1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 #include "utilities/macros.hpp"
  46 
  47 // This file holds all globally used constants & types, class (forward)
  48 // declarations and a few frequently used utility functions.
  49 
  50 //----------------------------------------------------------------------------------------------------
  51 // Constants
  52 
  53 const int LogBytesPerShort   = 1;
  54 const int LogBytesPerInt     = 2;
  55 #ifdef _LP64
  56 const int LogBytesPerWord    = 3;
  57 #else
  58 const int LogBytesPerWord    = 2;
  59 #endif
  60 const int LogBytesPerLong    = 3;
  61 
  62 const int BytesPerShort      = 1 << LogBytesPerShort;
  63 const int BytesPerInt        = 1 << LogBytesPerInt;
  64 const int BytesPerWord       = 1 << LogBytesPerWord;
  65 const int BytesPerLong       = 1 << LogBytesPerLong;
  66 
  67 const int LogBitsPerByte     = 3;
  68 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  69 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  70 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
  71 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
  72 
  73 const int BitsPerByte        = 1 << LogBitsPerByte;
  74 const int BitsPerShort       = 1 << LogBitsPerShort;
  75 const int BitsPerInt         = 1 << LogBitsPerInt;
  76 const int BitsPerWord        = 1 << LogBitsPerWord;
  77 const int BitsPerLong        = 1 << LogBitsPerLong;
  78 
  79 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
  80 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
  81 
  82 const int WordsPerLong       = 2;       // Number of stack entries for longs
  83 
  84 const int oopSize            = sizeof(char*); // Full-width oop
  85 extern int heapOopSize;                       // Oop within a java object
  86 const int wordSize           = sizeof(char*);
  87 const int longSize           = sizeof(jlong);
  88 const int jintSize           = sizeof(jint);
  89 const int size_tSize         = sizeof(size_t);
  90 
  91 const int BytesPerOop        = BytesPerWord;  // Full-width oop
  92 
  93 extern int LogBytesPerHeapOop;                // Oop within a java object
  94 extern int LogBitsPerHeapOop;
  95 extern int BytesPerHeapOop;
  96 extern int BitsPerHeapOop;
  97 
  98 // Oop encoding heap max
  99 extern uint64_t OopEncodingHeapMax;
 100 
 101 const int BitsPerJavaInteger = 32;
 102 const int BitsPerJavaLong    = 64;
 103 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 104 
 105 // Size of a char[] needed to represent a jint as a string in decimal.
 106 const int jintAsStringSize = 12;
 107 
 108 // In fact this should be
 109 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 110 // see os::set_memory_serialize_page()
 111 #ifdef _LP64
 112 const int SerializePageShiftCount = 4;
 113 #else
 114 const int SerializePageShiftCount = 3;
 115 #endif
 116 
 117 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 118 // pointer into the heap.  We require that object sizes be measured in
 119 // units of heap words, so that that
 120 //   HeapWord* hw;
 121 //   hw += oop(hw)->foo();
 122 // works, where foo is a method (like size or scavenge) that returns the
 123 // object size.
 124 class HeapWord {
 125   friend class VMStructs;
 126  private:
 127   char* i;
 128 #ifndef PRODUCT
 129  public:
 130   char* value() { return i; }
 131 #endif
 132 };
 133 
 134 // Analogous opaque struct for metadata allocated from
 135 // metaspaces.
 136 class MetaWord {
 137   friend class VMStructs;
 138  private:
 139   char* i;
 140 };
 141 
 142 // HeapWordSize must be 2^LogHeapWordSize.
 143 const int HeapWordSize        = sizeof(HeapWord);
 144 #ifdef _LP64
 145 const int LogHeapWordSize     = 3;
 146 #else
 147 const int LogHeapWordSize     = 2;
 148 #endif
 149 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 150 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 151 
 152 // The larger HeapWordSize for 64bit requires larger heaps
 153 // for the same application running in 64bit.  See bug 4967770.
 154 // The minimum alignment to a heap word size is done.  Other
 155 // parts of the memory system may required additional alignment
 156 // and are responsible for those alignments.
 157 #ifdef _LP64
 158 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 159 #else
 160 #define ScaleForWordSize(x) (x)
 161 #endif
 162 
 163 // The minimum number of native machine words necessary to contain "byte_size"
 164 // bytes.
 165 inline size_t heap_word_size(size_t byte_size) {
 166   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 167 }
 168 
 169 
 170 const size_t K                  = 1024;
 171 const size_t M                  = K*K;
 172 const size_t G                  = M*K;
 173 const size_t HWperKB            = K / sizeof(HeapWord);
 174 
 175 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 176 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 177 
 178 // Constants for converting from a base unit to milli-base units.  For
 179 // example from seconds to milliseconds and microseconds
 180 
 181 const int MILLIUNITS    = 1000;         // milli units per base unit
 182 const int MICROUNITS    = 1000000;      // micro units per base unit
 183 const int NANOUNITS     = 1000000000;   // nano units per base unit
 184 
 185 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 186 const jint  NANOSECS_PER_MILLISEC = 1000000;
 187 
 188 inline const char* proper_unit_for_byte_size(size_t s) {
 189 #ifdef _LP64
 190   if (s >= 10*G) {
 191     return "G";
 192   }
 193 #endif
 194   if (s >= 10*M) {
 195     return "M";
 196   } else if (s >= 10*K) {
 197     return "K";
 198   } else {
 199     return "B";
 200   }
 201 }
 202 
 203 template <class T>
 204 inline T byte_size_in_proper_unit(T s) {
 205 #ifdef _LP64
 206   if (s >= 10*G) {
 207     return (T)(s/G);
 208   }
 209 #endif
 210   if (s >= 10*M) {
 211     return (T)(s/M);
 212   } else if (s >= 10*K) {
 213     return (T)(s/K);
 214   } else {
 215     return s;
 216   }
 217 }
 218 
 219 //----------------------------------------------------------------------------------------------------
 220 // VM type definitions
 221 
 222 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 223 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 224 
 225 typedef intptr_t  intx;
 226 typedef uintptr_t uintx;
 227 
 228 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 229 const intx  max_intx  = (uintx)min_intx - 1;
 230 const uintx max_uintx = (uintx)-1;
 231 
 232 // Table of values:
 233 //      sizeof intx         4               8
 234 // min_intx             0x80000000      0x8000000000000000
 235 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 236 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 237 
 238 typedef unsigned int uint;   NEEDS_CLEANUP
 239 
 240 
 241 //----------------------------------------------------------------------------------------------------
 242 // Java type definitions
 243 
 244 // All kinds of 'plain' byte addresses
 245 typedef   signed char s_char;
 246 typedef unsigned char u_char;
 247 typedef u_char*       address;
 248 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 249                                     // except for some implementations of a C++
 250                                     // linkage pointer to function. Should never
 251                                     // need one of those to be placed in this
 252                                     // type anyway.
 253 
 254 //  Utility functions to "portably" (?) bit twiddle pointers
 255 //  Where portable means keep ANSI C++ compilers quiet
 256 
 257 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 258 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 259 
 260 //  Utility functions to "portably" make cast to/from function pointers.
 261 
 262 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 263 inline address_word  castable_address(address x)              { return address_word(x) ; }
 264 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 265 
 266 // Pointer subtraction.
 267 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 268 // the range we might need to find differences from one end of the heap
 269 // to the other.
 270 // A typical use might be:
 271 //     if (pointer_delta(end(), top()) >= size) {
 272 //       // enough room for an object of size
 273 //       ...
 274 // and then additions like
 275 //       ... top() + size ...
 276 // are safe because we know that top() is at least size below end().
 277 inline size_t pointer_delta(const void* left,
 278                             const void* right,
 279                             size_t element_size) {
 280   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 281 }
 282 // A version specialized for HeapWord*'s.
 283 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 284   return pointer_delta(left, right, sizeof(HeapWord));
 285 }
 286 // A version specialized for MetaWord*'s.
 287 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 288   return pointer_delta(left, right, sizeof(MetaWord));
 289 }
 290 
 291 //
 292 // ANSI C++ does not allow casting from one pointer type to a function pointer
 293 // directly without at best a warning. This macro accomplishes it silently
 294 // In every case that is present at this point the value be cast is a pointer
 295 // to a C linkage function. In somecase the type used for the cast reflects
 296 // that linkage and a picky compiler would not complain. In other cases because
 297 // there is no convenient place to place a typedef with extern C linkage (i.e
 298 // a platform dependent header file) it doesn't. At this point no compiler seems
 299 // picky enough to catch these instances (which are few). It is possible that
 300 // using templates could fix these for all cases. This use of templates is likely
 301 // so far from the middle of the road that it is likely to be problematic in
 302 // many C++ compilers.
 303 //
 304 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 305 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 306 
 307 // Unsigned byte types for os and stream.hpp
 308 
 309 // Unsigned one, two, four and eigth byte quantities used for describing
 310 // the .class file format. See JVM book chapter 4.
 311 
 312 typedef jubyte  u1;
 313 typedef jushort u2;
 314 typedef juint   u4;
 315 typedef julong  u8;
 316 
 317 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 318 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 319 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 320 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 321 
 322 typedef jbyte  s1;
 323 typedef jshort s2;
 324 typedef jint   s4;
 325 typedef jlong  s8;
 326 
 327 //----------------------------------------------------------------------------------------------------
 328 // JVM spec restrictions
 329 
 330 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 331 
 332 
 333 //----------------------------------------------------------------------------------------------------
 334 // Default and minimum StringTableSize values
 335 
 336 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 337 const int minimumStringTableSize=1009;
 338 
 339 
 340 //----------------------------------------------------------------------------------------------------
 341 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 342 //
 343 // Determines whether on-the-fly class replacement and frame popping are enabled.
 344 
 345 #define HOTSWAP
 346 
 347 //----------------------------------------------------------------------------------------------------
 348 // Object alignment, in units of HeapWords.
 349 //
 350 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 351 // reference fields can be naturally aligned.
 352 
 353 extern int MinObjAlignment;
 354 extern int MinObjAlignmentInBytes;
 355 extern int MinObjAlignmentInBytesMask;
 356 
 357 extern int LogMinObjAlignment;
 358 extern int LogMinObjAlignmentInBytes;
 359 
 360 const int LogKlassAlignmentInBytes = 3;
 361 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 362 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 363 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 364 
 365 // Klass encoding metaspace max size
 366 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 367 
 368 // Machine dependent stuff
 369 
 370 #ifdef TARGET_ARCH_x86
 371 # include "globalDefinitions_x86.hpp"
 372 #endif
 373 #ifdef TARGET_ARCH_sparc
 374 # include "globalDefinitions_sparc.hpp"
 375 #endif
 376 #ifdef TARGET_ARCH_zero
 377 # include "globalDefinitions_zero.hpp"
 378 #endif
 379 #ifdef TARGET_ARCH_arm
 380 # include "globalDefinitions_arm.hpp"
 381 #endif
 382 #ifdef TARGET_ARCH_ppc
 383 # include "globalDefinitions_ppc.hpp"
 384 #endif
 385 
 386 /*
 387  * If a platform does not support native stack walking
 388  * the platform specific globalDefinitions (above)
 389  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
 390  */
 391 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
 392 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
 393 #endif
 394 
 395 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 396 // Note: this value must be a power of 2
 397 
 398 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 399 
 400 // Signed variants of alignment helpers.  There are two versions of each, a macro
 401 // for use in places like enum definitions that require compile-time constant
 402 // expressions and a function for all other places so as to get type checking.
 403 
 404 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 405 
 406 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 407   return align_size_up_(size, alignment);
 408 }
 409 
 410 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 411 
 412 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 413   return align_size_down_(size, alignment);
 414 }
 415 
 416 // Align objects by rounding up their size, in HeapWord units.
 417 
 418 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 419 
 420 inline intptr_t align_object_size(intptr_t size) {
 421   return align_size_up(size, MinObjAlignment);
 422 }
 423 
 424 inline bool is_object_aligned(intptr_t addr) {
 425   return addr == align_object_size(addr);
 426 }
 427 
 428 // Pad out certain offsets to jlong alignment, in HeapWord units.
 429 
 430 inline intptr_t align_object_offset(intptr_t offset) {
 431   return align_size_up(offset, HeapWordsPerLong);
 432 }
 433 
 434 // Clamp an address to be within a specific page
 435 // 1. If addr is on the page it is returned as is
 436 // 2. If addr is above the page_address the start of the *next* page will be returned
 437 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 438 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 439   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 440     // address is in the specified page, just return it as is
 441     return addr;
 442   } else if (addr > page_address) {
 443     // address is above specified page, return start of next page
 444     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 445   } else {
 446     // address is below specified page, return start of page
 447     return (address)align_size_down(intptr_t(page_address), page_size);
 448   }
 449 }
 450 
 451 
 452 // The expected size in bytes of a cache line, used to pad data structures.
 453 #define DEFAULT_CACHE_LINE_SIZE 64
 454 
 455 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
 456 // expected cache line size (a power of two).  The first addend avoids sharing
 457 // when the start address is not a multiple of alignment; the second maintains
 458 // alignment of starting addresses that happen to be a multiple.
 459 #define PADDING_SIZE(type, alignment)                           \
 460   ((alignment) + align_size_up_(sizeof(type), alignment))
 461 
 462 // Templates to create a subclass padded to avoid cache line sharing.  These are
 463 // effective only when applied to derived-most (leaf) classes.
 464 
 465 // When no args are passed to the base ctor.
 466 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 467 class Padded: public T {
 468 private:
 469   char _pad_buf_[PADDING_SIZE(T, alignment)];
 470 };
 471 
 472 // When either 0 or 1 args may be passed to the base ctor.
 473 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 474 class Padded01: public T {
 475 public:
 476   Padded01(): T() { }
 477   Padded01(Arg1T arg1): T(arg1) { }
 478 private:
 479   char _pad_buf_[PADDING_SIZE(T, alignment)];
 480 };
 481 
 482 //----------------------------------------------------------------------------------------------------
 483 // Utility macros for compilers
 484 // used to silence compiler warnings
 485 
 486 #define Unused_Variable(var) var
 487 
 488 
 489 //----------------------------------------------------------------------------------------------------
 490 // Miscellaneous
 491 
 492 // 6302670 Eliminate Hotspot __fabsf dependency
 493 // All fabs() callers should call this function instead, which will implicitly
 494 // convert the operand to double, avoiding a dependency on __fabsf which
 495 // doesn't exist in early versions of Solaris 8.
 496 inline double fabsd(double value) {
 497   return fabs(value);
 498 }
 499 
 500 inline jint low (jlong value)                    { return jint(value); }
 501 inline jint high(jlong value)                    { return jint(value >> 32); }
 502 
 503 // the fancy casts are a hopefully portable way
 504 // to do unsigned 32 to 64 bit type conversion
 505 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 506                                                    *value |= (jlong)(julong)(juint)low; }
 507 
 508 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 509                                                    *value |= (jlong)high       << 32; }
 510 
 511 inline jlong jlong_from(jint h, jint l) {
 512   jlong result = 0; // initialization to avoid warning
 513   set_high(&result, h);
 514   set_low(&result,  l);
 515   return result;
 516 }
 517 
 518 union jlong_accessor {
 519   jint  words[2];
 520   jlong long_value;
 521 };
 522 
 523 void basic_types_init(); // cannot define here; uses assert
 524 
 525 
 526 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 527 enum BasicType {
 528   T_BOOLEAN     =  4,
 529   T_CHAR        =  5,
 530   T_FLOAT       =  6,
 531   T_DOUBLE      =  7,
 532   T_BYTE        =  8,
 533   T_SHORT       =  9,
 534   T_INT         = 10,
 535   T_LONG        = 11,
 536   T_OBJECT      = 12,
 537   T_ARRAY       = 13,
 538   T_VOID        = 14,
 539   T_ADDRESS     = 15,
 540   T_NARROWOOP   = 16,
 541   T_METADATA    = 17,
 542   T_NARROWKLASS = 18,
 543   T_CONFLICT    = 19, // for stack value type with conflicting contents
 544   T_ILLEGAL     = 99
 545 };
 546 
 547 inline bool is_java_primitive(BasicType t) {
 548   return T_BOOLEAN <= t && t <= T_LONG;
 549 }
 550 
 551 inline bool is_subword_type(BasicType t) {
 552   // these guys are processed exactly like T_INT in calling sequences:
 553   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 554 }
 555 
 556 inline bool is_signed_subword_type(BasicType t) {
 557   return (t == T_BYTE || t == T_SHORT);
 558 }
 559 
 560 // Convert a char from a classfile signature to a BasicType
 561 inline BasicType char2type(char c) {
 562   switch( c ) {
 563   case 'B': return T_BYTE;
 564   case 'C': return T_CHAR;
 565   case 'D': return T_DOUBLE;
 566   case 'F': return T_FLOAT;
 567   case 'I': return T_INT;
 568   case 'J': return T_LONG;
 569   case 'S': return T_SHORT;
 570   case 'Z': return T_BOOLEAN;
 571   case 'V': return T_VOID;
 572   case 'L': return T_OBJECT;
 573   case '[': return T_ARRAY;
 574   }
 575   return T_ILLEGAL;
 576 }
 577 
 578 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 579 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 580 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 581 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 582 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 583 extern BasicType name2type(const char* name);
 584 
 585 // Auxilary math routines
 586 // least common multiple
 587 extern size_t lcm(size_t a, size_t b);
 588 
 589 
 590 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 591 enum BasicTypeSize {
 592   T_BOOLEAN_size     = 1,
 593   T_CHAR_size        = 1,
 594   T_FLOAT_size       = 1,
 595   T_DOUBLE_size      = 2,
 596   T_BYTE_size        = 1,
 597   T_SHORT_size       = 1,
 598   T_INT_size         = 1,
 599   T_LONG_size        = 2,
 600   T_OBJECT_size      = 1,
 601   T_ARRAY_size       = 1,
 602   T_NARROWOOP_size   = 1,
 603   T_NARROWKLASS_size = 1,
 604   T_VOID_size        = 0
 605 };
 606 
 607 
 608 // maps a BasicType to its instance field storage type:
 609 // all sub-word integral types are widened to T_INT
 610 extern BasicType type2field[T_CONFLICT+1];
 611 extern BasicType type2wfield[T_CONFLICT+1];
 612 
 613 
 614 // size in bytes
 615 enum ArrayElementSize {
 616   T_BOOLEAN_aelem_bytes     = 1,
 617   T_CHAR_aelem_bytes        = 2,
 618   T_FLOAT_aelem_bytes       = 4,
 619   T_DOUBLE_aelem_bytes      = 8,
 620   T_BYTE_aelem_bytes        = 1,
 621   T_SHORT_aelem_bytes       = 2,
 622   T_INT_aelem_bytes         = 4,
 623   T_LONG_aelem_bytes        = 8,
 624 #ifdef _LP64
 625   T_OBJECT_aelem_bytes      = 8,
 626   T_ARRAY_aelem_bytes       = 8,
 627 #else
 628   T_OBJECT_aelem_bytes      = 4,
 629   T_ARRAY_aelem_bytes       = 4,
 630 #endif
 631   T_NARROWOOP_aelem_bytes   = 4,
 632   T_NARROWKLASS_aelem_bytes = 4,
 633   T_VOID_aelem_bytes        = 0
 634 };
 635 
 636 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 637 #ifdef ASSERT
 638 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 639 #else
 640 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 641 #endif
 642 
 643 
 644 // JavaValue serves as a container for arbitrary Java values.
 645 
 646 class JavaValue {
 647 
 648  public:
 649   typedef union JavaCallValue {
 650     jfloat   f;
 651     jdouble  d;
 652     jint     i;
 653     jlong    l;
 654     jobject  h;
 655   } JavaCallValue;
 656 
 657  private:
 658   BasicType _type;
 659   JavaCallValue _value;
 660 
 661  public:
 662   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 663 
 664   JavaValue(jfloat value) {
 665     _type    = T_FLOAT;
 666     _value.f = value;
 667   }
 668 
 669   JavaValue(jdouble value) {
 670     _type    = T_DOUBLE;
 671     _value.d = value;
 672   }
 673 
 674  jfloat get_jfloat() const { return _value.f; }
 675  jdouble get_jdouble() const { return _value.d; }
 676  jint get_jint() const { return _value.i; }
 677  jlong get_jlong() const { return _value.l; }
 678  jobject get_jobject() const { return _value.h; }
 679  JavaCallValue* get_value_addr() { return &_value; }
 680  BasicType get_type() const { return _type; }
 681 
 682  void set_jfloat(jfloat f) { _value.f = f;}
 683  void set_jdouble(jdouble d) { _value.d = d;}
 684  void set_jint(jint i) { _value.i = i;}
 685  void set_jlong(jlong l) { _value.l = l;}
 686  void set_jobject(jobject h) { _value.h = h;}
 687  void set_type(BasicType t) { _type = t; }
 688 
 689  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 690  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 691  jchar get_jchar() const { return (jchar) (_value.i);}
 692  jshort get_jshort() const { return (jshort) (_value.i);}
 693 
 694 };
 695 
 696 
 697 #define STACK_BIAS      0
 698 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 699 // in order to extend the reach of the stack pointer.
 700 #if defined(SPARC) && defined(_LP64)
 701 #undef STACK_BIAS
 702 #define STACK_BIAS      0x7ff
 703 #endif
 704 
 705 
 706 // TosState describes the top-of-stack state before and after the execution of
 707 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 708 // registers. The TosState corresponds to the 'machine represention' of this cached
 709 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 710 // as well as a 5th state in case the top-of-stack value is actually on the top
 711 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 712 // state when it comes to machine representation but is used separately for (oop)
 713 // type specific operations (e.g. verification code).
 714 
 715 enum TosState {         // describes the tos cache contents
 716   btos = 0,             // byte, bool tos cached
 717   ctos = 1,             // char tos cached
 718   stos = 2,             // short tos cached
 719   itos = 3,             // int tos cached
 720   ltos = 4,             // long tos cached
 721   ftos = 5,             // float tos cached
 722   dtos = 6,             // double tos cached
 723   atos = 7,             // object cached
 724   vtos = 8,             // tos not cached
 725   number_of_states,
 726   ilgl                  // illegal state: should not occur
 727 };
 728 
 729 
 730 inline TosState as_TosState(BasicType type) {
 731   switch (type) {
 732     case T_BYTE   : return btos;
 733     case T_BOOLEAN: return btos; // FIXME: Add ztos
 734     case T_CHAR   : return ctos;
 735     case T_SHORT  : return stos;
 736     case T_INT    : return itos;
 737     case T_LONG   : return ltos;
 738     case T_FLOAT  : return ftos;
 739     case T_DOUBLE : return dtos;
 740     case T_VOID   : return vtos;
 741     case T_ARRAY  : // fall through
 742     case T_OBJECT : return atos;
 743   }
 744   return ilgl;
 745 }
 746 
 747 inline BasicType as_BasicType(TosState state) {
 748   switch (state) {
 749     //case ztos: return T_BOOLEAN;//FIXME
 750     case btos : return T_BYTE;
 751     case ctos : return T_CHAR;
 752     case stos : return T_SHORT;
 753     case itos : return T_INT;
 754     case ltos : return T_LONG;
 755     case ftos : return T_FLOAT;
 756     case dtos : return T_DOUBLE;
 757     case atos : return T_OBJECT;
 758     case vtos : return T_VOID;
 759   }
 760   return T_ILLEGAL;
 761 }
 762 
 763 
 764 // Helper function to convert BasicType info into TosState
 765 // Note: Cannot define here as it uses global constant at the time being.
 766 TosState as_TosState(BasicType type);
 767 
 768 
 769 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 770 // information is needed by the safepoint code.
 771 //
 772 // There are 4 essential states:
 773 //
 774 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 775 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 776 //  _thread_in_vm       : Executing in the vm
 777 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 778 //
 779 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 780 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 781 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 782 //
 783 // Given a state, the xxx_trans state can always be found by adding 1.
 784 //
 785 enum JavaThreadState {
 786   _thread_uninitialized     =  0, // should never happen (missing initialization)
 787   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 788   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 789   _thread_in_native         =  4, // running in native code
 790   _thread_in_native_trans   =  5, // corresponding transition state
 791   _thread_in_vm             =  6, // running in VM
 792   _thread_in_vm_trans       =  7, // corresponding transition state
 793   _thread_in_Java           =  8, // running in Java or in stub code
 794   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 795   _thread_blocked           = 10, // blocked in vm
 796   _thread_blocked_trans     = 11, // corresponding transition state
 797   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 798 };
 799 
 800 
 801 // Handy constants for deciding which compiler mode to use.
 802 enum MethodCompilation {
 803   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 804   InvalidOSREntryBci = -2
 805 };
 806 
 807 // Enumeration to distinguish tiers of compilation
 808 enum CompLevel {
 809   CompLevel_any               = -1,
 810   CompLevel_all               = -1,
 811   CompLevel_none              = 0,         // Interpreter
 812   CompLevel_simple            = 1,         // C1
 813   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 814   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 815   CompLevel_full_optimization = 4,         // C2 or Shark
 816 
 817 #if defined(COMPILER2) || defined(SHARK)
 818   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 819 #elif defined(COMPILER1)
 820   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 821 #else
 822   CompLevel_highest_tier      = CompLevel_none,
 823 #endif
 824 
 825 #if defined(TIERED)
 826   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 827 #elif defined(COMPILER1)
 828   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 829 #elif defined(COMPILER2) || defined(SHARK)
 830   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 831 #else
 832   CompLevel_initial_compile   = CompLevel_none
 833 #endif
 834 };
 835 
 836 inline bool is_c1_compile(int comp_level) {
 837   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 838 }
 839 
 840 inline bool is_c2_compile(int comp_level) {
 841   return comp_level == CompLevel_full_optimization;
 842 }
 843 
 844 inline bool is_highest_tier_compile(int comp_level) {
 845   return comp_level == CompLevel_highest_tier;
 846 }
 847 
 848 inline bool is_compile(int comp_level) {
 849   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 850 }
 851 
 852 //----------------------------------------------------------------------------------------------------
 853 // 'Forward' declarations of frequently used classes
 854 // (in order to reduce interface dependencies & reduce
 855 // number of unnecessary compilations after changes)
 856 
 857 class symbolTable;
 858 class ClassFileStream;
 859 
 860 class Event;
 861 
 862 class Thread;
 863 class  VMThread;
 864 class  JavaThread;
 865 class Threads;
 866 
 867 class VM_Operation;
 868 class VMOperationQueue;
 869 
 870 class CodeBlob;
 871 class  nmethod;
 872 class  OSRAdapter;
 873 class  I2CAdapter;
 874 class  C2IAdapter;
 875 class CompiledIC;
 876 class relocInfo;
 877 class ScopeDesc;
 878 class PcDesc;
 879 
 880 class Recompiler;
 881 class Recompilee;
 882 class RecompilationPolicy;
 883 class RFrame;
 884 class  CompiledRFrame;
 885 class  InterpretedRFrame;
 886 
 887 class frame;
 888 
 889 class vframe;
 890 class   javaVFrame;
 891 class     interpretedVFrame;
 892 class     compiledVFrame;
 893 class     deoptimizedVFrame;
 894 class   externalVFrame;
 895 class     entryVFrame;
 896 
 897 class RegisterMap;
 898 
 899 class Mutex;
 900 class Monitor;
 901 class BasicLock;
 902 class BasicObjectLock;
 903 
 904 class PeriodicTask;
 905 
 906 class JavaCallWrapper;
 907 
 908 class   oopDesc;
 909 class   metaDataOopDesc;
 910 
 911 class NativeCall;
 912 
 913 class zone;
 914 
 915 class StubQueue;
 916 
 917 class outputStream;
 918 
 919 class ResourceArea;
 920 
 921 class DebugInformationRecorder;
 922 class ScopeValue;
 923 class CompressedStream;
 924 class   DebugInfoReadStream;
 925 class   DebugInfoWriteStream;
 926 class LocationValue;
 927 class ConstantValue;
 928 class IllegalValue;
 929 
 930 class PrivilegedElement;
 931 class MonitorArray;
 932 
 933 class MonitorInfo;
 934 
 935 class OffsetClosure;
 936 class OopMapCache;
 937 class InterpreterOopMap;
 938 class OopMapCacheEntry;
 939 class OSThread;
 940 
 941 typedef int (*OSThreadStartFunc)(void*);
 942 
 943 class Space;
 944 
 945 class JavaValue;
 946 class methodHandle;
 947 class JavaCallArguments;
 948 
 949 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
 950 
 951 extern void basic_fatal(const char* msg);
 952 
 953 
 954 //----------------------------------------------------------------------------------------------------
 955 // Special constants for debugging
 956 
 957 const jint     badInt           = -3;                       // generic "bad int" value
 958 const long     badAddressVal    = -2;                       // generic "bad address" value
 959 const long     badOopVal        = -1;                       // generic "bad oop" value
 960 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 961 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 962 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 963 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 964 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 965 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
 966 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 967 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 968 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 969 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 970 
 971 
 972 // (These must be implemented as #defines because C++ compilers are
 973 // not obligated to inline non-integral constants!)
 974 #define       badAddress        ((address)::badAddressVal)
 975 #define       badOop            ((oop)::badOopVal)
 976 #define       badHeapWord       (::badHeapWordVal)
 977 #define       badJNIHandle      ((oop)::badJNIHandleVal)
 978 
 979 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 980 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 981 
 982 //----------------------------------------------------------------------------------------------------
 983 // Utility functions for bitfield manipulations
 984 
 985 const intptr_t AllBits    = ~0; // all bits set in a word
 986 const intptr_t NoBits     =  0; // no bits set in a word
 987 const jlong    NoLongBits =  0; // no bits set in a long
 988 const intptr_t OneBit     =  1; // only right_most bit set in a word
 989 
 990 // get a word with the n.th or the right-most or left-most n bits set
 991 // (note: #define used only so that they can be used in enum constant definitions)
 992 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
 993 #define right_n_bits(n)   (nth_bit(n) - 1)
 994 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
 995 
 996 // bit-operations using a mask m
 997 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 998 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 999 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1000 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1001 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1002 
1003 // bit-operations using the n.th bit
1004 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1005 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1006 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1007 
1008 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1009 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1010   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1011 }
1012 
1013 
1014 //----------------------------------------------------------------------------------------------------
1015 // Utility functions for integers
1016 
1017 // Avoid use of global min/max macros which may cause unwanted double
1018 // evaluation of arguments.
1019 #ifdef max
1020 #undef max
1021 #endif
1022 
1023 #ifdef min
1024 #undef min
1025 #endif
1026 
1027 #define max(a,b) Do_not_use_max_use_MAX2_instead
1028 #define min(a,b) Do_not_use_min_use_MIN2_instead
1029 
1030 // It is necessary to use templates here. Having normal overloaded
1031 // functions does not work because it is necessary to provide both 32-
1032 // and 64-bit overloaded functions, which does not work, and having
1033 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1034 // will be even more error-prone than macros.
1035 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1036 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1037 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1038 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1039 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1040 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1041 
1042 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1043 
1044 // true if x is a power of 2, false otherwise
1045 inline bool is_power_of_2(intptr_t x) {
1046   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1047 }
1048 
1049 // long version of is_power_of_2
1050 inline bool is_power_of_2_long(jlong x) {
1051   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1052 }
1053 
1054 //* largest i such that 2^i <= x
1055 //  A negative value of 'x' will return '31'
1056 inline int log2_intptr(intptr_t x) {
1057   int i = -1;
1058   uintptr_t p =  1;
1059   while (p != 0 && p <= (uintptr_t)x) {
1060     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1061     i++; p *= 2;
1062   }
1063   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1064   // (if p = 0 then overflow occurred and i = 31)
1065   return i;
1066 }
1067 
1068 //* largest i such that 2^i <= x
1069 //  A negative value of 'x' will return '63'
1070 inline int log2_long(jlong x) {
1071   int i = -1;
1072   julong p =  1;
1073   while (p != 0 && p <= (julong)x) {
1074     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1075     i++; p *= 2;
1076   }
1077   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1078   // (if p = 0 then overflow occurred and i = 63)
1079   return i;
1080 }
1081 
1082 //* the argument must be exactly a power of 2
1083 inline int exact_log2(intptr_t x) {
1084   #ifdef ASSERT
1085     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1086   #endif
1087   return log2_intptr(x);
1088 }
1089 
1090 //* the argument must be exactly a power of 2
1091 inline int exact_log2_long(jlong x) {
1092   #ifdef ASSERT
1093     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1094   #endif
1095   return log2_long(x);
1096 }
1097 
1098 
1099 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1100 inline intptr_t round_to(intptr_t x, uintx s) {
1101   #ifdef ASSERT
1102     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1103   #endif
1104   const uintx m = s - 1;
1105   return mask_bits(x + m, ~m);
1106 }
1107 
1108 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1109 inline intptr_t round_down(intptr_t x, uintx s) {
1110   #ifdef ASSERT
1111     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1112   #endif
1113   const uintx m = s - 1;
1114   return mask_bits(x, ~m);
1115 }
1116 
1117 
1118 inline bool is_odd (intx x) { return x & 1;      }
1119 inline bool is_even(intx x) { return !is_odd(x); }
1120 
1121 // "to" should be greater than "from."
1122 inline intx byte_size(void* from, void* to) {
1123   return (address)to - (address)from;
1124 }
1125 
1126 //----------------------------------------------------------------------------------------------------
1127 // Avoid non-portable casts with these routines (DEPRECATED)
1128 
1129 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1130 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1131 
1132 // Given sequence of four bytes, build into a 32-bit word
1133 // following the conventions used in class files.
1134 // On the 386, this could be realized with a simple address cast.
1135 //
1136 
1137 // This routine takes eight bytes:
1138 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1139   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1140        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1141        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1142        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1143        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1144        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1145        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1146        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1147 }
1148 
1149 // This routine takes four bytes:
1150 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1151   return  (( u4(c1) << 24 )  &  0xff000000)
1152        |  (( u4(c2) << 16 )  &  0x00ff0000)
1153        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1154        |  (( u4(c4) <<  0 )  &  0x000000ff);
1155 }
1156 
1157 // And this one works if the four bytes are contiguous in memory:
1158 inline u4 build_u4_from( u1* p ) {
1159   return  build_u4_from( p[0], p[1], p[2], p[3] );
1160 }
1161 
1162 // Ditto for two-byte ints:
1163 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1164   return  u2((( u2(c1) <<  8 )  &  0xff00)
1165           |  (( u2(c2) <<  0 )  &  0x00ff));
1166 }
1167 
1168 // And this one works if the two bytes are contiguous in memory:
1169 inline u2 build_u2_from( u1* p ) {
1170   return  build_u2_from( p[0], p[1] );
1171 }
1172 
1173 // Ditto for floats:
1174 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1175   u4 u = build_u4_from( c1, c2, c3, c4 );
1176   return  *(jfloat*)&u;
1177 }
1178 
1179 inline jfloat build_float_from( u1* p ) {
1180   u4 u = build_u4_from( p );
1181   return  *(jfloat*)&u;
1182 }
1183 
1184 
1185 // now (64-bit) longs
1186 
1187 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1188   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1189        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1190        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1191        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1192        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1193        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1194        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1195        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1196 }
1197 
1198 inline jlong build_long_from( u1* p ) {
1199   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1200 }
1201 
1202 
1203 // Doubles, too!
1204 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1205   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1206   return  *(jdouble*)&u;
1207 }
1208 
1209 inline jdouble build_double_from( u1* p ) {
1210   jlong u = build_long_from( p );
1211   return  *(jdouble*)&u;
1212 }
1213 
1214 
1215 // Portable routines to go the other way:
1216 
1217 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1218   c1 = u1(x >> 8);
1219   c2 = u1(x);
1220 }
1221 
1222 inline void explode_short_to( u2 x, u1* p ) {
1223   explode_short_to( x, p[0], p[1]);
1224 }
1225 
1226 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1227   c1 = u1(x >> 24);
1228   c2 = u1(x >> 16);
1229   c3 = u1(x >>  8);
1230   c4 = u1(x);
1231 }
1232 
1233 inline void explode_int_to( u4 x, u1* p ) {
1234   explode_int_to( x, p[0], p[1], p[2], p[3]);
1235 }
1236 
1237 
1238 // Pack and extract shorts to/from ints:
1239 
1240 inline int extract_low_short_from_int(jint x) {
1241   return x & 0xffff;
1242 }
1243 
1244 inline int extract_high_short_from_int(jint x) {
1245   return (x >> 16) & 0xffff;
1246 }
1247 
1248 inline int build_int_from_shorts( jushort low, jushort high ) {
1249   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1250 }
1251 
1252 // Printf-style formatters for fixed- and variable-width types as pointers and
1253 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1254 // doesn't provide appropriate definitions, they should be provided in
1255 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1256 
1257 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1258 
1259 // Format 32-bit quantities.
1260 #define INT32_FORMAT           "%" PRId32
1261 #define UINT32_FORMAT          "%" PRIu32
1262 #define INT32_FORMAT_W(width)  "%" #width PRId32
1263 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1264 
1265 #define PTR32_FORMAT           "0x%08" PRIx32
1266 
1267 // Format 64-bit quantities.
1268 #define INT64_FORMAT           "%" PRId64
1269 #define UINT64_FORMAT          "%" PRIu64
1270 #define INT64_FORMAT_W(width)  "%" #width PRId64
1271 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1272 
1273 #define PTR64_FORMAT           "0x%016" PRIx64
1274 
1275 // Format jlong, if necessary
1276 #ifndef JLONG_FORMAT
1277 #define JLONG_FORMAT           INT64_FORMAT
1278 #endif
1279 #ifndef JULONG_FORMAT
1280 #define JULONG_FORMAT          UINT64_FORMAT
1281 #endif
1282 
1283 // Format pointers which change size between 32- and 64-bit.
1284 #ifdef  _LP64
1285 #define INTPTR_FORMAT "0x%016" PRIxPTR
1286 #define PTR_FORMAT    "0x%016" PRIxPTR
1287 #else   // !_LP64
1288 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1289 #define PTR_FORMAT    "0x%08"  PRIxPTR
1290 #endif  // _LP64
1291 
1292 #define SSIZE_FORMAT          "%" PRIdPTR
1293 #define SIZE_FORMAT           "%" PRIuPTR
1294 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
1295 #define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
1296 
1297 #define INTX_FORMAT           "%" PRIdPTR
1298 #define UINTX_FORMAT          "%" PRIuPTR
1299 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1300 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1301 
1302 
1303 // Enable zap-a-lot if in debug version.
1304 
1305 # ifdef ASSERT
1306 # ifdef COMPILER2
1307 #   define ENABLE_ZAP_DEAD_LOCALS
1308 #endif /* COMPILER2 */
1309 # endif /* ASSERT */
1310 
1311 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1312 
1313 // Dereference vptr
1314 // All C++ compilers that we know of have the vtbl pointer in the first
1315 // word.  If there are exceptions, this function needs to be made compiler
1316 // specific.
1317 static inline void* dereference_vptr(void* addr) {
1318   return *(void**)addr;
1319 }
1320 
1321 
1322 #ifndef PRODUCT
1323 
1324 // For unit testing only
1325 class GlobalDefinitions {
1326 public:
1327   static void test_globals();
1328 };
1329 
1330 #endif // PRODUCT
1331 
1332 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP