997   errno = orig_errno;
3998 }
3999 
4000 
4001 // This boolean allows users to forward their own non-matching signals
4002 // to JVM_handle_linux_signal, harmlessly.
4003 bool os::Linux::signal_handlers_are_installed = false;
4004 
4005 // For signal-chaining
4006 struct sigaction os::Linux::sigact[MAXSIGNUM];
4007 unsigned int os::Linux::sigs = 0;
4008 bool os::Linux::libjsig_is_loaded = false;
4009 typedef struct sigaction *(*get_signal_t)(int);
4010 get_signal_t os::Linux::get_signal_action = NULL;
4011 
4012 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4013   struct sigaction *actp = NULL;
4014 
4015   if (libjsig_is_loaded) {
4016     // Retrieve the old signal handler from libjsig
4017     actp = (*get_signal_action)(sig);
4018   }
4019   if (actp == NULL) {
4020     // Retrieve the preinstalled signal handler from jvm
4021     actp = get_preinstalled_handler(sig);
4022   }
4023 
4024   return actp;
4025 }
4026 
4027 static bool call_chained_handler(struct sigaction *actp, int sig,
4028                                  siginfo_t *siginfo, void *context) {
4029   // Call the old signal handler
4030   if (actp->sa_handler == SIG_DFL) {
4031     // It's more reasonable to let jvm treat it as an unexpected exception
4032     // instead of taking the default action.
4033     return false;
4034   } else if (actp->sa_handler != SIG_IGN) {
4035     if ((actp->sa_flags & SA_NODEFER) == 0) {
4036       // automaticlly block the signal
4037       sigaddset(&(actp->sa_mask), sig);
4038     }
4039 
4040     sa_handler_t hand;
4041     sa_sigaction_t sa;
4042     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4043     // retrieve the chained handler
4044     if (siginfo_flag_set) {
4045       sa = actp->sa_sigaction;
4046     } else {
4047       hand = actp->sa_handler;
4048     }
4049 
4050     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4051       actp->sa_handler = SIG_DFL;
4052     }
4053 
4054     // try to honor the signal mask
4055     sigset_t oset;
4056     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4057 
4058     // call into the chained handler
4059     if (siginfo_flag_set) {
4060       (*sa)(sig, siginfo, context);
4061     } else {
4062       (*hand)(sig);
4063     }
4064 
4065     // restore the signal mask
4066     pthread_sigmask(SIG_SETMASK, &oset, 0);
4067   }
4068   // Tell jvm's signal handler the signal is taken care of.
4069   return true;
4070 }
4071 
4072 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4073   bool chained = false;
4074   // signal-chaining
4075   if (UseSignalChaining) {
4076     struct sigaction *actp = get_chained_signal_action(sig);
4077     if (actp != NULL) {
4078       chained = call_chained_handler(actp, sig, siginfo, context);
4079     }
4080   }
4081   return chained;
4082 }
4083 
4084 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4085   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4086     return &sigact[sig];
4087   }
4088   return NULL;
4089 }
4090 
4091 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4092   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4093   sigact[sig] = oldAct;
4094   sigs |= (unsigned int)1 << sig;
4095 }
4096 
4097 // for diagnostic
4098 int os::Linux::sigflags[MAXSIGNUM];
4099 
4100 int os::Linux::get_our_sigflags(int sig) {
4101   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4102   return sigflags[sig];
4103 }
4104 
4105 void os::Linux::set_our_sigflags(int sig, int flags) {
4106   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4107   sigflags[sig] = flags;
4108 }
4109 
4110 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4111   // Check for overwrite.
4112   struct sigaction oldAct;
4113   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4114 
4115   void* oldhand = oldAct.sa_sigaction
4116                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4117                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4118   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4119       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4120       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4121     if (AllowUserSignalHandlers || !set_installed) {
4122       // Do not overwrite; user takes responsibility to forward to us.
4123       return;
4124     } else if (UseSignalChaining) {
4125       // save the old handler in jvm
4126       save_preinstalled_handler(sig, oldAct);
4127       // libjsig also interposes the sigaction() call below and saves the
4128       // old sigaction on it own.
4129     } else {
4130       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4131                     "%#lx for signal %d.", (long)oldhand, sig));
4132     }
4133   }
4134 
4135   struct sigaction sigAct;
4136   sigfillset(&(sigAct.sa_mask));
4137   sigAct.sa_handler = SIG_DFL;
4138   if (!set_installed) {
4139     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4140   } else {
4141     sigAct.sa_sigaction = signalHandler;
4142     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4143   }
4144   // Save flags, which are set by ours
4145   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4146   sigflags[sig] = sigAct.sa_flags;
4147 
4148   int ret = sigaction(sig, &sigAct, &oldAct);
4149   assert(ret == 0, "check");
4150 
4151   void* oldhand2  = oldAct.sa_sigaction
4152                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4153                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4154   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4155 }
4156 
4157 // install signal handlers for signals that HotSpot needs to
4158 // handle in order to support Java-level exception handling.
4159 
4160 void os::Linux::install_signal_handlers() {
4161   if (!signal_handlers_are_installed) {
4162     signal_handlers_are_installed = true;
4163 
4164     // signal-chaining
4165     typedef void (*signal_setting_t)();
4166     signal_setting_t begin_signal_setting = NULL;
4167     signal_setting_t end_signal_setting = NULL;
4168     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4169                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4170     if (begin_signal_setting != NULL) {
4171       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4172                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4173       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4174                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4175       libjsig_is_loaded = true;
4176       assert(UseSignalChaining, "should enable signal-chaining");
4177     }
4178     if (libjsig_is_loaded) {
4179       // Tell libjsig jvm is setting signal handlers
4180       (*begin_signal_setting)();
4181     }
4182 
4183     set_signal_handler(SIGSEGV, true);
4184     set_signal_handler(SIGPIPE, true);
4185     set_signal_handler(SIGBUS, true);
4186     set_signal_handler(SIGILL, true);
4187     set_signal_handler(SIGFPE, true);
4188     set_signal_handler(SIGXFSZ, true);
4189 
4190     if (libjsig_is_loaded) {
4191       // Tell libjsig jvm finishes setting signal handlers
4192       (*end_signal_setting)();
4193     }
4194 
4195     // We don't activate signal checker if libjsig is in place, we trust ourselves
4196     // and if UserSignalHandler is installed all bets are off.
4197     // Log that signal checking is off only if -verbose:jni is specified.
4198     if (CheckJNICalls) {
4199       if (libjsig_is_loaded) {
4200         if (PrintJNIResolving) {
4201           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4202         }
4203         check_signals = false;
4204       }
4205       if (AllowUserSignalHandlers) {
4206         if (PrintJNIResolving) {
4207           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4208         }
4209         check_signals = false;
4210       }
4211     }
4212   }
4213 }
4214 
4215 // This is the fastest way to get thread cpu time on Linux.
4216 // Returns cpu time (user+sys) for any thread, not only for current.
4217 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4218 // It might work on 2.6.10+ with a special kernel/glibc patch.
4219 // For reference, please, see IEEE Std 1003.1-2004:
4220 //   http://www.unix.org/single_unix_specification
4221 
4222 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4223   struct timespec tp;
4224   int rc = os::Linux::clock_gettime(clockid, &tp);
4225   assert(rc == 0, "clock_gettime is expected to return 0 code");
4226 
4227   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4228 }
4229 
4230 /////
4231 // glibc on Linux platform uses non-documented flag
4232 // to indicate, that some special sort of signal
4233 // trampoline is used.
4234 // We will never set this flag, and we should
4235 // ignore this flag in our diagnostic
4236 #ifdef SIGNIFICANT_SIGNAL_MASK
4237 #undef SIGNIFICANT_SIGNAL_MASK
4238 #endif
4239 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4240 
4241 static const char* get_signal_handler_name(address handler,
4242                                            char* buf, int buflen) {
4243   int offset;
4244   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4245   if (found) {
4246     // skip directory names
4247     const char *p1, *p2;
4248     p1 = buf;
4249     size_t len = strlen(os::file_separator());
4250     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4251     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4252   } else {
4253     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4254   }
4255   return buf;
4256 }
4257 
4258 static void print_signal_handler(outputStream* st, int sig,
4259                                  char* buf, size_t buflen) {
4260   struct sigaction sa;
4261 
4262   sigaction(sig, NULL, &sa);
4263 
4264   // See comment for SIGNIFICANT_SIGNAL_MASK define
4265   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4266 
4267   st->print("%s: ", os::exception_name(sig, buf, buflen));
4268 
4269   address handler = (sa.sa_flags & SA_SIGINFO)
4270     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4271     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4272 
4273   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4274     st->print("SIG_DFL");
4275   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4276     st->print("SIG_IGN");
4277   } else {
4278     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4279   }
4280 
4281   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4282 
4283   address rh = VMError::get_resetted_sighandler(sig);
4284   // May be, handler was resetted by VMError?
4285   if(rh != NULL) {
4286     handler = rh;
4287     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4288   }
4289 
4290   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4291 
4292   // Check: is it our handler?
4293   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4294      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4295     // It is our signal handler
4296     // check for flags, reset system-used one!
4297     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4298       st->print(
4299                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4300                 os::Linux::get_our_sigflags(sig));
4301     }
4302   }
4303   st->cr();
4304 }
4305 
4306 
4307 #define DO_SIGNAL_CHECK(sig) \
4308   if (!sigismember(&check_signal_done, sig)) \
4309     os::Linux::check_signal_handler(sig)
4310 
4311 // This method is a periodic task to check for misbehaving JNI applications
4312 // under CheckJNI, we can add any periodic checks here
4313 
4314 void os::run_periodic_checks() {
4315 
4316   if (check_signals == false) return;
4317 
4318   // SEGV and BUS if overridden could potentially prevent
4319   // generation of hs*.log in the event of a crash, debugging
4320   // such a case can be very challenging, so we absolutely
4321   // check the following for a good measure:
4322   DO_SIGNAL_CHECK(SIGSEGV);
4323   DO_SIGNAL_CHECK(SIGILL);
4324   DO_SIGNAL_CHECK(SIGFPE);
4325   DO_SIGNAL_CHECK(SIGBUS);
4326   DO_SIGNAL_CHECK(SIGPIPE);
4327   DO_SIGNAL_CHECK(SIGXFSZ);
4328 
4329 
4330   // ReduceSignalUsage allows the user to override these handlers
4331   // see comments at the very top and jvm_solaris.h
4332   if (!ReduceSignalUsage) {
4333     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4334     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4335     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4336     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4337   }
4338 
4339   DO_SIGNAL_CHECK(SR_signum);
4340   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4341 }
4342 
4343 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4344 
4345 static os_sigaction_t os_sigaction = NULL;
4346 
4347 void os::Linux::check_signal_handler(int sig) {
4348   char buf[O_BUFLEN];
4349   address jvmHandler = NULL;
4350 
4351 
4352   struct sigaction act;
4353   if (os_sigaction == NULL) {
4354     // only trust the default sigaction, in case it has been interposed
4355     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4356     if (os_sigaction == NULL) return;
4357   }
4358 
4359   os_sigaction(sig, (struct sigaction*)NULL, &act);
4360 
4361 
4362   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4363 
4364   address thisHandler = (act.sa_flags & SA_SIGINFO)
4365     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4366     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4367 
4368 
4369   switch(sig) {
4370   case SIGSEGV:
4371   case SIGBUS:
4372   case SIGFPE:
4373   case SIGPIPE:
4374   case SIGILL:
4375   case SIGXFSZ:
4376     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4377     break;
4378 
4379   case SHUTDOWN1_SIGNAL:
4380   case SHUTDOWN2_SIGNAL:
4381   case SHUTDOWN3_SIGNAL:
4382   case BREAK_SIGNAL:
4383     jvmHandler = (address)user_handler();
4384     break;
4385 
4386   case INTERRUPT_SIGNAL:
4387     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4388     break;
4389 
4390   default:
4391     if (sig == SR_signum) {
4392       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4393     } else {
4394       return;
4395     }
4396     break;
4397   }
4398 
4399   if (thisHandler != jvmHandler) {
4400     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4401     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4402     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4403     // No need to check this sig any longer
4404     sigaddset(&check_signal_done, sig);
4405   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4406     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4407     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4408     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4409     // No need to check this sig any longer
4410     sigaddset(&check_signal_done, sig);
4411   }
4412 
4413   // Dump all the signal
4414   if (sigismember(&check_signal_done, sig)) {
4415     print_signal_handlers(tty, buf, O_BUFLEN);
4416   }
4417 }
4418 
4419 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4420 
4421 extern bool signal_name(int signo, char* buf, size_t len);
4422 
4423 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4424   if (0 < exception_code && exception_code <= SIGRTMAX) {
4425     // signal
4426     if (!signal_name(exception_code, buf, size)) {
4427       jio_snprintf(buf, size, "SIG%d", exception_code);
4428     }
4429     return buf;
4430   } else {
4431     return NULL;
4432   }
4433 }
4434 
4435 // this is called _before_ the most of global arguments have been parsed
4436 void os::init(void) {
4437   char dummy;   /* used to get a guess on initial stack address */
4438 //  first_hrtime = gethrtime();
4439 
4440   // With LinuxThreads the JavaMain thread pid (primordial thread)
4441   // is different than the pid of the java launcher thread.
4442   // So, on Linux, the launcher thread pid is passed to the VM
4443   // via the sun.java.launcher.pid property.
4444   // Use this property instead of getpid() if it was correctly passed.
4445   // See bug 6351349.
4446   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4447 
4448   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4449 
4450   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4451 
4452   init_random(1234567);
4453 
4454   ThreadCritical::initialize();
4455 
4456   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4457   if (Linux::page_size() == -1) {
4458     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4459                   strerror(errno)));
4460   }
4461   init_page_sizes((size_t) Linux::page_size());
4462 
4463   Linux::initialize_system_info();
4464 
4465   // main_thread points to the aboriginal thread
4466   Linux::_main_thread = pthread_self();
4467 
4468   Linux::clock_init();
4469   initial_time_count = os::elapsed_counter();
4470   pthread_mutex_init(&dl_mutex, NULL);
4471 
4472   // If the pagesize of the VM is greater than 8K determine the appropriate
4473   // number of initial guard pages.  The user can change this with the
4474   // command line arguments, if needed.
4475   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4476     StackYellowPages = 1;
4477     StackRedPages = 1;
4478     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4479   }
4480 }
4481 
4482 // To install functions for atexit system call
4483 extern "C" {
4484   static void perfMemory_exit_helper() {
4485     perfMemory_exit();
4486   }
4487 }
4488 
4489 // this is called _after_ the global arguments have been parsed
4490 jint os::init_2(void)
4491 {
4492   Linux::fast_thread_clock_init();
4493 
4494   // Allocate a single page and mark it as readable for safepoint polling
4495   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4496   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4497 
4498   os::set_polling_page( polling_page );
4499 
4500 #ifndef PRODUCT
4501   if(Verbose && PrintMiscellaneous)
4502     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4503 #endif
4504 
4505   if (!UseMembar) {
4506     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4507     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4508     os::set_memory_serialize_page( mem_serialize_page );
4509 
4510 #ifndef PRODUCT
4511     if(Verbose && PrintMiscellaneous)
4512       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4513 #endif
4514   }
4515 
4516   os::large_page_init();
4517 
4518   // initialize suspend/resume support - must do this before signal_sets_init()
4519   if (SR_initialize() != 0) {
4520     perror("SR_initialize failed");
4521     return JNI_ERR;
4522   }
4523 
4524   Linux::signal_sets_init();
4525   Linux::install_signal_handlers();
4526 
4527   // Check minimum allowable stack size for thread creation and to initialize
4528   // the java system classes, including StackOverflowError - depends on page
4529   // size.  Add a page for compiler2 recursion in main thread.
4530   // Add in 2*BytesPerWord times page size to account for VM stack during
4531   // class initialization depending on 32 or 64 bit VM.
4532   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4533             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4534                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4535 
4536   size_t threadStackSizeInBytes = ThreadStackSize * K;
4537   if (threadStackSizeInBytes != 0 &&
4538       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4539         tty->print_cr("\nThe stack size specified is too small, "
4540                       "Specify at least %dk",
4541                       os::Linux::min_stack_allowed/ K);
4542         return JNI_ERR;
4543   }
4544 
4545   // Make the stack size a multiple of the page size so that
4546   // the yellow/red zones can be guarded.
4547   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4548         vm_page_size()));
4549 
4550   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4551 
4552   Linux::libpthread_init();
4553   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4554      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4555           Linux::glibc_version(), Linux::libpthread_version(),
4556           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4557   }
4558 
4559   if (UseNUMA) {
4560     if (!Linux::libnuma_init()) {
4561       UseNUMA = false;
4562     } else {
4563       if ((Linux::numa_max_node() < 1)) {
4564         // There's only one node(they start from 0), disable NUMA.
4565         UseNUMA = false;
4566       }
4567     }
4568     // With SHM large pages we cannot uncommit a page, so there's not way
4569     // we can make the adaptive lgrp chunk resizing work. If the user specified
4570     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4571     // disable adaptive resizing.
4572     if (UseNUMA && UseLargePages && UseSHM) {
4573       if (!FLAG_IS_DEFAULT(UseNUMA)) {
4574         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4575           UseLargePages = false;
4576         } else {
4577           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4578           UseAdaptiveSizePolicy = false;
4579           UseAdaptiveNUMAChunkSizing = false;
4580         }
4581       } else {
4582         UseNUMA = false;
4583       }
4584     }
4585     if (!UseNUMA && ForceNUMA) {
4586       UseNUMA = true;
4587     }
4588   }
4589 
4590   if (MaxFDLimit) {
4591     // set the number of file descriptors to max. print out error
4592     // if getrlimit/setrlimit fails but continue regardless.
4593     struct rlimit nbr_files;
4594     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4595     if (status != 0) {
4596       if (PrintMiscellaneous && (Verbose || WizardMode))
4597         perror("os::init_2 getrlimit failed");
4598     } else {
4599       nbr_files.rlim_cur = nbr_files.rlim_max;
4600       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4601       if (status != 0) {
4602         if (PrintMiscellaneous && (Verbose || WizardMode))
4603           perror("os::init_2 setrlimit failed");
4604       }
4605     }
4606   }
4607 
4608   // Initialize lock used to serialize thread creation (see os::create_thread)
4609   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4610 
4611   // at-exit methods are called in the reverse order of their registration.
4612   // atexit functions are called on return from main or as a result of a
4613   // call to exit(3C). There can be only 32 of these functions registered
4614   // and atexit() does not set errno.
4615 
4616   if (PerfAllowAtExitRegistration) {
4617     // only register atexit functions if PerfAllowAtExitRegistration is set.
4618     // atexit functions can be delayed until process exit time, which
4619     // can be problematic for embedded VM situations. Embedded VMs should
4620     // call DestroyJavaVM() to assure that VM resources are released.
4621 
4622     // note: perfMemory_exit_helper atexit function may be removed in
4623     // the future if the appropriate cleanup code can be added to the
4624     // VM_Exit VMOperation's doit method.
4625     if (atexit(perfMemory_exit_helper) != 0) {
4626       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4627     }
4628   }
4629 
4630   // initialize thread priority policy
4631   prio_init();
4632 
4633   return JNI_OK;
4634 }
4635 
4636 // this is called at the end of vm_initialization
4637 void os::init_3(void) {
4638 #ifdef JAVASE_EMBEDDED
4639   // Start the MemNotifyThread
4640   if (LowMemoryProtection) {
4641     MemNotifyThread::start();
4642   }
4643   return;
4644 #endif
4645 }
4646 
4647 // Mark the polling page as unreadable
4648 void os::make_polling_page_unreadable(void) {
4649   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4650     fatal("Could not disable polling page");
4651 };
4652 
4653 // Mark the polling page as readable
4654 void os::make_polling_page_readable(void) {
4655   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4656     fatal("Could not enable polling page");
4657   }
4658 };
4659 
4660 int os::active_processor_count() {
4661   // Linux doesn't yet have a (official) notion of processor sets,
4662   // so just return the number of online processors.
4663   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4664   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4665   return online_cpus;
4666 }
4667 
4668 void os::set_native_thread_name(const char *name) {
4669   // Not yet implemented.
4670   return;
4671 }
4672 
4673 bool os::distribute_processes(uint length, uint* distribution) {
4674   // Not yet implemented.
4675   return false;
4676 }
4677 
4678 bool os::bind_to_processor(uint processor_id) {
4679   // Not yet implemented.
4680   return false;
4681 }
4682 
4683 ///
4684 
4685 void os::SuspendedThreadTask::internal_do_task() {
4686   if (do_suspend(_thread->osthread())) {
4687     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4688     do_task(context);
4689     do_resume(_thread->osthread());
4690   }
4691 }
4692 
4693 class PcFetcher : public os::SuspendedThreadTask {
4694 public:
4695   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4696   ExtendedPC result();
4697 protected:
4698   void do_task(const os::SuspendedThreadTaskContext& context);
4699 private:
4700   ExtendedPC _epc;
4701 };
4702 
4703 ExtendedPC PcFetcher::result() {
4704   guarantee(is_done(), "task is not done yet.");
4705   return _epc;
4706 }
4707 
4708 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4709   Thread* thread = context.thread();
4710   OSThread* osthread = thread->osthread();
4711   if (osthread->ucontext() != NULL) {
4712     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4713   } else {
4714     // NULL context is unexpected, double-check this is the VMThread
4715     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4716   }
4717 }
4718 
4719 // Suspends the target using the signal mechanism and then grabs the PC before
4720 // resuming the target. Used by the flat-profiler only
4721 ExtendedPC os::get_thread_pc(Thread* thread) {
4722   // Make sure that it is called by the watcher for the VMThread
4723   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4724   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4725 
4726   PcFetcher fetcher(thread);
4727   fetcher.run();
4728   return fetcher.result();
4729 }
4730 
4731 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4732 {
4733    if (is_NPTL()) {
4734       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4735    } else {
4736       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4737       // word back to default 64bit precision if condvar is signaled. Java
4738       // wants 53bit precision.  Save and restore current value.
4739       int fpu = get_fpu_control_word();
4740       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4741       set_fpu_control_word(fpu);
4742       return status;
4743    }
4744 }
4745 
4746 ////////////////////////////////////////////////////////////////////////////////
4747 // debug support
4748 
4749 bool os::find(address addr, outputStream* st) {
4750   Dl_info dlinfo;
4751   memset(&dlinfo, 0, sizeof(dlinfo));
4752   if (dladdr(addr, &dlinfo) != 0) {
4753     st->print(PTR_FORMAT ": ", addr);
4754     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4755       st->print("%s+%#x", dlinfo.dli_sname,
4756                  addr - (intptr_t)dlinfo.dli_saddr);
4757     } else if (dlinfo.dli_fbase != NULL) {
4758       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4759     } else {
4760       st->print("<absolute address>");
4761     }
4762     if (dlinfo.dli_fname != NULL) {
4763       st->print(" in %s", dlinfo.dli_fname);
4764     }
4765     if (dlinfo.dli_fbase != NULL) {
4766       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4767     }
4768     st->cr();
4769 
4770     if (Verbose) {
4771       // decode some bytes around the PC
4772       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4773       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4774       address       lowest = (address) dlinfo.dli_sname;
4775       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4776       if (begin < lowest)  begin = lowest;
4777       Dl_info dlinfo2;
4778       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4779           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4780         end = (address) dlinfo2.dli_saddr;
4781       Disassembler::decode(begin, end, st);
4782     }
4783     return true;
4784   }
4785   return false;
4786 }
4787 
4788 ////////////////////////////////////////////////////////////////////////////////
4789 // misc
4790 
4791 // This does not do anything on Linux. This is basically a hook for being
4792 // able to use structured exception handling (thread-local exception filters)
4793 // on, e.g., Win32.
4794 void
4795 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4796                          JavaCallArguments* args, Thread* thread) {
4797   f(value, method, args, thread);
4798 }
4799 
4800 void os::print_statistics() {
4801 }
4802 
4803 int os::message_box(const char* title, const char* message) {
4804   int i;
4805   fdStream err(defaultStream::error_fd());
4806   for (i = 0; i < 78; i++) err.print_raw("=");
4807   err.cr();
4808   err.print_raw_cr(title);
4809   for (i = 0; i < 78; i++) err.print_raw("-");
4810   err.cr();
4811   err.print_raw_cr(message);
4812   for (i = 0; i < 78; i++) err.print_raw("=");
4813   err.cr();
4814 
4815   char buf[16];
4816   // Prevent process from exiting upon "read error" without consuming all CPU
4817   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4818 
4819   return buf[0] == 'y' || buf[0] == 'Y';
4820 }
4821 
4822 int os::stat(const char *path, struct stat *sbuf) {
4823   char pathbuf[MAX_PATH];
4824   if (strlen(path) > MAX_PATH - 1) {
4825     errno = ENAMETOOLONG;
4826     return -1;
4827   }
4828   os::native_path(strcpy(pathbuf, path));
4829   return ::stat(pathbuf, sbuf);
4830 }
4831 
4832 bool os::check_heap(bool force) {
4833   return true;
4834 }
4835 
4836 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4837   return ::vsnprintf(buf, count, format, args);
4838 }
4839 
4840 // Is a (classpath) directory empty?
4841 bool os::dir_is_empty(const char* path) {
4842   DIR *dir = NULL;
4843   struct dirent *ptr;
4844 
4845   dir = opendir(path);
4846   if (dir == NULL) return true;
4847 
4848   /* Scan the directory */
4849   bool result = true;
4850   char buf[sizeof(struct dirent) + MAX_PATH];
4851   while (result && (ptr = ::readdir(dir)) != NULL) {
4852     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4853       result = false;
4854     }
4855   }
4856   closedir(dir);
4857   return result;
4858 }
4859 
4860 // This code originates from JDK's sysOpen and open64_w
4861 // from src/solaris/hpi/src/system_md.c
4862 
4863 #ifndef O_DELETE
4864 #define O_DELETE 0x10000
4865 #endif
4866 
4867 // Open a file. Unlink the file immediately after open returns
4868 // if the specified oflag has the O_DELETE flag set.
4869 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4870 
4871 int os::open(const char *path, int oflag, int mode) {
4872 
4873   if (strlen(path) > MAX_PATH - 1) {
4874     errno = ENAMETOOLONG;
4875     return -1;
4876   }
4877   int fd;
4878   int o_delete = (oflag & O_DELETE);
4879   oflag = oflag & ~O_DELETE;
4880 
4881   fd = ::open64(path, oflag, mode);
4882   if (fd == -1) return -1;
4883 
4884   //If the open succeeded, the file might still be a directory
4885   {
4886     struct stat64 buf64;
4887     int ret = ::fstat64(fd, &buf64);
4888     int st_mode = buf64.st_mode;
4889 
4890     if (ret != -1) {
4891       if ((st_mode & S_IFMT) == S_IFDIR) {
4892         errno = EISDIR;
4893         ::close(fd);
4894         return -1;
4895       }
4896     } else {
4897       ::close(fd);
4898       return -1;
4899     }
4900   }
4901 
4902     /*
4903      * All file descriptors that are opened in the JVM and not
4904      * specifically destined for a subprocess should have the
4905      * close-on-exec flag set.  If we don't set it, then careless 3rd
4906      * party native code might fork and exec without closing all
4907      * appropriate file descriptors (e.g. as we do in closeDescriptors in
4908      * UNIXProcess.c), and this in turn might:
4909      *
4910      * - cause end-of-file to fail to be detected on some file
4911      *   descriptors, resulting in mysterious hangs, or
4912      *
4913      * - might cause an fopen in the subprocess to fail on a system
4914      *   suffering from bug 1085341.
4915      *
4916      * (Yes, the default setting of the close-on-exec flag is a Unix
4917      * design flaw)
4918      *
4919      * See:
4920      * 1085341: 32-bit stdio routines should support file descriptors >255
4921      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4922      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4923      */
4924 #ifdef FD_CLOEXEC
4925     {
4926         int flags = ::fcntl(fd, F_GETFD);
4927         if (flags != -1)
4928             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4929     }
4930 #endif
4931 
4932   if (o_delete != 0) {
4933     ::unlink(path);
4934   }
4935   return fd;
4936 }
4937 
4938 
4939 // create binary file, rewriting existing file if required
4940 int os::create_binary_file(const char* path, bool rewrite_existing) {
4941   int oflags = O_WRONLY | O_CREAT;
4942   if (!rewrite_existing) {
4943     oflags |= O_EXCL;
4944   }
4945   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4946 }
4947 
4948 // return current position of file pointer
4949 jlong os::current_file_offset(int fd) {
4950   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4951 }
4952 
4953 // move file pointer to the specified offset
4954 jlong os::seek_to_file_offset(int fd, jlong offset) {
4955   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4956 }
4957 
4958 // This code originates from JDK's sysAvailable
4959 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4960 
4961 int os::available(int fd, jlong *bytes) {
4962   jlong cur, end;
4963   int mode;
4964   struct stat64 buf64;
4965 
4966   if (::fstat64(fd, &buf64) >= 0) {
4967     mode = buf64.st_mode;
4968     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4969       /*
4970       * XXX: is the following call interruptible? If so, this might
4971       * need to go through the INTERRUPT_IO() wrapper as for other
4972       * blocking, interruptible calls in this file.
4973       */
4974       int n;
4975       if (::ioctl(fd, FIONREAD, &n) >= 0) {
4976         *bytes = n;
4977         return 1;
4978       }
4979     }
4980   }
4981   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4982     return 0;
4983   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4984     return 0;
4985   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4986     return 0;
4987   }
4988   *bytes = end - cur;
4989   return 1;
4990 }
4991 
4992 int os::socket_available(int fd, jint *pbytes) {
4993   // Linux doc says EINTR not returned, unlike Solaris
4994   int ret = ::ioctl(fd, FIONREAD, pbytes);
4995 
4996   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4997   // is expected to return 0 on failure and 1 on success to the jdk.
4998   return (ret < 0) ? 0 : 1;
4999 }
5000 
5001 // Map a block of memory.
5002 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5003                      char *addr, size_t bytes, bool read_only,
5004                      bool allow_exec) {
5005   int prot;
5006   int flags = MAP_PRIVATE;
5007 
5008   if (read_only) {
5009     prot = PROT_READ;
5010   } else {
5011     prot = PROT_READ | PROT_WRITE;
5012   }
5013 
5014   if (allow_exec) {
5015     prot |= PROT_EXEC;
5016   }
5017 
5018   if (addr != NULL) {
5019     flags |= MAP_FIXED;
5020   }
5021 
5022   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5023                                      fd, file_offset);
5024   if (mapped_address == MAP_FAILED) {
5025     return NULL;
5026   }
5027   return mapped_address;
5028 }
5029 
5030 
5031 // Remap a block of memory.
5032 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5033                        char *addr, size_t bytes, bool read_only,
5034                        bool allow_exec) {
5035   // same as map_memory() on this OS
5036   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5037                         allow_exec);
5038 }
5039 
5040 
5041 // Unmap a block of memory.
5042 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5043   return munmap(addr, bytes) == 0;
5044 }
5045 
5046 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5047 
5048 static clockid_t thread_cpu_clockid(Thread* thread) {
5049   pthread_t tid = thread->osthread()->pthread_id();
5050   clockid_t clockid;
5051 
5052   // Get thread clockid
5053   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5054   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5055   return clockid;
5056 }
5057 
5058 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5059 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5060 // of a thread.
5061 //
5062 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5063 // the fast estimate available on the platform.
5064 
5065 jlong os::current_thread_cpu_time() {
5066   if (os::Linux::supports_fast_thread_cpu_time()) {
5067     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5068   } else {
5069     // return user + sys since the cost is the same
5070     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5071   }
5072 }
5073 
5074 jlong os::thread_cpu_time(Thread* thread) {
5075   // consistent with what current_thread_cpu_time() returns
5076   if (os::Linux::supports_fast_thread_cpu_time()) {
5077     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5078   } else {
5079     return slow_thread_cpu_time(thread, true /* user + sys */);
5080   }
5081 }
5082 
5083 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5084   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5085     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5086   } else {
5087     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5088   }
5089 }
5090 
5091 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5092   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5093     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5094   } else {
5095     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5096   }
5097 }
5098 
5099 //
5100 //  -1 on error.
5101 //
5102 
5103 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5104   static bool proc_task_unchecked = true;
5105   static const char *proc_stat_path = "/proc/%d/stat";
5106   pid_t  tid = thread->osthread()->thread_id();
5107   char *s;
5108   char stat[2048];
5109   int statlen;
5110   char proc_name[64];
5111   int count;
5112   long sys_time, user_time;
5113   char cdummy;
5114   int idummy;
5115   long ldummy;
5116   FILE *fp;
5117 
5118   // The /proc/<tid>/stat aggregates per-process usage on
5119   // new Linux kernels 2.6+ where NPTL is supported.
5120   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5121   // See bug 6328462.
5122   // There possibly can be cases where there is no directory
5123   // /proc/self/task, so we check its availability.
5124   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5125     // This is executed only once
5126     proc_task_unchecked = false;
5127     fp = fopen("/proc/self/task", "r");
5128     if (fp != NULL) {
5129       proc_stat_path = "/proc/self/task/%d/stat";
5130       fclose(fp);
5131     }
5132   }
5133 
5134   sprintf(proc_name, proc_stat_path, tid);
5135   fp = fopen(proc_name, "r");
5136   if ( fp == NULL ) return -1;
5137   statlen = fread(stat, 1, 2047, fp);
5138   stat[statlen] = '\0';
5139   fclose(fp);
5140 
5141   // Skip pid and the command string. Note that we could be dealing with
5142   // weird command names, e.g. user could decide to rename java launcher
5143   // to "java 1.4.2 :)", then the stat file would look like
5144   //                1234 (java 1.4.2 :)) R ... ...
5145   // We don't really need to know the command string, just find the last
5146   // occurrence of ")" and then start parsing from there. See bug 4726580.
5147   s = strrchr(stat, ')');
5148   if (s == NULL ) return -1;
5149 
5150   // Skip blank chars
5151   do s++; while (isspace(*s));
5152 
5153   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5154                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5155                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5156                  &user_time, &sys_time);
5157   if ( count != 13 ) return -1;
5158   if (user_sys_cpu_time) {
5159     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5160   } else {
5161     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5162   }
5163 }
5164 
5165 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5166   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5167   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5168   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5169   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5170 }
5171 
5172 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5173   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5174   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5175   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5176   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5177 }
5178 
5179 bool os::is_thread_cpu_time_supported() {
5180   return true;
5181 }
5182 
5183 // System loadavg support.  Returns -1 if load average cannot be obtained.
5184 // Linux doesn't yet have a (official) notion of processor sets,
5185 // so just return the system wide load average.
5186 int os::loadavg(double loadavg[], int nelem) {
5187   return ::getloadavg(loadavg, nelem);
5188 }
5189 
5190 void os::pause() {
5191   char filename[MAX_PATH];
5192   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5193     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5194   } else {
5195     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5196   }
5197 
5198   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5199   if (fd != -1) {
5200     struct stat buf;
5201     ::close(fd);
5202     while (::stat(filename, &buf) == 0) {
5203       (void)::poll(NULL, 0, 100);
5204     }
5205   } else {
5206     jio_fprintf(stderr,
5207       "Could not open pause file '%s', continuing immediately.\n", filename);
5208   }
5209 }
5210 
5211 
5212 // Refer to the comments in os_solaris.cpp park-unpark.
5213 //
5214 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5215 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5216 // For specifics regarding the bug see GLIBC BUGID 261237 :
5217 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5218 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5219 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5220 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5221 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5222 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5223 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5224 // of libpthread avoids the problem, but isn't practical.
5225 //
5226 // Possible remedies:
5227 //
5228 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5229 //      This is palliative and probabilistic, however.  If the thread is preempted
5230 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5231 //      than the minimum period may have passed, and the abstime may be stale (in the
5232 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5233 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5234 //
5235 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5236 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5237 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5238 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5239 //      thread.
5240 //
5241 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5242 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5243 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5244 //      This also works well.  In fact it avoids kernel-level scalability impediments
5245 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5246 //      timers in a graceful fashion.
5247 //
5248 // 4.   When the abstime value is in the past it appears that control returns
5249 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5250 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5251 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5252 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5253 //      It may be possible to avoid reinitialization by checking the return
5254 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5255 //      condvar we must establish the invariant that cond_signal() is only called
5256 //      within critical sections protected by the adjunct mutex.  This prevents
5257 //      cond_signal() from "seeing" a condvar that's in the midst of being
5258 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5259 //      desirable signal-after-unlock optimization that avoids futile context switching.
5260 //
5261 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5262 //      structure when a condvar is used or initialized.  cond_destroy()  would
5263 //      release the helper structure.  Our reinitialize-after-timedwait fix
5264 //      put excessive stress on malloc/free and locks protecting the c-heap.
5265 //
5266 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5267 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5268 // and only enabling the work-around for vulnerable environments.
5269 
5270 // utility to compute the abstime argument to timedwait:
5271 // millis is the relative timeout time
5272 // abstime will be the absolute timeout time
5273 // TODO: replace compute_abstime() with unpackTime()
5274 
5275 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5276   if (millis < 0)  millis = 0;
5277   struct timeval now;
5278   int status = gettimeofday(&now, NULL);
5279   assert(status == 0, "gettimeofday");
5280   jlong seconds = millis / 1000;
5281   millis %= 1000;
5282   if (seconds > 50000000) { // see man cond_timedwait(3T)
5283     seconds = 50000000;
5284   }
5285   abstime->tv_sec = now.tv_sec  + seconds;
5286   long       usec = now.tv_usec + millis * 1000;
5287   if (usec >= 1000000) {
5288     abstime->tv_sec += 1;
5289     usec -= 1000000;
5290   }
5291   abstime->tv_nsec = usec * 1000;
5292   return abstime;
5293 }
5294 
5295 
5296 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5297 // Conceptually TryPark() should be equivalent to park(0).
5298 
5299 int os::PlatformEvent::TryPark() {
5300   for (;;) {
5301     const int v = _Event ;
5302     guarantee ((v == 0) || (v == 1), "invariant") ;
5303     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5304   }
5305 }
5306 
5307 void os::PlatformEvent::park() {       // AKA "down()"
5308   // Invariant: Only the thread associated with the Event/PlatformEvent
5309   // may call park().
5310   // TODO: assert that _Assoc != NULL or _Assoc == Self
5311   int v ;
5312   for (;;) {
5313       v = _Event ;
5314       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5315   }
5316   guarantee (v >= 0, "invariant") ;
5317   if (v == 0) {
5318      // Do this the hard way by blocking ...
5319      int status = pthread_mutex_lock(_mutex);
5320      assert_status(status == 0, status, "mutex_lock");
5321      guarantee (_nParked == 0, "invariant") ;
5322      ++ _nParked ;
5323      while (_Event < 0) {
5324         status = pthread_cond_wait(_cond, _mutex);
5325         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5326         // Treat this the same as if the wait was interrupted
5327         if (status == ETIME) { status = EINTR; }
5328         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5329      }
5330      -- _nParked ;
5331 
5332     _Event = 0 ;
5333      status = pthread_mutex_unlock(_mutex);
5334      assert_status(status == 0, status, "mutex_unlock");
5335     // Paranoia to ensure our locked and lock-free paths interact
5336     // correctly with each other.
5337     OrderAccess::fence();
5338   }
5339   guarantee (_Event >= 0, "invariant") ;
5340 }
5341 
5342 int os::PlatformEvent::park(jlong millis) {
5343   guarantee (_nParked == 0, "invariant") ;
5344 
5345   int v ;
5346   for (;;) {
5347       v = _Event ;
5348       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5349   }
5350   guarantee (v >= 0, "invariant") ;
5351   if (v != 0) return OS_OK ;
5352 
5353   // We do this the hard way, by blocking the thread.
5354   // Consider enforcing a minimum timeout value.
5355   struct timespec abst;
5356   compute_abstime(&abst, millis);
5357 
5358   int ret = OS_TIMEOUT;
5359   int status = pthread_mutex_lock(_mutex);
5360   assert_status(status == 0, status, "mutex_lock");
5361   guarantee (_nParked == 0, "invariant") ;
5362   ++_nParked ;
5363 
5364   // Object.wait(timo) will return because of
5365   // (a) notification
5366   // (b) timeout
5367   // (c) thread.interrupt
5368   //
5369   // Thread.interrupt and object.notify{All} both call Event::set.
5370   // That is, we treat thread.interrupt as a special case of notification.
5371   // The underlying Solaris implementation, cond_timedwait, admits
5372   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5373   // JVM from making those visible to Java code.  As such, we must
5374   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5375   //
5376   // TODO: properly differentiate simultaneous notify+interrupt.
5377   // In that case, we should propagate the notify to another waiter.
5378 
5379   while (_Event < 0) {
5380     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5381     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5382       pthread_cond_destroy (_cond);
5383       pthread_cond_init (_cond, NULL) ;
5384     }
5385     assert_status(status == 0 || status == EINTR ||
5386                   status == ETIME || status == ETIMEDOUT,
5387                   status, "cond_timedwait");
5388     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5389     if (status == ETIME || status == ETIMEDOUT) break ;
5390     // We consume and ignore EINTR and spurious wakeups.
5391   }
5392   --_nParked ;
5393   if (_Event >= 0) {
5394      ret = OS_OK;
5395   }
5396   _Event = 0 ;
5397   status = pthread_mutex_unlock(_mutex);
5398   assert_status(status == 0, status, "mutex_unlock");
5399   assert (_nParked == 0, "invariant") ;
5400   // Paranoia to ensure our locked and lock-free paths interact
5401   // correctly with each other.
5402   OrderAccess::fence();
5403   return ret;
5404 }
5405 
5406 void os::PlatformEvent::unpark() {
5407   // Transitions for _Event:
5408   //    0 :=> 1
5409   //    1 :=> 1
5410   //   -1 :=> either 0 or 1; must signal target thread
5411   //          That is, we can safely transition _Event from -1 to either
5412   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5413   //          unpark() calls.
5414   // See also: "Semaphores in Plan 9" by Mullender & Cox
5415   //
5416   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5417   // that it will take two back-to-back park() calls for the owning
5418   // thread to block. This has the benefit of forcing a spurious return
5419   // from the first park() call after an unpark() call which will help
5420   // shake out uses of park() and unpark() without condition variables.
5421 
5422   if (Atomic::xchg(1, &_Event) >= 0) return;
5423 
5424   // Wait for the thread associated with the event to vacate
5425   int status = pthread_mutex_lock(_mutex);
5426   assert_status(status == 0, status, "mutex_lock");
5427   int AnyWaiters = _nParked;
5428   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5429   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5430     AnyWaiters = 0;
5431     pthread_cond_signal(_cond);
5432   }
5433   status = pthread_mutex_unlock(_mutex);
5434   assert_status(status == 0, status, "mutex_unlock");
5435   if (AnyWaiters != 0) {
5436     status = pthread_cond_signal(_cond);
5437     assert_status(status == 0, status, "cond_signal");
5438   }
5439 
5440   // Note that we signal() _after dropping the lock for "immortal" Events.
5441   // This is safe and avoids a common class of  futile wakeups.  In rare
5442   // circumstances this can cause a thread to return prematurely from
5443   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5444   // simply re-test the condition and re-park itself.
5445 }
5446 
5447 
5448 // JSR166
5449 // -------------------------------------------------------
5450 
5451 /*
5452  * The solaris and linux implementations of park/unpark are fairly
5453  * conservative for now, but can be improved. They currently use a
5454  * mutex/condvar pair, plus a a count.
5455  * Park decrements count if > 0, else does a condvar wait.  Unpark
5456  * sets count to 1 and signals condvar.  Only one thread ever waits
5457  * on the condvar. Contention seen when trying to park implies that someone
5458  * is unparking you, so don't wait. And spurious returns are fine, so there
5459  * is no need to track notifications.
5460  */
5461 
5462 #define MAX_SECS 100000000
5463 /*
5464  * This code is common to linux and solaris and will be moved to a
5465  * common place in dolphin.
5466  *
5467  * The passed in time value is either a relative time in nanoseconds
5468  * or an absolute time in milliseconds. Either way it has to be unpacked
5469  * into suitable seconds and nanoseconds components and stored in the
5470  * given timespec structure.
5471  * Given time is a 64-bit value and the time_t used in the timespec is only
5472  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5473  * overflow if times way in the future are given. Further on Solaris versions
5474  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5475  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5476  * As it will be 28 years before "now + 100000000" will overflow we can
5477  * ignore overflow and just impose a hard-limit on seconds using the value
5478  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5479  * years from "now".
5480  */
5481 
5482 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5483   assert (time > 0, "convertTime");
5484 
5485   struct timeval now;
5486   int status = gettimeofday(&now, NULL);
5487   assert(status == 0, "gettimeofday");
5488 
5489   time_t max_secs = now.tv_sec + MAX_SECS;
5490 
5491   if (isAbsolute) {
5492     jlong secs = time / 1000;
5493     if (secs > max_secs) {
5494       absTime->tv_sec = max_secs;
5495     }
5496     else {
5497       absTime->tv_sec = secs;
5498     }
5499     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5500   }
5501   else {
5502     jlong secs = time / NANOSECS_PER_SEC;
5503     if (secs >= MAX_SECS) {
5504       absTime->tv_sec = max_secs;
5505       absTime->tv_nsec = 0;
5506     }
5507     else {
5508       absTime->tv_sec = now.tv_sec + secs;
5509       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5510       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5511         absTime->tv_nsec -= NANOSECS_PER_SEC;
5512         ++absTime->tv_sec; // note: this must be <= max_secs
5513       }
5514     }
5515   }
5516   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5517   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5518   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5519   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5520 }
5521 
5522 void Parker::park(bool isAbsolute, jlong time) {
5523   // Ideally we'd do something useful while spinning, such
5524   // as calling unpackTime().
5525 
5526   // Optional fast-path check:
5527   // Return immediately if a permit is available.
5528   // We depend on Atomic::xchg() having full barrier semantics
5529   // since we are doing a lock-free update to _counter.
5530   if (Atomic::xchg(0, &_counter) > 0) return;
5531 
5532   Thread* thread = Thread::current();
5533   assert(thread->is_Java_thread(), "Must be JavaThread");
5534   JavaThread *jt = (JavaThread *)thread;
5535 
5536   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5537   // Check interrupt before trying to wait
5538   if (Thread::is_interrupted(thread, false)) {
5539     return;
5540   }
5541 
5542   // Next, demultiplex/decode time arguments
5543   timespec absTime;
5544   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5545     return;
5546   }
5547   if (time > 0) {
5548     unpackTime(&absTime, isAbsolute, time);
5549   }
5550 
5551 
5552   // Enter safepoint region
5553   // Beware of deadlocks such as 6317397.
5554   // The per-thread Parker:: mutex is a classic leaf-lock.
5555   // In particular a thread must never block on the Threads_lock while
5556   // holding the Parker:: mutex.  If safepoints are pending both the
5557   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5558   ThreadBlockInVM tbivm(jt);
5559 
5560   // Don't wait if cannot get lock since interference arises from
5561   // unblocking.  Also. check interrupt before trying wait
5562   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5563     return;
5564   }
5565 
5566   int status ;
5567   if (_counter > 0)  { // no wait needed
5568     _counter = 0;
5569     status = pthread_mutex_unlock(_mutex);
5570     assert (status == 0, "invariant") ;
5571     // Paranoia to ensure our locked and lock-free paths interact
5572     // correctly with each other and Java-level accesses.
5573     OrderAccess::fence();
5574     return;
5575   }
5576 
5577 #ifdef ASSERT
5578   // Don't catch signals while blocked; let the running threads have the signals.
5579   // (This allows a debugger to break into the running thread.)
5580   sigset_t oldsigs;
5581   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5582   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5583 #endif
5584 
5585   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5586   jt->set_suspend_equivalent();
5587   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5588 
5589   if (time == 0) {
5590     status = pthread_cond_wait (_cond, _mutex) ;
5591   } else {
5592     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5593     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5594       pthread_cond_destroy (_cond) ;
5595       pthread_cond_init    (_cond, NULL);
5596     }
5597   }
5598   assert_status(status == 0 || status == EINTR ||
5599                 status == ETIME || status == ETIMEDOUT,
5600                 status, "cond_timedwait");
5601 
5602 #ifdef ASSERT
5603   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5604 #endif
5605 
5606   _counter = 0 ;
5607   status = pthread_mutex_unlock(_mutex) ;
5608   assert_status(status == 0, status, "invariant") ;
5609   // Paranoia to ensure our locked and lock-free paths interact
5610   // correctly with each other and Java-level accesses.
5611   OrderAccess::fence();
5612 
5613   // If externally suspended while waiting, re-suspend
5614   if (jt->handle_special_suspend_equivalent_condition()) {
5615     jt->java_suspend_self();
5616   }
5617 }
5618 
5619 void Parker::unpark() {
5620   int s, status ;
5621   status = pthread_mutex_lock(_mutex);
5622   assert (status == 0, "invariant") ;
5623   s = _counter;
5624   _counter = 1;
5625   if (s < 1) {
5626      if (WorkAroundNPTLTimedWaitHang) {
5627         status = pthread_cond_signal (_cond) ;
5628         assert (status == 0, "invariant") ;
5629         status = pthread_mutex_unlock(_mutex);
5630         assert (status == 0, "invariant") ;
5631      } else {
5632         status = pthread_mutex_unlock(_mutex);
5633         assert (status == 0, "invariant") ;
5634         status = pthread_cond_signal (_cond) ;
5635         assert (status == 0, "invariant") ;
5636      }
5637   } else {
5638     pthread_mutex_unlock(_mutex);
5639     assert (status == 0, "invariant") ;
5640   }
5641 }
5642 
5643 
5644 extern char** environ;
5645 
5646 #ifndef __NR_fork
5647 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5648 #endif
5649 
5650 #ifndef __NR_execve
5651 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5652 #endif
5653 
5654 // Run the specified command in a separate process. Return its exit value,
5655 // or -1 on failure (e.g. can't fork a new process).
5656 // Unlike system(), this function can be called from signal handler. It
5657 // doesn't block SIGINT et al.
5658 int os::fork_and_exec(char* cmd) {
5659   const char * argv[4] = {"sh", "-c", cmd, NULL};
5660 
5661   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5662   // pthread_atfork handlers and reset pthread library. All we need is a
5663   // separate process to execve. Make a direct syscall to fork process.
5664   // On IA64 there's no fork syscall, we have to use fork() and hope for
5665   // the best...
5666   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5667               IA64_ONLY(fork();)
5668 
5669   if (pid < 0) {
5670     // fork failed
5671     return -1;
5672 
5673   } else if (pid == 0) {
5674     // child process
5675 
5676     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5677     // first to kill every thread on the thread list. Because this list is
5678     // not reset by fork() (see notes above), execve() will instead kill
5679     // every thread in the parent process. We know this is the only thread
5680     // in the new process, so make a system call directly.
5681     // IA64 should use normal execve() from glibc to match the glibc fork()
5682     // above.
5683     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5684     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5685 
5686     // execve failed
5687     _exit(-1);
5688 
5689   } else  {
5690     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5691     // care about the actual exit code, for now.
5692 
5693     int status;
5694 
5695     // Wait for the child process to exit.  This returns immediately if
5696     // the child has already exited. */
5697     while (waitpid(pid, &status, 0) < 0) {
5698         switch (errno) {
5699         case ECHILD: return 0;
5700         case EINTR: break;
5701         default: return -1;
5702         }
5703     }
5704 
5705     if (WIFEXITED(status)) {
5706        // The child exited normally; get its exit code.
5707        return WEXITSTATUS(status);
5708     } else if (WIFSIGNALED(status)) {
5709        // The child exited because of a signal
5710        // The best value to return is 0x80 + signal number,
5711        // because that is what all Unix shells do, and because
5712        // it allows callers to distinguish between process exit and
5713        // process death by signal.
5714        return 0x80 + WTERMSIG(status);
5715     } else {
5716        // Unknown exit code; pass it through
5717        return status;
5718     }
5719   }
5720 }
5721 
5722 // is_headless_jre()
5723 //
5724 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5725 // in order to report if we are running in a headless jre
5726 //
5727 // Since JDK8 xawt/libmawt.so was moved into the same directory
5728 // as libawt.so, and renamed libawt_xawt.so
5729 //
5730 bool os::is_headless_jre() {
5731     struct stat statbuf;
5732     char buf[MAXPATHLEN];
5733     char libmawtpath[MAXPATHLEN];
5734     const char *xawtstr  = "/xawt/libmawt.so";
5735     const char *new_xawtstr = "/libawt_xawt.so";
5736     char *p;
5737 
5738     // Get path to libjvm.so
5739     os::jvm_path(buf, sizeof(buf));
5740 
5741     // Get rid of libjvm.so
5742     p = strrchr(buf, '/');
5743     if (p == NULL) return false;
5744     else *p = '\0';
5745 
5746     // Get rid of client or server
5747     p = strrchr(buf, '/');
5748     if (p == NULL) return false;
5749     else *p = '\0';
5750 
5751     // check xawt/libmawt.so
5752     strcpy(libmawtpath, buf);
5753     strcat(libmawtpath, xawtstr);
5754     if (::stat(libmawtpath, &statbuf) == 0) return false;
5755 
5756     // check libawt_xawt.so
5757     strcpy(libmawtpath, buf);
5758     strcat(libmawtpath, new_xawtstr);
5759     if (::stat(libmawtpath, &statbuf) == 0) return false;
5760 
5761     return true;
5762 }
5763 
5764 // Get the default path to the core file
5765 // Returns the length of the string
5766 int os::get_core_path(char* buffer, size_t bufferSize) {
5767   const char* p = get_current_directory(buffer, bufferSize);
5768 
5769   if (p == NULL) {
5770     assert(p != NULL, "failed to get current directory");
5771     return 0;
5772   }
5773 
5774   return strlen(buffer);
5775 }
5776 
5777 #ifdef JAVASE_EMBEDDED
5778 //
5779 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5780 //
5781 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5782 
5783 // ctor
5784 //
5785 MemNotifyThread::MemNotifyThread(int fd): Thread() {
5786   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5787   _fd = fd;
5788 
5789   if (os::create_thread(this, os::os_thread)) {
5790     _memnotify_thread = this;
5791     os::set_priority(this, NearMaxPriority);
5792     os::start_thread(this);
5793   }
5794 }
5795 
5796 // Where all the work gets done
5797 //
5798 void MemNotifyThread::run() {
5799   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5800 
5801   // Set up the select arguments
5802   fd_set rfds;
5803   if (_fd != -1) {
5804     FD_ZERO(&rfds);
5805     FD_SET(_fd, &rfds);
5806   }
5807 
5808   // Now wait for the mem_notify device to wake up
5809   while (1) {
5810     // Wait for the mem_notify device to signal us..
5811     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5812     if (rc == -1) {
5813       perror("select!\n");
5814       break;
5815     } else if (rc) {
5816       //ssize_t free_before = os::available_memory();
5817       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5818 
5819       // The kernel is telling us there is not much memory left...
5820       // try to do something about that
5821 
5822       // If we are not already in a GC, try one.
5823       if (!Universe::heap()->is_gc_active()) {
5824         Universe::heap()->collect(GCCause::_allocation_failure);
5825 
5826         //ssize_t free_after = os::available_memory();
5827         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5828         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5829       }
5830       // We might want to do something like the following if we find the GC's are not helping...
5831       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5832     }
5833   }
5834 }
5835 
5836 //
5837 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5838 //
5839 void MemNotifyThread::start() {
5840   int    fd;
5841   fd = open ("/dev/mem_notify", O_RDONLY, 0);
5842   if (fd < 0) {
5843       return;
5844   }
5845 
5846   if (memnotify_thread() == NULL) {
5847     new MemNotifyThread(fd);
5848   }
5849 }
5850 
5851 #endif // JAVASE_EMBEDDED