1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_bsd.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_bsd.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/javaCalls.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/objectMonitor.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/perfMemory.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/statSampler.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/timer.hpp"
  59 #include "services/attachListener.hpp"
  60 #include "services/memTracker.hpp"
  61 #include "services/runtimeService.hpp"
  62 #include "utilities/decoder.hpp"
  63 #include "utilities/defaultStream.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/growableArray.hpp"
  66 #include "utilities/vmError.hpp"
  67 
  68 // put OS-includes here
  69 # include <sys/types.h>
  70 # include <sys/mman.h>
  71 # include <sys/stat.h>
  72 # include <sys/select.h>
  73 # include <pthread.h>
  74 # include <signal.h>
  75 # include <errno.h>
  76 # include <dlfcn.h>
  77 # include <stdio.h>
  78 # include <unistd.h>
  79 # include <sys/resource.h>
  80 # include <pthread.h>
  81 # include <sys/stat.h>
  82 # include <sys/time.h>
  83 # include <sys/times.h>
  84 # include <sys/utsname.h>
  85 # include <sys/socket.h>
  86 # include <sys/wait.h>
  87 # include <time.h>
  88 # include <pwd.h>
  89 # include <poll.h>
  90 # include <semaphore.h>
  91 # include <fcntl.h>
  92 # include <string.h>
  93 # include <sys/param.h>
  94 # include <sys/sysctl.h>
  95 # include <sys/ipc.h>
  96 # include <sys/shm.h>
  97 #ifndef __APPLE__
  98 # include <link.h>
  99 #endif
 100 # include <stdint.h>
 101 # include <inttypes.h>
 102 # include <sys/ioctl.h>
 103 
 104 #if defined(__FreeBSD__) || defined(__NetBSD__)
 105 # include <elf.h>
 106 #endif
 107 
 108 #ifdef __APPLE__
 109 # include <mach/mach.h> // semaphore_* API
 110 # include <mach-o/dyld.h>
 111 # include <sys/proc_info.h>
 112 # include <objc/objc-auto.h>
 113 #endif
 114 
 115 #ifndef MAP_ANONYMOUS
 116 #define MAP_ANONYMOUS MAP_ANON
 117 #endif
 118 
 119 #define MAX_PATH    (2 * K)
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 #define LARGEPAGES_BIT (1 << 6)
 125 ////////////////////////////////////////////////////////////////////////////////
 126 // global variables
 127 julong os::Bsd::_physical_memory = 0;
 128 
 129 
 130 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 131 pthread_t os::Bsd::_main_thread;
 132 int os::Bsd::_page_size = -1;
 133 
 134 static jlong initial_time_count=0;
 135 
 136 static int clock_tics_per_sec = 100;
 137 
 138 // For diagnostics to print a message once. see run_periodic_checks
 139 static sigset_t check_signal_done;
 140 static bool check_signals = true;
 141 
 142 static pid_t _initial_pid = 0;
 143 
 144 /* Signal number used to suspend/resume a thread */
 145 
 146 /* do not use any signal number less than SIGSEGV, see 4355769 */
 147 static int SR_signum = SIGUSR2;
 148 sigset_t SR_sigset;
 149 
 150 
 151 ////////////////////////////////////////////////////////////////////////////////
 152 // utility functions
 153 
 154 static int SR_initialize();
 155 
 156 julong os::available_memory() {
 157   return Bsd::available_memory();
 158 }
 159 
 160 julong os::Bsd::available_memory() {
 161   // XXXBSD: this is just a stopgap implementation
 162   return physical_memory() >> 2;
 163 }
 164 
 165 julong os::physical_memory() {
 166   return Bsd::physical_memory();
 167 }
 168 
 169 ////////////////////////////////////////////////////////////////////////////////
 170 // environment support
 171 
 172 bool os::getenv(const char* name, char* buf, int len) {
 173   const char* val = ::getenv(name);
 174   if (val != NULL && strlen(val) < (size_t)len) {
 175     strcpy(buf, val);
 176     return true;
 177   }
 178   if (len > 0) buf[0] = 0;  // return a null string
 179   return false;
 180 }
 181 
 182 
 183 // Return true if user is running as root.
 184 
 185 bool os::have_special_privileges() {
 186   static bool init = false;
 187   static bool privileges = false;
 188   if (!init) {
 189     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 190     init = true;
 191   }
 192   return privileges;
 193 }
 194 
 195 
 196 
 197 // Cpu architecture string
 198 #if   defined(ZERO)
 199 static char cpu_arch[] = ZERO_LIBARCH;
 200 #elif defined(IA64)
 201 static char cpu_arch[] = "ia64";
 202 #elif defined(IA32)
 203 static char cpu_arch[] = "i386";
 204 #elif defined(AMD64)
 205 static char cpu_arch[] = "amd64";
 206 #elif defined(ARM)
 207 static char cpu_arch[] = "arm";
 208 #elif defined(PPC32)
 209 static char cpu_arch[] = "ppc";
 210 #elif defined(SPARC)
 211 #  ifdef _LP64
 212 static char cpu_arch[] = "sparcv9";
 213 #  else
 214 static char cpu_arch[] = "sparc";
 215 #  endif
 216 #else
 217 #error Add appropriate cpu_arch setting
 218 #endif
 219 
 220 // Compiler variant
 221 #ifdef COMPILER2
 222 #define COMPILER_VARIANT "server"
 223 #else
 224 #define COMPILER_VARIANT "client"
 225 #endif
 226 
 227 
 228 void os::Bsd::initialize_system_info() {
 229   int mib[2];
 230   size_t len;
 231   int cpu_val;
 232   julong mem_val;
 233 
 234   /* get processors count via hw.ncpus sysctl */
 235   mib[0] = CTL_HW;
 236   mib[1] = HW_NCPU;
 237   len = sizeof(cpu_val);
 238   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 239        assert(len == sizeof(cpu_val), "unexpected data size");
 240        set_processor_count(cpu_val);
 241   }
 242   else {
 243        set_processor_count(1);   // fallback
 244   }
 245 
 246   /* get physical memory via hw.memsize sysctl (hw.memsize is used
 247    * since it returns a 64 bit value)
 248    */
 249   mib[0] = CTL_HW;
 250   mib[1] = HW_MEMSIZE;
 251   len = sizeof(mem_val);
 252   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 253        assert(len == sizeof(mem_val), "unexpected data size");
 254        _physical_memory = mem_val;
 255   } else {
 256        _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
 257   }
 258 
 259 #ifdef __OpenBSD__
 260   {
 261        // limit _physical_memory memory view on OpenBSD since
 262        // datasize rlimit restricts us anyway.
 263        struct rlimit limits;
 264        getrlimit(RLIMIT_DATA, &limits);
 265        _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 266   }
 267 #endif
 268 }
 269 
 270 #ifdef __APPLE__
 271 static const char *get_home() {
 272   const char *home_dir = ::getenv("HOME");
 273   if ((home_dir == NULL) || (*home_dir == '\0')) {
 274     struct passwd *passwd_info = getpwuid(geteuid());
 275     if (passwd_info != NULL) {
 276       home_dir = passwd_info->pw_dir;
 277     }
 278   }
 279 
 280   return home_dir;
 281 }
 282 #endif
 283 
 284 void os::init_system_properties_values() {
 285 //  char arch[12];
 286 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 287 
 288   // The next steps are taken in the product version:
 289   //
 290   // Obtain the JAVA_HOME value from the location of libjvm.so.
 291   // This library should be located at:
 292   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 293   //
 294   // If "/jre/lib/" appears at the right place in the path, then we
 295   // assume libjvm.so is installed in a JDK and we use this path.
 296   //
 297   // Otherwise exit with message: "Could not create the Java virtual machine."
 298   //
 299   // The following extra steps are taken in the debugging version:
 300   //
 301   // If "/jre/lib/" does NOT appear at the right place in the path
 302   // instead of exit check for $JAVA_HOME environment variable.
 303   //
 304   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 305   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 306   // it looks like libjvm.so is installed there
 307   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 308   //
 309   // Otherwise exit.
 310   //
 311   // Important note: if the location of libjvm.so changes this
 312   // code needs to be changed accordingly.
 313 
 314   // The next few definitions allow the code to be verbatim:
 315 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 316 #define getenv(n) ::getenv(n)
 317 
 318 /*
 319  * See ld(1):
 320  *      The linker uses the following search paths to locate required
 321  *      shared libraries:
 322  *        1: ...
 323  *        ...
 324  *        7: The default directories, normally /lib and /usr/lib.
 325  */
 326 #ifndef DEFAULT_LIBPATH
 327 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 328 #endif
 329 
 330 #define EXTENSIONS_DIR  "/lib/ext"
 331 #define ENDORSED_DIR    "/lib/endorsed"
 332 #define REG_DIR         "/usr/java/packages"
 333 
 334 #ifdef __APPLE__
 335 #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 336 #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 337         const char *user_home_dir = get_home();
 338         // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
 339         int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 340             sizeof(SYS_EXTENSIONS_DIRS);
 341 #endif
 342 
 343   {
 344     /* sysclasspath, java_home, dll_dir */
 345     {
 346         char *home_path;
 347         char *dll_path;
 348         char *pslash;
 349         char buf[MAXPATHLEN];
 350         os::jvm_path(buf, sizeof(buf));
 351 
 352         // Found the full path to libjvm.so.
 353         // Now cut the path to <java_home>/jre if we can.
 354         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 355         pslash = strrchr(buf, '/');
 356         if (pslash != NULL)
 357             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 358         dll_path = malloc(strlen(buf) + 1);
 359         if (dll_path == NULL)
 360             return;
 361         strcpy(dll_path, buf);
 362         Arguments::set_dll_dir(dll_path);
 363 
 364         if (pslash != NULL) {
 365             pslash = strrchr(buf, '/');
 366             if (pslash != NULL) {
 367                 *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
 368 #ifndef __APPLE__
 369                 pslash = strrchr(buf, '/');
 370                 if (pslash != NULL)
 371                     *pslash = '\0';   /* get rid of /lib */
 372 #endif
 373             }
 374         }
 375 
 376         home_path = malloc(strlen(buf) + 1);
 377         if (home_path == NULL)
 378             return;
 379         strcpy(home_path, buf);
 380         Arguments::set_java_home(home_path);
 381 
 382         if (!set_boot_path('/', ':'))
 383             return;
 384     }
 385 
 386     /*
 387      * Where to look for native libraries
 388      *
 389      * Note: Due to a legacy implementation, most of the library path
 390      * is set in the launcher.  This was to accomodate linking restrictions
 391      * on legacy Bsd implementations (which are no longer supported).
 392      * Eventually, all the library path setting will be done here.
 393      *
 394      * However, to prevent the proliferation of improperly built native
 395      * libraries, the new path component /usr/java/packages is added here.
 396      * Eventually, all the library path setting will be done here.
 397      */
 398     {
 399         char *ld_library_path;
 400 
 401         /*
 402          * Construct the invariant part of ld_library_path. Note that the
 403          * space for the colon and the trailing null are provided by the
 404          * nulls included by the sizeof operator (so actually we allocate
 405          * a byte more than necessary).
 406          */
 407 #ifdef __APPLE__
 408         ld_library_path = (char *) malloc(system_ext_size);
 409         sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
 410 #else
 411         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 412             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 413         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 414 #endif
 415 
 416         /*
 417          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 418          * should always exist (until the legacy problem cited above is
 419          * addressed).
 420          */
 421 #ifdef __APPLE__
 422         // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
 423         char *l = getenv("JAVA_LIBRARY_PATH");
 424         if (l != NULL) {
 425             char *t = ld_library_path;
 426             /* That's +1 for the colon and +1 for the trailing '\0' */
 427             ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
 428             sprintf(ld_library_path, "%s:%s", l, t);
 429             free(t);
 430         }
 431 
 432         char *v = getenv("DYLD_LIBRARY_PATH");
 433 #else
 434         char *v = getenv("LD_LIBRARY_PATH");
 435 #endif
 436         if (v != NULL) {
 437             char *t = ld_library_path;
 438             /* That's +1 for the colon and +1 for the trailing '\0' */
 439             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 440             sprintf(ld_library_path, "%s:%s", v, t);
 441             free(t);
 442         }
 443 
 444 #ifdef __APPLE__
 445         // Apple's Java6 has "." at the beginning of java.library.path.
 446         // OpenJDK on Windows has "." at the end of java.library.path.
 447         // OpenJDK on Linux and Solaris don't have "." in java.library.path
 448         // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 449         // "." is appended to the end of java.library.path. Yes, this
 450         // could cause a change in behavior, but Apple's Java6 behavior
 451         // can be achieved by putting "." at the beginning of the
 452         // JAVA_LIBRARY_PATH environment variable.
 453         {
 454             char *t = ld_library_path;
 455             // that's +3 for appending ":." and the trailing '\0'
 456             ld_library_path = (char *) malloc(strlen(t) + 3);
 457             sprintf(ld_library_path, "%s:%s", t, ".");
 458             free(t);
 459         }
 460 #endif
 461 
 462         Arguments::set_library_path(ld_library_path);
 463     }
 464 
 465     /*
 466      * Extensions directories.
 467      *
 468      * Note that the space for the colon and the trailing null are provided
 469      * by the nulls included by the sizeof operator (so actually one byte more
 470      * than necessary is allocated).
 471      */
 472     {
 473 #ifdef __APPLE__
 474         char *buf = malloc(strlen(Arguments::get_java_home()) +
 475             sizeof(EXTENSIONS_DIR) + system_ext_size);
 476         sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
 477             SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
 478 #else
 479         char *buf = malloc(strlen(Arguments::get_java_home()) +
 480             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 481         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 482             Arguments::get_java_home());
 483 #endif
 484 
 485         Arguments::set_ext_dirs(buf);
 486     }
 487 
 488     /* Endorsed standards default directory. */
 489     {
 490         char * buf;
 491         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 492         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 493         Arguments::set_endorsed_dirs(buf);
 494     }
 495   }
 496 
 497 #ifdef __APPLE__
 498 #undef SYS_EXTENSIONS_DIR
 499 #endif
 500 #undef malloc
 501 #undef getenv
 502 #undef EXTENSIONS_DIR
 503 #undef ENDORSED_DIR
 504 
 505   // Done
 506   return;
 507 }
 508 
 509 ////////////////////////////////////////////////////////////////////////////////
 510 // breakpoint support
 511 
 512 void os::breakpoint() {
 513   BREAKPOINT;
 514 }
 515 
 516 extern "C" void breakpoint() {
 517   // use debugger to set breakpoint here
 518 }
 519 
 520 ////////////////////////////////////////////////////////////////////////////////
 521 // signal support
 522 
 523 debug_only(static bool signal_sets_initialized = false);
 524 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 525 
 526 bool os::Bsd::is_sig_ignored(int sig) {
 527       struct sigaction oact;
 528       sigaction(sig, (struct sigaction*)NULL, &oact);
 529       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 530                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 531       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 532            return true;
 533       else
 534            return false;
 535 }
 536 
 537 void os::Bsd::signal_sets_init() {
 538   // Should also have an assertion stating we are still single-threaded.
 539   assert(!signal_sets_initialized, "Already initialized");
 540   // Fill in signals that are necessarily unblocked for all threads in
 541   // the VM. Currently, we unblock the following signals:
 542   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 543   //                         by -Xrs (=ReduceSignalUsage));
 544   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 545   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 546   // the dispositions or masks wrt these signals.
 547   // Programs embedding the VM that want to use the above signals for their
 548   // own purposes must, at this time, use the "-Xrs" option to prevent
 549   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 550   // (See bug 4345157, and other related bugs).
 551   // In reality, though, unblocking these signals is really a nop, since
 552   // these signals are not blocked by default.
 553   sigemptyset(&unblocked_sigs);
 554   sigemptyset(&allowdebug_blocked_sigs);
 555   sigaddset(&unblocked_sigs, SIGILL);
 556   sigaddset(&unblocked_sigs, SIGSEGV);
 557   sigaddset(&unblocked_sigs, SIGBUS);
 558   sigaddset(&unblocked_sigs, SIGFPE);
 559   sigaddset(&unblocked_sigs, SR_signum);
 560 
 561   if (!ReduceSignalUsage) {
 562    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 563       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 564       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 565    }
 566    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 567       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 568       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 569    }
 570    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 571       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 572       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 573    }
 574   }
 575   // Fill in signals that are blocked by all but the VM thread.
 576   sigemptyset(&vm_sigs);
 577   if (!ReduceSignalUsage)
 578     sigaddset(&vm_sigs, BREAK_SIGNAL);
 579   debug_only(signal_sets_initialized = true);
 580 
 581 }
 582 
 583 // These are signals that are unblocked while a thread is running Java.
 584 // (For some reason, they get blocked by default.)
 585 sigset_t* os::Bsd::unblocked_signals() {
 586   assert(signal_sets_initialized, "Not initialized");
 587   return &unblocked_sigs;
 588 }
 589 
 590 // These are the signals that are blocked while a (non-VM) thread is
 591 // running Java. Only the VM thread handles these signals.
 592 sigset_t* os::Bsd::vm_signals() {
 593   assert(signal_sets_initialized, "Not initialized");
 594   return &vm_sigs;
 595 }
 596 
 597 // These are signals that are blocked during cond_wait to allow debugger in
 598 sigset_t* os::Bsd::allowdebug_blocked_signals() {
 599   assert(signal_sets_initialized, "Not initialized");
 600   return &allowdebug_blocked_sigs;
 601 }
 602 
 603 void os::Bsd::hotspot_sigmask(Thread* thread) {
 604 
 605   //Save caller's signal mask before setting VM signal mask
 606   sigset_t caller_sigmask;
 607   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 608 
 609   OSThread* osthread = thread->osthread();
 610   osthread->set_caller_sigmask(caller_sigmask);
 611 
 612   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 613 
 614   if (!ReduceSignalUsage) {
 615     if (thread->is_VM_thread()) {
 616       // Only the VM thread handles BREAK_SIGNAL ...
 617       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 618     } else {
 619       // ... all other threads block BREAK_SIGNAL
 620       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 621     }
 622   }
 623 }
 624 
 625 
 626 //////////////////////////////////////////////////////////////////////////////
 627 // create new thread
 628 
 629 // check if it's safe to start a new thread
 630 static bool _thread_safety_check(Thread* thread) {
 631   return true;
 632 }
 633 
 634 #ifdef __APPLE__
 635 // library handle for calling objc_registerThreadWithCollector()
 636 // without static linking to the libobjc library
 637 #define OBJC_LIB "/usr/lib/libobjc.dylib"
 638 #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 639 typedef void (*objc_registerThreadWithCollector_t)();
 640 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 641 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 642 #endif
 643 
 644 #ifdef __APPLE__
 645 static uint64_t locate_unique_thread_id() {
 646   // Additional thread_id used to correlate threads in SA
 647   thread_identifier_info_data_t     m_ident_info;
 648   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 649 
 650   thread_info(::mach_thread_self(), THREAD_IDENTIFIER_INFO,
 651               (thread_info_t) &m_ident_info, &count);
 652   return m_ident_info.thread_id;
 653 }
 654 #endif
 655 
 656 // Thread start routine for all newly created threads
 657 static void *java_start(Thread *thread) {
 658   // Try to randomize the cache line index of hot stack frames.
 659   // This helps when threads of the same stack traces evict each other's
 660   // cache lines. The threads can be either from the same JVM instance, or
 661   // from different JVM instances. The benefit is especially true for
 662   // processors with hyperthreading technology.
 663   static int counter = 0;
 664   int pid = os::current_process_id();
 665   alloca(((pid ^ counter++) & 7) * 128);
 666 
 667   ThreadLocalStorage::set_thread(thread);
 668 
 669   OSThread* osthread = thread->osthread();
 670   Monitor* sync = osthread->startThread_lock();
 671 
 672   // non floating stack BsdThreads needs extra check, see above
 673   if (!_thread_safety_check(thread)) {
 674     // notify parent thread
 675     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 676     osthread->set_state(ZOMBIE);
 677     sync->notify_all();
 678     return NULL;
 679   }
 680 
 681 #ifdef __APPLE__
 682   // thread_id is mach thread on macos
 683   osthread->set_thread_id(::mach_thread_self());
 684   osthread->set_unique_thread_id(locate_unique_thread_id());
 685 #else
 686   // thread_id is pthread_id on BSD
 687   osthread->set_thread_id(::pthread_self());
 688 #endif
 689   // initialize signal mask for this thread
 690   os::Bsd::hotspot_sigmask(thread);
 691 
 692   // initialize floating point control register
 693   os::Bsd::init_thread_fpu_state();
 694 
 695 #ifdef __APPLE__
 696   // register thread with objc gc
 697   if (objc_registerThreadWithCollectorFunction != NULL) {
 698     objc_registerThreadWithCollectorFunction();
 699   }
 700 #endif
 701 
 702   // handshaking with parent thread
 703   {
 704     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 705 
 706     // notify parent thread
 707     osthread->set_state(INITIALIZED);
 708     sync->notify_all();
 709 
 710     // wait until os::start_thread()
 711     while (osthread->get_state() == INITIALIZED) {
 712       sync->wait(Mutex::_no_safepoint_check_flag);
 713     }
 714   }
 715 
 716   // call one more level start routine
 717   thread->run();
 718 
 719   return 0;
 720 }
 721 
 722 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 723   assert(thread->osthread() == NULL, "caller responsible");
 724 
 725   // Allocate the OSThread object
 726   OSThread* osthread = new OSThread(NULL, NULL);
 727   if (osthread == NULL) {
 728     return false;
 729   }
 730 
 731   // set the correct thread state
 732   osthread->set_thread_type(thr_type);
 733 
 734   // Initial state is ALLOCATED but not INITIALIZED
 735   osthread->set_state(ALLOCATED);
 736 
 737   thread->set_osthread(osthread);
 738 
 739   // init thread attributes
 740   pthread_attr_t attr;
 741   pthread_attr_init(&attr);
 742   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 743 
 744   // stack size
 745   if (os::Bsd::supports_variable_stack_size()) {
 746     // calculate stack size if it's not specified by caller
 747     if (stack_size == 0) {
 748       stack_size = os::Bsd::default_stack_size(thr_type);
 749 
 750       switch (thr_type) {
 751       case os::java_thread:
 752         // Java threads use ThreadStackSize which default value can be
 753         // changed with the flag -Xss
 754         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 755         stack_size = JavaThread::stack_size_at_create();
 756         break;
 757       case os::compiler_thread:
 758         if (CompilerThreadStackSize > 0) {
 759           stack_size = (size_t)(CompilerThreadStackSize * K);
 760           break;
 761         } // else fall through:
 762           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 763       case os::vm_thread:
 764       case os::pgc_thread:
 765       case os::cgc_thread:
 766       case os::watcher_thread:
 767         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 768         break;
 769       }
 770     }
 771 
 772     stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
 773     pthread_attr_setstacksize(&attr, stack_size);
 774   } else {
 775     // let pthread_create() pick the default value.
 776   }
 777 
 778   ThreadState state;
 779 
 780   {
 781     pthread_t tid;
 782     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 783 
 784     pthread_attr_destroy(&attr);
 785 
 786     if (ret != 0) {
 787       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 788         perror("pthread_create()");
 789       }
 790       // Need to clean up stuff we've allocated so far
 791       thread->set_osthread(NULL);
 792       delete osthread;
 793       return false;
 794     }
 795 
 796     // Store pthread info into the OSThread
 797     osthread->set_pthread_id(tid);
 798 
 799     // Wait until child thread is either initialized or aborted
 800     {
 801       Monitor* sync_with_child = osthread->startThread_lock();
 802       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 803       while ((state = osthread->get_state()) == ALLOCATED) {
 804         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 805       }
 806     }
 807 
 808   }
 809 
 810   // Aborted due to thread limit being reached
 811   if (state == ZOMBIE) {
 812       thread->set_osthread(NULL);
 813       delete osthread;
 814       return false;
 815   }
 816 
 817   // The thread is returned suspended (in state INITIALIZED),
 818   // and is started higher up in the call chain
 819   assert(state == INITIALIZED, "race condition");
 820   return true;
 821 }
 822 
 823 /////////////////////////////////////////////////////////////////////////////
 824 // attach existing thread
 825 
 826 // bootstrap the main thread
 827 bool os::create_main_thread(JavaThread* thread) {
 828   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 829   return create_attached_thread(thread);
 830 }
 831 
 832 bool os::create_attached_thread(JavaThread* thread) {
 833 #ifdef ASSERT
 834     thread->verify_not_published();
 835 #endif
 836 
 837   // Allocate the OSThread object
 838   OSThread* osthread = new OSThread(NULL, NULL);
 839 
 840   if (osthread == NULL) {
 841     return false;
 842   }
 843 
 844   // Store pthread info into the OSThread
 845 #ifdef __APPLE__
 846   osthread->set_thread_id(::mach_thread_self());
 847   osthread->set_unique_thread_id(locate_unique_thread_id());
 848 #else
 849   osthread->set_thread_id(::pthread_self());
 850 #endif
 851   osthread->set_pthread_id(::pthread_self());
 852 
 853   // initialize floating point control register
 854   os::Bsd::init_thread_fpu_state();
 855 
 856   // Initial thread state is RUNNABLE
 857   osthread->set_state(RUNNABLE);
 858 
 859   thread->set_osthread(osthread);
 860 
 861   // initialize signal mask for this thread
 862   // and save the caller's signal mask
 863   os::Bsd::hotspot_sigmask(thread);
 864 
 865   return true;
 866 }
 867 
 868 void os::pd_start_thread(Thread* thread) {
 869   OSThread * osthread = thread->osthread();
 870   assert(osthread->get_state() != INITIALIZED, "just checking");
 871   Monitor* sync_with_child = osthread->startThread_lock();
 872   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 873   sync_with_child->notify();
 874 }
 875 
 876 // Free Bsd resources related to the OSThread
 877 void os::free_thread(OSThread* osthread) {
 878   assert(osthread != NULL, "osthread not set");
 879 
 880   if (Thread::current()->osthread() == osthread) {
 881     // Restore caller's signal mask
 882     sigset_t sigmask = osthread->caller_sigmask();
 883     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 884    }
 885 
 886   delete osthread;
 887 }
 888 
 889 //////////////////////////////////////////////////////////////////////////////
 890 // thread local storage
 891 
 892 int os::allocate_thread_local_storage() {
 893   pthread_key_t key;
 894   int rslt = pthread_key_create(&key, NULL);
 895   assert(rslt == 0, "cannot allocate thread local storage");
 896   return (int)key;
 897 }
 898 
 899 // Note: This is currently not used by VM, as we don't destroy TLS key
 900 // on VM exit.
 901 void os::free_thread_local_storage(int index) {
 902   int rslt = pthread_key_delete((pthread_key_t)index);
 903   assert(rslt == 0, "invalid index");
 904 }
 905 
 906 void os::thread_local_storage_at_put(int index, void* value) {
 907   int rslt = pthread_setspecific((pthread_key_t)index, value);
 908   assert(rslt == 0, "pthread_setspecific failed");
 909 }
 910 
 911 extern "C" Thread* get_thread() {
 912   return ThreadLocalStorage::thread();
 913 }
 914 
 915 
 916 ////////////////////////////////////////////////////////////////////////////////
 917 // time support
 918 
 919 // Time since start-up in seconds to a fine granularity.
 920 // Used by VMSelfDestructTimer and the MemProfiler.
 921 double os::elapsedTime() {
 922 
 923   return (double)(os::elapsed_counter()) * 0.000001;
 924 }
 925 
 926 jlong os::elapsed_counter() {
 927   timeval time;
 928   int status = gettimeofday(&time, NULL);
 929   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
 930 }
 931 
 932 jlong os::elapsed_frequency() {
 933   return (1000 * 1000);
 934 }
 935 
 936 bool os::supports_vtime() { return true; }
 937 bool os::enable_vtime()   { return false; }
 938 bool os::vtime_enabled()  { return false; }
 939 
 940 double os::elapsedVTime() {
 941   // better than nothing, but not much
 942   return elapsedTime();
 943 }
 944 
 945 jlong os::javaTimeMillis() {
 946   timeval time;
 947   int status = gettimeofday(&time, NULL);
 948   assert(status != -1, "bsd error");
 949   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 950 }
 951 
 952 #ifndef CLOCK_MONOTONIC
 953 #define CLOCK_MONOTONIC (1)
 954 #endif
 955 
 956 #ifdef __APPLE__
 957 void os::Bsd::clock_init() {
 958         // XXXDARWIN: Investigate replacement monotonic clock
 959 }
 960 #else
 961 void os::Bsd::clock_init() {
 962   struct timespec res;
 963   struct timespec tp;
 964   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
 965       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
 966     // yes, monotonic clock is supported
 967     _clock_gettime = ::clock_gettime;
 968   }
 969 }
 970 #endif
 971 
 972 
 973 jlong os::javaTimeNanos() {
 974   if (Bsd::supports_monotonic_clock()) {
 975     struct timespec tp;
 976     int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
 977     assert(status == 0, "gettime error");
 978     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
 979     return result;
 980   } else {
 981     timeval time;
 982     int status = gettimeofday(&time, NULL);
 983     assert(status != -1, "bsd error");
 984     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
 985     return 1000 * usecs;
 986   }
 987 }
 988 
 989 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 990   if (Bsd::supports_monotonic_clock()) {
 991     info_ptr->max_value = ALL_64_BITS;
 992 
 993     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
 994     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
 995     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
 996   } else {
 997     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
 998     info_ptr->max_value = ALL_64_BITS;
 999 
1000     // gettimeofday is a real time clock so it skips
1001     info_ptr->may_skip_backward = true;
1002     info_ptr->may_skip_forward = true;
1003   }
1004 
1005   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1006 }
1007 
1008 // Return the real, user, and system times in seconds from an
1009 // arbitrary fixed point in the past.
1010 bool os::getTimesSecs(double* process_real_time,
1011                       double* process_user_time,
1012                       double* process_system_time) {
1013   struct tms ticks;
1014   clock_t real_ticks = times(&ticks);
1015 
1016   if (real_ticks == (clock_t) (-1)) {
1017     return false;
1018   } else {
1019     double ticks_per_second = (double) clock_tics_per_sec;
1020     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1021     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1022     *process_real_time = ((double) real_ticks) / ticks_per_second;
1023 
1024     return true;
1025   }
1026 }
1027 
1028 
1029 char * os::local_time_string(char *buf, size_t buflen) {
1030   struct tm t;
1031   time_t long_time;
1032   time(&long_time);
1033   localtime_r(&long_time, &t);
1034   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1035                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1036                t.tm_hour, t.tm_min, t.tm_sec);
1037   return buf;
1038 }
1039 
1040 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1041   return localtime_r(clock, res);
1042 }
1043 
1044 ////////////////////////////////////////////////////////////////////////////////
1045 // runtime exit support
1046 
1047 // Note: os::shutdown() might be called very early during initialization, or
1048 // called from signal handler. Before adding something to os::shutdown(), make
1049 // sure it is async-safe and can handle partially initialized VM.
1050 void os::shutdown() {
1051 
1052   // allow PerfMemory to attempt cleanup of any persistent resources
1053   perfMemory_exit();
1054 
1055   // needs to remove object in file system
1056   AttachListener::abort();
1057 
1058   // flush buffered output, finish log files
1059   ostream_abort();
1060 
1061   // Check for abort hook
1062   abort_hook_t abort_hook = Arguments::abort_hook();
1063   if (abort_hook != NULL) {
1064     abort_hook();
1065   }
1066 
1067 }
1068 
1069 // Note: os::abort() might be called very early during initialization, or
1070 // called from signal handler. Before adding something to os::abort(), make
1071 // sure it is async-safe and can handle partially initialized VM.
1072 void os::abort(bool dump_core) {
1073   os::shutdown();
1074   if (dump_core) {
1075 #ifndef PRODUCT
1076     fdStream out(defaultStream::output_fd());
1077     out.print_raw("Current thread is ");
1078     char buf[16];
1079     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1080     out.print_raw_cr(buf);
1081     out.print_raw_cr("Dumping core ...");
1082 #endif
1083     ::abort(); // dump core
1084   }
1085 
1086   ::exit(1);
1087 }
1088 
1089 // Die immediately, no exit hook, no abort hook, no cleanup.
1090 void os::die() {
1091   // _exit() on BsdThreads only kills current thread
1092   ::abort();
1093 }
1094 
1095 // unused on bsd for now.
1096 void os::set_error_file(const char *logfile) {}
1097 
1098 
1099 // This method is a copy of JDK's sysGetLastErrorString
1100 // from src/solaris/hpi/src/system_md.c
1101 
1102 size_t os::lasterror(char *buf, size_t len) {
1103 
1104   if (errno == 0)  return 0;
1105 
1106   const char *s = ::strerror(errno);
1107   size_t n = ::strlen(s);
1108   if (n >= len) {
1109     n = len - 1;
1110   }
1111   ::strncpy(buf, s, n);
1112   buf[n] = '\0';
1113   return n;
1114 }
1115 
1116 intx os::current_thread_id() {
1117 #ifdef __APPLE__
1118   return (intx)::mach_thread_self();
1119 #else
1120   return (intx)::pthread_self();
1121 #endif
1122 }
1123 int os::current_process_id() {
1124 
1125   // Under the old bsd thread library, bsd gives each thread
1126   // its own process id. Because of this each thread will return
1127   // a different pid if this method were to return the result
1128   // of getpid(2). Bsd provides no api that returns the pid
1129   // of the launcher thread for the vm. This implementation
1130   // returns a unique pid, the pid of the launcher thread
1131   // that starts the vm 'process'.
1132 
1133   // Under the NPTL, getpid() returns the same pid as the
1134   // launcher thread rather than a unique pid per thread.
1135   // Use gettid() if you want the old pre NPTL behaviour.
1136 
1137   // if you are looking for the result of a call to getpid() that
1138   // returns a unique pid for the calling thread, then look at the
1139   // OSThread::thread_id() method in osThread_bsd.hpp file
1140 
1141   return (int)(_initial_pid ? _initial_pid : getpid());
1142 }
1143 
1144 // DLL functions
1145 
1146 #define JNI_LIB_PREFIX "lib"
1147 #ifdef __APPLE__
1148 #define JNI_LIB_SUFFIX ".dylib"
1149 #else
1150 #define JNI_LIB_SUFFIX ".so"
1151 #endif
1152 
1153 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1154 
1155 // This must be hard coded because it's the system's temporary
1156 // directory not the java application's temp directory, ala java.io.tmpdir.
1157 #ifdef __APPLE__
1158 // macosx has a secure per-user temporary directory
1159 char temp_path_storage[PATH_MAX];
1160 const char* os::get_temp_directory() {
1161   static char *temp_path = NULL;
1162   if (temp_path == NULL) {
1163     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1164     if (pathSize == 0 || pathSize > PATH_MAX) {
1165       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1166     }
1167     temp_path = temp_path_storage;
1168   }
1169   return temp_path;
1170 }
1171 #else /* __APPLE__ */
1172 const char* os::get_temp_directory() { return "/tmp"; }
1173 #endif /* __APPLE__ */
1174 
1175 static bool file_exists(const char* filename) {
1176   struct stat statbuf;
1177   if (filename == NULL || strlen(filename) == 0) {
1178     return false;
1179   }
1180   return os::stat(filename, &statbuf) == 0;
1181 }
1182 
1183 bool os::dll_build_name(char* buffer, size_t buflen,
1184                         const char* pname, const char* fname) {
1185   bool retval = false;
1186   // Copied from libhpi
1187   const size_t pnamelen = pname ? strlen(pname) : 0;
1188 
1189   // Return error on buffer overflow.
1190   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1191     return retval;
1192   }
1193 
1194   if (pnamelen == 0) {
1195     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1196     retval = true;
1197   } else if (strchr(pname, *os::path_separator()) != NULL) {
1198     int n;
1199     char** pelements = split_path(pname, &n);
1200     if (pelements == NULL) {
1201       return false;
1202     }
1203     for (int i = 0 ; i < n ; i++) {
1204       // Really shouldn't be NULL, but check can't hurt
1205       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1206         continue; // skip the empty path values
1207       }
1208       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1209           pelements[i], fname);
1210       if (file_exists(buffer)) {
1211         retval = true;
1212         break;
1213       }
1214     }
1215     // release the storage
1216     for (int i = 0 ; i < n ; i++) {
1217       if (pelements[i] != NULL) {
1218         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1219       }
1220     }
1221     if (pelements != NULL) {
1222       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1223     }
1224   } else {
1225     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1226     retval = true;
1227   }
1228   return retval;
1229 }
1230 
1231 // check if addr is inside libjvm.so
1232 bool os::address_is_in_vm(address addr) {
1233   static address libjvm_base_addr;
1234   Dl_info dlinfo;
1235 
1236   if (libjvm_base_addr == NULL) {
1237     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1238       libjvm_base_addr = (address)dlinfo.dli_fbase;
1239     }
1240     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1241   }
1242 
1243   if (dladdr((void *)addr, &dlinfo) != 0) {
1244     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1245   }
1246 
1247   return false;
1248 }
1249 
1250 
1251 #define MACH_MAXSYMLEN 256
1252 
1253 bool os::dll_address_to_function_name(address addr, char *buf,
1254                                       int buflen, int *offset) {
1255   // buf is not optional, but offset is optional
1256   assert(buf != NULL, "sanity check");
1257 
1258   Dl_info dlinfo;
1259   char localbuf[MACH_MAXSYMLEN];
1260 
1261   if (dladdr((void*)addr, &dlinfo) != 0) {
1262     // see if we have a matching symbol
1263     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1264       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1265         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1266       }
1267       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1268       return true;
1269     }
1270     // no matching symbol so try for just file info
1271     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1272       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1273                           buf, buflen, offset, dlinfo.dli_fname)) {
1274          return true;
1275       }
1276     }
1277 
1278     // Handle non-dynamic manually:
1279     if (dlinfo.dli_fbase != NULL &&
1280         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1281                         dlinfo.dli_fbase)) {
1282       if (!Decoder::demangle(localbuf, buf, buflen)) {
1283         jio_snprintf(buf, buflen, "%s", localbuf);
1284       }
1285       return true;
1286     }
1287   }
1288   buf[0] = '\0';
1289   if (offset != NULL) *offset = -1;
1290   return false;
1291 }
1292 
1293 // ported from solaris version
1294 bool os::dll_address_to_library_name(address addr, char* buf,
1295                                      int buflen, int* offset) {
1296   // buf is not optional, but offset is optional
1297   assert(buf != NULL, "sanity check");
1298 
1299   Dl_info dlinfo;
1300 
1301   if (dladdr((void*)addr, &dlinfo) != 0) {
1302     if (dlinfo.dli_fname != NULL) {
1303       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1304     }
1305     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1306       *offset = addr - (address)dlinfo.dli_fbase;
1307     }
1308     return true;
1309   }
1310 
1311   buf[0] = '\0';
1312   if (offset) *offset = -1;
1313   return false;
1314 }
1315 
1316 // Loads .dll/.so and
1317 // in case of error it checks if .dll/.so was built for the
1318 // same architecture as Hotspot is running on
1319 
1320 #ifdef __APPLE__
1321 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1322   void * result= ::dlopen(filename, RTLD_LAZY);
1323   if (result != NULL) {
1324     // Successful loading
1325     return result;
1326   }
1327 
1328   // Read system error message into ebuf
1329   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1330   ebuf[ebuflen-1]='\0';
1331 
1332   return NULL;
1333 }
1334 #else
1335 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1336 {
1337   void * result= ::dlopen(filename, RTLD_LAZY);
1338   if (result != NULL) {
1339     // Successful loading
1340     return result;
1341   }
1342 
1343   Elf32_Ehdr elf_head;
1344 
1345   // Read system error message into ebuf
1346   // It may or may not be overwritten below
1347   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1348   ebuf[ebuflen-1]='\0';
1349   int diag_msg_max_length=ebuflen-strlen(ebuf);
1350   char* diag_msg_buf=ebuf+strlen(ebuf);
1351 
1352   if (diag_msg_max_length==0) {
1353     // No more space in ebuf for additional diagnostics message
1354     return NULL;
1355   }
1356 
1357 
1358   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1359 
1360   if (file_descriptor < 0) {
1361     // Can't open library, report dlerror() message
1362     return NULL;
1363   }
1364 
1365   bool failed_to_read_elf_head=
1366     (sizeof(elf_head)!=
1367         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1368 
1369   ::close(file_descriptor);
1370   if (failed_to_read_elf_head) {
1371     // file i/o error - report dlerror() msg
1372     return NULL;
1373   }
1374 
1375   typedef struct {
1376     Elf32_Half  code;         // Actual value as defined in elf.h
1377     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1378     char        elf_class;    // 32 or 64 bit
1379     char        endianess;    // MSB or LSB
1380     char*       name;         // String representation
1381   } arch_t;
1382 
1383   #ifndef EM_486
1384   #define EM_486          6               /* Intel 80486 */
1385   #endif
1386 
1387   #ifndef EM_MIPS_RS3_LE
1388   #define EM_MIPS_RS3_LE  10              /* MIPS */
1389   #endif
1390 
1391   #ifndef EM_PPC64
1392   #define EM_PPC64        21              /* PowerPC64 */
1393   #endif
1394 
1395   #ifndef EM_S390
1396   #define EM_S390         22              /* IBM System/390 */
1397   #endif
1398 
1399   #ifndef EM_IA_64
1400   #define EM_IA_64        50              /* HP/Intel IA-64 */
1401   #endif
1402 
1403   #ifndef EM_X86_64
1404   #define EM_X86_64       62              /* AMD x86-64 */
1405   #endif
1406 
1407   static const arch_t arch_array[]={
1408     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1409     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1410     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1411     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1412     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1413     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1414     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1415     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1416     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1417     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1418     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1419     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1420     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1421     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1422     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1423     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1424   };
1425 
1426   #if  (defined IA32)
1427     static  Elf32_Half running_arch_code=EM_386;
1428   #elif   (defined AMD64)
1429     static  Elf32_Half running_arch_code=EM_X86_64;
1430   #elif  (defined IA64)
1431     static  Elf32_Half running_arch_code=EM_IA_64;
1432   #elif  (defined __sparc) && (defined _LP64)
1433     static  Elf32_Half running_arch_code=EM_SPARCV9;
1434   #elif  (defined __sparc) && (!defined _LP64)
1435     static  Elf32_Half running_arch_code=EM_SPARC;
1436   #elif  (defined __powerpc64__)
1437     static  Elf32_Half running_arch_code=EM_PPC64;
1438   #elif  (defined __powerpc__)
1439     static  Elf32_Half running_arch_code=EM_PPC;
1440   #elif  (defined ARM)
1441     static  Elf32_Half running_arch_code=EM_ARM;
1442   #elif  (defined S390)
1443     static  Elf32_Half running_arch_code=EM_S390;
1444   #elif  (defined ALPHA)
1445     static  Elf32_Half running_arch_code=EM_ALPHA;
1446   #elif  (defined MIPSEL)
1447     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1448   #elif  (defined PARISC)
1449     static  Elf32_Half running_arch_code=EM_PARISC;
1450   #elif  (defined MIPS)
1451     static  Elf32_Half running_arch_code=EM_MIPS;
1452   #elif  (defined M68K)
1453     static  Elf32_Half running_arch_code=EM_68K;
1454   #else
1455     #error Method os::dll_load requires that one of following is defined:\
1456          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1457   #endif
1458 
1459   // Identify compatability class for VM's architecture and library's architecture
1460   // Obtain string descriptions for architectures
1461 
1462   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1463   int running_arch_index=-1;
1464 
1465   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1466     if (running_arch_code == arch_array[i].code) {
1467       running_arch_index    = i;
1468     }
1469     if (lib_arch.code == arch_array[i].code) {
1470       lib_arch.compat_class = arch_array[i].compat_class;
1471       lib_arch.name         = arch_array[i].name;
1472     }
1473   }
1474 
1475   assert(running_arch_index != -1,
1476     "Didn't find running architecture code (running_arch_code) in arch_array");
1477   if (running_arch_index == -1) {
1478     // Even though running architecture detection failed
1479     // we may still continue with reporting dlerror() message
1480     return NULL;
1481   }
1482 
1483   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1484     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1485     return NULL;
1486   }
1487 
1488 #ifndef S390
1489   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1490     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1491     return NULL;
1492   }
1493 #endif // !S390
1494 
1495   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1496     if ( lib_arch.name!=NULL ) {
1497       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1498         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1499         lib_arch.name, arch_array[running_arch_index].name);
1500     } else {
1501       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1502       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1503         lib_arch.code,
1504         arch_array[running_arch_index].name);
1505     }
1506   }
1507 
1508   return NULL;
1509 }
1510 #endif /* !__APPLE__ */
1511 
1512 // XXX: Do we need a lock around this as per Linux?
1513 void* os::dll_lookup(void* handle, const char* name) {
1514   return dlsym(handle, name);
1515 }
1516 
1517 
1518 static bool _print_ascii_file(const char* filename, outputStream* st) {
1519   int fd = ::open(filename, O_RDONLY);
1520   if (fd == -1) {
1521      return false;
1522   }
1523 
1524   char buf[32];
1525   int bytes;
1526   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1527     st->print_raw(buf, bytes);
1528   }
1529 
1530   ::close(fd);
1531 
1532   return true;
1533 }
1534 
1535 void os::print_dll_info(outputStream *st) {
1536   st->print_cr("Dynamic libraries:");
1537 #ifdef RTLD_DI_LINKMAP
1538   Dl_info dli;
1539   void *handle;
1540   Link_map *map;
1541   Link_map *p;
1542 
1543   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1544       dli.dli_fname == NULL) {
1545     st->print_cr("Error: Cannot print dynamic libraries.");
1546     return;
1547   }
1548   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1549   if (handle == NULL) {
1550     st->print_cr("Error: Cannot print dynamic libraries.");
1551     return;
1552   }
1553   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1554   if (map == NULL) {
1555     st->print_cr("Error: Cannot print dynamic libraries.");
1556     return;
1557   }
1558 
1559   while (map->l_prev != NULL)
1560     map = map->l_prev;
1561 
1562   while (map != NULL) {
1563     st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1564     map = map->l_next;
1565   }
1566 
1567   dlclose(handle);
1568 #elif defined(__APPLE__)
1569   uint32_t count;
1570   uint32_t i;
1571 
1572   count = _dyld_image_count();
1573   for (i = 1; i < count; i++) {
1574     const char *name = _dyld_get_image_name(i);
1575     intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1576     st->print_cr(PTR_FORMAT " \t%s", slide, name);
1577   }
1578 #else
1579   st->print_cr("Error: Cannot print dynamic libraries.");
1580 #endif
1581 }
1582 
1583 void os::print_os_info_brief(outputStream* st) {
1584   st->print("Bsd");
1585 
1586   os::Posix::print_uname_info(st);
1587 }
1588 
1589 void os::print_os_info(outputStream* st) {
1590   st->print("OS:");
1591   st->print("Bsd");
1592 
1593   os::Posix::print_uname_info(st);
1594 
1595   os::Posix::print_rlimit_info(st);
1596 
1597   os::Posix::print_load_average(st);
1598 }
1599 
1600 void os::pd_print_cpu_info(outputStream* st) {
1601   // Nothing to do for now.
1602 }
1603 
1604 void os::print_memory_info(outputStream* st) {
1605 
1606   st->print("Memory:");
1607   st->print(" %dk page", os::vm_page_size()>>10);
1608 
1609   st->print(", physical " UINT64_FORMAT "k",
1610             os::physical_memory() >> 10);
1611   st->print("(" UINT64_FORMAT "k free)",
1612             os::available_memory() >> 10);
1613   st->cr();
1614 
1615   // meminfo
1616   st->print("\n/proc/meminfo:\n");
1617   _print_ascii_file("/proc/meminfo", st);
1618   st->cr();
1619 }
1620 
1621 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1622 // but they're the same for all the bsd arch that we support
1623 // and they're the same for solaris but there's no common place to put this.
1624 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1625                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1626                           "ILL_COPROC", "ILL_BADSTK" };
1627 
1628 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1629                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1630                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1631 
1632 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1633 
1634 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1635 
1636 void os::print_siginfo(outputStream* st, void* siginfo) {
1637   st->print("siginfo:");
1638 
1639   const int buflen = 100;
1640   char buf[buflen];
1641   siginfo_t *si = (siginfo_t*)siginfo;
1642   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1643   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1644     st->print("si_errno=%s", buf);
1645   } else {
1646     st->print("si_errno=%d", si->si_errno);
1647   }
1648   const int c = si->si_code;
1649   assert(c > 0, "unexpected si_code");
1650   switch (si->si_signo) {
1651   case SIGILL:
1652     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1653     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1654     break;
1655   case SIGFPE:
1656     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1657     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1658     break;
1659   case SIGSEGV:
1660     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1661     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1662     break;
1663   case SIGBUS:
1664     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1665     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1666     break;
1667   default:
1668     st->print(", si_code=%d", si->si_code);
1669     // no si_addr
1670   }
1671 
1672   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1673       UseSharedSpaces) {
1674     FileMapInfo* mapinfo = FileMapInfo::current_info();
1675     if (mapinfo->is_in_shared_space(si->si_addr)) {
1676       st->print("\n\nError accessing class data sharing archive."   \
1677                 " Mapped file inaccessible during execution, "      \
1678                 " possible disk/network problem.");
1679     }
1680   }
1681   st->cr();
1682 }
1683 
1684 
1685 static void print_signal_handler(outputStream* st, int sig,
1686                                  char* buf, size_t buflen);
1687 
1688 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1689   st->print_cr("Signal Handlers:");
1690   print_signal_handler(st, SIGSEGV, buf, buflen);
1691   print_signal_handler(st, SIGBUS , buf, buflen);
1692   print_signal_handler(st, SIGFPE , buf, buflen);
1693   print_signal_handler(st, SIGPIPE, buf, buflen);
1694   print_signal_handler(st, SIGXFSZ, buf, buflen);
1695   print_signal_handler(st, SIGILL , buf, buflen);
1696   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1697   print_signal_handler(st, SR_signum, buf, buflen);
1698   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1699   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1700   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1701   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1702 }
1703 
1704 static char saved_jvm_path[MAXPATHLEN] = {0};
1705 
1706 // Find the full path to the current module, libjvm
1707 void os::jvm_path(char *buf, jint buflen) {
1708   // Error checking.
1709   if (buflen < MAXPATHLEN) {
1710     assert(false, "must use a large-enough buffer");
1711     buf[0] = '\0';
1712     return;
1713   }
1714   // Lazy resolve the path to current module.
1715   if (saved_jvm_path[0] != 0) {
1716     strcpy(buf, saved_jvm_path);
1717     return;
1718   }
1719 
1720   char dli_fname[MAXPATHLEN];
1721   bool ret = dll_address_to_library_name(
1722                 CAST_FROM_FN_PTR(address, os::jvm_path),
1723                 dli_fname, sizeof(dli_fname), NULL);
1724   assert(ret, "cannot locate libjvm");
1725   char *rp = NULL;
1726   if (ret && dli_fname[0] != '\0') {
1727     rp = realpath(dli_fname, buf);
1728   }
1729   if (rp == NULL)
1730     return;
1731 
1732   if (Arguments::created_by_gamma_launcher()) {
1733     // Support for the gamma launcher.  Typical value for buf is
1734     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
1735     // the right place in the string, then assume we are installed in a JDK and
1736     // we're done.  Otherwise, check for a JAVA_HOME environment variable and
1737     // construct a path to the JVM being overridden.
1738 
1739     const char *p = buf + strlen(buf) - 1;
1740     for (int count = 0; p > buf && count < 5; ++count) {
1741       for (--p; p > buf && *p != '/'; --p)
1742         /* empty */ ;
1743     }
1744 
1745     if (strncmp(p, "/jre/lib/", 9) != 0) {
1746       // Look for JAVA_HOME in the environment.
1747       char* java_home_var = ::getenv("JAVA_HOME");
1748       if (java_home_var != NULL && java_home_var[0] != 0) {
1749         char* jrelib_p;
1750         int len;
1751 
1752         // Check the current module name "libjvm"
1753         p = strrchr(buf, '/');
1754         assert(strstr(p, "/libjvm") == p, "invalid library name");
1755 
1756         rp = realpath(java_home_var, buf);
1757         if (rp == NULL)
1758           return;
1759 
1760         // determine if this is a legacy image or modules image
1761         // modules image doesn't have "jre" subdirectory
1762         len = strlen(buf);
1763         jrelib_p = buf + len;
1764 
1765         // Add the appropriate library subdir
1766         snprintf(jrelib_p, buflen-len, "/jre/lib");
1767         if (0 != access(buf, F_OK)) {
1768           snprintf(jrelib_p, buflen-len, "/lib");
1769         }
1770 
1771         // Add the appropriate client or server subdir
1772         len = strlen(buf);
1773         jrelib_p = buf + len;
1774         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1775         if (0 != access(buf, F_OK)) {
1776           snprintf(jrelib_p, buflen-len, "");
1777         }
1778 
1779         // If the path exists within JAVA_HOME, add the JVM library name
1780         // to complete the path to JVM being overridden.  Otherwise fallback
1781         // to the path to the current library.
1782         if (0 == access(buf, F_OK)) {
1783           // Use current module name "libjvm"
1784           len = strlen(buf);
1785           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1786         } else {
1787           // Fall back to path of current library
1788           rp = realpath(dli_fname, buf);
1789           if (rp == NULL)
1790             return;
1791         }
1792       }
1793     }
1794   }
1795 
1796   strcpy(saved_jvm_path, buf);
1797 }
1798 
1799 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1800   // no prefix required, not even "_"
1801 }
1802 
1803 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1804   // no suffix required
1805 }
1806 
1807 ////////////////////////////////////////////////////////////////////////////////
1808 // sun.misc.Signal support
1809 
1810 static volatile jint sigint_count = 0;
1811 
1812 static void
1813 UserHandler(int sig, void *siginfo, void *context) {
1814   // 4511530 - sem_post is serialized and handled by the manager thread. When
1815   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1816   // don't want to flood the manager thread with sem_post requests.
1817   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1818       return;
1819 
1820   // Ctrl-C is pressed during error reporting, likely because the error
1821   // handler fails to abort. Let VM die immediately.
1822   if (sig == SIGINT && is_error_reported()) {
1823      os::die();
1824   }
1825 
1826   os::signal_notify(sig);
1827 }
1828 
1829 void* os::user_handler() {
1830   return CAST_FROM_FN_PTR(void*, UserHandler);
1831 }
1832 
1833 extern "C" {
1834   typedef void (*sa_handler_t)(int);
1835   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1836 }
1837 
1838 void* os::signal(int signal_number, void* handler) {
1839   struct sigaction sigAct, oldSigAct;
1840 
1841   sigfillset(&(sigAct.sa_mask));
1842   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1843   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1844 
1845   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1846     // -1 means registration failed
1847     return (void *)-1;
1848   }
1849 
1850   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1851 }
1852 
1853 void os::signal_raise(int signal_number) {
1854   ::raise(signal_number);
1855 }
1856 
1857 /*
1858  * The following code is moved from os.cpp for making this
1859  * code platform specific, which it is by its very nature.
1860  */
1861 
1862 // Will be modified when max signal is changed to be dynamic
1863 int os::sigexitnum_pd() {
1864   return NSIG;
1865 }
1866 
1867 // a counter for each possible signal value
1868 static volatile jint pending_signals[NSIG+1] = { 0 };
1869 
1870 // Bsd(POSIX) specific hand shaking semaphore.
1871 #ifdef __APPLE__
1872 typedef semaphore_t os_semaphore_t;
1873 #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1874 #define SEM_WAIT(sem)           semaphore_wait(sem)
1875 #define SEM_POST(sem)           semaphore_signal(sem)
1876 #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1877 #else
1878 typedef sem_t os_semaphore_t;
1879 #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1880 #define SEM_WAIT(sem)           sem_wait(&sem)
1881 #define SEM_POST(sem)           sem_post(&sem)
1882 #define SEM_DESTROY(sem)        sem_destroy(&sem)
1883 #endif
1884 
1885 class Semaphore : public StackObj {
1886   public:
1887     Semaphore();
1888     ~Semaphore();
1889     void signal();
1890     void wait();
1891     bool trywait();
1892     bool timedwait(unsigned int sec, int nsec);
1893   private:
1894     jlong currenttime() const;
1895     semaphore_t _semaphore;
1896 };
1897 
1898 Semaphore::Semaphore() : _semaphore(0) {
1899   SEM_INIT(_semaphore, 0);
1900 }
1901 
1902 Semaphore::~Semaphore() {
1903   SEM_DESTROY(_semaphore);
1904 }
1905 
1906 void Semaphore::signal() {
1907   SEM_POST(_semaphore);
1908 }
1909 
1910 void Semaphore::wait() {
1911   SEM_WAIT(_semaphore);
1912 }
1913 
1914 jlong Semaphore::currenttime() const {
1915     struct timeval tv;
1916     gettimeofday(&tv, NULL);
1917     return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1918 }
1919 
1920 #ifdef __APPLE__
1921 bool Semaphore::trywait() {
1922   return timedwait(0, 0);
1923 }
1924 
1925 bool Semaphore::timedwait(unsigned int sec, int nsec) {
1926   kern_return_t kr = KERN_ABORTED;
1927   mach_timespec_t waitspec;
1928   waitspec.tv_sec = sec;
1929   waitspec.tv_nsec = nsec;
1930 
1931   jlong starttime = currenttime();
1932 
1933   kr = semaphore_timedwait(_semaphore, waitspec);
1934   while (kr == KERN_ABORTED) {
1935     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1936 
1937     jlong current = currenttime();
1938     jlong passedtime = current - starttime;
1939 
1940     if (passedtime >= totalwait) {
1941       waitspec.tv_sec = 0;
1942       waitspec.tv_nsec = 0;
1943     } else {
1944       jlong waittime = totalwait - (current - starttime);
1945       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1946       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1947     }
1948 
1949     kr = semaphore_timedwait(_semaphore, waitspec);
1950   }
1951 
1952   return kr == KERN_SUCCESS;
1953 }
1954 
1955 #else
1956 
1957 bool Semaphore::trywait() {
1958   return sem_trywait(&_semaphore) == 0;
1959 }
1960 
1961 bool Semaphore::timedwait(unsigned int sec, int nsec) {
1962   struct timespec ts;
1963   jlong endtime = unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
1964 
1965   while (1) {
1966     int result = sem_timedwait(&_semaphore, &ts);
1967     if (result == 0) {
1968       return true;
1969     } else if (errno == EINTR) {
1970       continue;
1971     } else if (errno == ETIMEDOUT) {
1972       return false;
1973     } else {
1974       return false;
1975     }
1976   }
1977 }
1978 
1979 #endif // __APPLE__
1980 
1981 static os_semaphore_t sig_sem;
1982 static Semaphore sr_semaphore;
1983 
1984 void os::signal_init_pd() {
1985   // Initialize signal structures
1986   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1987 
1988   // Initialize signal semaphore
1989   ::SEM_INIT(sig_sem, 0);
1990 }
1991 
1992 void os::signal_notify(int sig) {
1993   Atomic::inc(&pending_signals[sig]);
1994   ::SEM_POST(sig_sem);
1995 }
1996 
1997 static int check_pending_signals(bool wait) {
1998   Atomic::store(0, &sigint_count);
1999   for (;;) {
2000     for (int i = 0; i < NSIG + 1; i++) {
2001       jint n = pending_signals[i];
2002       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2003         return i;
2004       }
2005     }
2006     if (!wait) {
2007       return -1;
2008     }
2009     JavaThread *thread = JavaThread::current();
2010     ThreadBlockInVM tbivm(thread);
2011 
2012     bool threadIsSuspended;
2013     do {
2014       thread->set_suspend_equivalent();
2015       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2016       ::SEM_WAIT(sig_sem);
2017 
2018       // were we externally suspended while we were waiting?
2019       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2020       if (threadIsSuspended) {
2021         //
2022         // The semaphore has been incremented, but while we were waiting
2023         // another thread suspended us. We don't want to continue running
2024         // while suspended because that would surprise the thread that
2025         // suspended us.
2026         //
2027         ::SEM_POST(sig_sem);
2028 
2029         thread->java_suspend_self();
2030       }
2031     } while (threadIsSuspended);
2032   }
2033 }
2034 
2035 int os::signal_lookup() {
2036   return check_pending_signals(false);
2037 }
2038 
2039 int os::signal_wait() {
2040   return check_pending_signals(true);
2041 }
2042 
2043 ////////////////////////////////////////////////////////////////////////////////
2044 // Virtual Memory
2045 
2046 int os::vm_page_size() {
2047   // Seems redundant as all get out
2048   assert(os::Bsd::page_size() != -1, "must call os::init");
2049   return os::Bsd::page_size();
2050 }
2051 
2052 // Solaris allocates memory by pages.
2053 int os::vm_allocation_granularity() {
2054   assert(os::Bsd::page_size() != -1, "must call os::init");
2055   return os::Bsd::page_size();
2056 }
2057 
2058 // Rationale behind this function:
2059 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2060 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2061 //  samples for JITted code. Here we create private executable mapping over the code cache
2062 //  and then we can use standard (well, almost, as mapping can change) way to provide
2063 //  info for the reporting script by storing timestamp and location of symbol
2064 void bsd_wrap_code(char* base, size_t size) {
2065   static volatile jint cnt = 0;
2066 
2067   if (!UseOprofile) {
2068     return;
2069   }
2070 
2071   char buf[PATH_MAX + 1];
2072   int num = Atomic::add(1, &cnt);
2073 
2074   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2075            os::get_temp_directory(), os::current_process_id(), num);
2076   unlink(buf);
2077 
2078   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2079 
2080   if (fd != -1) {
2081     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2082     if (rv != (off_t)-1) {
2083       if (::write(fd, "", 1) == 1) {
2084         mmap(base, size,
2085              PROT_READ|PROT_WRITE|PROT_EXEC,
2086              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2087       }
2088     }
2089     ::close(fd);
2090     unlink(buf);
2091   }
2092 }
2093 
2094 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2095                                     int err) {
2096   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2097           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2098           strerror(err), err);
2099 }
2100 
2101 // NOTE: Bsd kernel does not really reserve the pages for us.
2102 //       All it does is to check if there are enough free pages
2103 //       left at the time of mmap(). This could be a potential
2104 //       problem.
2105 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2106   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2107 #ifdef __OpenBSD__
2108   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2109   if (::mprotect(addr, size, prot) == 0) {
2110     return true;
2111   }
2112 #else
2113   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2114                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2115   if (res != (uintptr_t) MAP_FAILED) {
2116     return true;
2117   }
2118 #endif
2119 
2120   // Warn about any commit errors we see in non-product builds just
2121   // in case mmap() doesn't work as described on the man page.
2122   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2123 
2124   return false;
2125 }
2126 
2127 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2128                        bool exec) {
2129   // alignment_hint is ignored on this OS
2130   return pd_commit_memory(addr, size, exec);
2131 }
2132 
2133 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2134                                   const char* mesg) {
2135   assert(mesg != NULL, "mesg must be specified");
2136   if (!pd_commit_memory(addr, size, exec)) {
2137     // add extra info in product mode for vm_exit_out_of_memory():
2138     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2139     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2140   }
2141 }
2142 
2143 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2144                                   size_t alignment_hint, bool exec,
2145                                   const char* mesg) {
2146   // alignment_hint is ignored on this OS
2147   pd_commit_memory_or_exit(addr, size, exec, mesg);
2148 }
2149 
2150 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2151 }
2152 
2153 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2154   ::madvise(addr, bytes, MADV_DONTNEED);
2155 }
2156 
2157 void os::numa_make_global(char *addr, size_t bytes) {
2158 }
2159 
2160 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2161 }
2162 
2163 bool os::numa_topology_changed()   { return false; }
2164 
2165 size_t os::numa_get_groups_num() {
2166   return 1;
2167 }
2168 
2169 int os::numa_get_group_id() {
2170   return 0;
2171 }
2172 
2173 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2174   if (size > 0) {
2175     ids[0] = 0;
2176     return 1;
2177   }
2178   return 0;
2179 }
2180 
2181 bool os::get_page_info(char *start, page_info* info) {
2182   return false;
2183 }
2184 
2185 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2186   return end;
2187 }
2188 
2189 
2190 bool os::pd_uncommit_memory(char* addr, size_t size) {
2191 #ifdef __OpenBSD__
2192   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2193   return ::mprotect(addr, size, PROT_NONE) == 0;
2194 #else
2195   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2196                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2197   return res  != (uintptr_t) MAP_FAILED;
2198 #endif
2199 }
2200 
2201 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2202   return os::commit_memory(addr, size, !ExecMem);
2203 }
2204 
2205 // If this is a growable mapping, remove the guard pages entirely by
2206 // munmap()ping them.  If not, just call uncommit_memory().
2207 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2208   return os::uncommit_memory(addr, size);
2209 }
2210 
2211 static address _highest_vm_reserved_address = NULL;
2212 
2213 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2214 // at 'requested_addr'. If there are existing memory mappings at the same
2215 // location, however, they will be overwritten. If 'fixed' is false,
2216 // 'requested_addr' is only treated as a hint, the return value may or
2217 // may not start from the requested address. Unlike Bsd mmap(), this
2218 // function returns NULL to indicate failure.
2219 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2220   char * addr;
2221   int flags;
2222 
2223   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2224   if (fixed) {
2225     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2226     flags |= MAP_FIXED;
2227   }
2228 
2229   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2230   // touch an uncommitted page. Otherwise, the read/write might
2231   // succeed if we have enough swap space to back the physical page.
2232   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2233                        flags, -1, 0);
2234 
2235   if (addr != MAP_FAILED) {
2236     // anon_mmap() should only get called during VM initialization,
2237     // don't need lock (actually we can skip locking even it can be called
2238     // from multiple threads, because _highest_vm_reserved_address is just a
2239     // hint about the upper limit of non-stack memory regions.)
2240     if ((address)addr + bytes > _highest_vm_reserved_address) {
2241       _highest_vm_reserved_address = (address)addr + bytes;
2242     }
2243   }
2244 
2245   return addr == MAP_FAILED ? NULL : addr;
2246 }
2247 
2248 // Don't update _highest_vm_reserved_address, because there might be memory
2249 // regions above addr + size. If so, releasing a memory region only creates
2250 // a hole in the address space, it doesn't help prevent heap-stack collision.
2251 //
2252 static int anon_munmap(char * addr, size_t size) {
2253   return ::munmap(addr, size) == 0;
2254 }
2255 
2256 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2257                          size_t alignment_hint) {
2258   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2259 }
2260 
2261 bool os::pd_release_memory(char* addr, size_t size) {
2262   return anon_munmap(addr, size);
2263 }
2264 
2265 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2266   // Bsd wants the mprotect address argument to be page aligned.
2267   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2268 
2269   // According to SUSv3, mprotect() should only be used with mappings
2270   // established by mmap(), and mmap() always maps whole pages. Unaligned
2271   // 'addr' likely indicates problem in the VM (e.g. trying to change
2272   // protection of malloc'ed or statically allocated memory). Check the
2273   // caller if you hit this assert.
2274   assert(addr == bottom, "sanity check");
2275 
2276   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2277   return ::mprotect(bottom, size, prot) == 0;
2278 }
2279 
2280 // Set protections specified
2281 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2282                         bool is_committed) {
2283   unsigned int p = 0;
2284   switch (prot) {
2285   case MEM_PROT_NONE: p = PROT_NONE; break;
2286   case MEM_PROT_READ: p = PROT_READ; break;
2287   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2288   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2289   default:
2290     ShouldNotReachHere();
2291   }
2292   // is_committed is unused.
2293   return bsd_mprotect(addr, bytes, p);
2294 }
2295 
2296 bool os::guard_memory(char* addr, size_t size) {
2297   return bsd_mprotect(addr, size, PROT_NONE);
2298 }
2299 
2300 bool os::unguard_memory(char* addr, size_t size) {
2301   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2302 }
2303 
2304 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2305   return false;
2306 }
2307 
2308 // Large page support
2309 
2310 static size_t _large_page_size = 0;
2311 
2312 void os::large_page_init() {
2313 }
2314 
2315 
2316 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2317   // "exec" is passed in but not used.  Creating the shared image for
2318   // the code cache doesn't have an SHM_X executable permission to check.
2319   assert(UseLargePages && UseSHM, "only for SHM large pages");
2320 
2321   key_t key = IPC_PRIVATE;
2322   char *addr;
2323 
2324   bool warn_on_failure = UseLargePages &&
2325                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2326                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2327                         );
2328   char msg[128];
2329 
2330   // Create a large shared memory region to attach to based on size.
2331   // Currently, size is the total size of the heap
2332   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2333   if (shmid == -1) {
2334      // Possible reasons for shmget failure:
2335      // 1. shmmax is too small for Java heap.
2336      //    > check shmmax value: cat /proc/sys/kernel/shmmax
2337      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2338      // 2. not enough large page memory.
2339      //    > check available large pages: cat /proc/meminfo
2340      //    > increase amount of large pages:
2341      //          echo new_value > /proc/sys/vm/nr_hugepages
2342      //      Note 1: different Bsd may use different name for this property,
2343      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2344      //      Note 2: it's possible there's enough physical memory available but
2345      //            they are so fragmented after a long run that they can't
2346      //            coalesce into large pages. Try to reserve large pages when
2347      //            the system is still "fresh".
2348      if (warn_on_failure) {
2349        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2350        warning(msg);
2351      }
2352      return NULL;
2353   }
2354 
2355   // attach to the region
2356   addr = (char*)shmat(shmid, req_addr, 0);
2357   int err = errno;
2358 
2359   // Remove shmid. If shmat() is successful, the actual shared memory segment
2360   // will be deleted when it's detached by shmdt() or when the process
2361   // terminates. If shmat() is not successful this will remove the shared
2362   // segment immediately.
2363   shmctl(shmid, IPC_RMID, NULL);
2364 
2365   if ((intptr_t)addr == -1) {
2366      if (warn_on_failure) {
2367        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2368        warning(msg);
2369      }
2370      return NULL;
2371   }
2372 
2373   // The memory is committed
2374   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2375 
2376   return addr;
2377 }
2378 
2379 bool os::release_memory_special(char* base, size_t bytes) {
2380   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2381   // detaching the SHM segment will also delete it, see reserve_memory_special()
2382   int rslt = shmdt(base);
2383   if (rslt == 0) {
2384     tkr.record((address)base, bytes);
2385     return true;
2386   } else {
2387     tkr.discard();
2388     return false;
2389   }
2390 
2391 }
2392 
2393 size_t os::large_page_size() {
2394   return _large_page_size;
2395 }
2396 
2397 // HugeTLBFS allows application to commit large page memory on demand;
2398 // with SysV SHM the entire memory region must be allocated as shared
2399 // memory.
2400 bool os::can_commit_large_page_memory() {
2401   return UseHugeTLBFS;
2402 }
2403 
2404 bool os::can_execute_large_page_memory() {
2405   return UseHugeTLBFS;
2406 }
2407 
2408 // Reserve memory at an arbitrary address, only if that area is
2409 // available (and not reserved for something else).
2410 
2411 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2412   const int max_tries = 10;
2413   char* base[max_tries];
2414   size_t size[max_tries];
2415   const size_t gap = 0x000000;
2416 
2417   // Assert only that the size is a multiple of the page size, since
2418   // that's all that mmap requires, and since that's all we really know
2419   // about at this low abstraction level.  If we need higher alignment,
2420   // we can either pass an alignment to this method or verify alignment
2421   // in one of the methods further up the call chain.  See bug 5044738.
2422   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2423 
2424   // Repeatedly allocate blocks until the block is allocated at the
2425   // right spot. Give up after max_tries. Note that reserve_memory() will
2426   // automatically update _highest_vm_reserved_address if the call is
2427   // successful. The variable tracks the highest memory address every reserved
2428   // by JVM. It is used to detect heap-stack collision if running with
2429   // fixed-stack BsdThreads. Because here we may attempt to reserve more
2430   // space than needed, it could confuse the collision detecting code. To
2431   // solve the problem, save current _highest_vm_reserved_address and
2432   // calculate the correct value before return.
2433   address old_highest = _highest_vm_reserved_address;
2434 
2435   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2436   // if kernel honors the hint then we can return immediately.
2437   char * addr = anon_mmap(requested_addr, bytes, false);
2438   if (addr == requested_addr) {
2439      return requested_addr;
2440   }
2441 
2442   if (addr != NULL) {
2443      // mmap() is successful but it fails to reserve at the requested address
2444      anon_munmap(addr, bytes);
2445   }
2446 
2447   int i;
2448   for (i = 0; i < max_tries; ++i) {
2449     base[i] = reserve_memory(bytes);
2450 
2451     if (base[i] != NULL) {
2452       // Is this the block we wanted?
2453       if (base[i] == requested_addr) {
2454         size[i] = bytes;
2455         break;
2456       }
2457 
2458       // Does this overlap the block we wanted? Give back the overlapped
2459       // parts and try again.
2460 
2461       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2462       if (top_overlap >= 0 && top_overlap < bytes) {
2463         unmap_memory(base[i], top_overlap);
2464         base[i] += top_overlap;
2465         size[i] = bytes - top_overlap;
2466       } else {
2467         size_t bottom_overlap = base[i] + bytes - requested_addr;
2468         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2469           unmap_memory(requested_addr, bottom_overlap);
2470           size[i] = bytes - bottom_overlap;
2471         } else {
2472           size[i] = bytes;
2473         }
2474       }
2475     }
2476   }
2477 
2478   // Give back the unused reserved pieces.
2479 
2480   for (int j = 0; j < i; ++j) {
2481     if (base[j] != NULL) {
2482       unmap_memory(base[j], size[j]);
2483     }
2484   }
2485 
2486   if (i < max_tries) {
2487     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2488     return requested_addr;
2489   } else {
2490     _highest_vm_reserved_address = old_highest;
2491     return NULL;
2492   }
2493 }
2494 
2495 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2496   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2497 }
2498 
2499 // TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2500 // Solaris uses poll(), bsd uses park().
2501 // Poll() is likely a better choice, assuming that Thread.interrupt()
2502 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2503 // SIGSEGV, see 4355769.
2504 
2505 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2506   assert(thread == Thread::current(),  "thread consistency check");
2507 
2508   ParkEvent * const slp = thread->_SleepEvent ;
2509   slp->reset() ;
2510   OrderAccess::fence() ;
2511 
2512   if (interruptible) {
2513     jlong prevtime = javaTimeNanos();
2514 
2515     for (;;) {
2516       if (os::is_interrupted(thread, true)) {
2517         return OS_INTRPT;
2518       }
2519 
2520       jlong newtime = javaTimeNanos();
2521 
2522       if (newtime - prevtime < 0) {
2523         // time moving backwards, should only happen if no monotonic clock
2524         // not a guarantee() because JVM should not abort on kernel/glibc bugs
2525         assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2526       } else {
2527         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2528       }
2529 
2530       if(millis <= 0) {
2531         return OS_OK;
2532       }
2533 
2534       prevtime = newtime;
2535 
2536       {
2537         assert(thread->is_Java_thread(), "sanity check");
2538         JavaThread *jt = (JavaThread *) thread;
2539         ThreadBlockInVM tbivm(jt);
2540         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2541 
2542         jt->set_suspend_equivalent();
2543         // cleared by handle_special_suspend_equivalent_condition() or
2544         // java_suspend_self() via check_and_wait_while_suspended()
2545 
2546         slp->park(millis);
2547 
2548         // were we externally suspended while we were waiting?
2549         jt->check_and_wait_while_suspended();
2550       }
2551     }
2552   } else {
2553     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2554     jlong prevtime = javaTimeNanos();
2555 
2556     for (;;) {
2557       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2558       // the 1st iteration ...
2559       jlong newtime = javaTimeNanos();
2560 
2561       if (newtime - prevtime < 0) {
2562         // time moving backwards, should only happen if no monotonic clock
2563         // not a guarantee() because JVM should not abort on kernel/glibc bugs
2564         assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2565       } else {
2566         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2567       }
2568 
2569       if(millis <= 0) break ;
2570 
2571       prevtime = newtime;
2572       slp->park(millis);
2573     }
2574     return OS_OK ;
2575   }
2576 }
2577 
2578 int os::naked_sleep() {
2579   // %% make the sleep time an integer flag. for now use 1 millisec.
2580   return os::sleep(Thread::current(), 1, false);
2581 }
2582 
2583 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2584 void os::infinite_sleep() {
2585   while (true) {    // sleep forever ...
2586     ::sleep(100);   // ... 100 seconds at a time
2587   }
2588 }
2589 
2590 // Used to convert frequent JVM_Yield() to nops
2591 bool os::dont_yield() {
2592   return DontYieldALot;
2593 }
2594 
2595 void os::yield() {
2596   sched_yield();
2597 }
2598 
2599 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2600 
2601 void os::yield_all(int attempts) {
2602   // Yields to all threads, including threads with lower priorities
2603   // Threads on Bsd are all with same priority. The Solaris style
2604   // os::yield_all() with nanosleep(1ms) is not necessary.
2605   sched_yield();
2606 }
2607 
2608 // Called from the tight loops to possibly influence time-sharing heuristics
2609 void os::loop_breaker(int attempts) {
2610   os::yield_all(attempts);
2611 }
2612 
2613 ////////////////////////////////////////////////////////////////////////////////
2614 // thread priority support
2615 
2616 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2617 // only supports dynamic priority, static priority must be zero. For real-time
2618 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2619 // However, for large multi-threaded applications, SCHED_RR is not only slower
2620 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2621 // of 5 runs - Sep 2005).
2622 //
2623 // The following code actually changes the niceness of kernel-thread/LWP. It
2624 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2625 // not the entire user process, and user level threads are 1:1 mapped to kernel
2626 // threads. It has always been the case, but could change in the future. For
2627 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2628 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2629 
2630 #if !defined(__APPLE__)
2631 int os::java_to_os_priority[CriticalPriority + 1] = {
2632   19,              // 0 Entry should never be used
2633 
2634    0,              // 1 MinPriority
2635    3,              // 2
2636    6,              // 3
2637 
2638   10,              // 4
2639   15,              // 5 NormPriority
2640   18,              // 6
2641 
2642   21,              // 7
2643   25,              // 8
2644   28,              // 9 NearMaxPriority
2645 
2646   31,              // 10 MaxPriority
2647 
2648   31               // 11 CriticalPriority
2649 };
2650 #else
2651 /* Using Mach high-level priority assignments */
2652 int os::java_to_os_priority[CriticalPriority + 1] = {
2653    0,              // 0 Entry should never be used (MINPRI_USER)
2654 
2655   27,              // 1 MinPriority
2656   28,              // 2
2657   29,              // 3
2658 
2659   30,              // 4
2660   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2661   32,              // 6
2662 
2663   33,              // 7
2664   34,              // 8
2665   35,              // 9 NearMaxPriority
2666 
2667   36,              // 10 MaxPriority
2668 
2669   36               // 11 CriticalPriority
2670 };
2671 #endif
2672 
2673 static int prio_init() {
2674   if (ThreadPriorityPolicy == 1) {
2675     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2676     // if effective uid is not root. Perhaps, a more elegant way of doing
2677     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2678     if (geteuid() != 0) {
2679       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2680         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2681       }
2682       ThreadPriorityPolicy = 0;
2683     }
2684   }
2685   if (UseCriticalJavaThreadPriority) {
2686     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2687   }
2688   return 0;
2689 }
2690 
2691 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2692   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2693 
2694 #ifdef __OpenBSD__
2695   // OpenBSD pthread_setprio starves low priority threads
2696   return OS_OK;
2697 #elif defined(__FreeBSD__)
2698   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2699 #elif defined(__APPLE__) || defined(__NetBSD__)
2700   struct sched_param sp;
2701   int policy;
2702   pthread_t self = pthread_self();
2703 
2704   if (pthread_getschedparam(self, &policy, &sp) != 0)
2705     return OS_ERR;
2706 
2707   sp.sched_priority = newpri;
2708   if (pthread_setschedparam(self, policy, &sp) != 0)
2709     return OS_ERR;
2710 
2711   return OS_OK;
2712 #else
2713   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2714   return (ret == 0) ? OS_OK : OS_ERR;
2715 #endif
2716 }
2717 
2718 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2719   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2720     *priority_ptr = java_to_os_priority[NormPriority];
2721     return OS_OK;
2722   }
2723 
2724   errno = 0;
2725 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2726   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2727 #elif defined(__APPLE__) || defined(__NetBSD__)
2728   int policy;
2729   struct sched_param sp;
2730 
2731   pthread_getschedparam(pthread_self(), &policy, &sp);
2732   *priority_ptr = sp.sched_priority;
2733 #else
2734   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2735 #endif
2736   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2737 }
2738 
2739 // Hint to the underlying OS that a task switch would not be good.
2740 // Void return because it's a hint and can fail.
2741 void os::hint_no_preempt() {}
2742 
2743 ////////////////////////////////////////////////////////////////////////////////
2744 // suspend/resume support
2745 
2746 //  the low-level signal-based suspend/resume support is a remnant from the
2747 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2748 //  within hotspot. Now there is a single use-case for this:
2749 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2750 //      that runs in the watcher thread.
2751 //  The remaining code is greatly simplified from the more general suspension
2752 //  code that used to be used.
2753 //
2754 //  The protocol is quite simple:
2755 //  - suspend:
2756 //      - sends a signal to the target thread
2757 //      - polls the suspend state of the osthread using a yield loop
2758 //      - target thread signal handler (SR_handler) sets suspend state
2759 //        and blocks in sigsuspend until continued
2760 //  - resume:
2761 //      - sets target osthread state to continue
2762 //      - sends signal to end the sigsuspend loop in the SR_handler
2763 //
2764 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2765 //
2766 
2767 static void resume_clear_context(OSThread *osthread) {
2768   osthread->set_ucontext(NULL);
2769   osthread->set_siginfo(NULL);
2770 }
2771 
2772 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2773   osthread->set_ucontext(context);
2774   osthread->set_siginfo(siginfo);
2775 }
2776 
2777 //
2778 // Handler function invoked when a thread's execution is suspended or
2779 // resumed. We have to be careful that only async-safe functions are
2780 // called here (Note: most pthread functions are not async safe and
2781 // should be avoided.)
2782 //
2783 // Note: sigwait() is a more natural fit than sigsuspend() from an
2784 // interface point of view, but sigwait() prevents the signal hander
2785 // from being run. libpthread would get very confused by not having
2786 // its signal handlers run and prevents sigwait()'s use with the
2787 // mutex granting granting signal.
2788 //
2789 // Currently only ever called on the VMThread or JavaThread
2790 //
2791 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2792   // Save and restore errno to avoid confusing native code with EINTR
2793   // after sigsuspend.
2794   int old_errno = errno;
2795 
2796   Thread* thread = Thread::current();
2797   OSThread* osthread = thread->osthread();
2798   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2799 
2800   os::SuspendResume::State current = osthread->sr.state();
2801   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2802     suspend_save_context(osthread, siginfo, context);
2803 
2804     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2805     os::SuspendResume::State state = osthread->sr.suspended();
2806     if (state == os::SuspendResume::SR_SUSPENDED) {
2807       sigset_t suspend_set;  // signals for sigsuspend()
2808 
2809       // get current set of blocked signals and unblock resume signal
2810       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2811       sigdelset(&suspend_set, SR_signum);
2812 
2813       sr_semaphore.signal();
2814       // wait here until we are resumed
2815       while (1) {
2816         sigsuspend(&suspend_set);
2817 
2818         os::SuspendResume::State result = osthread->sr.running();
2819         if (result == os::SuspendResume::SR_RUNNING) {
2820           sr_semaphore.signal();
2821           break;
2822         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2823           ShouldNotReachHere();
2824         }
2825       }
2826 
2827     } else if (state == os::SuspendResume::SR_RUNNING) {
2828       // request was cancelled, continue
2829     } else {
2830       ShouldNotReachHere();
2831     }
2832 
2833     resume_clear_context(osthread);
2834   } else if (current == os::SuspendResume::SR_RUNNING) {
2835     // request was cancelled, continue
2836   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2837     // ignore
2838   } else {
2839     // ignore
2840   }
2841 
2842   errno = old_errno;
2843 }
2844 
2845 
2846 static int SR_initialize() {
2847   struct sigaction act;
2848   char *s;
2849   /* Get signal number to use for suspend/resume */
2850   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2851     int sig = ::strtol(s, 0, 10);
2852     if (sig > 0 || sig < NSIG) {
2853         SR_signum = sig;
2854     }
2855   }
2856 
2857   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2858         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2859 
2860   sigemptyset(&SR_sigset);
2861   sigaddset(&SR_sigset, SR_signum);
2862 
2863   /* Set up signal handler for suspend/resume */
2864   act.sa_flags = SA_RESTART|SA_SIGINFO;
2865   act.sa_handler = (void (*)(int)) SR_handler;
2866 
2867   // SR_signum is blocked by default.
2868   // 4528190 - We also need to block pthread restart signal (32 on all
2869   // supported Bsd platforms). Note that BsdThreads need to block
2870   // this signal for all threads to work properly. So we don't have
2871   // to use hard-coded signal number when setting up the mask.
2872   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2873 
2874   if (sigaction(SR_signum, &act, 0) == -1) {
2875     return -1;
2876   }
2877 
2878   // Save signal flag
2879   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2880   return 0;
2881 }
2882 
2883 static int sr_notify(OSThread* osthread) {
2884   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2885   assert_status(status == 0, status, "pthread_kill");
2886   return status;
2887 }
2888 
2889 // "Randomly" selected value for how long we want to spin
2890 // before bailing out on suspending a thread, also how often
2891 // we send a signal to a thread we want to resume
2892 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2893 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2894 
2895 // returns true on success and false on error - really an error is fatal
2896 // but this seems the normal response to library errors
2897 static bool do_suspend(OSThread* osthread) {
2898   assert(osthread->sr.is_running(), "thread should be running");
2899   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2900 
2901   // mark as suspended and send signal
2902   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2903     // failed to switch, state wasn't running?
2904     ShouldNotReachHere();
2905     return false;
2906   }
2907 
2908   if (sr_notify(osthread) != 0) {
2909     ShouldNotReachHere();
2910   }
2911 
2912   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2913   while (true) {
2914     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2915       break;
2916     } else {
2917       // timeout
2918       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2919       if (cancelled == os::SuspendResume::SR_RUNNING) {
2920         return false;
2921       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2922         // make sure that we consume the signal on the semaphore as well
2923         sr_semaphore.wait();
2924         break;
2925       } else {
2926         ShouldNotReachHere();
2927         return false;
2928       }
2929     }
2930   }
2931 
2932   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2933   return true;
2934 }
2935 
2936 static void do_resume(OSThread* osthread) {
2937   assert(osthread->sr.is_suspended(), "thread should be suspended");
2938   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2939 
2940   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2941     // failed to switch to WAKEUP_REQUEST
2942     ShouldNotReachHere();
2943     return;
2944   }
2945 
2946   while (true) {
2947     if (sr_notify(osthread) == 0) {
2948       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2949         if (osthread->sr.is_running()) {
2950           return;
2951         }
2952       }
2953     } else {
2954       ShouldNotReachHere();
2955     }
2956   }
2957 
2958   guarantee(osthread->sr.is_running(), "Must be running!");
2959 }
2960 
2961 ////////////////////////////////////////////////////////////////////////////////
2962 // interrupt support
2963 
2964 void os::interrupt(Thread* thread) {
2965   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2966     "possibility of dangling Thread pointer");
2967 
2968   OSThread* osthread = thread->osthread();
2969 
2970   if (!osthread->interrupted()) {
2971     osthread->set_interrupted(true);
2972     // More than one thread can get here with the same value of osthread,
2973     // resulting in multiple notifications.  We do, however, want the store
2974     // to interrupted() to be visible to other threads before we execute unpark().
2975     OrderAccess::fence();
2976     ParkEvent * const slp = thread->_SleepEvent ;
2977     if (slp != NULL) slp->unpark() ;
2978   }
2979 
2980   // For JSR166. Unpark even if interrupt status already was set
2981   if (thread->is_Java_thread())
2982     ((JavaThread*)thread)->parker()->unpark();
2983 
2984   ParkEvent * ev = thread->_ParkEvent ;
2985   if (ev != NULL) ev->unpark() ;
2986 
2987 }
2988 
2989 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
2990   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2991     "possibility of dangling Thread pointer");
2992 
2993   OSThread* osthread = thread->osthread();
2994 
2995   bool interrupted = osthread->interrupted();
2996 
2997   if (interrupted && clear_interrupted) {
2998     osthread->set_interrupted(false);
2999     // consider thread->_SleepEvent->reset() ... optional optimization
3000   }
3001 
3002   return interrupted;
3003 }
3004 
3005 ///////////////////////////////////////////////////////////////////////////////////
3006 // signal handling (except suspend/resume)
3007 
3008 // This routine may be used by user applications as a "hook" to catch signals.
3009 // The user-defined signal handler must pass unrecognized signals to this
3010 // routine, and if it returns true (non-zero), then the signal handler must
3011 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3012 // routine will never retun false (zero), but instead will execute a VM panic
3013 // routine kill the process.
3014 //
3015 // If this routine returns false, it is OK to call it again.  This allows
3016 // the user-defined signal handler to perform checks either before or after
3017 // the VM performs its own checks.  Naturally, the user code would be making
3018 // a serious error if it tried to handle an exception (such as a null check
3019 // or breakpoint) that the VM was generating for its own correct operation.
3020 //
3021 // This routine may recognize any of the following kinds of signals:
3022 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3023 // It should be consulted by handlers for any of those signals.
3024 //
3025 // The caller of this routine must pass in the three arguments supplied
3026 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3027 // field of the structure passed to sigaction().  This routine assumes that
3028 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3029 //
3030 // Note that the VM will print warnings if it detects conflicting signal
3031 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3032 //
3033 extern "C" JNIEXPORT int
3034 JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
3035                         void* ucontext, int abort_if_unrecognized);
3036 
3037 void signalHandler(int sig, siginfo_t* info, void* uc) {
3038   assert(info != NULL && uc != NULL, "it must be old kernel");
3039   int orig_errno = errno;  // Preserve errno value over signal handler.
3040   JVM_handle_bsd_signal(sig, info, uc, true);
3041   errno = orig_errno;
3042 }
3043 
3044 
3045 // This boolean allows users to forward their own non-matching signals
3046 // to JVM_handle_bsd_signal, harmlessly.
3047 bool os::Bsd::signal_handlers_are_installed = false;
3048 
3049 // For signal-chaining
3050 struct sigaction os::Bsd::sigact[MAXSIGNUM];
3051 unsigned int os::Bsd::sigs = 0;
3052 bool os::Bsd::libjsig_is_loaded = false;
3053 typedef struct sigaction *(*get_signal_t)(int);
3054 get_signal_t os::Bsd::get_signal_action = NULL;
3055 
3056 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3057   struct sigaction *actp = NULL;
3058 
3059   if (libjsig_is_loaded) {
3060     // Retrieve the old signal handler from libjsig
3061     actp = (*get_signal_action)(sig);
3062   }
3063   if (actp == NULL) {
3064     // Retrieve the preinstalled signal handler from jvm
3065     actp = get_preinstalled_handler(sig);
3066   }
3067 
3068   return actp;
3069 }
3070 
3071 static bool call_chained_handler(struct sigaction *actp, int sig,
3072                                  siginfo_t *siginfo, void *context) {
3073   // Call the old signal handler
3074   if (actp->sa_handler == SIG_DFL) {
3075     // It's more reasonable to let jvm treat it as an unexpected exception
3076     // instead of taking the default action.
3077     return false;
3078   } else if (actp->sa_handler != SIG_IGN) {
3079     if ((actp->sa_flags & SA_NODEFER) == 0) {
3080       // automaticlly block the signal
3081       sigaddset(&(actp->sa_mask), sig);
3082     }
3083 
3084     sa_handler_t hand;
3085     sa_sigaction_t sa;
3086     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3087     // retrieve the chained handler
3088     if (siginfo_flag_set) {
3089       sa = actp->sa_sigaction;
3090     } else {
3091       hand = actp->sa_handler;
3092     }
3093 
3094     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3095       actp->sa_handler = SIG_DFL;
3096     }
3097 
3098     // try to honor the signal mask
3099     sigset_t oset;
3100     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3101 
3102     // call into the chained handler
3103     if (siginfo_flag_set) {
3104       (*sa)(sig, siginfo, context);
3105     } else {
3106       (*hand)(sig);
3107     }
3108 
3109     // restore the signal mask
3110     pthread_sigmask(SIG_SETMASK, &oset, 0);
3111   }
3112   // Tell jvm's signal handler the signal is taken care of.
3113   return true;
3114 }
3115 
3116 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3117   bool chained = false;
3118   // signal-chaining
3119   if (UseSignalChaining) {
3120     struct sigaction *actp = get_chained_signal_action(sig);
3121     if (actp != NULL) {
3122       chained = call_chained_handler(actp, sig, siginfo, context);
3123     }
3124   }
3125   return chained;
3126 }
3127 
3128 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3129   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3130     return &sigact[sig];
3131   }
3132   return NULL;
3133 }
3134 
3135 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3136   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3137   sigact[sig] = oldAct;
3138   sigs |= (unsigned int)1 << sig;
3139 }
3140 
3141 // for diagnostic
3142 int os::Bsd::sigflags[MAXSIGNUM];
3143 
3144 int os::Bsd::get_our_sigflags(int sig) {
3145   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3146   return sigflags[sig];
3147 }
3148 
3149 void os::Bsd::set_our_sigflags(int sig, int flags) {
3150   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3151   sigflags[sig] = flags;
3152 }
3153 
3154 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3155   // Check for overwrite.
3156   struct sigaction oldAct;
3157   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3158 
3159   void* oldhand = oldAct.sa_sigaction
3160                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3161                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3162   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3163       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3164       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3165     if (AllowUserSignalHandlers || !set_installed) {
3166       // Do not overwrite; user takes responsibility to forward to us.
3167       return;
3168     } else if (UseSignalChaining) {
3169       // save the old handler in jvm
3170       save_preinstalled_handler(sig, oldAct);
3171       // libjsig also interposes the sigaction() call below and saves the
3172       // old sigaction on it own.
3173     } else {
3174       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3175                     "%#lx for signal %d.", (long)oldhand, sig));
3176     }
3177   }
3178 
3179   struct sigaction sigAct;
3180   sigfillset(&(sigAct.sa_mask));
3181   sigAct.sa_handler = SIG_DFL;
3182   if (!set_installed) {
3183     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3184   } else {
3185     sigAct.sa_sigaction = signalHandler;
3186     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3187   }
3188 #if __APPLE__
3189   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3190   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3191   // if the signal handler declares it will handle it on alternate stack.
3192   // Notice we only declare we will handle it on alt stack, but we are not
3193   // actually going to use real alt stack - this is just a workaround.
3194   // Please see ux_exception.c, method catch_mach_exception_raise for details
3195   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3196   if (sig == SIGSEGV) {
3197     sigAct.sa_flags |= SA_ONSTACK;
3198   }
3199 #endif
3200 
3201   // Save flags, which are set by ours
3202   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3203   sigflags[sig] = sigAct.sa_flags;
3204 
3205   int ret = sigaction(sig, &sigAct, &oldAct);
3206   assert(ret == 0, "check");
3207 
3208   void* oldhand2  = oldAct.sa_sigaction
3209                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3210                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3211   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3212 }
3213 
3214 // install signal handlers for signals that HotSpot needs to
3215 // handle in order to support Java-level exception handling.
3216 
3217 void os::Bsd::install_signal_handlers() {
3218   if (!signal_handlers_are_installed) {
3219     signal_handlers_are_installed = true;
3220 
3221     // signal-chaining
3222     typedef void (*signal_setting_t)();
3223     signal_setting_t begin_signal_setting = NULL;
3224     signal_setting_t end_signal_setting = NULL;
3225     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3226                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3227     if (begin_signal_setting != NULL) {
3228       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3229                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3230       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3231                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3232       libjsig_is_loaded = true;
3233       assert(UseSignalChaining, "should enable signal-chaining");
3234     }
3235     if (libjsig_is_loaded) {
3236       // Tell libjsig jvm is setting signal handlers
3237       (*begin_signal_setting)();
3238     }
3239 
3240     set_signal_handler(SIGSEGV, true);
3241     set_signal_handler(SIGPIPE, true);
3242     set_signal_handler(SIGBUS, true);
3243     set_signal_handler(SIGILL, true);
3244     set_signal_handler(SIGFPE, true);
3245     set_signal_handler(SIGXFSZ, true);
3246 
3247 #if defined(__APPLE__)
3248     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3249     // signals caught and handled by the JVM. To work around this, we reset the mach task
3250     // signal handler that's placed on our process by CrashReporter. This disables
3251     // CrashReporter-based reporting.
3252     //
3253     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3254     // on caught fatal signals.
3255     //
3256     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3257     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3258     // exception handling, while leaving the standard BSD signal handlers functional.
3259     kern_return_t kr;
3260     kr = task_set_exception_ports(mach_task_self(),
3261         EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3262         MACH_PORT_NULL,
3263         EXCEPTION_STATE_IDENTITY,
3264         MACHINE_THREAD_STATE);
3265 
3266     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3267 #endif
3268 
3269     if (libjsig_is_loaded) {
3270       // Tell libjsig jvm finishes setting signal handlers
3271       (*end_signal_setting)();
3272     }
3273 
3274     // We don't activate signal checker if libjsig is in place, we trust ourselves
3275     // and if UserSignalHandler is installed all bets are off
3276     if (CheckJNICalls) {
3277       if (libjsig_is_loaded) {
3278         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3279         check_signals = false;
3280       }
3281       if (AllowUserSignalHandlers) {
3282         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3283         check_signals = false;
3284       }
3285     }
3286   }
3287 }
3288 
3289 
3290 /////
3291 // glibc on Bsd platform uses non-documented flag
3292 // to indicate, that some special sort of signal
3293 // trampoline is used.
3294 // We will never set this flag, and we should
3295 // ignore this flag in our diagnostic
3296 #ifdef SIGNIFICANT_SIGNAL_MASK
3297 #undef SIGNIFICANT_SIGNAL_MASK
3298 #endif
3299 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3300 
3301 static const char* get_signal_handler_name(address handler,
3302                                            char* buf, int buflen) {
3303   int offset;
3304   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3305   if (found) {
3306     // skip directory names
3307     const char *p1, *p2;
3308     p1 = buf;
3309     size_t len = strlen(os::file_separator());
3310     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3311     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3312   } else {
3313     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3314   }
3315   return buf;
3316 }
3317 
3318 static void print_signal_handler(outputStream* st, int sig,
3319                                  char* buf, size_t buflen) {
3320   struct sigaction sa;
3321 
3322   sigaction(sig, NULL, &sa);
3323 
3324   // See comment for SIGNIFICANT_SIGNAL_MASK define
3325   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3326 
3327   st->print("%s: ", os::exception_name(sig, buf, buflen));
3328 
3329   address handler = (sa.sa_flags & SA_SIGINFO)
3330     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3331     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3332 
3333   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3334     st->print("SIG_DFL");
3335   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3336     st->print("SIG_IGN");
3337   } else {
3338     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3339   }
3340 
3341   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3342 
3343   address rh = VMError::get_resetted_sighandler(sig);
3344   // May be, handler was resetted by VMError?
3345   if(rh != NULL) {
3346     handler = rh;
3347     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3348   }
3349 
3350   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3351 
3352   // Check: is it our handler?
3353   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3354      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3355     // It is our signal handler
3356     // check for flags, reset system-used one!
3357     if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3358       st->print(
3359                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3360                 os::Bsd::get_our_sigflags(sig));
3361     }
3362   }
3363   st->cr();
3364 }
3365 
3366 
3367 #define DO_SIGNAL_CHECK(sig) \
3368   if (!sigismember(&check_signal_done, sig)) \
3369     os::Bsd::check_signal_handler(sig)
3370 
3371 // This method is a periodic task to check for misbehaving JNI applications
3372 // under CheckJNI, we can add any periodic checks here
3373 
3374 void os::run_periodic_checks() {
3375 
3376   if (check_signals == false) return;
3377 
3378   // SEGV and BUS if overridden could potentially prevent
3379   // generation of hs*.log in the event of a crash, debugging
3380   // such a case can be very challenging, so we absolutely
3381   // check the following for a good measure:
3382   DO_SIGNAL_CHECK(SIGSEGV);
3383   DO_SIGNAL_CHECK(SIGILL);
3384   DO_SIGNAL_CHECK(SIGFPE);
3385   DO_SIGNAL_CHECK(SIGBUS);
3386   DO_SIGNAL_CHECK(SIGPIPE);
3387   DO_SIGNAL_CHECK(SIGXFSZ);
3388 
3389 
3390   // ReduceSignalUsage allows the user to override these handlers
3391   // see comments at the very top and jvm_solaris.h
3392   if (!ReduceSignalUsage) {
3393     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3394     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3395     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3396     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3397   }
3398 
3399   DO_SIGNAL_CHECK(SR_signum);
3400   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3401 }
3402 
3403 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3404 
3405 static os_sigaction_t os_sigaction = NULL;
3406 
3407 void os::Bsd::check_signal_handler(int sig) {
3408   char buf[O_BUFLEN];
3409   address jvmHandler = NULL;
3410 
3411 
3412   struct sigaction act;
3413   if (os_sigaction == NULL) {
3414     // only trust the default sigaction, in case it has been interposed
3415     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3416     if (os_sigaction == NULL) return;
3417   }
3418 
3419   os_sigaction(sig, (struct sigaction*)NULL, &act);
3420 
3421 
3422   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3423 
3424   address thisHandler = (act.sa_flags & SA_SIGINFO)
3425     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3426     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3427 
3428 
3429   switch(sig) {
3430   case SIGSEGV:
3431   case SIGBUS:
3432   case SIGFPE:
3433   case SIGPIPE:
3434   case SIGILL:
3435   case SIGXFSZ:
3436     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3437     break;
3438 
3439   case SHUTDOWN1_SIGNAL:
3440   case SHUTDOWN2_SIGNAL:
3441   case SHUTDOWN3_SIGNAL:
3442   case BREAK_SIGNAL:
3443     jvmHandler = (address)user_handler();
3444     break;
3445 
3446   case INTERRUPT_SIGNAL:
3447     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3448     break;
3449 
3450   default:
3451     if (sig == SR_signum) {
3452       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3453     } else {
3454       return;
3455     }
3456     break;
3457   }
3458 
3459   if (thisHandler != jvmHandler) {
3460     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3461     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3462     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3463     // No need to check this sig any longer
3464     sigaddset(&check_signal_done, sig);
3465   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3466     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3467     tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3468     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3469     // No need to check this sig any longer
3470     sigaddset(&check_signal_done, sig);
3471   }
3472 
3473   // Dump all the signal
3474   if (sigismember(&check_signal_done, sig)) {
3475     print_signal_handlers(tty, buf, O_BUFLEN);
3476   }
3477 }
3478 
3479 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3480 
3481 extern bool signal_name(int signo, char* buf, size_t len);
3482 
3483 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3484   if (0 < exception_code && exception_code <= SIGRTMAX) {
3485     // signal
3486     if (!signal_name(exception_code, buf, size)) {
3487       jio_snprintf(buf, size, "SIG%d", exception_code);
3488     }
3489     return buf;
3490   } else {
3491     return NULL;
3492   }
3493 }
3494 
3495 // this is called _before_ the most of global arguments have been parsed
3496 void os::init(void) {
3497   char dummy;   /* used to get a guess on initial stack address */
3498 //  first_hrtime = gethrtime();
3499 
3500   // With BsdThreads the JavaMain thread pid (primordial thread)
3501   // is different than the pid of the java launcher thread.
3502   // So, on Bsd, the launcher thread pid is passed to the VM
3503   // via the sun.java.launcher.pid property.
3504   // Use this property instead of getpid() if it was correctly passed.
3505   // See bug 6351349.
3506   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3507 
3508   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3509 
3510   clock_tics_per_sec = CLK_TCK;
3511 
3512   init_random(1234567);
3513 
3514   ThreadCritical::initialize();
3515 
3516   Bsd::set_page_size(getpagesize());
3517   if (Bsd::page_size() == -1) {
3518     fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3519                   strerror(errno)));
3520   }
3521   init_page_sizes((size_t) Bsd::page_size());
3522 
3523   Bsd::initialize_system_info();
3524 
3525   // main_thread points to the aboriginal thread
3526   Bsd::_main_thread = pthread_self();
3527 
3528   Bsd::clock_init();
3529   initial_time_count = os::elapsed_counter();
3530 
3531 #ifdef __APPLE__
3532   // XXXDARWIN
3533   // Work around the unaligned VM callbacks in hotspot's
3534   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3535   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3536   // alignment when doing symbol lookup. To work around this, we force early
3537   // binding of all symbols now, thus binding when alignment is known-good.
3538   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3539 #endif
3540 }
3541 
3542 // To install functions for atexit system call
3543 extern "C" {
3544   static void perfMemory_exit_helper() {
3545     perfMemory_exit();
3546   }
3547 }
3548 
3549 // this is called _after_ the global arguments have been parsed
3550 jint os::init_2(void)
3551 {
3552   // Allocate a single page and mark it as readable for safepoint polling
3553   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3554   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3555 
3556   os::set_polling_page( polling_page );
3557 
3558 #ifndef PRODUCT
3559   if(Verbose && PrintMiscellaneous)
3560     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3561 #endif
3562 
3563   if (!UseMembar) {
3564     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3565     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3566     os::set_memory_serialize_page( mem_serialize_page );
3567 
3568 #ifndef PRODUCT
3569     if(Verbose && PrintMiscellaneous)
3570       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3571 #endif
3572   }
3573 
3574   os::large_page_init();
3575 
3576   // initialize suspend/resume support - must do this before signal_sets_init()
3577   if (SR_initialize() != 0) {
3578     perror("SR_initialize failed");
3579     return JNI_ERR;
3580   }
3581 
3582   Bsd::signal_sets_init();
3583   Bsd::install_signal_handlers();
3584 
3585   // Check minimum allowable stack size for thread creation and to initialize
3586   // the java system classes, including StackOverflowError - depends on page
3587   // size.  Add a page for compiler2 recursion in main thread.
3588   // Add in 2*BytesPerWord times page size to account for VM stack during
3589   // class initialization depending on 32 or 64 bit VM.
3590   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3591             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3592                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3593 
3594   size_t threadStackSizeInBytes = ThreadStackSize * K;
3595   if (threadStackSizeInBytes != 0 &&
3596       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3597         tty->print_cr("\nThe stack size specified is too small, "
3598                       "Specify at least %dk",
3599                       os::Bsd::min_stack_allowed/ K);
3600         return JNI_ERR;
3601   }
3602 
3603   // Make the stack size a multiple of the page size so that
3604   // the yellow/red zones can be guarded.
3605   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3606         vm_page_size()));
3607 
3608   if (MaxFDLimit) {
3609     // set the number of file descriptors to max. print out error
3610     // if getrlimit/setrlimit fails but continue regardless.
3611     struct rlimit nbr_files;
3612     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3613     if (status != 0) {
3614       if (PrintMiscellaneous && (Verbose || WizardMode))
3615         perror("os::init_2 getrlimit failed");
3616     } else {
3617       nbr_files.rlim_cur = nbr_files.rlim_max;
3618 
3619 #ifdef __APPLE__
3620       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3621       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3622       // be used instead
3623       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3624 #endif
3625 
3626       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3627       if (status != 0) {
3628         if (PrintMiscellaneous && (Verbose || WizardMode))
3629           perror("os::init_2 setrlimit failed");
3630       }
3631     }
3632   }
3633 
3634   // at-exit methods are called in the reverse order of their registration.
3635   // atexit functions are called on return from main or as a result of a
3636   // call to exit(3C). There can be only 32 of these functions registered
3637   // and atexit() does not set errno.
3638 
3639   if (PerfAllowAtExitRegistration) {
3640     // only register atexit functions if PerfAllowAtExitRegistration is set.
3641     // atexit functions can be delayed until process exit time, which
3642     // can be problematic for embedded VM situations. Embedded VMs should
3643     // call DestroyJavaVM() to assure that VM resources are released.
3644 
3645     // note: perfMemory_exit_helper atexit function may be removed in
3646     // the future if the appropriate cleanup code can be added to the
3647     // VM_Exit VMOperation's doit method.
3648     if (atexit(perfMemory_exit_helper) != 0) {
3649       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3650     }
3651   }
3652 
3653   // initialize thread priority policy
3654   prio_init();
3655 
3656 #ifdef __APPLE__
3657   // dynamically link to objective c gc registration
3658   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3659   if (handleLibObjc != NULL) {
3660     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3661   }
3662 #endif
3663 
3664   return JNI_OK;
3665 }
3666 
3667 // this is called at the end of vm_initialization
3668 void os::init_3(void) { }
3669 
3670 // Mark the polling page as unreadable
3671 void os::make_polling_page_unreadable(void) {
3672   if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3673     fatal("Could not disable polling page");
3674 };
3675 
3676 // Mark the polling page as readable
3677 void os::make_polling_page_readable(void) {
3678   if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3679     fatal("Could not enable polling page");
3680   }
3681 };
3682 
3683 int os::active_processor_count() {
3684   return _processor_count;
3685 }
3686 
3687 void os::set_native_thread_name(const char *name) {
3688 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3689   // This is only supported in Snow Leopard and beyond
3690   if (name != NULL) {
3691     // Add a "Java: " prefix to the name
3692     char buf[MAXTHREADNAMESIZE];
3693     snprintf(buf, sizeof(buf), "Java: %s", name);
3694     pthread_setname_np(buf);
3695   }
3696 #endif
3697 }
3698 
3699 bool os::distribute_processes(uint length, uint* distribution) {
3700   // Not yet implemented.
3701   return false;
3702 }
3703 
3704 bool os::bind_to_processor(uint processor_id) {
3705   // Not yet implemented.
3706   return false;
3707 }
3708 
3709 void os::SuspendedThreadTask::internal_do_task() {
3710   if (do_suspend(_thread->osthread())) {
3711     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3712     do_task(context);
3713     do_resume(_thread->osthread());
3714   }
3715 }
3716 
3717 ///
3718 class PcFetcher : public os::SuspendedThreadTask {
3719 public:
3720   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3721   ExtendedPC result();
3722 protected:
3723   void do_task(const os::SuspendedThreadTaskContext& context);
3724 private:
3725   ExtendedPC _epc;
3726 };
3727 
3728 ExtendedPC PcFetcher::result() {
3729   guarantee(is_done(), "task is not done yet.");
3730   return _epc;
3731 }
3732 
3733 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3734   Thread* thread = context.thread();
3735   OSThread* osthread = thread->osthread();
3736   if (osthread->ucontext() != NULL) {
3737     _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3738   } else {
3739     // NULL context is unexpected, double-check this is the VMThread
3740     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3741   }
3742 }
3743 
3744 // Suspends the target using the signal mechanism and then grabs the PC before
3745 // resuming the target. Used by the flat-profiler only
3746 ExtendedPC os::get_thread_pc(Thread* thread) {
3747   // Make sure that it is called by the watcher for the VMThread
3748   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3749   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3750 
3751   PcFetcher fetcher(thread);
3752   fetcher.run();
3753   return fetcher.result();
3754 }
3755 
3756 int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3757 {
3758   return pthread_cond_timedwait(_cond, _mutex, _abstime);
3759 }
3760 
3761 ////////////////////////////////////////////////////////////////////////////////
3762 // debug support
3763 
3764 bool os::find(address addr, outputStream* st) {
3765   Dl_info dlinfo;
3766   memset(&dlinfo, 0, sizeof(dlinfo));
3767   if (dladdr(addr, &dlinfo) != 0) {
3768     st->print(PTR_FORMAT ": ", addr);
3769     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3770       st->print("%s+%#x", dlinfo.dli_sname,
3771                  addr - (intptr_t)dlinfo.dli_saddr);
3772     } else if (dlinfo.dli_fbase != NULL) {
3773       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3774     } else {
3775       st->print("<absolute address>");
3776     }
3777     if (dlinfo.dli_fname != NULL) {
3778       st->print(" in %s", dlinfo.dli_fname);
3779     }
3780     if (dlinfo.dli_fbase != NULL) {
3781       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3782     }
3783     st->cr();
3784 
3785     if (Verbose) {
3786       // decode some bytes around the PC
3787       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3788       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3789       address       lowest = (address) dlinfo.dli_sname;
3790       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3791       if (begin < lowest)  begin = lowest;
3792       Dl_info dlinfo2;
3793       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3794           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3795         end = (address) dlinfo2.dli_saddr;
3796       Disassembler::decode(begin, end, st);
3797     }
3798     return true;
3799   }
3800   return false;
3801 }
3802 
3803 ////////////////////////////////////////////////////////////////////////////////
3804 // misc
3805 
3806 // This does not do anything on Bsd. This is basically a hook for being
3807 // able to use structured exception handling (thread-local exception filters)
3808 // on, e.g., Win32.
3809 void
3810 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3811                          JavaCallArguments* args, Thread* thread) {
3812   f(value, method, args, thread);
3813 }
3814 
3815 void os::print_statistics() {
3816 }
3817 
3818 int os::message_box(const char* title, const char* message) {
3819   int i;
3820   fdStream err(defaultStream::error_fd());
3821   for (i = 0; i < 78; i++) err.print_raw("=");
3822   err.cr();
3823   err.print_raw_cr(title);
3824   for (i = 0; i < 78; i++) err.print_raw("-");
3825   err.cr();
3826   err.print_raw_cr(message);
3827   for (i = 0; i < 78; i++) err.print_raw("=");
3828   err.cr();
3829 
3830   char buf[16];
3831   // Prevent process from exiting upon "read error" without consuming all CPU
3832   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3833 
3834   return buf[0] == 'y' || buf[0] == 'Y';
3835 }
3836 
3837 int os::stat(const char *path, struct stat *sbuf) {
3838   char pathbuf[MAX_PATH];
3839   if (strlen(path) > MAX_PATH - 1) {
3840     errno = ENAMETOOLONG;
3841     return -1;
3842   }
3843   os::native_path(strcpy(pathbuf, path));
3844   return ::stat(pathbuf, sbuf);
3845 }
3846 
3847 bool os::check_heap(bool force) {
3848   return true;
3849 }
3850 
3851 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3852   return ::vsnprintf(buf, count, format, args);
3853 }
3854 
3855 // Is a (classpath) directory empty?
3856 bool os::dir_is_empty(const char* path) {
3857   DIR *dir = NULL;
3858   struct dirent *ptr;
3859 
3860   dir = opendir(path);
3861   if (dir == NULL) return true;
3862 
3863   /* Scan the directory */
3864   bool result = true;
3865   char buf[sizeof(struct dirent) + MAX_PATH];
3866   while (result && (ptr = ::readdir(dir)) != NULL) {
3867     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3868       result = false;
3869     }
3870   }
3871   closedir(dir);
3872   return result;
3873 }
3874 
3875 // This code originates from JDK's sysOpen and open64_w
3876 // from src/solaris/hpi/src/system_md.c
3877 
3878 #ifndef O_DELETE
3879 #define O_DELETE 0x10000
3880 #endif
3881 
3882 // Open a file. Unlink the file immediately after open returns
3883 // if the specified oflag has the O_DELETE flag set.
3884 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3885 
3886 int os::open(const char *path, int oflag, int mode) {
3887 
3888   if (strlen(path) > MAX_PATH - 1) {
3889     errno = ENAMETOOLONG;
3890     return -1;
3891   }
3892   int fd;
3893   int o_delete = (oflag & O_DELETE);
3894   oflag = oflag & ~O_DELETE;
3895 
3896   fd = ::open(path, oflag, mode);
3897   if (fd == -1) return -1;
3898 
3899   //If the open succeeded, the file might still be a directory
3900   {
3901     struct stat buf;
3902     int ret = ::fstat(fd, &buf);
3903     int st_mode = buf.st_mode;
3904 
3905     if (ret != -1) {
3906       if ((st_mode & S_IFMT) == S_IFDIR) {
3907         errno = EISDIR;
3908         ::close(fd);
3909         return -1;
3910       }
3911     } else {
3912       ::close(fd);
3913       return -1;
3914     }
3915   }
3916 
3917     /*
3918      * All file descriptors that are opened in the JVM and not
3919      * specifically destined for a subprocess should have the
3920      * close-on-exec flag set.  If we don't set it, then careless 3rd
3921      * party native code might fork and exec without closing all
3922      * appropriate file descriptors (e.g. as we do in closeDescriptors in
3923      * UNIXProcess.c), and this in turn might:
3924      *
3925      * - cause end-of-file to fail to be detected on some file
3926      *   descriptors, resulting in mysterious hangs, or
3927      *
3928      * - might cause an fopen in the subprocess to fail on a system
3929      *   suffering from bug 1085341.
3930      *
3931      * (Yes, the default setting of the close-on-exec flag is a Unix
3932      * design flaw)
3933      *
3934      * See:
3935      * 1085341: 32-bit stdio routines should support file descriptors >255
3936      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3937      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3938      */
3939 #ifdef FD_CLOEXEC
3940     {
3941         int flags = ::fcntl(fd, F_GETFD);
3942         if (flags != -1)
3943             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3944     }
3945 #endif
3946 
3947   if (o_delete != 0) {
3948     ::unlink(path);
3949   }
3950   return fd;
3951 }
3952 
3953 
3954 // create binary file, rewriting existing file if required
3955 int os::create_binary_file(const char* path, bool rewrite_existing) {
3956   int oflags = O_WRONLY | O_CREAT;
3957   if (!rewrite_existing) {
3958     oflags |= O_EXCL;
3959   }
3960   return ::open(path, oflags, S_IREAD | S_IWRITE);
3961 }
3962 
3963 // return current position of file pointer
3964 jlong os::current_file_offset(int fd) {
3965   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3966 }
3967 
3968 // move file pointer to the specified offset
3969 jlong os::seek_to_file_offset(int fd, jlong offset) {
3970   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3971 }
3972 
3973 // This code originates from JDK's sysAvailable
3974 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3975 
3976 int os::available(int fd, jlong *bytes) {
3977   jlong cur, end;
3978   int mode;
3979   struct stat buf;
3980 
3981   if (::fstat(fd, &buf) >= 0) {
3982     mode = buf.st_mode;
3983     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3984       /*
3985       * XXX: is the following call interruptible? If so, this might
3986       * need to go through the INTERRUPT_IO() wrapper as for other
3987       * blocking, interruptible calls in this file.
3988       */
3989       int n;
3990       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3991         *bytes = n;
3992         return 1;
3993       }
3994     }
3995   }
3996   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3997     return 0;
3998   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3999     return 0;
4000   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
4001     return 0;
4002   }
4003   *bytes = end - cur;
4004   return 1;
4005 }
4006 
4007 int os::socket_available(int fd, jint *pbytes) {
4008    if (fd < 0)
4009      return OS_OK;
4010 
4011    int ret;
4012 
4013    RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
4014 
4015    //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4016    // is expected to return 0 on failure and 1 on success to the jdk.
4017 
4018    return (ret == OS_ERR) ? 0 : 1;
4019 }
4020 
4021 // Map a block of memory.
4022 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4023                      char *addr, size_t bytes, bool read_only,
4024                      bool allow_exec) {
4025   int prot;
4026   int flags;
4027 
4028   if (read_only) {
4029     prot = PROT_READ;
4030     flags = MAP_SHARED;
4031   } else {
4032     prot = PROT_READ | PROT_WRITE;
4033     flags = MAP_PRIVATE;
4034   }
4035 
4036   if (allow_exec) {
4037     prot |= PROT_EXEC;
4038   }
4039 
4040   if (addr != NULL) {
4041     flags |= MAP_FIXED;
4042   }
4043 
4044   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4045                                      fd, file_offset);
4046   if (mapped_address == MAP_FAILED) {
4047     return NULL;
4048   }
4049   return mapped_address;
4050 }
4051 
4052 
4053 // Remap a block of memory.
4054 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4055                        char *addr, size_t bytes, bool read_only,
4056                        bool allow_exec) {
4057   // same as map_memory() on this OS
4058   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4059                         allow_exec);
4060 }
4061 
4062 
4063 // Unmap a block of memory.
4064 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4065   return munmap(addr, bytes) == 0;
4066 }
4067 
4068 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4069 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4070 // of a thread.
4071 //
4072 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4073 // the fast estimate available on the platform.
4074 
4075 jlong os::current_thread_cpu_time() {
4076 #ifdef __APPLE__
4077   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4078 #else
4079   Unimplemented();
4080   return 0;
4081 #endif
4082 }
4083 
4084 jlong os::thread_cpu_time(Thread* thread) {
4085 #ifdef __APPLE__
4086   return os::thread_cpu_time(thread, true /* user + sys */);
4087 #else
4088   Unimplemented();
4089   return 0;
4090 #endif
4091 }
4092 
4093 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4094 #ifdef __APPLE__
4095   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4096 #else
4097   Unimplemented();
4098   return 0;
4099 #endif
4100 }
4101 
4102 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4103 #ifdef __APPLE__
4104   struct thread_basic_info tinfo;
4105   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4106   kern_return_t kr;
4107   thread_t mach_thread;
4108 
4109   mach_thread = thread->osthread()->thread_id();
4110   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4111   if (kr != KERN_SUCCESS)
4112     return -1;
4113 
4114   if (user_sys_cpu_time) {
4115     jlong nanos;
4116     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4117     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4118     return nanos;
4119   } else {
4120     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4121   }
4122 #else
4123   Unimplemented();
4124   return 0;
4125 #endif
4126 }
4127 
4128 
4129 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4130   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4131   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4132   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4133   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4134 }
4135 
4136 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4137   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4138   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4139   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4140   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4141 }
4142 
4143 bool os::is_thread_cpu_time_supported() {
4144 #ifdef __APPLE__
4145   return true;
4146 #else
4147   return false;
4148 #endif
4149 }
4150 
4151 // System loadavg support.  Returns -1 if load average cannot be obtained.
4152 // Bsd doesn't yet have a (official) notion of processor sets,
4153 // so just return the system wide load average.
4154 int os::loadavg(double loadavg[], int nelem) {
4155   return ::getloadavg(loadavg, nelem);
4156 }
4157 
4158 void os::pause() {
4159   char filename[MAX_PATH];
4160   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4161     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4162   } else {
4163     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4164   }
4165 
4166   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4167   if (fd != -1) {
4168     struct stat buf;
4169     ::close(fd);
4170     while (::stat(filename, &buf) == 0) {
4171       (void)::poll(NULL, 0, 100);
4172     }
4173   } else {
4174     jio_fprintf(stderr,
4175       "Could not open pause file '%s', continuing immediately.\n", filename);
4176   }
4177 }
4178 
4179 
4180 // Refer to the comments in os_solaris.cpp park-unpark.
4181 //
4182 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4183 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4184 // For specifics regarding the bug see GLIBC BUGID 261237 :
4185 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4186 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4187 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4188 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4189 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4190 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4191 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4192 // of libpthread avoids the problem, but isn't practical.
4193 //
4194 // Possible remedies:
4195 //
4196 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4197 //      This is palliative and probabilistic, however.  If the thread is preempted
4198 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4199 //      than the minimum period may have passed, and the abstime may be stale (in the
4200 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4201 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4202 //
4203 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4204 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4205 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4206 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4207 //      thread.
4208 //
4209 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4210 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4211 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4212 //      This also works well.  In fact it avoids kernel-level scalability impediments
4213 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4214 //      timers in a graceful fashion.
4215 //
4216 // 4.   When the abstime value is in the past it appears that control returns
4217 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4218 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4219 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4220 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4221 //      It may be possible to avoid reinitialization by checking the return
4222 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4223 //      condvar we must establish the invariant that cond_signal() is only called
4224 //      within critical sections protected by the adjunct mutex.  This prevents
4225 //      cond_signal() from "seeing" a condvar that's in the midst of being
4226 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4227 //      desirable signal-after-unlock optimization that avoids futile context switching.
4228 //
4229 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4230 //      structure when a condvar is used or initialized.  cond_destroy()  would
4231 //      release the helper structure.  Our reinitialize-after-timedwait fix
4232 //      put excessive stress on malloc/free and locks protecting the c-heap.
4233 //
4234 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4235 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4236 // and only enabling the work-around for vulnerable environments.
4237 
4238 // utility to compute the abstime argument to timedwait:
4239 // millis is the relative timeout time
4240 // abstime will be the absolute timeout time
4241 // TODO: replace compute_abstime() with unpackTime()
4242 
4243 static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4244   if (millis < 0)  millis = 0;
4245   struct timeval now;
4246   int status = gettimeofday(&now, NULL);
4247   assert(status == 0, "gettimeofday");
4248   jlong seconds = millis / 1000;
4249   millis %= 1000;
4250   if (seconds > 50000000) { // see man cond_timedwait(3T)
4251     seconds = 50000000;
4252   }
4253   abstime->tv_sec = now.tv_sec  + seconds;
4254   long       usec = now.tv_usec + millis * 1000;
4255   if (usec >= 1000000) {
4256     abstime->tv_sec += 1;
4257     usec -= 1000000;
4258   }
4259   abstime->tv_nsec = usec * 1000;
4260   return abstime;
4261 }
4262 
4263 
4264 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4265 // Conceptually TryPark() should be equivalent to park(0).
4266 
4267 int os::PlatformEvent::TryPark() {
4268   for (;;) {
4269     const int v = _Event ;
4270     guarantee ((v == 0) || (v == 1), "invariant") ;
4271     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4272   }
4273 }
4274 
4275 void os::PlatformEvent::park() {       // AKA "down()"
4276   // Invariant: Only the thread associated with the Event/PlatformEvent
4277   // may call park().
4278   // TODO: assert that _Assoc != NULL or _Assoc == Self
4279   int v ;
4280   for (;;) {
4281       v = _Event ;
4282       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4283   }
4284   guarantee (v >= 0, "invariant") ;
4285   if (v == 0) {
4286      // Do this the hard way by blocking ...
4287      int status = pthread_mutex_lock(_mutex);
4288      assert_status(status == 0, status, "mutex_lock");
4289      guarantee (_nParked == 0, "invariant") ;
4290      ++ _nParked ;
4291      while (_Event < 0) {
4292         status = pthread_cond_wait(_cond, _mutex);
4293         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4294         // Treat this the same as if the wait was interrupted
4295         if (status == ETIMEDOUT) { status = EINTR; }
4296         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4297      }
4298      -- _nParked ;
4299 
4300     _Event = 0 ;
4301      status = pthread_mutex_unlock(_mutex);
4302      assert_status(status == 0, status, "mutex_unlock");
4303     // Paranoia to ensure our locked and lock-free paths interact
4304     // correctly with each other.
4305     OrderAccess::fence();
4306   }
4307   guarantee (_Event >= 0, "invariant") ;
4308 }
4309 
4310 int os::PlatformEvent::park(jlong millis) {
4311   guarantee (_nParked == 0, "invariant") ;
4312 
4313   int v ;
4314   for (;;) {
4315       v = _Event ;
4316       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4317   }
4318   guarantee (v >= 0, "invariant") ;
4319   if (v != 0) return OS_OK ;
4320 
4321   // We do this the hard way, by blocking the thread.
4322   // Consider enforcing a minimum timeout value.
4323   struct timespec abst;
4324   compute_abstime(&abst, millis);
4325 
4326   int ret = OS_TIMEOUT;
4327   int status = pthread_mutex_lock(_mutex);
4328   assert_status(status == 0, status, "mutex_lock");
4329   guarantee (_nParked == 0, "invariant") ;
4330   ++_nParked ;
4331 
4332   // Object.wait(timo) will return because of
4333   // (a) notification
4334   // (b) timeout
4335   // (c) thread.interrupt
4336   //
4337   // Thread.interrupt and object.notify{All} both call Event::set.
4338   // That is, we treat thread.interrupt as a special case of notification.
4339   // The underlying Solaris implementation, cond_timedwait, admits
4340   // spurious/premature wakeups, but the JLS/JVM spec prevents the
4341   // JVM from making those visible to Java code.  As such, we must
4342   // filter out spurious wakeups.  We assume all ETIME returns are valid.
4343   //
4344   // TODO: properly differentiate simultaneous notify+interrupt.
4345   // In that case, we should propagate the notify to another waiter.
4346 
4347   while (_Event < 0) {
4348     status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4349     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4350       pthread_cond_destroy (_cond);
4351       pthread_cond_init (_cond, NULL) ;
4352     }
4353     assert_status(status == 0 || status == EINTR ||
4354                   status == ETIMEDOUT,
4355                   status, "cond_timedwait");
4356     if (!FilterSpuriousWakeups) break ;                 // previous semantics
4357     if (status == ETIMEDOUT) break ;
4358     // We consume and ignore EINTR and spurious wakeups.
4359   }
4360   --_nParked ;
4361   if (_Event >= 0) {
4362      ret = OS_OK;
4363   }
4364   _Event = 0 ;
4365   status = pthread_mutex_unlock(_mutex);
4366   assert_status(status == 0, status, "mutex_unlock");
4367   assert (_nParked == 0, "invariant") ;
4368   // Paranoia to ensure our locked and lock-free paths interact
4369   // correctly with each other.
4370   OrderAccess::fence();
4371   return ret;
4372 }
4373 
4374 void os::PlatformEvent::unpark() {
4375   // Transitions for _Event:
4376   //    0 :=> 1
4377   //    1 :=> 1
4378   //   -1 :=> either 0 or 1; must signal target thread
4379   //          That is, we can safely transition _Event from -1 to either
4380   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4381   //          unpark() calls.
4382   // See also: "Semaphores in Plan 9" by Mullender & Cox
4383   //
4384   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4385   // that it will take two back-to-back park() calls for the owning
4386   // thread to block. This has the benefit of forcing a spurious return
4387   // from the first park() call after an unpark() call which will help
4388   // shake out uses of park() and unpark() without condition variables.
4389 
4390   if (Atomic::xchg(1, &_Event) >= 0) return;
4391 
4392   // Wait for the thread associated with the event to vacate
4393   int status = pthread_mutex_lock(_mutex);
4394   assert_status(status == 0, status, "mutex_lock");
4395   int AnyWaiters = _nParked;
4396   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4397   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4398     AnyWaiters = 0;
4399     pthread_cond_signal(_cond);
4400   }
4401   status = pthread_mutex_unlock(_mutex);
4402   assert_status(status == 0, status, "mutex_unlock");
4403   if (AnyWaiters != 0) {
4404     status = pthread_cond_signal(_cond);
4405     assert_status(status == 0, status, "cond_signal");
4406   }
4407 
4408   // Note that we signal() _after dropping the lock for "immortal" Events.
4409   // This is safe and avoids a common class of  futile wakeups.  In rare
4410   // circumstances this can cause a thread to return prematurely from
4411   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4412   // simply re-test the condition and re-park itself.
4413 }
4414 
4415 
4416 // JSR166
4417 // -------------------------------------------------------
4418 
4419 /*
4420  * The solaris and bsd implementations of park/unpark are fairly
4421  * conservative for now, but can be improved. They currently use a
4422  * mutex/condvar pair, plus a a count.
4423  * Park decrements count if > 0, else does a condvar wait.  Unpark
4424  * sets count to 1 and signals condvar.  Only one thread ever waits
4425  * on the condvar. Contention seen when trying to park implies that someone
4426  * is unparking you, so don't wait. And spurious returns are fine, so there
4427  * is no need to track notifications.
4428  */
4429 
4430 #define MAX_SECS 100000000
4431 /*
4432  * This code is common to bsd and solaris and will be moved to a
4433  * common place in dolphin.
4434  *
4435  * The passed in time value is either a relative time in nanoseconds
4436  * or an absolute time in milliseconds. Either way it has to be unpacked
4437  * into suitable seconds and nanoseconds components and stored in the
4438  * given timespec structure.
4439  * Given time is a 64-bit value and the time_t used in the timespec is only
4440  * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4441  * overflow if times way in the future are given. Further on Solaris versions
4442  * prior to 10 there is a restriction (see cond_timedwait) that the specified
4443  * number of seconds, in abstime, is less than current_time  + 100,000,000.
4444  * As it will be 28 years before "now + 100000000" will overflow we can
4445  * ignore overflow and just impose a hard-limit on seconds using the value
4446  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4447  * years from "now".
4448  */
4449 
4450 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4451   assert (time > 0, "convertTime");
4452 
4453   struct timeval now;
4454   int status = gettimeofday(&now, NULL);
4455   assert(status == 0, "gettimeofday");
4456 
4457   time_t max_secs = now.tv_sec + MAX_SECS;
4458 
4459   if (isAbsolute) {
4460     jlong secs = time / 1000;
4461     if (secs > max_secs) {
4462       absTime->tv_sec = max_secs;
4463     }
4464     else {
4465       absTime->tv_sec = secs;
4466     }
4467     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4468   }
4469   else {
4470     jlong secs = time / NANOSECS_PER_SEC;
4471     if (secs >= MAX_SECS) {
4472       absTime->tv_sec = max_secs;
4473       absTime->tv_nsec = 0;
4474     }
4475     else {
4476       absTime->tv_sec = now.tv_sec + secs;
4477       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4478       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4479         absTime->tv_nsec -= NANOSECS_PER_SEC;
4480         ++absTime->tv_sec; // note: this must be <= max_secs
4481       }
4482     }
4483   }
4484   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4485   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4486   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4487   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4488 }
4489 
4490 void Parker::park(bool isAbsolute, jlong time) {
4491   // Ideally we'd do something useful while spinning, such
4492   // as calling unpackTime().
4493 
4494   // Optional fast-path check:
4495   // Return immediately if a permit is available.
4496   // We depend on Atomic::xchg() having full barrier semantics
4497   // since we are doing a lock-free update to _counter.
4498   if (Atomic::xchg(0, &_counter) > 0) return;
4499 
4500   Thread* thread = Thread::current();
4501   assert(thread->is_Java_thread(), "Must be JavaThread");
4502   JavaThread *jt = (JavaThread *)thread;
4503 
4504   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4505   // Check interrupt before trying to wait
4506   if (Thread::is_interrupted(thread, false)) {
4507     return;
4508   }
4509 
4510   // Next, demultiplex/decode time arguments
4511   struct timespec absTime;
4512   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4513     return;
4514   }
4515   if (time > 0) {
4516     unpackTime(&absTime, isAbsolute, time);
4517   }
4518 
4519 
4520   // Enter safepoint region
4521   // Beware of deadlocks such as 6317397.
4522   // The per-thread Parker:: mutex is a classic leaf-lock.
4523   // In particular a thread must never block on the Threads_lock while
4524   // holding the Parker:: mutex.  If safepoints are pending both the
4525   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4526   ThreadBlockInVM tbivm(jt);
4527 
4528   // Don't wait if cannot get lock since interference arises from
4529   // unblocking.  Also. check interrupt before trying wait
4530   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4531     return;
4532   }
4533 
4534   int status ;
4535   if (_counter > 0)  { // no wait needed
4536     _counter = 0;
4537     status = pthread_mutex_unlock(_mutex);
4538     assert (status == 0, "invariant") ;
4539     // Paranoia to ensure our locked and lock-free paths interact
4540     // correctly with each other and Java-level accesses.
4541     OrderAccess::fence();
4542     return;
4543   }
4544 
4545 #ifdef ASSERT
4546   // Don't catch signals while blocked; let the running threads have the signals.
4547   // (This allows a debugger to break into the running thread.)
4548   sigset_t oldsigs;
4549   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4550   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4551 #endif
4552 
4553   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4554   jt->set_suspend_equivalent();
4555   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4556 
4557   if (time == 0) {
4558     status = pthread_cond_wait (_cond, _mutex) ;
4559   } else {
4560     status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4561     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4562       pthread_cond_destroy (_cond) ;
4563       pthread_cond_init    (_cond, NULL);
4564     }
4565   }
4566   assert_status(status == 0 || status == EINTR ||
4567                 status == ETIMEDOUT,
4568                 status, "cond_timedwait");
4569 
4570 #ifdef ASSERT
4571   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4572 #endif
4573 
4574   _counter = 0 ;
4575   status = pthread_mutex_unlock(_mutex) ;
4576   assert_status(status == 0, status, "invariant") ;
4577   // Paranoia to ensure our locked and lock-free paths interact
4578   // correctly with each other and Java-level accesses.
4579   OrderAccess::fence();
4580 
4581   // If externally suspended while waiting, re-suspend
4582   if (jt->handle_special_suspend_equivalent_condition()) {
4583     jt->java_suspend_self();
4584   }
4585 }
4586 
4587 void Parker::unpark() {
4588   int s, status ;
4589   status = pthread_mutex_lock(_mutex);
4590   assert (status == 0, "invariant") ;
4591   s = _counter;
4592   _counter = 1;
4593   if (s < 1) {
4594      if (WorkAroundNPTLTimedWaitHang) {
4595         status = pthread_cond_signal (_cond) ;
4596         assert (status == 0, "invariant") ;
4597         status = pthread_mutex_unlock(_mutex);
4598         assert (status == 0, "invariant") ;
4599      } else {
4600         status = pthread_mutex_unlock(_mutex);
4601         assert (status == 0, "invariant") ;
4602         status = pthread_cond_signal (_cond) ;
4603         assert (status == 0, "invariant") ;
4604      }
4605   } else {
4606     pthread_mutex_unlock(_mutex);
4607     assert (status == 0, "invariant") ;
4608   }
4609 }
4610 
4611 
4612 /* Darwin has no "environ" in a dynamic library. */
4613 #ifdef __APPLE__
4614 #include <crt_externs.h>
4615 #define environ (*_NSGetEnviron())
4616 #else
4617 extern char** environ;
4618 #endif
4619 
4620 // Run the specified command in a separate process. Return its exit value,
4621 // or -1 on failure (e.g. can't fork a new process).
4622 // Unlike system(), this function can be called from signal handler. It
4623 // doesn't block SIGINT et al.
4624 int os::fork_and_exec(char* cmd) {
4625   const char * argv[4] = {"sh", "-c", cmd, NULL};
4626 
4627   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4628   // pthread_atfork handlers and reset pthread library. All we need is a
4629   // separate process to execve. Make a direct syscall to fork process.
4630   // On IA64 there's no fork syscall, we have to use fork() and hope for
4631   // the best...
4632   pid_t pid = fork();
4633 
4634   if (pid < 0) {
4635     // fork failed
4636     return -1;
4637 
4638   } else if (pid == 0) {
4639     // child process
4640 
4641     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4642     // first to kill every thread on the thread list. Because this list is
4643     // not reset by fork() (see notes above), execve() will instead kill
4644     // every thread in the parent process. We know this is the only thread
4645     // in the new process, so make a system call directly.
4646     // IA64 should use normal execve() from glibc to match the glibc fork()
4647     // above.
4648     execve("/bin/sh", (char* const*)argv, environ);
4649 
4650     // execve failed
4651     _exit(-1);
4652 
4653   } else  {
4654     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4655     // care about the actual exit code, for now.
4656 
4657     int status;
4658 
4659     // Wait for the child process to exit.  This returns immediately if
4660     // the child has already exited. */
4661     while (waitpid(pid, &status, 0) < 0) {
4662         switch (errno) {
4663         case ECHILD: return 0;
4664         case EINTR: break;
4665         default: return -1;
4666         }
4667     }
4668 
4669     if (WIFEXITED(status)) {
4670        // The child exited normally; get its exit code.
4671        return WEXITSTATUS(status);
4672     } else if (WIFSIGNALED(status)) {
4673        // The child exited because of a signal
4674        // The best value to return is 0x80 + signal number,
4675        // because that is what all Unix shells do, and because
4676        // it allows callers to distinguish between process exit and
4677        // process death by signal.
4678        return 0x80 + WTERMSIG(status);
4679     } else {
4680        // Unknown exit code; pass it through
4681        return status;
4682     }
4683   }
4684 }
4685 
4686 // is_headless_jre()
4687 //
4688 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4689 // in order to report if we are running in a headless jre
4690 //
4691 // Since JDK8 xawt/libmawt.so was moved into the same directory
4692 // as libawt.so, and renamed libawt_xawt.so
4693 //
4694 bool os::is_headless_jre() {
4695     struct stat statbuf;
4696     char buf[MAXPATHLEN];
4697     char libmawtpath[MAXPATHLEN];
4698     const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4699     const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4700     char *p;
4701 
4702     // Get path to libjvm.so
4703     os::jvm_path(buf, sizeof(buf));
4704 
4705     // Get rid of libjvm.so
4706     p = strrchr(buf, '/');
4707     if (p == NULL) return false;
4708     else *p = '\0';
4709 
4710     // Get rid of client or server
4711     p = strrchr(buf, '/');
4712     if (p == NULL) return false;
4713     else *p = '\0';
4714 
4715     // check xawt/libmawt.so
4716     strcpy(libmawtpath, buf);
4717     strcat(libmawtpath, xawtstr);
4718     if (::stat(libmawtpath, &statbuf) == 0) return false;
4719 
4720     // check libawt_xawt.so
4721     strcpy(libmawtpath, buf);
4722     strcat(libmawtpath, new_xawtstr);
4723     if (::stat(libmawtpath, &statbuf) == 0) return false;
4724 
4725     return true;
4726 }
4727 
4728 // Get the default path to the core file
4729 // Returns the length of the string
4730 int os::get_core_path(char* buffer, size_t bufferSize) {
4731   int n = jio_snprintf(buffer, bufferSize, "/cores");
4732 
4733   // Truncate if theoretical string was longer than bufferSize
4734   n = MIN2(n, (int)bufferSize);
4735 
4736   return n;
4737 }
4738