1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "services/attachListener.hpp"
  61 #include "services/memTracker.hpp"
  62 #include "services/runtimeService.hpp"
  63 #include "utilities/decoder.hpp"
  64 #include "utilities/defaultStream.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/elfFile.hpp"
  67 #include "utilities/growableArray.hpp"
  68 #include "utilities/vmError.hpp"
  69 
  70 // put OS-includes here
  71 # include <sys/types.h>
  72 # include <sys/mman.h>
  73 # include <sys/stat.h>
  74 # include <sys/select.h>
  75 # include <pthread.h>
  76 # include <signal.h>
  77 # include <errno.h>
  78 # include <dlfcn.h>
  79 # include <stdio.h>
  80 # include <unistd.h>
  81 # include <sys/resource.h>
  82 # include <pthread.h>
  83 # include <sys/stat.h>
  84 # include <sys/time.h>
  85 # include <sys/times.h>
  86 # include <sys/utsname.h>
  87 # include <sys/socket.h>
  88 # include <sys/wait.h>
  89 # include <pwd.h>
  90 # include <poll.h>
  91 # include <semaphore.h>
  92 # include <fcntl.h>
  93 # include <string.h>
  94 # include <syscall.h>
  95 # include <sys/sysinfo.h>
  96 # include <gnu/libc-version.h>
  97 # include <sys/ipc.h>
  98 # include <sys/shm.h>
  99 # include <link.h>
 100 # include <stdint.h>
 101 # include <inttypes.h>
 102 # include <sys/ioctl.h>
 103 
 104 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 105 // getrusage() is prepared to handle the associated failure.
 106 #ifndef RUSAGE_THREAD
 107 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 108 #endif
 109 
 110 #define MAX_PATH    (2 * K)
 111 
 112 // for timer info max values which include all bits
 113 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 114 
 115 #define LARGEPAGES_BIT (1 << 6)
 116 ////////////////////////////////////////////////////////////////////////////////
 117 // global variables
 118 julong os::Linux::_physical_memory = 0;
 119 
 120 address   os::Linux::_initial_thread_stack_bottom = NULL;
 121 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 122 
 123 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 124 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 125 Mutex* os::Linux::_createThread_lock = NULL;
 126 pthread_t os::Linux::_main_thread;
 127 int os::Linux::_page_size = -1;
 128 const int os::Linux::_vm_default_page_size = (8 * K);
 129 bool os::Linux::_is_floating_stack = false;
 130 bool os::Linux::_is_NPTL = false;
 131 bool os::Linux::_supports_fast_thread_cpu_time = false;
 132 const char * os::Linux::_glibc_version = NULL;
 133 const char * os::Linux::_libpthread_version = NULL;
 134 
 135 static jlong initial_time_count=0;
 136 
 137 static int clock_tics_per_sec = 100;
 138 
 139 // For diagnostics to print a message once. see run_periodic_checks
 140 static sigset_t check_signal_done;
 141 static bool check_signals = true;
 142 
 143 static pid_t _initial_pid = 0;
 144 
 145 /* Signal number used to suspend/resume a thread */
 146 
 147 /* do not use any signal number less than SIGSEGV, see 4355769 */
 148 static int SR_signum = SIGUSR2;
 149 sigset_t SR_sigset;
 150 
 151 /* Used to protect dlsym() calls */
 152 static pthread_mutex_t dl_mutex;
 153 
 154 // Declarations
 155 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 156 
 157 #ifdef JAVASE_EMBEDDED
 158 class MemNotifyThread: public Thread {
 159   friend class VMStructs;
 160  public:
 161   virtual void run();
 162 
 163  private:
 164   static MemNotifyThread* _memnotify_thread;
 165   int _fd;
 166 
 167  public:
 168 
 169   // Constructor
 170   MemNotifyThread(int fd);
 171 
 172   // Tester
 173   bool is_memnotify_thread() const { return true; }
 174 
 175   // Printing
 176   char* name() const { return (char*)"Linux MemNotify Thread"; }
 177 
 178   // Returns the single instance of the MemNotifyThread
 179   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 180 
 181   // Create and start the single instance of MemNotifyThread
 182   static void start();
 183 };
 184 #endif // JAVASE_EMBEDDED
 185 
 186 // utility functions
 187 
 188 static int SR_initialize();
 189 
 190 julong os::available_memory() {
 191   return Linux::available_memory();
 192 }
 193 
 194 julong os::Linux::available_memory() {
 195   // values in struct sysinfo are "unsigned long"
 196   struct sysinfo si;
 197   sysinfo(&si);
 198 
 199   return (julong)si.freeram * si.mem_unit;
 200 }
 201 
 202 julong os::physical_memory() {
 203   return Linux::physical_memory();
 204 }
 205 
 206 ////////////////////////////////////////////////////////////////////////////////
 207 // environment support
 208 
 209 bool os::getenv(const char* name, char* buf, int len) {
 210   const char* val = ::getenv(name);
 211   if (val != NULL && strlen(val) < (size_t)len) {
 212     strcpy(buf, val);
 213     return true;
 214   }
 215   if (len > 0) buf[0] = 0;  // return a null string
 216   return false;
 217 }
 218 
 219 
 220 // Return true if user is running as root.
 221 
 222 bool os::have_special_privileges() {
 223   static bool init = false;
 224   static bool privileges = false;
 225   if (!init) {
 226     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 227     init = true;
 228   }
 229   return privileges;
 230 }
 231 
 232 
 233 #ifndef SYS_gettid
 234 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 235 #ifdef __ia64__
 236 #define SYS_gettid 1105
 237 #elif __i386__
 238 #define SYS_gettid 224
 239 #elif __amd64__
 240 #define SYS_gettid 186
 241 #elif __sparc__
 242 #define SYS_gettid 143
 243 #else
 244 #error define gettid for the arch
 245 #endif
 246 #endif
 247 
 248 // Cpu architecture string
 249 #if   defined(ZERO)
 250 static char cpu_arch[] = ZERO_LIBARCH;
 251 #elif defined(IA64)
 252 static char cpu_arch[] = "ia64";
 253 #elif defined(IA32)
 254 static char cpu_arch[] = "i386";
 255 #elif defined(AMD64)
 256 static char cpu_arch[] = "amd64";
 257 #elif defined(ARM)
 258 static char cpu_arch[] = "arm";
 259 #elif defined(PPC32)
 260 static char cpu_arch[] = "ppc";
 261 #elif defined(PPC64)
 262 static char cpu_arch[] = "ppc64";
 263 #elif defined(SPARC)
 264 #  ifdef _LP64
 265 static char cpu_arch[] = "sparcv9";
 266 #  else
 267 static char cpu_arch[] = "sparc";
 268 #  endif
 269 #else
 270 #error Add appropriate cpu_arch setting
 271 #endif
 272 
 273 
 274 // pid_t gettid()
 275 //
 276 // Returns the kernel thread id of the currently running thread. Kernel
 277 // thread id is used to access /proc.
 278 //
 279 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 280 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 281 //
 282 pid_t os::Linux::gettid() {
 283   int rslt = syscall(SYS_gettid);
 284   if (rslt == -1) {
 285      // old kernel, no NPTL support
 286      return getpid();
 287   } else {
 288      return (pid_t)rslt;
 289   }
 290 }
 291 
 292 // Most versions of linux have a bug where the number of processors are
 293 // determined by looking at the /proc file system.  In a chroot environment,
 294 // the system call returns 1.  This causes the VM to act as if it is
 295 // a single processor and elide locking (see is_MP() call).
 296 static bool unsafe_chroot_detected = false;
 297 static const char *unstable_chroot_error = "/proc file system not found.\n"
 298                      "Java may be unstable running multithreaded in a chroot "
 299                      "environment on Linux when /proc filesystem is not mounted.";
 300 
 301 void os::Linux::initialize_system_info() {
 302   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 303   if (processor_count() == 1) {
 304     pid_t pid = os::Linux::gettid();
 305     char fname[32];
 306     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 307     FILE *fp = fopen(fname, "r");
 308     if (fp == NULL) {
 309       unsafe_chroot_detected = true;
 310     } else {
 311       fclose(fp);
 312     }
 313   }
 314   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 315   assert(processor_count() > 0, "linux error");
 316 }
 317 
 318 void os::init_system_properties_values() {
 319 //  char arch[12];
 320 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 321 
 322   // The next steps are taken in the product version:
 323   //
 324   // Obtain the JAVA_HOME value from the location of libjvm.so.
 325   // This library should be located at:
 326   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 327   //
 328   // If "/jre/lib/" appears at the right place in the path, then we
 329   // assume libjvm.so is installed in a JDK and we use this path.
 330   //
 331   // Otherwise exit with message: "Could not create the Java virtual machine."
 332   //
 333   // The following extra steps are taken in the debugging version:
 334   //
 335   // If "/jre/lib/" does NOT appear at the right place in the path
 336   // instead of exit check for $JAVA_HOME environment variable.
 337   //
 338   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 339   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 340   // it looks like libjvm.so is installed there
 341   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 342   //
 343   // Otherwise exit.
 344   //
 345   // Important note: if the location of libjvm.so changes this
 346   // code needs to be changed accordingly.
 347 
 348   // The next few definitions allow the code to be verbatim:
 349 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 350 #define getenv(n) ::getenv(n)
 351 
 352 /*
 353  * See ld(1):
 354  *      The linker uses the following search paths to locate required
 355  *      shared libraries:
 356  *        1: ...
 357  *        ...
 358  *        7: The default directories, normally /lib and /usr/lib.
 359  */
 360 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 361 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 362 #else
 363 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 364 #endif
 365 
 366 #define EXTENSIONS_DIR  "/lib/ext"
 367 #define ENDORSED_DIR    "/lib/endorsed"
 368 #define REG_DIR         "/usr/java/packages"
 369 
 370   {
 371     /* sysclasspath, java_home, dll_dir */
 372     {
 373         char *home_path;
 374         char *dll_path;
 375         char *pslash;
 376         char buf[MAXPATHLEN];
 377         os::jvm_path(buf, sizeof(buf));
 378 
 379         // Found the full path to libjvm.so.
 380         // Now cut the path to <java_home>/jre if we can.
 381         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 382         pslash = strrchr(buf, '/');
 383         if (pslash != NULL)
 384             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 385         dll_path = malloc(strlen(buf) + 1);
 386         if (dll_path == NULL)
 387             return;
 388         strcpy(dll_path, buf);
 389         Arguments::set_dll_dir(dll_path);
 390 
 391         if (pslash != NULL) {
 392             pslash = strrchr(buf, '/');
 393             if (pslash != NULL) {
 394                 *pslash = '\0';       /* get rid of /<arch> */
 395                 pslash = strrchr(buf, '/');
 396                 if (pslash != NULL)
 397                     *pslash = '\0';   /* get rid of /lib */
 398             }
 399         }
 400 
 401         home_path = malloc(strlen(buf) + 1);
 402         if (home_path == NULL)
 403             return;
 404         strcpy(home_path, buf);
 405         Arguments::set_java_home(home_path);
 406 
 407         if (!set_boot_path('/', ':'))
 408             return;
 409     }
 410 
 411     /*
 412      * Where to look for native libraries
 413      *
 414      * Note: Due to a legacy implementation, most of the library path
 415      * is set in the launcher.  This was to accomodate linking restrictions
 416      * on legacy Linux implementations (which are no longer supported).
 417      * Eventually, all the library path setting will be done here.
 418      *
 419      * However, to prevent the proliferation of improperly built native
 420      * libraries, the new path component /usr/java/packages is added here.
 421      * Eventually, all the library path setting will be done here.
 422      */
 423     {
 424         char *ld_library_path;
 425 
 426         /*
 427          * Construct the invariant part of ld_library_path. Note that the
 428          * space for the colon and the trailing null are provided by the
 429          * nulls included by the sizeof operator (so actually we allocate
 430          * a byte more than necessary).
 431          */
 432         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 433             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 434         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 435 
 436         /*
 437          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 438          * should always exist (until the legacy problem cited above is
 439          * addressed).
 440          */
 441         char *v = getenv("LD_LIBRARY_PATH");
 442         if (v != NULL) {
 443             char *t = ld_library_path;
 444             /* That's +1 for the colon and +1 for the trailing '\0' */
 445             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 446             sprintf(ld_library_path, "%s:%s", v, t);
 447         }
 448         Arguments::set_library_path(ld_library_path);
 449     }
 450 
 451     /*
 452      * Extensions directories.
 453      *
 454      * Note that the space for the colon and the trailing null are provided
 455      * by the nulls included by the sizeof operator (so actually one byte more
 456      * than necessary is allocated).
 457      */
 458     {
 459         char *buf = malloc(strlen(Arguments::get_java_home()) +
 460             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 461         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 462             Arguments::get_java_home());
 463         Arguments::set_ext_dirs(buf);
 464     }
 465 
 466     /* Endorsed standards default directory. */
 467     {
 468         char * buf;
 469         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 470         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 471         Arguments::set_endorsed_dirs(buf);
 472     }
 473   }
 474 
 475 #undef malloc
 476 #undef getenv
 477 #undef EXTENSIONS_DIR
 478 #undef ENDORSED_DIR
 479 
 480   // Done
 481   return;
 482 }
 483 
 484 ////////////////////////////////////////////////////////////////////////////////
 485 // breakpoint support
 486 
 487 void os::breakpoint() {
 488   BREAKPOINT;
 489 }
 490 
 491 extern "C" void breakpoint() {
 492   // use debugger to set breakpoint here
 493 }
 494 
 495 ////////////////////////////////////////////////////////////////////////////////
 496 // signal support
 497 
 498 debug_only(static bool signal_sets_initialized = false);
 499 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 500 
 501 bool os::Linux::is_sig_ignored(int sig) {
 502       struct sigaction oact;
 503       sigaction(sig, (struct sigaction*)NULL, &oact);
 504       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 505                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 506       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 507            return true;
 508       else
 509            return false;
 510 }
 511 
 512 void os::Linux::signal_sets_init() {
 513   // Should also have an assertion stating we are still single-threaded.
 514   assert(!signal_sets_initialized, "Already initialized");
 515   // Fill in signals that are necessarily unblocked for all threads in
 516   // the VM. Currently, we unblock the following signals:
 517   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 518   //                         by -Xrs (=ReduceSignalUsage));
 519   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 520   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 521   // the dispositions or masks wrt these signals.
 522   // Programs embedding the VM that want to use the above signals for their
 523   // own purposes must, at this time, use the "-Xrs" option to prevent
 524   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 525   // (See bug 4345157, and other related bugs).
 526   // In reality, though, unblocking these signals is really a nop, since
 527   // these signals are not blocked by default.
 528   sigemptyset(&unblocked_sigs);
 529   sigemptyset(&allowdebug_blocked_sigs);
 530   sigaddset(&unblocked_sigs, SIGILL);
 531   sigaddset(&unblocked_sigs, SIGSEGV);
 532   sigaddset(&unblocked_sigs, SIGBUS);
 533   sigaddset(&unblocked_sigs, SIGFPE);
 534   sigaddset(&unblocked_sigs, SR_signum);
 535 
 536   if (!ReduceSignalUsage) {
 537    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 538       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 539       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 540    }
 541    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 542       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 543       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 544    }
 545    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 546       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 547       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 548    }
 549   }
 550   // Fill in signals that are blocked by all but the VM thread.
 551   sigemptyset(&vm_sigs);
 552   if (!ReduceSignalUsage)
 553     sigaddset(&vm_sigs, BREAK_SIGNAL);
 554   debug_only(signal_sets_initialized = true);
 555 
 556 }
 557 
 558 // These are signals that are unblocked while a thread is running Java.
 559 // (For some reason, they get blocked by default.)
 560 sigset_t* os::Linux::unblocked_signals() {
 561   assert(signal_sets_initialized, "Not initialized");
 562   return &unblocked_sigs;
 563 }
 564 
 565 // These are the signals that are blocked while a (non-VM) thread is
 566 // running Java. Only the VM thread handles these signals.
 567 sigset_t* os::Linux::vm_signals() {
 568   assert(signal_sets_initialized, "Not initialized");
 569   return &vm_sigs;
 570 }
 571 
 572 // These are signals that are blocked during cond_wait to allow debugger in
 573 sigset_t* os::Linux::allowdebug_blocked_signals() {
 574   assert(signal_sets_initialized, "Not initialized");
 575   return &allowdebug_blocked_sigs;
 576 }
 577 
 578 void os::Linux::hotspot_sigmask(Thread* thread) {
 579 
 580   //Save caller's signal mask before setting VM signal mask
 581   sigset_t caller_sigmask;
 582   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 583 
 584   OSThread* osthread = thread->osthread();
 585   osthread->set_caller_sigmask(caller_sigmask);
 586 
 587   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 588 
 589   if (!ReduceSignalUsage) {
 590     if (thread->is_VM_thread()) {
 591       // Only the VM thread handles BREAK_SIGNAL ...
 592       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 593     } else {
 594       // ... all other threads block BREAK_SIGNAL
 595       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 596     }
 597   }
 598 }
 599 
 600 //////////////////////////////////////////////////////////////////////////////
 601 // detecting pthread library
 602 
 603 void os::Linux::libpthread_init() {
 604   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 605   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 606   // generic name for earlier versions.
 607   // Define macros here so we can build HotSpot on old systems.
 608 # ifndef _CS_GNU_LIBC_VERSION
 609 # define _CS_GNU_LIBC_VERSION 2
 610 # endif
 611 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 612 # define _CS_GNU_LIBPTHREAD_VERSION 3
 613 # endif
 614 
 615   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 616   if (n > 0) {
 617      char *str = (char *)malloc(n, mtInternal);
 618      confstr(_CS_GNU_LIBC_VERSION, str, n);
 619      os::Linux::set_glibc_version(str);
 620   } else {
 621      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 622      static char _gnu_libc_version[32];
 623      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 624               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 625      os::Linux::set_glibc_version(_gnu_libc_version);
 626   }
 627 
 628   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 629   if (n > 0) {
 630      char *str = (char *)malloc(n, mtInternal);
 631      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 632      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 633      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 634      // is the case. LinuxThreads has a hard limit on max number of threads.
 635      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 636      // On the other hand, NPTL does not have such a limit, sysconf()
 637      // will return -1 and errno is not changed. Check if it is really NPTL.
 638      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 639          strstr(str, "NPTL") &&
 640          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 641        free(str);
 642        os::Linux::set_libpthread_version("linuxthreads");
 643      } else {
 644        os::Linux::set_libpthread_version(str);
 645      }
 646   } else {
 647     // glibc before 2.3.2 only has LinuxThreads.
 648     os::Linux::set_libpthread_version("linuxthreads");
 649   }
 650 
 651   if (strstr(libpthread_version(), "NPTL")) {
 652      os::Linux::set_is_NPTL();
 653   } else {
 654      os::Linux::set_is_LinuxThreads();
 655   }
 656 
 657   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 658   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 659   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 660      os::Linux::set_is_floating_stack();
 661   }
 662 }
 663 
 664 /////////////////////////////////////////////////////////////////////////////
 665 // thread stack
 666 
 667 // Force Linux kernel to expand current thread stack. If "bottom" is close
 668 // to the stack guard, caller should block all signals.
 669 //
 670 // MAP_GROWSDOWN:
 671 //   A special mmap() flag that is used to implement thread stacks. It tells
 672 //   kernel that the memory region should extend downwards when needed. This
 673 //   allows early versions of LinuxThreads to only mmap the first few pages
 674 //   when creating a new thread. Linux kernel will automatically expand thread
 675 //   stack as needed (on page faults).
 676 //
 677 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 678 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 679 //   region, it's hard to tell if the fault is due to a legitimate stack
 680 //   access or because of reading/writing non-exist memory (e.g. buffer
 681 //   overrun). As a rule, if the fault happens below current stack pointer,
 682 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 683 //   application (see Linux kernel fault.c).
 684 //
 685 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 686 //   stack overflow detection.
 687 //
 688 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 689 //   not use this flag. However, the stack of initial thread is not created
 690 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 691 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 692 //   and then attach the thread to JVM.
 693 //
 694 // To get around the problem and allow stack banging on Linux, we need to
 695 // manually expand thread stack after receiving the SIGSEGV.
 696 //
 697 // There are two ways to expand thread stack to address "bottom", we used
 698 // both of them in JVM before 1.5:
 699 //   1. adjust stack pointer first so that it is below "bottom", and then
 700 //      touch "bottom"
 701 //   2. mmap() the page in question
 702 //
 703 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 704 // if current sp is already near the lower end of page 101, and we need to
 705 // call mmap() to map page 100, it is possible that part of the mmap() frame
 706 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 707 // That will destroy the mmap() frame and cause VM to crash.
 708 //
 709 // The following code works by adjusting sp first, then accessing the "bottom"
 710 // page to force a page fault. Linux kernel will then automatically expand the
 711 // stack mapping.
 712 //
 713 // _expand_stack_to() assumes its frame size is less than page size, which
 714 // should always be true if the function is not inlined.
 715 
 716 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 717 #define NOINLINE
 718 #else
 719 #define NOINLINE __attribute__ ((noinline))
 720 #endif
 721 
 722 static void _expand_stack_to(address bottom) NOINLINE;
 723 
 724 static void _expand_stack_to(address bottom) {
 725   address sp;
 726   size_t size;
 727   volatile char *p;
 728 
 729   // Adjust bottom to point to the largest address within the same page, it
 730   // gives us a one-page buffer if alloca() allocates slightly more memory.
 731   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 732   bottom += os::Linux::page_size() - 1;
 733 
 734   // sp might be slightly above current stack pointer; if that's the case, we
 735   // will alloca() a little more space than necessary, which is OK. Don't use
 736   // os::current_stack_pointer(), as its result can be slightly below current
 737   // stack pointer, causing us to not alloca enough to reach "bottom".
 738   sp = (address)&sp;
 739 
 740   if (sp > bottom) {
 741     size = sp - bottom;
 742     p = (volatile char *)alloca(size);
 743     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 744     p[0] = '\0';
 745   }
 746 }
 747 
 748 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 749   assert(t!=NULL, "just checking");
 750   assert(t->osthread()->expanding_stack(), "expand should be set");
 751   assert(t->stack_base() != NULL, "stack_base was not initialized");
 752 
 753   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 754     sigset_t mask_all, old_sigset;
 755     sigfillset(&mask_all);
 756     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 757     _expand_stack_to(addr);
 758     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 759     return true;
 760   }
 761   return false;
 762 }
 763 
 764 //////////////////////////////////////////////////////////////////////////////
 765 // create new thread
 766 
 767 static address highest_vm_reserved_address();
 768 
 769 // check if it's safe to start a new thread
 770 static bool _thread_safety_check(Thread* thread) {
 771   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 772     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 773     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 774     //   allocated (MAP_FIXED) from high address space. Every thread stack
 775     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 776     //   it to other values if they rebuild LinuxThreads).
 777     //
 778     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 779     // the memory region has already been mmap'ed. That means if we have too
 780     // many threads and/or very large heap, eventually thread stack will
 781     // collide with heap.
 782     //
 783     // Here we try to prevent heap/stack collision by comparing current
 784     // stack bottom with the highest address that has been mmap'ed by JVM
 785     // plus a safety margin for memory maps created by native code.
 786     //
 787     // This feature can be disabled by setting ThreadSafetyMargin to 0
 788     //
 789     if (ThreadSafetyMargin > 0) {
 790       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 791 
 792       // not safe if our stack extends below the safety margin
 793       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 794     } else {
 795       return true;
 796     }
 797   } else {
 798     // Floating stack LinuxThreads or NPTL:
 799     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 800     //   there's not enough space left, pthread_create() will fail. If we come
 801     //   here, that means enough space has been reserved for stack.
 802     return true;
 803   }
 804 }
 805 
 806 // Thread start routine for all newly created threads
 807 static void *java_start(Thread *thread) {
 808   // Try to randomize the cache line index of hot stack frames.
 809   // This helps when threads of the same stack traces evict each other's
 810   // cache lines. The threads can be either from the same JVM instance, or
 811   // from different JVM instances. The benefit is especially true for
 812   // processors with hyperthreading technology.
 813   static int counter = 0;
 814   int pid = os::current_process_id();
 815   alloca(((pid ^ counter++) & 7) * 128);
 816 
 817   ThreadLocalStorage::set_thread(thread);
 818 
 819   OSThread* osthread = thread->osthread();
 820   Monitor* sync = osthread->startThread_lock();
 821 
 822   // non floating stack LinuxThreads needs extra check, see above
 823   if (!_thread_safety_check(thread)) {
 824     // notify parent thread
 825     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 826     osthread->set_state(ZOMBIE);
 827     sync->notify_all();
 828     return NULL;
 829   }
 830 
 831   // thread_id is kernel thread id (similar to Solaris LWP id)
 832   osthread->set_thread_id(os::Linux::gettid());
 833 
 834   if (UseNUMA) {
 835     int lgrp_id = os::numa_get_group_id();
 836     if (lgrp_id != -1) {
 837       thread->set_lgrp_id(lgrp_id);
 838     }
 839   }
 840   // initialize signal mask for this thread
 841   os::Linux::hotspot_sigmask(thread);
 842 
 843   // initialize floating point control register
 844   os::Linux::init_thread_fpu_state();
 845 
 846   // handshaking with parent thread
 847   {
 848     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 849 
 850     // notify parent thread
 851     osthread->set_state(INITIALIZED);
 852     sync->notify_all();
 853 
 854     // wait until os::start_thread()
 855     while (osthread->get_state() == INITIALIZED) {
 856       sync->wait(Mutex::_no_safepoint_check_flag);
 857     }
 858   }
 859 
 860   // call one more level start routine
 861   thread->run();
 862 
 863   return 0;
 864 }
 865 
 866 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 867   assert(thread->osthread() == NULL, "caller responsible");
 868 
 869   // Allocate the OSThread object
 870   OSThread* osthread = new OSThread(NULL, NULL);
 871   if (osthread == NULL) {
 872     return false;
 873   }
 874 
 875   // set the correct thread state
 876   osthread->set_thread_type(thr_type);
 877 
 878   // Initial state is ALLOCATED but not INITIALIZED
 879   osthread->set_state(ALLOCATED);
 880 
 881   thread->set_osthread(osthread);
 882 
 883   // init thread attributes
 884   pthread_attr_t attr;
 885   pthread_attr_init(&attr);
 886   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 887 
 888   // stack size
 889   if (os::Linux::supports_variable_stack_size()) {
 890     // calculate stack size if it's not specified by caller
 891     if (stack_size == 0) {
 892       stack_size = os::Linux::default_stack_size(thr_type);
 893 
 894       switch (thr_type) {
 895       case os::java_thread:
 896         // Java threads use ThreadStackSize which default value can be
 897         // changed with the flag -Xss
 898         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 899         stack_size = JavaThread::stack_size_at_create();
 900         break;
 901       case os::compiler_thread:
 902         if (CompilerThreadStackSize > 0) {
 903           stack_size = (size_t)(CompilerThreadStackSize * K);
 904           break;
 905         } // else fall through:
 906           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 907       case os::vm_thread:
 908       case os::pgc_thread:
 909       case os::cgc_thread:
 910       case os::watcher_thread:
 911         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 912         break;
 913       }
 914     }
 915 
 916     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 917     pthread_attr_setstacksize(&attr, stack_size);
 918   } else {
 919     // let pthread_create() pick the default value.
 920   }
 921 
 922   // glibc guard page
 923   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 924 
 925   ThreadState state;
 926 
 927   {
 928     // Serialize thread creation if we are running with fixed stack LinuxThreads
 929     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 930     if (lock) {
 931       os::Linux::createThread_lock()->lock_without_safepoint_check();
 932     }
 933 
 934     pthread_t tid;
 935     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 936 
 937     pthread_attr_destroy(&attr);
 938 
 939     if (ret != 0) {
 940       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 941         perror("pthread_create()");
 942       }
 943       // Need to clean up stuff we've allocated so far
 944       thread->set_osthread(NULL);
 945       delete osthread;
 946       if (lock) os::Linux::createThread_lock()->unlock();
 947       return false;
 948     }
 949 
 950     // Store pthread info into the OSThread
 951     osthread->set_pthread_id(tid);
 952 
 953     // Wait until child thread is either initialized or aborted
 954     {
 955       Monitor* sync_with_child = osthread->startThread_lock();
 956       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 957       while ((state = osthread->get_state()) == ALLOCATED) {
 958         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 959       }
 960     }
 961 
 962     if (lock) {
 963       os::Linux::createThread_lock()->unlock();
 964     }
 965   }
 966 
 967   // Aborted due to thread limit being reached
 968   if (state == ZOMBIE) {
 969       thread->set_osthread(NULL);
 970       delete osthread;
 971       return false;
 972   }
 973 
 974   // The thread is returned suspended (in state INITIALIZED),
 975   // and is started higher up in the call chain
 976   assert(state == INITIALIZED, "race condition");
 977   return true;
 978 }
 979 
 980 /////////////////////////////////////////////////////////////////////////////
 981 // attach existing thread
 982 
 983 // bootstrap the main thread
 984 bool os::create_main_thread(JavaThread* thread) {
 985   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 986   return create_attached_thread(thread);
 987 }
 988 
 989 bool os::create_attached_thread(JavaThread* thread) {
 990 #ifdef ASSERT
 991     thread->verify_not_published();
 992 #endif
 993 
 994   // Allocate the OSThread object
 995   OSThread* osthread = new OSThread(NULL, NULL);
 996 
 997   if (osthread == NULL) {
 998     return false;
 999   }
1000 
1001   // Store pthread info into the OSThread
1002   osthread->set_thread_id(os::Linux::gettid());
1003   osthread->set_pthread_id(::pthread_self());
1004 
1005   // initialize floating point control register
1006   os::Linux::init_thread_fpu_state();
1007 
1008   // Initial thread state is RUNNABLE
1009   osthread->set_state(RUNNABLE);
1010 
1011   thread->set_osthread(osthread);
1012 
1013   if (UseNUMA) {
1014     int lgrp_id = os::numa_get_group_id();
1015     if (lgrp_id != -1) {
1016       thread->set_lgrp_id(lgrp_id);
1017     }
1018   }
1019 
1020   if (os::Linux::is_initial_thread()) {
1021     // If current thread is initial thread, its stack is mapped on demand,
1022     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1023     // the entire stack region to avoid SEGV in stack banging.
1024     // It is also useful to get around the heap-stack-gap problem on SuSE
1025     // kernel (see 4821821 for details). We first expand stack to the top
1026     // of yellow zone, then enable stack yellow zone (order is significant,
1027     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1028     // is no gap between the last two virtual memory regions.
1029 
1030     JavaThread *jt = (JavaThread *)thread;
1031     address addr = jt->stack_yellow_zone_base();
1032     assert(addr != NULL, "initialization problem?");
1033     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1034 
1035     osthread->set_expanding_stack();
1036     os::Linux::manually_expand_stack(jt, addr);
1037     osthread->clear_expanding_stack();
1038   }
1039 
1040   // initialize signal mask for this thread
1041   // and save the caller's signal mask
1042   os::Linux::hotspot_sigmask(thread);
1043 
1044   return true;
1045 }
1046 
1047 void os::pd_start_thread(Thread* thread) {
1048   OSThread * osthread = thread->osthread();
1049   assert(osthread->get_state() != INITIALIZED, "just checking");
1050   Monitor* sync_with_child = osthread->startThread_lock();
1051   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1052   sync_with_child->notify();
1053 }
1054 
1055 // Free Linux resources related to the OSThread
1056 void os::free_thread(OSThread* osthread) {
1057   assert(osthread != NULL, "osthread not set");
1058 
1059   if (Thread::current()->osthread() == osthread) {
1060     // Restore caller's signal mask
1061     sigset_t sigmask = osthread->caller_sigmask();
1062     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1063    }
1064 
1065   delete osthread;
1066 }
1067 
1068 //////////////////////////////////////////////////////////////////////////////
1069 // thread local storage
1070 
1071 int os::allocate_thread_local_storage() {
1072   pthread_key_t key;
1073   int rslt = pthread_key_create(&key, NULL);
1074   assert(rslt == 0, "cannot allocate thread local storage");
1075   return (int)key;
1076 }
1077 
1078 // Note: This is currently not used by VM, as we don't destroy TLS key
1079 // on VM exit.
1080 void os::free_thread_local_storage(int index) {
1081   int rslt = pthread_key_delete((pthread_key_t)index);
1082   assert(rslt == 0, "invalid index");
1083 }
1084 
1085 void os::thread_local_storage_at_put(int index, void* value) {
1086   int rslt = pthread_setspecific((pthread_key_t)index, value);
1087   assert(rslt == 0, "pthread_setspecific failed");
1088 }
1089 
1090 extern "C" Thread* get_thread() {
1091   return ThreadLocalStorage::thread();
1092 }
1093 
1094 //////////////////////////////////////////////////////////////////////////////
1095 // initial thread
1096 
1097 // Check if current thread is the initial thread, similar to Solaris thr_main.
1098 bool os::Linux::is_initial_thread(void) {
1099   char dummy;
1100   // If called before init complete, thread stack bottom will be null.
1101   // Can be called if fatal error occurs before initialization.
1102   if (initial_thread_stack_bottom() == NULL) return false;
1103   assert(initial_thread_stack_bottom() != NULL &&
1104          initial_thread_stack_size()   != 0,
1105          "os::init did not locate initial thread's stack region");
1106   if ((address)&dummy >= initial_thread_stack_bottom() &&
1107       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1108        return true;
1109   else return false;
1110 }
1111 
1112 // Find the virtual memory area that contains addr
1113 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1114   FILE *fp = fopen("/proc/self/maps", "r");
1115   if (fp) {
1116     address low, high;
1117     while (!feof(fp)) {
1118       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1119         if (low <= addr && addr < high) {
1120            if (vma_low)  *vma_low  = low;
1121            if (vma_high) *vma_high = high;
1122            fclose (fp);
1123            return true;
1124         }
1125       }
1126       for (;;) {
1127         int ch = fgetc(fp);
1128         if (ch == EOF || ch == (int)'\n') break;
1129       }
1130     }
1131     fclose(fp);
1132   }
1133   return false;
1134 }
1135 
1136 // Locate initial thread stack. This special handling of initial thread stack
1137 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1138 // bogus value for initial thread.
1139 void os::Linux::capture_initial_stack(size_t max_size) {
1140   // stack size is the easy part, get it from RLIMIT_STACK
1141   size_t stack_size;
1142   struct rlimit rlim;
1143   getrlimit(RLIMIT_STACK, &rlim);
1144   stack_size = rlim.rlim_cur;
1145 
1146   // 6308388: a bug in ld.so will relocate its own .data section to the
1147   //   lower end of primordial stack; reduce ulimit -s value a little bit
1148   //   so we won't install guard page on ld.so's data section.
1149   stack_size -= 2 * page_size();
1150 
1151   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1152   //   7.1, in both cases we will get 2G in return value.
1153   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1154   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1155   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1156   //   in case other parts in glibc still assumes 2M max stack size.
1157   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1158   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1159   if (stack_size > 2 * K * K IA64_ONLY(*2))
1160       stack_size = 2 * K * K IA64_ONLY(*2);
1161   // Try to figure out where the stack base (top) is. This is harder.
1162   //
1163   // When an application is started, glibc saves the initial stack pointer in
1164   // a global variable "__libc_stack_end", which is then used by system
1165   // libraries. __libc_stack_end should be pretty close to stack top. The
1166   // variable is available since the very early days. However, because it is
1167   // a private interface, it could disappear in the future.
1168   //
1169   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1170   // to __libc_stack_end, it is very close to stack top, but isn't the real
1171   // stack top. Note that /proc may not exist if VM is running as a chroot
1172   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1173   // /proc/<pid>/stat could change in the future (though unlikely).
1174   //
1175   // We try __libc_stack_end first. If that doesn't work, look for
1176   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1177   // as a hint, which should work well in most cases.
1178 
1179   uintptr_t stack_start;
1180 
1181   // try __libc_stack_end first
1182   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1183   if (p && *p) {
1184     stack_start = *p;
1185   } else {
1186     // see if we can get the start_stack field from /proc/self/stat
1187     FILE *fp;
1188     int pid;
1189     char state;
1190     int ppid;
1191     int pgrp;
1192     int session;
1193     int nr;
1194     int tpgrp;
1195     unsigned long flags;
1196     unsigned long minflt;
1197     unsigned long cminflt;
1198     unsigned long majflt;
1199     unsigned long cmajflt;
1200     unsigned long utime;
1201     unsigned long stime;
1202     long cutime;
1203     long cstime;
1204     long prio;
1205     long nice;
1206     long junk;
1207     long it_real;
1208     uintptr_t start;
1209     uintptr_t vsize;
1210     intptr_t rss;
1211     uintptr_t rsslim;
1212     uintptr_t scodes;
1213     uintptr_t ecode;
1214     int i;
1215 
1216     // Figure what the primordial thread stack base is. Code is inspired
1217     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1218     // followed by command name surrounded by parentheses, state, etc.
1219     char stat[2048];
1220     int statlen;
1221 
1222     fp = fopen("/proc/self/stat", "r");
1223     if (fp) {
1224       statlen = fread(stat, 1, 2047, fp);
1225       stat[statlen] = '\0';
1226       fclose(fp);
1227 
1228       // Skip pid and the command string. Note that we could be dealing with
1229       // weird command names, e.g. user could decide to rename java launcher
1230       // to "java 1.4.2 :)", then the stat file would look like
1231       //                1234 (java 1.4.2 :)) R ... ...
1232       // We don't really need to know the command string, just find the last
1233       // occurrence of ")" and then start parsing from there. See bug 4726580.
1234       char * s = strrchr(stat, ')');
1235 
1236       i = 0;
1237       if (s) {
1238         // Skip blank chars
1239         do s++; while (isspace(*s));
1240 
1241 #define _UFM UINTX_FORMAT
1242 #define _DFM INTX_FORMAT
1243 
1244         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1245         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1246         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1247              &state,          /* 3  %c  */
1248              &ppid,           /* 4  %d  */
1249              &pgrp,           /* 5  %d  */
1250              &session,        /* 6  %d  */
1251              &nr,             /* 7  %d  */
1252              &tpgrp,          /* 8  %d  */
1253              &flags,          /* 9  %lu  */
1254              &minflt,         /* 10 %lu  */
1255              &cminflt,        /* 11 %lu  */
1256              &majflt,         /* 12 %lu  */
1257              &cmajflt,        /* 13 %lu  */
1258              &utime,          /* 14 %lu  */
1259              &stime,          /* 15 %lu  */
1260              &cutime,         /* 16 %ld  */
1261              &cstime,         /* 17 %ld  */
1262              &prio,           /* 18 %ld  */
1263              &nice,           /* 19 %ld  */
1264              &junk,           /* 20 %ld  */
1265              &it_real,        /* 21 %ld  */
1266              &start,          /* 22 UINTX_FORMAT */
1267              &vsize,          /* 23 UINTX_FORMAT */
1268              &rss,            /* 24 INTX_FORMAT  */
1269              &rsslim,         /* 25 UINTX_FORMAT */
1270              &scodes,         /* 26 UINTX_FORMAT */
1271              &ecode,          /* 27 UINTX_FORMAT */
1272              &stack_start);   /* 28 UINTX_FORMAT */
1273       }
1274 
1275 #undef _UFM
1276 #undef _DFM
1277 
1278       if (i != 28 - 2) {
1279          assert(false, "Bad conversion from /proc/self/stat");
1280          // product mode - assume we are the initial thread, good luck in the
1281          // embedded case.
1282          warning("Can't detect initial thread stack location - bad conversion");
1283          stack_start = (uintptr_t) &rlim;
1284       }
1285     } else {
1286       // For some reason we can't open /proc/self/stat (for example, running on
1287       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1288       // most cases, so don't abort:
1289       warning("Can't detect initial thread stack location - no /proc/self/stat");
1290       stack_start = (uintptr_t) &rlim;
1291     }
1292   }
1293 
1294   // Now we have a pointer (stack_start) very close to the stack top, the
1295   // next thing to do is to figure out the exact location of stack top. We
1296   // can find out the virtual memory area that contains stack_start by
1297   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1298   // and its upper limit is the real stack top. (again, this would fail if
1299   // running inside chroot, because /proc may not exist.)
1300 
1301   uintptr_t stack_top;
1302   address low, high;
1303   if (find_vma((address)stack_start, &low, &high)) {
1304     // success, "high" is the true stack top. (ignore "low", because initial
1305     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1306     stack_top = (uintptr_t)high;
1307   } else {
1308     // failed, likely because /proc/self/maps does not exist
1309     warning("Can't detect initial thread stack location - find_vma failed");
1310     // best effort: stack_start is normally within a few pages below the real
1311     // stack top, use it as stack top, and reduce stack size so we won't put
1312     // guard page outside stack.
1313     stack_top = stack_start;
1314     stack_size -= 16 * page_size();
1315   }
1316 
1317   // stack_top could be partially down the page so align it
1318   stack_top = align_size_up(stack_top, page_size());
1319 
1320   if (max_size && stack_size > max_size) {
1321      _initial_thread_stack_size = max_size;
1322   } else {
1323      _initial_thread_stack_size = stack_size;
1324   }
1325 
1326   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1327   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1328 }
1329 
1330 ////////////////////////////////////////////////////////////////////////////////
1331 // time support
1332 
1333 // Time since start-up in seconds to a fine granularity.
1334 // Used by VMSelfDestructTimer and the MemProfiler.
1335 double os::elapsedTime() {
1336 
1337   return (double)(os::elapsed_counter()) * 0.000001;
1338 }
1339 
1340 jlong os::elapsed_counter() {
1341   timeval time;
1342   int status = gettimeofday(&time, NULL);
1343   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1344 }
1345 
1346 jlong os::elapsed_frequency() {
1347   return (1000 * 1000);
1348 }
1349 
1350 bool os::supports_vtime() { return true; }
1351 bool os::enable_vtime()   { return false; }
1352 bool os::vtime_enabled()  { return false; }
1353 
1354 double os::elapsedVTime() {
1355   struct rusage usage;
1356   int retval = getrusage(RUSAGE_THREAD, &usage);
1357   if (retval == 0) {
1358     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1359   } else {
1360     // better than nothing, but not much
1361     return elapsedTime();
1362   }
1363 }
1364 
1365 jlong os::javaTimeMillis() {
1366   timeval time;
1367   int status = gettimeofday(&time, NULL);
1368   assert(status != -1, "linux error");
1369   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1370 }
1371 
1372 #ifndef CLOCK_MONOTONIC
1373 #define CLOCK_MONOTONIC (1)
1374 #endif
1375 
1376 void os::Linux::clock_init() {
1377   // we do dlopen's in this particular order due to bug in linux
1378   // dynamical loader (see 6348968) leading to crash on exit
1379   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1380   if (handle == NULL) {
1381     handle = dlopen("librt.so", RTLD_LAZY);
1382   }
1383 
1384   if (handle) {
1385     int (*clock_getres_func)(clockid_t, struct timespec*) =
1386            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1387     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1388            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1389     if (clock_getres_func && clock_gettime_func) {
1390       // See if monotonic clock is supported by the kernel. Note that some
1391       // early implementations simply return kernel jiffies (updated every
1392       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1393       // for nano time (though the monotonic property is still nice to have).
1394       // It's fixed in newer kernels, however clock_getres() still returns
1395       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1396       // resolution for now. Hopefully as people move to new kernels, this
1397       // won't be a problem.
1398       struct timespec res;
1399       struct timespec tp;
1400       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1401           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1402         // yes, monotonic clock is supported
1403         _clock_gettime = clock_gettime_func;
1404       } else {
1405         // close librt if there is no monotonic clock
1406         dlclose(handle);
1407       }
1408     }
1409   }
1410 }
1411 
1412 #ifndef SYS_clock_getres
1413 
1414 #if defined(IA32) || defined(AMD64)
1415 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1416 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1417 #else
1418 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1419 #define sys_clock_getres(x,y)  -1
1420 #endif
1421 
1422 #else
1423 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1424 #endif
1425 
1426 void os::Linux::fast_thread_clock_init() {
1427   if (!UseLinuxPosixThreadCPUClocks) {
1428     return;
1429   }
1430   clockid_t clockid;
1431   struct timespec tp;
1432   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1433       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1434 
1435   // Switch to using fast clocks for thread cpu time if
1436   // the sys_clock_getres() returns 0 error code.
1437   // Note, that some kernels may support the current thread
1438   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1439   // returned by the pthread_getcpuclockid().
1440   // If the fast Posix clocks are supported then the sys_clock_getres()
1441   // must return at least tp.tv_sec == 0 which means a resolution
1442   // better than 1 sec. This is extra check for reliability.
1443 
1444   if(pthread_getcpuclockid_func &&
1445      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1446      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1447 
1448     _supports_fast_thread_cpu_time = true;
1449     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1450   }
1451 }
1452 
1453 jlong os::javaTimeNanos() {
1454   if (Linux::supports_monotonic_clock()) {
1455     struct timespec tp;
1456     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1457     assert(status == 0, "gettime error");
1458     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1459     return result;
1460   } else {
1461     timeval time;
1462     int status = gettimeofday(&time, NULL);
1463     assert(status != -1, "linux error");
1464     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1465     return 1000 * usecs;
1466   }
1467 }
1468 
1469 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1470   if (Linux::supports_monotonic_clock()) {
1471     info_ptr->max_value = ALL_64_BITS;
1472 
1473     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1474     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1475     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1476   } else {
1477     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1478     info_ptr->max_value = ALL_64_BITS;
1479 
1480     // gettimeofday is a real time clock so it skips
1481     info_ptr->may_skip_backward = true;
1482     info_ptr->may_skip_forward = true;
1483   }
1484 
1485   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1486 }
1487 
1488 // Return the real, user, and system times in seconds from an
1489 // arbitrary fixed point in the past.
1490 bool os::getTimesSecs(double* process_real_time,
1491                       double* process_user_time,
1492                       double* process_system_time) {
1493   struct tms ticks;
1494   clock_t real_ticks = times(&ticks);
1495 
1496   if (real_ticks == (clock_t) (-1)) {
1497     return false;
1498   } else {
1499     double ticks_per_second = (double) clock_tics_per_sec;
1500     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1501     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1502     *process_real_time = ((double) real_ticks) / ticks_per_second;
1503 
1504     return true;
1505   }
1506 }
1507 
1508 
1509 char * os::local_time_string(char *buf, size_t buflen) {
1510   struct tm t;
1511   time_t long_time;
1512   time(&long_time);
1513   localtime_r(&long_time, &t);
1514   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1515                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1516                t.tm_hour, t.tm_min, t.tm_sec);
1517   return buf;
1518 }
1519 
1520 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1521   return localtime_r(clock, res);
1522 }
1523 
1524 ////////////////////////////////////////////////////////////////////////////////
1525 // runtime exit support
1526 
1527 // Note: os::shutdown() might be called very early during initialization, or
1528 // called from signal handler. Before adding something to os::shutdown(), make
1529 // sure it is async-safe and can handle partially initialized VM.
1530 void os::shutdown() {
1531 
1532   // allow PerfMemory to attempt cleanup of any persistent resources
1533   perfMemory_exit();
1534 
1535   // needs to remove object in file system
1536   AttachListener::abort();
1537 
1538   // flush buffered output, finish log files
1539   ostream_abort();
1540 
1541   // Check for abort hook
1542   abort_hook_t abort_hook = Arguments::abort_hook();
1543   if (abort_hook != NULL) {
1544     abort_hook();
1545   }
1546 
1547 }
1548 
1549 // Note: os::abort() might be called very early during initialization, or
1550 // called from signal handler. Before adding something to os::abort(), make
1551 // sure it is async-safe and can handle partially initialized VM.
1552 void os::abort(bool dump_core) {
1553   os::shutdown();
1554   if (dump_core) {
1555 #ifndef PRODUCT
1556     fdStream out(defaultStream::output_fd());
1557     out.print_raw("Current thread is ");
1558     char buf[16];
1559     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1560     out.print_raw_cr(buf);
1561     out.print_raw_cr("Dumping core ...");
1562 #endif
1563     ::abort(); // dump core
1564   }
1565 
1566   ::exit(1);
1567 }
1568 
1569 // Die immediately, no exit hook, no abort hook, no cleanup.
1570 void os::die() {
1571   // _exit() on LinuxThreads only kills current thread
1572   ::abort();
1573 }
1574 
1575 // unused on linux for now.
1576 void os::set_error_file(const char *logfile) {}
1577 
1578 
1579 // This method is a copy of JDK's sysGetLastErrorString
1580 // from src/solaris/hpi/src/system_md.c
1581 
1582 size_t os::lasterror(char *buf, size_t len) {
1583 
1584   if (errno == 0)  return 0;
1585 
1586   const char *s = ::strerror(errno);
1587   size_t n = ::strlen(s);
1588   if (n >= len) {
1589     n = len - 1;
1590   }
1591   ::strncpy(buf, s, n);
1592   buf[n] = '\0';
1593   return n;
1594 }
1595 
1596 intx os::current_thread_id() { return (intx)pthread_self(); }
1597 int os::current_process_id() {
1598 
1599   // Under the old linux thread library, linux gives each thread
1600   // its own process id. Because of this each thread will return
1601   // a different pid if this method were to return the result
1602   // of getpid(2). Linux provides no api that returns the pid
1603   // of the launcher thread for the vm. This implementation
1604   // returns a unique pid, the pid of the launcher thread
1605   // that starts the vm 'process'.
1606 
1607   // Under the NPTL, getpid() returns the same pid as the
1608   // launcher thread rather than a unique pid per thread.
1609   // Use gettid() if you want the old pre NPTL behaviour.
1610 
1611   // if you are looking for the result of a call to getpid() that
1612   // returns a unique pid for the calling thread, then look at the
1613   // OSThread::thread_id() method in osThread_linux.hpp file
1614 
1615   return (int)(_initial_pid ? _initial_pid : getpid());
1616 }
1617 
1618 // DLL functions
1619 
1620 const char* os::dll_file_extension() { return ".so"; }
1621 
1622 // This must be hard coded because it's the system's temporary
1623 // directory not the java application's temp directory, ala java.io.tmpdir.
1624 const char* os::get_temp_directory() { return "/tmp"; }
1625 
1626 static bool file_exists(const char* filename) {
1627   struct stat statbuf;
1628   if (filename == NULL || strlen(filename) == 0) {
1629     return false;
1630   }
1631   return os::stat(filename, &statbuf) == 0;
1632 }
1633 
1634 bool os::dll_build_name(char* buffer, size_t buflen,
1635                         const char* pname, const char* fname) {
1636   bool retval = false;
1637   // Copied from libhpi
1638   const size_t pnamelen = pname ? strlen(pname) : 0;
1639 
1640   // Return error on buffer overflow.
1641   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1642     return retval;
1643   }
1644 
1645   if (pnamelen == 0) {
1646     snprintf(buffer, buflen, "lib%s.so", fname);
1647     retval = true;
1648   } else if (strchr(pname, *os::path_separator()) != NULL) {
1649     int n;
1650     char** pelements = split_path(pname, &n);
1651     if (pelements == NULL) {
1652       return false;
1653     }
1654     for (int i = 0 ; i < n ; i++) {
1655       // Really shouldn't be NULL, but check can't hurt
1656       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1657         continue; // skip the empty path values
1658       }
1659       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1660       if (file_exists(buffer)) {
1661         retval = true;
1662         break;
1663       }
1664     }
1665     // release the storage
1666     for (int i = 0 ; i < n ; i++) {
1667       if (pelements[i] != NULL) {
1668         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1669       }
1670     }
1671     if (pelements != NULL) {
1672       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1673     }
1674   } else {
1675     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1676     retval = true;
1677   }
1678   return retval;
1679 }
1680 
1681 // check if addr is inside libjvm.so
1682 bool os::address_is_in_vm(address addr) {
1683   static address libjvm_base_addr;
1684   Dl_info dlinfo;
1685 
1686   if (libjvm_base_addr == NULL) {
1687     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1688       libjvm_base_addr = (address)dlinfo.dli_fbase;
1689     }
1690     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1691   }
1692 
1693   if (dladdr((void *)addr, &dlinfo) != 0) {
1694     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1695   }
1696 
1697   return false;
1698 }
1699 
1700 bool os::dll_address_to_function_name(address addr, char *buf,
1701                                       int buflen, int *offset) {
1702   // buf is not optional, but offset is optional
1703   assert(buf != NULL, "sanity check");
1704 
1705   Dl_info dlinfo;
1706 
1707   if (dladdr((void*)addr, &dlinfo) != 0) {
1708     // see if we have a matching symbol
1709     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1710       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1711         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1712       }
1713       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1714       return true;
1715     }
1716     // no matching symbol so try for just file info
1717     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1718       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1719                           buf, buflen, offset, dlinfo.dli_fname)) {
1720         return true;
1721       }
1722     }
1723   }
1724 
1725   buf[0] = '\0';
1726   if (offset != NULL) *offset = -1;
1727   return false;
1728 }
1729 
1730 struct _address_to_library_name {
1731   address addr;          // input : memory address
1732   size_t  buflen;        //         size of fname
1733   char*   fname;         // output: library name
1734   address base;          //         library base addr
1735 };
1736 
1737 static int address_to_library_name_callback(struct dl_phdr_info *info,
1738                                             size_t size, void *data) {
1739   int i;
1740   bool found = false;
1741   address libbase = NULL;
1742   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1743 
1744   // iterate through all loadable segments
1745   for (i = 0; i < info->dlpi_phnum; i++) {
1746     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1747     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1748       // base address of a library is the lowest address of its loaded
1749       // segments.
1750       if (libbase == NULL || libbase > segbase) {
1751         libbase = segbase;
1752       }
1753       // see if 'addr' is within current segment
1754       if (segbase <= d->addr &&
1755           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1756         found = true;
1757       }
1758     }
1759   }
1760 
1761   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1762   // so dll_address_to_library_name() can fall through to use dladdr() which
1763   // can figure out executable name from argv[0].
1764   if (found && info->dlpi_name && info->dlpi_name[0]) {
1765     d->base = libbase;
1766     if (d->fname) {
1767       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1768     }
1769     return 1;
1770   }
1771   return 0;
1772 }
1773 
1774 bool os::dll_address_to_library_name(address addr, char* buf,
1775                                      int buflen, int* offset) {
1776   // buf is not optional, but offset is optional
1777   assert(buf != NULL, "sanity check");
1778 
1779   Dl_info dlinfo;
1780   struct _address_to_library_name data;
1781 
1782   // There is a bug in old glibc dladdr() implementation that it could resolve
1783   // to wrong library name if the .so file has a base address != NULL. Here
1784   // we iterate through the program headers of all loaded libraries to find
1785   // out which library 'addr' really belongs to. This workaround can be
1786   // removed once the minimum requirement for glibc is moved to 2.3.x.
1787   data.addr = addr;
1788   data.fname = buf;
1789   data.buflen = buflen;
1790   data.base = NULL;
1791   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1792 
1793   if (rslt) {
1794      // buf already contains library name
1795      if (offset) *offset = addr - data.base;
1796      return true;
1797   }
1798   if (dladdr((void*)addr, &dlinfo) != 0) {
1799     if (dlinfo.dli_fname != NULL) {
1800       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1801     }
1802     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1803       *offset = addr - (address)dlinfo.dli_fbase;
1804     }
1805     return true;
1806   }
1807 
1808   buf[0] = '\0';
1809   if (offset) *offset = -1;
1810   return false;
1811 }
1812 
1813   // Loads .dll/.so and
1814   // in case of error it checks if .dll/.so was built for the
1815   // same architecture as Hotspot is running on
1816 
1817 
1818 // Remember the stack's state. The Linux dynamic linker will change
1819 // the stack to 'executable' at most once, so we must safepoint only once.
1820 bool os::Linux::_stack_is_executable = false;
1821 
1822 // VM operation that loads a library.  This is necessary if stack protection
1823 // of the Java stacks can be lost during loading the library.  If we
1824 // do not stop the Java threads, they can stack overflow before the stacks
1825 // are protected again.
1826 class VM_LinuxDllLoad: public VM_Operation {
1827  private:
1828   const char *_filename;
1829   char *_ebuf;
1830   int _ebuflen;
1831   void *_lib;
1832  public:
1833   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1834     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1835   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1836   void doit() {
1837     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1838     os::Linux::_stack_is_executable = true;
1839   }
1840   void* loaded_library() { return _lib; }
1841 };
1842 
1843 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1844 {
1845   void * result = NULL;
1846   bool load_attempted = false;
1847 
1848   // Check whether the library to load might change execution rights
1849   // of the stack. If they are changed, the protection of the stack
1850   // guard pages will be lost. We need a safepoint to fix this.
1851   //
1852   // See Linux man page execstack(8) for more info.
1853   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1854     ElfFile ef(filename);
1855     if (!ef.specifies_noexecstack()) {
1856       if (!is_init_completed()) {
1857         os::Linux::_stack_is_executable = true;
1858         // This is OK - No Java threads have been created yet, and hence no
1859         // stack guard pages to fix.
1860         //
1861         // This should happen only when you are building JDK7 using a very
1862         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1863         //
1864         // Dynamic loader will make all stacks executable after
1865         // this function returns, and will not do that again.
1866         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1867       } else {
1868         warning("You have loaded library %s which might have disabled stack guard. "
1869                 "The VM will try to fix the stack guard now.\n"
1870                 "It's highly recommended that you fix the library with "
1871                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1872                 filename);
1873 
1874         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1875         JavaThread *jt = JavaThread::current();
1876         if (jt->thread_state() != _thread_in_native) {
1877           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1878           // that requires ExecStack. Cannot enter safe point. Let's give up.
1879           warning("Unable to fix stack guard. Giving up.");
1880         } else {
1881           if (!LoadExecStackDllInVMThread) {
1882             // This is for the case where the DLL has an static
1883             // constructor function that executes JNI code. We cannot
1884             // load such DLLs in the VMThread.
1885             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1886           }
1887 
1888           ThreadInVMfromNative tiv(jt);
1889           debug_only(VMNativeEntryWrapper vew;)
1890 
1891           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1892           VMThread::execute(&op);
1893           if (LoadExecStackDllInVMThread) {
1894             result = op.loaded_library();
1895           }
1896           load_attempted = true;
1897         }
1898       }
1899     }
1900   }
1901 
1902   if (!load_attempted) {
1903     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1904   }
1905 
1906   if (result != NULL) {
1907     // Successful loading
1908     return result;
1909   }
1910 
1911   Elf32_Ehdr elf_head;
1912   int diag_msg_max_length=ebuflen-strlen(ebuf);
1913   char* diag_msg_buf=ebuf+strlen(ebuf);
1914 
1915   if (diag_msg_max_length==0) {
1916     // No more space in ebuf for additional diagnostics message
1917     return NULL;
1918   }
1919 
1920 
1921   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1922 
1923   if (file_descriptor < 0) {
1924     // Can't open library, report dlerror() message
1925     return NULL;
1926   }
1927 
1928   bool failed_to_read_elf_head=
1929     (sizeof(elf_head)!=
1930         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1931 
1932   ::close(file_descriptor);
1933   if (failed_to_read_elf_head) {
1934     // file i/o error - report dlerror() msg
1935     return NULL;
1936   }
1937 
1938   typedef struct {
1939     Elf32_Half  code;         // Actual value as defined in elf.h
1940     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1941     char        elf_class;    // 32 or 64 bit
1942     char        endianess;    // MSB or LSB
1943     char*       name;         // String representation
1944   } arch_t;
1945 
1946   #ifndef EM_486
1947   #define EM_486          6               /* Intel 80486 */
1948   #endif
1949 
1950   static const arch_t arch_array[]={
1951     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1952     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1953     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1954     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1955     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1956     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1957     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1958     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1959     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1960     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1961     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1962     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1963     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1964     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1965     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1966     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1967   };
1968 
1969   #if  (defined IA32)
1970     static  Elf32_Half running_arch_code=EM_386;
1971   #elif   (defined AMD64)
1972     static  Elf32_Half running_arch_code=EM_X86_64;
1973   #elif  (defined IA64)
1974     static  Elf32_Half running_arch_code=EM_IA_64;
1975   #elif  (defined __sparc) && (defined _LP64)
1976     static  Elf32_Half running_arch_code=EM_SPARCV9;
1977   #elif  (defined __sparc) && (!defined _LP64)
1978     static  Elf32_Half running_arch_code=EM_SPARC;
1979   #elif  (defined __powerpc64__)
1980     static  Elf32_Half running_arch_code=EM_PPC64;
1981   #elif  (defined __powerpc__)
1982     static  Elf32_Half running_arch_code=EM_PPC;
1983   #elif  (defined ARM)
1984     static  Elf32_Half running_arch_code=EM_ARM;
1985   #elif  (defined S390)
1986     static  Elf32_Half running_arch_code=EM_S390;
1987   #elif  (defined ALPHA)
1988     static  Elf32_Half running_arch_code=EM_ALPHA;
1989   #elif  (defined MIPSEL)
1990     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1991   #elif  (defined PARISC)
1992     static  Elf32_Half running_arch_code=EM_PARISC;
1993   #elif  (defined MIPS)
1994     static  Elf32_Half running_arch_code=EM_MIPS;
1995   #elif  (defined M68K)
1996     static  Elf32_Half running_arch_code=EM_68K;
1997   #else
1998     #error Method os::dll_load requires that one of following is defined:\
1999          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2000   #endif
2001 
2002   // Identify compatability class for VM's architecture and library's architecture
2003   // Obtain string descriptions for architectures
2004 
2005   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2006   int running_arch_index=-1;
2007 
2008   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2009     if (running_arch_code == arch_array[i].code) {
2010       running_arch_index    = i;
2011     }
2012     if (lib_arch.code == arch_array[i].code) {
2013       lib_arch.compat_class = arch_array[i].compat_class;
2014       lib_arch.name         = arch_array[i].name;
2015     }
2016   }
2017 
2018   assert(running_arch_index != -1,
2019     "Didn't find running architecture code (running_arch_code) in arch_array");
2020   if (running_arch_index == -1) {
2021     // Even though running architecture detection failed
2022     // we may still continue with reporting dlerror() message
2023     return NULL;
2024   }
2025 
2026   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2027     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2028     return NULL;
2029   }
2030 
2031 #ifndef S390
2032   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2033     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2034     return NULL;
2035   }
2036 #endif // !S390
2037 
2038   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2039     if ( lib_arch.name!=NULL ) {
2040       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2041         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2042         lib_arch.name, arch_array[running_arch_index].name);
2043     } else {
2044       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2045       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2046         lib_arch.code,
2047         arch_array[running_arch_index].name);
2048     }
2049   }
2050 
2051   return NULL;
2052 }
2053 
2054 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2055   void * result = ::dlopen(filename, RTLD_LAZY);
2056   if (result == NULL) {
2057     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2058     ebuf[ebuflen-1] = '\0';
2059   }
2060   return result;
2061 }
2062 
2063 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2064   void * result = NULL;
2065   if (LoadExecStackDllInVMThread) {
2066     result = dlopen_helper(filename, ebuf, ebuflen);
2067   }
2068 
2069   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2070   // library that requires an executable stack, or which does not have this
2071   // stack attribute set, dlopen changes the stack attribute to executable. The
2072   // read protection of the guard pages gets lost.
2073   //
2074   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2075   // may have been queued at the same time.
2076 
2077   if (!_stack_is_executable) {
2078     JavaThread *jt = Threads::first();
2079 
2080     while (jt) {
2081       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2082           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2083         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2084                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2085           warning("Attempt to reguard stack yellow zone failed.");
2086         }
2087       }
2088       jt = jt->next();
2089     }
2090   }
2091 
2092   return result;
2093 }
2094 
2095 /*
2096  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2097  * chances are you might want to run the generated bits against glibc-2.0
2098  * libdl.so, so always use locking for any version of glibc.
2099  */
2100 void* os::dll_lookup(void* handle, const char* name) {
2101   pthread_mutex_lock(&dl_mutex);
2102   void* res = dlsym(handle, name);
2103   pthread_mutex_unlock(&dl_mutex);
2104   return res;
2105 }
2106 
2107 
2108 static bool _print_ascii_file(const char* filename, outputStream* st) {
2109   int fd = ::open(filename, O_RDONLY);
2110   if (fd == -1) {
2111      return false;
2112   }
2113 
2114   char buf[32];
2115   int bytes;
2116   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2117     st->print_raw(buf, bytes);
2118   }
2119 
2120   ::close(fd);
2121 
2122   return true;
2123 }
2124 
2125 void os::print_dll_info(outputStream *st) {
2126    st->print_cr("Dynamic libraries:");
2127 
2128    char fname[32];
2129    pid_t pid = os::Linux::gettid();
2130 
2131    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2132 
2133    if (!_print_ascii_file(fname, st)) {
2134      st->print("Can not get library information for pid = %d\n", pid);
2135    }
2136 }
2137 
2138 void os::print_os_info_brief(outputStream* st) {
2139   os::Linux::print_distro_info(st);
2140 
2141   os::Posix::print_uname_info(st);
2142 
2143   os::Linux::print_libversion_info(st);
2144 
2145 }
2146 
2147 void os::print_os_info(outputStream* st) {
2148   st->print("OS:");
2149 
2150   os::Linux::print_distro_info(st);
2151 
2152   os::Posix::print_uname_info(st);
2153 
2154   // Print warning if unsafe chroot environment detected
2155   if (unsafe_chroot_detected) {
2156     st->print("WARNING!! ");
2157     st->print_cr(unstable_chroot_error);
2158   }
2159 
2160   os::Linux::print_libversion_info(st);
2161 
2162   os::Posix::print_rlimit_info(st);
2163 
2164   os::Posix::print_load_average(st);
2165 
2166   os::Linux::print_full_memory_info(st);
2167 }
2168 
2169 // Try to identify popular distros.
2170 // Most Linux distributions have /etc/XXX-release file, which contains
2171 // the OS version string. Some have more than one /etc/XXX-release file
2172 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2173 // so the order is important.
2174 void os::Linux::print_distro_info(outputStream* st) {
2175   if (!_print_ascii_file("/etc/mandrake-release", st) &&
2176       !_print_ascii_file("/etc/sun-release", st) &&
2177       !_print_ascii_file("/etc/redhat-release", st) &&
2178       !_print_ascii_file("/etc/SuSE-release", st) &&
2179       !_print_ascii_file("/etc/turbolinux-release", st) &&
2180       !_print_ascii_file("/etc/gentoo-release", st) &&
2181       !_print_ascii_file("/etc/debian_version", st) &&
2182       !_print_ascii_file("/etc/ltib-release", st) &&
2183       !_print_ascii_file("/etc/angstrom-version", st)) {
2184       st->print("Linux");
2185   }
2186   st->cr();
2187 }
2188 
2189 void os::Linux::print_libversion_info(outputStream* st) {
2190   // libc, pthread
2191   st->print("libc:");
2192   st->print(os::Linux::glibc_version()); st->print(" ");
2193   st->print(os::Linux::libpthread_version()); st->print(" ");
2194   if (os::Linux::is_LinuxThreads()) {
2195      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2196   }
2197   st->cr();
2198 }
2199 
2200 void os::Linux::print_full_memory_info(outputStream* st) {
2201    st->print("\n/proc/meminfo:\n");
2202    _print_ascii_file("/proc/meminfo", st);
2203    st->cr();
2204 }
2205 
2206 void os::print_memory_info(outputStream* st) {
2207 
2208   st->print("Memory:");
2209   st->print(" %dk page", os::vm_page_size()>>10);
2210 
2211   // values in struct sysinfo are "unsigned long"
2212   struct sysinfo si;
2213   sysinfo(&si);
2214 
2215   st->print(", physical " UINT64_FORMAT "k",
2216             os::physical_memory() >> 10);
2217   st->print("(" UINT64_FORMAT "k free)",
2218             os::available_memory() >> 10);
2219   st->print(", swap " UINT64_FORMAT "k",
2220             ((jlong)si.totalswap * si.mem_unit) >> 10);
2221   st->print("(" UINT64_FORMAT "k free)",
2222             ((jlong)si.freeswap * si.mem_unit) >> 10);
2223   st->cr();
2224 }
2225 
2226 void os::pd_print_cpu_info(outputStream* st) {
2227   st->print("\n/proc/cpuinfo:\n");
2228   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2229     st->print("  <Not Available>");
2230   }
2231   st->cr();
2232 }
2233 
2234 void os::print_siginfo(outputStream* st, void* siginfo) {
2235   const siginfo_t* si = (const siginfo_t*)siginfo;
2236 
2237   os::Posix::print_siginfo_brief(st, si);
2238 
2239   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2240       UseSharedSpaces) {
2241     FileMapInfo* mapinfo = FileMapInfo::current_info();
2242     if (mapinfo->is_in_shared_space(si->si_addr)) {
2243       st->print("\n\nError accessing class data sharing archive."   \
2244                 " Mapped file inaccessible during execution, "      \
2245                 " possible disk/network problem.");
2246     }
2247   }
2248   st->cr();
2249 }
2250 
2251 
2252 static void print_signal_handler(outputStream* st, int sig,
2253                                  char* buf, size_t buflen);
2254 
2255 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2256   st->print_cr("Signal Handlers:");
2257   print_signal_handler(st, SIGSEGV, buf, buflen);
2258   print_signal_handler(st, SIGBUS , buf, buflen);
2259   print_signal_handler(st, SIGFPE , buf, buflen);
2260   print_signal_handler(st, SIGPIPE, buf, buflen);
2261   print_signal_handler(st, SIGXFSZ, buf, buflen);
2262   print_signal_handler(st, SIGILL , buf, buflen);
2263   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2264   print_signal_handler(st, SR_signum, buf, buflen);
2265   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2266   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2267   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2268   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2269 }
2270 
2271 static char saved_jvm_path[MAXPATHLEN] = {0};
2272 
2273 // Find the full path to the current module, libjvm.so
2274 void os::jvm_path(char *buf, jint buflen) {
2275   // Error checking.
2276   if (buflen < MAXPATHLEN) {
2277     assert(false, "must use a large-enough buffer");
2278     buf[0] = '\0';
2279     return;
2280   }
2281   // Lazy resolve the path to current module.
2282   if (saved_jvm_path[0] != 0) {
2283     strcpy(buf, saved_jvm_path);
2284     return;
2285   }
2286 
2287   char dli_fname[MAXPATHLEN];
2288   bool ret = dll_address_to_library_name(
2289                 CAST_FROM_FN_PTR(address, os::jvm_path),
2290                 dli_fname, sizeof(dli_fname), NULL);
2291   assert(ret, "cannot locate libjvm");
2292   char *rp = NULL;
2293   if (ret && dli_fname[0] != '\0') {
2294     rp = realpath(dli_fname, buf);
2295   }
2296   if (rp == NULL)
2297     return;
2298 
2299   if (Arguments::created_by_gamma_launcher()) {
2300     // Support for the gamma launcher.  Typical value for buf is
2301     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2302     // the right place in the string, then assume we are installed in a JDK and
2303     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2304     // up the path so it looks like libjvm.so is installed there (append a
2305     // fake suffix hotspot/libjvm.so).
2306     const char *p = buf + strlen(buf) - 1;
2307     for (int count = 0; p > buf && count < 5; ++count) {
2308       for (--p; p > buf && *p != '/'; --p)
2309         /* empty */ ;
2310     }
2311 
2312     if (strncmp(p, "/jre/lib/", 9) != 0) {
2313       // Look for JAVA_HOME in the environment.
2314       char* java_home_var = ::getenv("JAVA_HOME");
2315       if (java_home_var != NULL && java_home_var[0] != 0) {
2316         char* jrelib_p;
2317         int len;
2318 
2319         // Check the current module name "libjvm.so".
2320         p = strrchr(buf, '/');
2321         assert(strstr(p, "/libjvm") == p, "invalid library name");
2322 
2323         rp = realpath(java_home_var, buf);
2324         if (rp == NULL)
2325           return;
2326 
2327         // determine if this is a legacy image or modules image
2328         // modules image doesn't have "jre" subdirectory
2329         len = strlen(buf);
2330         jrelib_p = buf + len;
2331         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2332         if (0 != access(buf, F_OK)) {
2333           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2334         }
2335 
2336         if (0 == access(buf, F_OK)) {
2337           // Use current module name "libjvm.so"
2338           len = strlen(buf);
2339           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2340         } else {
2341           // Go back to path of .so
2342           rp = realpath(dli_fname, buf);
2343           if (rp == NULL)
2344             return;
2345         }
2346       }
2347     }
2348   }
2349 
2350   strcpy(saved_jvm_path, buf);
2351 }
2352 
2353 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2354   // no prefix required, not even "_"
2355 }
2356 
2357 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2358   // no suffix required
2359 }
2360 
2361 ////////////////////////////////////////////////////////////////////////////////
2362 // sun.misc.Signal support
2363 
2364 static volatile jint sigint_count = 0;
2365 
2366 static void
2367 UserHandler(int sig, void *siginfo, void *context) {
2368   // 4511530 - sem_post is serialized and handled by the manager thread. When
2369   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2370   // don't want to flood the manager thread with sem_post requests.
2371   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2372       return;
2373 
2374   // Ctrl-C is pressed during error reporting, likely because the error
2375   // handler fails to abort. Let VM die immediately.
2376   if (sig == SIGINT && is_error_reported()) {
2377      os::die();
2378   }
2379 
2380   os::signal_notify(sig);
2381 }
2382 
2383 void* os::user_handler() {
2384   return CAST_FROM_FN_PTR(void*, UserHandler);
2385 }
2386 
2387 class Semaphore : public StackObj {
2388   public:
2389     Semaphore();
2390     ~Semaphore();
2391     void signal();
2392     void wait();
2393     bool trywait();
2394     bool timedwait(unsigned int sec, int nsec);
2395   private:
2396     sem_t _semaphore;
2397 };
2398 
2399 
2400 Semaphore::Semaphore() {
2401   sem_init(&_semaphore, 0, 0);
2402 }
2403 
2404 Semaphore::~Semaphore() {
2405   sem_destroy(&_semaphore);
2406 }
2407 
2408 void Semaphore::signal() {
2409   sem_post(&_semaphore);
2410 }
2411 
2412 void Semaphore::wait() {
2413   sem_wait(&_semaphore);
2414 }
2415 
2416 bool Semaphore::trywait() {
2417   return sem_trywait(&_semaphore) == 0;
2418 }
2419 
2420 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2421   struct timespec ts;
2422   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2423 
2424   while (1) {
2425     int result = sem_timedwait(&_semaphore, &ts);
2426     if (result == 0) {
2427       return true;
2428     } else if (errno == EINTR) {
2429       continue;
2430     } else if (errno == ETIMEDOUT) {
2431       return false;
2432     } else {
2433       return false;
2434     }
2435   }
2436 }
2437 
2438 extern "C" {
2439   typedef void (*sa_handler_t)(int);
2440   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2441 }
2442 
2443 void* os::signal(int signal_number, void* handler) {
2444   struct sigaction sigAct, oldSigAct;
2445 
2446   sigfillset(&(sigAct.sa_mask));
2447   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2448   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2449 
2450   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2451     // -1 means registration failed
2452     return (void *)-1;
2453   }
2454 
2455   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2456 }
2457 
2458 void os::signal_raise(int signal_number) {
2459   ::raise(signal_number);
2460 }
2461 
2462 /*
2463  * The following code is moved from os.cpp for making this
2464  * code platform specific, which it is by its very nature.
2465  */
2466 
2467 // Will be modified when max signal is changed to be dynamic
2468 int os::sigexitnum_pd() {
2469   return NSIG;
2470 }
2471 
2472 // a counter for each possible signal value
2473 static volatile jint pending_signals[NSIG+1] = { 0 };
2474 
2475 // Linux(POSIX) specific hand shaking semaphore.
2476 static sem_t sig_sem;
2477 static Semaphore sr_semaphore;
2478 
2479 void os::signal_init_pd() {
2480   // Initialize signal structures
2481   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2482 
2483   // Initialize signal semaphore
2484   ::sem_init(&sig_sem, 0, 0);
2485 }
2486 
2487 void os::signal_notify(int sig) {
2488   Atomic::inc(&pending_signals[sig]);
2489   ::sem_post(&sig_sem);
2490 }
2491 
2492 static int check_pending_signals(bool wait) {
2493   Atomic::store(0, &sigint_count);
2494   for (;;) {
2495     for (int i = 0; i < NSIG + 1; i++) {
2496       jint n = pending_signals[i];
2497       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2498         return i;
2499       }
2500     }
2501     if (!wait) {
2502       return -1;
2503     }
2504     JavaThread *thread = JavaThread::current();
2505     ThreadBlockInVM tbivm(thread);
2506 
2507     bool threadIsSuspended;
2508     do {
2509       thread->set_suspend_equivalent();
2510       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2511       ::sem_wait(&sig_sem);
2512 
2513       // were we externally suspended while we were waiting?
2514       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2515       if (threadIsSuspended) {
2516         //
2517         // The semaphore has been incremented, but while we were waiting
2518         // another thread suspended us. We don't want to continue running
2519         // while suspended because that would surprise the thread that
2520         // suspended us.
2521         //
2522         ::sem_post(&sig_sem);
2523 
2524         thread->java_suspend_self();
2525       }
2526     } while (threadIsSuspended);
2527   }
2528 }
2529 
2530 int os::signal_lookup() {
2531   return check_pending_signals(false);
2532 }
2533 
2534 int os::signal_wait() {
2535   return check_pending_signals(true);
2536 }
2537 
2538 ////////////////////////////////////////////////////////////////////////////////
2539 // Virtual Memory
2540 
2541 int os::vm_page_size() {
2542   // Seems redundant as all get out
2543   assert(os::Linux::page_size() != -1, "must call os::init");
2544   return os::Linux::page_size();
2545 }
2546 
2547 // Solaris allocates memory by pages.
2548 int os::vm_allocation_granularity() {
2549   assert(os::Linux::page_size() != -1, "must call os::init");
2550   return os::Linux::page_size();
2551 }
2552 
2553 // Rationale behind this function:
2554 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2555 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2556 //  samples for JITted code. Here we create private executable mapping over the code cache
2557 //  and then we can use standard (well, almost, as mapping can change) way to provide
2558 //  info for the reporting script by storing timestamp and location of symbol
2559 void linux_wrap_code(char* base, size_t size) {
2560   static volatile jint cnt = 0;
2561 
2562   if (!UseOprofile) {
2563     return;
2564   }
2565 
2566   char buf[PATH_MAX+1];
2567   int num = Atomic::add(1, &cnt);
2568 
2569   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2570            os::get_temp_directory(), os::current_process_id(), num);
2571   unlink(buf);
2572 
2573   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2574 
2575   if (fd != -1) {
2576     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2577     if (rv != (off_t)-1) {
2578       if (::write(fd, "", 1) == 1) {
2579         mmap(base, size,
2580              PROT_READ|PROT_WRITE|PROT_EXEC,
2581              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2582       }
2583     }
2584     ::close(fd);
2585     unlink(buf);
2586   }
2587 }
2588 
2589 static bool recoverable_mmap_error(int err) {
2590   // See if the error is one we can let the caller handle. This
2591   // list of errno values comes from JBS-6843484. I can't find a
2592   // Linux man page that documents this specific set of errno
2593   // values so while this list currently matches Solaris, it may
2594   // change as we gain experience with this failure mode.
2595   switch (err) {
2596   case EBADF:
2597   case EINVAL:
2598   case ENOTSUP:
2599     // let the caller deal with these errors
2600     return true;
2601 
2602   default:
2603     // Any remaining errors on this OS can cause our reserved mapping
2604     // to be lost. That can cause confusion where different data
2605     // structures think they have the same memory mapped. The worst
2606     // scenario is if both the VM and a library think they have the
2607     // same memory mapped.
2608     return false;
2609   }
2610 }
2611 
2612 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2613                                     int err) {
2614   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2615           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2616           strerror(err), err);
2617 }
2618 
2619 static void warn_fail_commit_memory(char* addr, size_t size,
2620                                     size_t alignment_hint, bool exec,
2621                                     int err) {
2622   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2623           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2624           alignment_hint, exec, strerror(err), err);
2625 }
2626 
2627 // NOTE: Linux kernel does not really reserve the pages for us.
2628 //       All it does is to check if there are enough free pages
2629 //       left at the time of mmap(). This could be a potential
2630 //       problem.
2631 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2632   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2633   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2634                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2635   if (res != (uintptr_t) MAP_FAILED) {
2636     if (UseNUMAInterleaving) {
2637       numa_make_global(addr, size);
2638     }
2639     return 0;
2640   }
2641 
2642   int err = errno;  // save errno from mmap() call above
2643 
2644   if (!recoverable_mmap_error(err)) {
2645     warn_fail_commit_memory(addr, size, exec, err);
2646     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2647   }
2648 
2649   return err;
2650 }
2651 
2652 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2653   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2654 }
2655 
2656 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2657                                   const char* mesg) {
2658   assert(mesg != NULL, "mesg must be specified");
2659   int err = os::Linux::commit_memory_impl(addr, size, exec);
2660   if (err != 0) {
2661     // the caller wants all commit errors to exit with the specified mesg:
2662     warn_fail_commit_memory(addr, size, exec, err);
2663     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2664   }
2665 }
2666 
2667 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2668 #ifndef MAP_HUGETLB
2669 #define MAP_HUGETLB 0x40000
2670 #endif
2671 
2672 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2673 #ifndef MADV_HUGEPAGE
2674 #define MADV_HUGEPAGE 14
2675 #endif
2676 
2677 int os::Linux::commit_memory_impl(char* addr, size_t size,
2678                                   size_t alignment_hint, bool exec) {
2679   int err;
2680   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2681     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2682     uintptr_t res =
2683       (uintptr_t) ::mmap(addr, size, prot,
2684                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2685                          -1, 0);
2686     if (res != (uintptr_t) MAP_FAILED) {
2687       if (UseNUMAInterleaving) {
2688         numa_make_global(addr, size);
2689       }
2690       return 0;
2691     }
2692 
2693     err = errno;  // save errno from mmap() call above
2694 
2695     if (!recoverable_mmap_error(err)) {
2696       // However, it is not clear that this loss of our reserved mapping
2697       // happens with large pages on Linux or that we cannot recover
2698       // from the loss. For now, we just issue a warning and we don't
2699       // call vm_exit_out_of_memory(). This issue is being tracked by
2700       // JBS-8007074.
2701       warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2702 //    vm_exit_out_of_memory(size, OOM_MMAP_ERROR,
2703 //                          "committing reserved memory.");
2704     }
2705     // Fall through and try to use small pages
2706   }
2707 
2708   err = os::Linux::commit_memory_impl(addr, size, exec);
2709   if (err == 0) {
2710     realign_memory(addr, size, alignment_hint);
2711   }
2712   return err;
2713 }
2714 
2715 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2716                           bool exec) {
2717   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2718 }
2719 
2720 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2721                                   size_t alignment_hint, bool exec,
2722                                   const char* mesg) {
2723   assert(mesg != NULL, "mesg must be specified");
2724   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2725   if (err != 0) {
2726     // the caller wants all commit errors to exit with the specified mesg:
2727     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2728     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2729   }
2730 }
2731 
2732 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2733   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2734     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2735     // be supported or the memory may already be backed by huge pages.
2736     ::madvise(addr, bytes, MADV_HUGEPAGE);
2737   }
2738 }
2739 
2740 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2741   // This method works by doing an mmap over an existing mmaping and effectively discarding
2742   // the existing pages. However it won't work for SHM-based large pages that cannot be
2743   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2744   // small pages on top of the SHM segment. This method always works for small pages, so we
2745   // allow that in any case.
2746   if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2747     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2748   }
2749 }
2750 
2751 void os::numa_make_global(char *addr, size_t bytes) {
2752   Linux::numa_interleave_memory(addr, bytes);
2753 }
2754 
2755 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2756   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2757 }
2758 
2759 bool os::numa_topology_changed()   { return false; }
2760 
2761 size_t os::numa_get_groups_num() {
2762   int max_node = Linux::numa_max_node();
2763   return max_node > 0 ? max_node + 1 : 1;
2764 }
2765 
2766 int os::numa_get_group_id() {
2767   int cpu_id = Linux::sched_getcpu();
2768   if (cpu_id != -1) {
2769     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2770     if (lgrp_id != -1) {
2771       return lgrp_id;
2772     }
2773   }
2774   return 0;
2775 }
2776 
2777 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2778   for (size_t i = 0; i < size; i++) {
2779     ids[i] = i;
2780   }
2781   return size;
2782 }
2783 
2784 bool os::get_page_info(char *start, page_info* info) {
2785   return false;
2786 }
2787 
2788 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2789   return end;
2790 }
2791 
2792 
2793 int os::Linux::sched_getcpu_syscall(void) {
2794   unsigned int cpu;
2795   int retval = -1;
2796 
2797 #if defined(IA32)
2798 # ifndef SYS_getcpu
2799 # define SYS_getcpu 318
2800 # endif
2801   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2802 #elif defined(AMD64)
2803 // Unfortunately we have to bring all these macros here from vsyscall.h
2804 // to be able to compile on old linuxes.
2805 # define __NR_vgetcpu 2
2806 # define VSYSCALL_START (-10UL << 20)
2807 # define VSYSCALL_SIZE 1024
2808 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2809   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2810   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2811   retval = vgetcpu(&cpu, NULL, NULL);
2812 #endif
2813 
2814   return (retval == -1) ? retval : cpu;
2815 }
2816 
2817 // Something to do with the numa-aware allocator needs these symbols
2818 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2819 extern "C" JNIEXPORT void numa_error(char *where) { }
2820 extern "C" JNIEXPORT int fork1() { return fork(); }
2821 
2822 
2823 // If we are running with libnuma version > 2, then we should
2824 // be trying to use symbols with versions 1.1
2825 // If we are running with earlier version, which did not have symbol versions,
2826 // we should use the base version.
2827 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2828   void *f = dlvsym(handle, name, "libnuma_1.1");
2829   if (f == NULL) {
2830     f = dlsym(handle, name);
2831   }
2832   return f;
2833 }
2834 
2835 bool os::Linux::libnuma_init() {
2836   // sched_getcpu() should be in libc.
2837   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2838                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2839 
2840   // If it's not, try a direct syscall.
2841   if (sched_getcpu() == -1)
2842     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2843 
2844   if (sched_getcpu() != -1) { // Does it work?
2845     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2846     if (handle != NULL) {
2847       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2848                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2849       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2850                                        libnuma_dlsym(handle, "numa_max_node")));
2851       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2852                                         libnuma_dlsym(handle, "numa_available")));
2853       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2854                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2855       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2856                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2857 
2858 
2859       if (numa_available() != -1) {
2860         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2861         // Create a cpu -> node mapping
2862         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2863         rebuild_cpu_to_node_map();
2864         return true;
2865       }
2866     }
2867   }
2868   return false;
2869 }
2870 
2871 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2872 // The table is later used in get_node_by_cpu().
2873 void os::Linux::rebuild_cpu_to_node_map() {
2874   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2875                               // in libnuma (possible values are starting from 16,
2876                               // and continuing up with every other power of 2, but less
2877                               // than the maximum number of CPUs supported by kernel), and
2878                               // is a subject to change (in libnuma version 2 the requirements
2879                               // are more reasonable) we'll just hardcode the number they use
2880                               // in the library.
2881   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2882 
2883   size_t cpu_num = os::active_processor_count();
2884   size_t cpu_map_size = NCPUS / BitsPerCLong;
2885   size_t cpu_map_valid_size =
2886     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2887 
2888   cpu_to_node()->clear();
2889   cpu_to_node()->at_grow(cpu_num - 1);
2890   size_t node_num = numa_get_groups_num();
2891 
2892   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2893   for (size_t i = 0; i < node_num; i++) {
2894     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2895       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2896         if (cpu_map[j] != 0) {
2897           for (size_t k = 0; k < BitsPerCLong; k++) {
2898             if (cpu_map[j] & (1UL << k)) {
2899               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2900             }
2901           }
2902         }
2903       }
2904     }
2905   }
2906   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2907 }
2908 
2909 int os::Linux::get_node_by_cpu(int cpu_id) {
2910   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2911     return cpu_to_node()->at(cpu_id);
2912   }
2913   return -1;
2914 }
2915 
2916 GrowableArray<int>* os::Linux::_cpu_to_node;
2917 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2918 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2919 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2920 os::Linux::numa_available_func_t os::Linux::_numa_available;
2921 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2922 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2923 unsigned long* os::Linux::_numa_all_nodes;
2924 
2925 bool os::pd_uncommit_memory(char* addr, size_t size) {
2926   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2927                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2928   return res  != (uintptr_t) MAP_FAILED;
2929 }
2930 
2931 // Linux uses a growable mapping for the stack, and if the mapping for
2932 // the stack guard pages is not removed when we detach a thread the
2933 // stack cannot grow beyond the pages where the stack guard was
2934 // mapped.  If at some point later in the process the stack expands to
2935 // that point, the Linux kernel cannot expand the stack any further
2936 // because the guard pages are in the way, and a segfault occurs.
2937 //
2938 // However, it's essential not to split the stack region by unmapping
2939 // a region (leaving a hole) that's already part of the stack mapping,
2940 // so if the stack mapping has already grown beyond the guard pages at
2941 // the time we create them, we have to truncate the stack mapping.
2942 // So, we need to know the extent of the stack mapping when
2943 // create_stack_guard_pages() is called.
2944 
2945 // Find the bounds of the stack mapping.  Return true for success.
2946 //
2947 // We only need this for stacks that are growable: at the time of
2948 // writing thread stacks don't use growable mappings (i.e. those
2949 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2950 // only applies to the main thread.
2951 
2952 static
2953 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2954 
2955   char buf[128];
2956   int fd, sz;
2957 
2958   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2959     return false;
2960   }
2961 
2962   const char kw[] = "[stack]";
2963   const int kwlen = sizeof(kw)-1;
2964 
2965   // Address part of /proc/self/maps couldn't be more than 128 bytes
2966   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2967      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2968         // Extract addresses
2969         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2970            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2971            if (sp >= *bottom && sp <= *top) {
2972               ::close(fd);
2973               return true;
2974            }
2975         }
2976      }
2977   }
2978 
2979  ::close(fd);
2980   return false;
2981 }
2982 
2983 
2984 // If the (growable) stack mapping already extends beyond the point
2985 // where we're going to put our guard pages, truncate the mapping at
2986 // that point by munmap()ping it.  This ensures that when we later
2987 // munmap() the guard pages we don't leave a hole in the stack
2988 // mapping. This only affects the main/initial thread, but guard
2989 // against future OS changes
2990 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2991   uintptr_t stack_extent, stack_base;
2992   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2993   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2994       assert(os::Linux::is_initial_thread(),
2995            "growable stack in non-initial thread");
2996     if (stack_extent < (uintptr_t)addr)
2997       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2998   }
2999 
3000   return os::commit_memory(addr, size, !ExecMem);
3001 }
3002 
3003 // If this is a growable mapping, remove the guard pages entirely by
3004 // munmap()ping them.  If not, just call uncommit_memory(). This only
3005 // affects the main/initial thread, but guard against future OS changes
3006 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3007   uintptr_t stack_extent, stack_base;
3008   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
3009   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
3010       assert(os::Linux::is_initial_thread(),
3011            "growable stack in non-initial thread");
3012 
3013     return ::munmap(addr, size) == 0;
3014   }
3015 
3016   return os::uncommit_memory(addr, size);
3017 }
3018 
3019 static address _highest_vm_reserved_address = NULL;
3020 
3021 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3022 // at 'requested_addr'. If there are existing memory mappings at the same
3023 // location, however, they will be overwritten. If 'fixed' is false,
3024 // 'requested_addr' is only treated as a hint, the return value may or
3025 // may not start from the requested address. Unlike Linux mmap(), this
3026 // function returns NULL to indicate failure.
3027 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3028   char * addr;
3029   int flags;
3030 
3031   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3032   if (fixed) {
3033     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3034     flags |= MAP_FIXED;
3035   }
3036 
3037   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3038   // touch an uncommitted page. Otherwise, the read/write might
3039   // succeed if we have enough swap space to back the physical page.
3040   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3041                        flags, -1, 0);
3042 
3043   if (addr != MAP_FAILED) {
3044     // anon_mmap() should only get called during VM initialization,
3045     // don't need lock (actually we can skip locking even it can be called
3046     // from multiple threads, because _highest_vm_reserved_address is just a
3047     // hint about the upper limit of non-stack memory regions.)
3048     if ((address)addr + bytes > _highest_vm_reserved_address) {
3049       _highest_vm_reserved_address = (address)addr + bytes;
3050     }
3051   }
3052 
3053   return addr == MAP_FAILED ? NULL : addr;
3054 }
3055 
3056 // Don't update _highest_vm_reserved_address, because there might be memory
3057 // regions above addr + size. If so, releasing a memory region only creates
3058 // a hole in the address space, it doesn't help prevent heap-stack collision.
3059 //
3060 static int anon_munmap(char * addr, size_t size) {
3061   return ::munmap(addr, size) == 0;
3062 }
3063 
3064 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3065                          size_t alignment_hint) {
3066   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3067 }
3068 
3069 bool os::pd_release_memory(char* addr, size_t size) {
3070   return anon_munmap(addr, size);
3071 }
3072 
3073 static address highest_vm_reserved_address() {
3074   return _highest_vm_reserved_address;
3075 }
3076 
3077 static bool linux_mprotect(char* addr, size_t size, int prot) {
3078   // Linux wants the mprotect address argument to be page aligned.
3079   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3080 
3081   // According to SUSv3, mprotect() should only be used with mappings
3082   // established by mmap(), and mmap() always maps whole pages. Unaligned
3083   // 'addr' likely indicates problem in the VM (e.g. trying to change
3084   // protection of malloc'ed or statically allocated memory). Check the
3085   // caller if you hit this assert.
3086   assert(addr == bottom, "sanity check");
3087 
3088   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3089   return ::mprotect(bottom, size, prot) == 0;
3090 }
3091 
3092 // Set protections specified
3093 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3094                         bool is_committed) {
3095   unsigned int p = 0;
3096   switch (prot) {
3097   case MEM_PROT_NONE: p = PROT_NONE; break;
3098   case MEM_PROT_READ: p = PROT_READ; break;
3099   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3100   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3101   default:
3102     ShouldNotReachHere();
3103   }
3104   // is_committed is unused.
3105   return linux_mprotect(addr, bytes, p);
3106 }
3107 
3108 bool os::guard_memory(char* addr, size_t size) {
3109   return linux_mprotect(addr, size, PROT_NONE);
3110 }
3111 
3112 bool os::unguard_memory(char* addr, size_t size) {
3113   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3114 }
3115 
3116 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3117   bool result = false;
3118   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
3119                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3120                   -1, 0);
3121 
3122   if (p != MAP_FAILED) {
3123     // We don't know if this really is a huge page or not.
3124     FILE *fp = fopen("/proc/self/maps", "r");
3125     if (fp) {
3126       while (!feof(fp)) {
3127         char chars[257];
3128         long x = 0;
3129         if (fgets(chars, sizeof(chars), fp)) {
3130           if (sscanf(chars, "%lx-%*x", &x) == 1
3131               && x == (long)p) {
3132             if (strstr (chars, "hugepage")) {
3133               result = true;
3134               break;
3135             }
3136           }
3137         }
3138       }
3139       fclose(fp);
3140     }
3141     munmap (p, page_size);
3142     if (result)
3143       return true;
3144   }
3145 
3146   if (warn) {
3147     warning("HugeTLBFS is not supported by the operating system.");
3148   }
3149 
3150   return result;
3151 }
3152 
3153 /*
3154 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3155 *
3156 * From the coredump_filter documentation:
3157 *
3158 * - (bit 0) anonymous private memory
3159 * - (bit 1) anonymous shared memory
3160 * - (bit 2) file-backed private memory
3161 * - (bit 3) file-backed shared memory
3162 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3163 *           effective only if the bit 2 is cleared)
3164 * - (bit 5) hugetlb private memory
3165 * - (bit 6) hugetlb shared memory
3166 */
3167 static void set_coredump_filter(void) {
3168   FILE *f;
3169   long cdm;
3170 
3171   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3172     return;
3173   }
3174 
3175   if (fscanf(f, "%lx", &cdm) != 1) {
3176     fclose(f);
3177     return;
3178   }
3179 
3180   rewind(f);
3181 
3182   if ((cdm & LARGEPAGES_BIT) == 0) {
3183     cdm |= LARGEPAGES_BIT;
3184     fprintf(f, "%#lx", cdm);
3185   }
3186 
3187   fclose(f);
3188 }
3189 
3190 // Large page support
3191 
3192 static size_t _large_page_size = 0;
3193 
3194 void os::large_page_init() {
3195   if (!UseLargePages) {
3196     UseHugeTLBFS = false;
3197     UseSHM = false;
3198     return;
3199   }
3200 
3201   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3202     // If UseLargePages is specified on the command line try both methods,
3203     // if it's default, then try only HugeTLBFS.
3204     if (FLAG_IS_DEFAULT(UseLargePages)) {
3205       UseHugeTLBFS = true;
3206     } else {
3207       UseHugeTLBFS = UseSHM = true;
3208     }
3209   }
3210 
3211   if (LargePageSizeInBytes) {
3212     _large_page_size = LargePageSizeInBytes;
3213   } else {
3214     // large_page_size on Linux is used to round up heap size. x86 uses either
3215     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3216     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3217     // page as large as 256M.
3218     //
3219     // Here we try to figure out page size by parsing /proc/meminfo and looking
3220     // for a line with the following format:
3221     //    Hugepagesize:     2048 kB
3222     //
3223     // If we can't determine the value (e.g. /proc is not mounted, or the text
3224     // format has been changed), we'll use the largest page size supported by
3225     // the processor.
3226 
3227 #ifndef ZERO
3228     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3229                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3230 #endif // ZERO
3231 
3232     FILE *fp = fopen("/proc/meminfo", "r");
3233     if (fp) {
3234       while (!feof(fp)) {
3235         int x = 0;
3236         char buf[16];
3237         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3238           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3239             _large_page_size = x * K;
3240             break;
3241           }
3242         } else {
3243           // skip to next line
3244           for (;;) {
3245             int ch = fgetc(fp);
3246             if (ch == EOF || ch == (int)'\n') break;
3247           }
3248         }
3249       }
3250       fclose(fp);
3251     }
3252   }
3253 
3254   // print a warning if any large page related flag is specified on command line
3255   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3256 
3257   const size_t default_page_size = (size_t)Linux::page_size();
3258   if (_large_page_size > default_page_size) {
3259     _page_sizes[0] = _large_page_size;
3260     _page_sizes[1] = default_page_size;
3261     _page_sizes[2] = 0;
3262   }
3263   UseHugeTLBFS = UseHugeTLBFS &&
3264                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3265 
3266   if (UseHugeTLBFS)
3267     UseSHM = false;
3268 
3269   UseLargePages = UseHugeTLBFS || UseSHM;
3270 
3271   set_coredump_filter();
3272 }
3273 
3274 #ifndef SHM_HUGETLB
3275 #define SHM_HUGETLB 04000
3276 #endif
3277 
3278 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3279   // "exec" is passed in but not used.  Creating the shared image for
3280   // the code cache doesn't have an SHM_X executable permission to check.
3281   assert(UseLargePages && UseSHM, "only for SHM large pages");
3282 
3283   key_t key = IPC_PRIVATE;
3284   char *addr;
3285 
3286   bool warn_on_failure = UseLargePages &&
3287                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3288                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3289                         );
3290   char msg[128];
3291 
3292   // Create a large shared memory region to attach to based on size.
3293   // Currently, size is the total size of the heap
3294   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3295   if (shmid == -1) {
3296      // Possible reasons for shmget failure:
3297      // 1. shmmax is too small for Java heap.
3298      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3299      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3300      // 2. not enough large page memory.
3301      //    > check available large pages: cat /proc/meminfo
3302      //    > increase amount of large pages:
3303      //          echo new_value > /proc/sys/vm/nr_hugepages
3304      //      Note 1: different Linux may use different name for this property,
3305      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3306      //      Note 2: it's possible there's enough physical memory available but
3307      //            they are so fragmented after a long run that they can't
3308      //            coalesce into large pages. Try to reserve large pages when
3309      //            the system is still "fresh".
3310      if (warn_on_failure) {
3311        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3312        warning(msg);
3313      }
3314      return NULL;
3315   }
3316 
3317   // attach to the region
3318   addr = (char*)shmat(shmid, req_addr, 0);
3319   int err = errno;
3320 
3321   // Remove shmid. If shmat() is successful, the actual shared memory segment
3322   // will be deleted when it's detached by shmdt() or when the process
3323   // terminates. If shmat() is not successful this will remove the shared
3324   // segment immediately.
3325   shmctl(shmid, IPC_RMID, NULL);
3326 
3327   if ((intptr_t)addr == -1) {
3328      if (warn_on_failure) {
3329        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3330        warning(msg);
3331      }
3332      return NULL;
3333   }
3334 
3335   if ((addr != NULL) && UseNUMAInterleaving) {
3336     numa_make_global(addr, bytes);
3337   }
3338 
3339   // The memory is committed
3340   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3341 
3342   return addr;
3343 }
3344 
3345 bool os::release_memory_special(char* base, size_t bytes) {
3346   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3347   // detaching the SHM segment will also delete it, see reserve_memory_special()
3348   int rslt = shmdt(base);
3349   if (rslt == 0) {
3350     tkr.record((address)base, bytes);
3351     return true;
3352   } else {
3353     tkr.discard();
3354     return false;
3355   }
3356 }
3357 
3358 size_t os::large_page_size() {
3359   return _large_page_size;
3360 }
3361 
3362 // HugeTLBFS allows application to commit large page memory on demand;
3363 // with SysV SHM the entire memory region must be allocated as shared
3364 // memory.
3365 bool os::can_commit_large_page_memory() {
3366   return UseHugeTLBFS;
3367 }
3368 
3369 bool os::can_execute_large_page_memory() {
3370   return UseHugeTLBFS;
3371 }
3372 
3373 // Reserve memory at an arbitrary address, only if that area is
3374 // available (and not reserved for something else).
3375 
3376 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3377   const int max_tries = 10;
3378   char* base[max_tries];
3379   size_t size[max_tries];
3380   const size_t gap = 0x000000;
3381 
3382   // Assert only that the size is a multiple of the page size, since
3383   // that's all that mmap requires, and since that's all we really know
3384   // about at this low abstraction level.  If we need higher alignment,
3385   // we can either pass an alignment to this method or verify alignment
3386   // in one of the methods further up the call chain.  See bug 5044738.
3387   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3388 
3389   // Repeatedly allocate blocks until the block is allocated at the
3390   // right spot. Give up after max_tries. Note that reserve_memory() will
3391   // automatically update _highest_vm_reserved_address if the call is
3392   // successful. The variable tracks the highest memory address every reserved
3393   // by JVM. It is used to detect heap-stack collision if running with
3394   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3395   // space than needed, it could confuse the collision detecting code. To
3396   // solve the problem, save current _highest_vm_reserved_address and
3397   // calculate the correct value before return.
3398   address old_highest = _highest_vm_reserved_address;
3399 
3400   // Linux mmap allows caller to pass an address as hint; give it a try first,
3401   // if kernel honors the hint then we can return immediately.
3402   char * addr = anon_mmap(requested_addr, bytes, false);
3403   if (addr == requested_addr) {
3404      return requested_addr;
3405   }
3406 
3407   if (addr != NULL) {
3408      // mmap() is successful but it fails to reserve at the requested address
3409      anon_munmap(addr, bytes);
3410   }
3411 
3412   int i;
3413   for (i = 0; i < max_tries; ++i) {
3414     base[i] = reserve_memory(bytes);
3415 
3416     if (base[i] != NULL) {
3417       // Is this the block we wanted?
3418       if (base[i] == requested_addr) {
3419         size[i] = bytes;
3420         break;
3421       }
3422 
3423       // Does this overlap the block we wanted? Give back the overlapped
3424       // parts and try again.
3425 
3426       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3427       if (top_overlap >= 0 && top_overlap < bytes) {
3428         unmap_memory(base[i], top_overlap);
3429         base[i] += top_overlap;
3430         size[i] = bytes - top_overlap;
3431       } else {
3432         size_t bottom_overlap = base[i] + bytes - requested_addr;
3433         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3434           unmap_memory(requested_addr, bottom_overlap);
3435           size[i] = bytes - bottom_overlap;
3436         } else {
3437           size[i] = bytes;
3438         }
3439       }
3440     }
3441   }
3442 
3443   // Give back the unused reserved pieces.
3444 
3445   for (int j = 0; j < i; ++j) {
3446     if (base[j] != NULL) {
3447       unmap_memory(base[j], size[j]);
3448     }
3449   }
3450 
3451   if (i < max_tries) {
3452     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3453     return requested_addr;
3454   } else {
3455     _highest_vm_reserved_address = old_highest;
3456     return NULL;
3457   }
3458 }
3459 
3460 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3461   return ::read(fd, buf, nBytes);
3462 }
3463 
3464 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3465 // Solaris uses poll(), linux uses park().
3466 // Poll() is likely a better choice, assuming that Thread.interrupt()
3467 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3468 // SIGSEGV, see 4355769.
3469 
3470 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3471   assert(thread == Thread::current(),  "thread consistency check");
3472 
3473   ParkEvent * const slp = thread->_SleepEvent ;
3474   slp->reset() ;
3475   OrderAccess::fence() ;
3476 
3477   if (interruptible) {
3478     jlong prevtime = javaTimeNanos();
3479 
3480     for (;;) {
3481       if (os::is_interrupted(thread, true)) {
3482         return OS_INTRPT;
3483       }
3484 
3485       jlong newtime = javaTimeNanos();
3486 
3487       if (newtime - prevtime < 0) {
3488         // time moving backwards, should only happen if no monotonic clock
3489         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3490         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3491       } else {
3492         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3493       }
3494 
3495       if(millis <= 0) {
3496         return OS_OK;
3497       }
3498 
3499       prevtime = newtime;
3500 
3501       {
3502         assert(thread->is_Java_thread(), "sanity check");
3503         JavaThread *jt = (JavaThread *) thread;
3504         ThreadBlockInVM tbivm(jt);
3505         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3506 
3507         jt->set_suspend_equivalent();
3508         // cleared by handle_special_suspend_equivalent_condition() or
3509         // java_suspend_self() via check_and_wait_while_suspended()
3510 
3511         slp->park(millis);
3512 
3513         // were we externally suspended while we were waiting?
3514         jt->check_and_wait_while_suspended();
3515       }
3516     }
3517   } else {
3518     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3519     jlong prevtime = javaTimeNanos();
3520 
3521     for (;;) {
3522       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3523       // the 1st iteration ...
3524       jlong newtime = javaTimeNanos();
3525 
3526       if (newtime - prevtime < 0) {
3527         // time moving backwards, should only happen if no monotonic clock
3528         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3529         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3530       } else {
3531         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3532       }
3533 
3534       if(millis <= 0) break ;
3535 
3536       prevtime = newtime;
3537       slp->park(millis);
3538     }
3539     return OS_OK ;
3540   }
3541 }
3542 
3543 int os::naked_sleep() {
3544   // %% make the sleep time an integer flag. for now use 1 millisec.
3545   return os::sleep(Thread::current(), 1, false);
3546 }
3547 
3548 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3549 void os::infinite_sleep() {
3550   while (true) {    // sleep forever ...
3551     ::sleep(100);   // ... 100 seconds at a time
3552   }
3553 }
3554 
3555 // Used to convert frequent JVM_Yield() to nops
3556 bool os::dont_yield() {
3557   return DontYieldALot;
3558 }
3559 
3560 void os::yield() {
3561   sched_yield();
3562 }
3563 
3564 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3565 
3566 void os::yield_all(int attempts) {
3567   // Yields to all threads, including threads with lower priorities
3568   // Threads on Linux are all with same priority. The Solaris style
3569   // os::yield_all() with nanosleep(1ms) is not necessary.
3570   sched_yield();
3571 }
3572 
3573 // Called from the tight loops to possibly influence time-sharing heuristics
3574 void os::loop_breaker(int attempts) {
3575   os::yield_all(attempts);
3576 }
3577 
3578 ////////////////////////////////////////////////////////////////////////////////
3579 // thread priority support
3580 
3581 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3582 // only supports dynamic priority, static priority must be zero. For real-time
3583 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3584 // However, for large multi-threaded applications, SCHED_RR is not only slower
3585 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3586 // of 5 runs - Sep 2005).
3587 //
3588 // The following code actually changes the niceness of kernel-thread/LWP. It
3589 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3590 // not the entire user process, and user level threads are 1:1 mapped to kernel
3591 // threads. It has always been the case, but could change in the future. For
3592 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3593 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3594 
3595 int os::java_to_os_priority[CriticalPriority + 1] = {
3596   19,              // 0 Entry should never be used
3597 
3598    4,              // 1 MinPriority
3599    3,              // 2
3600    2,              // 3
3601 
3602    1,              // 4
3603    0,              // 5 NormPriority
3604   -1,              // 6
3605 
3606   -2,              // 7
3607   -3,              // 8
3608   -4,              // 9 NearMaxPriority
3609 
3610   -5,              // 10 MaxPriority
3611 
3612   -5               // 11 CriticalPriority
3613 };
3614 
3615 static int prio_init() {
3616   if (ThreadPriorityPolicy == 1) {
3617     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3618     // if effective uid is not root. Perhaps, a more elegant way of doing
3619     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3620     if (geteuid() != 0) {
3621       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3622         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3623       }
3624       ThreadPriorityPolicy = 0;
3625     }
3626   }
3627   if (UseCriticalJavaThreadPriority) {
3628     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3629   }
3630   return 0;
3631 }
3632 
3633 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3634   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3635 
3636   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3637   return (ret == 0) ? OS_OK : OS_ERR;
3638 }
3639 
3640 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3641   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3642     *priority_ptr = java_to_os_priority[NormPriority];
3643     return OS_OK;
3644   }
3645 
3646   errno = 0;
3647   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3648   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3649 }
3650 
3651 // Hint to the underlying OS that a task switch would not be good.
3652 // Void return because it's a hint and can fail.
3653 void os::hint_no_preempt() {}
3654 
3655 ////////////////////////////////////////////////////////////////////////////////
3656 // suspend/resume support
3657 
3658 //  the low-level signal-based suspend/resume support is a remnant from the
3659 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3660 //  within hotspot. Now there is a single use-case for this:
3661 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3662 //      that runs in the watcher thread.
3663 //  The remaining code is greatly simplified from the more general suspension
3664 //  code that used to be used.
3665 //
3666 //  The protocol is quite simple:
3667 //  - suspend:
3668 //      - sends a signal to the target thread
3669 //      - polls the suspend state of the osthread using a yield loop
3670 //      - target thread signal handler (SR_handler) sets suspend state
3671 //        and blocks in sigsuspend until continued
3672 //  - resume:
3673 //      - sets target osthread state to continue
3674 //      - sends signal to end the sigsuspend loop in the SR_handler
3675 //
3676 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3677 //
3678 
3679 static void resume_clear_context(OSThread *osthread) {
3680   osthread->set_ucontext(NULL);
3681   osthread->set_siginfo(NULL);
3682 }
3683 
3684 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3685   osthread->set_ucontext(context);
3686   osthread->set_siginfo(siginfo);
3687 }
3688 
3689 //
3690 // Handler function invoked when a thread's execution is suspended or
3691 // resumed. We have to be careful that only async-safe functions are
3692 // called here (Note: most pthread functions are not async safe and
3693 // should be avoided.)
3694 //
3695 // Note: sigwait() is a more natural fit than sigsuspend() from an
3696 // interface point of view, but sigwait() prevents the signal hander
3697 // from being run. libpthread would get very confused by not having
3698 // its signal handlers run and prevents sigwait()'s use with the
3699 // mutex granting granting signal.
3700 //
3701 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3702 //
3703 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3704   // Save and restore errno to avoid confusing native code with EINTR
3705   // after sigsuspend.
3706   int old_errno = errno;
3707 
3708   Thread* thread = Thread::current();
3709   OSThread* osthread = thread->osthread();
3710   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3711 
3712   os::SuspendResume::State current = osthread->sr.state();
3713   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3714     suspend_save_context(osthread, siginfo, context);
3715 
3716     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3717     os::SuspendResume::State state = osthread->sr.suspended();
3718     if (state == os::SuspendResume::SR_SUSPENDED) {
3719       sigset_t suspend_set;  // signals for sigsuspend()
3720 
3721       // get current set of blocked signals and unblock resume signal
3722       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3723       sigdelset(&suspend_set, SR_signum);
3724 
3725       sr_semaphore.signal();
3726       // wait here until we are resumed
3727       while (1) {
3728         sigsuspend(&suspend_set);
3729 
3730         os::SuspendResume::State result = osthread->sr.running();
3731         if (result == os::SuspendResume::SR_RUNNING) {
3732           sr_semaphore.signal();
3733           break;
3734         }
3735       }
3736 
3737     } else if (state == os::SuspendResume::SR_RUNNING) {
3738       // request was cancelled, continue
3739     } else {
3740       ShouldNotReachHere();
3741     }
3742 
3743     resume_clear_context(osthread);
3744   } else if (current == os::SuspendResume::SR_RUNNING) {
3745     // request was cancelled, continue
3746   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3747     // ignore
3748   } else {
3749     // ignore
3750   }
3751 
3752   errno = old_errno;
3753 }
3754 
3755 
3756 static int SR_initialize() {
3757   struct sigaction act;
3758   char *s;
3759   /* Get signal number to use for suspend/resume */
3760   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3761     int sig = ::strtol(s, 0, 10);
3762     if (sig > 0 || sig < _NSIG) {
3763         SR_signum = sig;
3764     }
3765   }
3766 
3767   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3768         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3769 
3770   sigemptyset(&SR_sigset);
3771   sigaddset(&SR_sigset, SR_signum);
3772 
3773   /* Set up signal handler for suspend/resume */
3774   act.sa_flags = SA_RESTART|SA_SIGINFO;
3775   act.sa_handler = (void (*)(int)) SR_handler;
3776 
3777   // SR_signum is blocked by default.
3778   // 4528190 - We also need to block pthread restart signal (32 on all
3779   // supported Linux platforms). Note that LinuxThreads need to block
3780   // this signal for all threads to work properly. So we don't have
3781   // to use hard-coded signal number when setting up the mask.
3782   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3783 
3784   if (sigaction(SR_signum, &act, 0) == -1) {
3785     return -1;
3786   }
3787 
3788   // Save signal flag
3789   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3790   return 0;
3791 }
3792 
3793 static int sr_notify(OSThread* osthread) {
3794   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3795   assert_status(status == 0, status, "pthread_kill");
3796   return status;
3797 }
3798 
3799 // "Randomly" selected value for how long we want to spin
3800 // before bailing out on suspending a thread, also how often
3801 // we send a signal to a thread we want to resume
3802 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3803 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3804 
3805 // returns true on success and false on error - really an error is fatal
3806 // but this seems the normal response to library errors
3807 static bool do_suspend(OSThread* osthread) {
3808   assert(osthread->sr.is_running(), "thread should be running");
3809   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3810 
3811   // mark as suspended and send signal
3812   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3813     // failed to switch, state wasn't running?
3814     ShouldNotReachHere();
3815     return false;
3816   }
3817 
3818   if (sr_notify(osthread) != 0) {
3819     ShouldNotReachHere();
3820   }
3821 
3822   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3823   while (true) {
3824     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3825       break;
3826     } else {
3827       // timeout
3828       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3829       if (cancelled == os::SuspendResume::SR_RUNNING) {
3830         return false;
3831       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3832         // make sure that we consume the signal on the semaphore as well
3833         sr_semaphore.wait();
3834         break;
3835       } else {
3836         ShouldNotReachHere();
3837         return false;
3838       }
3839     }
3840   }
3841 
3842   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3843   return true;
3844 }
3845 
3846 static void do_resume(OSThread* osthread) {
3847   assert(osthread->sr.is_suspended(), "thread should be suspended");
3848   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3849 
3850   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3851     // failed to switch to WAKEUP_REQUEST
3852     ShouldNotReachHere();
3853     return;
3854   }
3855 
3856   while (true) {
3857     if (sr_notify(osthread) == 0) {
3858       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3859         if (osthread->sr.is_running()) {
3860           return;
3861         }
3862       }
3863     } else {
3864       ShouldNotReachHere();
3865     }
3866   }
3867 
3868   guarantee(osthread->sr.is_running(), "Must be running!");
3869 }
3870 
3871 ////////////////////////////////////////////////////////////////////////////////
3872 // interrupt support
3873 
3874 void os::interrupt(Thread* thread) {
3875   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3876     "possibility of dangling Thread pointer");
3877 
3878   OSThread* osthread = thread->osthread();
3879 
3880   if (!osthread->interrupted()) {
3881     osthread->set_interrupted(true);
3882     // More than one thread can get here with the same value of osthread,
3883     // resulting in multiple notifications.  We do, however, want the store
3884     // to interrupted() to be visible to other threads before we execute unpark().
3885     OrderAccess::fence();
3886     ParkEvent * const slp = thread->_SleepEvent ;
3887     if (slp != NULL) slp->unpark() ;
3888   }
3889 
3890   // For JSR166. Unpark even if interrupt status already was set
3891   if (thread->is_Java_thread())
3892     ((JavaThread*)thread)->parker()->unpark();
3893 
3894   ParkEvent * ev = thread->_ParkEvent ;
3895   if (ev != NULL) ev->unpark() ;
3896 
3897 }
3898 
3899 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3900   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3901     "possibility of dangling Thread pointer");
3902 
3903   OSThread* osthread = thread->osthread();
3904 
3905   bool interrupted = osthread->interrupted();
3906 
3907   if (interrupted && clear_interrupted) {
3908     osthread->set_interrupted(false);
3909     // consider thread->_SleepEvent->reset() ... optional optimization
3910   }
3911 
3912   return interrupted;
3913 }
3914 
3915 ///////////////////////////////////////////////////////////////////////////////////
3916 // signal handling (except suspend/resume)
3917 
3918 // This routine may be used by user applications as a "hook" to catch signals.
3919 // The user-defined signal handler must pass unrecognized signals to this
3920 // routine, and if it returns true (non-zero), then the signal handler must
3921 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3922 // routine will never retun false (zero), but instead will execute a VM panic
3923 // routine kill the process.
3924 //
3925 // If this routine returns false, it is OK to call it again.  This allows
3926 // the user-defined signal handler to perform checks either before or after
3927 // the VM performs its own checks.  Naturally, the user code would be making
3928 // a serious error if it tried to handle an exception (such as a null check
3929 // or breakpoint) that the VM was generating for its own correct operation.
3930 //
3931 // This routine may recognize any of the following kinds of signals:
3932 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3933 // It should be consulted by handlers for any of those signals.
3934 //
3935 // The caller of this routine must pass in the three arguments supplied
3936 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3937 // field of the structure passed to sigaction().  This routine assumes that
3938 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3939 //
3940 // Note that the VM will print warnings if it detects conflicting signal
3941 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3942 //
3943 extern "C" JNIEXPORT int
3944 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3945                         void* ucontext, int abort_if_unrecognized);
3946 
3947 void signalHandler(int sig, siginfo_t* info, void* uc) {
3948   assert(info != NULL && uc != NULL, "it must be old kernel");
3949   int orig_errno = errno;  // Preserve errno value over signal handler.
3950   JVM_handle_linux_signal(sig, info, uc, true);
3951   errno = orig_errno;
3952 }
3953 
3954 
3955 // This boolean allows users to forward their own non-matching signals
3956 // to JVM_handle_linux_signal, harmlessly.
3957 bool os::Linux::signal_handlers_are_installed = false;
3958 
3959 // For signal-chaining
3960 struct sigaction os::Linux::sigact[MAXSIGNUM];
3961 unsigned int os::Linux::sigs = 0;
3962 bool os::Linux::libjsig_is_loaded = false;
3963 typedef struct sigaction *(*get_signal_t)(int);
3964 get_signal_t os::Linux::get_signal_action = NULL;
3965 
3966 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3967   struct sigaction *actp = NULL;
3968 
3969   if (libjsig_is_loaded) {
3970     // Retrieve the old signal handler from libjsig
3971     actp = (*get_signal_action)(sig);
3972   }
3973   if (actp == NULL) {
3974     // Retrieve the preinstalled signal handler from jvm
3975     actp = get_preinstalled_handler(sig);
3976   }
3977 
3978   return actp;
3979 }
3980 
3981 static bool call_chained_handler(struct sigaction *actp, int sig,
3982                                  siginfo_t *siginfo, void *context) {
3983   // Call the old signal handler
3984   if (actp->sa_handler == SIG_DFL) {
3985     // It's more reasonable to let jvm treat it as an unexpected exception
3986     // instead of taking the default action.
3987     return false;
3988   } else if (actp->sa_handler != SIG_IGN) {
3989     if ((actp->sa_flags & SA_NODEFER) == 0) {
3990       // automaticlly block the signal
3991       sigaddset(&(actp->sa_mask), sig);
3992     }
3993 
3994     sa_handler_t hand;
3995     sa_sigaction_t sa;
3996     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3997     // retrieve the chained handler
3998     if (siginfo_flag_set) {
3999       sa = actp->sa_sigaction;
4000     } else {
4001       hand = actp->sa_handler;
4002     }
4003 
4004     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4005       actp->sa_handler = SIG_DFL;
4006     }
4007 
4008     // try to honor the signal mask
4009     sigset_t oset;
4010     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4011 
4012     // call into the chained handler
4013     if (siginfo_flag_set) {
4014       (*sa)(sig, siginfo, context);
4015     } else {
4016       (*hand)(sig);
4017     }
4018 
4019     // restore the signal mask
4020     pthread_sigmask(SIG_SETMASK, &oset, 0);
4021   }
4022   // Tell jvm's signal handler the signal is taken care of.
4023   return true;
4024 }
4025 
4026 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4027   bool chained = false;
4028   // signal-chaining
4029   if (UseSignalChaining) {
4030     struct sigaction *actp = get_chained_signal_action(sig);
4031     if (actp != NULL) {
4032       chained = call_chained_handler(actp, sig, siginfo, context);
4033     }
4034   }
4035   return chained;
4036 }
4037 
4038 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4039   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4040     return &sigact[sig];
4041   }
4042   return NULL;
4043 }
4044 
4045 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4046   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4047   sigact[sig] = oldAct;
4048   sigs |= (unsigned int)1 << sig;
4049 }
4050 
4051 // for diagnostic
4052 int os::Linux::sigflags[MAXSIGNUM];
4053 
4054 int os::Linux::get_our_sigflags(int sig) {
4055   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4056   return sigflags[sig];
4057 }
4058 
4059 void os::Linux::set_our_sigflags(int sig, int flags) {
4060   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4061   sigflags[sig] = flags;
4062 }
4063 
4064 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4065   // Check for overwrite.
4066   struct sigaction oldAct;
4067   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4068 
4069   void* oldhand = oldAct.sa_sigaction
4070                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4071                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4072   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4073       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4074       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4075     if (AllowUserSignalHandlers || !set_installed) {
4076       // Do not overwrite; user takes responsibility to forward to us.
4077       return;
4078     } else if (UseSignalChaining) {
4079       // save the old handler in jvm
4080       save_preinstalled_handler(sig, oldAct);
4081       // libjsig also interposes the sigaction() call below and saves the
4082       // old sigaction on it own.
4083     } else {
4084       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4085                     "%#lx for signal %d.", (long)oldhand, sig));
4086     }
4087   }
4088 
4089   struct sigaction sigAct;
4090   sigfillset(&(sigAct.sa_mask));
4091   sigAct.sa_handler = SIG_DFL;
4092   if (!set_installed) {
4093     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4094   } else {
4095     sigAct.sa_sigaction = signalHandler;
4096     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4097   }
4098   // Save flags, which are set by ours
4099   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4100   sigflags[sig] = sigAct.sa_flags;
4101 
4102   int ret = sigaction(sig, &sigAct, &oldAct);
4103   assert(ret == 0, "check");
4104 
4105   void* oldhand2  = oldAct.sa_sigaction
4106                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4107                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4108   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4109 }
4110 
4111 // install signal handlers for signals that HotSpot needs to
4112 // handle in order to support Java-level exception handling.
4113 
4114 void os::Linux::install_signal_handlers() {
4115   if (!signal_handlers_are_installed) {
4116     signal_handlers_are_installed = true;
4117 
4118     // signal-chaining
4119     typedef void (*signal_setting_t)();
4120     signal_setting_t begin_signal_setting = NULL;
4121     signal_setting_t end_signal_setting = NULL;
4122     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4123                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4124     if (begin_signal_setting != NULL) {
4125       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4126                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4127       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4128                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4129       libjsig_is_loaded = true;
4130       assert(UseSignalChaining, "should enable signal-chaining");
4131     }
4132     if (libjsig_is_loaded) {
4133       // Tell libjsig jvm is setting signal handlers
4134       (*begin_signal_setting)();
4135     }
4136 
4137     set_signal_handler(SIGSEGV, true);
4138     set_signal_handler(SIGPIPE, true);
4139     set_signal_handler(SIGBUS, true);
4140     set_signal_handler(SIGILL, true);
4141     set_signal_handler(SIGFPE, true);
4142     set_signal_handler(SIGXFSZ, true);
4143 
4144     if (libjsig_is_loaded) {
4145       // Tell libjsig jvm finishes setting signal handlers
4146       (*end_signal_setting)();
4147     }
4148 
4149     // We don't activate signal checker if libjsig is in place, we trust ourselves
4150     // and if UserSignalHandler is installed all bets are off.
4151     // Log that signal checking is off only if -verbose:jni is specified.
4152     if (CheckJNICalls) {
4153       if (libjsig_is_loaded) {
4154         if (PrintJNIResolving) {
4155           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4156         }
4157         check_signals = false;
4158       }
4159       if (AllowUserSignalHandlers) {
4160         if (PrintJNIResolving) {
4161           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4162         }
4163         check_signals = false;
4164       }
4165     }
4166   }
4167 }
4168 
4169 // This is the fastest way to get thread cpu time on Linux.
4170 // Returns cpu time (user+sys) for any thread, not only for current.
4171 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4172 // It might work on 2.6.10+ with a special kernel/glibc patch.
4173 // For reference, please, see IEEE Std 1003.1-2004:
4174 //   http://www.unix.org/single_unix_specification
4175 
4176 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4177   struct timespec tp;
4178   int rc = os::Linux::clock_gettime(clockid, &tp);
4179   assert(rc == 0, "clock_gettime is expected to return 0 code");
4180 
4181   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4182 }
4183 
4184 /////
4185 // glibc on Linux platform uses non-documented flag
4186 // to indicate, that some special sort of signal
4187 // trampoline is used.
4188 // We will never set this flag, and we should
4189 // ignore this flag in our diagnostic
4190 #ifdef SIGNIFICANT_SIGNAL_MASK
4191 #undef SIGNIFICANT_SIGNAL_MASK
4192 #endif
4193 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4194 
4195 static const char* get_signal_handler_name(address handler,
4196                                            char* buf, int buflen) {
4197   int offset;
4198   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4199   if (found) {
4200     // skip directory names
4201     const char *p1, *p2;
4202     p1 = buf;
4203     size_t len = strlen(os::file_separator());
4204     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4205     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4206   } else {
4207     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4208   }
4209   return buf;
4210 }
4211 
4212 static void print_signal_handler(outputStream* st, int sig,
4213                                  char* buf, size_t buflen) {
4214   struct sigaction sa;
4215 
4216   sigaction(sig, NULL, &sa);
4217 
4218   // See comment for SIGNIFICANT_SIGNAL_MASK define
4219   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4220 
4221   st->print("%s: ", os::exception_name(sig, buf, buflen));
4222 
4223   address handler = (sa.sa_flags & SA_SIGINFO)
4224     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4225     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4226 
4227   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4228     st->print("SIG_DFL");
4229   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4230     st->print("SIG_IGN");
4231   } else {
4232     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4233   }
4234 
4235   st->print(", sa_mask[0]=");
4236   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4237 
4238   address rh = VMError::get_resetted_sighandler(sig);
4239   // May be, handler was resetted by VMError?
4240   if(rh != NULL) {
4241     handler = rh;
4242     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4243   }
4244 
4245   st->print(", sa_flags=");
4246   os::Posix::print_sa_flags(st, sa.sa_flags);
4247 
4248   // Check: is it our handler?
4249   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4250      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4251     // It is our signal handler
4252     // check for flags, reset system-used one!
4253     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4254       st->print(
4255                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4256                 os::Linux::get_our_sigflags(sig));
4257     }
4258   }
4259   st->cr();
4260 }
4261 
4262 
4263 #define DO_SIGNAL_CHECK(sig) \
4264   if (!sigismember(&check_signal_done, sig)) \
4265     os::Linux::check_signal_handler(sig)
4266 
4267 // This method is a periodic task to check for misbehaving JNI applications
4268 // under CheckJNI, we can add any periodic checks here
4269 
4270 void os::run_periodic_checks() {
4271 
4272   if (check_signals == false) return;
4273 
4274   // SEGV and BUS if overridden could potentially prevent
4275   // generation of hs*.log in the event of a crash, debugging
4276   // such a case can be very challenging, so we absolutely
4277   // check the following for a good measure:
4278   DO_SIGNAL_CHECK(SIGSEGV);
4279   DO_SIGNAL_CHECK(SIGILL);
4280   DO_SIGNAL_CHECK(SIGFPE);
4281   DO_SIGNAL_CHECK(SIGBUS);
4282   DO_SIGNAL_CHECK(SIGPIPE);
4283   DO_SIGNAL_CHECK(SIGXFSZ);
4284 
4285 
4286   // ReduceSignalUsage allows the user to override these handlers
4287   // see comments at the very top and jvm_solaris.h
4288   if (!ReduceSignalUsage) {
4289     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4290     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4291     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4292     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4293   }
4294 
4295   DO_SIGNAL_CHECK(SR_signum);
4296   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4297 }
4298 
4299 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4300 
4301 static os_sigaction_t os_sigaction = NULL;
4302 
4303 void os::Linux::check_signal_handler(int sig) {
4304   char buf[O_BUFLEN];
4305   address jvmHandler = NULL;
4306 
4307 
4308   struct sigaction act;
4309   if (os_sigaction == NULL) {
4310     // only trust the default sigaction, in case it has been interposed
4311     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4312     if (os_sigaction == NULL) return;
4313   }
4314 
4315   os_sigaction(sig, (struct sigaction*)NULL, &act);
4316 
4317 
4318   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4319 
4320   address thisHandler = (act.sa_flags & SA_SIGINFO)
4321     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4322     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4323 
4324 
4325   switch(sig) {
4326   case SIGSEGV:
4327   case SIGBUS:
4328   case SIGFPE:
4329   case SIGPIPE:
4330   case SIGILL:
4331   case SIGXFSZ:
4332     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4333     break;
4334 
4335   case SHUTDOWN1_SIGNAL:
4336   case SHUTDOWN2_SIGNAL:
4337   case SHUTDOWN3_SIGNAL:
4338   case BREAK_SIGNAL:
4339     jvmHandler = (address)user_handler();
4340     break;
4341 
4342   case INTERRUPT_SIGNAL:
4343     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4344     break;
4345 
4346   default:
4347     if (sig == SR_signum) {
4348       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4349     } else {
4350       return;
4351     }
4352     break;
4353   }
4354 
4355   if (thisHandler != jvmHandler) {
4356     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4357     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4358     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4359     // No need to check this sig any longer
4360     sigaddset(&check_signal_done, sig);
4361   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4362     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4363     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4364     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4365     // No need to check this sig any longer
4366     sigaddset(&check_signal_done, sig);
4367   }
4368 
4369   // Dump all the signal
4370   if (sigismember(&check_signal_done, sig)) {
4371     print_signal_handlers(tty, buf, O_BUFLEN);
4372   }
4373 }
4374 
4375 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4376 
4377 extern bool signal_name(int signo, char* buf, size_t len);
4378 
4379 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4380   if (0 < exception_code && exception_code <= SIGRTMAX) {
4381     // signal
4382     if (!signal_name(exception_code, buf, size)) {
4383       jio_snprintf(buf, size, "SIG%d", exception_code);
4384     }
4385     return buf;
4386   } else {
4387     return NULL;
4388   }
4389 }
4390 
4391 // this is called _before_ the most of global arguments have been parsed
4392 void os::init(void) {
4393   char dummy;   /* used to get a guess on initial stack address */
4394 //  first_hrtime = gethrtime();
4395 
4396   // With LinuxThreads the JavaMain thread pid (primordial thread)
4397   // is different than the pid of the java launcher thread.
4398   // So, on Linux, the launcher thread pid is passed to the VM
4399   // via the sun.java.launcher.pid property.
4400   // Use this property instead of getpid() if it was correctly passed.
4401   // See bug 6351349.
4402   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4403 
4404   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4405 
4406   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4407 
4408   init_random(1234567);
4409 
4410   ThreadCritical::initialize();
4411 
4412   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4413   if (Linux::page_size() == -1) {
4414     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4415                   strerror(errno)));
4416   }
4417   init_page_sizes((size_t) Linux::page_size());
4418 
4419   Linux::initialize_system_info();
4420 
4421   // main_thread points to the aboriginal thread
4422   Linux::_main_thread = pthread_self();
4423 
4424   Linux::clock_init();
4425   initial_time_count = os::elapsed_counter();
4426   pthread_mutex_init(&dl_mutex, NULL);
4427 
4428   // If the pagesize of the VM is greater than 8K determine the appropriate
4429   // number of initial guard pages.  The user can change this with the
4430   // command line arguments, if needed.
4431   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4432     StackYellowPages = 1;
4433     StackRedPages = 1;
4434     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4435   }
4436 }
4437 
4438 // To install functions for atexit system call
4439 extern "C" {
4440   static void perfMemory_exit_helper() {
4441     perfMemory_exit();
4442   }
4443 }
4444 
4445 // this is called _after_ the global arguments have been parsed
4446 jint os::init_2(void)
4447 {
4448   Linux::fast_thread_clock_init();
4449 
4450   // Allocate a single page and mark it as readable for safepoint polling
4451   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4452   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4453 
4454   os::set_polling_page( polling_page );
4455 
4456 #ifndef PRODUCT
4457   if(Verbose && PrintMiscellaneous)
4458     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4459 #endif
4460 
4461   if (!UseMembar) {
4462     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4463     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4464     os::set_memory_serialize_page( mem_serialize_page );
4465 
4466 #ifndef PRODUCT
4467     if(Verbose && PrintMiscellaneous)
4468       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4469 #endif
4470   }
4471 
4472   os::large_page_init();
4473 
4474   // initialize suspend/resume support - must do this before signal_sets_init()
4475   if (SR_initialize() != 0) {
4476     perror("SR_initialize failed");
4477     return JNI_ERR;
4478   }
4479 
4480   Linux::signal_sets_init();
4481   Linux::install_signal_handlers();
4482 
4483   // Check minimum allowable stack size for thread creation and to initialize
4484   // the java system classes, including StackOverflowError - depends on page
4485   // size.  Add a page for compiler2 recursion in main thread.
4486   // Add in 2*BytesPerWord times page size to account for VM stack during
4487   // class initialization depending on 32 or 64 bit VM.
4488   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4489             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4490                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4491 
4492   size_t threadStackSizeInBytes = ThreadStackSize * K;
4493   if (threadStackSizeInBytes != 0 &&
4494       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4495         tty->print_cr("\nThe stack size specified is too small, "
4496                       "Specify at least %dk",
4497                       os::Linux::min_stack_allowed/ K);
4498         return JNI_ERR;
4499   }
4500 
4501   // Make the stack size a multiple of the page size so that
4502   // the yellow/red zones can be guarded.
4503   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4504         vm_page_size()));
4505 
4506   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4507 
4508   Linux::libpthread_init();
4509   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4510      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4511           Linux::glibc_version(), Linux::libpthread_version(),
4512           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4513   }
4514 
4515   if (UseNUMA) {
4516     if (!Linux::libnuma_init()) {
4517       UseNUMA = false;
4518     } else {
4519       if ((Linux::numa_max_node() < 1)) {
4520         // There's only one node(they start from 0), disable NUMA.
4521         UseNUMA = false;
4522       }
4523     }
4524     // With SHM large pages we cannot uncommit a page, so there's not way
4525     // we can make the adaptive lgrp chunk resizing work. If the user specified
4526     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4527     // disable adaptive resizing.
4528     if (UseNUMA && UseLargePages && UseSHM) {
4529       if (!FLAG_IS_DEFAULT(UseNUMA)) {
4530         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4531           UseLargePages = false;
4532         } else {
4533           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4534           UseAdaptiveSizePolicy = false;
4535           UseAdaptiveNUMAChunkSizing = false;
4536         }
4537       } else {
4538         UseNUMA = false;
4539       }
4540     }
4541     if (!UseNUMA && ForceNUMA) {
4542       UseNUMA = true;
4543     }
4544   }
4545 
4546   if (MaxFDLimit) {
4547     // set the number of file descriptors to max. print out error
4548     // if getrlimit/setrlimit fails but continue regardless.
4549     struct rlimit nbr_files;
4550     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4551     if (status != 0) {
4552       if (PrintMiscellaneous && (Verbose || WizardMode))
4553         perror("os::init_2 getrlimit failed");
4554     } else {
4555       nbr_files.rlim_cur = nbr_files.rlim_max;
4556       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4557       if (status != 0) {
4558         if (PrintMiscellaneous && (Verbose || WizardMode))
4559           perror("os::init_2 setrlimit failed");
4560       }
4561     }
4562   }
4563 
4564   // Initialize lock used to serialize thread creation (see os::create_thread)
4565   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4566 
4567   // at-exit methods are called in the reverse order of their registration.
4568   // atexit functions are called on return from main or as a result of a
4569   // call to exit(3C). There can be only 32 of these functions registered
4570   // and atexit() does not set errno.
4571 
4572   if (PerfAllowAtExitRegistration) {
4573     // only register atexit functions if PerfAllowAtExitRegistration is set.
4574     // atexit functions can be delayed until process exit time, which
4575     // can be problematic for embedded VM situations. Embedded VMs should
4576     // call DestroyJavaVM() to assure that VM resources are released.
4577 
4578     // note: perfMemory_exit_helper atexit function may be removed in
4579     // the future if the appropriate cleanup code can be added to the
4580     // VM_Exit VMOperation's doit method.
4581     if (atexit(perfMemory_exit_helper) != 0) {
4582       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4583     }
4584   }
4585 
4586   // initialize thread priority policy
4587   prio_init();
4588 
4589   return JNI_OK;
4590 }
4591 
4592 // this is called at the end of vm_initialization
4593 void os::init_3(void) {
4594 #ifdef JAVASE_EMBEDDED
4595   // Start the MemNotifyThread
4596   if (LowMemoryProtection) {
4597     MemNotifyThread::start();
4598   }
4599   return;
4600 #endif
4601 }
4602 
4603 // Mark the polling page as unreadable
4604 void os::make_polling_page_unreadable(void) {
4605   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4606     fatal("Could not disable polling page");
4607 };
4608 
4609 // Mark the polling page as readable
4610 void os::make_polling_page_readable(void) {
4611   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4612     fatal("Could not enable polling page");
4613   }
4614 };
4615 
4616 int os::active_processor_count() {
4617   // Linux doesn't yet have a (official) notion of processor sets,
4618   // so just return the number of online processors.
4619   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4620   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4621   return online_cpus;
4622 }
4623 
4624 void os::set_native_thread_name(const char *name) {
4625   // Not yet implemented.
4626   return;
4627 }
4628 
4629 bool os::distribute_processes(uint length, uint* distribution) {
4630   // Not yet implemented.
4631   return false;
4632 }
4633 
4634 bool os::bind_to_processor(uint processor_id) {
4635   // Not yet implemented.
4636   return false;
4637 }
4638 
4639 ///
4640 
4641 void os::SuspendedThreadTask::internal_do_task() {
4642   if (do_suspend(_thread->osthread())) {
4643     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4644     do_task(context);
4645     do_resume(_thread->osthread());
4646   }
4647 }
4648 
4649 class PcFetcher : public os::SuspendedThreadTask {
4650 public:
4651   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4652   ExtendedPC result();
4653 protected:
4654   void do_task(const os::SuspendedThreadTaskContext& context);
4655 private:
4656   ExtendedPC _epc;
4657 };
4658 
4659 ExtendedPC PcFetcher::result() {
4660   guarantee(is_done(), "task is not done yet.");
4661   return _epc;
4662 }
4663 
4664 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4665   Thread* thread = context.thread();
4666   OSThread* osthread = thread->osthread();
4667   if (osthread->ucontext() != NULL) {
4668     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4669   } else {
4670     // NULL context is unexpected, double-check this is the VMThread
4671     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4672   }
4673 }
4674 
4675 // Suspends the target using the signal mechanism and then grabs the PC before
4676 // resuming the target. Used by the flat-profiler only
4677 ExtendedPC os::get_thread_pc(Thread* thread) {
4678   // Make sure that it is called by the watcher for the VMThread
4679   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4680   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4681 
4682   PcFetcher fetcher(thread);
4683   fetcher.run();
4684   return fetcher.result();
4685 }
4686 
4687 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4688 {
4689    if (is_NPTL()) {
4690       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4691    } else {
4692       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4693       // word back to default 64bit precision if condvar is signaled. Java
4694       // wants 53bit precision.  Save and restore current value.
4695       int fpu = get_fpu_control_word();
4696       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4697       set_fpu_control_word(fpu);
4698       return status;
4699    }
4700 }
4701 
4702 ////////////////////////////////////////////////////////////////////////////////
4703 // debug support
4704 
4705 bool os::find(address addr, outputStream* st) {
4706   Dl_info dlinfo;
4707   memset(&dlinfo, 0, sizeof(dlinfo));
4708   if (dladdr(addr, &dlinfo) != 0) {
4709     st->print(PTR_FORMAT ": ", addr);
4710     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4711       st->print("%s+%#x", dlinfo.dli_sname,
4712                  addr - (intptr_t)dlinfo.dli_saddr);
4713     } else if (dlinfo.dli_fbase != NULL) {
4714       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4715     } else {
4716       st->print("<absolute address>");
4717     }
4718     if (dlinfo.dli_fname != NULL) {
4719       st->print(" in %s", dlinfo.dli_fname);
4720     }
4721     if (dlinfo.dli_fbase != NULL) {
4722       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4723     }
4724     st->cr();
4725 
4726     if (Verbose) {
4727       // decode some bytes around the PC
4728       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4729       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4730       address       lowest = (address) dlinfo.dli_sname;
4731       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4732       if (begin < lowest)  begin = lowest;
4733       Dl_info dlinfo2;
4734       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4735           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4736         end = (address) dlinfo2.dli_saddr;
4737       Disassembler::decode(begin, end, st);
4738     }
4739     return true;
4740   }
4741   return false;
4742 }
4743 
4744 ////////////////////////////////////////////////////////////////////////////////
4745 // misc
4746 
4747 // This does not do anything on Linux. This is basically a hook for being
4748 // able to use structured exception handling (thread-local exception filters)
4749 // on, e.g., Win32.
4750 void
4751 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4752                          JavaCallArguments* args, Thread* thread) {
4753   f(value, method, args, thread);
4754 }
4755 
4756 void os::print_statistics() {
4757 }
4758 
4759 int os::message_box(const char* title, const char* message) {
4760   int i;
4761   fdStream err(defaultStream::error_fd());
4762   for (i = 0; i < 78; i++) err.print_raw("=");
4763   err.cr();
4764   err.print_raw_cr(title);
4765   for (i = 0; i < 78; i++) err.print_raw("-");
4766   err.cr();
4767   err.print_raw_cr(message);
4768   for (i = 0; i < 78; i++) err.print_raw("=");
4769   err.cr();
4770 
4771   char buf[16];
4772   // Prevent process from exiting upon "read error" without consuming all CPU
4773   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4774 
4775   return buf[0] == 'y' || buf[0] == 'Y';
4776 }
4777 
4778 int os::stat(const char *path, struct stat *sbuf) {
4779   char pathbuf[MAX_PATH];
4780   if (strlen(path) > MAX_PATH - 1) {
4781     errno = ENAMETOOLONG;
4782     return -1;
4783   }
4784   os::native_path(strcpy(pathbuf, path));
4785   return ::stat(pathbuf, sbuf);
4786 }
4787 
4788 bool os::check_heap(bool force) {
4789   return true;
4790 }
4791 
4792 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4793   return ::vsnprintf(buf, count, format, args);
4794 }
4795 
4796 // Is a (classpath) directory empty?
4797 bool os::dir_is_empty(const char* path) {
4798   DIR *dir = NULL;
4799   struct dirent *ptr;
4800 
4801   dir = opendir(path);
4802   if (dir == NULL) return true;
4803 
4804   /* Scan the directory */
4805   bool result = true;
4806   char buf[sizeof(struct dirent) + MAX_PATH];
4807   while (result && (ptr = ::readdir(dir)) != NULL) {
4808     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4809       result = false;
4810     }
4811   }
4812   closedir(dir);
4813   return result;
4814 }
4815 
4816 // This code originates from JDK's sysOpen and open64_w
4817 // from src/solaris/hpi/src/system_md.c
4818 
4819 #ifndef O_DELETE
4820 #define O_DELETE 0x10000
4821 #endif
4822 
4823 // Open a file. Unlink the file immediately after open returns
4824 // if the specified oflag has the O_DELETE flag set.
4825 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4826 
4827 int os::open(const char *path, int oflag, int mode) {
4828 
4829   if (strlen(path) > MAX_PATH - 1) {
4830     errno = ENAMETOOLONG;
4831     return -1;
4832   }
4833   int fd;
4834   int o_delete = (oflag & O_DELETE);
4835   oflag = oflag & ~O_DELETE;
4836 
4837   fd = ::open64(path, oflag, mode);
4838   if (fd == -1) return -1;
4839 
4840   //If the open succeeded, the file might still be a directory
4841   {
4842     struct stat64 buf64;
4843     int ret = ::fstat64(fd, &buf64);
4844     int st_mode = buf64.st_mode;
4845 
4846     if (ret != -1) {
4847       if ((st_mode & S_IFMT) == S_IFDIR) {
4848         errno = EISDIR;
4849         ::close(fd);
4850         return -1;
4851       }
4852     } else {
4853       ::close(fd);
4854       return -1;
4855     }
4856   }
4857 
4858     /*
4859      * All file descriptors that are opened in the JVM and not
4860      * specifically destined for a subprocess should have the
4861      * close-on-exec flag set.  If we don't set it, then careless 3rd
4862      * party native code might fork and exec without closing all
4863      * appropriate file descriptors (e.g. as we do in closeDescriptors in
4864      * UNIXProcess.c), and this in turn might:
4865      *
4866      * - cause end-of-file to fail to be detected on some file
4867      *   descriptors, resulting in mysterious hangs, or
4868      *
4869      * - might cause an fopen in the subprocess to fail on a system
4870      *   suffering from bug 1085341.
4871      *
4872      * (Yes, the default setting of the close-on-exec flag is a Unix
4873      * design flaw)
4874      *
4875      * See:
4876      * 1085341: 32-bit stdio routines should support file descriptors >255
4877      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4878      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4879      */
4880 #ifdef FD_CLOEXEC
4881     {
4882         int flags = ::fcntl(fd, F_GETFD);
4883         if (flags != -1)
4884             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4885     }
4886 #endif
4887 
4888   if (o_delete != 0) {
4889     ::unlink(path);
4890   }
4891   return fd;
4892 }
4893 
4894 
4895 // create binary file, rewriting existing file if required
4896 int os::create_binary_file(const char* path, bool rewrite_existing) {
4897   int oflags = O_WRONLY | O_CREAT;
4898   if (!rewrite_existing) {
4899     oflags |= O_EXCL;
4900   }
4901   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4902 }
4903 
4904 // return current position of file pointer
4905 jlong os::current_file_offset(int fd) {
4906   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4907 }
4908 
4909 // move file pointer to the specified offset
4910 jlong os::seek_to_file_offset(int fd, jlong offset) {
4911   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4912 }
4913 
4914 // This code originates from JDK's sysAvailable
4915 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4916 
4917 int os::available(int fd, jlong *bytes) {
4918   jlong cur, end;
4919   int mode;
4920   struct stat64 buf64;
4921 
4922   if (::fstat64(fd, &buf64) >= 0) {
4923     mode = buf64.st_mode;
4924     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4925       /*
4926       * XXX: is the following call interruptible? If so, this might
4927       * need to go through the INTERRUPT_IO() wrapper as for other
4928       * blocking, interruptible calls in this file.
4929       */
4930       int n;
4931       if (::ioctl(fd, FIONREAD, &n) >= 0) {
4932         *bytes = n;
4933         return 1;
4934       }
4935     }
4936   }
4937   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4938     return 0;
4939   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4940     return 0;
4941   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4942     return 0;
4943   }
4944   *bytes = end - cur;
4945   return 1;
4946 }
4947 
4948 int os::socket_available(int fd, jint *pbytes) {
4949   // Linux doc says EINTR not returned, unlike Solaris
4950   int ret = ::ioctl(fd, FIONREAD, pbytes);
4951 
4952   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4953   // is expected to return 0 on failure and 1 on success to the jdk.
4954   return (ret < 0) ? 0 : 1;
4955 }
4956 
4957 // Map a block of memory.
4958 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4959                      char *addr, size_t bytes, bool read_only,
4960                      bool allow_exec) {
4961   int prot;
4962   int flags = MAP_PRIVATE;
4963 
4964   if (read_only) {
4965     prot = PROT_READ;
4966   } else {
4967     prot = PROT_READ | PROT_WRITE;
4968   }
4969 
4970   if (allow_exec) {
4971     prot |= PROT_EXEC;
4972   }
4973 
4974   if (addr != NULL) {
4975     flags |= MAP_FIXED;
4976   }
4977 
4978   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4979                                      fd, file_offset);
4980   if (mapped_address == MAP_FAILED) {
4981     return NULL;
4982   }
4983   return mapped_address;
4984 }
4985 
4986 
4987 // Remap a block of memory.
4988 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4989                        char *addr, size_t bytes, bool read_only,
4990                        bool allow_exec) {
4991   // same as map_memory() on this OS
4992   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4993                         allow_exec);
4994 }
4995 
4996 
4997 // Unmap a block of memory.
4998 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4999   return munmap(addr, bytes) == 0;
5000 }
5001 
5002 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5003 
5004 static clockid_t thread_cpu_clockid(Thread* thread) {
5005   pthread_t tid = thread->osthread()->pthread_id();
5006   clockid_t clockid;
5007 
5008   // Get thread clockid
5009   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5010   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5011   return clockid;
5012 }
5013 
5014 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5015 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5016 // of a thread.
5017 //
5018 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5019 // the fast estimate available on the platform.
5020 
5021 jlong os::current_thread_cpu_time() {
5022   if (os::Linux::supports_fast_thread_cpu_time()) {
5023     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5024   } else {
5025     // return user + sys since the cost is the same
5026     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5027   }
5028 }
5029 
5030 jlong os::thread_cpu_time(Thread* thread) {
5031   // consistent with what current_thread_cpu_time() returns
5032   if (os::Linux::supports_fast_thread_cpu_time()) {
5033     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5034   } else {
5035     return slow_thread_cpu_time(thread, true /* user + sys */);
5036   }
5037 }
5038 
5039 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5040   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5041     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5042   } else {
5043     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5044   }
5045 }
5046 
5047 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5048   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5049     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5050   } else {
5051     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5052   }
5053 }
5054 
5055 //
5056 //  -1 on error.
5057 //
5058 
5059 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5060   static bool proc_task_unchecked = true;
5061   static const char *proc_stat_path = "/proc/%d/stat";
5062   pid_t  tid = thread->osthread()->thread_id();
5063   char *s;
5064   char stat[2048];
5065   int statlen;
5066   char proc_name[64];
5067   int count;
5068   long sys_time, user_time;
5069   char cdummy;
5070   int idummy;
5071   long ldummy;
5072   FILE *fp;
5073 
5074   // The /proc/<tid>/stat aggregates per-process usage on
5075   // new Linux kernels 2.6+ where NPTL is supported.
5076   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5077   // See bug 6328462.
5078   // There possibly can be cases where there is no directory
5079   // /proc/self/task, so we check its availability.
5080   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5081     // This is executed only once
5082     proc_task_unchecked = false;
5083     fp = fopen("/proc/self/task", "r");
5084     if (fp != NULL) {
5085       proc_stat_path = "/proc/self/task/%d/stat";
5086       fclose(fp);
5087     }
5088   }
5089 
5090   sprintf(proc_name, proc_stat_path, tid);
5091   fp = fopen(proc_name, "r");
5092   if ( fp == NULL ) return -1;
5093   statlen = fread(stat, 1, 2047, fp);
5094   stat[statlen] = '\0';
5095   fclose(fp);
5096 
5097   // Skip pid and the command string. Note that we could be dealing with
5098   // weird command names, e.g. user could decide to rename java launcher
5099   // to "java 1.4.2 :)", then the stat file would look like
5100   //                1234 (java 1.4.2 :)) R ... ...
5101   // We don't really need to know the command string, just find the last
5102   // occurrence of ")" and then start parsing from there. See bug 4726580.
5103   s = strrchr(stat, ')');
5104   if (s == NULL ) return -1;
5105 
5106   // Skip blank chars
5107   do s++; while (isspace(*s));
5108 
5109   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5110                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5111                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5112                  &user_time, &sys_time);
5113   if ( count != 13 ) return -1;
5114   if (user_sys_cpu_time) {
5115     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5116   } else {
5117     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5118   }
5119 }
5120 
5121 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5122   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5123   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5124   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5125   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5126 }
5127 
5128 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5129   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5130   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5131   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5132   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5133 }
5134 
5135 bool os::is_thread_cpu_time_supported() {
5136   return true;
5137 }
5138 
5139 // System loadavg support.  Returns -1 if load average cannot be obtained.
5140 // Linux doesn't yet have a (official) notion of processor sets,
5141 // so just return the system wide load average.
5142 int os::loadavg(double loadavg[], int nelem) {
5143   return ::getloadavg(loadavg, nelem);
5144 }
5145 
5146 void os::pause() {
5147   char filename[MAX_PATH];
5148   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5149     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5150   } else {
5151     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5152   }
5153 
5154   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5155   if (fd != -1) {
5156     struct stat buf;
5157     ::close(fd);
5158     while (::stat(filename, &buf) == 0) {
5159       (void)::poll(NULL, 0, 100);
5160     }
5161   } else {
5162     jio_fprintf(stderr,
5163       "Could not open pause file '%s', continuing immediately.\n", filename);
5164   }
5165 }
5166 
5167 
5168 // Refer to the comments in os_solaris.cpp park-unpark.
5169 //
5170 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5171 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5172 // For specifics regarding the bug see GLIBC BUGID 261237 :
5173 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5174 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5175 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5176 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5177 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5178 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5179 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5180 // of libpthread avoids the problem, but isn't practical.
5181 //
5182 // Possible remedies:
5183 //
5184 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5185 //      This is palliative and probabilistic, however.  If the thread is preempted
5186 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5187 //      than the minimum period may have passed, and the abstime may be stale (in the
5188 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5189 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5190 //
5191 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5192 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5193 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5194 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5195 //      thread.
5196 //
5197 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5198 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5199 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5200 //      This also works well.  In fact it avoids kernel-level scalability impediments
5201 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5202 //      timers in a graceful fashion.
5203 //
5204 // 4.   When the abstime value is in the past it appears that control returns
5205 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5206 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5207 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5208 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5209 //      It may be possible to avoid reinitialization by checking the return
5210 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5211 //      condvar we must establish the invariant that cond_signal() is only called
5212 //      within critical sections protected by the adjunct mutex.  This prevents
5213 //      cond_signal() from "seeing" a condvar that's in the midst of being
5214 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5215 //      desirable signal-after-unlock optimization that avoids futile context switching.
5216 //
5217 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5218 //      structure when a condvar is used or initialized.  cond_destroy()  would
5219 //      release the helper structure.  Our reinitialize-after-timedwait fix
5220 //      put excessive stress on malloc/free and locks protecting the c-heap.
5221 //
5222 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5223 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5224 // and only enabling the work-around for vulnerable environments.
5225 
5226 // utility to compute the abstime argument to timedwait:
5227 // millis is the relative timeout time
5228 // abstime will be the absolute timeout time
5229 // TODO: replace compute_abstime() with unpackTime()
5230 
5231 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5232   if (millis < 0)  millis = 0;
5233   struct timeval now;
5234   int status = gettimeofday(&now, NULL);
5235   assert(status == 0, "gettimeofday");
5236   jlong seconds = millis / 1000;
5237   millis %= 1000;
5238   if (seconds > 50000000) { // see man cond_timedwait(3T)
5239     seconds = 50000000;
5240   }
5241   abstime->tv_sec = now.tv_sec  + seconds;
5242   long       usec = now.tv_usec + millis * 1000;
5243   if (usec >= 1000000) {
5244     abstime->tv_sec += 1;
5245     usec -= 1000000;
5246   }
5247   abstime->tv_nsec = usec * 1000;
5248   return abstime;
5249 }
5250 
5251 
5252 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5253 // Conceptually TryPark() should be equivalent to park(0).
5254 
5255 int os::PlatformEvent::TryPark() {
5256   for (;;) {
5257     const int v = _Event ;
5258     guarantee ((v == 0) || (v == 1), "invariant") ;
5259     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5260   }
5261 }
5262 
5263 void os::PlatformEvent::park() {       // AKA "down()"
5264   // Invariant: Only the thread associated with the Event/PlatformEvent
5265   // may call park().
5266   // TODO: assert that _Assoc != NULL or _Assoc == Self
5267   int v ;
5268   for (;;) {
5269       v = _Event ;
5270       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5271   }
5272   guarantee (v >= 0, "invariant") ;
5273   if (v == 0) {
5274      // Do this the hard way by blocking ...
5275      int status = pthread_mutex_lock(_mutex);
5276      assert_status(status == 0, status, "mutex_lock");
5277      guarantee (_nParked == 0, "invariant") ;
5278      ++ _nParked ;
5279      while (_Event < 0) {
5280         status = pthread_cond_wait(_cond, _mutex);
5281         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5282         // Treat this the same as if the wait was interrupted
5283         if (status == ETIME) { status = EINTR; }
5284         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5285      }
5286      -- _nParked ;
5287 
5288     _Event = 0 ;
5289      status = pthread_mutex_unlock(_mutex);
5290      assert_status(status == 0, status, "mutex_unlock");
5291     // Paranoia to ensure our locked and lock-free paths interact
5292     // correctly with each other.
5293     OrderAccess::fence();
5294   }
5295   guarantee (_Event >= 0, "invariant") ;
5296 }
5297 
5298 int os::PlatformEvent::park(jlong millis) {
5299   guarantee (_nParked == 0, "invariant") ;
5300 
5301   int v ;
5302   for (;;) {
5303       v = _Event ;
5304       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5305   }
5306   guarantee (v >= 0, "invariant") ;
5307   if (v != 0) return OS_OK ;
5308 
5309   // We do this the hard way, by blocking the thread.
5310   // Consider enforcing a minimum timeout value.
5311   struct timespec abst;
5312   compute_abstime(&abst, millis);
5313 
5314   int ret = OS_TIMEOUT;
5315   int status = pthread_mutex_lock(_mutex);
5316   assert_status(status == 0, status, "mutex_lock");
5317   guarantee (_nParked == 0, "invariant") ;
5318   ++_nParked ;
5319 
5320   // Object.wait(timo) will return because of
5321   // (a) notification
5322   // (b) timeout
5323   // (c) thread.interrupt
5324   //
5325   // Thread.interrupt and object.notify{All} both call Event::set.
5326   // That is, we treat thread.interrupt as a special case of notification.
5327   // The underlying Solaris implementation, cond_timedwait, admits
5328   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5329   // JVM from making those visible to Java code.  As such, we must
5330   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5331   //
5332   // TODO: properly differentiate simultaneous notify+interrupt.
5333   // In that case, we should propagate the notify to another waiter.
5334 
5335   while (_Event < 0) {
5336     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5337     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5338       pthread_cond_destroy (_cond);
5339       pthread_cond_init (_cond, NULL) ;
5340     }
5341     assert_status(status == 0 || status == EINTR ||
5342                   status == ETIME || status == ETIMEDOUT,
5343                   status, "cond_timedwait");
5344     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5345     if (status == ETIME || status == ETIMEDOUT) break ;
5346     // We consume and ignore EINTR and spurious wakeups.
5347   }
5348   --_nParked ;
5349   if (_Event >= 0) {
5350      ret = OS_OK;
5351   }
5352   _Event = 0 ;
5353   status = pthread_mutex_unlock(_mutex);
5354   assert_status(status == 0, status, "mutex_unlock");
5355   assert (_nParked == 0, "invariant") ;
5356   // Paranoia to ensure our locked and lock-free paths interact
5357   // correctly with each other.
5358   OrderAccess::fence();
5359   return ret;
5360 }
5361 
5362 void os::PlatformEvent::unpark() {
5363   // Transitions for _Event:
5364   //    0 :=> 1
5365   //    1 :=> 1
5366   //   -1 :=> either 0 or 1; must signal target thread
5367   //          That is, we can safely transition _Event from -1 to either
5368   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5369   //          unpark() calls.
5370   // See also: "Semaphores in Plan 9" by Mullender & Cox
5371   //
5372   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5373   // that it will take two back-to-back park() calls for the owning
5374   // thread to block. This has the benefit of forcing a spurious return
5375   // from the first park() call after an unpark() call which will help
5376   // shake out uses of park() and unpark() without condition variables.
5377 
5378   if (Atomic::xchg(1, &_Event) >= 0) return;
5379 
5380   // Wait for the thread associated with the event to vacate
5381   int status = pthread_mutex_lock(_mutex);
5382   assert_status(status == 0, status, "mutex_lock");
5383   int AnyWaiters = _nParked;
5384   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5385   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5386     AnyWaiters = 0;
5387     pthread_cond_signal(_cond);
5388   }
5389   status = pthread_mutex_unlock(_mutex);
5390   assert_status(status == 0, status, "mutex_unlock");
5391   if (AnyWaiters != 0) {
5392     status = pthread_cond_signal(_cond);
5393     assert_status(status == 0, status, "cond_signal");
5394   }
5395 
5396   // Note that we signal() _after dropping the lock for "immortal" Events.
5397   // This is safe and avoids a common class of  futile wakeups.  In rare
5398   // circumstances this can cause a thread to return prematurely from
5399   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5400   // simply re-test the condition and re-park itself.
5401 }
5402 
5403 
5404 // JSR166
5405 // -------------------------------------------------------
5406 
5407 /*
5408  * The solaris and linux implementations of park/unpark are fairly
5409  * conservative for now, but can be improved. They currently use a
5410  * mutex/condvar pair, plus a a count.
5411  * Park decrements count if > 0, else does a condvar wait.  Unpark
5412  * sets count to 1 and signals condvar.  Only one thread ever waits
5413  * on the condvar. Contention seen when trying to park implies that someone
5414  * is unparking you, so don't wait. And spurious returns are fine, so there
5415  * is no need to track notifications.
5416  */
5417 
5418 #define MAX_SECS 100000000
5419 /*
5420  * This code is common to linux and solaris and will be moved to a
5421  * common place in dolphin.
5422  *
5423  * The passed in time value is either a relative time in nanoseconds
5424  * or an absolute time in milliseconds. Either way it has to be unpacked
5425  * into suitable seconds and nanoseconds components and stored in the
5426  * given timespec structure.
5427  * Given time is a 64-bit value and the time_t used in the timespec is only
5428  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5429  * overflow if times way in the future are given. Further on Solaris versions
5430  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5431  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5432  * As it will be 28 years before "now + 100000000" will overflow we can
5433  * ignore overflow and just impose a hard-limit on seconds using the value
5434  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5435  * years from "now".
5436  */
5437 
5438 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5439   assert (time > 0, "convertTime");
5440 
5441   struct timeval now;
5442   int status = gettimeofday(&now, NULL);
5443   assert(status == 0, "gettimeofday");
5444 
5445   time_t max_secs = now.tv_sec + MAX_SECS;
5446 
5447   if (isAbsolute) {
5448     jlong secs = time / 1000;
5449     if (secs > max_secs) {
5450       absTime->tv_sec = max_secs;
5451     }
5452     else {
5453       absTime->tv_sec = secs;
5454     }
5455     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5456   }
5457   else {
5458     jlong secs = time / NANOSECS_PER_SEC;
5459     if (secs >= MAX_SECS) {
5460       absTime->tv_sec = max_secs;
5461       absTime->tv_nsec = 0;
5462     }
5463     else {
5464       absTime->tv_sec = now.tv_sec + secs;
5465       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5466       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5467         absTime->tv_nsec -= NANOSECS_PER_SEC;
5468         ++absTime->tv_sec; // note: this must be <= max_secs
5469       }
5470     }
5471   }
5472   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5473   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5474   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5475   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5476 }
5477 
5478 void Parker::park(bool isAbsolute, jlong time) {
5479   // Ideally we'd do something useful while spinning, such
5480   // as calling unpackTime().
5481 
5482   // Optional fast-path check:
5483   // Return immediately if a permit is available.
5484   // We depend on Atomic::xchg() having full barrier semantics
5485   // since we are doing a lock-free update to _counter.
5486   if (Atomic::xchg(0, &_counter) > 0) return;
5487 
5488   Thread* thread = Thread::current();
5489   assert(thread->is_Java_thread(), "Must be JavaThread");
5490   JavaThread *jt = (JavaThread *)thread;
5491 
5492   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5493   // Check interrupt before trying to wait
5494   if (Thread::is_interrupted(thread, false)) {
5495     return;
5496   }
5497 
5498   // Next, demultiplex/decode time arguments
5499   timespec absTime;
5500   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5501     return;
5502   }
5503   if (time > 0) {
5504     unpackTime(&absTime, isAbsolute, time);
5505   }
5506 
5507 
5508   // Enter safepoint region
5509   // Beware of deadlocks such as 6317397.
5510   // The per-thread Parker:: mutex is a classic leaf-lock.
5511   // In particular a thread must never block on the Threads_lock while
5512   // holding the Parker:: mutex.  If safepoints are pending both the
5513   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5514   ThreadBlockInVM tbivm(jt);
5515 
5516   // Don't wait if cannot get lock since interference arises from
5517   // unblocking.  Also. check interrupt before trying wait
5518   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5519     return;
5520   }
5521 
5522   int status ;
5523   if (_counter > 0)  { // no wait needed
5524     _counter = 0;
5525     status = pthread_mutex_unlock(_mutex);
5526     assert (status == 0, "invariant") ;
5527     // Paranoia to ensure our locked and lock-free paths interact
5528     // correctly with each other and Java-level accesses.
5529     OrderAccess::fence();
5530     return;
5531   }
5532 
5533 #ifdef ASSERT
5534   // Don't catch signals while blocked; let the running threads have the signals.
5535   // (This allows a debugger to break into the running thread.)
5536   sigset_t oldsigs;
5537   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5538   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5539 #endif
5540 
5541   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5542   jt->set_suspend_equivalent();
5543   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5544 
5545   if (time == 0) {
5546     status = pthread_cond_wait (_cond, _mutex) ;
5547   } else {
5548     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5549     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5550       pthread_cond_destroy (_cond) ;
5551       pthread_cond_init    (_cond, NULL);
5552     }
5553   }
5554   assert_status(status == 0 || status == EINTR ||
5555                 status == ETIME || status == ETIMEDOUT,
5556                 status, "cond_timedwait");
5557 
5558 #ifdef ASSERT
5559   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5560 #endif
5561 
5562   _counter = 0 ;
5563   status = pthread_mutex_unlock(_mutex) ;
5564   assert_status(status == 0, status, "invariant") ;
5565   // Paranoia to ensure our locked and lock-free paths interact
5566   // correctly with each other and Java-level accesses.
5567   OrderAccess::fence();
5568 
5569   // If externally suspended while waiting, re-suspend
5570   if (jt->handle_special_suspend_equivalent_condition()) {
5571     jt->java_suspend_self();
5572   }
5573 }
5574 
5575 void Parker::unpark() {
5576   int s, status ;
5577   status = pthread_mutex_lock(_mutex);
5578   assert (status == 0, "invariant") ;
5579   s = _counter;
5580   _counter = 1;
5581   if (s < 1) {
5582      if (WorkAroundNPTLTimedWaitHang) {
5583         status = pthread_cond_signal (_cond) ;
5584         assert (status == 0, "invariant") ;
5585         status = pthread_mutex_unlock(_mutex);
5586         assert (status == 0, "invariant") ;
5587      } else {
5588         status = pthread_mutex_unlock(_mutex);
5589         assert (status == 0, "invariant") ;
5590         status = pthread_cond_signal (_cond) ;
5591         assert (status == 0, "invariant") ;
5592      }
5593   } else {
5594     pthread_mutex_unlock(_mutex);
5595     assert (status == 0, "invariant") ;
5596   }
5597 }
5598 
5599 
5600 extern char** environ;
5601 
5602 #ifndef __NR_fork
5603 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5604 #endif
5605 
5606 #ifndef __NR_execve
5607 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5608 #endif
5609 
5610 // Run the specified command in a separate process. Return its exit value,
5611 // or -1 on failure (e.g. can't fork a new process).
5612 // Unlike system(), this function can be called from signal handler. It
5613 // doesn't block SIGINT et al.
5614 int os::fork_and_exec(char* cmd) {
5615   const char * argv[4] = {"sh", "-c", cmd, NULL};
5616 
5617   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5618   // pthread_atfork handlers and reset pthread library. All we need is a
5619   // separate process to execve. Make a direct syscall to fork process.
5620   // On IA64 there's no fork syscall, we have to use fork() and hope for
5621   // the best...
5622   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5623               IA64_ONLY(fork();)
5624 
5625   if (pid < 0) {
5626     // fork failed
5627     return -1;
5628 
5629   } else if (pid == 0) {
5630     // child process
5631 
5632     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5633     // first to kill every thread on the thread list. Because this list is
5634     // not reset by fork() (see notes above), execve() will instead kill
5635     // every thread in the parent process. We know this is the only thread
5636     // in the new process, so make a system call directly.
5637     // IA64 should use normal execve() from glibc to match the glibc fork()
5638     // above.
5639     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5640     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5641 
5642     // execve failed
5643     _exit(-1);
5644 
5645   } else  {
5646     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5647     // care about the actual exit code, for now.
5648 
5649     int status;
5650 
5651     // Wait for the child process to exit.  This returns immediately if
5652     // the child has already exited. */
5653     while (waitpid(pid, &status, 0) < 0) {
5654         switch (errno) {
5655         case ECHILD: return 0;
5656         case EINTR: break;
5657         default: return -1;
5658         }
5659     }
5660 
5661     if (WIFEXITED(status)) {
5662        // The child exited normally; get its exit code.
5663        return WEXITSTATUS(status);
5664     } else if (WIFSIGNALED(status)) {
5665        // The child exited because of a signal
5666        // The best value to return is 0x80 + signal number,
5667        // because that is what all Unix shells do, and because
5668        // it allows callers to distinguish between process exit and
5669        // process death by signal.
5670        return 0x80 + WTERMSIG(status);
5671     } else {
5672        // Unknown exit code; pass it through
5673        return status;
5674     }
5675   }
5676 }
5677 
5678 // is_headless_jre()
5679 //
5680 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5681 // in order to report if we are running in a headless jre
5682 //
5683 // Since JDK8 xawt/libmawt.so was moved into the same directory
5684 // as libawt.so, and renamed libawt_xawt.so
5685 //
5686 bool os::is_headless_jre() {
5687     struct stat statbuf;
5688     char buf[MAXPATHLEN];
5689     char libmawtpath[MAXPATHLEN];
5690     const char *xawtstr  = "/xawt/libmawt.so";
5691     const char *new_xawtstr = "/libawt_xawt.so";
5692     char *p;
5693 
5694     // Get path to libjvm.so
5695     os::jvm_path(buf, sizeof(buf));
5696 
5697     // Get rid of libjvm.so
5698     p = strrchr(buf, '/');
5699     if (p == NULL) return false;
5700     else *p = '\0';
5701 
5702     // Get rid of client or server
5703     p = strrchr(buf, '/');
5704     if (p == NULL) return false;
5705     else *p = '\0';
5706 
5707     // check xawt/libmawt.so
5708     strcpy(libmawtpath, buf);
5709     strcat(libmawtpath, xawtstr);
5710     if (::stat(libmawtpath, &statbuf) == 0) return false;
5711 
5712     // check libawt_xawt.so
5713     strcpy(libmawtpath, buf);
5714     strcat(libmawtpath, new_xawtstr);
5715     if (::stat(libmawtpath, &statbuf) == 0) return false;
5716 
5717     return true;
5718 }
5719 
5720 // Get the default path to the core file
5721 // Returns the length of the string
5722 int os::get_core_path(char* buffer, size_t bufferSize) {
5723   const char* p = get_current_directory(buffer, bufferSize);
5724 
5725   if (p == NULL) {
5726     assert(p != NULL, "failed to get current directory");
5727     return 0;
5728   }
5729 
5730   return strlen(buffer);
5731 }
5732 
5733 #ifdef JAVASE_EMBEDDED
5734 //
5735 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5736 //
5737 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5738 
5739 // ctor
5740 //
5741 MemNotifyThread::MemNotifyThread(int fd): Thread() {
5742   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5743   _fd = fd;
5744 
5745   if (os::create_thread(this, os::os_thread)) {
5746     _memnotify_thread = this;
5747     os::set_priority(this, NearMaxPriority);
5748     os::start_thread(this);
5749   }
5750 }
5751 
5752 // Where all the work gets done
5753 //
5754 void MemNotifyThread::run() {
5755   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5756 
5757   // Set up the select arguments
5758   fd_set rfds;
5759   if (_fd != -1) {
5760     FD_ZERO(&rfds);
5761     FD_SET(_fd, &rfds);
5762   }
5763 
5764   // Now wait for the mem_notify device to wake up
5765   while (1) {
5766     // Wait for the mem_notify device to signal us..
5767     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5768     if (rc == -1) {
5769       perror("select!\n");
5770       break;
5771     } else if (rc) {
5772       //ssize_t free_before = os::available_memory();
5773       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5774 
5775       // The kernel is telling us there is not much memory left...
5776       // try to do something about that
5777 
5778       // If we are not already in a GC, try one.
5779       if (!Universe::heap()->is_gc_active()) {
5780         Universe::heap()->collect(GCCause::_allocation_failure);
5781 
5782         //ssize_t free_after = os::available_memory();
5783         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5784         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5785       }
5786       // We might want to do something like the following if we find the GC's are not helping...
5787       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5788     }
5789   }
5790 }
5791 
5792 //
5793 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5794 //
5795 void MemNotifyThread::start() {
5796   int    fd;
5797   fd = open ("/dev/mem_notify", O_RDONLY, 0);
5798   if (fd < 0) {
5799       return;
5800   }
5801 
5802   if (memnotify_thread() == NULL) {
5803     new MemNotifyThread(fd);
5804   }
5805 }
5806 
5807 #endif // JAVASE_EMBEDDED