1 /*
   2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolder.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 
  44 #define __ masm->
  45 
  46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  47 
  48 class SimpleRuntimeFrame {
  49 
  50   public:
  51 
  52   // Most of the runtime stubs have this simple frame layout.
  53   // This class exists to make the layout shared in one place.
  54   // Offsets are for compiler stack slots, which are jints.
  55   enum layout {
  56     // The frame sender code expects that rbp will be in the "natural" place and
  57     // will override any oopMap setting for it. We must therefore force the layout
  58     // so that it agrees with the frame sender code.
  59     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  60     rbp_off2,
  61     return_off, return_off2,
  62     framesize
  63   };
  64 };
  65 
  66 class RegisterSaver {
  67   // Capture info about frame layout.  Layout offsets are in jint
  68   // units because compiler frame slots are jints.
  69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  70   enum layout {
  71     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  72     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
  73     DEF_XMM_OFFS(0),
  74     DEF_XMM_OFFS(1),
  75     DEF_XMM_OFFS(2),
  76     DEF_XMM_OFFS(3),
  77     DEF_XMM_OFFS(4),
  78     DEF_XMM_OFFS(5),
  79     DEF_XMM_OFFS(6),
  80     DEF_XMM_OFFS(7),
  81     DEF_XMM_OFFS(8),
  82     DEF_XMM_OFFS(9),
  83     DEF_XMM_OFFS(10),
  84     DEF_XMM_OFFS(11),
  85     DEF_XMM_OFFS(12),
  86     DEF_XMM_OFFS(13),
  87     DEF_XMM_OFFS(14),
  88     DEF_XMM_OFFS(15),
  89     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
  90     fpu_stateH_end,
  91     r15_off, r15H_off,
  92     r14_off, r14H_off,
  93     r13_off, r13H_off,
  94     r12_off, r12H_off,
  95     r11_off, r11H_off,
  96     r10_off, r10H_off,
  97     r9_off,  r9H_off,
  98     r8_off,  r8H_off,
  99     rdi_off, rdiH_off,
 100     rsi_off, rsiH_off,
 101     ignore_off, ignoreH_off,  // extra copy of rbp
 102     rsp_off, rspH_off,
 103     rbx_off, rbxH_off,
 104     rdx_off, rdxH_off,
 105     rcx_off, rcxH_off,
 106     rax_off, raxH_off,
 107     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 108     align_off, alignH_off,
 109     flags_off, flagsH_off,
 110     // The frame sender code expects that rbp will be in the "natural" place and
 111     // will override any oopMap setting for it. We must therefore force the layout
 112     // so that it agrees with the frame sender code.
 113     rbp_off, rbpH_off,        // copy of rbp we will restore
 114     return_off, returnH_off,  // slot for return address
 115     reg_save_size             // size in compiler stack slots
 116   };
 117 
 118  public:
 119   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
 120   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 121 
 122   // Offsets into the register save area
 123   // Used by deoptimization when it is managing result register
 124   // values on its own
 125 
 126   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 127   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 128   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 129   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 130   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 131 
 132   // During deoptimization only the result registers need to be restored,
 133   // all the other values have already been extracted.
 134   static void restore_result_registers(MacroAssembler* masm);
 135 };
 136 
 137 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
 138   int vect_words = 0;
 139 #ifdef COMPILER2
 140   if (save_vectors) {
 141     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
 142     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
 143     // Save upper half of YMM registes
 144     vect_words = 16 * 16 / wordSize;
 145     additional_frame_words += vect_words;
 146   }
 147 #else
 148   assert(!save_vectors, "vectors are generated only by C2");
 149 #endif
 150 
 151   // Always make the frame size 16-byte aligned
 152   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
 153                                      reg_save_size*BytesPerInt, 16);
 154   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 155   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 156   // The caller will allocate additional_frame_words
 157   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
 158   // CodeBlob frame size is in words.
 159   int frame_size_in_words = frame_size_in_bytes / wordSize;
 160   *total_frame_words = frame_size_in_words;
 161 
 162   // Save registers, fpu state, and flags.
 163   // We assume caller has already pushed the return address onto the
 164   // stack, so rsp is 8-byte aligned here.
 165   // We push rpb twice in this sequence because we want the real rbp
 166   // to be under the return like a normal enter.
 167 
 168   __ enter();          // rsp becomes 16-byte aligned here
 169   __ push_CPU_state(); // Push a multiple of 16 bytes
 170 
 171   if (vect_words > 0) {
 172     assert(vect_words*wordSize == 256, "");
 173     __ subptr(rsp, 256); // Save upper half of YMM registes
 174     __ vextractf128h(Address(rsp,  0),xmm0);
 175     __ vextractf128h(Address(rsp, 16),xmm1);
 176     __ vextractf128h(Address(rsp, 32),xmm2);
 177     __ vextractf128h(Address(rsp, 48),xmm3);
 178     __ vextractf128h(Address(rsp, 64),xmm4);
 179     __ vextractf128h(Address(rsp, 80),xmm5);
 180     __ vextractf128h(Address(rsp, 96),xmm6);
 181     __ vextractf128h(Address(rsp,112),xmm7);
 182     __ vextractf128h(Address(rsp,128),xmm8);
 183     __ vextractf128h(Address(rsp,144),xmm9);
 184     __ vextractf128h(Address(rsp,160),xmm10);
 185     __ vextractf128h(Address(rsp,176),xmm11);
 186     __ vextractf128h(Address(rsp,192),xmm12);
 187     __ vextractf128h(Address(rsp,208),xmm13);
 188     __ vextractf128h(Address(rsp,224),xmm14);
 189     __ vextractf128h(Address(rsp,240),xmm15);
 190   }
 191   if (frame::arg_reg_save_area_bytes != 0) {
 192     // Allocate argument register save area
 193     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 194   }
 195 
 196   // Set an oopmap for the call site.  This oopmap will map all
 197   // oop-registers and debug-info registers as callee-saved.  This
 198   // will allow deoptimization at this safepoint to find all possible
 199   // debug-info recordings, as well as let GC find all oops.
 200 
 201   OopMapSet *oop_maps = new OopMapSet();
 202   OopMap* map = new OopMap(frame_size_in_slots, 0);
 203 
 204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)
 205 
 206   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 207   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 208   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 209   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 210   // rbp location is known implicitly by the frame sender code, needs no oopmap
 211   // and the location where rbp was saved by is ignored
 212   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 213   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 214   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 215   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 216   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 217   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 218   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 219   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 220   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 221   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 222   map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg());
 223   map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg());
 224   map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg());
 225   map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg());
 226   map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg());
 227   map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg());
 228   map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg());
 229   map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg());
 230   map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg());
 231   map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg());
 232   map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg());
 233   map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg());
 234   map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg());
 235   map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg());
 236   map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg());
 238 
 239   // %%% These should all be a waste but we'll keep things as they were for now
 240   if (true) {
 241     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 242     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 243     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 244     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 245     // rbp location is known implicitly by the frame sender code, needs no oopmap
 246     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 247     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 248     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 249     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 250     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 251     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 252     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 253     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 254     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 255     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 256     map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next());
 257     map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next());
 258     map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next());
 259     map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next());
 260     map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next());
 261     map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next());
 262     map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next());
 263     map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next());
 264     map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next());
 265     map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next());
 266     map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next());
 267     map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next());
 268     map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next());
 269     map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next());
 270     map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next());
 271     map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next());
 272   }
 273 
 274   return map;
 275 }
 276 
 277 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 278   if (frame::arg_reg_save_area_bytes != 0) {
 279     // Pop arg register save area
 280     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 281   }
 282 #ifdef COMPILER2
 283   if (restore_vectors) {
 284     // Restore upper half of YMM registes.
 285     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
 286     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
 287     __ vinsertf128h(xmm0, Address(rsp,  0));
 288     __ vinsertf128h(xmm1, Address(rsp, 16));
 289     __ vinsertf128h(xmm2, Address(rsp, 32));
 290     __ vinsertf128h(xmm3, Address(rsp, 48));
 291     __ vinsertf128h(xmm4, Address(rsp, 64));
 292     __ vinsertf128h(xmm5, Address(rsp, 80));
 293     __ vinsertf128h(xmm6, Address(rsp, 96));
 294     __ vinsertf128h(xmm7, Address(rsp,112));
 295     __ vinsertf128h(xmm8, Address(rsp,128));
 296     __ vinsertf128h(xmm9, Address(rsp,144));
 297     __ vinsertf128h(xmm10, Address(rsp,160));
 298     __ vinsertf128h(xmm11, Address(rsp,176));
 299     __ vinsertf128h(xmm12, Address(rsp,192));
 300     __ vinsertf128h(xmm13, Address(rsp,208));
 301     __ vinsertf128h(xmm14, Address(rsp,224));
 302     __ vinsertf128h(xmm15, Address(rsp,240));
 303     __ addptr(rsp, 256);
 304   }
 305 #else
 306   assert(!restore_vectors, "vectors are generated only by C2");
 307 #endif
 308   // Recover CPU state
 309   __ pop_CPU_state();
 310   // Get the rbp described implicitly by the calling convention (no oopMap)
 311   __ pop(rbp);
 312 }
 313 
 314 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 315 
 316   // Just restore result register. Only used by deoptimization. By
 317   // now any callee save register that needs to be restored to a c2
 318   // caller of the deoptee has been extracted into the vframeArray
 319   // and will be stuffed into the c2i adapter we create for later
 320   // restoration so only result registers need to be restored here.
 321 
 322   // Restore fp result register
 323   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 324   // Restore integer result register
 325   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 326   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 327 
 328   // Pop all of the register save are off the stack except the return address
 329   __ addptr(rsp, return_offset_in_bytes());
 330 }
 331 
 332 // Is vector's size (in bytes) bigger than a size saved by default?
 333 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 334 bool SharedRuntime::is_wide_vector(int size) {
 335   return size > 16;
 336 }
 337 
 338 // The java_calling_convention describes stack locations as ideal slots on
 339 // a frame with no abi restrictions. Since we must observe abi restrictions
 340 // (like the placement of the register window) the slots must be biased by
 341 // the following value.
 342 static int reg2offset_in(VMReg r) {
 343   // Account for saved rbp and return address
 344   // This should really be in_preserve_stack_slots
 345   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 346 }
 347 
 348 static int reg2offset_out(VMReg r) {
 349   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 350 }
 351 
 352 // ---------------------------------------------------------------------------
 353 // Read the array of BasicTypes from a signature, and compute where the
 354 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 355 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 356 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 357 // as framesizes are fixed.
 358 // VMRegImpl::stack0 refers to the first slot 0(sp).
 359 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 360 // up to RegisterImpl::number_of_registers) are the 64-bit
 361 // integer registers.
 362 
 363 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 364 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 365 // units regardless of build. Of course for i486 there is no 64 bit build
 366 
 367 // The Java calling convention is a "shifted" version of the C ABI.
 368 // By skipping the first C ABI register we can call non-static jni methods
 369 // with small numbers of arguments without having to shuffle the arguments
 370 // at all. Since we control the java ABI we ought to at least get some
 371 // advantage out of it.
 372 
 373 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 374                                            VMRegPair *regs,
 375                                            int total_args_passed,
 376                                            int is_outgoing) {
 377 
 378   // Create the mapping between argument positions and
 379   // registers.
 380   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 381     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 382   };
 383   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 384     j_farg0, j_farg1, j_farg2, j_farg3,
 385     j_farg4, j_farg5, j_farg6, j_farg7
 386   };
 387 
 388 
 389   uint int_args = 0;
 390   uint fp_args = 0;
 391   uint stk_args = 0; // inc by 2 each time
 392 
 393   for (int i = 0; i < total_args_passed; i++) {
 394     switch (sig_bt[i]) {
 395     case T_BOOLEAN:
 396     case T_CHAR:
 397     case T_BYTE:
 398     case T_SHORT:
 399     case T_INT:
 400       if (int_args < Argument::n_int_register_parameters_j) {
 401         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 402       } else {
 403         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 404         stk_args += 2;
 405       }
 406       break;
 407     case T_VOID:
 408       // halves of T_LONG or T_DOUBLE
 409       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 410       regs[i].set_bad();
 411       break;
 412     case T_LONG:
 413       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 414       // fall through
 415     case T_OBJECT:
 416     case T_ARRAY:
 417     case T_ADDRESS:
 418       if (int_args < Argument::n_int_register_parameters_j) {
 419         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 420       } else {
 421         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 422         stk_args += 2;
 423       }
 424       break;
 425     case T_FLOAT:
 426       if (fp_args < Argument::n_float_register_parameters_j) {
 427         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 428       } else {
 429         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 430         stk_args += 2;
 431       }
 432       break;
 433     case T_DOUBLE:
 434       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 435       if (fp_args < Argument::n_float_register_parameters_j) {
 436         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 437       } else {
 438         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 439         stk_args += 2;
 440       }
 441       break;
 442     default:
 443       ShouldNotReachHere();
 444       break;
 445     }
 446   }
 447 
 448   return round_to(stk_args, 2);
 449 }
 450 
 451 // Patch the callers callsite with entry to compiled code if it exists.
 452 static void patch_callers_callsite(MacroAssembler *masm) {
 453   Label L;
 454   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 455   __ jcc(Assembler::equal, L);
 456 
 457   // Save the current stack pointer
 458   __ mov(r13, rsp);
 459   // Schedule the branch target address early.
 460   // Call into the VM to patch the caller, then jump to compiled callee
 461   // rax isn't live so capture return address while we easily can
 462   __ movptr(rax, Address(rsp, 0));
 463 
 464   // align stack so push_CPU_state doesn't fault
 465   __ andptr(rsp, -(StackAlignmentInBytes));
 466   __ push_CPU_state();
 467 
 468   // VM needs caller's callsite
 469   // VM needs target method
 470   // This needs to be a long call since we will relocate this adapter to
 471   // the codeBuffer and it may not reach
 472 
 473   // Allocate argument register save area
 474   if (frame::arg_reg_save_area_bytes != 0) {
 475     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 476   }
 477   __ mov(c_rarg0, rbx);
 478   __ mov(c_rarg1, rax);
 479   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 480 
 481   // De-allocate argument register save area
 482   if (frame::arg_reg_save_area_bytes != 0) {
 483     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 484   }
 485 
 486   __ pop_CPU_state();
 487   // restore sp
 488   __ mov(rsp, r13);
 489   __ bind(L);
 490 }
 491 
 492 
 493 static void gen_c2i_adapter(MacroAssembler *masm,
 494                             int total_args_passed,
 495                             int comp_args_on_stack,
 496                             const BasicType *sig_bt,
 497                             const VMRegPair *regs,
 498                             Label& skip_fixup) {
 499   // Before we get into the guts of the C2I adapter, see if we should be here
 500   // at all.  We've come from compiled code and are attempting to jump to the
 501   // interpreter, which means the caller made a static call to get here
 502   // (vcalls always get a compiled target if there is one).  Check for a
 503   // compiled target.  If there is one, we need to patch the caller's call.
 504   patch_callers_callsite(masm);
 505 
 506   __ bind(skip_fixup);
 507 
 508   // Since all args are passed on the stack, total_args_passed *
 509   // Interpreter::stackElementSize is the space we need. Plus 1 because
 510   // we also account for the return address location since
 511   // we store it first rather than hold it in rax across all the shuffling
 512 
 513   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 514 
 515   // stack is aligned, keep it that way
 516   extraspace = round_to(extraspace, 2*wordSize);
 517 
 518   // Get return address
 519   __ pop(rax);
 520 
 521   // set senderSP value
 522   __ mov(r13, rsp);
 523 
 524   __ subptr(rsp, extraspace);
 525 
 526   // Store the return address in the expected location
 527   __ movptr(Address(rsp, 0), rax);
 528 
 529   // Now write the args into the outgoing interpreter space
 530   for (int i = 0; i < total_args_passed; i++) {
 531     if (sig_bt[i] == T_VOID) {
 532       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 533       continue;
 534     }
 535 
 536     // offset to start parameters
 537     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 538     int next_off = st_off - Interpreter::stackElementSize;
 539 
 540     // Say 4 args:
 541     // i   st_off
 542     // 0   32 T_LONG
 543     // 1   24 T_VOID
 544     // 2   16 T_OBJECT
 545     // 3    8 T_BOOL
 546     // -    0 return address
 547     //
 548     // However to make thing extra confusing. Because we can fit a long/double in
 549     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 550     // leaves one slot empty and only stores to a single slot. In this case the
 551     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 552 
 553     VMReg r_1 = regs[i].first();
 554     VMReg r_2 = regs[i].second();
 555     if (!r_1->is_valid()) {
 556       assert(!r_2->is_valid(), "");
 557       continue;
 558     }
 559     if (r_1->is_stack()) {
 560       // memory to memory use rax
 561       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 562       if (!r_2->is_valid()) {
 563         // sign extend??
 564         __ movl(rax, Address(rsp, ld_off));
 565         __ movptr(Address(rsp, st_off), rax);
 566 
 567       } else {
 568 
 569         __ movq(rax, Address(rsp, ld_off));
 570 
 571         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 572         // T_DOUBLE and T_LONG use two slots in the interpreter
 573         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 574           // ld_off == LSW, ld_off+wordSize == MSW
 575           // st_off == MSW, next_off == LSW
 576           __ movq(Address(rsp, next_off), rax);
 577 #ifdef ASSERT
 578           // Overwrite the unused slot with known junk
 579           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 580           __ movptr(Address(rsp, st_off), rax);
 581 #endif /* ASSERT */
 582         } else {
 583           __ movq(Address(rsp, st_off), rax);
 584         }
 585       }
 586     } else if (r_1->is_Register()) {
 587       Register r = r_1->as_Register();
 588       if (!r_2->is_valid()) {
 589         // must be only an int (or less ) so move only 32bits to slot
 590         // why not sign extend??
 591         __ movl(Address(rsp, st_off), r);
 592       } else {
 593         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 594         // T_DOUBLE and T_LONG use two slots in the interpreter
 595         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 596           // long/double in gpr
 597 #ifdef ASSERT
 598           // Overwrite the unused slot with known junk
 599           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 600           __ movptr(Address(rsp, st_off), rax);
 601 #endif /* ASSERT */
 602           __ movq(Address(rsp, next_off), r);
 603         } else {
 604           __ movptr(Address(rsp, st_off), r);
 605         }
 606       }
 607     } else {
 608       assert(r_1->is_XMMRegister(), "");
 609       if (!r_2->is_valid()) {
 610         // only a float use just part of the slot
 611         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 612       } else {
 613 #ifdef ASSERT
 614         // Overwrite the unused slot with known junk
 615         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 616         __ movptr(Address(rsp, st_off), rax);
 617 #endif /* ASSERT */
 618         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 619       }
 620     }
 621   }
 622 
 623   // Schedule the branch target address early.
 624   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 625   __ jmp(rcx);
 626 }
 627 
 628 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 629                         address code_start, address code_end,
 630                         Label& L_ok) {
 631   Label L_fail;
 632   __ lea(temp_reg, ExternalAddress(code_start));
 633   __ cmpptr(pc_reg, temp_reg);
 634   __ jcc(Assembler::belowEqual, L_fail);
 635   __ lea(temp_reg, ExternalAddress(code_end));
 636   __ cmpptr(pc_reg, temp_reg);
 637   __ jcc(Assembler::below, L_ok);
 638   __ bind(L_fail);
 639 }
 640 
 641 static void gen_i2c_adapter(MacroAssembler *masm,
 642                             int total_args_passed,
 643                             int comp_args_on_stack,
 644                             const BasicType *sig_bt,
 645                             const VMRegPair *regs) {
 646 
 647   // Note: r13 contains the senderSP on entry. We must preserve it since
 648   // we may do a i2c -> c2i transition if we lose a race where compiled
 649   // code goes non-entrant while we get args ready.
 650   // In addition we use r13 to locate all the interpreter args as
 651   // we must align the stack to 16 bytes on an i2c entry else we
 652   // lose alignment we expect in all compiled code and register
 653   // save code can segv when fxsave instructions find improperly
 654   // aligned stack pointer.
 655 
 656   // Adapters can be frameless because they do not require the caller
 657   // to perform additional cleanup work, such as correcting the stack pointer.
 658   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 659   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 660   // even if a callee has modified the stack pointer.
 661   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 662   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 663   // up via the senderSP register).
 664   // In other words, if *either* the caller or callee is interpreted, we can
 665   // get the stack pointer repaired after a call.
 666   // This is why c2i and i2c adapters cannot be indefinitely composed.
 667   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 668   // both caller and callee would be compiled methods, and neither would
 669   // clean up the stack pointer changes performed by the two adapters.
 670   // If this happens, control eventually transfers back to the compiled
 671   // caller, but with an uncorrected stack, causing delayed havoc.
 672 
 673   // Pick up the return address
 674   __ movptr(rax, Address(rsp, 0));
 675 
 676   if (VerifyAdapterCalls &&
 677       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 678     // So, let's test for cascading c2i/i2c adapters right now.
 679     //  assert(Interpreter::contains($return_addr) ||
 680     //         StubRoutines::contains($return_addr),
 681     //         "i2c adapter must return to an interpreter frame");
 682     __ block_comment("verify_i2c { ");
 683     Label L_ok;
 684     if (Interpreter::code() != NULL)
 685       range_check(masm, rax, r11,
 686                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 687                   L_ok);
 688     if (StubRoutines::code1() != NULL)
 689       range_check(masm, rax, r11,
 690                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 691                   L_ok);
 692     if (StubRoutines::code2() != NULL)
 693       range_check(masm, rax, r11,
 694                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 695                   L_ok);
 696     const char* msg = "i2c adapter must return to an interpreter frame";
 697     __ block_comment(msg);
 698     __ stop(msg);
 699     __ bind(L_ok);
 700     __ block_comment("} verify_i2ce ");
 701   }
 702 
 703   // Must preserve original SP for loading incoming arguments because
 704   // we need to align the outgoing SP for compiled code.
 705   __ movptr(r11, rsp);
 706 
 707   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 708   // in registers, we will occasionally have no stack args.
 709   int comp_words_on_stack = 0;
 710   if (comp_args_on_stack) {
 711     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 712     // registers are below.  By subtracting stack0, we either get a negative
 713     // number (all values in registers) or the maximum stack slot accessed.
 714 
 715     // Convert 4-byte c2 stack slots to words.
 716     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 717     // Round up to miminum stack alignment, in wordSize
 718     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 719     __ subptr(rsp, comp_words_on_stack * wordSize);
 720   }
 721 
 722 
 723   // Ensure compiled code always sees stack at proper alignment
 724   __ andptr(rsp, -16);
 725 
 726   // push the return address and misalign the stack that youngest frame always sees
 727   // as far as the placement of the call instruction
 728   __ push(rax);
 729 
 730   // Put saved SP in another register
 731   const Register saved_sp = rax;
 732   __ movptr(saved_sp, r11);
 733 
 734   // Will jump to the compiled code just as if compiled code was doing it.
 735   // Pre-load the register-jump target early, to schedule it better.
 736   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
 737 
 738   // Now generate the shuffle code.  Pick up all register args and move the
 739   // rest through the floating point stack top.
 740   for (int i = 0; i < total_args_passed; i++) {
 741     if (sig_bt[i] == T_VOID) {
 742       // Longs and doubles are passed in native word order, but misaligned
 743       // in the 32-bit build.
 744       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 745       continue;
 746     }
 747 
 748     // Pick up 0, 1 or 2 words from SP+offset.
 749 
 750     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 751             "scrambled load targets?");
 752     // Load in argument order going down.
 753     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 754     // Point to interpreter value (vs. tag)
 755     int next_off = ld_off - Interpreter::stackElementSize;
 756     //
 757     //
 758     //
 759     VMReg r_1 = regs[i].first();
 760     VMReg r_2 = regs[i].second();
 761     if (!r_1->is_valid()) {
 762       assert(!r_2->is_valid(), "");
 763       continue;
 764     }
 765     if (r_1->is_stack()) {
 766       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 767       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 768 
 769       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 770       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 771       // will be generated.
 772       if (!r_2->is_valid()) {
 773         // sign extend???
 774         __ movl(r13, Address(saved_sp, ld_off));
 775         __ movptr(Address(rsp, st_off), r13);
 776       } else {
 777         //
 778         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 779         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 780         // So we must adjust where to pick up the data to match the interpreter.
 781         //
 782         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 783         // are accessed as negative so LSW is at LOW address
 784 
 785         // ld_off is MSW so get LSW
 786         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 787                            next_off : ld_off;
 788         __ movq(r13, Address(saved_sp, offset));
 789         // st_off is LSW (i.e. reg.first())
 790         __ movq(Address(rsp, st_off), r13);
 791       }
 792     } else if (r_1->is_Register()) {  // Register argument
 793       Register r = r_1->as_Register();
 794       assert(r != rax, "must be different");
 795       if (r_2->is_valid()) {
 796         //
 797         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 798         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 799         // So we must adjust where to pick up the data to match the interpreter.
 800 
 801         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 802                            next_off : ld_off;
 803 
 804         // this can be a misaligned move
 805         __ movq(r, Address(saved_sp, offset));
 806       } else {
 807         // sign extend and use a full word?
 808         __ movl(r, Address(saved_sp, ld_off));
 809       }
 810     } else {
 811       if (!r_2->is_valid()) {
 812         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 813       } else {
 814         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 815       }
 816     }
 817   }
 818 
 819   // 6243940 We might end up in handle_wrong_method if
 820   // the callee is deoptimized as we race thru here. If that
 821   // happens we don't want to take a safepoint because the
 822   // caller frame will look interpreted and arguments are now
 823   // "compiled" so it is much better to make this transition
 824   // invisible to the stack walking code. Unfortunately if
 825   // we try and find the callee by normal means a safepoint
 826   // is possible. So we stash the desired callee in the thread
 827   // and the vm will find there should this case occur.
 828 
 829   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 830 
 831   // put Method* where a c2i would expect should we end up there
 832   // only needed becaus eof c2 resolve stubs return Method* as a result in
 833   // rax
 834   __ mov(rax, rbx);
 835   __ jmp(r11);
 836 }
 837 
 838 // ---------------------------------------------------------------
 839 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 840                                                             int total_args_passed,
 841                                                             int comp_args_on_stack,
 842                                                             const BasicType *sig_bt,
 843                                                             const VMRegPair *regs,
 844                                                             AdapterFingerPrint* fingerprint) {
 845   address i2c_entry = __ pc();
 846 
 847   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 848 
 849   // -------------------------------------------------------------------------
 850   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
 851   // to the interpreter.  The args start out packed in the compiled layout.  They
 852   // need to be unpacked into the interpreter layout.  This will almost always
 853   // require some stack space.  We grow the current (compiled) stack, then repack
 854   // the args.  We  finally end in a jump to the generic interpreter entry point.
 855   // On exit from the interpreter, the interpreter will restore our SP (lest the
 856   // compiled code, which relys solely on SP and not RBP, get sick).
 857 
 858   address c2i_unverified_entry = __ pc();
 859   Label skip_fixup;
 860   Label ok;
 861 
 862   Register holder = rax;
 863   Register receiver = j_rarg0;
 864   Register temp = rbx;
 865 
 866   {
 867     __ load_klass(temp, receiver);
 868     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 869     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
 870     __ jcc(Assembler::equal, ok);
 871     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 872 
 873     __ bind(ok);
 874     // Method might have been compiled since the call site was patched to
 875     // interpreted if that is the case treat it as a miss so we can get
 876     // the call site corrected.
 877     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 878     __ jcc(Assembler::equal, skip_fixup);
 879     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 880   }
 881 
 882   address c2i_entry = __ pc();
 883 
 884   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 885 
 886   __ flush();
 887   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 888 }
 889 
 890 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 891                                          VMRegPair *regs,
 892                                          int total_args_passed) {
 893 // We return the amount of VMRegImpl stack slots we need to reserve for all
 894 // the arguments NOT counting out_preserve_stack_slots.
 895 
 896 // NOTE: These arrays will have to change when c1 is ported
 897 #ifdef _WIN64
 898     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 899       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 900     };
 901     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 902       c_farg0, c_farg1, c_farg2, c_farg3
 903     };
 904 #else
 905     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 906       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 907     };
 908     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 909       c_farg0, c_farg1, c_farg2, c_farg3,
 910       c_farg4, c_farg5, c_farg6, c_farg7
 911     };
 912 #endif // _WIN64
 913 
 914 
 915     uint int_args = 0;
 916     uint fp_args = 0;
 917     uint stk_args = 0; // inc by 2 each time
 918 
 919     for (int i = 0; i < total_args_passed; i++) {
 920       switch (sig_bt[i]) {
 921       case T_BOOLEAN:
 922       case T_CHAR:
 923       case T_BYTE:
 924       case T_SHORT:
 925       case T_INT:
 926         if (int_args < Argument::n_int_register_parameters_c) {
 927           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 928 #ifdef _WIN64
 929           fp_args++;
 930           // Allocate slots for callee to stuff register args the stack.
 931           stk_args += 2;
 932 #endif
 933         } else {
 934           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 935           stk_args += 2;
 936         }
 937         break;
 938       case T_LONG:
 939         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 940         // fall through
 941       case T_OBJECT:
 942       case T_ARRAY:
 943       case T_ADDRESS:
 944       case T_METADATA:
 945         if (int_args < Argument::n_int_register_parameters_c) {
 946           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 947 #ifdef _WIN64
 948           fp_args++;
 949           stk_args += 2;
 950 #endif
 951         } else {
 952           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 953           stk_args += 2;
 954         }
 955         break;
 956       case T_FLOAT:
 957         if (fp_args < Argument::n_float_register_parameters_c) {
 958           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 959 #ifdef _WIN64
 960           int_args++;
 961           // Allocate slots for callee to stuff register args the stack.
 962           stk_args += 2;
 963 #endif
 964         } else {
 965           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 966           stk_args += 2;
 967         }
 968         break;
 969       case T_DOUBLE:
 970         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 971         if (fp_args < Argument::n_float_register_parameters_c) {
 972           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 973 #ifdef _WIN64
 974           int_args++;
 975           // Allocate slots for callee to stuff register args the stack.
 976           stk_args += 2;
 977 #endif
 978         } else {
 979           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 980           stk_args += 2;
 981         }
 982         break;
 983       case T_VOID: // Halves of longs and doubles
 984         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 985         regs[i].set_bad();
 986         break;
 987       default:
 988         ShouldNotReachHere();
 989         break;
 990       }
 991     }
 992 #ifdef _WIN64
 993   // windows abi requires that we always allocate enough stack space
 994   // for 4 64bit registers to be stored down.
 995   if (stk_args < 8) {
 996     stk_args = 8;
 997   }
 998 #endif // _WIN64
 999 
1000   return stk_args;
1001 }
1002 
1003 // Do we need to convert ints to longs for c calls?
1004 bool SharedRuntime::c_calling_convention_requires_ints_as_longs() {
1005   return false;
1006 }
1007 
1008 // On 64 bit we will store integer like items to the stack as
1009 // 64 bits items (sparc abi) even though java would only store
1010 // 32bits for a parameter. On 32bit it will simply be 32 bits
1011 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1012 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1013   if (src.first()->is_stack()) {
1014     if (dst.first()->is_stack()) {
1015       // stack to stack
1016       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1017       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1018     } else {
1019       // stack to reg
1020       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1021     }
1022   } else if (dst.first()->is_stack()) {
1023     // reg to stack
1024     // Do we really have to sign extend???
1025     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1026     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1027   } else {
1028     // Do we really have to sign extend???
1029     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1030     if (dst.first() != src.first()) {
1031       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1032     }
1033   }
1034 }
1035 
1036 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1037   if (src.first()->is_stack()) {
1038     if (dst.first()->is_stack()) {
1039       // stack to stack
1040       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1041       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1042     } else {
1043       // stack to reg
1044       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1045     }
1046   } else if (dst.first()->is_stack()) {
1047     // reg to stack
1048     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1049   } else {
1050     if (dst.first() != src.first()) {
1051       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1052     }
1053   }
1054 }
1055 
1056 // An oop arg. Must pass a handle not the oop itself
1057 static void object_move(MacroAssembler* masm,
1058                         OopMap* map,
1059                         int oop_handle_offset,
1060                         int framesize_in_slots,
1061                         VMRegPair src,
1062                         VMRegPair dst,
1063                         bool is_receiver,
1064                         int* receiver_offset) {
1065 
1066   // must pass a handle. First figure out the location we use as a handle
1067 
1068   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1069 
1070   // See if oop is NULL if it is we need no handle
1071 
1072   if (src.first()->is_stack()) {
1073 
1074     // Oop is already on the stack as an argument
1075     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1076     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1077     if (is_receiver) {
1078       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1079     }
1080 
1081     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1082     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1083     // conditionally move a NULL
1084     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1085   } else {
1086 
1087     // Oop is in an a register we must store it to the space we reserve
1088     // on the stack for oop_handles and pass a handle if oop is non-NULL
1089 
1090     const Register rOop = src.first()->as_Register();
1091     int oop_slot;
1092     if (rOop == j_rarg0)
1093       oop_slot = 0;
1094     else if (rOop == j_rarg1)
1095       oop_slot = 1;
1096     else if (rOop == j_rarg2)
1097       oop_slot = 2;
1098     else if (rOop == j_rarg3)
1099       oop_slot = 3;
1100     else if (rOop == j_rarg4)
1101       oop_slot = 4;
1102     else {
1103       assert(rOop == j_rarg5, "wrong register");
1104       oop_slot = 5;
1105     }
1106 
1107     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1108     int offset = oop_slot*VMRegImpl::stack_slot_size;
1109 
1110     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1111     // Store oop in handle area, may be NULL
1112     __ movptr(Address(rsp, offset), rOop);
1113     if (is_receiver) {
1114       *receiver_offset = offset;
1115     }
1116 
1117     __ cmpptr(rOop, (int32_t)NULL_WORD);
1118     __ lea(rHandle, Address(rsp, offset));
1119     // conditionally move a NULL from the handle area where it was just stored
1120     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1121   }
1122 
1123   // If arg is on the stack then place it otherwise it is already in correct reg.
1124   if (dst.first()->is_stack()) {
1125     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1126   }
1127 }
1128 
1129 // A float arg may have to do float reg int reg conversion
1130 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1131   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1132 
1133   // The calling conventions assures us that each VMregpair is either
1134   // all really one physical register or adjacent stack slots.
1135   // This greatly simplifies the cases here compared to sparc.
1136 
1137   if (src.first()->is_stack()) {
1138     if (dst.first()->is_stack()) {
1139       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1140       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1141     } else {
1142       // stack to reg
1143       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1144       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1145     }
1146   } else if (dst.first()->is_stack()) {
1147     // reg to stack
1148     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1149     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1150   } else {
1151     // reg to reg
1152     // In theory these overlap but the ordering is such that this is likely a nop
1153     if ( src.first() != dst.first()) {
1154       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1155     }
1156   }
1157 }
1158 
1159 // A long move
1160 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1161 
1162   // The calling conventions assures us that each VMregpair is either
1163   // all really one physical register or adjacent stack slots.
1164   // This greatly simplifies the cases here compared to sparc.
1165 
1166   if (src.is_single_phys_reg() ) {
1167     if (dst.is_single_phys_reg()) {
1168       if (dst.first() != src.first()) {
1169         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1170       }
1171     } else {
1172       assert(dst.is_single_reg(), "not a stack pair");
1173       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1174     }
1175   } else if (dst.is_single_phys_reg()) {
1176     assert(src.is_single_reg(),  "not a stack pair");
1177     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1178   } else {
1179     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1180     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1181     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1182   }
1183 }
1184 
1185 // A double move
1186 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1187 
1188   // The calling conventions assures us that each VMregpair is either
1189   // all really one physical register or adjacent stack slots.
1190   // This greatly simplifies the cases here compared to sparc.
1191 
1192   if (src.is_single_phys_reg() ) {
1193     if (dst.is_single_phys_reg()) {
1194       // In theory these overlap but the ordering is such that this is likely a nop
1195       if ( src.first() != dst.first()) {
1196         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1197       }
1198     } else {
1199       assert(dst.is_single_reg(), "not a stack pair");
1200       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1201     }
1202   } else if (dst.is_single_phys_reg()) {
1203     assert(src.is_single_reg(),  "not a stack pair");
1204     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1205   } else {
1206     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1207     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1208     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1209   }
1210 }
1211 
1212 
1213 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1214   // We always ignore the frame_slots arg and just use the space just below frame pointer
1215   // which by this time is free to use
1216   switch (ret_type) {
1217   case T_FLOAT:
1218     __ movflt(Address(rbp, -wordSize), xmm0);
1219     break;
1220   case T_DOUBLE:
1221     __ movdbl(Address(rbp, -wordSize), xmm0);
1222     break;
1223   case T_VOID:  break;
1224   default: {
1225     __ movptr(Address(rbp, -wordSize), rax);
1226     }
1227   }
1228 }
1229 
1230 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1231   // We always ignore the frame_slots arg and just use the space just below frame pointer
1232   // which by this time is free to use
1233   switch (ret_type) {
1234   case T_FLOAT:
1235     __ movflt(xmm0, Address(rbp, -wordSize));
1236     break;
1237   case T_DOUBLE:
1238     __ movdbl(xmm0, Address(rbp, -wordSize));
1239     break;
1240   case T_VOID:  break;
1241   default: {
1242     __ movptr(rax, Address(rbp, -wordSize));
1243     }
1244   }
1245 }
1246 
1247 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1248     for ( int i = first_arg ; i < arg_count ; i++ ) {
1249       if (args[i].first()->is_Register()) {
1250         __ push(args[i].first()->as_Register());
1251       } else if (args[i].first()->is_XMMRegister()) {
1252         __ subptr(rsp, 2*wordSize);
1253         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1254       }
1255     }
1256 }
1257 
1258 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1259     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1260       if (args[i].first()->is_Register()) {
1261         __ pop(args[i].first()->as_Register());
1262       } else if (args[i].first()->is_XMMRegister()) {
1263         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1264         __ addptr(rsp, 2*wordSize);
1265       }
1266     }
1267 }
1268 
1269 
1270 static void save_or_restore_arguments(MacroAssembler* masm,
1271                                       const int stack_slots,
1272                                       const int total_in_args,
1273                                       const int arg_save_area,
1274                                       OopMap* map,
1275                                       VMRegPair* in_regs,
1276                                       BasicType* in_sig_bt) {
1277   // if map is non-NULL then the code should store the values,
1278   // otherwise it should load them.
1279   int slot = arg_save_area;
1280   // Save down double word first
1281   for ( int i = 0; i < total_in_args; i++) {
1282     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1283       int offset = slot * VMRegImpl::stack_slot_size;
1284       slot += VMRegImpl::slots_per_word;
1285       assert(slot <= stack_slots, "overflow");
1286       if (map != NULL) {
1287         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1288       } else {
1289         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1290       }
1291     }
1292     if (in_regs[i].first()->is_Register() &&
1293         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1294       int offset = slot * VMRegImpl::stack_slot_size;
1295       if (map != NULL) {
1296         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1297         if (in_sig_bt[i] == T_ARRAY) {
1298           map->set_oop(VMRegImpl::stack2reg(slot));;
1299         }
1300       } else {
1301         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1302       }
1303       slot += VMRegImpl::slots_per_word;
1304     }
1305   }
1306   // Save or restore single word registers
1307   for ( int i = 0; i < total_in_args; i++) {
1308     if (in_regs[i].first()->is_Register()) {
1309       int offset = slot * VMRegImpl::stack_slot_size;
1310       slot++;
1311       assert(slot <= stack_slots, "overflow");
1312 
1313       // Value is in an input register pass we must flush it to the stack
1314       const Register reg = in_regs[i].first()->as_Register();
1315       switch (in_sig_bt[i]) {
1316         case T_BOOLEAN:
1317         case T_CHAR:
1318         case T_BYTE:
1319         case T_SHORT:
1320         case T_INT:
1321           if (map != NULL) {
1322             __ movl(Address(rsp, offset), reg);
1323           } else {
1324             __ movl(reg, Address(rsp, offset));
1325           }
1326           break;
1327         case T_ARRAY:
1328         case T_LONG:
1329           // handled above
1330           break;
1331         case T_OBJECT:
1332         default: ShouldNotReachHere();
1333       }
1334     } else if (in_regs[i].first()->is_XMMRegister()) {
1335       if (in_sig_bt[i] == T_FLOAT) {
1336         int offset = slot * VMRegImpl::stack_slot_size;
1337         slot++;
1338         assert(slot <= stack_slots, "overflow");
1339         if (map != NULL) {
1340           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1341         } else {
1342           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1343         }
1344       }
1345     } else if (in_regs[i].first()->is_stack()) {
1346       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1347         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1348         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1349       }
1350     }
1351   }
1352 }
1353 
1354 
1355 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1356 // keeps a new JNI critical region from starting until a GC has been
1357 // forced.  Save down any oops in registers and describe them in an
1358 // OopMap.
1359 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1360                                                int stack_slots,
1361                                                int total_c_args,
1362                                                int total_in_args,
1363                                                int arg_save_area,
1364                                                OopMapSet* oop_maps,
1365                                                VMRegPair* in_regs,
1366                                                BasicType* in_sig_bt) {
1367   __ block_comment("check GC_locker::needs_gc");
1368   Label cont;
1369   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
1370   __ jcc(Assembler::equal, cont);
1371 
1372   // Save down any incoming oops and call into the runtime to halt for a GC
1373 
1374   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1375   save_or_restore_arguments(masm, stack_slots, total_in_args,
1376                             arg_save_area, map, in_regs, in_sig_bt);
1377 
1378   address the_pc = __ pc();
1379   oop_maps->add_gc_map( __ offset(), map);
1380   __ set_last_Java_frame(rsp, noreg, the_pc);
1381 
1382   __ block_comment("block_for_jni_critical");
1383   __ movptr(c_rarg0, r15_thread);
1384   __ mov(r12, rsp); // remember sp
1385   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1386   __ andptr(rsp, -16); // align stack as required by ABI
1387   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1388   __ mov(rsp, r12); // restore sp
1389   __ reinit_heapbase();
1390 
1391   __ reset_last_Java_frame(false, true);
1392 
1393   save_or_restore_arguments(masm, stack_slots, total_in_args,
1394                             arg_save_area, NULL, in_regs, in_sig_bt);
1395 
1396   __ bind(cont);
1397 #ifdef ASSERT
1398   if (StressCriticalJNINatives) {
1399     // Stress register saving
1400     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1401     save_or_restore_arguments(masm, stack_slots, total_in_args,
1402                               arg_save_area, map, in_regs, in_sig_bt);
1403     // Destroy argument registers
1404     for (int i = 0; i < total_in_args - 1; i++) {
1405       if (in_regs[i].first()->is_Register()) {
1406         const Register reg = in_regs[i].first()->as_Register();
1407         __ xorptr(reg, reg);
1408       } else if (in_regs[i].first()->is_XMMRegister()) {
1409         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1410       } else if (in_regs[i].first()->is_FloatRegister()) {
1411         ShouldNotReachHere();
1412       } else if (in_regs[i].first()->is_stack()) {
1413         // Nothing to do
1414       } else {
1415         ShouldNotReachHere();
1416       }
1417       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1418         i++;
1419       }
1420     }
1421 
1422     save_or_restore_arguments(masm, stack_slots, total_in_args,
1423                               arg_save_area, NULL, in_regs, in_sig_bt);
1424   }
1425 #endif
1426 }
1427 
1428 // Unpack an array argument into a pointer to the body and the length
1429 // if the array is non-null, otherwise pass 0 for both.
1430 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1431   Register tmp_reg = rax;
1432   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1433          "possible collision");
1434   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1435          "possible collision");
1436 
1437   __ block_comment("unpack_array_argument {");
1438 
1439   // Pass the length, ptr pair
1440   Label is_null, done;
1441   VMRegPair tmp;
1442   tmp.set_ptr(tmp_reg->as_VMReg());
1443   if (reg.first()->is_stack()) {
1444     // Load the arg up from the stack
1445     move_ptr(masm, reg, tmp);
1446     reg = tmp;
1447   }
1448   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1449   __ jccb(Assembler::equal, is_null);
1450   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1451   move_ptr(masm, tmp, body_arg);
1452   // load the length relative to the body.
1453   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1454                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1455   move32_64(masm, tmp, length_arg);
1456   __ jmpb(done);
1457   __ bind(is_null);
1458   // Pass zeros
1459   __ xorptr(tmp_reg, tmp_reg);
1460   move_ptr(masm, tmp, body_arg);
1461   move32_64(masm, tmp, length_arg);
1462   __ bind(done);
1463 
1464   __ block_comment("} unpack_array_argument");
1465 }
1466 
1467 
1468 // Different signatures may require very different orders for the move
1469 // to avoid clobbering other arguments.  There's no simple way to
1470 // order them safely.  Compute a safe order for issuing stores and
1471 // break any cycles in those stores.  This code is fairly general but
1472 // it's not necessary on the other platforms so we keep it in the
1473 // platform dependent code instead of moving it into a shared file.
1474 // (See bugs 7013347 & 7145024.)
1475 // Note that this code is specific to LP64.
1476 class ComputeMoveOrder: public StackObj {
1477   class MoveOperation: public ResourceObj {
1478     friend class ComputeMoveOrder;
1479    private:
1480     VMRegPair        _src;
1481     VMRegPair        _dst;
1482     int              _src_index;
1483     int              _dst_index;
1484     bool             _processed;
1485     MoveOperation*  _next;
1486     MoveOperation*  _prev;
1487 
1488     static int get_id(VMRegPair r) {
1489       return r.first()->value();
1490     }
1491 
1492    public:
1493     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1494       _src(src)
1495     , _src_index(src_index)
1496     , _dst(dst)
1497     , _dst_index(dst_index)
1498     , _next(NULL)
1499     , _prev(NULL)
1500     , _processed(false) {
1501     }
1502 
1503     VMRegPair src() const              { return _src; }
1504     int src_id() const                 { return get_id(src()); }
1505     int src_index() const              { return _src_index; }
1506     VMRegPair dst() const              { return _dst; }
1507     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1508     int dst_index() const              { return _dst_index; }
1509     int dst_id() const                 { return get_id(dst()); }
1510     MoveOperation* next() const       { return _next; }
1511     MoveOperation* prev() const       { return _prev; }
1512     void set_processed()               { _processed = true; }
1513     bool is_processed() const          { return _processed; }
1514 
1515     // insert
1516     void break_cycle(VMRegPair temp_register) {
1517       // create a new store following the last store
1518       // to move from the temp_register to the original
1519       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1520 
1521       // break the cycle of links and insert new_store at the end
1522       // break the reverse link.
1523       MoveOperation* p = prev();
1524       assert(p->next() == this, "must be");
1525       _prev = NULL;
1526       p->_next = new_store;
1527       new_store->_prev = p;
1528 
1529       // change the original store to save it's value in the temp.
1530       set_dst(-1, temp_register);
1531     }
1532 
1533     void link(GrowableArray<MoveOperation*>& killer) {
1534       // link this store in front the store that it depends on
1535       MoveOperation* n = killer.at_grow(src_id(), NULL);
1536       if (n != NULL) {
1537         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1538         _next = n;
1539         n->_prev = this;
1540       }
1541     }
1542   };
1543 
1544  private:
1545   GrowableArray<MoveOperation*> edges;
1546 
1547  public:
1548   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1549                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1550     // Move operations where the dest is the stack can all be
1551     // scheduled first since they can't interfere with the other moves.
1552     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1553       if (in_sig_bt[i] == T_ARRAY) {
1554         c_arg--;
1555         if (out_regs[c_arg].first()->is_stack() &&
1556             out_regs[c_arg + 1].first()->is_stack()) {
1557           arg_order.push(i);
1558           arg_order.push(c_arg);
1559         } else {
1560           if (out_regs[c_arg].first()->is_stack() ||
1561               in_regs[i].first() == out_regs[c_arg].first()) {
1562             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1563           } else {
1564             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1565           }
1566         }
1567       } else if (in_sig_bt[i] == T_VOID) {
1568         arg_order.push(i);
1569         arg_order.push(c_arg);
1570       } else {
1571         if (out_regs[c_arg].first()->is_stack() ||
1572             in_regs[i].first() == out_regs[c_arg].first()) {
1573           arg_order.push(i);
1574           arg_order.push(c_arg);
1575         } else {
1576           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1577         }
1578       }
1579     }
1580     // Break any cycles in the register moves and emit the in the
1581     // proper order.
1582     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1583     for (int i = 0; i < stores->length(); i++) {
1584       arg_order.push(stores->at(i)->src_index());
1585       arg_order.push(stores->at(i)->dst_index());
1586     }
1587  }
1588 
1589   // Collected all the move operations
1590   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1591     if (src.first() == dst.first()) return;
1592     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1593   }
1594 
1595   // Walk the edges breaking cycles between moves.  The result list
1596   // can be walked in order to produce the proper set of loads
1597   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1598     // Record which moves kill which values
1599     GrowableArray<MoveOperation*> killer;
1600     for (int i = 0; i < edges.length(); i++) {
1601       MoveOperation* s = edges.at(i);
1602       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1603       killer.at_put_grow(s->dst_id(), s, NULL);
1604     }
1605     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1606            "make sure temp isn't in the registers that are killed");
1607 
1608     // create links between loads and stores
1609     for (int i = 0; i < edges.length(); i++) {
1610       edges.at(i)->link(killer);
1611     }
1612 
1613     // at this point, all the move operations are chained together
1614     // in a doubly linked list.  Processing it backwards finds
1615     // the beginning of the chain, forwards finds the end.  If there's
1616     // a cycle it can be broken at any point,  so pick an edge and walk
1617     // backward until the list ends or we end where we started.
1618     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1619     for (int e = 0; e < edges.length(); e++) {
1620       MoveOperation* s = edges.at(e);
1621       if (!s->is_processed()) {
1622         MoveOperation* start = s;
1623         // search for the beginning of the chain or cycle
1624         while (start->prev() != NULL && start->prev() != s) {
1625           start = start->prev();
1626         }
1627         if (start->prev() == s) {
1628           start->break_cycle(temp_register);
1629         }
1630         // walk the chain forward inserting to store list
1631         while (start != NULL) {
1632           stores->append(start);
1633           start->set_processed();
1634           start = start->next();
1635         }
1636       }
1637     }
1638     return stores;
1639   }
1640 };
1641 
1642 static void verify_oop_args(MacroAssembler* masm,
1643                             methodHandle method,
1644                             const BasicType* sig_bt,
1645                             const VMRegPair* regs) {
1646   Register temp_reg = rbx;  // not part of any compiled calling seq
1647   if (VerifyOops) {
1648     for (int i = 0; i < method->size_of_parameters(); i++) {
1649       if (sig_bt[i] == T_OBJECT ||
1650           sig_bt[i] == T_ARRAY) {
1651         VMReg r = regs[i].first();
1652         assert(r->is_valid(), "bad oop arg");
1653         if (r->is_stack()) {
1654           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1655           __ verify_oop(temp_reg);
1656         } else {
1657           __ verify_oop(r->as_Register());
1658         }
1659       }
1660     }
1661   }
1662 }
1663 
1664 static void gen_special_dispatch(MacroAssembler* masm,
1665                                  methodHandle method,
1666                                  const BasicType* sig_bt,
1667                                  const VMRegPair* regs) {
1668   verify_oop_args(masm, method, sig_bt, regs);
1669   vmIntrinsics::ID iid = method->intrinsic_id();
1670 
1671   // Now write the args into the outgoing interpreter space
1672   bool     has_receiver   = false;
1673   Register receiver_reg   = noreg;
1674   int      member_arg_pos = -1;
1675   Register member_reg     = noreg;
1676   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1677   if (ref_kind != 0) {
1678     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1679     member_reg = rbx;  // known to be free at this point
1680     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1681   } else if (iid == vmIntrinsics::_invokeBasic) {
1682     has_receiver = true;
1683   } else {
1684     fatal(err_msg_res("unexpected intrinsic id %d", iid));
1685   }
1686 
1687   if (member_reg != noreg) {
1688     // Load the member_arg into register, if necessary.
1689     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1690     VMReg r = regs[member_arg_pos].first();
1691     if (r->is_stack()) {
1692       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1693     } else {
1694       // no data motion is needed
1695       member_reg = r->as_Register();
1696     }
1697   }
1698 
1699   if (has_receiver) {
1700     // Make sure the receiver is loaded into a register.
1701     assert(method->size_of_parameters() > 0, "oob");
1702     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1703     VMReg r = regs[0].first();
1704     assert(r->is_valid(), "bad receiver arg");
1705     if (r->is_stack()) {
1706       // Porting note:  This assumes that compiled calling conventions always
1707       // pass the receiver oop in a register.  If this is not true on some
1708       // platform, pick a temp and load the receiver from stack.
1709       fatal("receiver always in a register");
1710       receiver_reg = j_rarg0;  // known to be free at this point
1711       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1712     } else {
1713       // no data motion is needed
1714       receiver_reg = r->as_Register();
1715     }
1716   }
1717 
1718   // Figure out which address we are really jumping to:
1719   MethodHandles::generate_method_handle_dispatch(masm, iid,
1720                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1721 }
1722 
1723 // ---------------------------------------------------------------------------
1724 // Generate a native wrapper for a given method.  The method takes arguments
1725 // in the Java compiled code convention, marshals them to the native
1726 // convention (handlizes oops, etc), transitions to native, makes the call,
1727 // returns to java state (possibly blocking), unhandlizes any result and
1728 // returns.
1729 //
1730 // Critical native functions are a shorthand for the use of
1731 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1732 // functions.  The wrapper is expected to unpack the arguments before
1733 // passing them to the callee and perform checks before and after the
1734 // native call to ensure that they GC_locker
1735 // lock_critical/unlock_critical semantics are followed.  Some other
1736 // parts of JNI setup are skipped like the tear down of the JNI handle
1737 // block and the check for pending exceptions it's impossible for them
1738 // to be thrown.
1739 //
1740 // They are roughly structured like this:
1741 //    if (GC_locker::needs_gc())
1742 //      SharedRuntime::block_for_jni_critical();
1743 //    tranistion to thread_in_native
1744 //    unpack arrray arguments and call native entry point
1745 //    check for safepoint in progress
1746 //    check if any thread suspend flags are set
1747 //      call into JVM and possible unlock the JNI critical
1748 //      if a GC was suppressed while in the critical native.
1749 //    transition back to thread_in_Java
1750 //    return to caller
1751 //
1752 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1753                                                 methodHandle method,
1754                                                 int compile_id,
1755                                                 BasicType* in_sig_bt,
1756                                                 VMRegPair* in_regs,
1757                                                 BasicType ret_type) {
1758   if (method->is_method_handle_intrinsic()) {
1759     vmIntrinsics::ID iid = method->intrinsic_id();
1760     intptr_t start = (intptr_t)__ pc();
1761     int vep_offset = ((intptr_t)__ pc()) - start;
1762     gen_special_dispatch(masm,
1763                          method,
1764                          in_sig_bt,
1765                          in_regs);
1766     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1767     __ flush();
1768     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1769     return nmethod::new_native_nmethod(method,
1770                                        compile_id,
1771                                        masm->code(),
1772                                        vep_offset,
1773                                        frame_complete,
1774                                        stack_slots / VMRegImpl::slots_per_word,
1775                                        in_ByteSize(-1),
1776                                        in_ByteSize(-1),
1777                                        (OopMapSet*)NULL);
1778   }
1779   bool is_critical_native = true;
1780   address native_func = method->critical_native_function();
1781   if (native_func == NULL) {
1782     native_func = method->native_function();
1783     is_critical_native = false;
1784   }
1785   assert(native_func != NULL, "must have function");
1786 
1787   // An OopMap for lock (and class if static)
1788   OopMapSet *oop_maps = new OopMapSet();
1789   intptr_t start = (intptr_t)__ pc();
1790 
1791   // We have received a description of where all the java arg are located
1792   // on entry to the wrapper. We need to convert these args to where
1793   // the jni function will expect them. To figure out where they go
1794   // we convert the java signature to a C signature by inserting
1795   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1796 
1797   const int total_in_args = method->size_of_parameters();
1798   int total_c_args = total_in_args;
1799   if (!is_critical_native) {
1800     total_c_args += 1;
1801     if (method->is_static()) {
1802       total_c_args++;
1803     }
1804   } else {
1805     for (int i = 0; i < total_in_args; i++) {
1806       if (in_sig_bt[i] == T_ARRAY) {
1807         total_c_args++;
1808       }
1809     }
1810   }
1811 
1812   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1813   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1814   BasicType* in_elem_bt = NULL;
1815 
1816   int argc = 0;
1817   if (!is_critical_native) {
1818     out_sig_bt[argc++] = T_ADDRESS;
1819     if (method->is_static()) {
1820       out_sig_bt[argc++] = T_OBJECT;
1821     }
1822 
1823     for (int i = 0; i < total_in_args ; i++ ) {
1824       out_sig_bt[argc++] = in_sig_bt[i];
1825     }
1826   } else {
1827     Thread* THREAD = Thread::current();
1828     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1829     SignatureStream ss(method->signature());
1830     for (int i = 0; i < total_in_args ; i++ ) {
1831       if (in_sig_bt[i] == T_ARRAY) {
1832         // Arrays are passed as int, elem* pair
1833         out_sig_bt[argc++] = T_INT;
1834         out_sig_bt[argc++] = T_ADDRESS;
1835         Symbol* atype = ss.as_symbol(CHECK_NULL);
1836         const char* at = atype->as_C_string();
1837         if (strlen(at) == 2) {
1838           assert(at[0] == '[', "must be");
1839           switch (at[1]) {
1840             case 'B': in_elem_bt[i]  = T_BYTE; break;
1841             case 'C': in_elem_bt[i]  = T_CHAR; break;
1842             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1843             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1844             case 'I': in_elem_bt[i]  = T_INT; break;
1845             case 'J': in_elem_bt[i]  = T_LONG; break;
1846             case 'S': in_elem_bt[i]  = T_SHORT; break;
1847             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1848             default: ShouldNotReachHere();
1849           }
1850         }
1851       } else {
1852         out_sig_bt[argc++] = in_sig_bt[i];
1853         in_elem_bt[i] = T_VOID;
1854       }
1855       if (in_sig_bt[i] != T_VOID) {
1856         assert(in_sig_bt[i] == ss.type(), "must match");
1857         ss.next();
1858       }
1859     }
1860   }
1861 
1862   // Now figure out where the args must be stored and how much stack space
1863   // they require.
1864   int out_arg_slots;
1865   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1866 
1867   // Compute framesize for the wrapper.  We need to handlize all oops in
1868   // incoming registers
1869 
1870   // Calculate the total number of stack slots we will need.
1871 
1872   // First count the abi requirement plus all of the outgoing args
1873   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1874 
1875   // Now the space for the inbound oop handle area
1876   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1877   if (is_critical_native) {
1878     // Critical natives may have to call out so they need a save area
1879     // for register arguments.
1880     int double_slots = 0;
1881     int single_slots = 0;
1882     for ( int i = 0; i < total_in_args; i++) {
1883       if (in_regs[i].first()->is_Register()) {
1884         const Register reg = in_regs[i].first()->as_Register();
1885         switch (in_sig_bt[i]) {
1886           case T_BOOLEAN:
1887           case T_BYTE:
1888           case T_SHORT:
1889           case T_CHAR:
1890           case T_INT:  single_slots++; break;
1891           case T_ARRAY:  // specific to LP64 (7145024)
1892           case T_LONG: double_slots++; break;
1893           default:  ShouldNotReachHere();
1894         }
1895       } else if (in_regs[i].first()->is_XMMRegister()) {
1896         switch (in_sig_bt[i]) {
1897           case T_FLOAT:  single_slots++; break;
1898           case T_DOUBLE: double_slots++; break;
1899           default:  ShouldNotReachHere();
1900         }
1901       } else if (in_regs[i].first()->is_FloatRegister()) {
1902         ShouldNotReachHere();
1903       }
1904     }
1905     total_save_slots = double_slots * 2 + single_slots;
1906     // align the save area
1907     if (double_slots != 0) {
1908       stack_slots = round_to(stack_slots, 2);
1909     }
1910   }
1911 
1912   int oop_handle_offset = stack_slots;
1913   stack_slots += total_save_slots;
1914 
1915   // Now any space we need for handlizing a klass if static method
1916 
1917   int klass_slot_offset = 0;
1918   int klass_offset = -1;
1919   int lock_slot_offset = 0;
1920   bool is_static = false;
1921 
1922   if (method->is_static()) {
1923     klass_slot_offset = stack_slots;
1924     stack_slots += VMRegImpl::slots_per_word;
1925     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1926     is_static = true;
1927   }
1928 
1929   // Plus a lock if needed
1930 
1931   if (method->is_synchronized()) {
1932     lock_slot_offset = stack_slots;
1933     stack_slots += VMRegImpl::slots_per_word;
1934   }
1935 
1936   // Now a place (+2) to save return values or temp during shuffling
1937   // + 4 for return address (which we own) and saved rbp
1938   stack_slots += 6;
1939 
1940   // Ok The space we have allocated will look like:
1941   //
1942   //
1943   // FP-> |                     |
1944   //      |---------------------|
1945   //      | 2 slots for moves   |
1946   //      |---------------------|
1947   //      | lock box (if sync)  |
1948   //      |---------------------| <- lock_slot_offset
1949   //      | klass (if static)   |
1950   //      |---------------------| <- klass_slot_offset
1951   //      | oopHandle area      |
1952   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1953   //      | outbound memory     |
1954   //      | based arguments     |
1955   //      |                     |
1956   //      |---------------------|
1957   //      |                     |
1958   // SP-> | out_preserved_slots |
1959   //
1960   //
1961 
1962 
1963   // Now compute actual number of stack words we need rounding to make
1964   // stack properly aligned.
1965   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1966 
1967   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1968 
1969   // First thing make an ic check to see if we should even be here
1970 
1971   // We are free to use all registers as temps without saving them and
1972   // restoring them except rbp. rbp is the only callee save register
1973   // as far as the interpreter and the compiler(s) are concerned.
1974 
1975 
1976   const Register ic_reg = rax;
1977   const Register receiver = j_rarg0;
1978 
1979   Label hit;
1980   Label exception_pending;
1981 
1982   assert_different_registers(ic_reg, receiver, rscratch1);
1983   __ verify_oop(receiver);
1984   __ load_klass(rscratch1, receiver);
1985   __ cmpq(ic_reg, rscratch1);
1986   __ jcc(Assembler::equal, hit);
1987 
1988   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1989 
1990   // Verified entry point must be aligned
1991   __ align(8);
1992 
1993   __ bind(hit);
1994 
1995   int vep_offset = ((intptr_t)__ pc()) - start;
1996 
1997   // The instruction at the verified entry point must be 5 bytes or longer
1998   // because it can be patched on the fly by make_non_entrant. The stack bang
1999   // instruction fits that requirement.
2000 
2001   // Generate stack overflow check
2002 
2003   if (UseStackBanging) {
2004     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2005   } else {
2006     // need a 5 byte instruction to allow MT safe patching to non-entrant
2007     __ fat_nop();
2008   }
2009 
2010   // Generate a new frame for the wrapper.
2011   __ enter();
2012   // -2 because return address is already present and so is saved rbp
2013   __ subptr(rsp, stack_size - 2*wordSize);
2014 
2015   // Frame is now completed as far as size and linkage.
2016   int frame_complete = ((intptr_t)__ pc()) - start;
2017 
2018 #ifdef ASSERT
2019     {
2020       Label L;
2021       __ mov(rax, rsp);
2022       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2023       __ cmpptr(rax, rsp);
2024       __ jcc(Assembler::equal, L);
2025       __ stop("improperly aligned stack");
2026       __ bind(L);
2027     }
2028 #endif /* ASSERT */
2029 
2030 
2031   // We use r14 as the oop handle for the receiver/klass
2032   // It is callee save so it survives the call to native
2033 
2034   const Register oop_handle_reg = r14;
2035 
2036   if (is_critical_native) {
2037     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2038                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2039   }
2040 
2041   //
2042   // We immediately shuffle the arguments so that any vm call we have to
2043   // make from here on out (sync slow path, jvmti, etc.) we will have
2044   // captured the oops from our caller and have a valid oopMap for
2045   // them.
2046 
2047   // -----------------
2048   // The Grand Shuffle
2049 
2050   // The Java calling convention is either equal (linux) or denser (win64) than the
2051   // c calling convention. However the because of the jni_env argument the c calling
2052   // convention always has at least one more (and two for static) arguments than Java.
2053   // Therefore if we move the args from java -> c backwards then we will never have
2054   // a register->register conflict and we don't have to build a dependency graph
2055   // and figure out how to break any cycles.
2056   //
2057 
2058   // Record esp-based slot for receiver on stack for non-static methods
2059   int receiver_offset = -1;
2060 
2061   // This is a trick. We double the stack slots so we can claim
2062   // the oops in the caller's frame. Since we are sure to have
2063   // more args than the caller doubling is enough to make
2064   // sure we can capture all the incoming oop args from the
2065   // caller.
2066   //
2067   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2068 
2069   // Mark location of rbp (someday)
2070   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2071 
2072   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2073   // All inbound args are referenced based on rbp and all outbound args via rsp.
2074 
2075 
2076 #ifdef ASSERT
2077   bool reg_destroyed[RegisterImpl::number_of_registers];
2078   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2079   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2080     reg_destroyed[r] = false;
2081   }
2082   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2083     freg_destroyed[f] = false;
2084   }
2085 
2086 #endif /* ASSERT */
2087 
2088   // This may iterate in two different directions depending on the
2089   // kind of native it is.  The reason is that for regular JNI natives
2090   // the incoming and outgoing registers are offset upwards and for
2091   // critical natives they are offset down.
2092   GrowableArray<int> arg_order(2 * total_in_args);
2093   VMRegPair tmp_vmreg;
2094   tmp_vmreg.set1(rbx->as_VMReg());
2095 
2096   if (!is_critical_native) {
2097     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2098       arg_order.push(i);
2099       arg_order.push(c_arg);
2100     }
2101   } else {
2102     // Compute a valid move order, using tmp_vmreg to break any cycles
2103     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2104   }
2105 
2106   int temploc = -1;
2107   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2108     int i = arg_order.at(ai);
2109     int c_arg = arg_order.at(ai + 1);
2110     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2111     if (c_arg == -1) {
2112       assert(is_critical_native, "should only be required for critical natives");
2113       // This arg needs to be moved to a temporary
2114       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2115       in_regs[i] = tmp_vmreg;
2116       temploc = i;
2117       continue;
2118     } else if (i == -1) {
2119       assert(is_critical_native, "should only be required for critical natives");
2120       // Read from the temporary location
2121       assert(temploc != -1, "must be valid");
2122       i = temploc;
2123       temploc = -1;
2124     }
2125 #ifdef ASSERT
2126     if (in_regs[i].first()->is_Register()) {
2127       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2128     } else if (in_regs[i].first()->is_XMMRegister()) {
2129       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2130     }
2131     if (out_regs[c_arg].first()->is_Register()) {
2132       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2133     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2134       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2135     }
2136 #endif /* ASSERT */
2137     switch (in_sig_bt[i]) {
2138       case T_ARRAY:
2139         if (is_critical_native) {
2140           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2141           c_arg++;
2142 #ifdef ASSERT
2143           if (out_regs[c_arg].first()->is_Register()) {
2144             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2145           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2146             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2147           }
2148 #endif
2149           break;
2150         }
2151       case T_OBJECT:
2152         assert(!is_critical_native, "no oop arguments");
2153         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2154                     ((i == 0) && (!is_static)),
2155                     &receiver_offset);
2156         break;
2157       case T_VOID:
2158         break;
2159 
2160       case T_FLOAT:
2161         float_move(masm, in_regs[i], out_regs[c_arg]);
2162           break;
2163 
2164       case T_DOUBLE:
2165         assert( i + 1 < total_in_args &&
2166                 in_sig_bt[i + 1] == T_VOID &&
2167                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2168         double_move(masm, in_regs[i], out_regs[c_arg]);
2169         break;
2170 
2171       case T_LONG :
2172         long_move(masm, in_regs[i], out_regs[c_arg]);
2173         break;
2174 
2175       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2176 
2177       default:
2178         move32_64(masm, in_regs[i], out_regs[c_arg]);
2179     }
2180   }
2181 
2182   int c_arg;
2183 
2184   // Pre-load a static method's oop into r14.  Used both by locking code and
2185   // the normal JNI call code.
2186   if (!is_critical_native) {
2187     // point c_arg at the first arg that is already loaded in case we
2188     // need to spill before we call out
2189     c_arg = total_c_args - total_in_args;
2190 
2191     if (method->is_static()) {
2192 
2193       //  load oop into a register
2194       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2195 
2196       // Now handlize the static class mirror it's known not-null.
2197       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2198       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2199 
2200       // Now get the handle
2201       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2202       // store the klass handle as second argument
2203       __ movptr(c_rarg1, oop_handle_reg);
2204       // and protect the arg if we must spill
2205       c_arg--;
2206     }
2207   } else {
2208     // For JNI critical methods we need to save all registers in save_args.
2209     c_arg = 0;
2210   }
2211 
2212   // Change state to native (we save the return address in the thread, since it might not
2213   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2214   // points into the right code segment. It does not have to be the correct return pc.
2215   // We use the same pc/oopMap repeatedly when we call out
2216 
2217   intptr_t the_pc = (intptr_t) __ pc();
2218   oop_maps->add_gc_map(the_pc - start, map);
2219 
2220   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2221 
2222 
2223   // We have all of the arguments setup at this point. We must not touch any register
2224   // argument registers at this point (what if we save/restore them there are no oop?
2225 
2226   {
2227     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2228     // protect the args we've loaded
2229     save_args(masm, total_c_args, c_arg, out_regs);
2230     __ mov_metadata(c_rarg1, method());
2231     __ call_VM_leaf(
2232       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2233       r15_thread, c_rarg1);
2234     restore_args(masm, total_c_args, c_arg, out_regs);
2235   }
2236 
2237   // RedefineClasses() tracing support for obsolete method entry
2238   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2239     // protect the args we've loaded
2240     save_args(masm, total_c_args, c_arg, out_regs);
2241     __ mov_metadata(c_rarg1, method());
2242     __ call_VM_leaf(
2243       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2244       r15_thread, c_rarg1);
2245     restore_args(masm, total_c_args, c_arg, out_regs);
2246   }
2247 
2248   // Lock a synchronized method
2249 
2250   // Register definitions used by locking and unlocking
2251 
2252   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2253   const Register obj_reg  = rbx;  // Will contain the oop
2254   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2255   const Register old_hdr  = r13;  // value of old header at unlock time
2256 
2257   Label slow_path_lock;
2258   Label lock_done;
2259 
2260   if (method->is_synchronized()) {
2261     assert(!is_critical_native, "unhandled");
2262 
2263 
2264     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2265 
2266     // Get the handle (the 2nd argument)
2267     __ mov(oop_handle_reg, c_rarg1);
2268 
2269     // Get address of the box
2270 
2271     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2272 
2273     // Load the oop from the handle
2274     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2275 
2276     if (UseBiasedLocking) {
2277       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2278     }
2279 
2280     // Load immediate 1 into swap_reg %rax
2281     __ movl(swap_reg, 1);
2282 
2283     // Load (object->mark() | 1) into swap_reg %rax
2284     __ orptr(swap_reg, Address(obj_reg, 0));
2285 
2286     // Save (object->mark() | 1) into BasicLock's displaced header
2287     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2288 
2289     if (os::is_MP()) {
2290       __ lock();
2291     }
2292 
2293     // src -> dest iff dest == rax else rax <- dest
2294     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2295     __ jcc(Assembler::equal, lock_done);
2296 
2297     // Hmm should this move to the slow path code area???
2298 
2299     // Test if the oopMark is an obvious stack pointer, i.e.,
2300     //  1) (mark & 3) == 0, and
2301     //  2) rsp <= mark < mark + os::pagesize()
2302     // These 3 tests can be done by evaluating the following
2303     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2304     // assuming both stack pointer and pagesize have their
2305     // least significant 2 bits clear.
2306     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2307 
2308     __ subptr(swap_reg, rsp);
2309     __ andptr(swap_reg, 3 - os::vm_page_size());
2310 
2311     // Save the test result, for recursive case, the result is zero
2312     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2313     __ jcc(Assembler::notEqual, slow_path_lock);
2314 
2315     // Slow path will re-enter here
2316 
2317     __ bind(lock_done);
2318   }
2319 
2320 
2321   // Finally just about ready to make the JNI call
2322 
2323 
2324   // get JNIEnv* which is first argument to native
2325   if (!is_critical_native) {
2326     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2327   }
2328 
2329   // Now set thread in native
2330   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2331 
2332   __ call(RuntimeAddress(native_func));
2333 
2334   // Verify or restore cpu control state after JNI call
2335   __ restore_cpu_control_state_after_jni();
2336 
2337   // Unpack native results.
2338   switch (ret_type) {
2339   case T_BOOLEAN: __ c2bool(rax);            break;
2340   case T_CHAR   : __ movzwl(rax, rax);      break;
2341   case T_BYTE   : __ sign_extend_byte (rax); break;
2342   case T_SHORT  : __ sign_extend_short(rax); break;
2343   case T_INT    : /* nothing to do */        break;
2344   case T_DOUBLE :
2345   case T_FLOAT  :
2346     // Result is in xmm0 we'll save as needed
2347     break;
2348   case T_ARRAY:                 // Really a handle
2349   case T_OBJECT:                // Really a handle
2350       break; // can't de-handlize until after safepoint check
2351   case T_VOID: break;
2352   case T_LONG: break;
2353   default       : ShouldNotReachHere();
2354   }
2355 
2356   // Switch thread to "native transition" state before reading the synchronization state.
2357   // This additional state is necessary because reading and testing the synchronization
2358   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2359   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2360   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2361   //     Thread A is resumed to finish this native method, but doesn't block here since it
2362   //     didn't see any synchronization is progress, and escapes.
2363   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2364 
2365   if(os::is_MP()) {
2366     if (UseMembar) {
2367       // Force this write out before the read below
2368       __ membar(Assembler::Membar_mask_bits(
2369            Assembler::LoadLoad | Assembler::LoadStore |
2370            Assembler::StoreLoad | Assembler::StoreStore));
2371     } else {
2372       // Write serialization page so VM thread can do a pseudo remote membar.
2373       // We use the current thread pointer to calculate a thread specific
2374       // offset to write to within the page. This minimizes bus traffic
2375       // due to cache line collision.
2376       __ serialize_memory(r15_thread, rcx);
2377     }
2378   }
2379 
2380   Label after_transition;
2381 
2382   // check for safepoint operation in progress and/or pending suspend requests
2383   {
2384     Label Continue;
2385 
2386     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2387              SafepointSynchronize::_not_synchronized);
2388 
2389     Label L;
2390     __ jcc(Assembler::notEqual, L);
2391     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2392     __ jcc(Assembler::equal, Continue);
2393     __ bind(L);
2394 
2395     // Don't use call_VM as it will see a possible pending exception and forward it
2396     // and never return here preventing us from clearing _last_native_pc down below.
2397     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2398     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2399     // by hand.
2400     //
2401     save_native_result(masm, ret_type, stack_slots);
2402     __ mov(c_rarg0, r15_thread);
2403     __ mov(r12, rsp); // remember sp
2404     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2405     __ andptr(rsp, -16); // align stack as required by ABI
2406     if (!is_critical_native) {
2407       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2408     } else {
2409       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2410     }
2411     __ mov(rsp, r12); // restore sp
2412     __ reinit_heapbase();
2413     // Restore any method result value
2414     restore_native_result(masm, ret_type, stack_slots);
2415 
2416     if (is_critical_native) {
2417       // The call above performed the transition to thread_in_Java so
2418       // skip the transition logic below.
2419       __ jmpb(after_transition);
2420     }
2421 
2422     __ bind(Continue);
2423   }
2424 
2425   // change thread state
2426   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2427   __ bind(after_transition);
2428 
2429   Label reguard;
2430   Label reguard_done;
2431   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
2432   __ jcc(Assembler::equal, reguard);
2433   __ bind(reguard_done);
2434 
2435   // native result if any is live
2436 
2437   // Unlock
2438   Label unlock_done;
2439   Label slow_path_unlock;
2440   if (method->is_synchronized()) {
2441 
2442     // Get locked oop from the handle we passed to jni
2443     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2444 
2445     Label done;
2446 
2447     if (UseBiasedLocking) {
2448       __ biased_locking_exit(obj_reg, old_hdr, done);
2449     }
2450 
2451     // Simple recursive lock?
2452 
2453     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2454     __ jcc(Assembler::equal, done);
2455 
2456     // Must save rax if if it is live now because cmpxchg must use it
2457     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2458       save_native_result(masm, ret_type, stack_slots);
2459     }
2460 
2461 
2462     // get address of the stack lock
2463     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2464     //  get old displaced header
2465     __ movptr(old_hdr, Address(rax, 0));
2466 
2467     // Atomic swap old header if oop still contains the stack lock
2468     if (os::is_MP()) {
2469       __ lock();
2470     }
2471     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
2472     __ jcc(Assembler::notEqual, slow_path_unlock);
2473 
2474     // slow path re-enters here
2475     __ bind(unlock_done);
2476     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2477       restore_native_result(masm, ret_type, stack_slots);
2478     }
2479 
2480     __ bind(done);
2481 
2482   }
2483   {
2484     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2485     save_native_result(masm, ret_type, stack_slots);
2486     __ mov_metadata(c_rarg1, method());
2487     __ call_VM_leaf(
2488          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2489          r15_thread, c_rarg1);
2490     restore_native_result(masm, ret_type, stack_slots);
2491   }
2492 
2493   __ reset_last_Java_frame(false, true);
2494 
2495   // Unpack oop result
2496   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2497       Label L;
2498       __ testptr(rax, rax);
2499       __ jcc(Assembler::zero, L);
2500       __ movptr(rax, Address(rax, 0));
2501       __ bind(L);
2502       __ verify_oop(rax);
2503   }
2504 
2505   if (!is_critical_native) {
2506     // reset handle block
2507     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2508     __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2509   }
2510 
2511   // pop our frame
2512 
2513   __ leave();
2514 
2515   if (!is_critical_native) {
2516     // Any exception pending?
2517     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2518     __ jcc(Assembler::notEqual, exception_pending);
2519   }
2520 
2521   // Return
2522 
2523   __ ret(0);
2524 
2525   // Unexpected paths are out of line and go here
2526 
2527   if (!is_critical_native) {
2528     // forward the exception
2529     __ bind(exception_pending);
2530 
2531     // and forward the exception
2532     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2533   }
2534 
2535   // Slow path locking & unlocking
2536   if (method->is_synchronized()) {
2537 
2538     // BEGIN Slow path lock
2539     __ bind(slow_path_lock);
2540 
2541     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2542     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2543 
2544     // protect the args we've loaded
2545     save_args(masm, total_c_args, c_arg, out_regs);
2546 
2547     __ mov(c_rarg0, obj_reg);
2548     __ mov(c_rarg1, lock_reg);
2549     __ mov(c_rarg2, r15_thread);
2550 
2551     // Not a leaf but we have last_Java_frame setup as we want
2552     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2553     restore_args(masm, total_c_args, c_arg, out_regs);
2554 
2555 #ifdef ASSERT
2556     { Label L;
2557     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2558     __ jcc(Assembler::equal, L);
2559     __ stop("no pending exception allowed on exit from monitorenter");
2560     __ bind(L);
2561     }
2562 #endif
2563     __ jmp(lock_done);
2564 
2565     // END Slow path lock
2566 
2567     // BEGIN Slow path unlock
2568     __ bind(slow_path_unlock);
2569 
2570     // If we haven't already saved the native result we must save it now as xmm registers
2571     // are still exposed.
2572 
2573     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2574       save_native_result(masm, ret_type, stack_slots);
2575     }
2576 
2577     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2578 
2579     __ mov(c_rarg0, obj_reg);
2580     __ mov(r12, rsp); // remember sp
2581     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2582     __ andptr(rsp, -16); // align stack as required by ABI
2583 
2584     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2585     // NOTE that obj_reg == rbx currently
2586     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2587     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2588 
2589     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2590     __ mov(rsp, r12); // restore sp
2591     __ reinit_heapbase();
2592 #ifdef ASSERT
2593     {
2594       Label L;
2595       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2596       __ jcc(Assembler::equal, L);
2597       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2598       __ bind(L);
2599     }
2600 #endif /* ASSERT */
2601 
2602     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2603 
2604     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2605       restore_native_result(masm, ret_type, stack_slots);
2606     }
2607     __ jmp(unlock_done);
2608 
2609     // END Slow path unlock
2610 
2611   } // synchronized
2612 
2613   // SLOW PATH Reguard the stack if needed
2614 
2615   __ bind(reguard);
2616   save_native_result(masm, ret_type, stack_slots);
2617   __ mov(r12, rsp); // remember sp
2618   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2619   __ andptr(rsp, -16); // align stack as required by ABI
2620   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2621   __ mov(rsp, r12); // restore sp
2622   __ reinit_heapbase();
2623   restore_native_result(masm, ret_type, stack_slots);
2624   // and continue
2625   __ jmp(reguard_done);
2626 
2627 
2628 
2629   __ flush();
2630 
2631   nmethod *nm = nmethod::new_native_nmethod(method,
2632                                             compile_id,
2633                                             masm->code(),
2634                                             vep_offset,
2635                                             frame_complete,
2636                                             stack_slots / VMRegImpl::slots_per_word,
2637                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2638                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2639                                             oop_maps);
2640 
2641   if (is_critical_native) {
2642     nm->set_lazy_critical_native(true);
2643   }
2644 
2645   return nm;
2646 
2647 }
2648 
2649 #ifdef HAVE_DTRACE_H
2650 // ---------------------------------------------------------------------------
2651 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2652 // in the Java compiled code convention, marshals them to the native
2653 // abi and then leaves nops at the position you would expect to call a native
2654 // function. When the probe is enabled the nops are replaced with a trap
2655 // instruction that dtrace inserts and the trace will cause a notification
2656 // to dtrace.
2657 //
2658 // The probes are only able to take primitive types and java/lang/String as
2659 // arguments.  No other java types are allowed. Strings are converted to utf8
2660 // strings so that from dtrace point of view java strings are converted to C
2661 // strings. There is an arbitrary fixed limit on the total space that a method
2662 // can use for converting the strings. (256 chars per string in the signature).
2663 // So any java string larger then this is truncated.
2664 
2665 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2666 static bool offsets_initialized = false;
2667 
2668 
2669 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
2670                                                 methodHandle method) {
2671 
2672 
2673   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2674   // be single threaded in this method.
2675   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2676 
2677   if (!offsets_initialized) {
2678     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
2679     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
2680     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
2681     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
2682     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
2683     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
2684 
2685     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
2686     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
2687     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
2688     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
2689     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
2690     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
2691     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
2692     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
2693 
2694     offsets_initialized = true;
2695   }
2696   // Fill in the signature array, for the calling-convention call.
2697   int total_args_passed = method->size_of_parameters();
2698 
2699   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2700   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2701 
2702   // The signature we are going to use for the trap that dtrace will see
2703   // java/lang/String is converted. We drop "this" and any other object
2704   // is converted to NULL.  (A one-slot java/lang/Long object reference
2705   // is converted to a two-slot long, which is why we double the allocation).
2706   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2707   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2708 
2709   int i=0;
2710   int total_strings = 0;
2711   int first_arg_to_pass = 0;
2712   int total_c_args = 0;
2713 
2714   // Skip the receiver as dtrace doesn't want to see it
2715   if( !method->is_static() ) {
2716     in_sig_bt[i++] = T_OBJECT;
2717     first_arg_to_pass = 1;
2718   }
2719 
2720   // We need to convert the java args to where a native (non-jni) function
2721   // would expect them. To figure out where they go we convert the java
2722   // signature to a C signature.
2723 
2724   SignatureStream ss(method->signature());
2725   for ( ; !ss.at_return_type(); ss.next()) {
2726     BasicType bt = ss.type();
2727     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2728     out_sig_bt[total_c_args++] = bt;
2729     if( bt == T_OBJECT) {
2730       Symbol* s = ss.as_symbol_or_null();   // symbol is created
2731       if (s == vmSymbols::java_lang_String()) {
2732         total_strings++;
2733         out_sig_bt[total_c_args-1] = T_ADDRESS;
2734       } else if (s == vmSymbols::java_lang_Boolean() ||
2735                  s == vmSymbols::java_lang_Character() ||
2736                  s == vmSymbols::java_lang_Byte() ||
2737                  s == vmSymbols::java_lang_Short() ||
2738                  s == vmSymbols::java_lang_Integer() ||
2739                  s == vmSymbols::java_lang_Float()) {
2740         out_sig_bt[total_c_args-1] = T_INT;
2741       } else if (s == vmSymbols::java_lang_Long() ||
2742                  s == vmSymbols::java_lang_Double()) {
2743         out_sig_bt[total_c_args-1] = T_LONG;
2744         out_sig_bt[total_c_args++] = T_VOID;
2745       }
2746     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2747       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2748       // We convert double to long
2749       out_sig_bt[total_c_args-1] = T_LONG;
2750       out_sig_bt[total_c_args++] = T_VOID;
2751     } else if ( bt == T_FLOAT) {
2752       // We convert float to int
2753       out_sig_bt[total_c_args-1] = T_INT;
2754     }
2755   }
2756 
2757   assert(i==total_args_passed, "validly parsed signature");
2758 
2759   // Now get the compiled-Java layout as input arguments
2760   int comp_args_on_stack;
2761   comp_args_on_stack = SharedRuntime::java_calling_convention(
2762       in_sig_bt, in_regs, total_args_passed, false);
2763 
2764   // Now figure out where the args must be stored and how much stack space
2765   // they require (neglecting out_preserve_stack_slots but space for storing
2766   // the 1st six register arguments). It's weird see int_stk_helper.
2767 
2768   int out_arg_slots;
2769   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2770 
2771   // Calculate the total number of stack slots we will need.
2772 
2773   // First count the abi requirement plus all of the outgoing args
2774   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2775 
2776   // Now space for the string(s) we must convert
2777   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2778   for (i = 0; i < total_strings ; i++) {
2779     string_locs[i] = stack_slots;
2780     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2781   }
2782 
2783   // Plus the temps we might need to juggle register args
2784   // regs take two slots each
2785   stack_slots += (Argument::n_int_register_parameters_c +
2786                   Argument::n_float_register_parameters_c) * 2;
2787 
2788 
2789   // + 4 for return address (which we own) and saved rbp,
2790 
2791   stack_slots += 4;
2792 
2793   // Ok The space we have allocated will look like:
2794   //
2795   //
2796   // FP-> |                     |
2797   //      |---------------------|
2798   //      | string[n]           |
2799   //      |---------------------| <- string_locs[n]
2800   //      | string[n-1]         |
2801   //      |---------------------| <- string_locs[n-1]
2802   //      | ...                 |
2803   //      | ...                 |
2804   //      |---------------------| <- string_locs[1]
2805   //      | string[0]           |
2806   //      |---------------------| <- string_locs[0]
2807   //      | outbound memory     |
2808   //      | based arguments     |
2809   //      |                     |
2810   //      |---------------------|
2811   //      |                     |
2812   // SP-> | out_preserved_slots |
2813   //
2814   //
2815 
2816   // Now compute actual number of stack words we need rounding to make
2817   // stack properly aligned.
2818   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2819 
2820   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2821 
2822   intptr_t start = (intptr_t)__ pc();
2823 
2824   // First thing make an ic check to see if we should even be here
2825 
2826   // We are free to use all registers as temps without saving them and
2827   // restoring them except rbp. rbp, is the only callee save register
2828   // as far as the interpreter and the compiler(s) are concerned.
2829 
2830   const Register ic_reg = rax;
2831   const Register receiver = rcx;
2832   Label hit;
2833   Label exception_pending;
2834 
2835 
2836   __ verify_oop(receiver);
2837   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2838   __ jcc(Assembler::equal, hit);
2839 
2840   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2841 
2842   // verified entry must be aligned for code patching.
2843   // and the first 5 bytes must be in the same cache line
2844   // if we align at 8 then we will be sure 5 bytes are in the same line
2845   __ align(8);
2846 
2847   __ bind(hit);
2848 
2849   int vep_offset = ((intptr_t)__ pc()) - start;
2850 
2851 
2852   // The instruction at the verified entry point must be 5 bytes or longer
2853   // because it can be patched on the fly by make_non_entrant. The stack bang
2854   // instruction fits that requirement.
2855 
2856   // Generate stack overflow check
2857 
2858   if (UseStackBanging) {
2859     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2860       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2861     } else {
2862       __ movl(rax, stack_size);
2863       __ bang_stack_size(rax, rbx);
2864     }
2865   } else {
2866     // need a 5 byte instruction to allow MT safe patching to non-entrant
2867     __ fat_nop();
2868   }
2869 
2870   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
2871          "valid size for make_non_entrant");
2872 
2873   // Generate a new frame for the wrapper.
2874   __ enter();
2875 
2876   // -4 because return address is already present and so is saved rbp,
2877   if (stack_size - 2*wordSize != 0) {
2878     __ subq(rsp, stack_size - 2*wordSize);
2879   }
2880 
2881   // Frame is now completed as far a size and linkage.
2882 
2883   int frame_complete = ((intptr_t)__ pc()) - start;
2884 
2885   int c_arg, j_arg;
2886 
2887   // State of input register args
2888 
2889   bool  live[ConcreteRegisterImpl::number_of_registers];
2890 
2891   live[j_rarg0->as_VMReg()->value()] = false;
2892   live[j_rarg1->as_VMReg()->value()] = false;
2893   live[j_rarg2->as_VMReg()->value()] = false;
2894   live[j_rarg3->as_VMReg()->value()] = false;
2895   live[j_rarg4->as_VMReg()->value()] = false;
2896   live[j_rarg5->as_VMReg()->value()] = false;
2897 
2898   live[j_farg0->as_VMReg()->value()] = false;
2899   live[j_farg1->as_VMReg()->value()] = false;
2900   live[j_farg2->as_VMReg()->value()] = false;
2901   live[j_farg3->as_VMReg()->value()] = false;
2902   live[j_farg4->as_VMReg()->value()] = false;
2903   live[j_farg5->as_VMReg()->value()] = false;
2904   live[j_farg6->as_VMReg()->value()] = false;
2905   live[j_farg7->as_VMReg()->value()] = false;
2906 
2907 
2908   bool rax_is_zero = false;
2909 
2910   // All args (except strings) destined for the stack are moved first
2911   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2912        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2913     VMRegPair src = in_regs[j_arg];
2914     VMRegPair dst = out_regs[c_arg];
2915 
2916     // Get the real reg value or a dummy (rsp)
2917 
2918     int src_reg = src.first()->is_reg() ?
2919                   src.first()->value() :
2920                   rsp->as_VMReg()->value();
2921 
2922     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2923                     (in_sig_bt[j_arg] == T_OBJECT &&
2924                      out_sig_bt[c_arg] != T_INT &&
2925                      out_sig_bt[c_arg] != T_ADDRESS &&
2926                      out_sig_bt[c_arg] != T_LONG);
2927 
2928     live[src_reg] = !useless;
2929 
2930     if (dst.first()->is_stack()) {
2931 
2932       // Even though a string arg in a register is still live after this loop
2933       // after the string conversion loop (next) it will be dead so we take
2934       // advantage of that now for simpler code to manage live.
2935 
2936       live[src_reg] = false;
2937       switch (in_sig_bt[j_arg]) {
2938 
2939         case T_ARRAY:
2940         case T_OBJECT:
2941           {
2942             Address stack_dst(rsp, reg2offset_out(dst.first()));
2943 
2944             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2945               // need to unbox a one-word value
2946               Register in_reg = rax;
2947               if ( src.first()->is_reg() ) {
2948                 in_reg = src.first()->as_Register();
2949               } else {
2950                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
2951                 rax_is_zero = false;
2952               }
2953               Label skipUnbox;
2954               __ movptr(Address(rsp, reg2offset_out(dst.first())),
2955                         (int32_t)NULL_WORD);
2956               __ testq(in_reg, in_reg);
2957               __ jcc(Assembler::zero, skipUnbox);
2958 
2959               BasicType bt = out_sig_bt[c_arg];
2960               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2961               Address src1(in_reg, box_offset);
2962               if ( bt == T_LONG ) {
2963                 __ movq(in_reg,  src1);
2964                 __ movq(stack_dst, in_reg);
2965                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2966                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
2967               } else {
2968                 __ movl(in_reg,  src1);
2969                 __ movl(stack_dst, in_reg);
2970               }
2971 
2972               __ bind(skipUnbox);
2973             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2974               // Convert the arg to NULL
2975               if (!rax_is_zero) {
2976                 __ xorq(rax, rax);
2977                 rax_is_zero = true;
2978               }
2979               __ movq(stack_dst, rax);
2980             }
2981           }
2982           break;
2983 
2984         case T_VOID:
2985           break;
2986 
2987         case T_FLOAT:
2988           // This does the right thing since we know it is destined for the
2989           // stack
2990           float_move(masm, src, dst);
2991           break;
2992 
2993         case T_DOUBLE:
2994           // This does the right thing since we know it is destined for the
2995           // stack
2996           double_move(masm, src, dst);
2997           break;
2998 
2999         case T_LONG :
3000           long_move(masm, src, dst);
3001           break;
3002 
3003         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
3004 
3005         default:
3006           move32_64(masm, src, dst);
3007       }
3008     }
3009 
3010   }
3011 
3012   // If we have any strings we must store any register based arg to the stack
3013   // This includes any still live xmm registers too.
3014 
3015   int sid = 0;
3016 
3017   if (total_strings > 0 ) {
3018     for (j_arg = first_arg_to_pass, c_arg = 0 ;
3019          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3020       VMRegPair src = in_regs[j_arg];
3021       VMRegPair dst = out_regs[c_arg];
3022 
3023       if (src.first()->is_reg()) {
3024         Address src_tmp(rbp, fp_offset[src.first()->value()]);
3025 
3026         // string oops were left untouched by the previous loop even if the
3027         // eventual (converted) arg is destined for the stack so park them
3028         // away now (except for first)
3029 
3030         if (out_sig_bt[c_arg] == T_ADDRESS) {
3031           Address utf8_addr = Address(
3032               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
3033           if (sid != 1) {
3034             // The first string arg won't be killed until after the utf8
3035             // conversion
3036             __ movq(utf8_addr, src.first()->as_Register());
3037           }
3038         } else if (dst.first()->is_reg()) {
3039           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
3040 
3041             // Convert the xmm register to an int and store it in the reserved
3042             // location for the eventual c register arg
3043             XMMRegister f = src.first()->as_XMMRegister();
3044             if (in_sig_bt[j_arg] == T_FLOAT) {
3045               __ movflt(src_tmp, f);
3046             } else {
3047               __ movdbl(src_tmp, f);
3048             }
3049           } else {
3050             // If the arg is an oop type we don't support don't bother to store
3051             // it remember string was handled above.
3052             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
3053                             (in_sig_bt[j_arg] == T_OBJECT &&
3054                              out_sig_bt[c_arg] != T_INT &&
3055                              out_sig_bt[c_arg] != T_LONG);
3056 
3057             if (!useless) {
3058               __ movq(src_tmp, src.first()->as_Register());
3059             }
3060           }
3061         }
3062       }
3063       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3064         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3065         ++c_arg; // skip over T_VOID to keep the loop indices in sync
3066       }
3067     }
3068 
3069     // Now that the volatile registers are safe, convert all the strings
3070     sid = 0;
3071 
3072     for (j_arg = first_arg_to_pass, c_arg = 0 ;
3073          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3074       if (out_sig_bt[c_arg] == T_ADDRESS) {
3075         // It's a string
3076         Address utf8_addr = Address(
3077             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
3078         // The first string we find might still be in the original java arg
3079         // register
3080 
3081         VMReg src = in_regs[j_arg].first();
3082 
3083         // We will need to eventually save the final argument to the trap
3084         // in the von-volatile location dedicated to src. This is the offset
3085         // from fp we will use.
3086         int src_off = src->is_reg() ?
3087             fp_offset[src->value()] : reg2offset_in(src);
3088 
3089         // This is where the argument will eventually reside
3090         VMRegPair dst = out_regs[c_arg];
3091 
3092         if (src->is_reg()) {
3093           if (sid == 1) {
3094             __ movq(c_rarg0, src->as_Register());
3095           } else {
3096             __ movq(c_rarg0, utf8_addr);
3097           }
3098         } else {
3099           // arg is still in the original location
3100           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
3101         }
3102         Label done, convert;
3103 
3104         // see if the oop is NULL
3105         __ testq(c_rarg0, c_rarg0);
3106         __ jcc(Assembler::notEqual, convert);
3107 
3108         if (dst.first()->is_reg()) {
3109           // Save the ptr to utf string in the origina src loc or the tmp
3110           // dedicated to it
3111           __ movq(Address(rbp, src_off), c_rarg0);
3112         } else {
3113           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
3114         }
3115         __ jmp(done);
3116 
3117         __ bind(convert);
3118 
3119         __ lea(c_rarg1, utf8_addr);
3120         if (dst.first()->is_reg()) {
3121           __ movq(Address(rbp, src_off), c_rarg1);
3122         } else {
3123           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
3124         }
3125         // And do the conversion
3126         __ call(RuntimeAddress(
3127                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
3128 
3129         __ bind(done);
3130       }
3131       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3132         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3133         ++c_arg; // skip over T_VOID to keep the loop indices in sync
3134       }
3135     }
3136     // The get_utf call killed all the c_arg registers
3137     live[c_rarg0->as_VMReg()->value()] = false;
3138     live[c_rarg1->as_VMReg()->value()] = false;
3139     live[c_rarg2->as_VMReg()->value()] = false;
3140     live[c_rarg3->as_VMReg()->value()] = false;
3141     live[c_rarg4->as_VMReg()->value()] = false;
3142     live[c_rarg5->as_VMReg()->value()] = false;
3143 
3144     live[c_farg0->as_VMReg()->value()] = false;
3145     live[c_farg1->as_VMReg()->value()] = false;
3146     live[c_farg2->as_VMReg()->value()] = false;
3147     live[c_farg3->as_VMReg()->value()] = false;
3148     live[c_farg4->as_VMReg()->value()] = false;
3149     live[c_farg5->as_VMReg()->value()] = false;
3150     live[c_farg6->as_VMReg()->value()] = false;
3151     live[c_farg7->as_VMReg()->value()] = false;
3152   }
3153 
3154   // Now we can finally move the register args to their desired locations
3155 
3156   rax_is_zero = false;
3157 
3158   for (j_arg = first_arg_to_pass, c_arg = 0 ;
3159        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3160 
3161     VMRegPair src = in_regs[j_arg];
3162     VMRegPair dst = out_regs[c_arg];
3163 
3164     // Only need to look for args destined for the interger registers (since we
3165     // convert float/double args to look like int/long outbound)
3166     if (dst.first()->is_reg()) {
3167       Register r =  dst.first()->as_Register();
3168 
3169       // Check if the java arg is unsupported and thereofre useless
3170       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
3171                       (in_sig_bt[j_arg] == T_OBJECT &&
3172                        out_sig_bt[c_arg] != T_INT &&
3173                        out_sig_bt[c_arg] != T_ADDRESS &&
3174                        out_sig_bt[c_arg] != T_LONG);
3175 
3176 
3177       // If we're going to kill an existing arg save it first
3178       if (live[dst.first()->value()]) {
3179         // you can't kill yourself
3180         if (src.first() != dst.first()) {
3181           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
3182         }
3183       }
3184       if (src.first()->is_reg()) {
3185         if (live[src.first()->value()] ) {
3186           if (in_sig_bt[j_arg] == T_FLOAT) {
3187             __ movdl(r, src.first()->as_XMMRegister());
3188           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
3189             __ movdq(r, src.first()->as_XMMRegister());
3190           } else if (r != src.first()->as_Register()) {
3191             if (!useless) {
3192               __ movq(r, src.first()->as_Register());
3193             }
3194           }
3195         } else {
3196           // If the arg is an oop type we don't support don't bother to store
3197           // it
3198           if (!useless) {
3199             if (in_sig_bt[j_arg] == T_DOUBLE ||
3200                 in_sig_bt[j_arg] == T_LONG  ||
3201                 in_sig_bt[j_arg] == T_OBJECT ) {
3202               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
3203             } else {
3204               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
3205             }
3206           }
3207         }
3208         live[src.first()->value()] = false;
3209       } else if (!useless) {
3210         // full sized move even for int should be ok
3211         __ movq(r, Address(rbp, reg2offset_in(src.first())));
3212       }
3213 
3214       // At this point r has the original java arg in the final location
3215       // (assuming it wasn't useless). If the java arg was an oop
3216       // we have a bit more to do
3217 
3218       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
3219         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
3220           // need to unbox a one-word value
3221           Label skip;
3222           __ testq(r, r);
3223           __ jcc(Assembler::equal, skip);
3224           BasicType bt = out_sig_bt[c_arg];
3225           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
3226           Address src1(r, box_offset);
3227           if ( bt == T_LONG ) {
3228             __ movq(r, src1);
3229           } else {
3230             __ movl(r, src1);
3231           }
3232           __ bind(skip);
3233 
3234         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
3235           // Convert the arg to NULL
3236           __ xorq(r, r);
3237         }
3238       }
3239 
3240       // dst can longer be holding an input value
3241       live[dst.first()->value()] = false;
3242     }
3243     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3244       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3245       ++c_arg; // skip over T_VOID to keep the loop indices in sync
3246     }
3247   }
3248 
3249 
3250   // Ok now we are done. Need to place the nop that dtrace wants in order to
3251   // patch in the trap
3252   int patch_offset = ((intptr_t)__ pc()) - start;
3253 
3254   __ nop();
3255 
3256 
3257   // Return
3258 
3259   __ leave();
3260   __ ret(0);
3261 
3262   __ flush();
3263 
3264   nmethod *nm = nmethod::new_dtrace_nmethod(
3265       method, masm->code(), vep_offset, patch_offset, frame_complete,
3266       stack_slots / VMRegImpl::slots_per_word);
3267   return nm;
3268 
3269 }
3270 
3271 #endif // HAVE_DTRACE_H
3272 
3273 // this function returns the adjust size (in number of words) to a c2i adapter
3274 // activation for use during deoptimization
3275 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
3276   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3277 }
3278 
3279 
3280 uint SharedRuntime::out_preserve_stack_slots() {
3281   return 0;
3282 }
3283 
3284 //------------------------------generate_deopt_blob----------------------------
3285 void SharedRuntime::generate_deopt_blob() {
3286   // Allocate space for the code
3287   ResourceMark rm;
3288   // Setup code generation tools
3289   CodeBuffer buffer("deopt_blob", 2048, 1024);
3290   MacroAssembler* masm = new MacroAssembler(&buffer);
3291   int frame_size_in_words;
3292   OopMap* map = NULL;
3293   OopMapSet *oop_maps = new OopMapSet();
3294 
3295   // -------------
3296   // This code enters when returning to a de-optimized nmethod.  A return
3297   // address has been pushed on the the stack, and return values are in
3298   // registers.
3299   // If we are doing a normal deopt then we were called from the patched
3300   // nmethod from the point we returned to the nmethod. So the return
3301   // address on the stack is wrong by NativeCall::instruction_size
3302   // We will adjust the value so it looks like we have the original return
3303   // address on the stack (like when we eagerly deoptimized).
3304   // In the case of an exception pending when deoptimizing, we enter
3305   // with a return address on the stack that points after the call we patched
3306   // into the exception handler. We have the following register state from,
3307   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
3308   //    rax: exception oop
3309   //    rbx: exception handler
3310   //    rdx: throwing pc
3311   // So in this case we simply jam rdx into the useless return address and
3312   // the stack looks just like we want.
3313   //
3314   // At this point we need to de-opt.  We save the argument return
3315   // registers.  We call the first C routine, fetch_unroll_info().  This
3316   // routine captures the return values and returns a structure which
3317   // describes the current frame size and the sizes of all replacement frames.
3318   // The current frame is compiled code and may contain many inlined
3319   // functions, each with their own JVM state.  We pop the current frame, then
3320   // push all the new frames.  Then we call the C routine unpack_frames() to
3321   // populate these frames.  Finally unpack_frames() returns us the new target
3322   // address.  Notice that callee-save registers are BLOWN here; they have
3323   // already been captured in the vframeArray at the time the return PC was
3324   // patched.
3325   address start = __ pc();
3326   Label cont;
3327 
3328   // Prolog for non exception case!
3329 
3330   // Save everything in sight.
3331   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3332 
3333   // Normal deoptimization.  Save exec mode for unpack_frames.
3334   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
3335   __ jmp(cont);
3336 
3337   int reexecute_offset = __ pc() - start;
3338 
3339   // Reexecute case
3340   // return address is the pc describes what bci to do re-execute at
3341 
3342   // No need to update map as each call to save_live_registers will produce identical oopmap
3343   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3344 
3345   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
3346   __ jmp(cont);
3347 
3348   int exception_offset = __ pc() - start;
3349 
3350   // Prolog for exception case
3351 
3352   // all registers are dead at this entry point, except for rax, and
3353   // rdx which contain the exception oop and exception pc
3354   // respectively.  Set them in TLS and fall thru to the
3355   // unpack_with_exception_in_tls entry point.
3356 
3357   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3358   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
3359 
3360   int exception_in_tls_offset = __ pc() - start;
3361 
3362   // new implementation because exception oop is now passed in JavaThread
3363 
3364   // Prolog for exception case
3365   // All registers must be preserved because they might be used by LinearScan
3366   // Exceptiop oop and throwing PC are passed in JavaThread
3367   // tos: stack at point of call to method that threw the exception (i.e. only
3368   // args are on the stack, no return address)
3369 
3370   // make room on stack for the return address
3371   // It will be patched later with the throwing pc. The correct value is not
3372   // available now because loading it from memory would destroy registers.
3373   __ push(0);
3374 
3375   // Save everything in sight.
3376   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3377 
3378   // Now it is safe to overwrite any register
3379 
3380   // Deopt during an exception.  Save exec mode for unpack_frames.
3381   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
3382 
3383   // load throwing pc from JavaThread and patch it as the return address
3384   // of the current frame. Then clear the field in JavaThread
3385 
3386   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3387   __ movptr(Address(rbp, wordSize), rdx);
3388   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3389 
3390 #ifdef ASSERT
3391   // verify that there is really an exception oop in JavaThread
3392   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3393   __ verify_oop(rax);
3394 
3395   // verify that there is no pending exception
3396   Label no_pending_exception;
3397   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3398   __ testptr(rax, rax);
3399   __ jcc(Assembler::zero, no_pending_exception);
3400   __ stop("must not have pending exception here");
3401   __ bind(no_pending_exception);
3402 #endif
3403 
3404   __ bind(cont);
3405 
3406   // Call C code.  Need thread and this frame, but NOT official VM entry
3407   // crud.  We cannot block on this call, no GC can happen.
3408   //
3409   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
3410 
3411   // fetch_unroll_info needs to call last_java_frame().
3412 
3413   __ set_last_Java_frame(noreg, noreg, NULL);
3414 #ifdef ASSERT
3415   { Label L;
3416     __ cmpptr(Address(r15_thread,
3417                     JavaThread::last_Java_fp_offset()),
3418             (int32_t)0);
3419     __ jcc(Assembler::equal, L);
3420     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
3421     __ bind(L);
3422   }
3423 #endif // ASSERT
3424   __ mov(c_rarg0, r15_thread);
3425   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
3426 
3427   // Need to have an oopmap that tells fetch_unroll_info where to
3428   // find any register it might need.
3429   oop_maps->add_gc_map(__ pc() - start, map);
3430 
3431   __ reset_last_Java_frame(false, false);
3432 
3433   // Load UnrollBlock* into rdi
3434   __ mov(rdi, rax);
3435 
3436    Label noException;
3437   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
3438   __ jcc(Assembler::notEqual, noException);
3439   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3440   // QQQ this is useless it was NULL above
3441   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3442   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
3443   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3444 
3445   __ verify_oop(rax);
3446 
3447   // Overwrite the result registers with the exception results.
3448   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3449   // I think this is useless
3450   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
3451 
3452   __ bind(noException);
3453 
3454   // Only register save data is on the stack.
3455   // Now restore the result registers.  Everything else is either dead
3456   // or captured in the vframeArray.
3457   RegisterSaver::restore_result_registers(masm);
3458 
3459   // All of the register save area has been popped of the stack. Only the
3460   // return address remains.
3461 
3462   // Pop all the frames we must move/replace.
3463   //
3464   // Frame picture (youngest to oldest)
3465   // 1: self-frame (no frame link)
3466   // 2: deopting frame  (no frame link)
3467   // 3: caller of deopting frame (could be compiled/interpreted).
3468   //
3469   // Note: by leaving the return address of self-frame on the stack
3470   // and using the size of frame 2 to adjust the stack
3471   // when we are done the return to frame 3 will still be on the stack.
3472 
3473   // Pop deoptimized frame
3474   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3475   __ addptr(rsp, rcx);
3476 
3477   // rsp should be pointing at the return address to the caller (3)
3478 
3479   // Stack bang to make sure there's enough room for these interpreter frames.
3480   if (UseStackBanging) {
3481     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3482     __ bang_stack_size(rbx, rcx);
3483   }
3484 
3485   // Load address of array of frame pcs into rcx
3486   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3487 
3488   // Trash the old pc
3489   __ addptr(rsp, wordSize);
3490 
3491   // Load address of array of frame sizes into rsi
3492   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3493 
3494   // Load counter into rdx
3495   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3496 
3497   // Pick up the initial fp we should save
3498   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3499 
3500   // Now adjust the caller's stack to make up for the extra locals
3501   // but record the original sp so that we can save it in the skeletal interpreter
3502   // frame and the stack walking of interpreter_sender will get the unextended sp
3503   // value and not the "real" sp value.
3504 
3505   const Register sender_sp = r8;
3506 
3507   __ mov(sender_sp, rsp);
3508   __ movl(rbx, Address(rdi,
3509                        Deoptimization::UnrollBlock::
3510                        caller_adjustment_offset_in_bytes()));
3511   __ subptr(rsp, rbx);
3512 
3513   // Push interpreter frames in a loop
3514   Label loop;
3515   __ bind(loop);
3516   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3517 #ifdef CC_INTERP
3518   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
3519 #ifdef ASSERT
3520   __ push(0xDEADDEAD);                  // Make a recognizable pattern
3521   __ push(0xDEADDEAD);
3522 #else /* ASSERT */
3523   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
3524 #endif /* ASSERT */
3525 #else
3526   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3527 #endif // CC_INTERP
3528   __ pushptr(Address(rcx, 0));          // Save return address
3529   __ enter();                           // Save old & set new ebp
3530   __ subptr(rsp, rbx);                  // Prolog
3531 #ifdef CC_INTERP
3532   __ movptr(Address(rbp,
3533                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3534             sender_sp); // Make it walkable
3535 #else /* CC_INTERP */
3536   // This value is corrected by layout_activation_impl
3537   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3538   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3539 #endif /* CC_INTERP */
3540   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3541   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3542   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3543   __ decrementl(rdx);                   // Decrement counter
3544   __ jcc(Assembler::notZero, loop);
3545   __ pushptr(Address(rcx, 0));          // Save final return address
3546 
3547   // Re-push self-frame
3548   __ enter();                           // Save old & set new ebp
3549 
3550   // Allocate a full sized register save area.
3551   // Return address and rbp are in place, so we allocate two less words.
3552   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3553 
3554   // Restore frame locals after moving the frame
3555   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3556   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3557 
3558   // Call C code.  Need thread but NOT official VM entry
3559   // crud.  We cannot block on this call, no GC can happen.  Call should
3560   // restore return values to their stack-slots with the new SP.
3561   //
3562   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3563 
3564   // Use rbp because the frames look interpreted now
3565   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3566   // Don't need the precise return PC here, just precise enough to point into this code blob.
3567   address the_pc = __ pc();
3568   __ set_last_Java_frame(noreg, rbp, the_pc);
3569 
3570   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3571   __ mov(c_rarg0, r15_thread);
3572   __ movl(c_rarg1, r14); // second arg: exec_mode
3573   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3574   // Revert SP alignment after call since we're going to do some SP relative addressing below
3575   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3576 
3577   // Set an oopmap for the call site
3578   // Use the same PC we used for the last java frame
3579   oop_maps->add_gc_map(the_pc - start,
3580                        new OopMap( frame_size_in_words, 0 ));
3581 
3582   // Clear fp AND pc
3583   __ reset_last_Java_frame(true, true);
3584 
3585   // Collect return values
3586   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3587   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3588   // I think this is useless (throwing pc?)
3589   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3590 
3591   // Pop self-frame.
3592   __ leave();                           // Epilog
3593 
3594   // Jump to interpreter
3595   __ ret(0);
3596 
3597   // Make sure all code is generated
3598   masm->flush();
3599 
3600   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3601   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3602 }
3603 
3604 #ifdef COMPILER2
3605 //------------------------------generate_uncommon_trap_blob--------------------
3606 void SharedRuntime::generate_uncommon_trap_blob() {
3607   // Allocate space for the code
3608   ResourceMark rm;
3609   // Setup code generation tools
3610   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3611   MacroAssembler* masm = new MacroAssembler(&buffer);
3612 
3613   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3614 
3615   address start = __ pc();
3616 
3617   // Push self-frame.  We get here with a return address on the
3618   // stack, so rsp is 8-byte aligned until we allocate our frame.
3619   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3620 
3621   // No callee saved registers. rbp is assumed implicitly saved
3622   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3623 
3624   // compiler left unloaded_class_index in j_rarg0 move to where the
3625   // runtime expects it.
3626   __ movl(c_rarg1, j_rarg0);
3627 
3628   __ set_last_Java_frame(noreg, noreg, NULL);
3629 
3630   // Call C code.  Need thread but NOT official VM entry
3631   // crud.  We cannot block on this call, no GC can happen.  Call should
3632   // capture callee-saved registers as well as return values.
3633   // Thread is in rdi already.
3634   //
3635   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3636 
3637   __ mov(c_rarg0, r15_thread);
3638   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3639 
3640   // Set an oopmap for the call site
3641   OopMapSet* oop_maps = new OopMapSet();
3642   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3643 
3644   // location of rbp is known implicitly by the frame sender code
3645 
3646   oop_maps->add_gc_map(__ pc() - start, map);
3647 
3648   __ reset_last_Java_frame(false, false);
3649 
3650   // Load UnrollBlock* into rdi
3651   __ mov(rdi, rax);
3652 
3653   // Pop all the frames we must move/replace.
3654   //
3655   // Frame picture (youngest to oldest)
3656   // 1: self-frame (no frame link)
3657   // 2: deopting frame  (no frame link)
3658   // 3: caller of deopting frame (could be compiled/interpreted).
3659 
3660   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3661   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3662 
3663   // Pop deoptimized frame (int)
3664   __ movl(rcx, Address(rdi,
3665                        Deoptimization::UnrollBlock::
3666                        size_of_deoptimized_frame_offset_in_bytes()));
3667   __ addptr(rsp, rcx);
3668 
3669   // rsp should be pointing at the return address to the caller (3)
3670 
3671   // Stack bang to make sure there's enough room for these interpreter frames.
3672   if (UseStackBanging) {
3673     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3674     __ bang_stack_size(rbx, rcx);
3675   }
3676 
3677   // Load address of array of frame pcs into rcx (address*)
3678   __ movptr(rcx,
3679             Address(rdi,
3680                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3681 
3682   // Trash the return pc
3683   __ addptr(rsp, wordSize);
3684 
3685   // Load address of array of frame sizes into rsi (intptr_t*)
3686   __ movptr(rsi, Address(rdi,
3687                          Deoptimization::UnrollBlock::
3688                          frame_sizes_offset_in_bytes()));
3689 
3690   // Counter
3691   __ movl(rdx, Address(rdi,
3692                        Deoptimization::UnrollBlock::
3693                        number_of_frames_offset_in_bytes())); // (int)
3694 
3695   // Pick up the initial fp we should save
3696   __ movptr(rbp,
3697             Address(rdi,
3698                     Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3699 
3700   // Now adjust the caller's stack to make up for the extra locals but
3701   // record the original sp so that we can save it in the skeletal
3702   // interpreter frame and the stack walking of interpreter_sender
3703   // will get the unextended sp value and not the "real" sp value.
3704 
3705   const Register sender_sp = r8;
3706 
3707   __ mov(sender_sp, rsp);
3708   __ movl(rbx, Address(rdi,
3709                        Deoptimization::UnrollBlock::
3710                        caller_adjustment_offset_in_bytes())); // (int)
3711   __ subptr(rsp, rbx);
3712 
3713   // Push interpreter frames in a loop
3714   Label loop;
3715   __ bind(loop);
3716   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3717   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3718   __ pushptr(Address(rcx, 0));     // Save return address
3719   __ enter();                      // Save old & set new rbp
3720   __ subptr(rsp, rbx);             // Prolog
3721 #ifdef CC_INTERP
3722   __ movptr(Address(rbp,
3723                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3724             sender_sp); // Make it walkable
3725 #else // CC_INTERP
3726   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3727             sender_sp);            // Make it walkable
3728   // This value is corrected by layout_activation_impl
3729   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3730 #endif // CC_INTERP
3731   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3732   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3733   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3734   __ decrementl(rdx);              // Decrement counter
3735   __ jcc(Assembler::notZero, loop);
3736   __ pushptr(Address(rcx, 0));     // Save final return address
3737 
3738   // Re-push self-frame
3739   __ enter();                 // Save old & set new rbp
3740   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3741                               // Prolog
3742 
3743   // Use rbp because the frames look interpreted now
3744   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3745   // Don't need the precise return PC here, just precise enough to point into this code blob.
3746   address the_pc = __ pc();
3747   __ set_last_Java_frame(noreg, rbp, the_pc);
3748 
3749   // Call C code.  Need thread but NOT official VM entry
3750   // crud.  We cannot block on this call, no GC can happen.  Call should
3751   // restore return values to their stack-slots with the new SP.
3752   // Thread is in rdi already.
3753   //
3754   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3755 
3756   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3757   __ mov(c_rarg0, r15_thread);
3758   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3759   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3760 
3761   // Set an oopmap for the call site
3762   // Use the same PC we used for the last java frame
3763   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3764 
3765   // Clear fp AND pc
3766   __ reset_last_Java_frame(true, true);
3767 
3768   // Pop self-frame.
3769   __ leave();                 // Epilog
3770 
3771   // Jump to interpreter
3772   __ ret(0);
3773 
3774   // Make sure all code is generated
3775   masm->flush();
3776 
3777   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3778                                                  SimpleRuntimeFrame::framesize >> 1);
3779 }
3780 #endif // COMPILER2
3781 
3782 
3783 //------------------------------generate_handler_blob------
3784 //
3785 // Generate a special Compile2Runtime blob that saves all registers,
3786 // and setup oopmap.
3787 //
3788 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3789   assert(StubRoutines::forward_exception_entry() != NULL,
3790          "must be generated before");
3791 
3792   ResourceMark rm;
3793   OopMapSet *oop_maps = new OopMapSet();
3794   OopMap* map;
3795 
3796   // Allocate space for the code.  Setup code generation tools.
3797   CodeBuffer buffer("handler_blob", 2048, 1024);
3798   MacroAssembler* masm = new MacroAssembler(&buffer);
3799 
3800   address start   = __ pc();
3801   address call_pc = NULL;
3802   int frame_size_in_words;
3803   bool cause_return = (poll_type == POLL_AT_RETURN);
3804   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3805 
3806   // Make room for return address (or push it again)
3807   if (!cause_return) {
3808     __ push(rbx);
3809   }
3810 
3811   // Save registers, fpu state, and flags
3812   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3813 
3814   // The following is basically a call_VM.  However, we need the precise
3815   // address of the call in order to generate an oopmap. Hence, we do all the
3816   // work outselves.
3817 
3818   __ set_last_Java_frame(noreg, noreg, NULL);
3819 
3820   // The return address must always be correct so that frame constructor never
3821   // sees an invalid pc.
3822 
3823   if (!cause_return) {
3824     // overwrite the dummy value we pushed on entry
3825     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3826     __ movptr(Address(rbp, wordSize), c_rarg0);
3827   }
3828 
3829   // Do the call
3830   __ mov(c_rarg0, r15_thread);
3831   __ call(RuntimeAddress(call_ptr));
3832 
3833   // Set an oopmap for the call site.  This oopmap will map all
3834   // oop-registers and debug-info registers as callee-saved.  This
3835   // will allow deoptimization at this safepoint to find all possible
3836   // debug-info recordings, as well as let GC find all oops.
3837 
3838   oop_maps->add_gc_map( __ pc() - start, map);
3839 
3840   Label noException;
3841 
3842   __ reset_last_Java_frame(false, false);
3843 
3844   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3845   __ jcc(Assembler::equal, noException);
3846 
3847   // Exception pending
3848 
3849   RegisterSaver::restore_live_registers(masm, save_vectors);
3850 
3851   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3852 
3853   // No exception case
3854   __ bind(noException);
3855 
3856   // Normal exit, restore registers and exit.
3857   RegisterSaver::restore_live_registers(masm, save_vectors);
3858 
3859   __ ret(0);
3860 
3861   // Make sure all code is generated
3862   masm->flush();
3863 
3864   // Fill-out other meta info
3865   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3866 }
3867 
3868 //
3869 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3870 //
3871 // Generate a stub that calls into vm to find out the proper destination
3872 // of a java call. All the argument registers are live at this point
3873 // but since this is generic code we don't know what they are and the caller
3874 // must do any gc of the args.
3875 //
3876 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3877   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3878 
3879   // allocate space for the code
3880   ResourceMark rm;
3881 
3882   CodeBuffer buffer(name, 1000, 512);
3883   MacroAssembler* masm                = new MacroAssembler(&buffer);
3884 
3885   int frame_size_in_words;
3886 
3887   OopMapSet *oop_maps = new OopMapSet();
3888   OopMap* map = NULL;
3889 
3890   int start = __ offset();
3891 
3892   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3893 
3894   int frame_complete = __ offset();
3895 
3896   __ set_last_Java_frame(noreg, noreg, NULL);
3897 
3898   __ mov(c_rarg0, r15_thread);
3899 
3900   __ call(RuntimeAddress(destination));
3901 
3902 
3903   // Set an oopmap for the call site.
3904   // We need this not only for callee-saved registers, but also for volatile
3905   // registers that the compiler might be keeping live across a safepoint.
3906 
3907   oop_maps->add_gc_map( __ offset() - start, map);
3908 
3909   // rax contains the address we are going to jump to assuming no exception got installed
3910 
3911   // clear last_Java_sp
3912   __ reset_last_Java_frame(false, false);
3913   // check for pending exceptions
3914   Label pending;
3915   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3916   __ jcc(Assembler::notEqual, pending);
3917 
3918   // get the returned Method*
3919   __ get_vm_result_2(rbx, r15_thread);
3920   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3921 
3922   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3923 
3924   RegisterSaver::restore_live_registers(masm);
3925 
3926   // We are back the the original state on entry and ready to go.
3927 
3928   __ jmp(rax);
3929 
3930   // Pending exception after the safepoint
3931 
3932   __ bind(pending);
3933 
3934   RegisterSaver::restore_live_registers(masm);
3935 
3936   // exception pending => remove activation and forward to exception handler
3937 
3938   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3939 
3940   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3941   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3942 
3943   // -------------
3944   // make sure all code is generated
3945   masm->flush();
3946 
3947   // return the  blob
3948   // frame_size_words or bytes??
3949   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3950 }
3951 
3952 
3953 #ifdef COMPILER2
3954 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3955 //
3956 //------------------------------generate_exception_blob---------------------------
3957 // creates exception blob at the end
3958 // Using exception blob, this code is jumped from a compiled method.
3959 // (see emit_exception_handler in x86_64.ad file)
3960 //
3961 // Given an exception pc at a call we call into the runtime for the
3962 // handler in this method. This handler might merely restore state
3963 // (i.e. callee save registers) unwind the frame and jump to the
3964 // exception handler for the nmethod if there is no Java level handler
3965 // for the nmethod.
3966 //
3967 // This code is entered with a jmp.
3968 //
3969 // Arguments:
3970 //   rax: exception oop
3971 //   rdx: exception pc
3972 //
3973 // Results:
3974 //   rax: exception oop
3975 //   rdx: exception pc in caller or ???
3976 //   destination: exception handler of caller
3977 //
3978 // Note: the exception pc MUST be at a call (precise debug information)
3979 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3980 //
3981 
3982 void OptoRuntime::generate_exception_blob() {
3983   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3984   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3985   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3986 
3987   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3988 
3989   // Allocate space for the code
3990   ResourceMark rm;
3991   // Setup code generation tools
3992   CodeBuffer buffer("exception_blob", 2048, 1024);
3993   MacroAssembler* masm = new MacroAssembler(&buffer);
3994 
3995 
3996   address start = __ pc();
3997 
3998   // Exception pc is 'return address' for stack walker
3999   __ push(rdx);
4000   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
4001 
4002   // Save callee-saved registers.  See x86_64.ad.
4003 
4004   // rbp is an implicitly saved callee saved register (i.e. the calling
4005   // convention will save restore it in prolog/epilog) Other than that
4006   // there are no callee save registers now that adapter frames are gone.
4007 
4008   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
4009 
4010   // Store exception in Thread object. We cannot pass any arguments to the
4011   // handle_exception call, since we do not want to make any assumption
4012   // about the size of the frame where the exception happened in.
4013   // c_rarg0 is either rdi (Linux) or rcx (Windows).
4014   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
4015   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
4016 
4017   // This call does all the hard work.  It checks if an exception handler
4018   // exists in the method.
4019   // If so, it returns the handler address.
4020   // If not, it prepares for stack-unwinding, restoring the callee-save
4021   // registers of the frame being removed.
4022   //
4023   // address OptoRuntime::handle_exception_C(JavaThread* thread)
4024 
4025   // At a method handle call, the stack may not be properly aligned
4026   // when returning with an exception.
4027   address the_pc = __ pc();
4028   __ set_last_Java_frame(noreg, noreg, the_pc);
4029   __ mov(c_rarg0, r15_thread);
4030   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
4031   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
4032 
4033   // Set an oopmap for the call site.  This oopmap will only be used if we
4034   // are unwinding the stack.  Hence, all locations will be dead.
4035   // Callee-saved registers will be the same as the frame above (i.e.,
4036   // handle_exception_stub), since they were restored when we got the
4037   // exception.
4038 
4039   OopMapSet* oop_maps = new OopMapSet();
4040 
4041   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
4042 
4043   __ reset_last_Java_frame(false, true);
4044 
4045   // Restore callee-saved registers
4046 
4047   // rbp is an implicitly saved callee saved register (i.e. the calling
4048   // convention will save restore it in prolog/epilog) Other than that
4049   // there are no callee save registers no that adapter frames are gone.
4050 
4051   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
4052 
4053   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
4054   __ pop(rdx);                  // No need for exception pc anymore
4055 
4056   // rax: exception handler
4057 
4058   // Restore SP from BP if the exception PC is a MethodHandle call site.
4059   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
4060   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
4061 
4062   // We have a handler in rax (could be deopt blob).
4063   __ mov(r8, rax);
4064 
4065   // Get the exception oop
4066   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
4067   // Get the exception pc in case we are deoptimized
4068   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
4069 #ifdef ASSERT
4070   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
4071   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
4072 #endif
4073   // Clear the exception oop so GC no longer processes it as a root.
4074   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
4075 
4076   // rax: exception oop
4077   // r8:  exception handler
4078   // rdx: exception pc
4079   // Jump to handler
4080 
4081   __ jmp(r8);
4082 
4083   // Make sure all code is generated
4084   masm->flush();
4085 
4086   // Set exception blob
4087   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
4088 }
4089 #endif // COMPILER2