1 /*
   2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolder.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 
  44 #define __ masm->
  45 
  46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  47 
  48 class RegisterSaver {
  49   // Capture info about frame layout
  50 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  51   enum layout {
  52                 fpu_state_off = 0,
  53                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  54                 st0_off, st0H_off,
  55                 st1_off, st1H_off,
  56                 st2_off, st2H_off,
  57                 st3_off, st3H_off,
  58                 st4_off, st4H_off,
  59                 st5_off, st5H_off,
  60                 st6_off, st6H_off,
  61                 st7_off, st7H_off,
  62                 xmm_off,
  63                 DEF_XMM_OFFS(0),
  64                 DEF_XMM_OFFS(1),
  65                 DEF_XMM_OFFS(2),
  66                 DEF_XMM_OFFS(3),
  67                 DEF_XMM_OFFS(4),
  68                 DEF_XMM_OFFS(5),
  69                 DEF_XMM_OFFS(6),
  70                 DEF_XMM_OFFS(7),
  71                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  72                 rdi_off,
  73                 rsi_off,
  74                 ignore_off,  // extra copy of rbp,
  75                 rsp_off,
  76                 rbx_off,
  77                 rdx_off,
  78                 rcx_off,
  79                 rax_off,
  80                 // The frame sender code expects that rbp will be in the "natural" place and
  81                 // will override any oopMap setting for it. We must therefore force the layout
  82                 // so that it agrees with the frame sender code.
  83                 rbp_off,
  84                 return_off,      // slot for return address
  85                 reg_save_size };
  86   enum { FPU_regs_live = flags_off - fpu_state_end };
  87 
  88   public:
  89 
  90   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
  91                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
  92   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
  93 
  94   static int rax_offset() { return rax_off; }
  95   static int rbx_offset() { return rbx_off; }
  96 
  97   // Offsets into the register save area
  98   // Used by deoptimization when it is managing result register
  99   // values on its own
 100 
 101   static int raxOffset(void) { return rax_off; }
 102   static int rdxOffset(void) { return rdx_off; }
 103   static int rbxOffset(void) { return rbx_off; }
 104   static int xmm0Offset(void) { return xmm0_off; }
 105   // This really returns a slot in the fp save area, which one is not important
 106   static int fpResultOffset(void) { return st0_off; }
 107 
 108   // During deoptimization only the result register need to be restored
 109   // all the other values have already been extracted.
 110 
 111   static void restore_result_registers(MacroAssembler* masm);
 112 
 113 };
 114 
 115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 116                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 117   int vect_words = 0;
 118 #ifdef COMPILER2
 119   if (save_vectors) {
 120     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
 121     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
 122     // Save upper half of YMM registes
 123     vect_words = 8 * 16 / wordSize;
 124     additional_frame_words += vect_words;
 125   }
 126 #else
 127   assert(!save_vectors, "vectors are generated only by C2");
 128 #endif
 129   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 130   int frame_words = frame_size_in_bytes / wordSize;
 131   *total_frame_words = frame_words;
 132 
 133   assert(FPUStateSizeInWords == 27, "update stack layout");
 134 
 135   // save registers, fpu state, and flags
 136   // We assume caller has already has return address slot on the stack
 137   // We push epb twice in this sequence because we want the real rbp,
 138   // to be under the return like a normal enter and we want to use pusha
 139   // We push by hand instead of pusing push
 140   __ enter();
 141   __ pusha();
 142   __ pushf();
 143   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 144   __ push_FPU_state();          // Save FPU state & init
 145 
 146   if (verify_fpu) {
 147     // Some stubs may have non standard FPU control word settings so
 148     // only check and reset the value when it required to be the
 149     // standard value.  The safepoint blob in particular can be used
 150     // in methods which are using the 24 bit control word for
 151     // optimized float math.
 152 
 153 #ifdef ASSERT
 154     // Make sure the control word has the expected value
 155     Label ok;
 156     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 157     __ jccb(Assembler::equal, ok);
 158     __ stop("corrupted control word detected");
 159     __ bind(ok);
 160 #endif
 161 
 162     // Reset the control word to guard against exceptions being unmasked
 163     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 164     // into the on stack copy and then reload that to make sure that the
 165     // current and future values are correct.
 166     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 167   }
 168 
 169   __ frstor(Address(rsp, 0));
 170   if (!verify_fpu) {
 171     // Set the control word so that exceptions are masked for the
 172     // following code.
 173     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 174   }
 175 
 176   // Save the FPU registers in de-opt-able form
 177 
 178   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
 179   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
 180   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
 181   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
 182   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
 183   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
 184   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
 185   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
 186 
 187   if( UseSSE == 1 ) {           // Save the XMM state
 188     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
 189     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
 190     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
 191     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
 192     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
 193     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
 194     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
 195     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
 196   } else if( UseSSE >= 2 ) {
 197     // Save whole 128bit (16 bytes) XMM regiters
 198     __ movdqu(Address(rsp,xmm0_off*wordSize),xmm0);
 199     __ movdqu(Address(rsp,xmm1_off*wordSize),xmm1);
 200     __ movdqu(Address(rsp,xmm2_off*wordSize),xmm2);
 201     __ movdqu(Address(rsp,xmm3_off*wordSize),xmm3);
 202     __ movdqu(Address(rsp,xmm4_off*wordSize),xmm4);
 203     __ movdqu(Address(rsp,xmm5_off*wordSize),xmm5);
 204     __ movdqu(Address(rsp,xmm6_off*wordSize),xmm6);
 205     __ movdqu(Address(rsp,xmm7_off*wordSize),xmm7);
 206   }
 207 
 208   if (vect_words > 0) {
 209     assert(vect_words*wordSize == 128, "");
 210     __ subptr(rsp, 128); // Save upper half of YMM registes
 211     __ vextractf128h(Address(rsp,  0),xmm0);
 212     __ vextractf128h(Address(rsp, 16),xmm1);
 213     __ vextractf128h(Address(rsp, 32),xmm2);
 214     __ vextractf128h(Address(rsp, 48),xmm3);
 215     __ vextractf128h(Address(rsp, 64),xmm4);
 216     __ vextractf128h(Address(rsp, 80),xmm5);
 217     __ vextractf128h(Address(rsp, 96),xmm6);
 218     __ vextractf128h(Address(rsp,112),xmm7);
 219   }
 220 
 221   // Set an oopmap for the call site.  This oopmap will map all
 222   // oop-registers and debug-info registers as callee-saved.  This
 223   // will allow deoptimization at this safepoint to find all possible
 224   // debug-info recordings, as well as let GC find all oops.
 225 
 226   OopMapSet *oop_maps = new OopMapSet();
 227   OopMap* map =  new OopMap( frame_words, 0 );
 228 
 229 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 230 
 231   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
 232   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
 233   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
 234   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
 235   // rbp, location is known implicitly, no oopMap
 236   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
 240   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
 241   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
 242   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
 243   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
 244   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
 245   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
 246   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
 247   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
 248   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
 249   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
 250   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
 251   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
 252   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
 253   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
 254   // %%% This is really a waste but we'll keep things as they were for now
 255   if (true) {
 256 #define NEXTREG(x) (x)->as_VMReg()->next()
 257     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
 258     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
 259     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
 260     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
 261     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
 262     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
 263     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
 264     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
 265     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
 266     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
 267     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
 268     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
 269     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
 270     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
 271     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
 272     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
 273 #undef NEXTREG
 274 #undef STACK_OFFSET
 275   }
 276 
 277   return map;
 278 
 279 }
 280 
 281 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 282   // Recover XMM & FPU state
 283   int additional_frame_bytes = 0;
 284 #ifdef COMPILER2
 285   if (restore_vectors) {
 286     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
 287     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
 288     additional_frame_bytes = 128;
 289   }
 290 #else
 291   assert(!restore_vectors, "vectors are generated only by C2");
 292 #endif
 293   if (UseSSE == 1) {
 294     assert(additional_frame_bytes == 0, "");
 295     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
 296     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
 297     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
 298     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
 299     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
 300     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
 301     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
 302     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
 303   } else if (UseSSE >= 2) {
 304 #define STACK_ADDRESS(x) Address(rsp,(x)*wordSize + additional_frame_bytes)
 305     __ movdqu(xmm0,STACK_ADDRESS(xmm0_off));
 306     __ movdqu(xmm1,STACK_ADDRESS(xmm1_off));
 307     __ movdqu(xmm2,STACK_ADDRESS(xmm2_off));
 308     __ movdqu(xmm3,STACK_ADDRESS(xmm3_off));
 309     __ movdqu(xmm4,STACK_ADDRESS(xmm4_off));
 310     __ movdqu(xmm5,STACK_ADDRESS(xmm5_off));
 311     __ movdqu(xmm6,STACK_ADDRESS(xmm6_off));
 312     __ movdqu(xmm7,STACK_ADDRESS(xmm7_off));
 313 #undef STACK_ADDRESS
 314   }
 315   if (restore_vectors) {
 316     // Restore upper half of YMM registes.
 317     assert(additional_frame_bytes == 128, "");
 318     __ vinsertf128h(xmm0, Address(rsp,  0));
 319     __ vinsertf128h(xmm1, Address(rsp, 16));
 320     __ vinsertf128h(xmm2, Address(rsp, 32));
 321     __ vinsertf128h(xmm3, Address(rsp, 48));
 322     __ vinsertf128h(xmm4, Address(rsp, 64));
 323     __ vinsertf128h(xmm5, Address(rsp, 80));
 324     __ vinsertf128h(xmm6, Address(rsp, 96));
 325     __ vinsertf128h(xmm7, Address(rsp,112));
 326     __ addptr(rsp, additional_frame_bytes);
 327   }
 328   __ pop_FPU_state();
 329   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 330 
 331   __ popf();
 332   __ popa();
 333   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 334   __ pop(rbp);
 335 
 336 }
 337 
 338 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 339 
 340   // Just restore result register. Only used by deoptimization. By
 341   // now any callee save register that needs to be restore to a c2
 342   // caller of the deoptee has been extracted into the vframeArray
 343   // and will be stuffed into the c2i adapter we create for later
 344   // restoration so only result registers need to be restored here.
 345   //
 346 
 347   __ frstor(Address(rsp, 0));      // Restore fpu state
 348 
 349   // Recover XMM & FPU state
 350   if( UseSSE == 1 ) {
 351     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 352   } else if( UseSSE >= 2 ) {
 353     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 354   }
 355   __ movptr(rax, Address(rsp, rax_off*wordSize));
 356   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 357   // Pop all of the register save are off the stack except the return address
 358   __ addptr(rsp, return_off * wordSize);
 359 }
 360 
 361 // Is vector's size (in bytes) bigger than a size saved by default?
 362 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 363 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 364 bool SharedRuntime::is_wide_vector(int size) {
 365   return size > 16;
 366 }
 367 
 368 // The java_calling_convention describes stack locations as ideal slots on
 369 // a frame with no abi restrictions. Since we must observe abi restrictions
 370 // (like the placement of the register window) the slots must be biased by
 371 // the following value.
 372 static int reg2offset_in(VMReg r) {
 373   // Account for saved rbp, and return address
 374   // This should really be in_preserve_stack_slots
 375   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 376 }
 377 
 378 static int reg2offset_out(VMReg r) {
 379   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 380 }
 381 
 382 // ---------------------------------------------------------------------------
 383 // Read the array of BasicTypes from a signature, and compute where the
 384 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 385 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 386 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 387 // as framesizes are fixed.
 388 // VMRegImpl::stack0 refers to the first slot 0(sp).
 389 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 390 // up to RegisterImpl::number_of_registers) are the 32-bit
 391 // integer registers.
 392 
 393 // Pass first two oop/int args in registers ECX and EDX.
 394 // Pass first two float/double args in registers XMM0 and XMM1.
 395 // Doubles have precedence, so if you pass a mix of floats and doubles
 396 // the doubles will grab the registers before the floats will.
 397 
 398 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 399 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 400 // units regardless of build. Of course for i486 there is no 64 bit build
 401 
 402 
 403 // ---------------------------------------------------------------------------
 404 // The compiled Java calling convention.
 405 // Pass first two oop/int args in registers ECX and EDX.
 406 // Pass first two float/double args in registers XMM0 and XMM1.
 407 // Doubles have precedence, so if you pass a mix of floats and doubles
 408 // the doubles will grab the registers before the floats will.
 409 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 410                                            VMRegPair *regs,
 411                                            int total_args_passed,
 412                                            int is_outgoing) {
 413   uint    stack = 0;          // Starting stack position for args on stack
 414 
 415 
 416   // Pass first two oop/int args in registers ECX and EDX.
 417   uint reg_arg0 = 9999;
 418   uint reg_arg1 = 9999;
 419 
 420   // Pass first two float/double args in registers XMM0 and XMM1.
 421   // Doubles have precedence, so if you pass a mix of floats and doubles
 422   // the doubles will grab the registers before the floats will.
 423   // CNC - TURNED OFF FOR non-SSE.
 424   //       On Intel we have to round all doubles (and most floats) at
 425   //       call sites by storing to the stack in any case.
 426   // UseSSE=0 ==> Don't Use ==> 9999+0
 427   // UseSSE=1 ==> Floats only ==> 9999+1
 428   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 429   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 430   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 431   uint freg_arg0 = 9999+fargs;
 432   uint freg_arg1 = 9999+fargs;
 433 
 434   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 435   int i;
 436   for( i = 0; i < total_args_passed; i++) {
 437     if( sig_bt[i] == T_DOUBLE ) {
 438       // first 2 doubles go in registers
 439       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 440       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 441       else // Else double is passed low on the stack to be aligned.
 442         stack += 2;
 443     } else if( sig_bt[i] == T_LONG ) {
 444       stack += 2;
 445     }
 446   }
 447   int dstack = 0;             // Separate counter for placing doubles
 448 
 449   // Now pick where all else goes.
 450   for( i = 0; i < total_args_passed; i++) {
 451     // From the type and the argument number (count) compute the location
 452     switch( sig_bt[i] ) {
 453     case T_SHORT:
 454     case T_CHAR:
 455     case T_BYTE:
 456     case T_BOOLEAN:
 457     case T_INT:
 458     case T_ARRAY:
 459     case T_OBJECT:
 460     case T_ADDRESS:
 461       if( reg_arg0 == 9999 )  {
 462         reg_arg0 = i;
 463         regs[i].set1(rcx->as_VMReg());
 464       } else if( reg_arg1 == 9999 )  {
 465         reg_arg1 = i;
 466         regs[i].set1(rdx->as_VMReg());
 467       } else {
 468         regs[i].set1(VMRegImpl::stack2reg(stack++));
 469       }
 470       break;
 471     case T_FLOAT:
 472       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 473         freg_arg0 = i;
 474         regs[i].set1(xmm0->as_VMReg());
 475       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 476         freg_arg1 = i;
 477         regs[i].set1(xmm1->as_VMReg());
 478       } else {
 479         regs[i].set1(VMRegImpl::stack2reg(stack++));
 480       }
 481       break;
 482     case T_LONG:
 483       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 484       regs[i].set2(VMRegImpl::stack2reg(dstack));
 485       dstack += 2;
 486       break;
 487     case T_DOUBLE:
 488       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 489       if( freg_arg0 == (uint)i ) {
 490         regs[i].set2(xmm0->as_VMReg());
 491       } else if( freg_arg1 == (uint)i ) {
 492         regs[i].set2(xmm1->as_VMReg());
 493       } else {
 494         regs[i].set2(VMRegImpl::stack2reg(dstack));
 495         dstack += 2;
 496       }
 497       break;
 498     case T_VOID: regs[i].set_bad(); break;
 499       break;
 500     default:
 501       ShouldNotReachHere();
 502       break;
 503     }
 504   }
 505 
 506   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 507   return round_to(stack, 2);
 508 }
 509 
 510 // Patch the callers callsite with entry to compiled code if it exists.
 511 static void patch_callers_callsite(MacroAssembler *masm) {
 512   Label L;
 513   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 514   __ jcc(Assembler::equal, L);
 515   // Schedule the branch target address early.
 516   // Call into the VM to patch the caller, then jump to compiled callee
 517   // rax, isn't live so capture return address while we easily can
 518   __ movptr(rax, Address(rsp, 0));
 519   __ pusha();
 520   __ pushf();
 521 
 522   if (UseSSE == 1) {
 523     __ subptr(rsp, 2*wordSize);
 524     __ movflt(Address(rsp, 0), xmm0);
 525     __ movflt(Address(rsp, wordSize), xmm1);
 526   }
 527   if (UseSSE >= 2) {
 528     __ subptr(rsp, 4*wordSize);
 529     __ movdbl(Address(rsp, 0), xmm0);
 530     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 531   }
 532 #ifdef COMPILER2
 533   // C2 may leave the stack dirty if not in SSE2+ mode
 534   if (UseSSE >= 2) {
 535     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 536   } else {
 537     __ empty_FPU_stack();
 538   }
 539 #endif /* COMPILER2 */
 540 
 541   // VM needs caller's callsite
 542   __ push(rax);
 543   // VM needs target method
 544   __ push(rbx);
 545   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 546   __ addptr(rsp, 2*wordSize);
 547 
 548   if (UseSSE == 1) {
 549     __ movflt(xmm0, Address(rsp, 0));
 550     __ movflt(xmm1, Address(rsp, wordSize));
 551     __ addptr(rsp, 2*wordSize);
 552   }
 553   if (UseSSE >= 2) {
 554     __ movdbl(xmm0, Address(rsp, 0));
 555     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 556     __ addptr(rsp, 4*wordSize);
 557   }
 558 
 559   __ popf();
 560   __ popa();
 561   __ bind(L);
 562 }
 563 
 564 
 565 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 566   int next_off = st_off - Interpreter::stackElementSize;
 567   __ movdbl(Address(rsp, next_off), r);
 568 }
 569 
 570 static void gen_c2i_adapter(MacroAssembler *masm,
 571                             int total_args_passed,
 572                             int comp_args_on_stack,
 573                             const BasicType *sig_bt,
 574                             const VMRegPair *regs,
 575                             Label& skip_fixup) {
 576   // Before we get into the guts of the C2I adapter, see if we should be here
 577   // at all.  We've come from compiled code and are attempting to jump to the
 578   // interpreter, which means the caller made a static call to get here
 579   // (vcalls always get a compiled target if there is one).  Check for a
 580   // compiled target.  If there is one, we need to patch the caller's call.
 581   patch_callers_callsite(masm);
 582 
 583   __ bind(skip_fixup);
 584 
 585 #ifdef COMPILER2
 586   // C2 may leave the stack dirty if not in SSE2+ mode
 587   if (UseSSE >= 2) {
 588     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 589   } else {
 590     __ empty_FPU_stack();
 591   }
 592 #endif /* COMPILER2 */
 593 
 594   // Since all args are passed on the stack, total_args_passed * interpreter_
 595   // stack_element_size  is the
 596   // space we need.
 597   int extraspace = total_args_passed * Interpreter::stackElementSize;
 598 
 599   // Get return address
 600   __ pop(rax);
 601 
 602   // set senderSP value
 603   __ movptr(rsi, rsp);
 604 
 605   __ subptr(rsp, extraspace);
 606 
 607   // Now write the args into the outgoing interpreter space
 608   for (int i = 0; i < total_args_passed; i++) {
 609     if (sig_bt[i] == T_VOID) {
 610       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 611       continue;
 612     }
 613 
 614     // st_off points to lowest address on stack.
 615     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 616     int next_off = st_off - Interpreter::stackElementSize;
 617 
 618     // Say 4 args:
 619     // i   st_off
 620     // 0   12 T_LONG
 621     // 1    8 T_VOID
 622     // 2    4 T_OBJECT
 623     // 3    0 T_BOOL
 624     VMReg r_1 = regs[i].first();
 625     VMReg r_2 = regs[i].second();
 626     if (!r_1->is_valid()) {
 627       assert(!r_2->is_valid(), "");
 628       continue;
 629     }
 630 
 631     if (r_1->is_stack()) {
 632       // memory to memory use fpu stack top
 633       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 634 
 635       if (!r_2->is_valid()) {
 636         __ movl(rdi, Address(rsp, ld_off));
 637         __ movptr(Address(rsp, st_off), rdi);
 638       } else {
 639 
 640         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 641         // st_off == MSW, st_off-wordSize == LSW
 642 
 643         __ movptr(rdi, Address(rsp, ld_off));
 644         __ movptr(Address(rsp, next_off), rdi);
 645 #ifndef _LP64
 646         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 647         __ movptr(Address(rsp, st_off), rdi);
 648 #else
 649 #ifdef ASSERT
 650         // Overwrite the unused slot with known junk
 651         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 652         __ movptr(Address(rsp, st_off), rax);
 653 #endif /* ASSERT */
 654 #endif // _LP64
 655       }
 656     } else if (r_1->is_Register()) {
 657       Register r = r_1->as_Register();
 658       if (!r_2->is_valid()) {
 659         __ movl(Address(rsp, st_off), r);
 660       } else {
 661         // long/double in gpr
 662         NOT_LP64(ShouldNotReachHere());
 663         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 664         // T_DOUBLE and T_LONG use two slots in the interpreter
 665         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 666           // long/double in gpr
 667 #ifdef ASSERT
 668           // Overwrite the unused slot with known junk
 669           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
 670           __ movptr(Address(rsp, st_off), rax);
 671 #endif /* ASSERT */
 672           __ movptr(Address(rsp, next_off), r);
 673         } else {
 674           __ movptr(Address(rsp, st_off), r);
 675         }
 676       }
 677     } else {
 678       assert(r_1->is_XMMRegister(), "");
 679       if (!r_2->is_valid()) {
 680         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 681       } else {
 682         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 683         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 684       }
 685     }
 686   }
 687 
 688   // Schedule the branch target address early.
 689   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 690   // And repush original return address
 691   __ push(rax);
 692   __ jmp(rcx);
 693 }
 694 
 695 
 696 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 697   int next_val_off = ld_off - Interpreter::stackElementSize;
 698   __ movdbl(r, Address(saved_sp, next_val_off));
 699 }
 700 
 701 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 702                         address code_start, address code_end,
 703                         Label& L_ok) {
 704   Label L_fail;
 705   __ lea(temp_reg, ExternalAddress(code_start));
 706   __ cmpptr(pc_reg, temp_reg);
 707   __ jcc(Assembler::belowEqual, L_fail);
 708   __ lea(temp_reg, ExternalAddress(code_end));
 709   __ cmpptr(pc_reg, temp_reg);
 710   __ jcc(Assembler::below, L_ok);
 711   __ bind(L_fail);
 712 }
 713 
 714 static void gen_i2c_adapter(MacroAssembler *masm,
 715                             int total_args_passed,
 716                             int comp_args_on_stack,
 717                             const BasicType *sig_bt,
 718                             const VMRegPair *regs) {
 719 
 720   // Note: rsi contains the senderSP on entry. We must preserve it since
 721   // we may do a i2c -> c2i transition if we lose a race where compiled
 722   // code goes non-entrant while we get args ready.
 723 
 724   // Adapters can be frameless because they do not require the caller
 725   // to perform additional cleanup work, such as correcting the stack pointer.
 726   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 727   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 728   // even if a callee has modified the stack pointer.
 729   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 730   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 731   // up via the senderSP register).
 732   // In other words, if *either* the caller or callee is interpreted, we can
 733   // get the stack pointer repaired after a call.
 734   // This is why c2i and i2c adapters cannot be indefinitely composed.
 735   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 736   // both caller and callee would be compiled methods, and neither would
 737   // clean up the stack pointer changes performed by the two adapters.
 738   // If this happens, control eventually transfers back to the compiled
 739   // caller, but with an uncorrected stack, causing delayed havoc.
 740 
 741   // Pick up the return address
 742   __ movptr(rax, Address(rsp, 0));
 743 
 744   if (VerifyAdapterCalls &&
 745       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 746     // So, let's test for cascading c2i/i2c adapters right now.
 747     //  assert(Interpreter::contains($return_addr) ||
 748     //         StubRoutines::contains($return_addr),
 749     //         "i2c adapter must return to an interpreter frame");
 750     __ block_comment("verify_i2c { ");
 751     Label L_ok;
 752     if (Interpreter::code() != NULL)
 753       range_check(masm, rax, rdi,
 754                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 755                   L_ok);
 756     if (StubRoutines::code1() != NULL)
 757       range_check(masm, rax, rdi,
 758                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 759                   L_ok);
 760     if (StubRoutines::code2() != NULL)
 761       range_check(masm, rax, rdi,
 762                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 763                   L_ok);
 764     const char* msg = "i2c adapter must return to an interpreter frame";
 765     __ block_comment(msg);
 766     __ stop(msg);
 767     __ bind(L_ok);
 768     __ block_comment("} verify_i2ce ");
 769   }
 770 
 771   // Must preserve original SP for loading incoming arguments because
 772   // we need to align the outgoing SP for compiled code.
 773   __ movptr(rdi, rsp);
 774 
 775   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 776   // in registers, we will occasionally have no stack args.
 777   int comp_words_on_stack = 0;
 778   if (comp_args_on_stack) {
 779     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 780     // registers are below.  By subtracting stack0, we either get a negative
 781     // number (all values in registers) or the maximum stack slot accessed.
 782     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 783     // Convert 4-byte stack slots to words.
 784     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 785     // Round up to miminum stack alignment, in wordSize
 786     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 787     __ subptr(rsp, comp_words_on_stack * wordSize);
 788   }
 789 
 790   // Align the outgoing SP
 791   __ andptr(rsp, -(StackAlignmentInBytes));
 792 
 793   // push the return address on the stack (note that pushing, rather
 794   // than storing it, yields the correct frame alignment for the callee)
 795   __ push(rax);
 796 
 797   // Put saved SP in another register
 798   const Register saved_sp = rax;
 799   __ movptr(saved_sp, rdi);
 800 
 801 
 802   // Will jump to the compiled code just as if compiled code was doing it.
 803   // Pre-load the register-jump target early, to schedule it better.
 804   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 805 
 806   // Now generate the shuffle code.  Pick up all register args and move the
 807   // rest through the floating point stack top.
 808   for (int i = 0; i < total_args_passed; i++) {
 809     if (sig_bt[i] == T_VOID) {
 810       // Longs and doubles are passed in native word order, but misaligned
 811       // in the 32-bit build.
 812       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 813       continue;
 814     }
 815 
 816     // Pick up 0, 1 or 2 words from SP+offset.
 817 
 818     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 819             "scrambled load targets?");
 820     // Load in argument order going down.
 821     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 822     // Point to interpreter value (vs. tag)
 823     int next_off = ld_off - Interpreter::stackElementSize;
 824     //
 825     //
 826     //
 827     VMReg r_1 = regs[i].first();
 828     VMReg r_2 = regs[i].second();
 829     if (!r_1->is_valid()) {
 830       assert(!r_2->is_valid(), "");
 831       continue;
 832     }
 833     if (r_1->is_stack()) {
 834       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 835       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 836 
 837       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 838       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 839       // we be generated.
 840       if (!r_2->is_valid()) {
 841         // __ fld_s(Address(saved_sp, ld_off));
 842         // __ fstp_s(Address(rsp, st_off));
 843         __ movl(rsi, Address(saved_sp, ld_off));
 844         __ movptr(Address(rsp, st_off), rsi);
 845       } else {
 846         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 847         // are accessed as negative so LSW is at LOW address
 848 
 849         // ld_off is MSW so get LSW
 850         // st_off is LSW (i.e. reg.first())
 851         // __ fld_d(Address(saved_sp, next_off));
 852         // __ fstp_d(Address(rsp, st_off));
 853         //
 854         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 855         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 856         // So we must adjust where to pick up the data to match the interpreter.
 857         //
 858         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 859         // are accessed as negative so LSW is at LOW address
 860 
 861         // ld_off is MSW so get LSW
 862         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 863                            next_off : ld_off;
 864         __ movptr(rsi, Address(saved_sp, offset));
 865         __ movptr(Address(rsp, st_off), rsi);
 866 #ifndef _LP64
 867         __ movptr(rsi, Address(saved_sp, ld_off));
 868         __ movptr(Address(rsp, st_off + wordSize), rsi);
 869 #endif // _LP64
 870       }
 871     } else if (r_1->is_Register()) {  // Register argument
 872       Register r = r_1->as_Register();
 873       assert(r != rax, "must be different");
 874       if (r_2->is_valid()) {
 875         //
 876         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 877         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 878         // So we must adjust where to pick up the data to match the interpreter.
 879 
 880         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 881                            next_off : ld_off;
 882 
 883         // this can be a misaligned move
 884         __ movptr(r, Address(saved_sp, offset));
 885 #ifndef _LP64
 886         assert(r_2->as_Register() != rax, "need another temporary register");
 887         // Remember r_1 is low address (and LSB on x86)
 888         // So r_2 gets loaded from high address regardless of the platform
 889         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 890 #endif // _LP64
 891       } else {
 892         __ movl(r, Address(saved_sp, ld_off));
 893       }
 894     } else {
 895       assert(r_1->is_XMMRegister(), "");
 896       if (!r_2->is_valid()) {
 897         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 898       } else {
 899         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 900       }
 901     }
 902   }
 903 
 904   // 6243940 We might end up in handle_wrong_method if
 905   // the callee is deoptimized as we race thru here. If that
 906   // happens we don't want to take a safepoint because the
 907   // caller frame will look interpreted and arguments are now
 908   // "compiled" so it is much better to make this transition
 909   // invisible to the stack walking code. Unfortunately if
 910   // we try and find the callee by normal means a safepoint
 911   // is possible. So we stash the desired callee in the thread
 912   // and the vm will find there should this case occur.
 913 
 914   __ get_thread(rax);
 915   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 916 
 917   // move Method* to rax, in case we end up in an c2i adapter.
 918   // the c2i adapters expect Method* in rax, (c2) because c2's
 919   // resolve stubs return the result (the method) in rax,.
 920   // I'd love to fix this.
 921   __ mov(rax, rbx);
 922 
 923   __ jmp(rdi);
 924 }
 925 
 926 // ---------------------------------------------------------------
 927 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 928                                                             int total_args_passed,
 929                                                             int comp_args_on_stack,
 930                                                             const BasicType *sig_bt,
 931                                                             const VMRegPair *regs,
 932                                                             AdapterFingerPrint* fingerprint) {
 933   address i2c_entry = __ pc();
 934 
 935   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 936 
 937   // -------------------------------------------------------------------------
 938   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 939   // to the interpreter.  The args start out packed in the compiled layout.  They
 940   // need to be unpacked into the interpreter layout.  This will almost always
 941   // require some stack space.  We grow the current (compiled) stack, then repack
 942   // the args.  We  finally end in a jump to the generic interpreter entry point.
 943   // On exit from the interpreter, the interpreter will restore our SP (lest the
 944   // compiled code, which relys solely on SP and not EBP, get sick).
 945 
 946   address c2i_unverified_entry = __ pc();
 947   Label skip_fixup;
 948 
 949   Register holder = rax;
 950   Register receiver = rcx;
 951   Register temp = rbx;
 952 
 953   {
 954 
 955     Label missed;
 956     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 957     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 958     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
 959     __ jcc(Assembler::notEqual, missed);
 960     // Method might have been compiled since the call site was patched to
 961     // interpreted if that is the case treat it as a miss so we can get
 962     // the call site corrected.
 963     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 964     __ jcc(Assembler::equal, skip_fixup);
 965 
 966     __ bind(missed);
 967     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 968   }
 969 
 970   address c2i_entry = __ pc();
 971 
 972   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 973 
 974   __ flush();
 975   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 976 }
 977 
 978 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 979                                          VMRegPair *regs,
 980                                          int total_args_passed) {
 981 // We return the amount of VMRegImpl stack slots we need to reserve for all
 982 // the arguments NOT counting out_preserve_stack_slots.
 983 
 984   uint    stack = 0;        // All arguments on stack
 985 
 986   for( int i = 0; i < total_args_passed; i++) {
 987     // From the type and the argument number (count) compute the location
 988     switch( sig_bt[i] ) {
 989     case T_BOOLEAN:
 990     case T_CHAR:
 991     case T_FLOAT:
 992     case T_BYTE:
 993     case T_SHORT:
 994     case T_INT:
 995     case T_OBJECT:
 996     case T_ARRAY:
 997     case T_ADDRESS:
 998     case T_METADATA:
 999       regs[i].set1(VMRegImpl::stack2reg(stack++));
1000       break;
1001     case T_LONG:
1002     case T_DOUBLE: // The stack numbering is reversed from Java
1003       // Since C arguments do not get reversed, the ordering for
1004       // doubles on the stack must be opposite the Java convention
1005       assert(sig_bt[i+1] == T_VOID, "missing Half" );
1006       regs[i].set2(VMRegImpl::stack2reg(stack));
1007       stack += 2;
1008       break;
1009     case T_VOID: regs[i].set_bad(); break;
1010     default:
1011       ShouldNotReachHere();
1012       break;
1013     }
1014   }
1015   return stack;
1016 }
1017 
1018 // Do we need to convert ints to longs for c calls?
1019 bool SharedRuntime::c_calling_convention_requires_ints_as_longs() {
1020   return false;
1021 }
1022 
1023 // A simple move of integer like type
1024 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1025   if (src.first()->is_stack()) {
1026     if (dst.first()->is_stack()) {
1027       // stack to stack
1028       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1029       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1030       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1031       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1032     } else {
1033       // stack to reg
1034       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1035     }
1036   } else if (dst.first()->is_stack()) {
1037     // reg to stack
1038     // no need to sign extend on 64bit
1039     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1040   } else {
1041     if (dst.first() != src.first()) {
1042       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1043     }
1044   }
1045 }
1046 
1047 // An oop arg. Must pass a handle not the oop itself
1048 static void object_move(MacroAssembler* masm,
1049                         OopMap* map,
1050                         int oop_handle_offset,
1051                         int framesize_in_slots,
1052                         VMRegPair src,
1053                         VMRegPair dst,
1054                         bool is_receiver,
1055                         int* receiver_offset) {
1056 
1057   // Because of the calling conventions we know that src can be a
1058   // register or a stack location. dst can only be a stack location.
1059 
1060   assert(dst.first()->is_stack(), "must be stack");
1061   // must pass a handle. First figure out the location we use as a handle
1062 
1063   if (src.first()->is_stack()) {
1064     // Oop is already on the stack as an argument
1065     Register rHandle = rax;
1066     Label nil;
1067     __ xorptr(rHandle, rHandle);
1068     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1069     __ jcc(Assembler::equal, nil);
1070     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1071     __ bind(nil);
1072     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1073 
1074     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1075     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1076     if (is_receiver) {
1077       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1078     }
1079   } else {
1080     // Oop is in an a register we must store it to the space we reserve
1081     // on the stack for oop_handles
1082     const Register rOop = src.first()->as_Register();
1083     const Register rHandle = rax;
1084     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1085     int offset = oop_slot*VMRegImpl::stack_slot_size;
1086     Label skip;
1087     __ movptr(Address(rsp, offset), rOop);
1088     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1089     __ xorptr(rHandle, rHandle);
1090     __ cmpptr(rOop, (int32_t)NULL_WORD);
1091     __ jcc(Assembler::equal, skip);
1092     __ lea(rHandle, Address(rsp, offset));
1093     __ bind(skip);
1094     // Store the handle parameter
1095     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1096     if (is_receiver) {
1097       *receiver_offset = offset;
1098     }
1099   }
1100 }
1101 
1102 // A float arg may have to do float reg int reg conversion
1103 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1104   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1105 
1106   // Because of the calling convention we know that src is either a stack location
1107   // or an xmm register. dst can only be a stack location.
1108 
1109   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1110 
1111   if (src.first()->is_stack()) {
1112     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1113     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1114   } else {
1115     // reg to stack
1116     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1117   }
1118 }
1119 
1120 // A long move
1121 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1122 
1123   // The only legal possibility for a long_move VMRegPair is:
1124   // 1: two stack slots (possibly unaligned)
1125   // as neither the java  or C calling convention will use registers
1126   // for longs.
1127 
1128   if (src.first()->is_stack() && dst.first()->is_stack()) {
1129     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1130     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1131     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1132     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1133     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1134   } else {
1135     ShouldNotReachHere();
1136   }
1137 }
1138 
1139 // A double move
1140 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1141 
1142   // The only legal possibilities for a double_move VMRegPair are:
1143   // The painful thing here is that like long_move a VMRegPair might be
1144 
1145   // Because of the calling convention we know that src is either
1146   //   1: a single physical register (xmm registers only)
1147   //   2: two stack slots (possibly unaligned)
1148   // dst can only be a pair of stack slots.
1149 
1150   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1151 
1152   if (src.first()->is_stack()) {
1153     // source is all stack
1154     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1155     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1156     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1157     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1158   } else {
1159     // reg to stack
1160     // No worries about stack alignment
1161     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1162   }
1163 }
1164 
1165 
1166 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1167   // We always ignore the frame_slots arg and just use the space just below frame pointer
1168   // which by this time is free to use
1169   switch (ret_type) {
1170   case T_FLOAT:
1171     __ fstp_s(Address(rbp, -wordSize));
1172     break;
1173   case T_DOUBLE:
1174     __ fstp_d(Address(rbp, -2*wordSize));
1175     break;
1176   case T_VOID:  break;
1177   case T_LONG:
1178     __ movptr(Address(rbp, -wordSize), rax);
1179     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1180     break;
1181   default: {
1182     __ movptr(Address(rbp, -wordSize), rax);
1183     }
1184   }
1185 }
1186 
1187 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1188   // We always ignore the frame_slots arg and just use the space just below frame pointer
1189   // which by this time is free to use
1190   switch (ret_type) {
1191   case T_FLOAT:
1192     __ fld_s(Address(rbp, -wordSize));
1193     break;
1194   case T_DOUBLE:
1195     __ fld_d(Address(rbp, -2*wordSize));
1196     break;
1197   case T_LONG:
1198     __ movptr(rax, Address(rbp, -wordSize));
1199     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1200     break;
1201   case T_VOID:  break;
1202   default: {
1203     __ movptr(rax, Address(rbp, -wordSize));
1204     }
1205   }
1206 }
1207 
1208 
1209 static void save_or_restore_arguments(MacroAssembler* masm,
1210                                       const int stack_slots,
1211                                       const int total_in_args,
1212                                       const int arg_save_area,
1213                                       OopMap* map,
1214                                       VMRegPair* in_regs,
1215                                       BasicType* in_sig_bt) {
1216   // if map is non-NULL then the code should store the values,
1217   // otherwise it should load them.
1218   int handle_index = 0;
1219   // Save down double word first
1220   for ( int i = 0; i < total_in_args; i++) {
1221     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1222       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1223       int offset = slot * VMRegImpl::stack_slot_size;
1224       handle_index += 2;
1225       assert(handle_index <= stack_slots, "overflow");
1226       if (map != NULL) {
1227         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1228       } else {
1229         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1230       }
1231     }
1232     if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
1233       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1234       int offset = slot * VMRegImpl::stack_slot_size;
1235       handle_index += 2;
1236       assert(handle_index <= stack_slots, "overflow");
1237       if (map != NULL) {
1238         __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
1239         if (in_regs[i].second()->is_Register()) {
1240           __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
1241         }
1242       } else {
1243         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
1244         if (in_regs[i].second()->is_Register()) {
1245           __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
1246         }
1247       }
1248     }
1249   }
1250   // Save or restore single word registers
1251   for ( int i = 0; i < total_in_args; i++) {
1252     if (in_regs[i].first()->is_Register()) {
1253       int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1254       int offset = slot * VMRegImpl::stack_slot_size;
1255       assert(handle_index <= stack_slots, "overflow");
1256       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1257         map->set_oop(VMRegImpl::stack2reg(slot));;
1258       }
1259 
1260       // Value is in an input register pass we must flush it to the stack
1261       const Register reg = in_regs[i].first()->as_Register();
1262       switch (in_sig_bt[i]) {
1263         case T_ARRAY:
1264           if (map != NULL) {
1265             __ movptr(Address(rsp, offset), reg);
1266           } else {
1267             __ movptr(reg, Address(rsp, offset));
1268           }
1269           break;
1270         case T_BOOLEAN:
1271         case T_CHAR:
1272         case T_BYTE:
1273         case T_SHORT:
1274         case T_INT:
1275           if (map != NULL) {
1276             __ movl(Address(rsp, offset), reg);
1277           } else {
1278             __ movl(reg, Address(rsp, offset));
1279           }
1280           break;
1281         case T_OBJECT:
1282         default: ShouldNotReachHere();
1283       }
1284     } else if (in_regs[i].first()->is_XMMRegister()) {
1285       if (in_sig_bt[i] == T_FLOAT) {
1286         int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1287         int offset = slot * VMRegImpl::stack_slot_size;
1288         assert(handle_index <= stack_slots, "overflow");
1289         if (map != NULL) {
1290           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1291         } else {
1292           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1293         }
1294       }
1295     } else if (in_regs[i].first()->is_stack()) {
1296       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1297         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1298         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1299       }
1300     }
1301   }
1302 }
1303 
1304 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1305 // keeps a new JNI critical region from starting until a GC has been
1306 // forced.  Save down any oops in registers and describe them in an
1307 // OopMap.
1308 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1309                                                Register thread,
1310                                                int stack_slots,
1311                                                int total_c_args,
1312                                                int total_in_args,
1313                                                int arg_save_area,
1314                                                OopMapSet* oop_maps,
1315                                                VMRegPair* in_regs,
1316                                                BasicType* in_sig_bt) {
1317   __ block_comment("check GC_locker::needs_gc");
1318   Label cont;
1319   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
1320   __ jcc(Assembler::equal, cont);
1321 
1322   // Save down any incoming oops and call into the runtime to halt for a GC
1323 
1324   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1325 
1326   save_or_restore_arguments(masm, stack_slots, total_in_args,
1327                             arg_save_area, map, in_regs, in_sig_bt);
1328 
1329   address the_pc = __ pc();
1330   oop_maps->add_gc_map( __ offset(), map);
1331   __ set_last_Java_frame(thread, rsp, noreg, the_pc);
1332 
1333   __ block_comment("block_for_jni_critical");
1334   __ push(thread);
1335   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1336   __ increment(rsp, wordSize);
1337 
1338   __ get_thread(thread);
1339   __ reset_last_Java_frame(thread, false, true);
1340 
1341   save_or_restore_arguments(masm, stack_slots, total_in_args,
1342                             arg_save_area, NULL, in_regs, in_sig_bt);
1343 
1344   __ bind(cont);
1345 #ifdef ASSERT
1346   if (StressCriticalJNINatives) {
1347     // Stress register saving
1348     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1349     save_or_restore_arguments(masm, stack_slots, total_in_args,
1350                               arg_save_area, map, in_regs, in_sig_bt);
1351     // Destroy argument registers
1352     for (int i = 0; i < total_in_args - 1; i++) {
1353       if (in_regs[i].first()->is_Register()) {
1354         const Register reg = in_regs[i].first()->as_Register();
1355         __ xorptr(reg, reg);
1356       } else if (in_regs[i].first()->is_XMMRegister()) {
1357         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1358       } else if (in_regs[i].first()->is_FloatRegister()) {
1359         ShouldNotReachHere();
1360       } else if (in_regs[i].first()->is_stack()) {
1361         // Nothing to do
1362       } else {
1363         ShouldNotReachHere();
1364       }
1365       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1366         i++;
1367       }
1368     }
1369 
1370     save_or_restore_arguments(masm, stack_slots, total_in_args,
1371                               arg_save_area, NULL, in_regs, in_sig_bt);
1372   }
1373 #endif
1374 }
1375 
1376 // Unpack an array argument into a pointer to the body and the length
1377 // if the array is non-null, otherwise pass 0 for both.
1378 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1379   Register tmp_reg = rax;
1380   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1381          "possible collision");
1382   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1383          "possible collision");
1384 
1385   // Pass the length, ptr pair
1386   Label is_null, done;
1387   VMRegPair tmp(tmp_reg->as_VMReg());
1388   if (reg.first()->is_stack()) {
1389     // Load the arg up from the stack
1390     simple_move32(masm, reg, tmp);
1391     reg = tmp;
1392   }
1393   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1394   __ jccb(Assembler::equal, is_null);
1395   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1396   simple_move32(masm, tmp, body_arg);
1397   // load the length relative to the body.
1398   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1399                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1400   simple_move32(masm, tmp, length_arg);
1401   __ jmpb(done);
1402   __ bind(is_null);
1403   // Pass zeros
1404   __ xorptr(tmp_reg, tmp_reg);
1405   simple_move32(masm, tmp, body_arg);
1406   simple_move32(masm, tmp, length_arg);
1407   __ bind(done);
1408 }
1409 
1410 static void verify_oop_args(MacroAssembler* masm,
1411                             methodHandle method,
1412                             const BasicType* sig_bt,
1413                             const VMRegPair* regs) {
1414   Register temp_reg = rbx;  // not part of any compiled calling seq
1415   if (VerifyOops) {
1416     for (int i = 0; i < method->size_of_parameters(); i++) {
1417       if (sig_bt[i] == T_OBJECT ||
1418           sig_bt[i] == T_ARRAY) {
1419         VMReg r = regs[i].first();
1420         assert(r->is_valid(), "bad oop arg");
1421         if (r->is_stack()) {
1422           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1423           __ verify_oop(temp_reg);
1424         } else {
1425           __ verify_oop(r->as_Register());
1426         }
1427       }
1428     }
1429   }
1430 }
1431 
1432 static void gen_special_dispatch(MacroAssembler* masm,
1433                                  methodHandle method,
1434                                  const BasicType* sig_bt,
1435                                  const VMRegPair* regs) {
1436   verify_oop_args(masm, method, sig_bt, regs);
1437   vmIntrinsics::ID iid = method->intrinsic_id();
1438 
1439   // Now write the args into the outgoing interpreter space
1440   bool     has_receiver   = false;
1441   Register receiver_reg   = noreg;
1442   int      member_arg_pos = -1;
1443   Register member_reg     = noreg;
1444   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1445   if (ref_kind != 0) {
1446     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1447     member_reg = rbx;  // known to be free at this point
1448     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1449   } else if (iid == vmIntrinsics::_invokeBasic) {
1450     has_receiver = true;
1451   } else {
1452     fatal(err_msg_res("unexpected intrinsic id %d", iid));
1453   }
1454 
1455   if (member_reg != noreg) {
1456     // Load the member_arg into register, if necessary.
1457     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1458     VMReg r = regs[member_arg_pos].first();
1459     if (r->is_stack()) {
1460       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1461     } else {
1462       // no data motion is needed
1463       member_reg = r->as_Register();
1464     }
1465   }
1466 
1467   if (has_receiver) {
1468     // Make sure the receiver is loaded into a register.
1469     assert(method->size_of_parameters() > 0, "oob");
1470     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1471     VMReg r = regs[0].first();
1472     assert(r->is_valid(), "bad receiver arg");
1473     if (r->is_stack()) {
1474       // Porting note:  This assumes that compiled calling conventions always
1475       // pass the receiver oop in a register.  If this is not true on some
1476       // platform, pick a temp and load the receiver from stack.
1477       fatal("receiver always in a register");
1478       receiver_reg = rcx;  // known to be free at this point
1479       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1480     } else {
1481       // no data motion is needed
1482       receiver_reg = r->as_Register();
1483     }
1484   }
1485 
1486   // Figure out which address we are really jumping to:
1487   MethodHandles::generate_method_handle_dispatch(masm, iid,
1488                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1489 }
1490 
1491 // ---------------------------------------------------------------------------
1492 // Generate a native wrapper for a given method.  The method takes arguments
1493 // in the Java compiled code convention, marshals them to the native
1494 // convention (handlizes oops, etc), transitions to native, makes the call,
1495 // returns to java state (possibly blocking), unhandlizes any result and
1496 // returns.
1497 //
1498 // Critical native functions are a shorthand for the use of
1499 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1500 // functions.  The wrapper is expected to unpack the arguments before
1501 // passing them to the callee and perform checks before and after the
1502 // native call to ensure that they GC_locker
1503 // lock_critical/unlock_critical semantics are followed.  Some other
1504 // parts of JNI setup are skipped like the tear down of the JNI handle
1505 // block and the check for pending exceptions it's impossible for them
1506 // to be thrown.
1507 //
1508 // They are roughly structured like this:
1509 //    if (GC_locker::needs_gc())
1510 //      SharedRuntime::block_for_jni_critical();
1511 //    tranistion to thread_in_native
1512 //    unpack arrray arguments and call native entry point
1513 //    check for safepoint in progress
1514 //    check if any thread suspend flags are set
1515 //      call into JVM and possible unlock the JNI critical
1516 //      if a GC was suppressed while in the critical native.
1517 //    transition back to thread_in_Java
1518 //    return to caller
1519 //
1520 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1521                                                 methodHandle method,
1522                                                 int compile_id,
1523                                                 BasicType* in_sig_bt,
1524                                                 VMRegPair* in_regs,
1525                                                 BasicType ret_type) {
1526   if (method->is_method_handle_intrinsic()) {
1527     vmIntrinsics::ID iid = method->intrinsic_id();
1528     intptr_t start = (intptr_t)__ pc();
1529     int vep_offset = ((intptr_t)__ pc()) - start;
1530     gen_special_dispatch(masm,
1531                          method,
1532                          in_sig_bt,
1533                          in_regs);
1534     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1535     __ flush();
1536     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1537     return nmethod::new_native_nmethod(method,
1538                                        compile_id,
1539                                        masm->code(),
1540                                        vep_offset,
1541                                        frame_complete,
1542                                        stack_slots / VMRegImpl::slots_per_word,
1543                                        in_ByteSize(-1),
1544                                        in_ByteSize(-1),
1545                                        (OopMapSet*)NULL);
1546   }
1547   bool is_critical_native = true;
1548   address native_func = method->critical_native_function();
1549   if (native_func == NULL) {
1550     native_func = method->native_function();
1551     is_critical_native = false;
1552   }
1553   assert(native_func != NULL, "must have function");
1554 
1555   // An OopMap for lock (and class if static)
1556   OopMapSet *oop_maps = new OopMapSet();
1557 
1558   // We have received a description of where all the java arg are located
1559   // on entry to the wrapper. We need to convert these args to where
1560   // the jni function will expect them. To figure out where they go
1561   // we convert the java signature to a C signature by inserting
1562   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1563 
1564   const int total_in_args = method->size_of_parameters();
1565   int total_c_args = total_in_args;
1566   if (!is_critical_native) {
1567     total_c_args += 1;
1568     if (method->is_static()) {
1569       total_c_args++;
1570     }
1571   } else {
1572     for (int i = 0; i < total_in_args; i++) {
1573       if (in_sig_bt[i] == T_ARRAY) {
1574         total_c_args++;
1575       }
1576     }
1577   }
1578 
1579   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1580   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1581   BasicType* in_elem_bt = NULL;
1582 
1583   int argc = 0;
1584   if (!is_critical_native) {
1585     out_sig_bt[argc++] = T_ADDRESS;
1586     if (method->is_static()) {
1587       out_sig_bt[argc++] = T_OBJECT;
1588     }
1589 
1590     for (int i = 0; i < total_in_args ; i++ ) {
1591       out_sig_bt[argc++] = in_sig_bt[i];
1592     }
1593   } else {
1594     Thread* THREAD = Thread::current();
1595     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1596     SignatureStream ss(method->signature());
1597     for (int i = 0; i < total_in_args ; i++ ) {
1598       if (in_sig_bt[i] == T_ARRAY) {
1599         // Arrays are passed as int, elem* pair
1600         out_sig_bt[argc++] = T_INT;
1601         out_sig_bt[argc++] = T_ADDRESS;
1602         Symbol* atype = ss.as_symbol(CHECK_NULL);
1603         const char* at = atype->as_C_string();
1604         if (strlen(at) == 2) {
1605           assert(at[0] == '[', "must be");
1606           switch (at[1]) {
1607             case 'B': in_elem_bt[i]  = T_BYTE; break;
1608             case 'C': in_elem_bt[i]  = T_CHAR; break;
1609             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1610             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1611             case 'I': in_elem_bt[i]  = T_INT; break;
1612             case 'J': in_elem_bt[i]  = T_LONG; break;
1613             case 'S': in_elem_bt[i]  = T_SHORT; break;
1614             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1615             default: ShouldNotReachHere();
1616           }
1617         }
1618       } else {
1619         out_sig_bt[argc++] = in_sig_bt[i];
1620         in_elem_bt[i] = T_VOID;
1621       }
1622       if (in_sig_bt[i] != T_VOID) {
1623         assert(in_sig_bt[i] == ss.type(), "must match");
1624         ss.next();
1625       }
1626     }
1627   }
1628 
1629   // Now figure out where the args must be stored and how much stack space
1630   // they require.
1631   int out_arg_slots;
1632   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1633 
1634   // Compute framesize for the wrapper.  We need to handlize all oops in
1635   // registers a max of 2 on x86.
1636 
1637   // Calculate the total number of stack slots we will need.
1638 
1639   // First count the abi requirement plus all of the outgoing args
1640   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1641 
1642   // Now the space for the inbound oop handle area
1643   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1644   if (is_critical_native) {
1645     // Critical natives may have to call out so they need a save area
1646     // for register arguments.
1647     int double_slots = 0;
1648     int single_slots = 0;
1649     for ( int i = 0; i < total_in_args; i++) {
1650       if (in_regs[i].first()->is_Register()) {
1651         const Register reg = in_regs[i].first()->as_Register();
1652         switch (in_sig_bt[i]) {
1653           case T_ARRAY:  // critical array (uses 2 slots on LP64)
1654           case T_BOOLEAN:
1655           case T_BYTE:
1656           case T_SHORT:
1657           case T_CHAR:
1658           case T_INT:  single_slots++; break;
1659           case T_LONG: double_slots++; break;
1660           default:  ShouldNotReachHere();
1661         }
1662       } else if (in_regs[i].first()->is_XMMRegister()) {
1663         switch (in_sig_bt[i]) {
1664           case T_FLOAT:  single_slots++; break;
1665           case T_DOUBLE: double_slots++; break;
1666           default:  ShouldNotReachHere();
1667         }
1668       } else if (in_regs[i].first()->is_FloatRegister()) {
1669         ShouldNotReachHere();
1670       }
1671     }
1672     total_save_slots = double_slots * 2 + single_slots;
1673     // align the save area
1674     if (double_slots != 0) {
1675       stack_slots = round_to(stack_slots, 2);
1676     }
1677   }
1678 
1679   int oop_handle_offset = stack_slots;
1680   stack_slots += total_save_slots;
1681 
1682   // Now any space we need for handlizing a klass if static method
1683 
1684   int klass_slot_offset = 0;
1685   int klass_offset = -1;
1686   int lock_slot_offset = 0;
1687   bool is_static = false;
1688 
1689   if (method->is_static()) {
1690     klass_slot_offset = stack_slots;
1691     stack_slots += VMRegImpl::slots_per_word;
1692     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1693     is_static = true;
1694   }
1695 
1696   // Plus a lock if needed
1697 
1698   if (method->is_synchronized()) {
1699     lock_slot_offset = stack_slots;
1700     stack_slots += VMRegImpl::slots_per_word;
1701   }
1702 
1703   // Now a place (+2) to save return values or temp during shuffling
1704   // + 2 for return address (which we own) and saved rbp,
1705   stack_slots += 4;
1706 
1707   // Ok The space we have allocated will look like:
1708   //
1709   //
1710   // FP-> |                     |
1711   //      |---------------------|
1712   //      | 2 slots for moves   |
1713   //      |---------------------|
1714   //      | lock box (if sync)  |
1715   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1716   //      | klass (if static)   |
1717   //      |---------------------| <- klass_slot_offset
1718   //      | oopHandle area      |
1719   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1720   //      | outbound memory     |
1721   //      | based arguments     |
1722   //      |                     |
1723   //      |---------------------|
1724   //      |                     |
1725   // SP-> | out_preserved_slots |
1726   //
1727   //
1728   // ****************************************************************************
1729   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1730   // arguments off of the stack after the jni call. Before the call we can use
1731   // instructions that are SP relative. After the jni call we switch to FP
1732   // relative instructions instead of re-adjusting the stack on windows.
1733   // ****************************************************************************
1734 
1735 
1736   // Now compute actual number of stack words we need rounding to make
1737   // stack properly aligned.
1738   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1739 
1740   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1741 
1742   intptr_t start = (intptr_t)__ pc();
1743 
1744   // First thing make an ic check to see if we should even be here
1745 
1746   // We are free to use all registers as temps without saving them and
1747   // restoring them except rbp. rbp is the only callee save register
1748   // as far as the interpreter and the compiler(s) are concerned.
1749 
1750 
1751   const Register ic_reg = rax;
1752   const Register receiver = rcx;
1753   Label hit;
1754   Label exception_pending;
1755 
1756   __ verify_oop(receiver);
1757   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1758   __ jcc(Assembler::equal, hit);
1759 
1760   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1761 
1762   // verified entry must be aligned for code patching.
1763   // and the first 5 bytes must be in the same cache line
1764   // if we align at 8 then we will be sure 5 bytes are in the same line
1765   __ align(8);
1766 
1767   __ bind(hit);
1768 
1769   int vep_offset = ((intptr_t)__ pc()) - start;
1770 
1771 #ifdef COMPILER1
1772   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1773     // Object.hashCode can pull the hashCode from the header word
1774     // instead of doing a full VM transition once it's been computed.
1775     // Since hashCode is usually polymorphic at call sites we can't do
1776     // this optimization at the call site without a lot of work.
1777     Label slowCase;
1778     Register receiver = rcx;
1779     Register result = rax;
1780     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
1781 
1782     // check if locked
1783     __ testptr(result, markOopDesc::unlocked_value);
1784     __ jcc (Assembler::zero, slowCase);
1785 
1786     if (UseBiasedLocking) {
1787       // Check if biased and fall through to runtime if so
1788       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
1789       __ jcc (Assembler::notZero, slowCase);
1790     }
1791 
1792     // get hash
1793     __ andptr(result, markOopDesc::hash_mask_in_place);
1794     // test if hashCode exists
1795     __ jcc  (Assembler::zero, slowCase);
1796     __ shrptr(result, markOopDesc::hash_shift);
1797     __ ret(0);
1798     __ bind (slowCase);
1799   }
1800 #endif // COMPILER1
1801 
1802   // The instruction at the verified entry point must be 5 bytes or longer
1803   // because it can be patched on the fly by make_non_entrant. The stack bang
1804   // instruction fits that requirement.
1805 
1806   // Generate stack overflow check
1807 
1808   if (UseStackBanging) {
1809     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1810   } else {
1811     // need a 5 byte instruction to allow MT safe patching to non-entrant
1812     __ fat_nop();
1813   }
1814 
1815   // Generate a new frame for the wrapper.
1816   __ enter();
1817   // -2 because return address is already present and so is saved rbp
1818   __ subptr(rsp, stack_size - 2*wordSize);
1819 
1820   // Frame is now completed as far as size and linkage.
1821   int frame_complete = ((intptr_t)__ pc()) - start;
1822 
1823   // Calculate the difference between rsp and rbp,. We need to know it
1824   // after the native call because on windows Java Natives will pop
1825   // the arguments and it is painful to do rsp relative addressing
1826   // in a platform independent way. So after the call we switch to
1827   // rbp, relative addressing.
1828 
1829   int fp_adjustment = stack_size - 2*wordSize;
1830 
1831 #ifdef COMPILER2
1832   // C2 may leave the stack dirty if not in SSE2+ mode
1833   if (UseSSE >= 2) {
1834     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1835   } else {
1836     __ empty_FPU_stack();
1837   }
1838 #endif /* COMPILER2 */
1839 
1840   // Compute the rbp, offset for any slots used after the jni call
1841 
1842   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1843 
1844   // We use rdi as a thread pointer because it is callee save and
1845   // if we load it once it is usable thru the entire wrapper
1846   const Register thread = rdi;
1847 
1848   // We use rsi as the oop handle for the receiver/klass
1849   // It is callee save so it survives the call to native
1850 
1851   const Register oop_handle_reg = rsi;
1852 
1853   __ get_thread(thread);
1854 
1855   if (is_critical_native) {
1856     check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
1857                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1858   }
1859 
1860   //
1861   // We immediately shuffle the arguments so that any vm call we have to
1862   // make from here on out (sync slow path, jvmti, etc.) we will have
1863   // captured the oops from our caller and have a valid oopMap for
1864   // them.
1865 
1866   // -----------------
1867   // The Grand Shuffle
1868   //
1869   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1870   // and, if static, the class mirror instead of a receiver.  This pretty much
1871   // guarantees that register layout will not match (and x86 doesn't use reg
1872   // parms though amd does).  Since the native abi doesn't use register args
1873   // and the java conventions does we don't have to worry about collisions.
1874   // All of our moved are reg->stack or stack->stack.
1875   // We ignore the extra arguments during the shuffle and handle them at the
1876   // last moment. The shuffle is described by the two calling convention
1877   // vectors we have in our possession. We simply walk the java vector to
1878   // get the source locations and the c vector to get the destinations.
1879 
1880   int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
1881 
1882   // Record rsp-based slot for receiver on stack for non-static methods
1883   int receiver_offset = -1;
1884 
1885   // This is a trick. We double the stack slots so we can claim
1886   // the oops in the caller's frame. Since we are sure to have
1887   // more args than the caller doubling is enough to make
1888   // sure we can capture all the incoming oop args from the
1889   // caller.
1890   //
1891   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1892 
1893   // Mark location of rbp,
1894   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1895 
1896   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1897   // Are free to temporaries if we have to do  stack to steck moves.
1898   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1899 
1900   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1901     switch (in_sig_bt[i]) {
1902       case T_ARRAY:
1903         if (is_critical_native) {
1904           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1905           c_arg++;
1906           break;
1907         }
1908       case T_OBJECT:
1909         assert(!is_critical_native, "no oop arguments");
1910         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1911                     ((i == 0) && (!is_static)),
1912                     &receiver_offset);
1913         break;
1914       case T_VOID:
1915         break;
1916 
1917       case T_FLOAT:
1918         float_move(masm, in_regs[i], out_regs[c_arg]);
1919           break;
1920 
1921       case T_DOUBLE:
1922         assert( i + 1 < total_in_args &&
1923                 in_sig_bt[i + 1] == T_VOID &&
1924                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1925         double_move(masm, in_regs[i], out_regs[c_arg]);
1926         break;
1927 
1928       case T_LONG :
1929         long_move(masm, in_regs[i], out_regs[c_arg]);
1930         break;
1931 
1932       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1933 
1934       default:
1935         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1936     }
1937   }
1938 
1939   // Pre-load a static method's oop into rsi.  Used both by locking code and
1940   // the normal JNI call code.
1941   if (method->is_static() && !is_critical_native) {
1942 
1943     //  load opp into a register
1944     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1945 
1946     // Now handlize the static class mirror it's known not-null.
1947     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1948     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1949 
1950     // Now get the handle
1951     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1952     // store the klass handle as second argument
1953     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1954   }
1955 
1956   // Change state to native (we save the return address in the thread, since it might not
1957   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1958   // points into the right code segment. It does not have to be the correct return pc.
1959   // We use the same pc/oopMap repeatedly when we call out
1960 
1961   intptr_t the_pc = (intptr_t) __ pc();
1962   oop_maps->add_gc_map(the_pc - start, map);
1963 
1964   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1965 
1966 
1967   // We have all of the arguments setup at this point. We must not touch any register
1968   // argument registers at this point (what if we save/restore them there are no oop?
1969 
1970   {
1971     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1972     __ mov_metadata(rax, method());
1973     __ call_VM_leaf(
1974          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1975          thread, rax);
1976   }
1977 
1978   // RedefineClasses() tracing support for obsolete method entry
1979   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1980     __ mov_metadata(rax, method());
1981     __ call_VM_leaf(
1982          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1983          thread, rax);
1984   }
1985 
1986   // These are register definitions we need for locking/unlocking
1987   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1988   const Register obj_reg  = rcx;  // Will contain the oop
1989   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1990 
1991   Label slow_path_lock;
1992   Label lock_done;
1993 
1994   // Lock a synchronized method
1995   if (method->is_synchronized()) {
1996     assert(!is_critical_native, "unhandled");
1997 
1998 
1999     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2000 
2001     // Get the handle (the 2nd argument)
2002     __ movptr(oop_handle_reg, Address(rsp, wordSize));
2003 
2004     // Get address of the box
2005 
2006     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
2007 
2008     // Load the oop from the handle
2009     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2010 
2011     if (UseBiasedLocking) {
2012       // Note that oop_handle_reg is trashed during this call
2013       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
2014     }
2015 
2016     // Load immediate 1 into swap_reg %rax,
2017     __ movptr(swap_reg, 1);
2018 
2019     // Load (object->mark() | 1) into swap_reg %rax,
2020     __ orptr(swap_reg, Address(obj_reg, 0));
2021 
2022     // Save (object->mark() | 1) into BasicLock's displaced header
2023     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2024 
2025     if (os::is_MP()) {
2026       __ lock();
2027     }
2028 
2029     // src -> dest iff dest == rax, else rax, <- dest
2030     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
2031     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2032     __ jcc(Assembler::equal, lock_done);
2033 
2034     // Test if the oopMark is an obvious stack pointer, i.e.,
2035     //  1) (mark & 3) == 0, and
2036     //  2) rsp <= mark < mark + os::pagesize()
2037     // These 3 tests can be done by evaluating the following
2038     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2039     // assuming both stack pointer and pagesize have their
2040     // least significant 2 bits clear.
2041     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
2042 
2043     __ subptr(swap_reg, rsp);
2044     __ andptr(swap_reg, 3 - os::vm_page_size());
2045 
2046     // Save the test result, for recursive case, the result is zero
2047     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2048     __ jcc(Assembler::notEqual, slow_path_lock);
2049     // Slow path will re-enter here
2050     __ bind(lock_done);
2051 
2052     if (UseBiasedLocking) {
2053       // Re-fetch oop_handle_reg as we trashed it above
2054       __ movptr(oop_handle_reg, Address(rsp, wordSize));
2055     }
2056   }
2057 
2058 
2059   // Finally just about ready to make the JNI call
2060 
2061 
2062   // get JNIEnv* which is first argument to native
2063   if (!is_critical_native) {
2064     __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
2065     __ movptr(Address(rsp, 0), rdx);
2066   }
2067 
2068   // Now set thread in native
2069   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
2070 
2071   __ call(RuntimeAddress(native_func));
2072 
2073   // Verify or restore cpu control state after JNI call
2074   __ restore_cpu_control_state_after_jni();
2075 
2076   // WARNING - on Windows Java Natives use pascal calling convention and pop the
2077   // arguments off of the stack. We could just re-adjust the stack pointer here
2078   // and continue to do SP relative addressing but we instead switch to FP
2079   // relative addressing.
2080 
2081   // Unpack native results.
2082   switch (ret_type) {
2083   case T_BOOLEAN: __ c2bool(rax);            break;
2084   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
2085   case T_BYTE   : __ sign_extend_byte (rax); break;
2086   case T_SHORT  : __ sign_extend_short(rax); break;
2087   case T_INT    : /* nothing to do */        break;
2088   case T_DOUBLE :
2089   case T_FLOAT  :
2090     // Result is in st0 we'll save as needed
2091     break;
2092   case T_ARRAY:                 // Really a handle
2093   case T_OBJECT:                // Really a handle
2094       break; // can't de-handlize until after safepoint check
2095   case T_VOID: break;
2096   case T_LONG: break;
2097   default       : ShouldNotReachHere();
2098   }
2099 
2100   // Switch thread to "native transition" state before reading the synchronization state.
2101   // This additional state is necessary because reading and testing the synchronization
2102   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2103   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2104   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2105   //     Thread A is resumed to finish this native method, but doesn't block here since it
2106   //     didn't see any synchronization is progress, and escapes.
2107   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2108 
2109   if(os::is_MP()) {
2110     if (UseMembar) {
2111       // Force this write out before the read below
2112       __ membar(Assembler::Membar_mask_bits(
2113            Assembler::LoadLoad | Assembler::LoadStore |
2114            Assembler::StoreLoad | Assembler::StoreStore));
2115     } else {
2116       // Write serialization page so VM thread can do a pseudo remote membar.
2117       // We use the current thread pointer to calculate a thread specific
2118       // offset to write to within the page. This minimizes bus traffic
2119       // due to cache line collision.
2120       __ serialize_memory(thread, rcx);
2121     }
2122   }
2123 
2124   if (AlwaysRestoreFPU) {
2125     // Make sure the control word is correct.
2126     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2127   }
2128 
2129   Label after_transition;
2130 
2131   // check for safepoint operation in progress and/or pending suspend requests
2132   { Label Continue;
2133 
2134     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2135              SafepointSynchronize::_not_synchronized);
2136 
2137     Label L;
2138     __ jcc(Assembler::notEqual, L);
2139     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
2140     __ jcc(Assembler::equal, Continue);
2141     __ bind(L);
2142 
2143     // Don't use call_VM as it will see a possible pending exception and forward it
2144     // and never return here preventing us from clearing _last_native_pc down below.
2145     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2146     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2147     // by hand.
2148     //
2149     save_native_result(masm, ret_type, stack_slots);
2150     __ push(thread);
2151     if (!is_critical_native) {
2152       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2153                                               JavaThread::check_special_condition_for_native_trans)));
2154     } else {
2155       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2156                                               JavaThread::check_special_condition_for_native_trans_and_transition)));
2157     }
2158     __ increment(rsp, wordSize);
2159     // Restore any method result value
2160     restore_native_result(masm, ret_type, stack_slots);
2161 
2162     if (is_critical_native) {
2163       // The call above performed the transition to thread_in_Java so
2164       // skip the transition logic below.
2165       __ jmpb(after_transition);
2166     }
2167 
2168     __ bind(Continue);
2169   }
2170 
2171   // change thread state
2172   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
2173   __ bind(after_transition);
2174 
2175   Label reguard;
2176   Label reguard_done;
2177   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
2178   __ jcc(Assembler::equal, reguard);
2179 
2180   // slow path reguard  re-enters here
2181   __ bind(reguard_done);
2182 
2183   // Handle possible exception (will unlock if necessary)
2184 
2185   // native result if any is live
2186 
2187   // Unlock
2188   Label slow_path_unlock;
2189   Label unlock_done;
2190   if (method->is_synchronized()) {
2191 
2192     Label done;
2193 
2194     // Get locked oop from the handle we passed to jni
2195     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2196 
2197     if (UseBiasedLocking) {
2198       __ biased_locking_exit(obj_reg, rbx, done);
2199     }
2200 
2201     // Simple recursive lock?
2202 
2203     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
2204     __ jcc(Assembler::equal, done);
2205 
2206     // Must save rax, if if it is live now because cmpxchg must use it
2207     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2208       save_native_result(masm, ret_type, stack_slots);
2209     }
2210 
2211     //  get old displaced header
2212     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
2213 
2214     // get address of the stack lock
2215     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2216 
2217     // Atomic swap old header if oop still contains the stack lock
2218     if (os::is_MP()) {
2219     __ lock();
2220     }
2221 
2222     // src -> dest iff dest == rax, else rax, <- dest
2223     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
2224     __ cmpxchgptr(rbx, Address(obj_reg, 0));
2225     __ jcc(Assembler::notEqual, slow_path_unlock);
2226 
2227     // slow path re-enters here
2228     __ bind(unlock_done);
2229     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2230       restore_native_result(masm, ret_type, stack_slots);
2231     }
2232 
2233     __ bind(done);
2234 
2235   }
2236 
2237   {
2238     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
2239     // Tell dtrace about this method exit
2240     save_native_result(masm, ret_type, stack_slots);
2241     __ mov_metadata(rax, method());
2242     __ call_VM_leaf(
2243          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2244          thread, rax);
2245     restore_native_result(masm, ret_type, stack_slots);
2246   }
2247 
2248   // We can finally stop using that last_Java_frame we setup ages ago
2249 
2250   __ reset_last_Java_frame(thread, false, true);
2251 
2252   // Unpack oop result
2253   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2254       Label L;
2255       __ cmpptr(rax, (int32_t)NULL_WORD);
2256       __ jcc(Assembler::equal, L);
2257       __ movptr(rax, Address(rax, 0));
2258       __ bind(L);
2259       __ verify_oop(rax);
2260   }
2261 
2262   if (!is_critical_native) {
2263     // reset handle block
2264     __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
2265     __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
2266 
2267     // Any exception pending?
2268     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2269     __ jcc(Assembler::notEqual, exception_pending);
2270   }
2271 
2272   // no exception, we're almost done
2273 
2274   // check that only result value is on FPU stack
2275   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
2276 
2277   // Fixup floating pointer results so that result looks like a return from a compiled method
2278   if (ret_type == T_FLOAT) {
2279     if (UseSSE >= 1) {
2280       // Pop st0 and store as float and reload into xmm register
2281       __ fstp_s(Address(rbp, -4));
2282       __ movflt(xmm0, Address(rbp, -4));
2283     }
2284   } else if (ret_type == T_DOUBLE) {
2285     if (UseSSE >= 2) {
2286       // Pop st0 and store as double and reload into xmm register
2287       __ fstp_d(Address(rbp, -8));
2288       __ movdbl(xmm0, Address(rbp, -8));
2289     }
2290   }
2291 
2292   // Return
2293 
2294   __ leave();
2295   __ ret(0);
2296 
2297   // Unexpected paths are out of line and go here
2298 
2299   // Slow path locking & unlocking
2300   if (method->is_synchronized()) {
2301 
2302     // BEGIN Slow path lock
2303 
2304     __ bind(slow_path_lock);
2305 
2306     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2307     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2308     __ push(thread);
2309     __ push(lock_reg);
2310     __ push(obj_reg);
2311     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
2312     __ addptr(rsp, 3*wordSize);
2313 
2314 #ifdef ASSERT
2315     { Label L;
2316     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2317     __ jcc(Assembler::equal, L);
2318     __ stop("no pending exception allowed on exit from monitorenter");
2319     __ bind(L);
2320     }
2321 #endif
2322     __ jmp(lock_done);
2323 
2324     // END Slow path lock
2325 
2326     // BEGIN Slow path unlock
2327     __ bind(slow_path_unlock);
2328 
2329     // Slow path unlock
2330 
2331     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2332       save_native_result(masm, ret_type, stack_slots);
2333     }
2334     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2335 
2336     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2337     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2338 
2339 
2340     // should be a peal
2341     // +wordSize because of the push above
2342     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2343     __ push(rax);
2344 
2345     __ push(obj_reg);
2346     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2347     __ addptr(rsp, 2*wordSize);
2348 #ifdef ASSERT
2349     {
2350       Label L;
2351       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2352       __ jcc(Assembler::equal, L);
2353       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2354       __ bind(L);
2355     }
2356 #endif /* ASSERT */
2357 
2358     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2359 
2360     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2361       restore_native_result(masm, ret_type, stack_slots);
2362     }
2363     __ jmp(unlock_done);
2364     // END Slow path unlock
2365 
2366   }
2367 
2368   // SLOW PATH Reguard the stack if needed
2369 
2370   __ bind(reguard);
2371   save_native_result(masm, ret_type, stack_slots);
2372   {
2373     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2374   }
2375   restore_native_result(masm, ret_type, stack_slots);
2376   __ jmp(reguard_done);
2377 
2378 
2379   // BEGIN EXCEPTION PROCESSING
2380 
2381   if (!is_critical_native) {
2382     // Forward  the exception
2383     __ bind(exception_pending);
2384 
2385     // remove possible return value from FPU register stack
2386     __ empty_FPU_stack();
2387 
2388     // pop our frame
2389     __ leave();
2390     // and forward the exception
2391     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2392   }
2393 
2394   __ flush();
2395 
2396   nmethod *nm = nmethod::new_native_nmethod(method,
2397                                             compile_id,
2398                                             masm->code(),
2399                                             vep_offset,
2400                                             frame_complete,
2401                                             stack_slots / VMRegImpl::slots_per_word,
2402                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2403                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2404                                             oop_maps);
2405 
2406   if (is_critical_native) {
2407     nm->set_lazy_critical_native(true);
2408   }
2409 
2410   return nm;
2411 
2412 }
2413 
2414 #ifdef HAVE_DTRACE_H
2415 // ---------------------------------------------------------------------------
2416 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2417 // in the Java compiled code convention, marshals them to the native
2418 // abi and then leaves nops at the position you would expect to call a native
2419 // function. When the probe is enabled the nops are replaced with a trap
2420 // instruction that dtrace inserts and the trace will cause a notification
2421 // to dtrace.
2422 //
2423 // The probes are only able to take primitive types and java/lang/String as
2424 // arguments.  No other java types are allowed. Strings are converted to utf8
2425 // strings so that from dtrace point of view java strings are converted to C
2426 // strings. There is an arbitrary fixed limit on the total space that a method
2427 // can use for converting the strings. (256 chars per string in the signature).
2428 // So any java string larger then this is truncated.
2429 
2430 nmethod *SharedRuntime::generate_dtrace_nmethod(
2431     MacroAssembler *masm, methodHandle method) {
2432 
2433   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2434   // be single threaded in this method.
2435   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2436 
2437   // Fill in the signature array, for the calling-convention call.
2438   int total_args_passed = method->size_of_parameters();
2439 
2440   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2441   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2442 
2443   // The signature we are going to use for the trap that dtrace will see
2444   // java/lang/String is converted. We drop "this" and any other object
2445   // is converted to NULL.  (A one-slot java/lang/Long object reference
2446   // is converted to a two-slot long, which is why we double the allocation).
2447   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2448   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2449 
2450   int i=0;
2451   int total_strings = 0;
2452   int first_arg_to_pass = 0;
2453   int total_c_args = 0;
2454 
2455   if( !method->is_static() ) {  // Pass in receiver first
2456     in_sig_bt[i++] = T_OBJECT;
2457     first_arg_to_pass = 1;
2458   }
2459 
2460   // We need to convert the java args to where a native (non-jni) function
2461   // would expect them. To figure out where they go we convert the java
2462   // signature to a C signature.
2463 
2464   SignatureStream ss(method->signature());
2465   for ( ; !ss.at_return_type(); ss.next()) {
2466     BasicType bt = ss.type();
2467     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2468     out_sig_bt[total_c_args++] = bt;
2469     if( bt == T_OBJECT) {
2470       Symbol* s = ss.as_symbol_or_null();   // symbol is created
2471       if (s == vmSymbols::java_lang_String()) {
2472         total_strings++;
2473         out_sig_bt[total_c_args-1] = T_ADDRESS;
2474       } else if (s == vmSymbols::java_lang_Boolean() ||
2475                  s == vmSymbols::java_lang_Character() ||
2476                  s == vmSymbols::java_lang_Byte() ||
2477                  s == vmSymbols::java_lang_Short() ||
2478                  s == vmSymbols::java_lang_Integer() ||
2479                  s == vmSymbols::java_lang_Float()) {
2480         out_sig_bt[total_c_args-1] = T_INT;
2481       } else if (s == vmSymbols::java_lang_Long() ||
2482                  s == vmSymbols::java_lang_Double()) {
2483         out_sig_bt[total_c_args-1] = T_LONG;
2484         out_sig_bt[total_c_args++] = T_VOID;
2485       }
2486     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2487       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2488       out_sig_bt[total_c_args++] = T_VOID;
2489     }
2490   }
2491 
2492   assert(i==total_args_passed, "validly parsed signature");
2493 
2494   // Now get the compiled-Java layout as input arguments
2495   int comp_args_on_stack;
2496   comp_args_on_stack = SharedRuntime::java_calling_convention(
2497       in_sig_bt, in_regs, total_args_passed, false);
2498 
2499   // Now figure out where the args must be stored and how much stack space
2500   // they require (neglecting out_preserve_stack_slots).
2501 
2502   int out_arg_slots;
2503   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2504 
2505   // Calculate the total number of stack slots we will need.
2506 
2507   // First count the abi requirement plus all of the outgoing args
2508   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2509 
2510   // Now space for the string(s) we must convert
2511 
2512   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2513   for (i = 0; i < total_strings ; i++) {
2514     string_locs[i] = stack_slots;
2515     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2516   }
2517 
2518   // + 2 for return address (which we own) and saved rbp,
2519 
2520   stack_slots += 2;
2521 
2522   // Ok The space we have allocated will look like:
2523   //
2524   //
2525   // FP-> |                     |
2526   //      |---------------------|
2527   //      | string[n]           |
2528   //      |---------------------| <- string_locs[n]
2529   //      | string[n-1]         |
2530   //      |---------------------| <- string_locs[n-1]
2531   //      | ...                 |
2532   //      | ...                 |
2533   //      |---------------------| <- string_locs[1]
2534   //      | string[0]           |
2535   //      |---------------------| <- string_locs[0]
2536   //      | outbound memory     |
2537   //      | based arguments     |
2538   //      |                     |
2539   //      |---------------------|
2540   //      |                     |
2541   // SP-> | out_preserved_slots |
2542   //
2543   //
2544 
2545   // Now compute actual number of stack words we need rounding to make
2546   // stack properly aligned.
2547   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
2548 
2549   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2550 
2551   intptr_t start = (intptr_t)__ pc();
2552 
2553   // First thing make an ic check to see if we should even be here
2554 
2555   // We are free to use all registers as temps without saving them and
2556   // restoring them except rbp. rbp, is the only callee save register
2557   // as far as the interpreter and the compiler(s) are concerned.
2558 
2559   const Register ic_reg = rax;
2560   const Register receiver = rcx;
2561   Label hit;
2562   Label exception_pending;
2563 
2564 
2565   __ verify_oop(receiver);
2566   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2567   __ jcc(Assembler::equal, hit);
2568 
2569   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2570 
2571   // verified entry must be aligned for code patching.
2572   // and the first 5 bytes must be in the same cache line
2573   // if we align at 8 then we will be sure 5 bytes are in the same line
2574   __ align(8);
2575 
2576   __ bind(hit);
2577 
2578   int vep_offset = ((intptr_t)__ pc()) - start;
2579 
2580 
2581   // The instruction at the verified entry point must be 5 bytes or longer
2582   // because it can be patched on the fly by make_non_entrant. The stack bang
2583   // instruction fits that requirement.
2584 
2585   // Generate stack overflow check
2586 
2587 
2588   if (UseStackBanging) {
2589     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2590       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2591     } else {
2592       __ movl(rax, stack_size);
2593       __ bang_stack_size(rax, rbx);
2594     }
2595   } else {
2596     // need a 5 byte instruction to allow MT safe patching to non-entrant
2597     __ fat_nop();
2598   }
2599 
2600   assert(((int)__ pc() - start - vep_offset) >= 5,
2601          "valid size for make_non_entrant");
2602 
2603   // Generate a new frame for the wrapper.
2604   __ enter();
2605 
2606   // -2 because return address is already present and so is saved rbp,
2607   if (stack_size - 2*wordSize != 0) {
2608     __ subl(rsp, stack_size - 2*wordSize);
2609   }
2610 
2611   // Frame is now completed as far a size and linkage.
2612 
2613   int frame_complete = ((intptr_t)__ pc()) - start;
2614 
2615   // First thing we do store all the args as if we are doing the call.
2616   // Since the C calling convention is stack based that ensures that
2617   // all the Java register args are stored before we need to convert any
2618   // string we might have.
2619 
2620   int sid = 0;
2621   int c_arg, j_arg;
2622   int string_reg = 0;
2623 
2624   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2625        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2626 
2627     VMRegPair src = in_regs[j_arg];
2628     VMRegPair dst = out_regs[c_arg];
2629     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
2630            "stack based abi assumed");
2631 
2632     switch (in_sig_bt[j_arg]) {
2633 
2634       case T_ARRAY:
2635       case T_OBJECT:
2636         if (out_sig_bt[c_arg] == T_ADDRESS) {
2637           // Any register based arg for a java string after the first
2638           // will be destroyed by the call to get_utf so we store
2639           // the original value in the location the utf string address
2640           // will eventually be stored.
2641           if (src.first()->is_reg()) {
2642             if (string_reg++ != 0) {
2643               simple_move32(masm, src, dst);
2644             }
2645           }
2646         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2647           // need to unbox a one-word value
2648           Register in_reg = rax;
2649           if ( src.first()->is_reg() ) {
2650             in_reg = src.first()->as_Register();
2651           } else {
2652             simple_move32(masm, src, in_reg->as_VMReg());
2653           }
2654           Label skipUnbox;
2655           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2656           if ( out_sig_bt[c_arg] == T_LONG ) {
2657             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
2658           }
2659           __ testl(in_reg, in_reg);
2660           __ jcc(Assembler::zero, skipUnbox);
2661           assert(dst.first()->is_stack() &&
2662                  (!dst.second()->is_valid() || dst.second()->is_stack()),
2663                  "value(s) must go into stack slots");
2664 
2665           BasicType bt = out_sig_bt[c_arg];
2666           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2667           if ( bt == T_LONG ) {
2668             __ movl(rbx, Address(in_reg,
2669                                  box_offset + VMRegImpl::stack_slot_size));
2670             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
2671           }
2672           __ movl(in_reg,  Address(in_reg, box_offset));
2673           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
2674           __ bind(skipUnbox);
2675         } else {
2676           // Convert the arg to NULL
2677           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2678         }
2679         if (out_sig_bt[c_arg] == T_LONG) {
2680           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2681           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2682         }
2683         break;
2684 
2685       case T_VOID:
2686         break;
2687 
2688       case T_FLOAT:
2689         float_move(masm, src, dst);
2690         break;
2691 
2692       case T_DOUBLE:
2693         assert( j_arg + 1 < total_args_passed &&
2694                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
2695         double_move(masm, src, dst);
2696         break;
2697 
2698       case T_LONG :
2699         long_move(masm, src, dst);
2700         break;
2701 
2702       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2703 
2704       default:
2705         simple_move32(masm, src, dst);
2706     }
2707   }
2708 
2709   // Now we must convert any string we have to utf8
2710   //
2711 
2712   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
2713        sid < total_strings ; j_arg++, c_arg++ ) {
2714 
2715     if (out_sig_bt[c_arg] == T_ADDRESS) {
2716 
2717       Address utf8_addr = Address(
2718           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2719       __ leal(rax, utf8_addr);
2720 
2721       // The first string we find might still be in the original java arg
2722       // register
2723       VMReg orig_loc = in_regs[j_arg].first();
2724       Register string_oop;
2725 
2726       // This is where the argument will eventually reside
2727       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
2728 
2729       if (sid == 1 && orig_loc->is_reg()) {
2730         string_oop = orig_loc->as_Register();
2731         assert(string_oop != rax, "smashed arg");
2732       } else {
2733 
2734         if (orig_loc->is_reg()) {
2735           // Get the copy of the jls object
2736           __ movl(rcx, dest);
2737         } else {
2738           // arg is still in the original location
2739           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
2740         }
2741         string_oop = rcx;
2742 
2743       }
2744       Label nullString;
2745       __ movl(dest, NULL_WORD);
2746       __ testl(string_oop, string_oop);
2747       __ jcc(Assembler::zero, nullString);
2748 
2749       // Now we can store the address of the utf string as the argument
2750       __ movl(dest, rax);
2751 
2752       // And do the conversion
2753       __ call_VM_leaf(CAST_FROM_FN_PTR(
2754              address, SharedRuntime::get_utf), string_oop, rax);
2755       __ bind(nullString);
2756     }
2757 
2758     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2759       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2760       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2761     }
2762   }
2763 
2764 
2765   // Ok now we are done. Need to place the nop that dtrace wants in order to
2766   // patch in the trap
2767 
2768   int patch_offset = ((intptr_t)__ pc()) - start;
2769 
2770   __ nop();
2771 
2772 
2773   // Return
2774 
2775   __ leave();
2776   __ ret(0);
2777 
2778   __ flush();
2779 
2780   nmethod *nm = nmethod::new_dtrace_nmethod(
2781       method, masm->code(), vep_offset, patch_offset, frame_complete,
2782       stack_slots / VMRegImpl::slots_per_word);
2783   return nm;
2784 
2785 }
2786 
2787 #endif // HAVE_DTRACE_H
2788 
2789 // this function returns the adjust size (in number of words) to a c2i adapter
2790 // activation for use during deoptimization
2791 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2792   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2793 }
2794 
2795 
2796 uint SharedRuntime::out_preserve_stack_slots() {
2797   return 0;
2798 }
2799 
2800 //------------------------------generate_deopt_blob----------------------------
2801 void SharedRuntime::generate_deopt_blob() {
2802   // allocate space for the code
2803   ResourceMark rm;
2804   // setup code generation tools
2805   CodeBuffer   buffer("deopt_blob", 1024, 1024);
2806   MacroAssembler* masm = new MacroAssembler(&buffer);
2807   int frame_size_in_words;
2808   OopMap* map = NULL;
2809   // Account for the extra args we place on the stack
2810   // by the time we call fetch_unroll_info
2811   const int additional_words = 2; // deopt kind, thread
2812 
2813   OopMapSet *oop_maps = new OopMapSet();
2814 
2815   // -------------
2816   // This code enters when returning to a de-optimized nmethod.  A return
2817   // address has been pushed on the the stack, and return values are in
2818   // registers.
2819   // If we are doing a normal deopt then we were called from the patched
2820   // nmethod from the point we returned to the nmethod. So the return
2821   // address on the stack is wrong by NativeCall::instruction_size
2822   // We will adjust the value to it looks like we have the original return
2823   // address on the stack (like when we eagerly deoptimized).
2824   // In the case of an exception pending with deoptimized then we enter
2825   // with a return address on the stack that points after the call we patched
2826   // into the exception handler. We have the following register state:
2827   //    rax,: exception
2828   //    rbx,: exception handler
2829   //    rdx: throwing pc
2830   // So in this case we simply jam rdx into the useless return address and
2831   // the stack looks just like we want.
2832   //
2833   // At this point we need to de-opt.  We save the argument return
2834   // registers.  We call the first C routine, fetch_unroll_info().  This
2835   // routine captures the return values and returns a structure which
2836   // describes the current frame size and the sizes of all replacement frames.
2837   // The current frame is compiled code and may contain many inlined
2838   // functions, each with their own JVM state.  We pop the current frame, then
2839   // push all the new frames.  Then we call the C routine unpack_frames() to
2840   // populate these frames.  Finally unpack_frames() returns us the new target
2841   // address.  Notice that callee-save registers are BLOWN here; they have
2842   // already been captured in the vframeArray at the time the return PC was
2843   // patched.
2844   address start = __ pc();
2845   Label cont;
2846 
2847   // Prolog for non exception case!
2848 
2849   // Save everything in sight.
2850 
2851   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2852   // Normal deoptimization
2853   __ push(Deoptimization::Unpack_deopt);
2854   __ jmp(cont);
2855 
2856   int reexecute_offset = __ pc() - start;
2857 
2858   // Reexecute case
2859   // return address is the pc describes what bci to do re-execute at
2860 
2861   // No need to update map as each call to save_live_registers will produce identical oopmap
2862   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2863 
2864   __ push(Deoptimization::Unpack_reexecute);
2865   __ jmp(cont);
2866 
2867   int exception_offset = __ pc() - start;
2868 
2869   // Prolog for exception case
2870 
2871   // all registers are dead at this entry point, except for rax, and
2872   // rdx which contain the exception oop and exception pc
2873   // respectively.  Set them in TLS and fall thru to the
2874   // unpack_with_exception_in_tls entry point.
2875 
2876   __ get_thread(rdi);
2877   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2878   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2879 
2880   int exception_in_tls_offset = __ pc() - start;
2881 
2882   // new implementation because exception oop is now passed in JavaThread
2883 
2884   // Prolog for exception case
2885   // All registers must be preserved because they might be used by LinearScan
2886   // Exceptiop oop and throwing PC are passed in JavaThread
2887   // tos: stack at point of call to method that threw the exception (i.e. only
2888   // args are on the stack, no return address)
2889 
2890   // make room on stack for the return address
2891   // It will be patched later with the throwing pc. The correct value is not
2892   // available now because loading it from memory would destroy registers.
2893   __ push(0);
2894 
2895   // Save everything in sight.
2896 
2897   // No need to update map as each call to save_live_registers will produce identical oopmap
2898   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2899 
2900   // Now it is safe to overwrite any register
2901 
2902   // store the correct deoptimization type
2903   __ push(Deoptimization::Unpack_exception);
2904 
2905   // load throwing pc from JavaThread and patch it as the return address
2906   // of the current frame. Then clear the field in JavaThread
2907   __ get_thread(rdi);
2908   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2909   __ movptr(Address(rbp, wordSize), rdx);
2910   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2911 
2912 #ifdef ASSERT
2913   // verify that there is really an exception oop in JavaThread
2914   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2915   __ verify_oop(rax);
2916 
2917   // verify that there is no pending exception
2918   Label no_pending_exception;
2919   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2920   __ testptr(rax, rax);
2921   __ jcc(Assembler::zero, no_pending_exception);
2922   __ stop("must not have pending exception here");
2923   __ bind(no_pending_exception);
2924 #endif
2925 
2926   __ bind(cont);
2927 
2928   // Compiled code leaves the floating point stack dirty, empty it.
2929   __ empty_FPU_stack();
2930 
2931 
2932   // Call C code.  Need thread and this frame, but NOT official VM entry
2933   // crud.  We cannot block on this call, no GC can happen.
2934   __ get_thread(rcx);
2935   __ push(rcx);
2936   // fetch_unroll_info needs to call last_java_frame()
2937   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2938 
2939   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2940 
2941   // Need to have an oopmap that tells fetch_unroll_info where to
2942   // find any register it might need.
2943 
2944   oop_maps->add_gc_map( __ pc()-start, map);
2945 
2946   // Discard arg to fetch_unroll_info
2947   __ pop(rcx);
2948 
2949   __ get_thread(rcx);
2950   __ reset_last_Java_frame(rcx, false, false);
2951 
2952   // Load UnrollBlock into EDI
2953   __ mov(rdi, rax);
2954 
2955   // Move the unpack kind to a safe place in the UnrollBlock because
2956   // we are very short of registers
2957 
2958   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2959   // retrieve the deopt kind from where we left it.
2960   __ pop(rax);
2961   __ movl(unpack_kind, rax);                      // save the unpack_kind value
2962 
2963    Label noException;
2964   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2965   __ jcc(Assembler::notEqual, noException);
2966   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2967   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2968   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2969   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2970 
2971   __ verify_oop(rax);
2972 
2973   // Overwrite the result registers with the exception results.
2974   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2975   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2976 
2977   __ bind(noException);
2978 
2979   // Stack is back to only having register save data on the stack.
2980   // Now restore the result registers. Everything else is either dead or captured
2981   // in the vframeArray.
2982 
2983   RegisterSaver::restore_result_registers(masm);
2984 
2985   // Non standard control word may be leaked out through a safepoint blob, and we can
2986   // deopt at a poll point with the non standard control word. However, we should make
2987   // sure the control word is correct after restore_result_registers.
2988   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2989 
2990   // All of the register save area has been popped of the stack. Only the
2991   // return address remains.
2992 
2993   // Pop all the frames we must move/replace.
2994   //
2995   // Frame picture (youngest to oldest)
2996   // 1: self-frame (no frame link)
2997   // 2: deopting frame  (no frame link)
2998   // 3: caller of deopting frame (could be compiled/interpreted).
2999   //
3000   // Note: by leaving the return address of self-frame on the stack
3001   // and using the size of frame 2 to adjust the stack
3002   // when we are done the return to frame 3 will still be on the stack.
3003 
3004   // Pop deoptimized frame
3005   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3006 
3007   // sp should be pointing at the return address to the caller (3)
3008 
3009   // Stack bang to make sure there's enough room for these interpreter frames.
3010   if (UseStackBanging) {
3011     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3012     __ bang_stack_size(rbx, rcx);
3013   }
3014 
3015   // Load array of frame pcs into ECX
3016   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3017 
3018   __ pop(rsi); // trash the old pc
3019 
3020   // Load array of frame sizes into ESI
3021   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3022 
3023   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
3024 
3025   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3026   __ movl(counter, rbx);
3027 
3028   // Pick up the initial fp we should save
3029   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3030 
3031   // Now adjust the caller's stack to make up for the extra locals
3032   // but record the original sp so that we can save it in the skeletal interpreter
3033   // frame and the stack walking of interpreter_sender will get the unextended sp
3034   // value and not the "real" sp value.
3035 
3036   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
3037   __ movptr(sp_temp, rsp);
3038   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
3039   __ subptr(rsp, rbx);
3040 
3041   // Push interpreter frames in a loop
3042   Label loop;
3043   __ bind(loop);
3044   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3045 #ifdef CC_INTERP
3046   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
3047 #ifdef ASSERT
3048   __ push(0xDEADDEAD);                  // Make a recognizable pattern
3049   __ push(0xDEADDEAD);
3050 #else /* ASSERT */
3051   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
3052 #endif /* ASSERT */
3053 #else /* CC_INTERP */
3054   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
3055 #endif /* CC_INTERP */
3056   __ pushptr(Address(rcx, 0));          // save return address
3057   __ enter();                           // save old & set new rbp,
3058   __ subptr(rsp, rbx);                  // Prolog!
3059   __ movptr(rbx, sp_temp);              // sender's sp
3060 #ifdef CC_INTERP
3061   __ movptr(Address(rbp,
3062                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3063           rbx); // Make it walkable
3064 #else /* CC_INTERP */
3065   // This value is corrected by layout_activation_impl
3066   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
3067   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
3068 #endif /* CC_INTERP */
3069   __ movptr(sp_temp, rsp);              // pass to next frame
3070   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3071   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3072   __ decrementl(counter);             // decrement counter
3073   __ jcc(Assembler::notZero, loop);
3074   __ pushptr(Address(rcx, 0));          // save final return address
3075 
3076   // Re-push self-frame
3077   __ enter();                           // save old & set new rbp,
3078 
3079   //  Return address and rbp, are in place
3080   // We'll push additional args later. Just allocate a full sized
3081   // register save area
3082   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
3083 
3084   // Restore frame locals after moving the frame
3085   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
3086   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
3087   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
3088   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
3089   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
3090 
3091   // Set up the args to unpack_frame
3092 
3093   __ pushl(unpack_kind);                     // get the unpack_kind value
3094   __ get_thread(rcx);
3095   __ push(rcx);
3096 
3097   // set last_Java_sp, last_Java_fp
3098   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
3099 
3100   // Call C code.  Need thread but NOT official VM entry
3101   // crud.  We cannot block on this call, no GC can happen.  Call should
3102   // restore return values to their stack-slots with the new SP.
3103   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3104   // Set an oopmap for the call site
3105   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
3106 
3107   // rax, contains the return result type
3108   __ push(rax);
3109 
3110   __ get_thread(rcx);
3111   __ reset_last_Java_frame(rcx, false, false);
3112 
3113   // Collect return values
3114   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
3115   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
3116 
3117   // Clear floating point stack before returning to interpreter
3118   __ empty_FPU_stack();
3119 
3120   // Check if we should push the float or double return value.
3121   Label results_done, yes_double_value;
3122   __ cmpl(Address(rsp, 0), T_DOUBLE);
3123   __ jcc (Assembler::zero, yes_double_value);
3124   __ cmpl(Address(rsp, 0), T_FLOAT);
3125   __ jcc (Assembler::notZero, results_done);
3126 
3127   // return float value as expected by interpreter
3128   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
3129   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
3130   __ jmp(results_done);
3131 
3132   // return double value as expected by interpreter
3133   __ bind(yes_double_value);
3134   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
3135   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
3136 
3137   __ bind(results_done);
3138 
3139   // Pop self-frame.
3140   __ leave();                              // Epilog!
3141 
3142   // Jump to interpreter
3143   __ ret(0);
3144 
3145   // -------------
3146   // make sure all code is generated
3147   masm->flush();
3148 
3149   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3150   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3151 }
3152 
3153 
3154 #ifdef COMPILER2
3155 //------------------------------generate_uncommon_trap_blob--------------------
3156 void SharedRuntime::generate_uncommon_trap_blob() {
3157   // allocate space for the code
3158   ResourceMark rm;
3159   // setup code generation tools
3160   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
3161   MacroAssembler* masm = new MacroAssembler(&buffer);
3162 
3163   enum frame_layout {
3164     arg0_off,      // thread                     sp + 0 // Arg location for
3165     arg1_off,      // unloaded_class_index       sp + 1 // calling C
3166     // The frame sender code expects that rbp will be in the "natural" place and
3167     // will override any oopMap setting for it. We must therefore force the layout
3168     // so that it agrees with the frame sender code.
3169     rbp_off,       // callee saved register      sp + 2
3170     return_off,    // slot for return address    sp + 3
3171     framesize
3172   };
3173 
3174   address start = __ pc();
3175   // Push self-frame.
3176   __ subptr(rsp, return_off*wordSize);     // Epilog!
3177 
3178   // rbp, is an implicitly saved callee saved register (i.e. the calling
3179   // convention will save restore it in prolog/epilog) Other than that
3180   // there are no callee save registers no that adapter frames are gone.
3181   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
3182 
3183   // Clear the floating point exception stack
3184   __ empty_FPU_stack();
3185 
3186   // set last_Java_sp
3187   __ get_thread(rdx);
3188   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
3189 
3190   // Call C code.  Need thread but NOT official VM entry
3191   // crud.  We cannot block on this call, no GC can happen.  Call should
3192   // capture callee-saved registers as well as return values.
3193   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
3194   // argument already in ECX
3195   __ movl(Address(rsp, arg1_off*wordSize),rcx);
3196   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3197 
3198   // Set an oopmap for the call site
3199   OopMapSet *oop_maps = new OopMapSet();
3200   OopMap* map =  new OopMap( framesize, 0 );
3201   // No oopMap for rbp, it is known implicitly
3202 
3203   oop_maps->add_gc_map( __ pc()-start, map);
3204 
3205   __ get_thread(rcx);
3206 
3207   __ reset_last_Java_frame(rcx, false, false);
3208 
3209   // Load UnrollBlock into EDI
3210   __ movptr(rdi, rax);
3211 
3212   // Pop all the frames we must move/replace.
3213   //
3214   // Frame picture (youngest to oldest)
3215   // 1: self-frame (no frame link)
3216   // 2: deopting frame  (no frame link)
3217   // 3: caller of deopting frame (could be compiled/interpreted).
3218 
3219   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
3220   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
3221 
3222   // Pop deoptimized frame
3223   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3224   __ addptr(rsp, rcx);
3225 
3226   // sp should be pointing at the return address to the caller (3)
3227 
3228   // Stack bang to make sure there's enough room for these interpreter frames.
3229   if (UseStackBanging) {
3230     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3231     __ bang_stack_size(rbx, rcx);
3232   }
3233 
3234 
3235   // Load array of frame pcs into ECX
3236   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3237 
3238   __ pop(rsi); // trash the pc
3239 
3240   // Load array of frame sizes into ESI
3241   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3242 
3243   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
3244 
3245   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3246   __ movl(counter, rbx);
3247 
3248   // Pick up the initial fp we should save
3249   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3250 
3251   // Now adjust the caller's stack to make up for the extra locals
3252   // but record the original sp so that we can save it in the skeletal interpreter
3253   // frame and the stack walking of interpreter_sender will get the unextended sp
3254   // value and not the "real" sp value.
3255 
3256   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
3257   __ movptr(sp_temp, rsp);
3258   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
3259   __ subptr(rsp, rbx);
3260 
3261   // Push interpreter frames in a loop
3262   Label loop;
3263   __ bind(loop);
3264   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3265 #ifdef CC_INTERP
3266   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
3267 #ifdef ASSERT
3268   __ push(0xDEADDEAD);                  // Make a recognizable pattern
3269   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
3270 #else /* ASSERT */
3271   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
3272 #endif /* ASSERT */
3273 #else /* CC_INTERP */
3274   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
3275 #endif /* CC_INTERP */
3276   __ pushptr(Address(rcx, 0));          // save return address
3277   __ enter();                           // save old & set new rbp,
3278   __ subptr(rsp, rbx);                  // Prolog!
3279   __ movptr(rbx, sp_temp);              // sender's sp
3280 #ifdef CC_INTERP
3281   __ movptr(Address(rbp,
3282                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3283           rbx); // Make it walkable
3284 #else /* CC_INTERP */
3285   // This value is corrected by layout_activation_impl
3286   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
3287   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
3288 #endif /* CC_INTERP */
3289   __ movptr(sp_temp, rsp);              // pass to next frame
3290   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3291   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3292   __ decrementl(counter);             // decrement counter
3293   __ jcc(Assembler::notZero, loop);
3294   __ pushptr(Address(rcx, 0));            // save final return address
3295 
3296   // Re-push self-frame
3297   __ enter();                           // save old & set new rbp,
3298   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
3299 
3300 
3301   // set last_Java_sp, last_Java_fp
3302   __ get_thread(rdi);
3303   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
3304 
3305   // Call C code.  Need thread but NOT official VM entry
3306   // crud.  We cannot block on this call, no GC can happen.  Call should
3307   // restore return values to their stack-slots with the new SP.
3308   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
3309   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
3310   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3311   // Set an oopmap for the call site
3312   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
3313 
3314   __ get_thread(rdi);
3315   __ reset_last_Java_frame(rdi, true, false);
3316 
3317   // Pop self-frame.
3318   __ leave();     // Epilog!
3319 
3320   // Jump to interpreter
3321   __ ret(0);
3322 
3323   // -------------
3324   // make sure all code is generated
3325   masm->flush();
3326 
3327    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
3328 }
3329 #endif // COMPILER2
3330 
3331 //------------------------------generate_handler_blob------
3332 //
3333 // Generate a special Compile2Runtime blob that saves all registers,
3334 // setup oopmap, and calls safepoint code to stop the compiled code for
3335 // a safepoint.
3336 //
3337 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3338 
3339   // Account for thread arg in our frame
3340   const int additional_words = 1;
3341   int frame_size_in_words;
3342 
3343   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3344 
3345   ResourceMark rm;
3346   OopMapSet *oop_maps = new OopMapSet();
3347   OopMap* map;
3348 
3349   // allocate space for the code
3350   // setup code generation tools
3351   CodeBuffer   buffer("handler_blob", 1024, 512);
3352   MacroAssembler* masm = new MacroAssembler(&buffer);
3353 
3354   const Register java_thread = rdi; // callee-saved for VC++
3355   address start   = __ pc();
3356   address call_pc = NULL;
3357   bool cause_return = (poll_type == POLL_AT_RETURN);
3358   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3359   // If cause_return is true we are at a poll_return and there is
3360   // the return address on the stack to the caller on the nmethod
3361   // that is safepoint. We can leave this return on the stack and
3362   // effectively complete the return and safepoint in the caller.
3363   // Otherwise we push space for a return address that the safepoint
3364   // handler will install later to make the stack walking sensible.
3365   if (!cause_return)
3366     __ push(rbx);  // Make room for return address (or push it again)
3367 
3368   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
3369 
3370   // The following is basically a call_VM. However, we need the precise
3371   // address of the call in order to generate an oopmap. Hence, we do all the
3372   // work ourselves.
3373 
3374   // Push thread argument and setup last_Java_sp
3375   __ get_thread(java_thread);
3376   __ push(java_thread);
3377   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
3378 
3379   // if this was not a poll_return then we need to correct the return address now.
3380   if (!cause_return) {
3381     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
3382     __ movptr(Address(rbp, wordSize), rax);
3383   }
3384 
3385   // do the call
3386   __ call(RuntimeAddress(call_ptr));
3387 
3388   // Set an oopmap for the call site.  This oopmap will map all
3389   // oop-registers and debug-info registers as callee-saved.  This
3390   // will allow deoptimization at this safepoint to find all possible
3391   // debug-info recordings, as well as let GC find all oops.
3392 
3393   oop_maps->add_gc_map( __ pc() - start, map);
3394 
3395   // Discard arg
3396   __ pop(rcx);
3397 
3398   Label noException;
3399 
3400   // Clear last_Java_sp again
3401   __ get_thread(java_thread);
3402   __ reset_last_Java_frame(java_thread, false, false);
3403 
3404   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3405   __ jcc(Assembler::equal, noException);
3406 
3407   // Exception pending
3408   RegisterSaver::restore_live_registers(masm, save_vectors);
3409 
3410   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3411 
3412   __ bind(noException);
3413 
3414   // Normal exit, register restoring and exit
3415   RegisterSaver::restore_live_registers(masm, save_vectors);
3416 
3417   __ ret(0);
3418 
3419   // make sure all code is generated
3420   masm->flush();
3421 
3422   // Fill-out other meta info
3423   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3424 }
3425 
3426 //
3427 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3428 //
3429 // Generate a stub that calls into vm to find out the proper destination
3430 // of a java call. All the argument registers are live at this point
3431 // but since this is generic code we don't know what they are and the caller
3432 // must do any gc of the args.
3433 //
3434 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3435   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3436 
3437   // allocate space for the code
3438   ResourceMark rm;
3439 
3440   CodeBuffer buffer(name, 1000, 512);
3441   MacroAssembler* masm                = new MacroAssembler(&buffer);
3442 
3443   int frame_size_words;
3444   enum frame_layout {
3445                 thread_off,
3446                 extra_words };
3447 
3448   OopMapSet *oop_maps = new OopMapSet();
3449   OopMap* map = NULL;
3450 
3451   int start = __ offset();
3452 
3453   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
3454 
3455   int frame_complete = __ offset();
3456 
3457   const Register thread = rdi;
3458   __ get_thread(rdi);
3459 
3460   __ push(thread);
3461   __ set_last_Java_frame(thread, noreg, rbp, NULL);
3462 
3463   __ call(RuntimeAddress(destination));
3464 
3465 
3466   // Set an oopmap for the call site.
3467   // We need this not only for callee-saved registers, but also for volatile
3468   // registers that the compiler might be keeping live across a safepoint.
3469 
3470   oop_maps->add_gc_map( __ offset() - start, map);
3471 
3472   // rax, contains the address we are going to jump to assuming no exception got installed
3473 
3474   __ addptr(rsp, wordSize);
3475 
3476   // clear last_Java_sp
3477   __ reset_last_Java_frame(thread, true, false);
3478   // check for pending exceptions
3479   Label pending;
3480   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3481   __ jcc(Assembler::notEqual, pending);
3482 
3483   // get the returned Method*
3484   __ get_vm_result_2(rbx, thread);
3485   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
3486 
3487   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
3488 
3489   RegisterSaver::restore_live_registers(masm);
3490 
3491   // We are back the the original state on entry and ready to go.
3492 
3493   __ jmp(rax);
3494 
3495   // Pending exception after the safepoint
3496 
3497   __ bind(pending);
3498 
3499   RegisterSaver::restore_live_registers(masm);
3500 
3501   // exception pending => remove activation and forward to exception handler
3502 
3503   __ get_thread(thread);
3504   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
3505   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
3506   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3507 
3508   // -------------
3509   // make sure all code is generated
3510   masm->flush();
3511 
3512   // return the  blob
3513   // frame_size_words or bytes??
3514   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3515 }